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RESUMO 

 

Actualmente, os inseticidas neonicotinóides são considerados como o grupo mais importante de 

inseticidas no mundo. Têm sido comercializados em mais de 120 países para o controlo de 

pragas agrícolas, devido ao seu amplo espectro de actividade e versatilidade na sua aplicação. De 

uma forma geral, os neonicotinóides são agonistas selectivos dos receptores nicotínicos de 

acetilcolina dos insetos (nAChRs). Tiaclopride e acetamipride são neonicotinóides que 

pertencem ao mesmo grupo químico (cyanoamidines), são altamente solúveis em água e não-

persistentes no meio ambiente. Estes compostos são normalmente aplicados em pomares ou 

plantas ornamentais através de pulverização foliar dos respectivos produtos formulados (por 

exemplo Calypso
®

 e Epik
®

). Apesar de os organismos não-alvo do solo serem muito susceptíveis 

à exposição durante estas aplicações, há escassez de informação na literatura científica sobre a 

toxicidade do acetamipride e tiaclopride, especialmente para invertebrados não-alvo do solo. 

Este estudo tenta preencher esta lacuna através da avaliação da toxicidade de tiaclopride e 

acetamiprida em quatro invertebrados do solo: Folsomia candida, Eisenia andrei, Enchytraeus 

crypticus e Hypoaspis aculeifer, utilizando solo artificial. De uma forma geral, os resultados 

obtidos indicam que a sensibilidade relativa dos organismos de teste para tiaclopride e 

acetamiprida, usando tanto a reprodução e sobrevivência como parâmetros, é similar e pode ser 

expressa como: F. candida > E. andrei > E. crypticus > H. aculeifer, com F. candida como 

organismo de teste mais sensível. Extrapolando os resultados dos testes laboratoriais válidos com 

todos os invertebrados (excepto E. andrei) para as condições de campo, as condições ambientais 

previstas (PECs) e as condições ambientais previstas que não demonstram efeitos (PNECtiaclopride 

= 0,024 mg kg
-1

; PNECacetamiprida = 0,004 mg kg
-1

) foram derivadas para tiaclopride e 

acetamiprida. Os rácios de exposição de toxicidade calculados (ETRs; PEC/EC10) e os 

quocientes de risco (PEC/PNEC) demonstraram que o risco de tiaclopride para os invertebrados 

de teste em particular, e para o compartimento do solo, em geral, é insignificante. Embora o risco 

de acetamiprida às populações de campo dos invertebrados teste tenha sido caracterizado como 

baixo, o quociente de risco calculado (PEC/PNEC) foi maior que 1, que é o valor de risco 

predefinido pela Comissão Europeia. Portanto, pode concluir-se que o efeito do neonicotinóide 

acetamiprida no compartimento do solo apresenta um risco significativo e indesejável. 
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ABSTRACT 

 

Presently, neonicotinoid insecticides are the most prominent group of insecticides in the world. 

They have been commercialized in over 120 countries for the control of agricultural pests due to 

their broad spectrum activity and versatility in application. Generally, all neonicotinoids are 

selective agonists of insect nicotinic acetylcholine receptors (nAChRs). Thiacloprid and 

acetamiprid belong to the same chemical group (cyanoamidines), and like other neonicotinoids, 

they are highly soluble in water and non-persistent in the environment. Acetamiprid and 

thiacloprid are usually applied to orchard or ornamental crops through foliar spraying of 

respective formulated products (e.g. Calypso
® 

and Epik
®

). Though non target soil organisms are 

very likely to be exposed during these applications, there is paucity of information in scientific 

literature regarding the toxicity of acetamiprid and thiacloprid especially to non-target soil 

invertebrates. This study attempts to fill this gap by evaluating the toxicity of thiacloprid and 

acetamiprid in artificial OECD soil to four soil invertebrates namely: Folsomia candida, Eisenia 

andrei, Enchytraeus crypticus and Hypoaspis aculeifer. Results obtained indicate that generally, 

relative sensitivity of the test organisms to thiacloprid and acetamiprid using both reproduction 

and survival endpoint parameters are the same and can be expressed as: F. candida > E. andrei > 

E. crypticus > H. aculeifer with F. candida as the most sensitive test organism. To extrapolate 

from valid laboratory test results for all invertebrates (except E. andrei) to field conditions, 

predicted environmental concentrations (PECs ) and predicted no-effect concentrations 

(PNECthiacloprid = 0.024 mg kg
-1

; PNECacetamiprid = 0.004 mg kg
-1) were derived for thiacloprid and 

acetamiprid. Calculated exposure-toxicity ratios (ETRs; PEC/EC10) and hazard quotients 

(PEC/PNEC) showed that the risk of thiacloprid to the test invertebrates in particular and to the 

soil compartment in general is negligible. Although the risk of acetamiprid to field populations 

of the test invertebrates was characterized as low, calculated risk quotient (PEC/PNEC) was 

greater than 1, the trigger value preset by the European Commission. Therefore, it can be 

concluded that the risk of acetamiprid to the soil compartment is significant and undesirable.
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Chapter 1 

 

1. GENERAL INTRODUCTION 

1.1 Soil biodiversity as an integral aspect of global biodiversity 
The soil is arguably the most diverse habitat within terrestrial ecosystems. In fact, survey data 

from several studies revealed that a quarter of invertebrate and vertebrate species inhabit the soil 

(Decaëns et al. 2006) and it has recently been estimated that the biodiversity of soil animals 

comprises 23% of the biodiversity of all described species (Lavelle et al. 2006). Therefore, soil 

biodiversity is an essential component of the general biodiversity concept and nowadays it is 

recognized that soil organisms are responsible for the provision of many ecosystem services 

necessary for human wellbeing. Some of these services include soil organic matter 

decomposition, soil fertility, regulation of nutrient cycles (carbon, nitrogen, phosphorus and 

sulphur), water flow regulation and detoxification or bioremediation of pollutants (Lavelle et al. 

2006; Turbe et al. 2010).  

Soil biodiversity is especially needed for agricultural sustainability which aims to improve food 

production while conserving the fertility and productivity of soils (Beare et al., 1997). As a 

result, the contributions of decomposer soil organisms in maintaining the structural and 

functional properties of agro-ecosystems have been sufficiently described in scientific literature 

(Fragoso et al., 1997; Beare et al., 1997). There is evidence that the biodiversity of soil 

organisms in agro-ecosystems confers resistance to stress and disturbances such as fires, 

pathogenic disease and pest outbreaks (Altieri 1999). For instance, N-fixing leguminous plants 

introduced into Nitrogen deficient African soils mitigated the invasion of maize fields with the 

parasitic weed named Striga sp (Barrios 2007).  

The conservation of soil biodiversity is of immense economic importance (Figure 1) as 

ecosystem services provided by soil organisms have been valued to exceed US$ 1.5 trillion 

(Brussaard et al. 2007). Among these ecosystem services, global recycling or decomposition of 

organic wastes was estimated to be most essential, with a monetary value estimated to be greater 

than US$ 760 billion (Brussaard et al., 2007). In addition, soil microorganisms in agricultural 

and natural ecosystems are known to fix an estimated minimum amount of 140 million tons of 

Nitrogen (US$ 90 billion) per year (Brussaard et al., 2007). 

Despite the high level of biodiversity present in the soil, there are still many knowledge gaps. 

Therefore, the soil has been described as one of the last great frontiers of scientific investigation 

and research efforts are being made to increase understanding of the effects of soil biodiversity 

on ecosystem functioning and the exact roles played by functional groups of soil biota in 
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regulating biogeochemical cycles. This is essential as reduced soil biodiversity will negatively 

affect the composition and stability of terrestrial communities and ecosystems (Jones & Bradford 

2001; Fitter et al. 2005). 

 

Figure 1: The global value of soil biodiversity in an ecosystem: A conceptual diagram. Adapted from Decaëns 

et al.  (2006)  

 

The 21st century has seen increasing anthropogenic activities that have significantly altered 

natural ecosystems. The Millennium Ecosystem Assessment noted that climate change and 

pollution are impacting natural ecosystems at a very rapid rate on a global scale (Reid 2005). 

Soil biota is highly affected by climate change and pollution, and sampling evidences studies 

have shown that drivers (e.g. habitat loss, agricultural intensification, etc) causing extinctions 

and reduction of biodiversity in aboveground organisms also affects belowground biota. For 

example, sampling records have reported the decline of mushroom species in the Netherlands 

over a 20-year period by 65% and the rareness of over 50% of earthworm species found across 

Europe (Gardi et al. 2013).  

Despite the unclear relative impacts of these drivers at a regional scale, over-exploitation of land 

has been estimated to be a main threat to soil biodiversity in the European Union (EU) (Gardi et 
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al. 2013). Because soil protection is crucial to the long-term preservation of biological diversity 

as required by the Rio-Convention (Hagvar 1998), the European Commission took legislative 

steps in 2006 to safeguard the soil by developing and adopting the Soil Thematic Strategy 

(COM(2006) 231)  (EC 2006b) which includes the proposal for a Soil Framework Directive 

(COM(2006) 232) (EC 2006a). 

 

1.2 Ecology of soil fauna 

1.2.1 Classification, distribution, species abundance and richness 

One can consider soil fauna as all species of micro and macroscopic animals dwelling in a 

particular soil and they can be classified into 4 groups based on their relative sizes. This 

definition excludes microorganisms such as bacteria and fungi (Fortuna 2012). Microfauna are 

microscopic soil organisms with body sizes of 20 μm - 200 μm (e.g. nematodes and protozoa). 

Mesofauna have body sizes between 200 μm – 2 mm and are mainly represented by mites and 

collembolans which make approximately 95% of soil micro-arthropods, and also enchytraeids. 

The macrofauna (2 mm – 20 mm) include earthworms, millipedes and other macroarthropods. 

Larger organisms like some species of earthworms (e.g. Lumbricus terrestris), snails, reptiles 

and amphibians with body sizes > 20 mm are classified as megafauna (Cole et al. 2006; Menta 

2012; EC 2010; Neher & Barbercheck 1998). 

Body size may exert a strong influence on distribution, species abundance, richness, and the 

ecosystem function of soil organisms. Generally, smaller soil organisms tend to possess higher 

abundance (see Table 1) and a wider geographic distribution (Anderson 1977). 

