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Abstract 
During plastic deformation, materials can suffer damage. The rate at which this 

damage progresses varies significantly from one material to another. In order to improve the 

ability of finite element analysis for failure prediction, continuum damage models are being 

integrated in codes, in order to contribute for enhancing the optimization of sheet metal 

forming processes. An example is the integration of the enhanced Lemaitre’s damage model 

in the LS-DYNA. However, to explore the potentialities of this model, it is important to 

improve the knowledge concerning the identification of its parameters. The present work 

focus on the development of a strategy to perform the identification of these model 

parameters. In this context, sensitivity analysis and optimization tools available on LS-OPT 

were explored. 

The inverse damage parameters identification strategy is developed considering 

the availability of force-displacement experimental results from: uniaxial tensile and 

Nakajima tests. The material orthotropic behaviour and the isotropic hardening parameters 

are identified using the results from uniaxial tensile tests. Based on the sensitivity analysis 

performed to the damage parameters, the identification procedure proposed includes five 

damage parameters. The procedure is based on the application of the Adaptive Simulated 

Annealing algorithm to metamodels, built considering a Sequential Response Surface 

Methodology, in order to minimize the computational time. The results show that the 

procedure is sensitive to the user-defined starting point. In this context, it is not possible to 

state which of the solutions obtained corresponds to the best description of the material 

mechanical behaviour. A strategy to reduce the number of parameters is also proposed, based 

on the analytical calculation of the initial damage energy release rate. This enables the 

identification of the damage parameters with a similar accuracy in a lower number of 

iterations. 

 

 

Keywords Damage, Parameter identification, Optimization, Sensitivity 
analysis, Tensile test, Nakajima tests. 
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Resumo 
Durante os processos de deformação plástica, os materiais podem sofrer dano. 

A velocidade a que o dano se desenvolve varia de material para material. De modo a 

aumentar a capacidade da análise com o método dos elementos finitos na previsão de dano, 

têm sido integrados nos programas de simulação modelos contínuos de dano, de modo a 

contribuir para melhorar a optimização de processos de deformação de chapas metálicas. 

Um exemplo é a integração do modelo melhorado de dano de Lemaitre no programa LS-

DYNA. De qualquer modo, para explorar as potencialidades deste modelo, é importante 

melhorar os conhecimentos relativos à identificação dos seus parâmetros. O presente estudo 

foca-se no desenvolvimento de uma estratégia para realizar a identificação dos parâmetros 

deste modelo. Neste contexto, explora as ferramentas de análise de sensibilidade e 

optimização disponíveis no programa LS-OPT. 

A estratégia de identificação inversa dos parâmetros de dano é desenvolvida 

considerando a disponibilidade de curvas força-deslocamento experimentais de ensaios de 

tracção uniaxial e ensaios de Nakajima. O comportamento ortotrópico do material e os 

parâmetros isotrópicos de encruamento são identificados utilizando os resultados do ensaio 

de tracção uniaxial. Baseado na análise de sensibilidade, aplicada aos parâmetros de dano, o 

processo de identificação proposto inclui cinco variáveis de dano. O procedimento é baseado 

na aplicação do algoritmo “Adaptative Simulated Annealing” a metamodelos, considerando 

a estratégia de redução de domínio “Sequential Response Surface Methodology”, de modo 

a minimizar o tempo computacional. Os resultados mostram que o procedimento é sensível 

ao conjunto de parâmetros iniciais definidos pelo utilizador. Neste contexto, não é possível 

definir qual das soluções obtidas descreve melhor o comportamento mecânico do material. 

É também proposta uma estratégia para reduzir o número de parâmetros, baseada no cálculo 

analítico da velocidade inicial de libertação de energia de dano. Isto permite a identificação 

dos parâmetros de dano com uma precisão similar e um menor número de iterações. 

 

Palavras-chave: Dano, identificação de parâmetros, optimização, 
análise de sensibilidade, ensaio uniaxial de tracção, 
ensaios de Nakajima. 
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1. INTRODUCTION 
The development of technology over the past years led to the growth of sheet 

metal formed products that can be found in almost all consumer products. From an 

economical point of view, the design and manufacturing technologies are more important to 

guarantee the competitiveness of each manufacturing company. In the last years, numerical 

tools based in the Finite Element Analysis (FEA) gained an important role, since they allow 

companies to save money and time. The advantage of such tools are well known and their 

development is continuous and indispensable towards the advance of science and 

technology. The implementation of new time integration techniques connected with new 

constitutive models has contributed for improvements in the accuracy/precision of the 

results. Also, code parallelization and algorithmic optimization allowed an increase of the 

computational performance. In parallel, the continuous development of materials, normally 

more resistant but also less ductile, induces new engineering challenges. 

The growth in the use in industry of new materials, especially Advanced High 

Strength Steels (AHSS) (e.g. dual phase, TRIP), is due to their enormous advantages since 

they present: 

x Low weight; 

x High strength; 

x Good crash performance. 

Therefore, AHSS are nowadays widely applied in the design of automotive components, in 

order to reduce the weight and to increase the resistance, consequently reducing the fuel 

consumption in passenger cars and the carbon dioxide (CO2) emissions rates, fulfilling the 

new environmental demands and safety requirements. However, they present lower ductility 

and higher work hardening rate when compared to conventional steels. Thus, failure usually 

occurs earlier and sometimes without strain localization (necking), making it harder to 

predict fracture occurrence. Also, it is hard to predict the mechanical behaviour of metallic 

sheets under complex strain paths. In fact, the use of the conventional forming limit curve 

(FLC) presents some limitations in the prediction of metallic sheets formability limits, 

particularly for AHSS, as it is known that it is not possible to predict shear cracks occurrence 
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(Banabic 2010). Therefore, damage models are being developed and used to try to improve 

the description of the mechanical behaviour of these steels, particularly the formability 

analysis.  

1.1. Objectives 
The main objective of this work is to improve knowledge concerning the damage 

parameters identification procedure, particularly the ones of the enhanced isotropic 

Lemaitre’s model, implemented in LS-DYNA. The starting point was to consider the 

availability of force-displacement experimental results from: uniaxial tensile tests and 

biaxial, plane strain and uniaxial Nakajima tests. The first objective was to perform 

sensitivity analysis of the damage parameters in each test, in order to define different 

possibilities for the inverse analysis identification procedure. This could include the use of 

specific tests for each parameter or even the exclusion of some, less sensitive, parameter(s) 

from the procedure. The subsequent goal was to develop an inverse analysis procedure, 

enabling the fast and accurate identification of the damage parameters. The tools used in the 

work should be the ones available in LS-OPT. 

1.2. Reading Guide 
The manuscript is organized in six different chapters. After this first introductory 

chapter, in Chapter 2 the basic concepts of damage prediction, continuum damage mechanics 

and parameter identification are shortly presented. 

Chapter 3 introduces the material constitutive modelling, including the isotropic 

elastic behaviour and the orthotropic plastic one. In this context, a brief review of the Hill’48 

yield criterion is provided. Some commonly used isotropic hardening laws are also 

presented. Also, the principles of the continuum damage mechanics model are presented, 

specifically the enhanced Lemaitre’s isotropic damage model, and the variables that describe 

the internal damage state of the material.  

Chapter 4 introduces the parameter identification procedure, resuming the 

characteristics of the experimental tests considered and the numerical models adopted. The 

procedure for the identification of the isotropic hardening parameters is discussed, based on 

the uniaxial tensile test results. The sensitivity analysis results are presented highlighting the 
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effect of each damage parameter, in each test. Finally, the inverse strategy for performing 

the damage parameters identification is presented. 

Chapter 5 is devoted to the optimization results presentation and discussion, 

including the analysis of the evolution of the equivalent plastic strain, damage and triaxiality, 

during each test.  

Finally, Chapter 6 presents a summary of the main conclusions along with 

suggestions for future works. 
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2. STATE OF THE ART 
Sheet metal forming is the process of transforming metal sheets into thin, non-

flat pieces. The main characteristic of the components produced is the high surface area to 

thickness ratio. It is used in almost every sector of industrial production (ex: automotive, 

aircraft or food industry). In this process, several methods can be used to obtain the desired 

shape, being the final shape always achieved through plastic deformation. It can be classified 

in accordance with DIN 8582 (Normung n.d.) into five processes, depending on what type 

of stresses is the sheet subjected to (main direction of the applied stress): 

x Forming under compression; 

x Forming under tensile conditions; 

x Forming under both compressive and tensile conditions; 

x Forming under bending; 

x Forming under shearing. 

The deformation analysis in sheet metal forming is commonly based on the 

evaluation of the two principal strains, ɛ1 and ɛ2, that occur in the sheet plane. The FEA of 

the forming limit is performed comparing the estimated values for these strains with the 

experimentally evaluated FLC, either considering necking or fracture occurrence. However, 

the experimental evaluation of the FLC is expensive and most of all is strain path dependent. 

Therefore, different approaches have been explored trying to overcome the disadvantages of 

the strain based FLC and avoid the laborious experimental tests involved in its evaluation. 

Necking and fracture occurs consequence of the material damage. Damage is the 

physical process of deterioration that can lead to macroscopic collapse. It “is the creation 

and growth of microvoids and microcracks which are discontinuities in a medium considered 

as continuous at a larger scale” (Lemaitre & Desmorat 2005). In a more pragmatic point of 

view, it is the physical process that will lead to the material failure. Its direct measurement 

as, for example, the measurement of the surface’s (and interior) density of microdefects, is 

difficult to perform and requires well-equipped laboratories. Depending on the nature of the 

material, loading conditions and temperature, damage can express itself in several ways: 
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x Brittle damage, when a crack is initiated at the mesoscale without a large 

amount of plastic strain; 

x Ductile damage, when it occurs simultaneously with plastic deformations 

larger than a certain threshold (Lemaitre & Desmorat 2005), resulting 

from the nucleation of cavities due to decohesions between inclusions 

and the matrix, followed by their growth and their coalescence through 

the phenomena of plastic instability; 

x Creep damage, which are intergranular decohesions which produce 

damage and an increase of the strain rate (happens at high temperatures, 

involving viscosity in the plastic strain, allowing the material to be 

deformed at constant stress); 

x Low cycle fatigue damage, when the material is subjected to a cyclic 

loading at high values for stress and strain, allowing damage to develop 

together with cyclic plastic strain (low number of cycles until rupture); 

x High cycle fatigue damage, when the material is subjected to a cyclic 

loading at low values of stress. 

For most metallic materials, damage is usually a combination of brittle and ductile response 

(Lemaitre & Desmorat 2005). In order to predict more accurately the behaviour of the 

material, some damage models have been developed in the last years, whose criteria are 

based either on damage accumulation or on localization. Localization damage is normally 

applied to materials that present softening behaviour, requiring a precise implementation and 

having strong finite element mesh size dependence. Damage accumulation methods keep 

track of the critical damage needed for fracture to occur and can be based on uncoupled 

fracture criteria (macroscopic approach) or coupled damage models, which can be either 

based on Micromechanical or Continuum Damage Mechanics (MDM or CDM). 

This present work focuses on CDM models and their application on formability 

prediction for sheet metal forming processes. Therefore, in the following section some 

details concerning this type of models are given. Also, due to the importance of the FLC (in 

the strain space) in FEA, some details about the advantages and disadvantages of using this 

approach are given. 
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2.1.  Damage prediction 
A material is free of any damage if it is devoid of cracks and cavities at the 

microscopic scale, i.e. if its deformation behaviour is that of the material formed under the 

best conditions. The theory of damage describes the evolution of the damage phenomenon 

evolution between the virgin state and the macroscopic crack initiation. This phenomenon is 

not easily distinguishable from deformation, which usually accompanies it (Lemaitre & 

Chaboche 1985). Therefore, in sheet metal forming process the formability analysis is 

typically performed based on the strain state in the sheet plane, using the FLC. 

2.1.1. Forming Limit Curve 
In sheet metal forming process design, the forming limits are typically evaluated 

using the FLC, which allows estimating the split between the safe and fail regions, being 

possible to reduce necking, wrinkling and large deformation occurrence, by keeping the 

strain state in the safe area (Oliveira et al. 2011). These curves (FLC) represent the maximum 

sustainable formability of the component as a combination of the first and second principal 

strains, and can be determined either experimentally or analytically, being a good and user-

friendly damage prediction method for linear strain paths. A schematic representation of the 

FLC is given in Figure 2.1, highlighting the safe and fail zones.  

 

 
Figure 2.1 - Forming limit diagrams defined by Keeler and Goodwin (extracted from (Banabic 2010)) 
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The experimental evaluation of this diagrams requires the measurement of the 

principal strains, ɛ1 and ɛ2, for each strain path, up to necking or failure. The conventional 

procedure consisted on selecting an appropriate geometry of the test specimen, for each 

strain path, and cover the surface with a grid of circles, used to measure the strains at failure 

(fracture, necking, wrinkling). Nowadays digital image correlation techniques can be used 

to improve the results acquisition and minimize the impact of the analyst experience in the 

results. Since it is not possible to perform the test for all strain paths, the connection of all 

evaluated points, corresponding to limit strains according to different strain paths, leads to a 

FLC, which corresponds to the FLD (forming limit diagram). The knowledge of this curve 

enables the direct comparison of the numerically predicted in-plane principal strain with the 

ones determined as critical. This enables the design of processes that avoid failure 

occurrence. The FLC became popular because the results obtained for conventional steels 

and aluminium alloys pointed out that the forming limits can be quite well estimated and 

because it is easy to use in FEA. Nevertheless, even for these materials it is also known that 

the use of the FLC disables the exploitation of the material formability, since it typically 

leads to conservative designs. In fact, despite the extensive use of the FLC, they have several 

disadvantages for evaluating the sheet metal formability: 

x Provide information only for the region between uniaxial tension and 

equibiaxial stretch under plane stress;  

x They are typically evaluated for linear (monotonous) strain paths but are 

known to present strain path dependency, as shown in Figure 2.2. 

Moreover, during deep drawing each material point is typically subjected 

to a particular non-linear strain path, which limit cannot be predicted by 

the FLC, because integrated damage accumulation is not taken into 

account; 

x Information about fracture mode and direction is not provided; 

x They are not applicable if the hardening behaviour is influenced by 

thermal effects; 

x They depend on the sample’s thickness and on the material mechanical 

properties, which are known to present some variability even for the 

same supplier. 
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Figure 2.2-Influence of strain path on the forming limits for a steel for uniaxial tension and equi-biaxial 
expansion followed by several strain paths (extracted from (Butuc 2004)) 

 
Therefore, due to the enormous restrictions related with the FLC in the strain 

space, different approaches are being investigated. The use of physically based damage 

models is one of these approaches, since they are already used in crash simulations and bulk 

forming (Doig et al. 2014). The great progress made throughout the years in simulation codes 

is somewhat conducting to the point where, somewhere in the future, FLC will only be used 

to validate new stamped components.  

2.1.2. Continuum Damage Mechanics Models 
The theory of damage concerns any kind of load as well as low and/or high 

temperatures. The stress and strain history, for a given elementary volume element of a 

structure, allow the damage laws to provide, through its integration with respect to time, the 

damage evolution in the element, up to the point of macroscopic crack initiation. Therefore, 

it is expected that its use will contribute towards better optimization of metal forming 

processes by plastic deformation, allowing to reduce manufacturing defects. 