Table 1: Species richness and abundance of some soil fauna taxa in Mediterranean soils   

Organism group Abundance (ind m
-2

) Biomass (mg DW m
-2

) Species number 

Nematoda* 3000 – 13000 ~ 440 17 – 20** 

Acari (mites) < 1000 – 5000 ~ 120 3 – 10 

Collembola 1500 – 33000 ~ 120 17 – 38 

Enchytraeidae 2000 – 3000 110 – 640 3 – 22 

Lumbricidae 0 – 200 100 – 12100 1 – 7 

*numbers given per kg soil; DW (dry weight); ** families, not species; ~ numbers deduced from grassland sites 

Source: European Atlas of Soil Biodiversity (EC 2010) 

 

The ubiquitous distribution of microfauna and mesofauna is attributed to their inhabitation of 

small water films and pore spaces (micro-sites; diameter ≤ 100μm) present in moist soils with 

decomposing organic matter (Anderson 1977; Neher 1999; Neher & Barbercheck 1998). Species 

richness in soil fauna have been empirically observed to increase 100 times for a 10 fold 

decrease in length (Erwin 1994). However, exceptions to this empirical observation exist at body 
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sizes below 1cm. For example, studies have revealed that mites (Acari) with sizes below the 

modal range (0.3 – 1 mm) are less diverse, probably due to a corresponding decrease in host 

specificity and microhabitat diversity (Walter & Behan-Pelletier 1999; Erwin 1994). 

There are several other factors affecting soil fauna biodiversity apart from body size. For 

example, habitat heterogeneity was found to significantly improve the diversity of collembolan 

and earthworm species at local and landscape scales (Vanbergen et al. 2007). In addition, the 

distribution and diversity of soil organisms is determined by physical and chemical soil 

properties such as the pore size of soil particles, soil moisture, soil pH, etc. Vegetation 

composition and physiology, particularly plant litter chemistry, has been an intensively 

researched factor influencing the distribution of soil invertebrates (Sylvain & Wall 2011). 

Finally, biotic interactions among soil fauna within the same trophic group (e.g. competition) and 

across different trophic levels (e.g. predation) are important regulators of soil biodiversity 

(Wardle 2006). Role of soil fauna in ecosystem functioning 

Charles Darwin in his 1881 book, “The formation of vegetable mould through the action of 

worms”, described the decomposition of organic matter by earthworms through their feeding and 

burrowing activities in the soil. Subsequently, ecological experiments have established the 

importance and role of soil fauna communities on the two major ecosystem processes namely 

production and decomposition, in addition to their effects on biochemical and physical soil 

properties (Huhta, 2007; Brussaard et al., 2007).  

Rivet, redundant and keystone hypotheses are among several hypotheses proposed to explain 

species diversity and ecosystem function linkage. While the rivet hypothesis suggests that each 

species has a unique role to play in ecosystem functioning (Lawton 1994), the redundant 

hypothesis point to the existence of functional redundancy among species (Setala et al. 2005; 

Naeem 2008; Wolters 2001). The realization that several species perform similar function has led 

to the functional classification of soil fauna based on life-history, eco-physiology, food 

preferences, feeding mode and microhabitat criteria (Brussaard et al., 1997; Brussaard 1998). 

Five functional classes of soil fauna together with their ecosystem functions are described below: 

 

Collembola: also called springtails, they are very abundant and widely distributed across most 

terrestrial ecosystems and their ecology could be strongly affected by human activities (Rusek 

1998). Together with mites, they constitute 95% of total microarthropod numbers (Neher & 

Barbercheck 1998; Bardgett & Cook 1998). When compared to collembolans found in litter 

layers and the 0 – 2 cm upper soil horizon e.g. Isotoma viridis, those found at deeper soil layers 

lack eyes and pigmentation and possess soft bodies with short appendages (e.g. Protaphorura 

fimata) (Bardgett & Cook 1998; EC 2010). They feed mainly on soil microbiota (fungi, bacteria, 

actinomycetes, algae) and organic matter. Hence, they are usually called ‘litter transformers’ and 

are important in the formation of soil microstructure in several terrestrial ecosystems (Lavelle 

1997; Rusek 1998; Heneghan & Bolger 1998). 
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Earthworms: are considered the most significant soil invertebrates in most terrestrial 

ecosystems worldwide (Rombke et al. 2005). As a result of their size, they are called ‘ecosystem 

engineers’ because of their ability to create or modify the soil habitat through various activities 

such as burrowing, casting, breakdown of organic matter, seed dispersal, ingestion of soil 

particles and symbiotic interactions with soil microbes (Rombke et al. 2005; Jouquet et al. 2006; 

Cole et al. 2006). Earthworms are also known to improve primary production by stimulating 

plant growth (Lavelle 1997).They can be classified into three ecological groups namely: epigeics 

(they dwell in upper litter layers without creating burrows in the soil e.g. Eisenia fetida), anecics 

(vertical burrowers (> 2 m deep) and have darkly colored bodies) and endogeics (soil-feeding, 

whitish earthworms living in the mineral layers of the soil) (Rombke et al. 2005; Fragoso et al. 

1997).  

Enchytraeidae: also called potworms, they are grouped within the phylum Annelida (like the 

earthworms), are generally whitish in appearance and highly abundant in coniferous forests and 

grasslands (EC 2010; van Vliet et al. 1995; Brussaard 1997). Cognettia sphagnetorum is usually 

the most abundant species, constituting up to 95% of total enchytraeid biomass (Briones et al. 

2004). Enchytraeids are known to mostly inhabit the upper layer (0-5 cm) of the soil and their 

feeding activities have been found to increase the respiration of soil organisms (Didden & de 

Fluiter 1998; Cole et al. 2000). Apart from their role in organic matter breakdown and nutrient 

turn-over, they also influence soil structure through their burrowing capacities, deposition of 

fecal pellets and ingestion of mineral particles (van Vliet et al. 1995). 

Mites (Acari): Soil mites are arguably the most diverse and abundant arthropods in 

agroecosystems worldwide. In the EU, soil mite species richness is known to be highest in the 

Mediterranean and Balkan regions (EC 2010). There are three main suborders: Mesostigmata, 

Prostigmata, and Oribatida (Behan-Pelletier 2003). Orbatid mites usually participate in the 

decomposition and nutrient cycling process by feeding on plant litters, fungi and algae (Franklin 

et al. 2004). Prostigmatans are fluid feeders and they could be predators, fungivores or parasites. 

Mesostigmatic mites occupy a central position in soil food web as nonspecific top predators that 

feed on nematodes, collembola and other small insects. Thus, they influence ecosystem 

processes by regulating populations of other soil organisms. Gasmasid mites in particular are 

very sensitive to environmental disturbances within a short time scale, making them suitable 

bioindicators (Beaulieu & Weeks 2007; Bedano & Ruf 2007; Behan-Pelletier 2003). Most mites 

are found in the 0 – 5 cm soil layer probably due to the occurrence of higher moisture and 

microbial activities in the top layers of soil (Perdue & Crossley Jr 1990).  

1.3 Soil Ecotoxicology: Pesticides and their effects on living organisms 

1.3.1 Background 

Ecotoxicology aims to protect ecosystems by studying the effects of chemicals on populations 

and communities of organisms. In most cases, the general approach is to extrapolate from effects 

in single-species organisms to effects at the ecosystem level (van Gestel 2012). Ecotoxicology as 
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a scientific discipline started 52 years ago with a publication by Rachel Carson called “Silent 

Spring” which described the disastrous effects of several pesticides such as 

dichlordiphenyltrichlorethane (DDT) and other chlorinated pesticides used during and after the 

Second World War (Werner & Hitzfeld 2012).  

In the period immediately after WW II, most synthetic insecticides could be classified into two 

groups based on their structural properties and mode of toxicity: organochlorines and 

organophosphates (Werner & Hitzfeld 2012). Organochlorines such as DDT and Polychlorinated 

biphenyls (PCBs) are carcinogenic and persistent in the environment. They bioaccumulate and 

biomagnify in ecosystems while exhibiting reproductive toxicity such as thinning of egg shells 

and endocrine disruption in vertebrates (Fry 1995). Consequently, their use has been regulated 

internationally. Organophosphates (e.g. parathion), often known to be neurotoxic and less 

persistent, are more toxic especially to humans and many organophosphates have been banned in 

Europe and the US. They have been gradually replaced by neonicotinoids and pyrethroids over 

the decades for reasons that include among others their high persistence in the environment, 

chronic toxicity to humans and the development of resistant pest strains (Werner & Hitzfeld 

2012; Salvi et al. 2003).  

1.3.2 Neonicotinoids 

Since the hugely successful commercialization of imidacloprid in 1991, neonicotinoids have 

gone on to become the most important group of insecticides in the world due to their effective 

insecticidal properties (Elbert et al. 2008; Legocki & Połeć 2008). In 2006, neonicotinoids 

accounted for 17% of the global insecticide market (Jeschke & Nauen 2008). Neonicotinoids are 

systemic, water soluble and broad spectrum insecticides applied to plants through foliar sprays, 

seed coatings or via the soil. They are absorbed through the leaves or roots and distributed 

throughout the tissues of a plant (Goulson 2013; Miao et al. 2013). The high systemicity and 

prophylactic use of neonicotinoids makes them efficient in the control of sap sucking and boring 

insect pest groups, especially Hemiptera (e.g. aphids, whiteflies, planthoppers), and Coleoptera 

(e.g. beetles) (Elbert et al. 2008; Nauen & Denholm 2005; Miao et al. 2013).  

All neonicotinoids are nicotine derivatives and they can be classified into three chemical groups: 

N-nitro-guanidines (imidacloprid, thiamethoxam, clothianidin and dinotefuran); N-

cyanoamidines (acetamiprid and thiacloprid); nitromethylenes (nithiazine and nitenpyram) 

(Jeschke & Nauen 2008; Goulson 2013). They are agonists of the nicotinic acetylcholinesterase 

receptors (nAChRs) in the central nervous system of insects and mammals (Tomizawa & Casida 

2005; Sánchez-bayo et al. 2013). The high selective toxicity of neonicotinoids to insects 

compared to vertebrates is assumed to be due to their binding to specific cationic sub-sites in 

insect nAChRs although they bind to an anionic sub-site in mammalian nAChRs (Tomizawa et 

al. 2000; Tomizawa & Casida 2003). Research has however shown that acetamiprid and 

imidacloprid stimulate mammalian nAChRs at low concentrations (1-100 μM) and thus may 

affect the developing human brain (Kimura-Kuroda et al. 2012).  
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Recent independent scientific studies have established the considerable lethal and sub-lethal 

toxicity of neonicotinoids to target insect pests (Vojoudi & Saber 2013; Miao et al. 2013). There 

have also been significant research efforts to assess the effects of neonicotinoids on bees and 

other non-target invertebrates in aquatic and terrestrial ecosystems. Neonicotinoids have been 

implicated in the pollinator crisis (colony collapse disorder), currently a major environmental 

concern (Werner & Hitzfeld 2012). Field studies have revealed that trace amounts of 

neonicotinoids can reduce the foraging ability of bees. Also, field-realistic concentrations of 

imidacloprid was shown to cause an 85% decline in queen reproduction and a significant 

reduction of growth rate in the bumble bee Bombus terrestris (Whitehorn et al. 2012). 

Furthermore, nitro-group neonicotinoids (clothianidin, dinotefuran, imidacloprid, thiamethoxam, 

nitenpyram) was found to show high contact toxicity to honeybees compared to cyano-group 

neonicotinoids (Blacquière et al. 2012; Decourtye & Devillers 2010).  

In aquatic ecosystems, imidacloprid (IMI) as a pesticide active ingredient was shown to reduce 

the growth of Chironomus riparius larvae during a constant 10-day exposure (Azevedo-Pereira 

et al. 2010). The decline of macro-invertebrates in surface water polluted with IMI also 

highlights the negative impact of neonicotinoids on non-target aquatic invertebrates (Van Dijk et 

al. 2013). Though it has been estimated that more than 90% of neonicotinoid pesticide active 

ingredient used as seed coatings enters the soil, information on the toxicity of neonicotinoids on 

soil fauna in scientific literature have been scant and where available, have mostly focused on 

toxicity assessment of imidacloprid to earthworms (Kreutzweiser et al. 2008; Goulson 2013; 

Capowiez et al. 2005). 

1.4 Ecological Risk Assessment (ERA) of Pesticides 
Frequent release of chemicals such as hydrocarbons, heavy metals and agricultural pesticides 

usually lead to accumulated concentrations harmful to the survival and growth of soil organisms 

(Cardoso & Alves 2012). Particularly, an estimated 2.5 million metric tons of pesticides are 

applied each year, making pesticide release a major environmental concern (van der Werf 1996; 

Finizio & Villa 2002). Consequently, the sensitivity of soil organisms to chemicals, their ability 

to accumulate pollutants (e.g. earthworms) and change spatial patterns (e.g. arthropods) have led 

to their use as suitable indicators of soil pollution (Eijsackers 1983; Santorufo et al., 2012). 

Ecological risk assessment can be prognostic (prospective) or diagnostic (retrospective) (Calow 

& Forbes 2003). While prospective risk assessment is usually deployed in pesticide registration 

and review, retrospective assessment is used in site-specific risk assessment of contaminated 

lands (van Gestel 2012).  

1.4.1 Assessing the effects of pesticides on soil fauna 

Pesticide ERA normally involves characterizing effects and exposure to non-target organisms 

through the development of a predicted no-effect concentration (PNEC) and predicted effect 

concentration (PEC) values respectively to generate a toxicity exposure ratio (PNEC/PEC) which 

is used to estimate ecological risk (van der Werf 1996; van Straalen & van Rijn 1998). In 
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Europe, standard laboratory toxicity tests aimed at assessing the effects of pesticides to soil 

organisms have been developed for Eisenia fetida/andrei (earthworm: Lumbricidae), Folsomia 

candida (springtail: Collembola), Enchytraeus albidus or E. crypticus (potworm: Enchytraeidae) 

and Hypoaspis aculeifer (Acari: Laelapidae) (Jänsch et al. 2006). These toxicity tests can either 

be acute (endpoint: mortality) or chronic (endpoint: reproduction, growth) and are measured by 

appropriate parameters such as LC50 (concentration causing 50% mortality for an exposed 

organism group); NOEC and LOEC (no-observable and lowest-observable effect concentration); 

EC10 and EC50 (effect concentrations causing 10% and 50% reductions respectively in a 

measured endpoint) (Cortet et al. 1999; Stark & Banks 2003). It is important to note that 

whenever comparisons of toxicity parameters obtained from laboratory tests with the predicted 

environmental concentration (PEC) indicate unacceptable risk, higher-tier testing with an 

increase in ecological realism should be carried out with semi-field, terrestrial model ecosystems 

(TME) or field tests (Jänsch et al. 2006; Frampton et al. 2006). 

1.4.2 Problem formulation 

Significant concentrations of pesticide active ingredients are usually deposited on the soil 

through direct application and also through drift or foliar wash-offs during pest control programs 

in agricultural fields (Racke 2003). In assessing the effects of neonicotinoids on nontarget soil 

organisms, studies have mainly focused on assessing the effects of the neonicotinoid 

imidacloprid on earthworms. This study aims to assess the toxic effects that neonicotinoid 

pesticides potentially constitute to earthworms and other nontarget soil invertebrates. 

1.4.3 Selection of test organisms 

Four ecologically relevant soil invertebrate species were selected: earthworms (Eisenia andrei), 

collembola (Folsomia candida), enchytraeids (Enchytraeus crypticus) and predatory mites 

(Hypoaspis aculeifer). Earthworms are suitable bioindicator species in soil eco-toxicity testing 

(Yasmin & D’Souza 2010) and despite the fact that they represent over 80% of terrestrial 

invertebrates by biomass (Yasmin & D’Souza 2010), studies have confirmed the lower 

sensitivity of Eisenia fetida to broad-spectrum insecticides compared to soil arthropods e.g. 

Folsomia candida. Therefore, first-tier risk assessment of chemicals should include laboratory 

toxicity tests of different soil organisms representative of sensitive non-target taxa in the 

ecosystem (Daam et al. 2011). F. candida is known to be very sensitive to organic chemicals and 

researchers have found it to be one of the most sensitive among soil invertebrates (Fountain & 

Hopkin 2005).  

In general, enchytraeids are not less sensitive to chemical stressors than earthworms or 

collembolans (Rombke 2003), and they have been described as suitable indicator organisms for 

chemical risk assessment in terrestrial ecosystems (Didden & Römbke 2001). E. crypticus was 

specifically chosen due to its ease of culture in the laboratory, shorter reproductive cycle and 

high tolerance range for varying soil properties (Castro-Ferreira et al. 2012). Selection of the 

gasmid predatory mite H. aculeifer was premised on its widespread distribution and ecosystem 
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role in various habitats; it usually occur in agricultural lands and represents an additional trophic 

level to the other standard model species available for terrestrial ecotoxicity testing (Smit et al. 

2012).     

1.4.4 Neonicotinoid insecticides tested 

Thiacloprid and acetamiprid were the tested active constituents in the respective commercial 

formulations Calypso
® 

and Epik
®

, which are mainly employed as spray applications. These two 

insecticides are chemically different but similar in their insecticidal toxic mechanism to 

clothianidin, imidacloprid and thiametoxam, which are mainly applied as seed treatments and are 

the only group of neonicotinoids to have their use restricted for two years by the EC since 2013 

due to their toxicity to bees (EC 2013). It is expected that nontarget soil organisms are more 

exposed to thiacloprid and acetamiprid as the amount of active ingredient (g of a.i ha
-1

) used 

during spray applications is much greater than that for granular or seed treatments (Jeschke et al. 

2011). 

1.4.5 Experiments conducted 

 Acute (range-finding) and chronic (definitive) soil ecotoxicity tests were conducted. Range-

finding tests were carried out to obtain the acute lethal toxicity and results obtained were then 

used to refine concentration ranges for subsequent chronic toxicity tests using both survival and 

reproduction as endpoints. In most ecotoxicological assessments, reproduction has been shown 

to be a more sensitive and reliable endpoint compared to survival and growth for collembola, 

enchytraeids (Didden & Römbke 2001) and earthworms (Robidoux et al. 2004), although test 

duration is longer. In comparison with other sublethal parameters, avoidance response has been 

shown to be equally or perhaps more sensitive than reproduction (Schaefer 2003) and despite its 

usefulness as a rapid toxicity screening tool (Natal da Luz et al. 2004), it is unsuitable for 

assessing the chronic toxicities of persistent chemical stressors due to its shorter test duration. 

1.5 Research objectives 
The aim of this study was to assess the effects of thiacloprid and acetamiprid on soil fauna 

(earthworms, springtails, enchytraeids and predatory mites) in order to provide first-tier 

ecotoxicity data that would be useful in the estimation of a predicted no-effect concentration 

(PNEC) for a more accurate ecological risk assessment (ERA) of thiacloprid and acetamiprid. To 

achieve this goal, the following objectives were defined: 

1. To determine the acute and chronic toxicities of thiacloprid and acetamiprid on soil 

invertebrates using mortality and reproduction endpoints by calculating appropriate lethal 

and effect concentration (LC & EC) toxicity parameters. 

2. To evaluate the relative sensitivities of the soil invertebrates to thiacloprid and 

acetamiprid. 

3. To derive an initial predicted no-effect concentration (PNEC) using an assessment factor 

and predicted environmental concentrations (PECs) in order to characterize the risk posed 

by thiacloprid and acetamiprid to the soil invertebrates.  
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Chapter 2 

 

2 Ecotoxicity of the neonicotinoid thiacloprid to Folsomia candida, 

Eisenia andrei, Enchytraeus crypticus and Hypoaspis aculeifer 
 

 

2.1 ABSTRACT 
Neonicotinoid insecticides are the most important group of insecticides in the world, widely 

adopted in pest management programs due to their broad spectrum activity and versatility in 

application. Thiacloprid is a member of the neonicotinoid insecticide class and like others, it act 

as selective agonist of insect nicotinic acetylcholine receptors (nAChRs). Though non-target soil 

organisms are likely to be exposed to thiacloprid during spray applications of formulated product 

Calypso
®

, there is virtually no existing information in published scientific literature on its 

toxicity to soil organisms. This study evaluated the chronic effects of thiacloprid on four 

terrestrial invertebrates (Folsomia candida, Eisenia andrei, Enchytraeus crypticus and 

Hypoaspis aculeifer) in artificial OECD soil. From the results obtained, relative sensitivity of the 

test species can be expressed as F. candida > E. andrei > E. crypticus > H. aculeifer (survival) 

and E. andrei > F. candida > E. crypticus > H. aculeifer (reproduction). Among other probable 

reasons, relative sensitivity could be due to inter-specific differences in the exposure routes of 

these invertebrates to thiacloprid in soil pore water. Predicted environmental concentration (PEC 

= 0.03 mg kg
-1) and predicted no-effect concentration (PNEC = 0.024 mg kg

-1) were derived for 

thiacloprid based on the valid test results of F. candida, E. crypticus and H. aculeifer. Calculated 

exposure-toxicity ratios (ETRs; PEC/EC10) and risk quotient (PEC/PNEC) were lesser and 

approximately equal to trigger values 0.2 and 1 respectively as defined by the European 

Commission. Therefore, it can be concluded that the risk of thiacloprid to the above-mentioned 

soil invertebrates and consequently to the soil compartment is acceptable. Notwithstanding the 

low risk of thiacloprid to soil invertebrates as indicated by this study, additional first-tier eco-

toxicity tests that may lead to the refinement of the PEC and/or PNEC are recommended.   
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2.2 INTRODUCTION 
Neonicotinoids are now the most prominent class of insecticides in the world. They are 

registered in at least 120 countries globally with annual sales estimated at $1.5 billion (Jeschke et 

al. 2011). As systemic pesticides, they are selective agonists of insect nicotinic acetylcholine 

receptors (nAChRs) (Jeschke et al. 2011; Szczepaniec et al. 2013). Although 60% of 

neonicotinoid insecticides are used as seed coatings, some are applied as foliar sprays, granular 

treatments or by chemigation. Non-agricultural uses of neonicotinoids include professional usage 

for controlling cockroaches, ants and termites in households, and also in veterinary medicine for 

the topical control of ectoparasites in pets (Jeschke et al. 2011; Goulson 2013). 