The CDM theory is based on the introduction of a damage internal variable, 𝐷, 

which is related to the density of internal defects, describing the extent of micro-voids and 

micro-cracks in the material, before the initiation of macro-cracks. The material in the 



 

 

Identification of Damage Parameters in the commercial code LS-DYNA  

 

 

10  2015 

 

physical space presents micro-voids and micro-cracks, while in the effective space it is 

idealized as a continuum. Therefore the area were the load is applied in the physical space, 

represented by 𝐴, corresponds an effective area, represented by 𝐴̃. This means that the 

damaged area could be calculated by AD = A − Ã. Consequently, the scalar damage variable, 

𝐷, can be represented by (Lemaitre 1992): 

 𝐷 = 𝐴𝐷

𝐴
= 1 − 𝐴̃

𝐴
 . (2.1) 

The model describes the initiation and evolution of the internal damage in the material by 

defining an evolution law for 𝐷. This way, at each instant, it is possible to evaluate the 

damaged area, i.e. the growth of cracks and cavities (surface density of discontinuities).  

CMD models on the evolution law adopted for the scalar damage variable, 𝐷. 

Typically, this is a phenomenological law that tries to describe the mechanical behavior 

observed for the material. Thus, there is always some set of material parameters that enables 

the best fit between the numerical and the experimental results. For further details its 

recommended to read the works (Soyarslan & Tekkaya 2010a) and (Soyarslan & Tekkaya 

2010b), which were used has reference for this section. 

2.2.  Parameter identification 
As previously mentioned, damage is not easily distinguishable from plastic 

deformation. Therefore, there is also a strong correlation between the constitutive model 

selected to describe the material plastic behaviour and the damage model. Moreover, damage 

can occur due to localization under non-homogeneous stress-strain state. In order to identify 

damage parameters it is not possible to assume homogeneous conditions for the strain path, 

as commonly adopted for the identification of the hardening and anisotropic parameters. 

Therefore, an inverse optimization method is needed for damage parameters identification. 

The inverse optimization method commonly adopted relies on the correlation between finite 

element method (FEM) results and the experimentally evaluated results, typically force 

displacement curves.  

For the parameter identification, several methods are now available to perform 

both sensitivity and optimization analysis. LS-OPT includes several metamodel building 

methods: 

x Polynomial; 
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x Sensitivity; 

x Feedforward Neural Network; 

x Radial Basis Function Network; 

x Kriging; 

x Support Vector Regression. 

There are also several point selection methods available. They are: 

x Full factorial; 

x Linear Koshal; 

x Quadratic Koshal; 

x Composite; 

x D-Optimal; 

x Monte Carlo; 

x Latin Hypercube; 

x Space Filling. 

(Stander et al. 2010) 

It is important to state that a metamodel can obtain better or worse results 

depending on the point selection method selected. Also, some metamodels are more suitable 

to perform sensitivity analysis whilst others are more suitable to perform optimization of 

parameters itself. With practice and/or experience, one is able to decide faster and more 

accurately on which metamodel to use, depending on the problem. Information regarding 

these metamodels and the point selection methods can be found in the LS-OPT manual 

(Stander et al. 2010) and in many other books (Bonte 2007) (Myers et al. 2009a). To 

conclude the topic, the choice of the metamodel to use and the point selection method always 

depends on the problem in study.  
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3. MATERIAL MODELLING 
The material model is a set of equations used to describe the mechanical 

behaviour of the material. In the present case, the material’s orthotropic behaviour is 

modeled by the Hill’48 yield surface, used to describe the yielding and the plastic flow of 

the material. The plastic behaviour of the material is modeled by an associated flow rule and 

a isotropic work-hardening law. The elastic regime is described by the generalized Hooke 

law. 

3.1.  Elastic behaviour 
Hooke’s law describes the elastic behaviour of the material. This law establishes 

a linear relationship between the stress state, defined by the Cauchy stress tensor 𝝈, and the 

strain tensor 𝜺, for a body in elastic regimen. The generalized Hooke’s law introduces a 

fourth-order tensor of elastic constants 𝑪, such as 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 , with 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3. (3.1) 

For an anisotropic material 36 constants are involved in its definition. For an isotropic 

material, this tensor can be simply written in indicial notation as follows 

 𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) , with 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3. (3.2) 

were δij is the kronecker symbol and λ and μ are the Lamé’s parameters. 

Adopting the Voigt notation, as a result of the symmetry property of the second-

order tensors 𝝈 and 𝜺 (i.e. present only six independent coefficients), 𝑪 can be expressed as 

a 6 × 6 matrix, such as 
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 . (3.3) 
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In general, it is more common to defined the elastic properties of the material through the 

Young’s modulus E and the Poisson coefficient υ, which can be related with the Lamé’s 

parameters: 

 𝐸 = 𝜇 3𝜆+2𝜇
𝜆+𝜇

 , 𝜐 = 𝜆
2(𝜆+𝜇)

 , 𝜆 = 𝐸𝜐
(1+𝜐)(1−2𝜐)

 and 𝜇 = 𝐸
2(1+𝜐)

 . (3.4) 

3.2.  Elasto-plastic behaviour 
The transition from elastic to plastic state occurs when the equivalent stress 

reaches the yield point of the material, which can be identified using the stress-strain curve 

of the material. However, if a material presents orthotropic behaviour the yield stress varies 

depending on the orientation of the applied load. Also, in case the material is subjected to a 

non-uniaxial stress state it is important to be able to define an equivalent stress value, to 

enable the evaluation of the material stress state. Therefore, it is necessary to establish the 

condition for which a stress state leads to plastic flow, usually defined in the form of an 

implicit function (yield function). In brief, in order to describe the plastic behaviour of a 

material in a general stress state, three things are needed (Banabic 2010): 

1. The yield criterion, which expresses the relationship amongst the stress 

components, when plastic yielding occurs; 

2. The associated flow rule, which relates the strain-rate and stress; and 

3. The hardening rule, which describes the evolution of the initial yield 

stress.  

In the following sections same details about the Hill’48 yield criterion, which 

was the one adopted in this work, are given. In order to explain the identification procedure 

adopted for Hill’48 anisotropy parameters, the following section presents some details 

regarding the anisotropy coefficient. 

3.2.1. Anisotropy coefficient 
The Lankford coefficient, also known as anisotropy coefficient, evaluates the 

ratio between width strain and thickness strain, when the material is submitted to uniaxial 

tensile stress in a specific direction. The variation of the material’s plastic behaviour with 

direction can be evaluated comparing the values obtained for the Lankford coefficient, for 

different loading directions. This coefficient also defines the capability of the sheet to resist 

The contents were removed due to a confidentiality agreement.
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thickness reduction in trajectories close to tensile. The value for a specific direction can be 

evaluated by an uniaxial tensile test, using the following relation: 

 𝑟 = ɛ2
ɛ3
=

ln 𝑏
𝑏0

ln 𝑡
𝑡0

  . (3.5) 

where ɛ2 and ɛ3 represent the principal plastic strains in the width and in the thickness 

directions, 𝑏 and 𝑏0 represent the final and initial width, and 𝑡 and 𝑡0 the final and initial 

thickness, respectively. 

For metallic sheets, the thickness and width of the specimen have very different 

values (the first one is very small comparing to the second one). Thus, the relative 

measurement errors of the two strains can be different. In order to avoid this problem, it is 

recommended to replace the above relationship with one based on strains evaluated with 

dimensions with the same order of magnitude. Since a simplification that the volume remains 

constant when plastic deformation occurs can be made: 

 ɛ1 + ɛ2 + ɛ3 = 0 , (3.6) 

the Lankford coefficient can be evaluated using 

 𝑟 = − ɛ2
ɛ1+ɛ2

=
−ln 𝑏

𝑏0

ln 𝑙
𝑙0
+ln 𝑏𝑏0

=
ln 𝑏
𝑏0

ln𝑙0𝑏0𝑙𝑏
  , (3.7) 

instead of equation (3.4). 𝑙 and 𝑙0 are, respectively, the final and initial gage length. This last 

relationship is the one commonly used for evaluating the anisotropy coefficient. 

Based on experiments, 𝑟 depends on the in-plane direction. For metallic rolled 

sheets, it is common to evaluate the Lankford coefficient for the rolling direction (RD), the 

direction at 45º with RD and the transverse direction (TD). These three values allow the 

evaluation of the coefficient of normal anisotropy 𝑟𝑛,  

 𝑟𝑛 =
𝑟0+2×𝑟45+𝑟90

4
 , (3.8) 

which is an average of the 𝑟 values obtained for those directions in the plane of the metallic 

sheet (0°, 45° and 90° from RD). In addition, one can represent the measure of the variation 

of normal anisotropy with the angle to the rolling direction, also known as planar anisotropy, 

with the following equation: 

 𝛥𝑟 =
𝑟0 − 2𝑟45 + 𝑟90

2
 . (3.9) 

The contents were removed due to a confidentiality agreement.
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3.2.2. Hill’48 yield criterion 
Metallic sheets are typically obtained by rolling process, which induced and 

orthotropic plastic behaviour. In fact, the hypothesis that the material is isotropic is an 

approximation that gets far away from reality due to the deformation process, especially for 

thin sheets due to their dimensions. The most commonly adopted yield criterion for 

describing the orthotropic behaviour of steels is the quadratic Hill’48 criterion. It is assumed 

that the deformation induced by the subsequent deformation process does not affect the 

anisotropic behaviour, i.e. the initial shape of the yield surface does not changes, it only 

evolves in the stress state according with the work-hardening law. The yield criteria defines 

conditions for the elastic behaviour limit under multi-axial states of stress, after which the 

material continues deforming plastically until failure, showing a hardening behaviour 

(Bruschi et al. 2014). The yield criterion may be interpreted as a surface in a six-dimensional 

space of the stress components. The points located at the interior of the surface represent the 

elastic state of the material, while points belonging to the surface correspond to the plastic 

state. 

The Hill’48 anisotropic yield criteria is an adaptation to orthotropy of the von 

Mises isotropic criterion (Hill 1950). It was proposed by Hill in 1948 an corresponds to a 

quadratic function as follows: 

 𝑓(𝜎𝑖𝑗) = 𝐹(𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2
+ 𝐺(𝜎𝑧𝑧 − 𝜎𝑥𝑥)2 + 𝐻(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2
+ 2𝐿𝜎𝑦𝑧2 +

2𝑀𝜎𝑧𝑥2 + 2𝑁𝜎𝑥𝑦2 = 𝜎2. 
(3.10) 

where 𝑓 is the yield function and 𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁 are constants specific to the material’s 

anisotropy state (Hill’s parameters) and 𝝈 are the components of the Cauchy’s stress tensor, 

while 𝜎 represents the equivalent stress. The yield function presented in equation 3.10 is 

defined in the material’s reference frame 𝑂𝑥𝑦𝑧, which correspond to the principal 

anisotropic axes, usually corresponding (in sheet metal forming) to the parallel, transverse 

and normal to RD, respectively, as shown in figure 3.1. 

Hill’s parameters can be directly calculated from the Lankford coefficients, 

through the following equations: 

 𝐹 = 𝐻
𝑟90
= 𝑟0𝐺

𝑟90
= 𝑟0

𝑟90(1+𝑟0)
 ; (3.11) 

 𝐺 = 1
1+𝑟0

 ; (3.12) 
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 𝐻 = 𝑟0𝐺 =
𝑟0
1+𝑟0

 ; (3.13) 

 𝑁 = 1
2
(𝑟0+𝑟90)(2𝑟45+1)

𝑟90(𝑟0+1)
 . (3.14) 

Nevertheless, it is important to mention that these relations are obtained assuming the 

condition that (𝐺 + 𝐻) = 1, i.e. that the flow stress evolves similarly to the one obtained for 

RD. For thin metallic sheets, it is not possible to determine parameters 𝑀 and 𝐿. Therefore, 

the values considered for these parameters are the ones corresponding to the isotropic case, 

i.e. 1,5. In fact, the von Mises isotropic yield criterion is recovered for 𝐹, 𝐺, 𝐻=0,5 and 

𝐿,𝑀,𝑁 = 1,5. Also, in case of plane stress conditions (𝜎𝑧𝑧 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0; 𝜎𝑥𝑥 ≠

0; 𝜎𝑦𝑦 ≠ 0; 𝜏𝜎𝑥𝑦 ≠ 0), the yield criterion becomes: 

 𝑓(𝜎𝑖𝑗) = (𝐺 + 𝐻)(𝜎𝑥𝑥)2 + (𝐹 + 𝐻)(𝜎𝑦𝑦)
2
− 2𝐻(𝜎𝑥𝑥𝜎𝑦𝑦) + 2𝑁𝜎𝑥𝑦2 = 𝜎2. (3.15) 

 

 
Figure 3.1 – Axes of orthotropy in a rolled metal sheet: RD – rolling direction, TD – Transverse direction and 
ND – normal direction (Banabic 2010) 

 

Although the Hill’48 yield criterion is commonly written as shown in equation 

(3.10), it is also possible to identify the anisotropy parameters using the tensile yield stresses 

in the principal anisotropy directions denoted by 𝑋, 𝑌 and 𝑍, such as: 

 

{
 
 

 
 
1
𝑋2
= 𝐺 + 𝐻

1
𝑌2
= 𝐻 + 𝐹

1
𝑍2
= 𝐹 + 𝐺

⇔

{
 
 

 
 2𝐹 =

1
𝑌2
+ 1
𝑍2
− 1
𝑋2

2𝐺 = 1
𝑍2
+ 1
𝑋2
− 1
𝑌2

2𝐻 = 1
𝑋2
+ 1
𝑌2
− 1
𝑍2

 ; (3.16) 

and the shear yield stresses in the principal anisotropy directions 𝑅, 𝑆 and 𝑇, such as: 
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{
 
 

 
 2𝐿 =

1
𝑅2

2𝑀 = 1
𝑆2

2𝑁 = 1
𝑇2

 . (3.17) 

Nevertheless, in this case the yield function leads to a normalized value of the stress, instead 

of the value of the equivalent stress. These relations are also established assuming that the 

flow stress evolves similarly to the one obtained for RD, since (𝐺 + 𝐻) = 1 𝑋2⁄ . 

The Hill’48 yield criterion is widely used thanks to its basic assumptions, which 

are easy to understand and implement in a FEM simulation code. Also, if 𝑟0, 𝑟45 and 𝑟90 are 

considered equal to 1, this criterion fully recovers the von Mises isotropic criterion. The 

criterion is also independent from pressure (namely the hydrostatic pressure), allowing its 

definition in terms of the Cauchy stress tensor deviatoric components. It is common to 

decompose the Cauchy stress tensor in the hydrostatic 𝜎𝐻 and deviatoric 𝝈′ components, 

such as 

 𝝈 = 𝝈′ + 𝜎𝐻𝑰 = 𝜎′𝑖𝑗 +
𝜎𝑘𝑘
3
𝛿𝑖𝑗 , with 𝑖, 𝑗, 𝑘 = 1,2,3 , (3.18) 

where 𝑰 is the second order identity tensor, since it is known that the hydrostatic component 

does not contribute to the plastic deformation of the material. 

3.3. Hardening Law 

The hardening law defines the evolution of the flow stress after the occurrence 

of plastic deformation. The flow stress is commonly defined as a function of the equivalent 

plastic strain, which can be related to the plastic strain tensor by the definition of the 

equivalent plastic strain rate. The hardening laws are commonly divided into two types: 

isotropic and kinematic, as shown in Figure 4.5. Isotropic hardening laws considers that 

during deformation there is a change in size of the yield function, without affecting its shape. 