Thiacloprid is the second member of Bayer's chloronicotinyl insecticide family launched in 2000 

under the formulation Calypso
® 

and exclusively utilized for foliar application (Yu et al. 2007; 

Elbert et al. 2008). Apart from its selective toxicity to insect pests, thiacloprid is known to be 

ecologically benign and its bee safety profile has encouraged its use on flowering plants 

(Buchholz & Nauen 2002). Like other pesticides, inefficient foliar application of sprayed 

Calypso
® 

formulation causes an unintended exposure of non-target terrestrial and aquatic 

organisms to thiacloprid. This dissipation could occur through spray drift, soil deposition, foliar 

wash-off, leaching via rainfall, surface water run-offs, etc (van der Werf 1996; Linders et al. 

2000; Palumbo et al. 2001; Racke 2003).  

Independent research has documented the high toxicity of thiacloprid in aquatic ecosystems. For 

example, thiacloprid was shown to impact the sediment-dwelling nontarget insect Chironomus 

riparius at concentrations ≥ 0.5 μg L
-1

 (Langer-Jaesrich et al. 2010). In a different study, the 5% 

hazardous concentration (HC5) of thiacloprid (0.72 μg L
-1

) for freshwater arthropods based on 

acute exposure and chronic post-exposure observations was found to be lower than predicted 

environmental concentrations (PECorchard: 1.99 μg L
-1

; PECornamental: 17.52 μg L
-1

) for surface 

water under a worst-case scenario (Beketov & Liess 2008). These research findings thereby 

highlight the need to reduce the potential toxicity of thiacloprid to nontarget freshwater 

organisms. 

Field dissipation studies have revealed that thiacloprid is easily biodegraded in the terrestrial 

compartment with DT50 and DT90 of 9-27 days and 31-91 days respectively in the top soil layer 

(Barden 2001; EC 2004; EC 2008). However, its metabolites can be classified as persistent with 

DT90 > 100 days (EPPO 2003b; EC 2004).  Beneficial soil organisms are expected to be 

repeatedly exposed to significant amounts of thiacloprid as the formulated product Calypso
®

 is 

usually applied at several intervals to orchard and ornamental plants for the control of sucking 

and boring pests before harvesting. It is therefore disconcerting that there is little or no 

information in scientific literature on the toxicity of thiacloprid to soil invertebrates. 

This chapter aims to assess the effects of thiacloprid to the soil invertebrates Folsomia candida, 

Eisenia andrei, Enchytraeus crypticus and Hypoaspis aculeifer by determining its acute and 

chronic toxicity to these organisms using survival and reproduction endpoints. In addition, the 
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relative sensitivities of the invertebrates to thiacloprid are evaluated and the implications of the 

toxicity effects for terrestrial ecological risk assessment are discussed. 

 

2.3 MATERIALS AND METHODS    

2.3.1 Culture conditions and test substance 

Springtails were cultured in plastic containers lined with an 11:1 mixture of plaster of Paris and 

activated charcoal. Food was added twice a week in small amounts to avoid fungal spoilage. 

Earthworms were cultured in aerated plastic containers with horse manure and peat mixture as 

substrate and fed twice a month with oat porridge. Enchytraeids were cultured in agar and fed 

ad-libitum with oatmeal twice a week. Predatory mites were cultured in plastic containers lined 

with an 8:1 ratio of plaster of Paris and activated charcoal. Feeding with cheese mites 

(Tyrophagus putrescentiae) took place 2-3 times a week. All specimens were cultured at 20 
o
C ± 

2 
o
C, 16h: 8h light-dark cycle and an illumination of 400 - 800 Lux. 

 

2.3.2 Test soil 

Tests were conducted using artificial soil prepared from the constituent mixture (75% sand, 5% 

peat and 20% kaolin clay) according to OECD (1984) guideline. Though the tested invertebrates 

possess a world-wide distribution, the OECD artificial soil was chosen to standardize soil 

properties and to facilitate easy interpretation and comparison of results obtained. According to 

EPPO (2003), a typical agricultural soil has a maximum organic matter content of 5%. 

Therefore, peat content of the artificial soil was decreased to 5% and sand content increased to 

75% accordingly. Also, sphagnum peat was sieved through 5-mm mesh for E. andrei, F. candida 

and E. crypticus, and through 2-mm mesh for H. aculeifer. CaCO3 was added to adjust the pH of 

the artificial soil to 6.0±0.5, and soil water holding capacity (WHC) was determined to ensure 

that soil water content was around 40% to 60% of the maximum WHC. 

 

2.3.3 Test Substance 

The tested chemical was Calypso
®

 480 SC produced by Bayer CropScience. Active constituent: 

Thiacloprid (480 g L
-1

). IUPAC name: (Z)-3-(6-chloro-3-pyridylmethyl)-1, 3-thiazolidin-2-

ylidenecyanamide. Physicochemical characteristics are shown in Table 2. Toxicity assessments 

were based on active ingredient concentrations.  

 

2.3.4 Toxicity assessments 

All tests were performed according to OECD and ISO guidelines. The water content of the test 

soils was determined to ensure the required moisture content which is around 40 to 60% of the 
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maximum water-holding capacity (WHCmax). For both range-finding and definitive tests, the 

soil pH and moisture content for each treatment concentration including the controls were 

determined at the beginning and end of each experiment. Test vessels were incubated under 

controlled laboratory conditions: temperature of 20 ± 2ºC, light-dark cycle of 16h: 8h and an 

illumination of 400 - 800 Lux. 

Table 2: Physicochemical characteristics of the neonicotinoid thiacloprid 

 

2.3.5 Treatment concentrations  

Each test concentration was prepared from a stock solution, diluted with distilled water and 

mixed into artificial soil at a volume equivalent to the corresponding 50% WHC for that amount 

of soil. Range-finding tests with mortality as the only endpoint were conducted for each of the 

test species except Eisenia andrei to refine the range of concentrations chosen for the definitive 

reproduction tests. The concentrations used for the E. andrei reproduction test were based on the 

14-day acute toxicity (LC50) value obtained from the European Commission review report on 

thiacloprid (EC 2004). For each range-finding test, artificial soils were spiked with nominal 

thiacloprid concentrations of 0.1, 1, 10, 100, 1000 mg kg
-1

. Eight test concentrations (including 

the control) were used in definitive testing with five replicates (Collembola, enchytraeid and 

predatory mite) or four replicates (earthworm). Nominal concentrations of thiacloprid for each of 

the test species include: 0, 1, 2.1, 4.4, 9.2, 19.3, 40.5 and 85.1 mg kg
-1 

(F. candida); 0, 0.52, 1.26, 

3.01, 7.2, 17.36, 41.7 and 100.0 mg kg
-1

 (E. andrei); 0, 0.5, 1.4, 3.9, 11.0, 30.7, 86.1 and 240.9 

mg kg
-1

 (E. crypticus); 0, 16.38, 40.96, 102.4, 256, 640, 1600 and 4000 mg kg
-1

 (H. aculeifer). 

 

2.3.6 Initial development of Predicted Environmental Concentrations (PECs)  

Based on the use pattern of Calypso
®

 480 SC through foliar spray for apples and pears during 

their inflorescence emergence, flowering and fruit development growth stages (BBCH code = 

54-75), an initial and time-weighted average PECintial & PECtwa (mg kg
-1

) of the active substance 

thiacloprid in the top soil was calculated (see Table 3). This estimation was done by assuming a 

uniform distribution in the upper soil layer of 5 cm depth and a dry soil bulk density of 1.5 

g/cm
3
. Given that maximum dissipation time (DT50lab) of thiacloprid is 5 d, the maximum 

application rate was taken to be 180 g a.i ha
-1

 (EC 2004). The interception fraction (F = 0.4) for 

apples during the spring growing phase was obtained from standard interception factors of fruit 

trees in the Netherlands (Linders et al. 2000). 

 

Empirical formula C10H9ClN4S 

Molecular mass 252.73 g mol
-1

 

Relative density 1.46 g cm
-3

 

Solubility (pH7, 20°C) 184 mg L
-1

 

Log Kow (20°C) 1.26  

Henry’s  Law constant 5 x 10
-10

 Pa m
-3

 mol
-1

 Chemical structure 
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Table 3: Worst-case predicted environmental concentrations (PECs) estimated for thiacloprid  

Initial (mg kg
-1

) 
Time-weighted (mg kg

-1
) 

14 days 28 days 

0.14 0.06 0.03 

 

2.3.7 Definitive reproduction test 

Folsomia candida: The collembolan reproduction test (ISO, 1999) was chosen to assess adult 

survival and juvenile production by the springtail Folsomia candida. Test duration was 28 days. 

Each glass test vessel was filled with 30 g of artificial soil (wet mass). At the start of the 

experiment, 10 synchronized juveniles (10 – 12 days old) were added to each vessel and fed with 

2 – 10 mg of granulated dry yeast. Thereafter, test vessels were aerated and dry yeast was added 

once every week, whilst dry yeast was added and moisture loss replenished after two weeks. 

After 4 weeks, surviving adults and juvenile numbers were photographed and counted using the 

Image Tool software (Wilcox et al. 2002) after flotation. 

Enchytraeus crypticus: Though the ERT (Enchytraeus reproduction test) guidelines ISO 16387 

(ISO, 2003) recommended the use of Enchytraeus albidus, E. crypticus, a suggested alternative 

testing species was used due to practical advantages especially its shorter reproductive cycle. 20 

g of artificial soil (dry weight) were introduced into each glass test vessels. 10 adults of E. 

crypticus with well-developed clitella and up to 50 mg of finely ground dry oats were supplied 

into each test vessel. Aeration and feeding were done each week and after 14 days, moisture loss 

exceeding 2% was replenished. The ERT was terminated after 28 days and organisms were fixed 

and stained with alcohol and Bengal red. Surviving adults and juveniles were counted after a 

minimum period of 12 hours under illuminated lenses. 

Hypoaspis (Geolaelaps) aculeifer: Test was conducted according to the guideline OECD 226 

(OECD, 2008). Ten adult females of 28 – 35 days old were introduced into test vessels 

containing 20 g of artificial soil (dry mass) and then fed with cheese mites. Test vessels were 

weighed to serve as reference for soil moisture loss check-up. The mites were fed twice a week 

and soil moisture content in the test vessels was monitored. After 14 days, test was terminated 

and H. aculeifer adults and juveniles were separated from the soil substrate using the heat 

extraction method described in the guideline OECD 226 (OECD, 2008). Finally, surviving adult 

and juvenile mites were then counted under a dissecting microscope. 

Eisenia andrei: The epigeic earthworm Eisenia andrei was selected for the earthworm 

reproduction test and test procedures followed the international guideline ISO 11268-2 (ISO, 

1998). Before testing, synchronized adult worms (2 to 12 months old) with clitella were selected 

and acclimatized for 24 hours. 500 – 600 g (dry mass) of artificial soil was measured in each test 

container and 10 adult worms (250 – 600 mg) were added to each test container. Moistened cow 
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manure (15 g) was added and the test containers were weighed for periodic (after 14 days) 

monitoring of soil moisture content. On day 28, surviving adults in each vessel were counted. 

Test was terminated after 56 days with the counting of the juveniles hatched from the cocoons. 

 

2.3.8 Data analyses 

For the definitive reproduction tests, mortality (LC50) and reproduction (EC10 & EC50) endpoint 

values were calculated by fitting various nonlinear regression models in the R package ‘drc’ used 

for the analysis of dose-response curve data (Ritz & Streibig 2005). Generally, the logistic model 

(two or three parameter) provided the best fit for most toxicity data as given below:  

           
   

                       
                                                             

Where Y is the number of juveniles or adult survival (fraction), x is the nominal test 

concentration (mg a.i/kg dry soil), b is the maximal slope of the logistic function, d is the 

maximum response in the controls (upper limit), c is the minimum response (lower limit) at x ~ 

∞ and e is the LC50 or EC50 value. ED.drc function was used to estimate 10%, 20% and 50% 

lethal and effective concentrations (LC/EC) respectively. Equation 2 gives the initial soil 

exposure concentration (Ci) of thiacloprid (mg kg
-1

) for the assessment of acute effects (EPPO 

2003a). 

    
        

         
                                                                                                                 

The time-weighted average concentration (TWAC) of thiacloprid (mg kg
-1

) for chronic toxicity 

assessment was calculated using the following equation (EPPO 2003a): 

          
    

     
            

   

    
                                                          

Where A = application rate (g a.i ha
-1

); F = interception factor; L = soil layer depth (cm); D = soil 

bulk density (g cm
-3

); t = duration of toxicity test and DT50 = 50% laboratory dissipation time. To 

determine NOEC and LOEC values, the normality and homogeneity of reproduction, survival 

and earthworm weight loss data were tested using Shapiro-Wilk and Levene’s test before 

statistical analysis. Where normality and homoscedascity assumptions are satisfied, significant 

differences between treatment response means were tested using one-way ANOVA analysis 

followed by post-hoc trend (Tukey HSD) or pairwise comparison (Dunnett) tests (p-value = 

0.05). Otherwise, appropriate functions in the R package ‘pgirmess’ (Giraudoux 2013) were 

applied to determine NOECs/LOECs using the non-parametric Kruskal-Wallis test followed by 

post-hoc multiple comparisons (p-value = 0.05) as described by Siegel & Castellan (1988). 
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For acute range-finding tests, the exponential decay model as obtained in the ‘drc’ R package 

was chosen as it provided the best LC50 estimates with lowest-bound confidence intervals. The 

model equation is given below: 

                                                                                                           

Where d is the estimated survival rate at x = 0, c is the estimated survival rate at x ~ ∞ and e > 0 

determines the steepness of the decay curve. All statistical analyses were performed according to 

OECD standard guidelines (OECD 2006)  using R (R Core Team 2014) and Microsoft Excel.  

 

2.4 RESULTS 

2.4.1 Test validation 

As prescribed by the test protocols, validity requirements were satisfied in the controls of the 

definitive reproduction tests for all test organisms except E. andrei. Mean adult mortality for F. 

candida, E. crypticus and H. aculeifer was < 20%. The average reproduction rate for F. candida 

was 273 juveniles. In addition, H. aculeifer had 250 juveniles per replicate while E. crypticus 

produced an average of 885 juveniles. Coefficient of variation (CV) for all test organisms was 

below 30%. Although adult mortality after 4 weeks for E. andrei was << 10%, unfortunately, 

there were less than 30 juveniles in the control replicates. Therefore, E. andrei reproduction test 

was invalid. For the range-finding tests, adult mortality in the controls was well below 20% (E. 

crypticus & H. aculeifer) or approximately 20% (F. candida). 

 

2.4.2 Acute (range-finding) toxicity 

Results below (Table 4) for the range-finding toxicity tests showed that thiacloprid was lethal to 

both F. candida and E. crypticus according to the estimated 50% lethal concentrations (LC50) 

values, though F. candida was more sensitive as expected. In H. aculeifer, adult mortality was 

extremely low and insufficient to allow for LC50 estimation.  

 

Table 4: Estimated lethal concentrations (acute) for F. candida and E. crypticus 

Organism Parameter (mg/kg) Estimate 95% CI 

F. candida 
LC10 6.46 2.6 - 10.29 

LC50 42.47 17.22 - 67.71 

    

E. crypticus 
LC10 48.78 35.82 - 61.73 

LC50 320.88 235.67 - 406.10 

 

 



T.O. Akeju  2014 

 

Assessment of the Effects of the Neonicotinoids Thiacloprid and Acetamiprid on Soil Fauna 
26 
 

2.4.3 Definitive Tests  

The chronic sub-lethal toxicity of thiacloprid to Folsomia candida is shown below (Figure 2, 

Table 5) by both concentration-response modelling and hypothesis-testing methods. The EC10 

and EC50 values for F. candida reproduction were 1.0 and 2.1 mg kg
-1

 respectively, which is 

approximately one-half adult survival LC10 & LC50 values of 1.92 and 4.38 mg kg
-1

. In the same 

vein, adult survival NOEC & LOEC values (p < 0.05) of 2.1 and 4.4 mg kg
-1 

respectively were 

higher than those for reproduction (1.0 and 2.1 mg kg
-1

) by a factor of 2. It can also be noted that 

for both reproduction and adult survival in F. candida, bounded NOEC & LOEC values were 

very similar to estimated EC10 & EC50 values respectively. 

Again, for Enchytraeus crypticus, both hypothesis testing and dose-response modelling proved 

reproduction to be the more sensitive endpoint. EC10 and EC50 values of 1.27 and 5.60 mg kg
-1 

respectively were lower than LC10 (15.91 mg kg
-1

) and LC50 (25.58 mg kg
-1

) for adult survival. 

Similarly, adult survival NOEC and LOEC values (11.0 & 30.7 mg kg
-1

) were considerably 

higher that EC10 & EC50 values respectively. It is impressive to also note that estimated LC and 

EC values for E. crypticus were similar to NOEC & LOEC values (p < 0.05) for both adult 

survival and juvenile production taking into consideration the 95% CIs  (see Figure 2, Table 5). 

Effect concentrations for Eisenia andrei were: EC10 = 0.002; EC50 = 0.048. NOEC and LOEC 

values for reproduction could not be determined for E. andrei probably due to the invalidation of 

the toxicity test as described above. Therefore, results concerning reproduction endpoints are de-

emphasized due to its unreliability. It is however noteworthy to report that the NOEC (7.2 mg kg
-

1
) and LOEC (17.36 mg kg

-1
) values for adult survival in E. andrei (p < 0.05) did not 

significantly deviate from estimated LC10 and LC50 values which are 12.25 (6.53 – 17.97) mg kg
-

1
 and 18.21 (16.87 – 19.54) mg kg

-1
 respectively. As presented in Figure 2, weight change as a 

sublethal endpoint in E. andrei (measured as 28-day percentage weight loss) was sensitive and 

significant differences from the controls were found in treatment concentrations starting from 7.2 

mg kg
-1

 and above. Just as described in the range-finding test, mortality in Hypoaspis aculeifer 

adults was too low to allow for LC50 estimation either by interpolation or extrapolation. 

Reproductive toxicity was very low, when compared to other test organisms, with EC10 & EC50 

values of 967.69 mg kg
-1

 and 3673.87 mg kg
-1

 respectively. NOEC and LOEC values determined 

(p < 0.05) are also similar to the estimated EC values (Table 5). 

As laid out by EU technical guidance document on the risk assessment of chemicals (EC 2003), 

PNEC
1

soil (0.024 mg kg
-1) for thiacloprid was derived by dividing the lowest EC10 value by an 

assessment factor of 50. This procedure was based on the EC10 values of F. candida, E. crypticus 

and H. aculeifer only. EC10 for F. candida was used as it was the lowest and an assessment 

factor of 50 was selected because the test organisms fall into two different trophic levels. 

 

                                                           
1
 Predicted no effect concentration for the soil compartment 
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Table 5: Ecotoxicity parameters based on adult survival and reproduction endpoints for four soil 

invertebrate species exposed to thiacloprid in artificial OECD soil. 

Organism Endpoint 
Parameter

a
 

(mg kg
-1

) 
Estimate with 95% CI

b
 SSI

d
 

F. candida
f
 

Adult survival 

LC10 1.92 (1.31 – 2.53) 

3.65 

LC50 4.38 (3.34 – 5.41) 

NOEC 2.1 

LOEC 4.4 

Reproduction 

EC10 1.20 (0.77 – 1.63) 

EC50 2.13 (1.87 – 2.38) 

NOEC 1.0 

LOEC 2.1 

E. andrei
g
 

Adult survival 

LC10 12.25 (6.53 – 17.97) 

9105 

LC50 18.21 (16.87 – 19.54) 

NOEC 7.2 

LOEC 17.36 

Reproduction 

EC10 0.002 (-0.010 – 0.015) 

EC50 0.048 (-0.090 – 0.19) 

NOEC NA
c
 

LOEC NA
c
 

E. crypticus
h
 

Adult survival 

LC10 15.91 (9.88 – 21.92) 

20.14 

LC50 25.58 (22.64 – 28.51) 

NOEC 11 

LOEC 30.7 

Reproduction 

EC10 1.27 (0.26 – 2.29) 

EC50 5.60 (3.81 – 7.38) 

NOEC 1.4 

LOEC 3.9 

H. aculeifer
i
 Reproduction 

EC10 967.69 (424.2 – 1511.2) 

NA
e
 EC50 3673.87 (2646.21 – 4701.5) 

NOEC 1600 

LOEC 4000 
a
Parameter = 10% lethal concentration (LC10); median lethal concentration (LC50), 10% effective concentration 

(EC10); median effective concentration (EC50); lowest-observed-effect concentration (LOEC); no-observed-effect 

concentration (NOEC). 
b
CI = Confidence intervals. 

c
NA = NOEC/LOEC could not be determined probably due to 

test invalidity. 
d
SSI = Sublethal sensitivity index (LC50/EC10). 

e
NA = SSI could not be calculated due to inability to 

estimate LC50. NOEC/LOEC for reproduction: 
f
determined by One-way ANOVA followed by Tukey’s HSD; 

g
determined by Kruskal’s test, followed by Siegel-Castellan multiple comparisons; 

h
determined in the same way as 

for E. andrei; 
i
determined by One-way ANOVA, followed by Dunnett pairwise comparison. 
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   Folsomia candida                                     Hypoaspis aculeifer 

 
 

 

  

Figure 2: Sublethal effects of thiacloprid on F. candida, E. crypticus, E. andrei and H. aculeifer using 

reproduction as endpoint. Graphs show concentration-response relationships as predicted by the model. 