Kinematic hardening laws express a rigid translation of the yield surface center, during 

plastic deformation, trying to describe the flow stress evolution under strain path changes, 

mainly strain path reversal, in materials that exhibit Bauschinger’s effect (Prates 2014). The 

hardening behaviour of metallic sheets is better described combining an isotropic with a 

kinematic hardening law.  

The contents were removed due to a confidentiality agreement.
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Figure 3.2 – Representation of the plastic behaviour of materials including tension followed by reversed 
compression. The left side shows generic yield surfaces in the plane (𝝈𝟏; 𝝈𝟐) (Prates 2014) 

In this work the experimental tests considered do not take into account strain 

path changes. This disables the possibility of identifying kinematic hardening parameters. 

Therefore, this section presents only a short review of isotropic hardening laws. In 1909, 

Ludwik proposed one of the first, used to describe the isotropic evolution of the yield stress 

(𝑌) with the equivalent plastic strain (𝜀p̅), represented by the following equation: 

 𝑌 = 𝜎𝑦 + 𝐶𝜀p̅
𝑛 . (3.19) 

where 𝜎𝑦, 𝐶 and 𝑛 represent the yield stress, the hardening parameter and the hardening 

coefficient. 

In 1945, Hollomon proposed a simplification of Ludwick’s law, represented by 

the following equation: 

The contents were removed due to a confidentiality agreement.
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 𝑌 = 𝐶𝜀p̅𝑛 , (3.20) 

For which the hardening coefficient value is equal to the strain value at maximum force 

(beginning of necking), which makes it an indicator of the capacity that the material has to 

distribute homogeneously the deformation) (Banabic 2010). In 1952, Swift proposed a law 

to describe the evolution of the flow stress isotropic behaviour given by the following 

equation: 

 𝑌 = 𝐶(ɛ0 + 𝜀p̅)𝑛 , (3.21) 

where ɛ0 is also a material parameter; the yield stress value corresponds to 𝜎𝑦 = 𝐶(ɛ0)𝑛. 

This is the most used law to describe the isotropic hardening of materials that do not present 

a saturation of the stress for increasing values of equivalent plastic strain. 

In 1977, Chaboche proposed a stress evolution law, represented by the following 

equation: 

 𝒀 = 𝝈𝒚 + ∑ 𝑸𝒓𝒌(𝟏 − 𝒆
−𝑪𝒓𝒌ɛ̅

𝒑
) 𝒏𝒕

𝒌=𝟏 , (3.22) 

where 𝑛𝑡 is the number of used terms and 𝑄𝑟𝑘 and 𝐶𝑟𝑘 are material’s constants. 

3.4. Damage 
This work focuses on the parameter identification of an enhanced Lemaitre 

damage model with quasi-unilateral damage evolution, strongly coupled with plasticity, 

which includes crack closure effects. Therefore, the following section presents some details 

about Lemaitre damage model, as implemented in LS-DYNA based on (Tekkaya et al. 

2014), in order to be able to describe the improvements included in the enhanced model.  

3.4.1. Lemaitre isotropic damage model 
Lemaitre’s continuum damage mechanics model is based on the concept of 

effective stresses, 𝜎̃, which is the stress calculated over the section that effectively resist the 

forces, that can be represented by: 

 𝜎̃ = 𝜎
1−𝐷

 .  (3.23) 

As previously mentioned, 𝐷 is scalar damage parameter. The stress defined in the physical 

space corresponds to 𝜎 and the one in the idealized space is 𝜎̃, as shown in Figure 3.3. 
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Figure 3.3 – Schematic view of the variables in the physical space and the corresponding in the effective 

(idealized) space (Doig et al. 2014) 

The material is assumed as undamaged in the beginning of the deformation 

process and until the material present an equivalent plastic strain inferior to a threshold value 

ɛ𝑒𝑓𝑓,𝑑
𝑝 . As soon as this value is attained the 𝐷 damage variable evolves, as long as the material 

is subjected to a positive value of major stress 𝜎1, such that: 

 
𝐷̇ = {

0 𝑖𝑓 ɛ𝑒𝑓𝑓
𝑝 ≤ ɛ𝑒𝑓𝑓,𝑑

𝑝

𝑌
𝑆
ɛ̇𝑒𝑓𝑓
𝑝  𝑖𝑓 ɛ𝑒𝑓𝑓

𝑝 > ɛ𝑒𝑓𝑓,𝑑
𝑝  𝑎𝑛𝑑 𝜎1 > 0

  , (3.24) 

where ɛ𝑒𝑓𝑓
𝑝  is the equivalent plastic strain in the effective space, 𝑌 is the damage energy 

release rate, 𝑆 is a material parameter and 𝜎1 is the maximum principal stress. The damage 

energy density release rate is defined by: 

 𝑌 = 2
3
ɛ𝑒𝑙: 𝑪: ɛ𝑒𝑙 = 1

2
𝜎̃: ɛ𝑒𝑙 = 𝜎𝑣𝑚2 𝑅𝑣

2𝐸(1−𝐷)²
, (3.25) 

where 𝐶 is the fourth-order elasticity tensor (see equation (3.1)) and ɛ𝑒𝑙 represents the elastic 

strain. Equation (3.25) assumes that the material presents an isotropic elastic and plastic 

behaviour. Thus, the elastic behaviour is described by the Young’s modulus 𝐸 and the 

poisson coefficient 𝜐. On the other hand, 𝜎𝑣𝑚 is the equivalent von Mises stress defined in 

indicial notation as: 

 
𝜎𝑣𝑚 = √3

2
𝜎𝑖𝑗𝜎𝑖𝑗 −

1
2
𝜎𝑘𝑘2 with 𝑖, 𝑗, 𝑘 = 1,2,3 , (3.26) 

The triaxiality function 𝑅𝑣 can be defined by: 

 𝑅𝑣 =
2
3
(1 + 𝑣) + 3(1 − 2𝑣)( 𝜎𝐻

𝜎𝑣𝑚
)2  , (3.27) 

where the hydrostatic stress 𝜎𝐻 was previously defined in equation (3.18). The damage 

energy density release rate can also be defined as: 
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 𝑌 = 𝜎𝑣𝑚2 𝑅𝑣
2𝐸(1−𝐷)2

= 1
2𝐸(1−𝐷)2

𝜎𝑣𝑚2 (2
3
(1 + 𝑣) + 3(1 − 2𝑣) 𝜎𝐻

2

𝜎𝑣𝑚2
)  

= (1+𝑣)
2𝐸(1−𝐷)2

𝜎𝑖𝑗𝜎𝑖𝑗 −
𝑣

2𝐸(1−𝐷)2
𝜎𝑘𝑘2  with 𝑖, 𝑗, 𝑘 = 1,2,3 . 

(3.28) 

This last expression highlights the influence of both the deviatoric and the hydrostatic 

components of the stress state to the damage energy density release rate. This model requires 

the evaluation of two damage parameters, the equivalent plastic strain threshold value ɛ𝑒𝑓𝑓,𝑑
𝑝  

and 𝑆, the damage energy release rate.  

3.4.2. Enhaced isotropic Lemaitre’s model 
The model presented in this section is based on Lemaitre’s continuum damage 

mechanics model, but includes crack closure effects (which means reduced damage under 

compression) and allows for more flexibility in stress state dependence. The evolution of the 

damage variable can be defined as (Tekkaya et al. 2014): 

 𝐷̇ = (2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

)
𝜂
⟨𝑌−𝑌0

𝑆
⟩
𝛼
(1 − 𝐷)1−𝜃ɛ̇𝑒𝑓𝑓

𝑝  , (3.29) 

where 𝜏𝑚𝑎𝑥 is the maximum shear stress, 𝑌0 represents the initial damage energy release rate 

and 𝜂, 𝛼 and 𝜃 are material constants. The Macauley brackets 〈𝑥〉 are introduced to control 

the sign of the function, since: 

 ⟨𝑥⟩ = {0, 𝑥 < 0
𝑥, 𝑥 ≥ 0 , (3.30) 

They are also used in the definition of the damage energy density release rate: 

 𝑌 = 1+𝑣
2𝐸
(∑ (⟨𝜎̃𝑖⟩23

𝑖=1 + ℎ⟨−𝜎̃𝑖⟩2)) −
𝑣
2𝐸
(⟨𝜎̃𝐻⟩2 + ℎ⟨−𝜎̃𝐻⟩2) , (3.31) 

where 𝜎̃𝑖 (with 𝑖 = 1,2,3) are the principal effective stresses and ℎ is the microdefects closure 

parameter that accounts for different damage behaviour in tension and compression. In fact, 

comparing equation (3.28), which can also be expressed in terms of principal stresses, with 

equation (3.31) it is possible to see that the contribution to the damage energy density release 

rate is different for a negative or positive principal stress. The same is valid for a positive or 

negative hydrostatic component. A value of ℎ≈0.2 is typically observed in many experiments 

as stated in (Lemaitre & Desmorat 2005) Moreover, a parameter set of ℎ = 1.0, 𝑌0 = 0.0, 

𝜂 = 0.0, 𝛼 = 1.0 and 𝜃 = 1.0 should give the same results as the standard isotropic damage 

The contents were removed due to a confidentiality agreement.



 

 

  MATERIAL MODELLING 

 

 

Bernardo Caridade Menezes  23 

 

model, presented in the previous section, as long as ɛ𝑒𝑓𝑓,𝑑
𝑝 = 0 and 𝜎1 > 0 (Livermore 

Software Technology Corporation (LSTC) 2013). 

Although the model is presented in LS-DYNA as shown in equation (3.29), it is 

more commonly written in the form: 

 𝐷̇ = (2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

)
𝜂
⟨𝑌−𝑌0

𝑆
⟩
𝑠 1
(1−𝐷)𝛽

ɛ̇𝑒𝑓𝑓
𝑝  . (3.32) 

Therefore, in the following chapters the parameters of the enhanced isotropic Lemaitre’s 

model will be referred as: ɛ𝑒𝑓𝑓,𝑑
𝑝 , ℎ, 𝑆, 𝑌0, 𝜂, 𝑠 = 𝛼 and −𝛽 = 1 − 𝜃. 

The selected framework is capable of reflecting plastic anisotropy as well as 

damage anisotropy, although not used in this work. In that case, the model uses a continuous 

damage variable (directly related to the density of internal defects), a scalar to describe the 

isotropic damage and a tensor to describe the anisotropic damage. 

Further development on these equations can be found in APPENDIX B – 

Enhanced Lemaitre’s Model. 
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4. PARAMETER IDENTIFICATION PROCEDURE 
Inverse strategies are commonly used to identify material parameters or system 

properties. They are based on the comparison of the experimental results with the ones 

obtained through numerical simulations, by varying all of the parameters to be optimized, 

being the objective the minimization of the difference between those curves. 

In this work, the experimental load-displacement curves from tensile tests and 

from Nakajima tests were available, for the AHSS material under analysis. The results from 

the tensile test were used to firstly identify the hardening parameters, i.e. the flow curve. 

Several well-known hardening laws were tested, using as objective function the least squares 

difference between the experimental results and those of the law. After the hardening 

parameters are identified, it was then possible to perform a sensitivity analysis followed by 

an optimization, in order to determine values for the damage parameters. The material 

parameters presented in Table 4.1 were considered known or obtained experimentally.  

 
Table 4.1 – Material parameters 

Parameter Symbol Value 

Young’s moduli 𝐸 211 000 [MPa] 

Poisson’s coefficient 𝑣 0.30 

Lankford coefficient (0°) 𝑟0 1.05 

Lankford coefficient (45°) 𝑟45 1.08 

Lankford coefficient (90°) 𝑟90 0.87 

Engineering stress at failure 𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑒𝑛𝑔  683.04 [MPa] 

Maximum engineering 

stress 
𝜎𝑚𝑎𝑥
𝑒𝑛𝑔  877.95 [MPa] 

4.1. Tests 
Uniaxial tensile and Nakajima tests were used for the parameter identification of 

the enhanced Lemaitre damage model. These different tests represent different stress states, 
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enabling the possibility of performing the iterative adjustment of the damage variables for 

different conditions. The following section presents some details of the finite element models 

used. The samples and tools dimensions are identical to the ones used in the experimental 

tests. The acquisition of the results was also performed mimicking the experimental 

procedure. All models considered the specimen discretized with shell finite elements (EQ:16 

Fully integrated shell element with two integration points (Livermore Software Technology 

Corporation (LSTC) 2013)). All numerical simulations were performed in an Intel® Xeon 

® CPU ES-2697 v3@2.60GHz. Therefore, the discretizations presented in the following 

subsections were determined taking into account the reference CPU time as presented in 

Table 4.2. 

 
Table 4.2 – Reference CPU time for the four mechanical tests 

Test Total CPU Time 

Uniaxial 10h36m30s 

Biaxial 5h41m45s 

Plane Strain 4h46m4s 

Tensile 53m39s 

 

4.1.1. Uniaxial tensile Test 
This is the most common test used to evaluate the mechanical characteristics of 

metallic materials. It enables the identification of plastic parameters including the evaluation 

of the material anisotropic behaviour, if performed for different orientations of the test 

sample to the rolling direction of the sheet. The yield stress, the tensile strength and the 

strain-hardening characteristics, are evaluated by measuring the elongation, the load and the 

area reduction. This test consists in pulling one side of a tensile specimen while the other 

side of it is fixed. The tensile tests were carried according to (Normung n.d.)at room 

temperature. The tensile samples are according to (Normung n.d.). 

The sample geometry and the finite element discretization used to perform the 

tensile tests is given in Figure 4.1. The fillet radius considered was 10 mm and the element 

size in the homogeneous refined area is 1 mm. The displacement was measured subtracting 
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the displacement of node 5 to the displacement of node 2, both located in the gauge section 

of the tensile sample. 

 

 
Figure 4.1 - Tensile Sample (mesh size in the homogeneous refined area: 1mm) 

4.1.2. Nakajima Tests 
The Nakajima is an experimental test that provides information on the 

formability of a metallic sheet, since it can be performed for different strain paths. It is 

performed using a hemispherical punch, a blank-holder with a draw-bead and a die. The 

blank-holder and draw-bead are used to prevent the sheet from sliding. Lubricant is used to 

reduce friction between the punch and the specimen (friction is always present, although the 

lubricant helps reducing it considerably). By varying the width (the geometry) of the 

specimens, it is possible to have a strain path range from uniaxial tensile (narrow width 

specimen) to biaxial (circular specimen). The three different tests used refer each one to a 

different stress state in the top of the dome: 

x Uniaxial, which defines the location and the gradient of the uniaxial 

reference point; 

x Plane strain, which defines the location of the plane strain point in the 

first principal stress direction; 

x Biaxial, which defines the position and the gradient of the biaxial point. 

The blank geometry considered in the simulation corresponds only to one quarter 

of the original one, due to geometric and material symmetry conditions. The outer diameter 

considerer was 122.5 mm, as shown in Figure 4.2 (a) for the uniaxial strain path, (b) for the 

plane strain, and in (c) for the biaxial one. Each sample was discretized with a non-uniform 

mesh. The elements in the refined area have a length of 1.5 mm, while the rest of the sample 

has a finite element size of 3 mm. The specimens for the uniaxial and the plane strain 
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conditions were cut at a height of 42 mm, measured for the center. For the uniaxial specimen 

the width of the cut is 72 mm whilst in the plane strain it is 57 mm. 

The numerical model of the physical problem in study considers that the contact 

occurs between a deformable body (blank) and the rigid bodies (tools). The friction 

coefficient was considered uniform and equal to 0.15. The tools geometry is shown in Figure 

4.2 (d) where it is visible that the drawbead geometry is not considered, since the drawbead 

is replaced by boundary conditions that constrain the blank displacement along the outer 

radial surface.  