 

2.5 DISCUSSION 

2.5.1 Relative sensitivity of the four invertebrate species 

From the result obtained, the relative sensitivity of the tested invertebrates to thiacloprid based 

on median lethal concentrations (LC50) can be expressed as: F. candida > E. andrei > E. 

crypticus > H. aculeifer. When sublethal sensitivity comparisons are made on the basis of 

median effect concentrations (EC50), we have: E. andrei > F. candida > E. crypticus > H. 

aculeifer. It is important to state here that ‘ceteris paribus’, F. candida is expected to be the most 

sensitive organism in both cases and several eco-toxicity studies even in tropical ecosystems 

have confirmed the relative higher sensitivity of F. candida to insecticides (Frampton et al. 2006; 

Daam et al. 2011; Chelinho et al. 2012). Also, due to the invalidity of the E. andrei reproduction 

test, sensitivity comparisons using the EC50 for E. andrei may not be reproducible. 

H. aculeifer is unarguably the least sensitive invertebrate tested for thiacloprid. For all that is 

known, H. aculeifer seems to exhibit lower or intermediate relative sensitivity to certain 

chemicals when compared to other soil invertebrates (Owojori et al. 2014) but generalizations 

cannot be made as information for many other chemicals are scarce in scientific literature. 

Though H. aculeifer is thought to be potentially sensitive to chemicals (EC50 ranges for 
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dimethoate = 3.0 – 7.0 mg kg
-1

; boric acid = 71 – 402 mg kg
-1

) (Smit et al. 2012), it has also been 

found to exhibit low sensitivity to natural and synthetic naphthoquinones (Whitaker et al. 2009), 

chemicals that possess certain similar physico-chemical properties with neonicotinoids. The 

extremely low sensitivity or insensitivity of H. aculeifer obtained in this study could be 

attributed to fact that exposure to thiacloprid through cheese mites (prey) is likely to be 

negligible due to the low Log Kow (1.26) of thiacloprid which suggest a low potential for 

bioconcentration.  

On the contrary, the high sensitivity of F. candida could be attributed to the highly selective 

neurotoxic mode of action as thiacloprid, like other neonicotinoids, binds strongly and 

irreversibly to insect nicotinic acetylcholine receptors (nAChRs) (Jeschke et al. 2011). Also, the 

thin-walled ventral tube of F. candida serves as a major exposure route to dissolved thiacloprid 

in pore soil water (Fountain & Hopkin 2005). Soft-bodied oligochaetes i.e. E. crypticus and E. 

andrei are likely to be exposed to thiacloprid mainly through pore soil water. Exposure through 

food or ingestion of soil particles is likely to be negligible especially for thiacloprid with Log 

Kow < 5 (Bezchlebová et al. 2007). As a result, an explanation for the intermediate relative 

sensitivities of E. crypticus and E. andrei may be that thiacloprid is less selective for the nAChRs 

of oligochaetes compared to that of arthropods. 

 

2.5.2 Relating Lethal and Sublethal effects 

Generally for the four invertebrates tested, reproduction appears to be more sensitive than 

survival for all estimated endpoint parameters as presented in Figure 3 and Table 5 which is the 

consensus for most ecotoxicity studies given the relevance of reproductive endpoints for 

assessing population-level effects of pesticides (Stark & Banks 2003; van Gestel 2012). When 

chronic LC50/EC10 ratios, also called sublethal sensitivity index (SSI), are compared among these 

organisms, F. candida has the lowest value followed by E. crypticus. No explanation could be 

given at the moment for the differences in the sublethal sensitivity indices, because even though 

E. andrei has the highest SSI value, conclusions cannot be drawn given the invalidity of the E. 

andrei reproduction test. 

 

2.5.3 Comparing concentration-response modeling with hypothesis testing 

The use of hypothesis testing in generating ecotoxicity data for regulatory testing have been 

criticized and the replacement of the NOEC with point estimates have been proposed due to 

problems in the testing and statistical procedures used in determining its values (Fox 2008; 

Warne & Dam 2008). For instance, NOECs/LOECs are highly variable and inaccurate; NOECs 

normally correspond to 10 – 30% effect concentrations, while LOECs correspond to > 30% 

effect concentrations (Warne & Dam 2008). However, this study found NOEC and LOEC values 

to correspond to EC10 & EC50 values respectively (see Table 4) though estimated EC values were 
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more conservative and hence more accurate. These results show that NOEC/LOEC values can 

still be generated as an alternative to regression-based ECX method provided eco-toxicity tests 

are properly designed so as to improve the precision and accuracy of results. This could be 

achieved through increased replication, choosing an appropriate lowest treatment concentration, 

choosing a spacing factor ≤ 3.2, etc. 

 

2.5.4 Initial considerations for Environmental Risk Assessment 

Following the risk assessment scheme defined by the European and Mediterranean Plant 

Protection Organization (EPPO 2003b) in order to assess the chronic toxicity of thiacloprid to 

soil fauna, predicted environmental concentrations, calculated as 14 & 28-day TWACs, was 

compared to EC10 values (PEC/EC10) to obtain exposure-toxicity ratios (ETRs) for all test 

invertebrates except E. andrei. ETRs obtained were found to be less than the trigger value of 0.2 

preset by the EU (EC 1991). It can therefore be maintained with some measure of confidence 

that thiacloprid in the formulation Calypso
®

 poses low risk to field populations of F. candida, E. 

crypticus and H. aculeifer following a single maximum application rate of 180 g a.i ha
-1

 by foliar 

spraying to apple plants. Subsequently, the risk of thiacloprid to the soil ecosystems was 

characterized since F. candida may not be the most sensitive species in the soil ecosystem. 

Calculated hazard quotient i.e. PEC/PNEC ratio = 1.25. Since this value is approximately equal 

to 1 which is the trigger value, we come to a definite conclusion that based on the first-tier eco-

toxicity results generated by this study, the risk posed by thiacloprid to the soil compartment is 

acceptable and there is no need for additional risk mitigation measures. It should be noted that 

though a hazard quotient ~ 1 indicate there may be no need for additional eco-toxicity testing, 

the invalidation of the E. andrei reproduction test necessitates additional first-tier toxicity data 

that will be useful in refining the PNEC and PEC. 

 

2.6 CONCLUSION 
Among the tested invertebrates, F. candida is arguably the most sensitive to thiacloprid while H. 

aculeifer is least sensitive. In addition, survival endpoint parameters proved to be less sensitive 

compared to reproduction as expected while NOEC/LOEC values corresponded with estimated 

LC/EC values. This study supports the widely held notion that thiacloprid is ecological benign 

particularly to soil organisms as calculated ETRs and hazard quotient did not exceed preset 

trigger values at a recommended maximum field dose of 180 g a.i ha
-1 

to apple plants. Finally, 

the toxicity of thiacloprid to other soil invertebrates should be assessed to enable PNEC 

adjustment through species sensitivity distribution. Thiacloprid toxicity to soil invertebrates may 

be investigated in natural soils for improved ecological realism. Also, the influence of varying 

soil properties on thiacloprid bioavailability should be an important consideration for future 

research. 
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                        Concentration (mg kg

-1
) 

 
                              Concentration (mg kg

-1
) 

 

A – Folsomia candida 

B – Eisenia andrei 

C – Enchytraeus crypticus 

D – Hypoaspis aculeifer 

 

Filled squares with dashed lines indicate survival 

while thick straight lines indicate reproduction 

 

E – Mass change in E. andrei measured 

as percentage weight loss after 28 days 

(mean ± standard error)  
                                 Concentration (mg kg

-1
) 

Figure 3: Number of juveniles (reproduction) and adult survival (percentage) for the four (A – D) test 

invertebrate species (mean ± standard error) as a response to different treatment concentrations of thiacloprid 

in OECD artificial soil. In addition, growth as sub-lethal endpoint was measured in E. andrei during the 

reproduction test as shown (E). *Asterisk denotes that response means from that treatment concentration and 

above are significantly different from respective controls (P < 0.05) (see Table 5) 
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Chapter 3 

 

3 Toxicity of the neonicotinoid acetamiprid to Folsomia candida, 

Eisenia andrei, Enchytraeus crypticus and Hypoaspis aculeifer 
 

3.1 ABSTRACT 
 

Neonicotinoid insecticides, commercialized in over 120 countries worldwide, have proved to be 

very effective for controlling agricultural pests. They act as agonist of insect nicotinic 

acetylcholine receptors (nAChRs). Acetamiprid is a second generation neonicotinoid that is 

mainly applied as foliar spray to orchard and ornamental plants. Relevant scientific information 

concerning the toxicity of acetamiprid particularly to soil invertebrates is very limited though 

non target terrestrial and aquatic organisms are usually exposed to through spray applications of 

formulated acetamiprid. In this paper, reproduction tests were conducted according to standard 

guidelines to assess the chronic toxicity of acetamiprid to four terrestrial invertebrates in 

artificial OECD soil. Results obtained indicated that for survival and reproduction, relative 

sensitivity of the test species can be expressed as Folsomia candida > Eisenia andrei > 

Enchytraeus crypticus > Hypoaspis aculeifer. Acetamiprid was extremely toxic to F. candida 

(EC50 = 0.29 mg/kg) while H. aculeifer was least sensitive (EC50 = 650.60 mg/kg). Differences in 

exposure routes and higher selectivity of acetamiprid for nAChRs of arthropods may be 

responsible for the relative sensitivities observed. To extrapolate from these valid tests for F. 

candida, E. crypticus and H. aculeifer, predicted environmental concentrations (PECs) and 

predicted no-effect concentration (PNEC = 0.004 mg kg
-1

) were derived for acetamiprid. Risk of 

acetamiprid to field populations of these three invertebrates was characterized as low since 

calculated exposure-toxicity ratios (ETRs; PEC/EC10) for the three invertebrates were lesser 

than 0.2. However, calculated risk quotient (PEC/PNEC) was greater than 1, the preset trigger 

value. This means that the risk of formulated acetamiprid to the soil compartment following a 

single maximum application rate of 100 g a.i ha
-1

 to young citrus plants is unacceptable 
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3.2 INTRODUCTION  
Neonicotinoids are now the most effective class of insecticides in the world since the 

commercialization of pyrethroids, registered in at least 120 countries globally with annual sales 

estimated at $1.5 billion (Jeschke et al. 2011). As systemic pesticides, they are selective agonists 

of insect nicotinic acetylcholine receptors (nAChRs) (Jeschke et al. 2011; Szczepaniec et al. 

2013). 60% of neonicotinoids are used as prophylactic seed dressings worldwide, but they are 

also applied as foliar sprays on orchard and ornamental crops for the control of lepidopteran, 

coleopteran and hemipteran pest species e.g. aphids, plant-hoppers, moths, etc (Jeschke & Nauen 

2010; Goulson 2013). Therefore, their broad-spectrum insecticidal properties, low mammalian 

toxicity, high flexibility of use and lower application rates (g of active ingredient per hectare) 

compared to organophosphate and carbamate insecticides have led to their widespread 

acceptance (Zalom et al. 2005; Elbert et al. 2008). 