 

  
(a) (b) 

 

 

(c) (d) 
Figure 4.2 - Nakajima test: (a) Uniaxial specimen; (b) Plane Strain specimen; (c) biaxial specimen and (d) tools. 
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4.2. Hardening parameters 
The hardening parameters were determined using the data available from the 

experimental tensile test performed along RD, i.e. the experimental force-displacement 

curve. Two procedures were used within this work. In the first procedure the hardening 

parameters were determined using IMA (inpro materialableich), which is a software 

developed by inpro that allows to fit functions to experimental curves. The second procedure 

involves the use of EXCEL solver. This second procedure was adopted in this work to study 

the influence of the input data used in the identification of the hardening parameters. In this 

case, firstly, the force-displacement curve is converted into a true stress-strain curve, using 

the following relations:  

 𝜀 = ln (𝑙0+∆𝑙
𝑙0
) and (4.1) 

 𝜎 = 𝐹
𝐴0𝑙0

(𝑙0 + ∆𝑙) , (4.2) 

where 𝑙0 is the initial gauge length, ∆𝑙 is the displacement, 𝐹 is the force and 𝐴0 is the initial 

area of the specimen. This stress-strain curve includes both the elastic and the plastic 

regimes, being  

 𝜀 = 𝜀e + 𝜀p , (4.3) 

where 𝜀e and 𝜀p are the elastic and plastic components of the total strain, respectively. The 

hardening curve only takes into account the plastic strain component. Therefore, it is 

necessary to remove the elastic component from the total strain measured. There is no 

standard procedure to perform this operation, which is always user-sensitive. In this work 

the option adopted was to consider the definition of yield stress for a total strain of 0.2%. 

Thus, the plastic strain component was estimated as: 

 𝜀p = 𝜀 − 𝜀0.2%e  . (4.4) 

The stress value 𝜎 (see equation (4.2)) is assumed to be equal to the equivalent 

stress, defined by the Hill’48 yield criterion (see equation (3.10)). This results from the fact 

that the anisotropy parameters were calculated using equations (3.11)-(3.14), which assumes 

this condition as valid, as previously mentioned. Thus, under homogeneous conditions for 

the tensile test, the stress-strain curve can be interpreted as an equivalent stress-equivalent 

strain curve, enabling the identification of the hardening parameters. To guarantee the 
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homogeneous conditions for the tensile test, this curve must only be plotted until the point 

corresponding to the maximum load.  

The hardening parameters were identified using the Excel solver with the 

Generalized Reduced Gradient (GRG) algorithm, for nonlinear problems. The objective 

function defined corresponds to minimize the root square error between the experimental 

stress-strain curve (𝜎𝐸𝑥𝑝) and the one given by the hardening law selected (𝜎𝑁𝑢𝑚(𝑨)), i.e. 

the objective function is defined as follows: 

 𝑓(𝑨) = ∑ (𝜎Exp − 𝜎Num(𝑨))
2

𝑃
𝑖=1  . 

(4.5) 

where 𝑨 is the set of hardening parameters, specific for each hardening law, and 𝑃 is the 

total number of plastic strain values determined in the experimental test. 

The parameters for the Chaboche hardening law were identified using IMA and 

Excel Solver, considering 𝑛𝑡 = 2 (see (3.22)), since this is the hardening function considered 

in the implementation of the enhanced damage model in LS-DYNA. Thus, the set of 

parameters considered in the optimization procedure is 𝑨 = {𝑌0, 𝑄𝑟1, 𝑄𝑟2, 𝐶𝑟1, 𝐶𝑟2}. Figure 

4.3 presents the comparison between the experimental stress-strain curve and the Chaboche 

hardening function fitted using IMA (labelled “IMA”) and one identified using Excel solver 

(labelled “Direct”), using the procedure described previously. Both identifications 

overestimate the yield stress value, as shown in the detail inserted in the figure, in order to 

capture more accurately the hardening behaviour. Globally, the results are similar for both 

identifications until an equivalent plastic strain value of about 12%. For higher values, the 

“IMA” identification tends to overestimate the experimental results, while “Direct” 

underestimates. These results highlight the problem of the extrapolation of the hardening 

behaviour of the material from uniaxial tensile tests. In fact, the material behaviour is 

unknown for strain values higher than 15%, meaning that it is impossible to predict which 

identification is more adapted to describe its mechanical behaviour. In this context, it is 

recommended to use results from bulge or shear tests, which allow attaining higher strain 

values (Banabic 2010). However, these type of results were not available in this study. 

Another possibility would be to perform the identification of the hardening parameters 

applying the inverse approach to the Nakajima experimental results, instead of using only 

the tensile test. This approach was not explored in this work, since the idea was to improve 
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knowledge about the damage parameters, and it would strongly increase the number of 

parameters to be identified. 

 

 
Figure 4.3 – Stress-strain curve for the uniaxial tensile test performed along the rolling direction: 
comparison between the experimental evolution and the fitted hardening functions 

 

The procedure adopted in Excel Solver considered a similar weight for all points 

of the stress-strain curve. It is also possible to adopt different weights enabling a better fit of 

the initial or the end part of the stress-strain curve and, consequently, different 

identifications. Thus, although the details about the procedure adopted in IMA are not 

known, it is possible to achieve a similar identification with the Excel solver, by acting on 

the weight of each point. Nevertheless, this procedure is always user-sensitive. 

In general, in the context of sheet metal forming the initial part of the stress-

strain curve is considered not so important since the material will undergo large strains. 

However, in order to try to capture both the initial trend as well as the final, it is possible 

also to combine the Hollomon (see (3.20)) and with a Voce law type, in a mixed hardening 

law of the type: 

 𝜎 = 𝛼(𝐶𝜀p̅𝑛) + (1 − 𝛼)[𝐶 + 𝐷(1 − 𝑒−𝐸𝜀̅p)], (4.6) 
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where the parameter 𝛼 is used to define the weight of each hardening law. The parameters 

for this mixed hardening law were also identified using the Excel solver and the fitted 

hardening law is also shown in Figure 4.3 (labelled “Mixed”). The results highlight the 

improved fitting of both the initial and the final part of the stress-strain experimental curve. 

However, it is not possible to use this mixed hardening law in LS-Dyna. Thus, a different 

approach was suggested: fitting the Chaboche hardening parameters to the mixed hardening 

law. This enables the use of a higher range of strain values while avoiding the necessity of 

defining the weigths. The results obtained using this approach are also shown in Figure 4.3 

(labelled “with Mixed”). In this case the yield stress value presents a lower value while the 

material attains a saturation behaviour for higher strains than in the “Direct” fit. Table 4.3 

presents the parameters for the Chaboche hardening law determined using the three 

approaches. 
Table 4.3 – Chaboche hardening parameters 

  EXCEL solver 

Hardening parameter IMA Direct with Mixed 

𝑄𝑟1 385.779 1.231 387.790 

𝑄𝑟2 225.069 429.170 148.842 

𝐶𝑟1 5.500 0.037 15.500 

𝐶𝑟2 48.480 24.675 201.334 

𝜎𝑦 506.826 [MPa] 491.509 [MPa] 429.755 [MPa] 

4.3. Damage Parameters 

The target of the sensitivity and optimization analysis is to evaluate the relations 

between design parameters and single value responses and to obtain an optimized set of 

parameters for the design variables, respectively. Both studies were performed in LS-OPT 

using the available algorithms. Therefore, in the following sections some details about the 

options used are given. 

As stated in section 3.4.2, the damage parameters of the enhanced isotropic 

Lemaitre’s model are ɛ𝑒𝑓𝑓,𝑑
𝑝 , ℎ, 𝑆, 𝑌0, 𝜂, 𝑠 and 𝛽. Nevertheless, in this study it was decided 

to consider that the parameters ɛ𝑒𝑓𝑓,𝑑
𝑝  and ℎ are fixed, as recommended in literature (Tekkaya 

et al. 2014) (Lemaitre & Desmorat 2005). The effective plastic strain when material 
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softening begins is considered equal to 0.05 and the value for the microdefects closure 

parameter ℎ is considered equal to 0.2. Also, all models were performed considering a 

critical damage value 𝐷𝑐, i.e. when this damage value is reached by an element, it is deleted 

from the model. The critical damage value can be calculated using the following expression: 

 
𝐷𝑐 = 1 −

𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑒𝑛𝑔

𝜎𝑚𝑎𝑥
𝑒𝑛𝑔 = 1 − 683.04

877.95
= 0.22 . (4.7) 

using the values extracted from the tensile test (see Table 4.1). However, it is important to 

mention that there is no certainty regarding the measured values for the engineering 

maximum and failure stress. In fact, they are both an estimative, dependent of the data 

acquisition conditions imposed during the tensile test. Thus, it was decided to adopt the value 

of 𝐷𝑐 = 0.20 based in previous works for this type of steels (Tekkaya et al. 2014) (Doig et 

al. 2014) (Lemaitre & Desmorat 2005). 

The threshold value for the initial damage energy density release rate can also 

be estimated: 

 𝑌0 =
1
2
𝜎𝑚𝑎𝑥
𝑒𝑛𝑔 ɛ𝑒𝑙 = 0.5 × 877.95 × 0.002 = 0.8779 MPa , (4.8) 

where the ɛ𝑒𝑙 is the elastic component of the strain, which was considered to be 0,2% (see 

section 4.2). This value can be considered only an estimate since its calculation is also prone 

to errors in the experimental measurements. Nevertheless, this will be considered as the 

starting value for both sensitivity analysis and optimization. Afterwards, the optimized value 

can be compared with this one in order to validate this estimate. 

In brief, the design variables considered in the analysis are the five damage 

parameters of the enhanced damage model (see (3.32)) listed in Table 4.4. The intervals used 

for the damage variables, for both sensitivity analysis and the optimization procedure, can 

be seen in this table. They were defined based on previous works (Doig et al. 2014) (Tekkaya 

et al. 2014) and after some design exploration. 

In this work, both analysis are done by matching a target curve (obtained 

experimentally) with the computed force-displacement curve in order to minimize the 

difference between both, using a curve mapping or the mean square error algorithm. 

Although it is possible to add constraints to the design in LS-OPT, none was considered in 

this work. 
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Table 4.4 – Intervals for the damage variables (Enhanced Lemaitre’s Damage Model) 

Name Minimum value Maximum value 

𝑌0 0.8 1.2 

𝛽 2 10 

η 0.5 6 

S [𝑀𝑃𝑎] 4 8 

s 1 4 

ℎ 0.2 (fixed) 

ɛ𝑒𝑓𝑓,𝑑
𝑝  0.05 (fixed) 

 

4.3.1. Sensitivity Analysis 
The objective of a sensitivity analysis study is to evaluate or determine the 

influence of input parameters on output parameters, so that each parameter of the model can 

be compared and evaluated as significant or insignificant. In other words, it is performed to 

evaluate relations between design parameters and single value responses (Müllerschön et al. 

2011). As stated in LS-OPT manual (Stander et al. 2010), sensitivity analysis helps 

understanding the model and reducing the number of design variables used in the 

optimization. This way, it is possible to reduce the computational effort of the optimization, 

by reducing the number of design variables (removing the least significant from the 

optimization). This process is also called variable screening (Stander et al. 2010). 

Additionally, it is also possible to make a convergence study, observing the changes in the 

regression coefficients, to find an ideal number of simulation points. In brief, sensitivity 

analysis allows: 

x Evaluating the contribution of each variable to the system performance 

(contribution of a variable to the variance of the respective response); 

x Identification of significant and insignificant variables; 

x Construction of a ranking of importance for variables. 

Global approximations can be reached using a Design of Experiment (DOE). 

The number of simulation points should be at least 2 × (𝑛 + 1), being 𝑛 the number of 

design variables under analysis. It is important to notice that the number of simulation points 
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selected for the DOE is always a compromise between computational effort and accuracy. 

An increase in the number of simulation points can improve accuracy, but it is important to 

evaluate if that accuracy increase is improving significantly or not the results. In the case 

under analysis, the number of design variables is 5 (see Table 4.4). 

For the sensitivity analysis, after the definition of the domain for each parameter 

(design variable) and the number of simulation points, the combinations of parameters are 

created by LS-OPT, using a Space Filling algorithm for point selection. Afterwards, the 

numerical simulation of the test(s) is (are) run for each combination. By collecting the results 

from all simulations it is possible to build a so called metamodel, which describes a 

simplified model of the nonlinear problem. LS-OPT has two different methods available to 

perform the analysis of the results: Analysis Of Variance (ANOVA) and global sensitivity 

analysis (GSA/SOBOL)). 

ANOVA method is a linear sensitivity measure, or a statistical technique, that 

tests how well the metamodel reflects the obtained response measurements. It is used to 

observe the significance of variables, by construction of a Global Sensitivities Plot, which 

shows positive and/or negative influence. Nonetheless, this sensitivity measure is linear, i.e. 

it can be performed when a polynomial metamodel is used, otherwise a linear approximation 

has to be constructed to be able to generate ANOVA information. Therefore, since the 

problem under analysis is strongly non-linear, the ANOVA method was not used. 

GSA/SOBOL is a non-linear sensitivity measure, which gives response in 

normalized values, allowing them to be summed up, and easily determining parameter 

influence on each response and on the entire optimization problem. This sensitivity analysis 

allows the user to state the variables by order of importance (or influence). It is important to 

mention that the results obtained from this analysis are dependent from the intervals 

considered for the variables. 

In order to be possible to rely on the sensitivity analysis and/or an optimization, 

one must know the predictive capability of the model selected, otherwise it can lead to poor 

or misleading results. Thus, it is obligatory to perform an error analysis when using 

metamodels, in this case response surfaces. This means that the fitted model must be 

examined in order to ensure that it provides a good approximation to the system. In the 

following section some details about this topic are given. 
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4.3.1.1. Model adequacy checking 

The accuracy of a response surface must be determined, making use of the 

several error measures available in LS-OPT (Stander et al. 2010) (Myers et al. 2009b). There 

are some factors that influence the accuracy of the results (Stander et al. 2010): 

1. The size of the region for the design variables. The smaller it is, the more 

accurate the response surface will be; 

2. The number and distribution of simulation points. The increase of the 

number of points gives better predictive capability; 

3. The order and nature of the approximating function. Accuracy increases 

with the increase of the order of the approximating function. 

In the following, some of the error measures used in this work are presented. The residual 

sum of squares is defined based on 𝑦𝑖, which represents the actual response, and 𝑦̂𝑖, which 

represents the predicted response. This error can be calculated with the following expression: 

 ɛ² = ∑ (𝑦𝑖 − 𝑦̂𝑖)² 𝑃
𝑖=1 , (4.9) 

where 𝑝 is the total number of measurement points, as previously stated when it was applied 

in the hardening parameters identification (see equation (4.5)). The RMS Error is the residual 

sum of squares in its square root form: 

 
ɛ𝑅𝑀𝑆 = √

1
𝑃
∑ (𝑦𝑖 − 𝑦̂𝑖)² 𝑃
𝑖=1  . 

(4.10) 

This error value can be normalized using the range of the measured data, defined as the 

maximum value minus the minimum value, enabling its presentation in terms of percentage. 

The prediction error sum of squares (PRESS) is a useful residual scaling and can be 

calculated with the following expression: 

 𝑃𝑅𝐸𝑆𝑆 = ∑ (𝑦𝑖−𝑦̂𝑖
1−ℎ𝑖𝑖

)
2

𝑃
𝑖=1  . 

(4.11) 

As before, 𝑦̂𝑖 is the vector of fitted values corresponding to the observed values 𝑦𝑖. ℎ𝑖𝑖 are 

the diagonal terms of 

 𝐇 = 𝐗(𝐗𝑇𝐗)−1𝐗𝑇 , (4.12) 

where 𝐗 is the matrix of design variables (relates each variable to the coefficient to be 

determined in the metamodel; for linear regression corresponds to the Vandermonde matrix). 

𝑯 is the “hat” matrix (because it maps the vector of observed values into a vector of fitted 

values (Myers et al. 2009b)), i.e. 
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 𝐲̂ = 𝐇𝐲 . (4.13) 

Basically, the PRESS residual is just the ordinary residual weighted according to the 

diagonal elements of the hat matrix ℎ𝑖𝑖. Written in its square root form, it becomes: 

 
𝑆𝑃𝑅𝐸𝑆𝑆 = √1

𝑃
∑ (𝑦𝑖−𝑦̂𝑖

1−ℎ𝑖𝑖
)
2

𝑃
𝑖=1  . 

(4.14) 

It uses each possible subset of 𝑃-1 responses as a regression data set, and the remaining 

response in turn is used to form a prediction set. This is useful to estimate the predictive 

capability of the metamodel. 

The coefficient of determination 𝑅2 can be calculated with the following 

expression: 

 𝑅2 = ∑ (𝑦̂𝑖−𝑦̅𝑖)²𝑃
𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)²𝑃
𝑖=1

 , (4.15) 

where 𝑃 is the number of design points and 𝑦̅𝑖, 𝑦̂𝑖 and 𝑦𝑖 represent the mean of the responses, 

the predicted response and the actual response, respectively. The values for 𝑅2 vary between 

0 and 1 and it represents the ability of the response surface to identify the variability of the 

design response. It represents the explained variance to the total variance in the target value 

(Stander et al. 2010). Lower values often mean that the region of interest is not well defined 

(either too large or too small) and that the gradients are not trustworthy. A value of 1.0 

indicates a perfect fit. 

For the purpose of accuracy prediction the 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛2  indicator can be used, as 

it represents the ability of the model to detect the variability in predicting new responses: 

 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛2 = 1 − 𝑃𝑅𝐸𝑆𝑆
𝑆𝑦𝑦

 , (4.16) 

where 

 𝑆𝑦𝑦 = 𝒚T𝒚 −
1
𝑃
(∑ 𝑦𝑖)²𝑃

𝑖=1  . (4.17) 

Usually, a metamodel (response surface) is assessed to accurately represent the 

variability of the design response if the 𝑅2 value is bigger than 0.7. For instance, if 𝑅2 = 0.7 

it is possible to say that this model can “explain” 70% of the variability in predicting new 

observations. 
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4.3.1.2. Strategy and results 

The selection procedure adopted to find the points in the design space is called 

Space Filling. This algorithm maximizes the minimum distance between experimental 

design points for a given number of points. The only data required is the number of design 

points, which depends on the number of variables, metamodel type and the strategy. For the 

example under analysis, the recommend value of 32 points was considered. 

The metamodels recommended for sensitivity analysis are the Radial Basis 

Function Network (RBFN) and the Feedforward Neural Network (FFNN). In the example 

under analysis, the FFNN metamodel provided better accuracy results and, consequently, 

was the one adopted for the results analysis. Detailed information about this metamodel type 

can be found in LS-OPT manual (Stander et al. 2010).  

Figure 4.4 to Figure 4.7 present the predicted versus the computed results as well 

as the 𝑅² and the ɛ𝑅𝑀𝑆 values for each different test (Nakajima: Uniaxial, Biaxial and Plane 

Strain; and tensile). In all figures it can be seen that the points are well distributed along the 

regression line, being the values for 𝑅² close or even 1. This means that the model can 

perfectly explain all of the variability in predicting new observations. Also, the values for 

the ɛ𝑅𝑀𝑆 are always inferior to 1%. In order to help the analysis of these results they are 

summarized in Table 4.5. The uniaxial tensile test presents the lowest ɛ𝑅𝑀𝑆 value, which 

may result from the fact that the hardening and the anisotropy parameters were identified 

using this input data. 

It should be mentioned that convergence analysis is usually made in order to 

determine the number of simulation points (per iteration and per case). It is made by 

performing simulations with different number of simulation points. The results accuracy 

obtained with each number of simulation points is compared in order to decide if the increase 

in number of points is still providing an increase in accuracy or not. In this work, since the 

accuracy obtained with the default number of points was already good, the convergence 

analysis was not performed. 
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(a) (b) 

Figure 4.4 - R² and RMS Error values (Metamodelling accuracy) for: (a) Uniaxial displacement); (b) Uniaxial 
force 

 

 
 

  
(a) (b) 

Figure 4.5 - R² and RMS Error values (Metamodelling accuracy) for: (a) Biaxial displacement); (b) Biaxial force 

 
 

The contents were removed due to a confidentiality agreement.



 

 

Identification of Damage Parameters in the commercial code LS-DYNA  

 

 

40  2015 

 

 
 
 
 
 

  
(a) (b) 

Figure 4.6 - R² and RMS Error values (Metamodelling accuracy) for: (a) Plane strain displacement); (b) Plane 
strain force 

 
 
 

  
(a) (b) 

Figure 4.7 - R² and RMS Error values (Metamodelling accuracy) for: (a) Uniaxial tensile displacement); (b) 
Uniaxial tensile force 
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Table 4.5 – Error values for the metamodel used in the sensitivity analysis 

 𝑅2 RMS Error 
 Displacement Force Displacement Force 

Nakajima: 
Uniaxial  

0.999 1.000 0.177 (0.589%) 5.410 (0.050%) 

Nakajima: 
Biaxial  

1.000 0.999 0.097 (0.208%) 80.600 (0.235%) 

Nakajima: Plane 
Strain 

1.000 0.999 0.017 (0.0694%) 14.100 (0.102%) 

Tensile Test 0.995 0.999 0.026 (0.135%) 1.710 (0.009%) 
 

Based on the previous results, it is possible to make a confident analysis of the 

GSA/SOBOL results, in order to see the influence of each damage variable in each different 

test.  Figure 4.8 to Figure 4.11 present the SOBOL results for each mechanical test, with a 

bar corresponding to each of the damage model variables influence (measured in percentage) 

on the test, compared to the influence of the other four variables. In each figure, the sum of 

all five variable’s importance is 100%. In order to help the results analysis, Table 4.6 presents 

its summary. For all tests, 𝑠 is the parameter with the biggest influence with a value higher 

than 50%, except for the tensile test where it presents an influence identical to the one of 𝑆. 

The parameter that presents the lowest influence is 𝑌0, except for the biaxial strain path. 

Nonetheless, it always presents an influence inferior to 7%. The 𝛽 parameter also presents a 

similar trend in all tests, with a range of influence between 12 and 18%. The 𝜂 parameter 

presents an negligible influence for the biaxial strain path while for the plane strain path 

corresponds to the second most influent parameter. Although it is known that the results of 

this analysis can be conditioned by the pre-selected ranges defined in Table 4.4, globally 

they state the importance of the parameter 𝑠 which controls the evolution of the damage 

energy density release rate (see (3.32)). Globally, this sensitivity analysis results do not allow 

the reduction of the number of design variables used in the optimization  
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Figure 4.8 - SOBOL results for the Uniaxial case 

 
Figure 4.9 - SOBOL results for Biaxial case 

 
Figure 4.10 - SOBOL results for Plane Strain case 

 
Figure 4.11 - SOBOL results for Tensile test case 

 
Table 4.6 – SOBOL percentages for each variable 

 𝑌0 𝛽 𝜂 𝑆 𝑠 
Uniaxial 4.0% 11.8% 14.6% 19.3% 50.3% 
Biaxial 2.5% 15.2% 1.1% 11.0% 70.2% 

Plane Strain 3.5% 11.9% 20.6% 13.0% 51.0% 
Tensile 6.6% 17.3% 7.0% 32.6% 36.5% 

 

4.3.2. Optimization 
The objective of an optimization is to minimize or maximize a certain function 

by finding the best set of values for the variables in study (design variables). In this work, 
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the goal is to minimize the objective function, which is defined by the area between the 

experimental and numerical force-displacement curves (Curve Mapping) or the by 

difference on the values obtained experimentally and the ones obtained with numerical 

simulations (in terms of Mean Square Error (MSE)). The design variables are the ones that 

are going to be changed in each numerical simulations, according with the optimization 

algorithm selected. In this case, the design variables are all defined as real and continuous. 

The LS-OPT manual recommends the use of the Metamodel-based Optimization 

algorithm to solve a parameter identification problem, combined with the Sequential with 

Domain Reduction strategy (with linear polynomial metamodels and D-Optimal point 

selection algorithm). This is because previous results indicate that it will conduct to better 

results when compared to the other metamodels also implemented in LS-OPT. The following 

sections try to present some information, considered important for the results analysis, about 

these strategies. For further details refer to (Stander et al. 2010). 

4.3.2.1. Sequential Response Surface Methodology (SRSM) 

Response surface methodology (RSM) is a collection of statistical and 

mathematical techniques used to develop, improve and optimize processes (Myers et al. 

2009a). Its objective is the evaluation of a response (i.e., the objective physical quantities) 

which is influenced by several design variables. The linear regression model can be written 

as: 

 𝒚 = 𝑓𝛽(𝑋1, 𝑋2, … , 𝑋𝑝) + ɛ . (4.18) 

where 𝒚 is the response measurement (study objective), ɛ is an estimation of the error and 

𝑋𝑛 are design points. Considering that the response is known for 𝑝 points, 𝒚 is a vector of 

observations and 𝒆 is a vector of errors, such that: 

 𝒚 = 𝑿𝜷 + ɛ ,  (4.19) 

or in indicial notation: 

 𝑦𝑖 = 𝑋𝑖𝑗𝛽𝑗 + ɛ𝑖 , with 𝑖 = 1, . . , 𝑃 and 𝑗 = 1, . . , 𝑝 , (4.20)  

where 𝑝 corresponds to the number of parameters or regression coefficients. Thus, 𝜷 is the 

vector of tuning parameters, which are unknown. The 𝛽𝑗 factors are estimated through the 

least-squares regression method, which aims at minimizing the sum of the squared error 

(SSE) at the design points: 
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 ɛTɛ = (𝒚 − 𝑿𝜷)T(𝒚 − 𝑿𝜷) . (4.21) 

The best estimation of 𝜷 can be obtained by differentiating this last expression with respect 

to 𝜷 and equaling the result to 0: 

 𝜷̂ = (𝑿𝑻𝑿)−1𝑿T𝒚 . (4.22) 

where 𝜷̂ represents the estimator of 𝜷. Then, the RSM metamodel becomes an explicit 

mathematical function used to predict the response 𝑦0 of an unknown design variable setting 

𝒙0: 

 𝑦̂0 = 𝒙0T𝜷̂ . (4.23) 

where 𝒙𝟎 is a design matrix containing the design variable settings of 𝑥0. 

Even though the first equation of this section corresponds to a linear relation 

between the design variables, the design matrix 𝑿 can also incorporate non-linear terms with 

respect to the design variables. The most commonly applied shapes of RSM metamodels are 

the ones that follow, in increasing complexity: 

x Linear; 

x Linear with interaction; 

x Elliptic; 

x Quadratic. 

For more information on the subject, the reader is recommended to consult (Myers et al. 

2009a). 

When building a metamodel the user must decide if it will be used for global 

exploitation or for parameters identification, i.e. if the model is built only once (single 

strategy) with a larger number of points or if it can be based on a reduced sampling of points 

that will be updated in each iteration (sequential strategy). In order to accelerate the 

convergence, an adaptive domain reduction strategy can also be used (SRSM). This allows 

also the reduction of the subregion considered for sampling the points, necessary for the 

update of the RSM, in each iteration. Figure 4.12 presents a schematic example of the 

concept. The SRSM starts with a region of interest center in the starting point of the 

optimization procedure, which is a subspace of the design space. This subregion is used for 

sampling the points and build the metamodel. Afterwards, the optimization algorithm is 

applied to this metamodel and an optimum value is determined. Then, a new subregion of 

interest is defined centered on this optimum value. The procedure is repeated until the 

The contents were removed due to a confidentiality agreement.



 

 

  PARAMETER IDENTIFICATION PROCEDURE 

 

 

Bernardo Caridade Menezes  45 

 

convergence criteria is attained. As shown in Figure 4.12 the size of the subregion can also 

be adapted, depending on the oscillatory behaviour of the solution and the accuracy of the 

optimum. 

In brief, the SRSM allows the convergence of the single-objective solution 

within a defined tolerance by using a region of interest (a small interval of the design space) 

to determine an approximate optimum. This region of interest centers itself on each 

successive optimum, changing with each iteration (and sequentially reducing the size of the 

region), until some accuracy or tolerance is met. The SRSM is commonly applied in 

parameters identification using inverse approaches because it improves convergence, i.e. 

tries to compensate the CPU (Central Processing Unit) time spent by the FEM with a smaller 

number of iterations in the optimization procedure. As previously mentioned, the polynomial 

metamodel can have different approximation orders. It is somewhat obvious that an increase 

in the order of the polynomial results in the increase of the number of terms, leading to an 

increase in the number of simulations required to solve the optimization problem (because 

more coefficients need to be determined) (Stander et al. 2010). By building the metamodel 

in a subregion of the design space it is possible to use lower order models without a strong 

impact in the results accuracy. 

 

 
Figure 4.12 – Adaptation of the subregion in SRSM: (a) pure panning; (b) pure zooming and (c) combination 
of panning and zooming (extracted from (Stander et al. 2010)). 

The selection procedure for finding the points in the design space (in this case in 

each subregion) is called D-Optimal. It is recommended to use this sampling method instead 

of standard classical designs whenever: (i) standard factorial or fractional factorial designs 

require too many runs for the amount of resources or time allowed for the experiment; (ii) 
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the design space is constrained (the process space contains factor settings that are not feasible 

or are impossible to run). It is the recommended point selection scheme for polynomial 

response surfaces (Stander et al. 2010). The default number of points selected for the D-

Optimal design is 𝑖𝑛𝑡(1,5(𝑛 + 1)) + 1 for a linear order, being 𝑛 the number of variables. 

The algorithm implemented in LS-OPT uses the maximization of the determinant of the 

moment matrix |𝑿T𝑿| (see (4.22)) of the least squares formulation, as the optimality 

criterion. 

Figure 4.15 summarizes the options made in LS-OPT, concerning the metamodel 

chosen (Polynomial), its order (linear), the point selection criteria (D-Optimal) and the 

number of simulation points per iteration and per case (10). 

 

 
Figure 4.13 - Metamodel selection, order and point selection algorithm 

 

4.3.2.2. Adaptive Simulated Annealing (ASA) 

The algorithm used to perform the optimization is a global stochastic 

optimization algorithm called Adaptive Simulated Annealing (ASA), which is said to mimic 

the metallurgical annealing process. This is a powerful method for global optimization in 

engineering and science problems. Despite its drawbacks, being them mostly the long CPU 
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time to find a good solution, it has proven itself to be surprisingly effective for a wide variety 

of hard optimization problems (Stander et al. 2010). Although if may quickly detect the 

global optimum’s region, it often requires a few iterations to improve its accuracy. Because 

of this, it can be combined with a gradient based optimization method like LFOP (Leap-frog 

optimizer for constrained minimization). This way, ASA is used to find a good starting 

solution and a single run is performed with LFOP to converge to the global optimum 

(Stander et al. 2010). Nevertheless, and in order not to be “trapped” in a local minimum of 

the chosen interval, a multi-start strategy is adopted (different runs are performed with 

different starting points, namely the lower bounds, the upper bonds and a chosen set 

somewhat far away from boundaries). 