Acetamiprid (Figure 4), a second-generation neonicotinoid was initially commercialized in Japan 

in 1995 by Nippon Soda mainly for foliar applications while direct soil uses are restricted (Elbert 

et al. 2008). Today, acetamiprid is marketed under several brands such as Mosipilan
®

, Epik
®

, 

Assail
®

 and Chipco
TM

 with different formulations (e.g. 20% acetamiprid SP, 3% acetamiprid EC, 

etc). In addition, acetamiprid has been proved to be more effective against pests (e.g. Bemisia 

tabaci) when used as foliar sprays than when applied directly to the soil (Palumbo et al. 2001). 

The ecological risks posed by acetamiprid to nontarget aquatic and terrestrial organisms are still 

relatively unclear. Acetamiprid is highly soluble (4250 mg L
-1

 at 25
o
C) and stable in water 

(Jeschke & Nauen 2010). Like other pesticides, nontarget aquatic organisms are usually exposed 

through off-target spray drift, surface water runoffs, etc (Racke 2003). However, there is paucity 

of independent published scientific literature regarding the toxicity of acetamiprid to aquatic 

nontarget invertebrates.  

 

Figure 4: Chemical structure of acetamiprid 

Concerning the ecotoxicity of acetamiprid to terrestrial nontarget invertebrates, one study found 

acetamiprid to negatively impact the behavior of the honeybee (Apis mellifera) at sublethal doses 

(El Hassani et al. 2008). Acetamiprid is easily biodegraded in soils with half-life (DT50) of 2.9 

days from field dissipation studies (EC 2004). However, spray applications of commercial 

formulations to orchard crops at several intervals during pest control programs might imply that 

populations of beneficial soil organisms are repeatedly exposed to significant amounts of 

acetamiprid. It is therefore remarkable that there is no published information in scientific 

literature on the effects of acetamiprid to soil invertebrates.  
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This study aims to assess the toxicity of acetamiprid to the soil invertebrates Folsomia candida, 

Eisenia andrei, Enchytraeus crypticus and Hypoaspis aculeifer by determining its acute and 

chronic toxicities to these organisms using survival and reproduction endpoints. In addition, the 

relative sensitivities of the invertebrates to acetamiprid are evaluated and implications for 

terrestrial ecological risk assessment are discussed.  

 

3.3 MATERIALS AND METHODS 

3.3.1 Test organisms 

Springtails (Folsomia candida) were cultured in plastic containers lined with an 11:1 mixture of 

plaster of Paris (POP) and activated charcoal. Food was added twice a week as small amounts of 

dry yeast to avoid fungal spoilage. Earthworms (Eisenia andrei) were bred in aerated plastic 

containers with horse manure and peat mixture as substrate and fed twice a month with oat 

porridge. Enchytraeus crypticus were cultured in agar and fed ad-libitum with oatmeal twice a 

week. Hypoaspis aculeifer were cultured in plastic containers lined with an 8:1 ratio of plaster of 

Paris and activated charcoal. The predatory mites were fed with cheese mites (Tyrophagus 

putrescentiae) 2-3 times a week. Test organisms were cultured at 20
o
C

 
±2

o
C, 16h: 8h light-dark 

cycle and 400 - 800 Lux illumination. 

 

3.3.2 Test soil 

Tests were conducted using artificial soil prepared from the constituent mixture (75% sand, 5% 

peat and 20% kaolin clay) according to OECD (1984) guideline. Though the tested invertebrates 

possess a world-wide distribution, the OECD artificial soil was chosen to standardize soil 

properties and to facilitate easy interpretation and comparison of results obtained. According to 

EPPO (2003), a typical agricultural soil has a maximum organic matter content of 5%. 

Therefore, peat content of the artificial soil was decreased to 5% and sand content increased to 

75% accordingly. Peat was sieved through 5-mm mesh for E. andrei, F. candida, E. crypticus 

and through 2-mm mesh for H. aculeifer. CaCO3 was added to adjust the pH of the artificial soil 

to 6.0±0.5. Water holding capacity (WHC) was determined to ensure that soil moisture reached 

50% of the maximum WHC. 

 

3.3.3 Test substance 

Bioassays were based on nominal concentrations of acetamiprid (Table 6) – IUPAC name – (E)-

N1-[(6-chloro-3-pyridyl) methyl]-N2-cyano-N1-methylacetamidine, the active ingredient in the 

water soluble granulated commercial formulation known as Epik
®

 (composition: acetamiprid 

20% w/w).  
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Table 6: Physicochemical properties of Acetamiprid 

Molecular formula C10H11ClN4 

Molecular mass 222.68 

Specific gravity (20 oC/20 oC) 1.330 (99.7%) 

Log Kow (25 oC) 0.80 (>99%) 

Mean DT50lab (20 °C, aerobic) 2.6 days 

Mean DT90field 20.2 days 

Henry’s law constant (25 oC) <5.3x10-8 Pa m3 mol-1  

Vapour pressure (25 oC) <1x10-6 Pa (expected) 

 

3.3.4 Toxicity assessments 

Toxicity assays were performed according to OECD and ISO
2
 guidelines on assessing the effects 

of chemicals on the reproduction of the test invertebrates. Moisture content of artificial OECD 

soil was adjusted to 50% of the maximum water-holding capacity (WHCmax) at the start of each 

toxicity test.  

Treatment concentrations: to obtain the desired test concentrations, dilutions from a stock 

solution were mixed into artificial soil at a volume equivalent to the corresponding 50% WHC 

for that amount of soil. Range-finding tests with mortality as the only endpoint were conducted 

for each of the test species – except Eisenia andrei – to refine the range of concentrations chosen 

for the definitive reproduction tests. The definitive reproduction test for E. andrei was based on 

the 14-day acute toxicity (LC50) value obtained from the European Commission review report on 

acetamiprid (EC 2004). For each range-finding test, artificial soils were spiked with nominal 

acetamiprid concentrations of 0.1, 1, 10, 100, 1000 mg kg
-1

. Eight test concentrations (including 

the control) were used in definitive testing with five replicates (Collembola, enchytraeid and 

predatory mite) or four replicates (earthworm). Nominal concentrations of thiacloprid for each of 

the test species include: 0, 0.3, 0.6, 1.6, 3.9, 9.8, 24.4 and 61.0 mg kg
-1 

(F. candida); 0, 0.5, 1.15, 

2.60, 6.10, 14.0, 32.2 and 74 mg kg
-1

 (E. andrei); 0, 0.5, 1.3, 3.1, 7.8, 19.5, 48.8 and 122.0 mg 

kg
-1

 (E. crypticus); 0, 23, 49, 103, 216, 454, 952 and 2000 mg kg
-1

 (H. aculeifer).    

 

3.3.5 Definitive reproduction test 

Folsomia candida: The collembolan reproduction test (ISO, 1999) was chosen to assess adult 

survival and juvenile production by Folsomia candida. Test duration was 28 days. Each glass 

test vessel was filled with 30 g of artificial soil (wet mass). At the start of the experiment, 10 

synchronized juveniles (10 – 12 days) were added to each vessel and fed with 2 – 10 mg of 

granulated dry yeast. Thereafter, test vessels were aerated once every week, while dry yeast was 

added and water content was adjusted after two weeks.. On day 28, surviving adults and 

                                                           
2
 International organization for standardization 
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juveniles were photographed and counted using the Image Tool software (Wilcox et al. 2002) 

after flotation. 

Enchytraeus crypticus: Though the ERT guidelines ISO 16387 (ISO, 2003) and OECD 220 

(OECD, 2004)  recommended the use of Enchytraeus albidus, E. crypticus, an alternative testing 

species was used due to practical advantages. 20 g of artificial soil (dry weight) and 10 adults of 

E. crypticus with well-developed clitella including 50 mg of finely ground dry oats were 

supplied into each test vessel. The ERT was terminated after 28 days and organisms in each test 

vessels were fixed and stained with alcohol and Bengal red. Surviving adults and juveniles were 

counted under a stereomicroscope. 

Hypoaspis (Geolaelaps) aculeifer: Test was conducted according to the guideline OECD 226 

(OECD, 2008). Ten adult females of 28–35 days old were introduced into test vessels containing 

20 g of artificial soil (dry mass) and then fed with cheese mites. Test vessels were weighed to 

serve as reference for soil moisture loss check-up. After 14 days, test was terminated and H. 

aculeifer adults and juveniles were separated from the soil substrate by heat extraction. Finally, 

surviving adult and juvenile mites were then counted under a dissecting microscope. 

Eisenia andrei: The epigeic earthworm Eisenia andrei was selected for the earthworm 

reproduction test and test procedures followed the international guideline ISO 11268-2 (ISO, 

1998). Before testing, synchronized adult worms (2 to 12 months old) with clitella were selected 

and acclimatized for 24 hours in OECD soil. 500 – 600 g (dry mass) of artificial soil was 

measured in each test container and 10 adult worms (250 – 600 mg) were added to each test 

container. Adult survival was determined after 28 days and test was terminated after 56 days by 

the counting of the juveniles hatched from the cocoons. 

For each test performed, soil pH and moisture content for each treatment concentration – 

including control – were measured at the beginning and end of each experiment. All test vessels 

were incubated under controlled laboratory conditions: temperature of 20 ± 2ºC, light-dark cycle 

of 16h: 8h and an illumination of 400 - 800 Lux. 

 

3.3.6 Estimation of predicted environmental concentrations (PECs)  

Initial (PECintial) and time-weighted average (PECtwa) exposure concentrations of acetamiprid 

under worst-case scenarios were calculated based on the use of the formulation acetamiprid 20% 

SP through foliar spray on young or non-producing citrus trees during spring and summer. This 

estimation was done by assuming a uniform distribution in the upper soil layer of 5 cm depth and 

a dry soil bulk density of 1.5 g cm
-3

. Given that maximum dissipation time (DT50lab) of 

acetamiprid is 5 days, maximum application rate of the pesticide was taken to be 100 g a.i ha
-1

 

(EC 2004) (see Table 7). An interception factor (F = 0.5) for citrus crops specifically under the 

inflorescence emergence growth phase (BBCH code = 50 – 59) was adopted from the proposed 

table of harmonized interception factors for various crops (Linders et al. 2000) 
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Table 7: Estimated predicted environmental concentrations for acetamiprid in the top soil  

Initial (mg/kg) 
Time-weighted (mg/kg) 

14 days 28 days 

0.067 0.04 0.02 

 

3.3.7 Statistical analyses 

For the definitive reproduction tests, mortality (LC50) and reproduction (EC10 & EC50) endpoint 

values were calculated by fitting various nonlinear regression models in the R package ‘drc’ used 

for the analysis of dose-response curve data (Ritz & Streibig 2005). Generally, the three-

parameter logistic model provided the best fit for all toxicity data (except E. andrei) as given 

below:  

        
 

                       
                                                                     

Where Y is the number of juveniles or adult survival (fraction), x is the nominal test 

concentration (mg a.i kg
-1

 dry soil), b is the maximal slope of the logistic function, d is the 

maximum response in the controls (upper limit) and e is the LC50 or EC50 value. The exponential 

model (see Equation 4) was used to estimate EC50 for E. andrei. ED.drc function was used to 

estimate 10%, 20% and 50% lethal and effective concentrations (LC/EC) respectively. Equation 

2 gives the initial soil exposure concentration (Ci) of acetamiprid for the assessment of acute 

effects (EPPO 2003a). 