In order to easily understand the terms used in the algorithm, the reason why it 

is called “annealing” should be understood. The “annealing” process is a heat treatment that 

alters the physical properties of a material, commonly performed to increase its ductility and 

reduce its hardness. This is done by heating the material above its recrystallization 

temperature, at which the atoms are at a high energy state and can move freely, and then 

applying a sufficiently slow cooling rate at which the atoms are able to reach the minimum 

energy state, for each temperature state. This results in the most pure crystalline form. If the 

cooling rate is not sufficiently slow the atoms do not get sufficient time to reach thermal 

equilibrium and it might result in a polycrystalline structure with higher energy. 

The analogy of the thermal treatment with the optimization algorithm can be 

explained as follows: the objective function of the optimization algorithm is called “energy” 

𝐸 and it is related to “temperature” 𝑇 by a probability distribution (Stander et al. 2010). The 

most common used probability distribution is the Boltzmann distribution: 

 Probability (𝐸)~exp (− 𝐸
𝑘𝐵𝑇
) , (4.24) 

where 𝑘𝐵 is the Boltzmann’s constant. In order for the system to go through 

different “energy states” the search initializes with a high “temperature” and it “cools” 

slowly. The global minima of the optimization is the “lowest energy state”. It starts with the 

identification of the starting state 𝒙(0) ∈ 𝑿 and corresponding energy 𝐸(0) = 𝐸(𝒙) and the 

“temperature” is set to a high value 𝑇(0) = 𝑇𝑚𝑎𝑥. This is iteration 𝑘 equal to zero and it 

corresponds to the initialization, such that the starting state corresponds to the user-defined 

starting points. 
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Then, a new point 𝒙′ ∈ 𝑿 is sampled using the candidate distribution 𝐷(𝑿(𝑘)) 

(defined according to (4.24)), the design space is set equal to 𝑿(𝑘+1) = 𝑿(𝑘) ∪ {𝒙′}, and the 

corresponding energy is calculated 𝐸′ = 𝐸(𝒙′). This candidate can be selected randomly 

among all neighbors of the current solution, 𝒙, with the same probability for all. The size of 

the neighborhood follows the idea that when the current function value is far from the global 

minimum, the algorithm should have more freedom, i.e. larger sizes are allowed. LS-OPT 

adopts a non-uniform selection procedure based on the range of each design variable: 

considering the design variable 𝑥𝑖 ∈ [𝐴𝑖; 𝐵𝑖], the new sample is given by: 

 𝑥′𝑖 = 𝑥𝑖
(𝑘) + 𝑣𝑖(𝐵𝑖 − 𝐴𝑖) ,  (4.25) 

where 𝑣𝑖 is estimated as follows 

 
𝑣𝑖 = sign(𝑢 − 0.5)𝑇𝑖

(𝑘) [(1 − 1
𝑇𝑖
(𝑘)⁄ )

|2𝑢−1|

− 1] , with 𝑢 ∈ [0; 1] . (4.26) 

𝑇𝑖
(𝑘) is the value of the parameter temperature, which evolution is defined by the temperature 

update, also known as cooling stage.  

At this point, an acceptance check made is for the candidate 𝒙′ by sampling a 

uniform random number 𝜑 ∈  [0,1] and setting: 

 
{
𝒙(𝑘+1) = 𝒙′𝑖𝑓 𝜑 ≤ 𝐴(𝐸′, 𝐸(𝑘), 𝑇(𝑘))
𝒙(𝑘+1) = 𝒙(𝑘)  𝑖𝑓 𝜑 > 𝐴(𝐸′, 𝐸(𝑘), 𝑇(𝑘))

 , (4.27) 

where 𝐴(𝒙) is the acceptance function that determines if the new state is accepted. The most 

commonly used criterion is the Metropolis criterion, which defines the acceptance function 

as: 

 𝐴(𝒙) = 𝐴(𝐸(𝒙′), 𝐸, 𝑇) = min {1, exp (− 𝐸(𝒙′)−𝐸
𝑇

)} , (4.28) 

and is the one implemented in LS-OPT. 

The next step consists in the temperature update, which depends on the cooling 

schedule adopted. The most important distinction between the standard Simulated Annealing 

(SA) algorithm and the adaptive is the fact that the later uses an independent schedule for 

each parameter 𝑇𝑖
(𝑘). The fastest cooling rate is associated with Ingber’s algorithm (Ingber 

1996), since it allows an exponential evolution given by: 

 𝑇𝑖
(𝑘+1) = 𝐶(𝑿(𝑘+1), 𝑇(𝑘)) = 𝑇𝑖

(0)exp (−𝑐𝑖𝑘
1
𝑁⁄ ) , (4.29) 
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where 𝐶 represents the “cooling” schedule, 𝑁 is the dimension of the design space and the 

control parameter is given: 

 𝑐𝑖 = 𝑚𝑖exp(−𝑛𝑖 𝑁⁄ ) . (4.30) 

The two free parameters are defined as 

 𝑚𝑖 = log(𝑇𝑖min 𝑇𝑖
(0)⁄ ) , and (4.31) 

 𝑛𝑖 = log(𝑁anneal) , (4.32) 

where 𝑇𝑖min 𝑇𝑖
(0)⁄  is the parameter temperature ratio (also called cost-parameter annealing 

ratio) and 𝑁anneal is linked to the time allowed (number of steps) at each parameter 

temperature stage, i.e. they are both internal parameters of the algorithm. 

The last step is the convergence check. The stopping criterion implemented in 

LS-OPT is related either to reaching a certain number of function evaluations or to a drop in 

“temperature” to a desired minimum level 𝑇min. The search is stopped if the stopping 

criterion is met. If not, a new point is sampled, having 𝑘 = 𝑘 + 1. 

4.3.2.1. Optimization Strategy 

To perform the curve matching, both Curve Mapping and Mean Square Error 

algorithms were used. More detailed information regarding both algorithms can be found in 

LS-OPT manual (Stander et al. 2010). The first one was used in the tensile test, whilst the 

second one was applied to the Nakajima tests. The reason for not using only one algorithm 

in both tests is related with the fact that MSE curve matching cannot properly incorporate 

parts of the curve with strong changes in the slope. A fast slope change of the stress-strain 

curve towards its end is common in failure material models. This is the reason not to use 

MSE algorithm to perform the curve matching for the tensile test, but instead Curve 

Mapping. For the Nakajima tests it was used the MSE method since the experimental results 

do not have that fast slope change (the force drops suddenly).  

The optimization’s termination criteria depends on the design, the objective 

function and the maximum number of iterations chosen. The design change termination 

criterion measures the variation of the design variables within two consecutive iterations and 

is activated if 

 ‖𝒙(𝑘)−𝒙(𝑘−1)‖
‖𝑑‖

< ɛ𝑥 , (4.33) 
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where 𝒙 refers to the vector of design variables, 𝑑 is the size of the design space and 𝑘 is the 

current iteration. The objective function termination criterion measures the variation in the 

objective function value within two consecutive iterations and is activated if 

 |𝑓
(𝑘)−𝑓(𝑘−1)

𝑓(𝑘−1)
| < ɛ𝑓 , (4.34) 

where 𝑓 refers to the value of the objective function. It should be mentioned that in this case 

the inverse analysis strategy is performed considering four tests. Thus, there are four 

objectives functions, one corresponding to the minimization of the difference between each 

experimental and numerical results for the force-displacement curve. This can be interpreted 

as a multi-objective optimization problem. Although there are specific algorithms for this 

type of problems, a commonly adopted approach is to sum the objective function values, in 

order to convert it into a single objective, enabling the application of the algorithms 

developed for single-objective optimization problems. This is the strategy adopted in LS-

OPT, such that the objective function, defined in (4.34) can be considered equal to: 

 𝑓 = 𝑓UT + 𝑓NU + 𝑓NB + 𝑓NPS , (4.35) 

where UT refers to the uniaxial tensile test and NU, NB and UT to the Nakajima uniaxial, 

biaxial and plane strain paths, respectively. LS-OPT enables considering a different weight 

for each objective function, but this option was not explored. In this study, both ɛ𝑥 and ɛ𝑓 

were considered to be equal to 0.01. The maximum number of iterations was set equal to 50. 

This last criteria is only used if, when the number of iterations reaches that value, both of 

the other two criteria were not accomplished (these two criterions are described in (4.33) and 

(4.34), respectively). 

Figure 4.14 shows the LS-OPT interface of the model used for the optimization, 

highlighting the four different tests (tensile test and the three Nakajima tests: uniaxial, biaxial 

and plane strain). Also, it is possible to observe the optimization sequence:  

i. for each sampling of points in the subregion under analysis the four test are 

runned and the results are collected; 

ii. the metalmodel is built using the collected results; 

iii. the optimization algorithm is runned in order to evaluate the optimum for the 

new metamodel; 

iv. the termination criteria is checked and if achieved a verification of the design 

is performed, otherwise; 

The contents were removed due to a confidentiality agreement.



 

 

  PARAMETER IDENTIFICATION PROCEDURE 

 

 

Bernardo Caridade Menezes  51 

 

v. the SRSM procedure is applied in order to evaluate the new subregion of 

interest and the procedure is repeated. 

In the “Composites” option it is defined the type of analysis to be performed for 

each test (either Mean Square Error or Curve Mapping), the target curve (which is always 

the one obtained in the experimental results for each different test) and the computed curve 

(from each numerical simulation). In the “Optimization” option the objectives and the 

optimization algorithm are defined. The optimization procedure also requires the definition 

of the range for the design variables and the starting point, i.e. the parameter setup, as shown 

in Figure 4.15. 

 

 
Figure 4.14 - LS-OPT interface for the optimization 
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Figure 4.15 - Parameter Setup (boundaries and starting values for each variable) 
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5. RESULTS AND DISCUSSION 
In this chapter, the results obtained with the procedure proposed in the previous 

chapter are presented and discussed. One important issue that arises when using the domain 

reduction strategy is that it may conduct the results to a local minimum. In order to try to 

avoid this situation and to distinguish a local from a global minimum, different starting 

points can be tested. In fact, convergence to the same optimal design variables, when starting 

from different points is not a sufficient condition to enable the description of the result as a 

global minimum of the objective function selected, but it strengthens the idea. Obviously, 

one has to take into account if the chosen interval contains (or not) the global minimum. 

Another important issue arises from the design space. It is possible to get 

accurate values for the damage parameters, by fixing the design variables that are less 

important (or, at least, not so sensitive when compared to the others). This also contributes 

to a reduction of the computational time. This involves the study of the results obtained with 

the sensitivity analysis, to know which variables have actual influence in the results and 

which variables have not such a big influence. This way, variables with small or almost non-

existing influence in the tests can be removed from the optimization. However, the value for 

this variable has to be fixed during the optimization procedure. The usual problem that arises 

is to know the fixed value that can be assumed as valid. In this context, the parameter 

identification procedure itself can be seen as a trial-and-error procedure. A first optimization 

is performed to estimate the appropriate value for the less sensitive parameters. Afterwards, 

a new optimization is performed assuming the optimized value fixed for the less sensitive 

parameters. At this stage, the intervals for the other parameters can also be corrected (tuned, 

considering the old ones and the results from the optimization). Then, a new optimization is 

performed. This will converge faster to the optimum result, since the number of variables to 

optimize is smaller and the range of the parameters can be smaller, leading to a smaller size 

of simulation points per iteration per case. 
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5.1. Parameter identification 
The first parameter identification procedure was performed considering the 

range for the five damage parameters defined in Table 4.4 and a starting point close to the 

middle of the range. In order to try to access the influence of the starting point in the 

optimized solution, the identification was repeated considering as starting point the lower 

and upper bound of the range, for each variable. Table 5.1 resumes the values used in each 

case. The optimized values are presented in Table 5.2. First, it should be mentioned that all 

parameters present values within the pre-selected range, but none presents a value equal to 

the boundaries. This indicates that the range considered was large enough to enable the 

optimization. Also, the value calculated analytically for 𝑌0 in chapter 4.2 is similar to the 

ones obtained with the optimizations. Therefore, although prone to experimental errors, the 

estimate can be considered as good approximation to the value of this parameter. Taking 

also into account the results of the sensitivity analysis, which indicate that the parameter 𝑌0 

is globally the less sensitive, a parameter identification procedure was also performed 

considering this value fixed. The value adopted is the one given in (4.8). The values obtained 

with this procedure are also presented in Table 5.2. 

 
Table 5.1 – Starting values for the damage parameters 

Damage Parameters Middle Lower Upper Fixed 𝑌0 
𝑌0 0.8 0.8 1.2 0.877 (fixed) 
𝛽 5 2 10 5 
𝜂 2 0.5 6 2 
𝑆 5 4 8 5 
𝑠 2 1 5 2 

 
Table 5.2 – Optimized values of the damage parameters 

  Lower Upper Fixed 𝑌0 
Damage Parameters Middle Value Differ. Value Differ. Value Differ. 

𝑌0 1.005 1.002 0.4% 0.843 16.2% 0.87 13.5% 
𝛽 7.581 3.866 49.0% 7.303 3.7% 2.683 64.6% 
𝜂 2.073 5.697 -174.8% 4.711 -127.2% 5.542 -167.3% 
𝑆 5.133 7.960 -55.1% 6.003 -16.9% 6.505 -26.7% 
𝑠 1.727 1.012 41.4% 1.634 5.4% 1.155 33.1% 

 

As previously mentioned, if the parameters converge to similar values, this could 

be an indicator that a global minimum was found. Nevertheless, in this case the results 
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indicate that there is more than one set of parameters to describe the material’s damage 

behaviour, within the prescribed tolerance, for the considered range. The difference, 

expressed in percentage, was determined considering the results obtained with the middle 

starting point as reference. The results highlight that the major difference is occurring for the 

parameter 𝜂, which according to the sensitivity analysis presents a low influence for both 

uniaxial strain paths. This could indicate that different types of tests should be used in order 

to improve the identification of this parameter. Nevertheless, also high differences are 

obtained for parameter 𝑠, which according to the sensitivity analysis presents a high 

influence for all tests. In order to try to understand better this results the comparison between 

the experimental and the numerical force-displacement curves is presented in Figure 5.1 to 

Figure 5.4, for the three Nakajima tests and the uniaxial tensile test, respectively. In all force-

displacement curves it is possible to see a small difference between both curves that tends to 

increase towards the end. This is due to the fact that the damage parameters only have major 

influence towards the end of the curve. The force-displacement curves obtained with both 

Middle and Upper starting values overestimate the displacement for all tests except for the 

biaxial, whilst the Down values seem to estimate the displacement better, or more accurately. 

It is known that the optimization results may have a smaller error for some tests than others, 

which can explain the fact that some of the numerical curve’s endings are more similar to 

the experimental results than others, namely the biaxial and the tensile tests. In fact, it can 

be seen that for the Nakajima plane strain test the identifications performed with the Middle 

and Upper start solutions do not attain the critical damage conditions. It should be mentioned 

that the end of each numerical simulation occurs when one of the following termination 

criterions is verified: 

x As previously mentioned, in case an element reaches a value of critical 

damage 𝐷𝑐=0.20, it is deleted. In the Nakajima tests, a deletion of 10 

elements makes the test stop, while for the tensile test the considered 

number of elements is 18 (the number of elements in a vertical line in the 

refined area);  

x Maximum displacement, defined based on the experimental data, of: 

o Biaxial: 37.8mm 

o Plane Strain: 25 mm 

o Uniaxial: 28 mm 
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o Tensile: 25 mm 

Therefore, the plane strain Nakajima tests ended because the maximum displacement was 

attained. This indicates that also the maximum displacement adopted as termination criterion 

can have an impact in the identification procedure. 

From Figure 5.1 to Figure 5.4 the experimental results are represented in black 

while the numerical results are represented in green. 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.1 – Comparison between the experimental and numerical force-displacement curves for the 
Nakajima uniaxial strain path for different starting values: (a) Middle; (b) Upper; (c) Lower; (d) Fixed 𝒀𝟎 
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(a) (b) 

  
(c) (d) 

Figure 5.2 – Comparison between the experimental and numerical force-displacement curves for the 
Nakajima biaxial strain path for different starting values: (a) Middle; (b) Upper; (c) Lower; (d) Fixed 𝒀𝟎 

 

 

The contents were removed due to a confidentiality agreement.



 

 

  RESULTS AND DISCUSSION 

 

 

Bernardo Caridade Menezes  59 

 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.3 – Comparison between the experimental and numerical force-displacement curves for the 
Nakajima plane strain path for different starting values: (a) Middle; (b) Upper; (c) Lower; (d) Fixed 𝒀𝟎 
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(a) (b) 

 
 

(c) (d) 
Figure 5.4 – Comparison between the experimental and numerical force-displacement curves for the 
uniaxial tensile strain path for different starting values: (a) Middle; (b) Upper; (c) Lower; (d) Fixed 𝒀𝟎 

 
Figure 5.5 to Figure 5.9 show the variable convergence history, with the blue 

lines representing the subregion for the SRSM, while the red lines represent each variable’s 

value, in each iteration. Depending on the starting point, different output parameters are 

obtained. In fact, the only variable that converges to the same value (with different starting 

parameters) is 𝑌0. The analysis of the figures indicates a strong correlation between the 

damage parameters, i.e. the final value of each variable is dictated by the convergence history 
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which is controlled by all starting values. It is possible to conclude that different starting 

values originate different parameter sets after the optimization, which means that there is 

more than one solution to the problem when considering the prescribed tolerance. 

 

  
(a) (b) 

 
(c) 

Figure 5.5 – Variable convergence history (𝒀𝟎) for different starting values: (a) Middle; (b) Upper; (c) Lower 
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(a) (b) 

  
(c) (d) 

Figure 5.6 – Variable convergence history (E) for different starting values: (a) Middle; (b) Upper; (c) Lower; 
(d) Fixed 𝒀𝟎 
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(a) (b) 

 
 

(c) (d) 
Figure 5.7 – Variable convergence history (K) for different starting values: (a) Middle; (b) Upper; (c) Lower; 
(d) Fixed 𝒀𝟎 
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(a) (b) 

  
(c) (d) 

Figure 5.8 – Variable convergence history (𝑺) for different starting values: (a) Middle; (b) Upper; (c) Lower; 
(d) Fixed 𝒀𝟎 
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(a) (b) 

  
(c) (d) 

Figure 5.9 – Variable convergence history (𝒔) for different starting values: (a) Middle; (b) Upper; (c) Lower; 
(d) Fixed 𝒀𝟎 

Figure 5.10 presents the multiobjective function convergence history, i.e. the 

values obtained with each iteration. The red dots correspond to the computed value, which 

is the one that is numerically calculated, while the black line corresponds to the predicted 

values (calculated by the metamodel). It is important to mention that these values do not 

represent the actual value of the objective function (see (4.35)), but instead the value 

indicated in (4.34). This is why the value is converging to 0.01. Furthermore, the fact that it 

is diminishing along iterations only reveals that the parameters are converging to a better 

solution, i.e. with a smaller relative error than the one in the previous iteration. Globally, it 

just indicates convergence, not quality of the results. Thus, it is not possible to conclude if 
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there are more than the three obtained solutions. It is also interesting to understand how the 

reduction of the prescribed tolerance would influence the number of possible solutions 

within the considered intervals. The procedure that took the lower number of iterations to 

converge (12) was the one using the lowest starting values. This seems to be correlated with 

the fact that 𝑠 converges fast to a lower value (see Figure 5.9 (c)), but may be trapped in a 

local minimum. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.10 – Multiobjective convergence history for different starting values: (a) Middle; (b) Upper; (c) 
Lower; (d) Fixed 𝒀𝟎 

Table 5.3 presents the objective function value for each test as well as the 

multiobjective value. It is possible to notice that the highest value is always obtained in the 
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biaxial test. Despite that, it is possible to see that the force-displacement curves obtained 

with the biaxial test are the ones that seem to fit best the experimental results, when 

comparing to the other two different Nakajima tests (uniaxial and plane strain). In fact, as 

seen in Figure 5.2 there is some noise in the experimental data which may be responsible for 

some error in the objective function. Finally, it is possible to conclude that the tensile test 

has the smallest value for the objective function when compared to the other different tests, 

for all of the different starting values. This can be explained by the fact that the hardening 

parameters as well as the anisotropic behaviour were determined based on the uniaxial 

tensile test results. 

 
Table 5.3 – Objective function value for each test with each different starting values 

  Objective function value (see (4.34)) 
Starting 
Values 

Number of 
iterations Uniaxial  Biaxial Plane 

Strain Tensile  Multi 

Middle 17 2.809
× 10−3 

5.790
× 10−3 

1.524
× 10−3 

7.401
× 10−5 

1.019
× 10−2 

Upper 16 3.789
× 10−3 

5.812
× 10−3 

1.494
× 10−3 

4.649
× 10−5 

1.018
× 10−2 

Lower 12 2.444
× 10−3 

5.942
× 10−3 

1.274
× 10−3 

6.243
× 10−5 

9.722
× 10−3 

Fixed 𝑌0 17 2.437
× 10−3 

5.753
× 10−3 

1.266
× 10−3 

8.591
× 10−5 

9.542
× 10−3 

5.2. Damage analysis 
In this section, the results obtained with the damage parameters identified using 

the Middle starting point values are analysed. Although it is not possible to assure the quality 

of this identification, the results are analysed to improve knowledge about the damage 

evolution.  

Figure 5.11 represent the plastic strain distribution for each test, in the first 

outputted moment where some elements reach the critical damage (which explains the fact 

that some elements are deleted). As previously mentioned, the critical damage for the 

Nakajima plane strain path test was not reached, therefore, no element was deleted. The 

localization of strain and, consequently, damage occurs in the expected area for the other 

tests. Nevertheless, the use of the “delete element” option, associated with the 𝐷𝑐, can lead 

to results that may be somehow unphysical, as shown for the biaxial Nakajima test. 
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The evolution of the equivalent plastic strain and the damage parameter, during 

the test, was evaluated for the element located along both symmetry planes, in the Nakajima 

tests, and in the middle of the tensile test specimen. Figure 5.12 presents the results, 

highlighting the correlation between the evolutions of both variables. It should be mentioned 

that when the element is deleted (𝐷𝑐 = 0.2) both values become null. In order to avoid 

misinterpretations of the results it was decided not to represent these null values. Anyhow, 

in some cases, it is not possible to visualize the attaining of the critical damage due to the 

results frequency acquisition.  

 

  
Figure 5.11 – Plastic strain distribution for Nakajima: (a) uniaxial: (b) biaxial; and (c) plane strain path tests, 
and (d) uniaxial tensile test 

Figure 5.12 also presents the evolution of the stress triaxiality 𝜂𝑡𝑟𝑖𝑎𝑥, which is 

defined as: 

(a) (b)

(c) (d)
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 𝜂𝑡𝑟𝑖𝑎𝑥 = −
𝜎𝐻
𝜎̅

 , (5.1) 

i.e. the ratio between the hydrostatic component of the Cauchy stress tensor and the 

equivalent stress, which is a function of the deviatoric component of the same stress tensor. 

This ratio tries to describe the influence of the stress state on the material ductility. When 

the level of stress increases but no plastic deformation occurs (which depends on stress 

deviatoric component) the damage mechanism will be by shear fracture. When plastic 

deformation occurs, pre-existing inclusions inside the material originate microvoids, which 

enlarge until void coalescence and ductile damage occurs. Based on the definition presented 

in (5.1), for an isotropic material, the values of 𝜂𝑡𝑟𝑖𝑎𝑥 are 2 3⁄ , √3 3⁄  and 1 3⁄ , for the biaxial, 

plane strain and uniaxial stress state, respectively. As shown in Figure 5.12, although the 

material under analysis is not isotropic, similar values are attained. It is important to notice 

that all studied trajectories correspond to damage with strain localization. Nevertheless, the 

tests that present a more uniform value for 𝜂𝑡𝑟𝑖𝑎𝑥 parameter are the uniaxial tensile test and 

the biaxial Nakajima test (the parameter can only be evaluated when the equivalent plastic 

strain is non null). For the uniaxial and plane strain Nakajima tests, in the beginning, the 

value of 𝜂𝑡𝑟𝑖𝑎𝑥 is closer to the one corresponding to the biaxial Nakajima test. This indicates 

that the inclusion of this part of both tests in the identification procedure maybe given more 

weight to the biaxial path, which may explain the better correlation between the experimental 

and numerical force-displacement curves for the biaxial Nakajima test than for the plane 

strain and the uniaxial ones. Nevertheless, it should be noted that this occurs for smaller 

values of equivalent plastic strain, for which the damage parameters present a lower 

influence on the constitutive behaviour of the material. 

Figure 5.13 represents the damage evolution with plastic strain for all tests 

performed, showing that the damage parameter presents a similar evolution for similar strain 

paths.  
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(a) (b) 

  
(c) (d) 

Figure 5.12 – Evolution of the equivalent plastic strain, damage and triaxiality with time, for Nakajima: (a) 
uniaxial: (b) biaxial; and (c) plane strain path tests, and (d) uniaxial tensile test 
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Figure 5.13 – Damage vs equivalent plastic strain evolution (comparison of the four tests) 
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6. CONCLUSIONS 
The focus of this work was the development of an inverse strategy applicable to 

material parameter identification, particularly the ones from the enhanced Lemaitre’s 

damage model. The strategy considered the availability of uniaxial tensile test results and 

Nakajima uniaxial, plane strain and biaxial test results. Thus, the orthotropic material 

behaviour and the isotropic hardening parameters were identified based on the uniaxial 

tensile test results, in order to focus the work in the damage parameters. Nevertheless, it is 

important to mention that the identification of the hardening behaviour using this test leads 

to extrapolation, for equivalent plastic strain values higher than 15%, for the AHSS material 

under analysis. The parameters for the Chaboche hardening law were identified using 

different strategies. It was observed that different sets of hardening parameters can lead to 

similar stress-strain results, for the known range of experimental values, and quite different 

values in the extrapolated domain. These results also highlighted that it is quite difficult to 

evaluate the quality of the identification results taking only into account the value of the 

objective function. Also, it would be interesting to known how well the extrapolated values 

describe the material hardening behaviour. 

Concerning the damage parameters, in a first step, a sensitivity analysis was 

performed for the four mechanical tests. It was possible to obtain a metamodel with a 

coefficient of determination very close to 1.0, which means that the five selected parameters 

can describe approximately the total variability of the response. Nevertheless, one of the 

objectives of the sensitivity analysis was to estimate the relative importance of each 

parameter, for each test, in order to be able to identify each parameter from a specific test. 

The other objective is to try to remove  less sensitive parameters from the optimization 

procedure, in order to reduce computational time. In this context, the sensitivity analysis was 

inconclusive, since the five variables present a non negligible sensitivity for all tests. It 

should be mentioned that for larger models, it would be easier to remove some parameters 

form the analysis, since it would be more probable to have more less sensitive parameters, 

which may be considered irrelevant. Thus, the optimization procedure was implemented 

considering the five damage parameters. The results obtained indicate that there are strong 
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correlation between the five damage parameters, which are strongly non-linear and affect 

optimization results. In fact, the procedure developed is quite sensitive to the user-defined 

starting point. Therefore, it was possible to find more than one set of parameters that fulfilled 

the prescribed tolerance, for the range considered. Nevertheless, it should be mentioned that 

the convergence criteria adopted in LS-OPT do not include the control of the objective 

function value, but only the normalized difference between two consecutive iterations. The 

different sets of parameters obtained present mainly difference towards the force-

displacement curve end, when the damage parameters become more important. A small 

change in one parameter may induce a bigger change in the other parameters, while not 

losing accuracy of the solution. In fact, all sets of damage parameters can describe with only 

a small difference the behaviour of the material, particularly for the biaxial Nakjiama and 

the uniaxial tensile test. However, the objective function considered is considering all force-

displacement curve, which reduces the importance of the error attained only at the end. Thus, 

the decrease of the prescribed tolerance would probably, reduce the influence of the starting 

point in the optimization results. However, this will increase the number of iterations 

required to attain a solution. In fact, the prescribed tolerance should always be chosen 

considering the computational time available (also considering the number of licenses or 

runs available) so that the results are accurate and obtained in a short time. This always 

depends on the problem and on the final objective. In this context, the use of a polynomial 

metamodel, with linear order together, with SRSM in the optimizations procedure proved to 

converge relatively fast to a solution. However, the adoption of this kind of metamodel may 

be contributing to the sensitivity to the starting point, since some non-linear effect may not 

be properly captured. 

The use of more different tests (e.g. bulge tests or square cup forming tests) could 

also help to increase the confidence in the isotropic hardening behaviour description. The 

use of more objective functions in the optimization procedure could contribute for the 

reduction of the number of available solutions, within the prescribed tolerance, allowing a 

better validation of the results. Nevertheless, this would also contribute to the increase of the 

computational time required to attain a solution. Furthermore, it is expected that the 

reduction of the prescribed tolerance would reduce the number of possible solutions. This 

way, in case several optimizations with different starting points converge to the same set of 

parameters, that would give confidence to the user to trust the attained solution.  
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APPENDIX A – SOBOL 
The Sobol’s indices are a generally applicable non-linear sensitivity measure 

based on the analysis of the total and main effect of a variable in the system. The main effect 

is computed as if this was the only variable in the system, while the total effect considers the 

interaction with other variables. Typically, its determination is computational expensive, 

because many sampling points (simulations) are required in order to capture both types of 

effects of each variable. To overcome this problem the Sobol’s indices can also be computed 

based on metamodels, which give an approximation of the response function addicted to the 

variables. The Sobol’s indice is expressed as: 

 𝑆𝑖 =
variance caused by 𝑣𝑖

total variance of response
 , (A. 1) 

being 𝑣𝑖 each of the design variables, in this case the damage parameters of the enhanced 

Lemaitre’s model. The normalization with the total variance of response guarantees that the 

sum of all Sobol’s indices of a system response is 1: 

 ∑ 𝑆𝑖𝑛
𝑖=1 = 1 , (A. 2) 

where 𝑛 is the number of variables. The results for this method are usually presented in 

percentages, allowing the user to have an idea of the influence (importance) of each variable 

towards the considered tests (Sobol’ & Kucherenko 2005). 
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APPENDIX B – ENHANCED LEMAITRE’S MODEL 
For the Lemaitre´s model, the consistency condition becomes: 

 𝑓(𝜎, 𝐷) = 𝜎̅
1−𝐷

− (𝜎𝑦 + 𝑞) = 0 , (B.1) 

where it is assumed that 𝜎𝑦 is the yield stress and 𝑞 = 𝑞(𝜀𝑒̅𝑓𝑓
𝑝 ) defines the isotropic 

hardening. In case of an uniaxial tensile test and assuming isotropic plastic behaviour: 

 𝜎 = 𝜎 , (B.2) 

where 𝜎  is the applied stress. Thus, the flow condition (B.1) becomes: 

 𝑓(𝜎, 𝐷) = 𝜎
1−𝐷

− (𝜎𝑦 + 𝑞) = 0 , (B.3) 

As stated in (3.32), the evolution of the damage variable is defined as: 

 𝐷̇ = (2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

)
𝜂
⟨𝑌−𝑌0

𝑆
⟩
𝑠
(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓

𝑝  . (B.4) 

Based on the Macauley brackets definition: 

 
𝐷̇ = {

0, 𝑌−𝑌0
𝑆
< 0

(2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

)
𝜂
⟨𝑌−𝑌0

𝑆
⟩
𝑠
(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓

𝑝 , 𝑌−𝑌0
𝑆
≥ 0

 , (B.5) 

with: 

 𝑌 = 1+𝑣
2𝐸
(∑ (⟨𝜎̃𝑖⟩23

𝑖=1 + ℎ⟨−𝜎̃𝑖⟩2)) −
𝑣
2𝐸
(⟨𝜎̃𝐻⟩2 + ℎ⟨−𝜎̃𝐻⟩2) . (B.6) 

For an uniaxial tensile stress state: 

 
𝝈 = [

𝜎 0 0
0 0 0
0 0 0

] , thus 𝝈̃ = 1
1−𝐷

[
𝜎 0 0
0 0 0
0 0 0

] , with 𝜎 > 0 . (B.7) 

Assuming that 𝜎̃𝐻 = (𝜎𝑘𝑘 (1 − 𝐷)⁄ ) = (𝜎 (1 − 𝐷)⁄ ), substituting in (B.6) 

 𝑌 = 1+𝑣
2𝐸
( 𝜎2

(1−𝐷)2
) − 𝑣

2𝐸
( 𝜎2

(1−𝐷)2
) = 𝜎2

2𝐸(1−𝐷)2
= 𝜎̃2

2𝐸
 , (B.8) 

which is similar to the value obtained for the Lemaitre’s damage model, since for uniaxial 

tensile state the parameter ℎ has no effect. Replacing the damage energy density release rate 

in the evolution of the damage variable (equation (B.5)): 
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𝐷̇ = (2𝜏𝑚𝑎𝑥

𝜎𝑣𝑚
)
𝜂
⟨

𝜎2

2𝐸(1−𝐷)2
−𝑌0

𝑆
⟩
𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝  . (B.9) 

The uniaxial stress will evolve according with the hardening law selected, such that: 

 𝜎 = (𝜎𝑦 + 𝑞)(1 − 𝐷) . (B.10) 

Replacing in (B.9): 

 

𝐷̇ = (2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

)
𝜂
⟨
(𝜎𝑦+𝑞)

2

2𝐸 −𝑌0
𝑆

⟩

𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝 . (B.11) 

For a uniaxial tensile test (2𝜏𝑚𝑎𝑥
𝜎𝑣𝑚

) = 1, which brings once again the enhanced model closer 

to the original one. This means that the uniaxial tensile test is insensitive to the 𝜂 parameter. 

Thus, in the following it will always be assumed that 𝜂 = 0. Also, the value of the function 

included in the Macauley brackets is always positive, therefore: 

 
𝐷̇ = ((𝜎𝑦+𝑞)

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝  . 

(B.12)
) 

At this point, it is necessary to define the isotropic hardening function 𝑞(𝜀𝑒̅𝑓𝑓
𝑝 ), in order to 

proceed.  

Perfectly plastic material 

In this case, 𝑞(𝜀𝑒̅𝑓𝑓
𝑝 ) = 0 which mean that the damage energy density release 

rate 𝑌 is constant. Therefore, it is possible to write: 

 
𝐷̇ = ((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝  , (B.13) 

enabling the integration: 

 
(1 − 𝐷)𝛽𝐷̇ = ((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

ɛ̇𝑒𝑓𝑓
𝑝 ⇒ (1 − 𝐷)𝛽𝑑𝐷 = ((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝑑𝜀𝑒𝑓𝑓
𝑝  . 

− (1−𝐷)𝛽+1

𝛽+1
= ((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝜀𝑒𝑓𝑓
𝑝 + 𝐶 . 

(B.14) 

In order to determine the constant resulting from the integration, the following initial 

conditions are considered: 𝐷(𝑡 = 0) = 0 and 𝜀𝑒𝑓𝑓
𝑝 (𝑡 = 0) = 0. Thus,  

 − 1
𝛽+1

= 𝐶 . (B.15) 
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Replacing in (B.14), the damage evolution is given by: 

 
− (1−𝐷)𝛽+1

𝛽+1
+ 1
𝛽+1

= ((𝜎𝑦)
2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝜀𝑒𝑓𝑓
𝑝 ⇔  

− 1
𝛽+1

[(1 − 𝐷)𝛽+1 − 1] = ((𝜎𝑦)
2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝜀𝑒𝑓𝑓
𝑝 ⇔  

𝐷 = 1 − [1 − (𝛽 + 1) ((𝜎𝑦)
2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝜀𝑒𝑓𝑓
𝑝 ]

1
𝛽+1⁄

 .  

(B.16) 

In case 𝑌0 = 0 and the exponent 𝑠 = 1.0, the Lemaitre’s model is recovered, such as: 

 
𝐷 = 1 − [1 − (𝛽 + 1) ((𝜎𝑦)

2

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 ]
1
𝛽+1⁄

 .  (B.17) 

Lets consider the case when 𝛽 = 0: 

 
𝐷 = 1 − [1 − ((𝜎𝑦)

2

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 ] . (B.18) 

This shows that when the condition: 

 
((𝜎𝑦)

2

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 > 1 ⟹ 𝐷 > 1 . (B.19) 

The same is valid for any other odd integer value of 𝛽, although by definition the limit value 

for 𝐷 is one. 

Lets consider the case when 𝛽 = 1: 

 
𝐷 = 1 − [1 − 2 ((𝜎𝑦)

2

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 ]
1
2⁄

 . (B.20) 

In this case, when  

 
2 ((𝜎𝑦)

2

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 > 1 ⟹ 𝐷  is not defined. (B.21) 

The same is valid for any other even value of 𝛽, making the estimate of 𝐷 impossible. This 

point is mentioned here because it is valid for the Lemaitre´s model but also for the enhanced 

model, whatever the hardening law considered. Different hardening laws will lead to a 

change in the limit values for the conditions (B.19) and (B.21). 

 

Linear isotropic hardening material 

In this case, 𝑞(𝜀𝑒̅𝑓𝑓
𝑝 ) = 𝐾𝜀𝑒̅𝑓𝑓

𝑝  which means that: 
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𝐷̇ = (

(𝜎𝑦+𝐾𝜀̅𝑒𝑓𝑓
𝑝 )

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝  , (B.22) 

enabling the integration: 

 
(1 − 𝐷)𝛽𝐷̇ = (

(𝜎𝑦+𝐾𝜀̅𝑒𝑓𝑓
𝑝 )

2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

ɛ̇𝑒𝑓𝑓
𝑝 ⇒  

(1 − 𝐷)𝛽𝑑𝐷 = (
(𝜎𝑦+𝐾𝜀̅𝑒𝑓𝑓

𝑝 )
2
−2𝐸𝑌0

2𝐸𝑆
)
𝑠

𝑑𝜀𝑒𝑓𝑓
𝑝   

− (1−𝐷)𝛽+1

𝛽+1
= 1

(2𝐸𝑆)𝑠
(
(𝜎𝑦+𝐾𝜀̅𝑒𝑓𝑓

𝑝 )
2
−2𝐸𝑌0

2𝑠𝐾+𝐾
)
2𝑠+1

+ 𝐶 . 

(B.23) 

However, in this case when 𝑌0 ≠ 0 the integral leads to a complex hypergeometric function. 

Thus, the assumption that this parameter is null is introduced enabling the calculus of 

 
− (1−𝐷)𝛽+1

𝛽+1
= 1

(2𝐸𝑆)𝑠
(
𝜎𝑦+𝐾𝜀̅𝑒𝑓𝑓

𝑝

2𝑠𝐾+𝐾
)
2𝑠+1

+ 𝐶 . (B.24) 

 

Applying the same boundary conditions as previously, it is possible to show that,  

 𝐶 = − 1
𝛽+1

− 1
(2𝐸𝑆)𝑠

( 𝜎𝑦
2𝑠𝐾+𝐾

)
2𝑠+1

 . (B.25) 

Replacing in (B.24), the damage evolution is given by: 

 − (1−𝐷)𝛽+1

𝛽+1
+ 1
𝛽+1

= 1
(2𝐸𝑆)𝑠(2𝑠+1)𝐾

((𝜎𝑦 + 𝐾𝜀𝑒̅𝑓𝑓
𝑝 )

2𝑠+1
− (𝜎𝑦)

2𝑠+1
) ⇔  

− 1
𝛽+1

[(1 − 𝐷)𝛽+1 − 1] = 1
(2𝐸𝑆)𝑠(2𝑠+1)𝐾

((𝜎𝑦 + 𝐾𝜀𝑒̅𝑓𝑓
𝑝 )

2𝑠+1
− (𝜎𝑦)

2𝑠+1
) ⇔  

𝐷 = 1 − [1 − (𝛽+1)
(2𝐸𝑆)𝑠(2𝑠+1)𝐾

((𝜎𝑦 + 𝐾𝜀𝑒̅𝑓𝑓
𝑝 )

2𝑠+1
− (𝜎𝑦)

2𝑠+1
)]
1
𝛽+1⁄

 .  

(B.26) 

 

Saturation type isotropic hardening material 

In this case, 𝑞(𝜀𝑒̅𝑓𝑓
𝑝 ) = 𝐾 (1 − exp(−𝛿𝜀𝑒̅𝑓𝑓

𝑝 )) which means that: 

 

𝐷̇ = (
(𝜎𝑦+𝐾(1−exp(−𝛿𝜀̅𝑒𝑓𝑓

𝑝 )))
2
−2𝐸𝑌0

2𝐸𝑆
)

𝑠

(1 − 𝐷)−𝛽ɛ̇𝑒𝑓𝑓
𝑝  , (B.27) 
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The assumption that 𝑌0 = 0 is introduced at this stage but also that 𝑠 = 1, otherwise the 

integrating will lead to a complex hypergeometric function. In this very restrictive conditions 

it is possible to show that: 

 𝐷 = 1 − [1 − (𝛽+1)
2𝐸𝑆

(2(𝜎𝑦+𝐾
2)

𝛿
(exp(−𝛿𝜀𝑒̅𝑓𝑓

𝑝 ) − 1) − 𝐾
2𝛿
(exp(−2𝛿𝜀𝑒̅𝑓𝑓

𝑝 ) −

1) + 𝜀𝑒̅𝑓𝑓
𝑝 (𝜎𝑦 + 𝐾)

2
)]
1
𝛽+1⁄

 .  
(B.28) 

 

Analysis of the influence of the parameters 
In order to improve knowledge concerning the influence of the model parameters 

in the damage 𝐷, an analysis was performed considering the default parameters presented in 

Table B. 1. Since the analytical solution for all hardening models was obtained only for the 

conditions 𝑌0 = 0 and 𝑠 = 1, these values are assumed as constant. 

 
Table B. 1– Material properties and damage parameters considered (Enhanced Lemaitre’s Damage Model) 

Parameter Value 

𝑌0 0.0 

𝜎𝑦 [MPa] 500 

𝐸 [MPa] 210000 

S [𝑀𝑃𝑎] 4 

ɛ𝑒𝑓𝑓,𝑑
𝑝  0.0 

𝐾 [MPa] 50 

𝛿 10 

 

Figure B. 1 (a) presents the isotropic hardening evolution, highlighting the small 

difference between the perfectly plastic material and the linear hardening material, as a result 

of the small value considered for 𝐾. Anyhow, it is possible to observe in Figure B. 1 that the 

hardening law as an influence on the evolution of 𝐷, which presents an almost linear 

evolution followed by a rapid increase. Afterwards, two different situation can be observed: 

for odd 𝛽 values, 𝐷 assumes values greater than 1.0; (ii) for even 𝛽 values, 𝐷 is not defined. 

For higher 𝛽 values the 𝐷 deviates from the linear behaviour for smaller values of strain, 

which are smaller for material presenting a higher hardening effect. This analysis indicates 

The contents were removed due to a confidentiality agreement.The contents were removed due to a confidentiality agreement.The contents were removed due to a confidentiality agreement.
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that for the range considered in the sensitivity analysis, i.e. 𝛽 ∈ [2; 10], this parameter 

introduces a linear increase of 𝐷, for the tensile strain path. 

 

  
(a) (b) 

  
(c) (d) 

Figure B. 1– Comparison between: (a) the material hardening behaviour; and the damage variable evolution 
for: (b) Perfectly plastic material; (c) Linear hardening material; (d) Saturation hardening material. 

 

For the perfectly plastic and the linear hardening material it is also possible to 

analyze the influence of the 𝑠 parameter, as shown in Figure B. 2 for 𝑠 = 2. Notice that the 

range for the strain had to be strongly increases in order to be able to visualize the influence 

of the 𝛽 parameter. In fact, for the range considered in Figure B. 1, 𝐷 presents a linear trend 

with a similar evolution for all values of 𝛽 considered in the analysis. This shows the strong 
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interaction between these two parameters, at least for these two constitutive models. Also, 

although not shown here, the same effect was observed for higher 𝑠 values, i.e. the higher 

this value the longer 𝐷 will present a linear trend for the same value of 𝛽. 

 

  
(a) (b) 

Figure B. 2– Comparison between the damage variable evolution for: (a) Perfectly plastic material; (b) 
Linear hardening material. 

 

For the perfectly plastic material it is also possible to observe the influence of 

𝑌0, but the range for this variable has to be chosen wisely. Considering 𝑠 = 1.0, to simplify 

the analysis: 

 
𝐷 = 1 − [1 − (𝛽 + 1) ((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
) 𝜀𝑒𝑓𝑓

𝑝 ]
1
𝛽+1⁄

 .  (B.29) 

Notice that: 

 
((𝜎𝑦)

2
−2𝐸𝑌0

2𝐸𝑆
) ≥ 0 ⟺ (𝜎𝑦)

2
≥ 2𝐸𝑌0 ⟹ 𝑌0 <

(𝜎𝑦)
2

2𝐸
 , (B.30) 

otherwise the value of 𝐷 becomes negative. In the example under analysis condition (B.30) 

leads to 𝑌0 < 0.595. Figure B. 3 presents the results obtained for two values of 𝑌0 within the 

valid range, showing that the increase of this parameter delays the deviation from the linear 

trend, for the same 𝛽 value. These results indicate the importance of defining an accurate 

range for this parameter in order to avoid unphysical results. Nevertheless, it should be also 

mentioned that condition (B.30) was estimated for a tensile strain path. Other strain paths 

will lead to different conditions. 
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(a) (b) 

Figure B. 3– Comparison between the damage variable evolution for a Perfectly plastic material: (a) 𝒀𝟎 =
𝟎. 𝟐; (b) 𝒀𝟎 = 𝟎. 𝟒. 
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