    
        

         
                                                                                                                 

The time-weighted average concentration (TWAC) of acetamiprid for chronic toxicity assessment 

was calculated using the following equation (EPPO 2003a): 

          
    

     
            

   

    
                                                          

Where A = application rate (kg ha
-1

); F = interception factor; L = soil layer depth (cm); D = soil 

bulk density (g cm
-3

); t = duration of toxicity test and DT50 = laboratory half-life of acetamiprid. 

To determine NOEC
3
 and LOEC

4
 values, the normality and homogeneity of reproduction, 

survival and earthworm weight loss data were tested using Shapiro-Wilk and Levene’s test 

before statistical analysis. Where normality and homoscedascity assumptions are satisfied, 

significant differences between treatment response means were tested using one-way ANOVA 

analysis followed by post-hoc trend (Tukey HSD) or pair-wise comparison (Dunnett) tests 

                                                           
3
 NOEC is the highest concentration used in a toxicity test that causes a toxic effect which is not significantly 

different (at P ≤ 0.05) from the control 
4
 LOEC is the lowest concentration used in a toxicity test that causes a toxic effect which is significantly different 

(at P ≤ 0.05) from the control. 
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(significance: p-value < 0.05). Otherwise, appropriate functions in the R package ‘pgirmess’ 

(Giraudoux 2013) were applied to determine NOECs/LOECs using the non-parametric Kruskal-

Wallis test followed by post-hoc multiple comparisons (significance: p-value < 0.05) as 

described by Siegel & Castellan (1988). 

For acute range-finding tests, the exponential decay model as obtained in the ‘drc’ R package 

was chosen as it provided the best LC50 estimates with lowest-bound confidence intervals. The 

model equation is given below: 

                                                                                                           

Where d is the estimated survival rate at x = 0, c is the estimated survival rate at x ~ ∞ and e > 0 

determines the steepness of the decay curve. All statistical analyses were performed according to 

OECD standard guidelines (OECD 2006)  using R (R Core Team 2014) and Microsoft Excel.  

 

3.4  RESULTS 

3.4.1 Test validation 

Validity requirements in the controls were satisfied in the rangefinding and definitive tests for all 

organisms (except E. andrei) as prescribed by test guidelines. The average adult survival for F. 

candida, E. crypticus and H. aculeifer in the definitive reproduction tests was < 20%. 

Additionally, mean reproduction rate for F. candida was 421 juveniles while H. aculeifer 

produced 190 juveniles per replicate. E. crypticus produced an average of 577 juveniles per 

replicate. Coefficient of variation (CV) for all test organisms was lower or approximately 30% 

except for E. andrei where CV = 55%. There was also less than 30 juveniles per replicate for E. 

andrei. For the acute range-finding tests with F. candida and E. crypticus, adult mortality was << 

20%. 

 

3.4.2 Acute (range-finding) toxicity  

Range-finding tests (see Table 8 below) showed that acetamiprid was extremely lethal to F. 

candida (LC50 = 0.52 mg kg
-1

). In contrast, E. crypticus seemed resistant with an estimated LC50 

value of 371.12 mg kg
-1

. For H. aculeifer, average mortality in test concentrations up to 1000 mg 

kg
-1

 was very low and therefore insufficient to allow LC50 extrapolation from the model. 

Table 8: Acute toxicity (LC10 & LC50) of acetamiprid to F. candida and E. crypticus 

Organism Parameter (mg/kg) Estimate 95% CI 

F. candida 
LC10 0.08 0.018 – 0.14 

LC50 0.52 0.12 – 0.92 

    

E. crypticus 
LC10 56.41 39.05 – 73.77 

LC50 371.12 256.91 – 485.33 
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3.4.3 Chronic toxicity: lethal and sublethal effects  

Definitive reproduction test results (Table 9, Figure 5) shows that acetamiprid causes lethal and 

sublethal effects in F. candida at similar concentrations. The 50% lethal and effect 

concentrations (LC50 and EC50) values for F. candida are 0.40 and 0.29 mg kg
-1

 respectively 

while determined NOEC & LOEC values for both adult survival and reproduction respectively 

are approximately < 0.3 and 0.3 mg kg
-1

. It was however a different case for E. crypticus as 

lethal and sublethal effects occurred at different concentrations of acetamiprid (see Table 9). For 

instance, LC50 estimate of 12.34 mg kg
-1

 for adult survival was greater than EC50 (1.90 mg kg
-1

) 

by a factor of 6 and LOEC (19.5 mg kg
-1

) for adult survival was greater than LOEC (1.60 mg kg
-

1
) for reproduction by a factor of 12. H. aculeifer was evidently the least sensitive invertebrate 

tested with bounded NOEC and LOEC values of 454 and 952 mg kg
-1

 respectively. Also, EC10 

and EC50 values were calculated to be 447.27 mg kg
-1

 and 650.60 mg kg
-1

, correspondingly. As in 

the range-finding test results stated above, adult mortality was too low to allow for LC50 

estimation. 

For Eisenia andrei, acetamiprid seems to cause sublethal effects at lower concentrations 

compared to lethal effects as LC10 and LC50 values of 1.94 and 2.31 mg kg
-1

 respectively were 

greater than EC10 and EC50 values of 0.13 and 0.18 mg kg
-1

. This situation holds true for 

hypothesis testing as adult survival NOEC (1.15 mg kg
-1

) & LOEC (2.60 mg kg
-1

) were greater 

than the NOEC (0.5 mg kg
-1

) & LOEC (1.15 mg kg
-1

) for reproduction. However, it is essential 

to note here that the validity criteria was not fully satisfied (number of juveniles per replicate in 

the controls was < 30). Hence, results obtained for E. andrei cannot be taken with absolutely 

confidence. The sensitivity of growth as an endpoint in E. andrei was measured as percentage 

weight loss in 28 days during the reproduction test. When compared to the controls, weight loss 

in treatment concentrations was found to be significant starting from 2.60 mg kg
-1

 as shown in 

Figure 6.  

In adherence to the EU technical guidance document on the risk assessment of chemicals (EC 

2003), a predicted no effect concentration in soil (PNECsoil) was derived by dividing lowest 10% 

effect concentration (EC10) value by an assessment factor of 50. Among the three
5
 test organisms 

from two different trophic levels that were considered, EC10 value for F. candida was used as it 

was the lowest. Hence, derived PNECsoil for acetamiprid = 0.004 mg kg
-1.  

 

3.5 DISCUSSION 

3.5.1 Relative sensitivity of the tested soil invertebrates 

Comparing the sensitivities of the invertebrates using appropriate lethal and sublethal 

parameters, i.e. the median lethal and effect concentrations, the relative sensitivity for the test 

                                                           
5
 E. andrei EC10 value not considered due to the invalidity of reproduction test 
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species can be expressed as: F. candida > E. andrei > E. crypticus > H. aculeifer. F. candida is 

easily the most sensitive species tested as expected, and laboratory studies have repeatedly 

confirmed the higher sensitivity of F. candida especially to pesticides with broad-spectrum 

insecticidal properties which also applies to acetamiprid (Daam et al. 2011). Eisenia andrei: The 

28-day LC50 of 2.31 mg kg
-1

 and reproductive NOEC (0.5 mg kg
-1

) as obtained in this study is 

very low and this could imply that acetamiprid exhibits a higher toxicity to E. andrei compared 

to more than 95% of other pesticides (Pelosi et al. 2013). 

In addition, the comparative higher sensitivity of E. andrei to acetamiprid which is second only 

to F. candida agrees with similar comparative sensitivities to other non-neonicotinoid 

insecticides as reviewed by Frampton et al. (2006). Though the lower relative sensitivity of E. 

crypticus compared to F. candida and E. andrei as obtained in this study is similar to that 

obtained for dimethoate in a previous study (Martikainen 1996), relative sensitivity of 

enchytraeids could vary among other insecticides as explained in a review by Rombke (2003), 

that “enchytraeids are not less sensitive than either earthworms or collembolans in general”.  

H. aculeifer is unarguably the least sensitive invertebrate tested. For all that is known, H. 

aculeifer seems to exhibit lower or intermediate relative sensitivity to certain chemicals when 

compared to other soil invertebrates (Owojori et al. 2014). However, generalizations cannot be 

made now as information concerning the toxicity of many other chemicals to H. aculeifer is 

scarce in scientific literature. Though H. aculeifer is thought to be potentially sensitive to 

chemicals (EC50 ranges for dimethoate = 3.0 – 7.0 mg kg
-1

; boric acid = 71 – 402 mg kg
-1

) (Smit 

et al. 2012), it has been found to exhibit lower sensitivity to natural and synthetic 

naphthoquinones (Whitaker et al. 2009), chemicals that possess certain similar physico-chemical 

properties with neonicotinoids.  

The extremely low sensitivity or insensitivity of H. aculeifer obtained in this study could be 

attributed to fact that exposure through cheese mites (prey) is likely to be negligible due to the 

low Log Kow (0.80) of acetamiprid which suggest a low potential for bioconcentration 

(Bezchlebová et al. 2007). The high toxicity of acetamiprid to F. candida may be due to the 

highly selective neurotoxic mode of action as acetamiprid binds strongly and irreversibly to 

insect nicotinic acetylcholine receptors (nAChRs), coupled with the fact that the thin-walled 

ventral tube located in the segmented abdominal area of F. candida might serve as a major 

exposure route to dissolved thiacloprid in pore soil water (Fountain & Hopkin 2005). Soft-bodied 

oligochaetes i.e. E. crypticus and E. andrei are likely to be exposed to thiacloprid mainly through 

pore soil water. Exposure through food or ingestion of soil particles is likely to be negligible 

especially for chemicals like acetamiprid with Log Kow < 5 (Bezchlebová et al. 2007). As a 

result, an explanation for the intermediate relative sensitivities of E. crypticus and E. andrei may 

be that acetamiprid and other neonicotinoids are less selective for the nAChRs of oligochaetes 

compared to that of arthropods. 
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                        Concentration (mg kg

-1
)  

                              Concentration (mg kg
-1

) 
 

A – Folsomia candida 

B – Eisenia andrei 

C – Enchytraeus crypticus 

D – Hypoaspis aculeifer 

 

Filled squares with dashed lines indicate survival 

while thick straight lines indicate reproduction 

 

E – Mass change in E. andrei measured 

as percentage weight loss after 28 days 

(mean ± standard error) 
 

                                 Concentration (mg kg
-1

) 

Figure 5: Number of juveniles (reproduction) and adult survival for the four (A – D) test invertebrate species 

(mean ± standard error) as a response to different treatment concentrations of acetamiprid in OECD artificial 

soil. In addition, growth as a sub-lethal endpoint was measured in E. andrei during the reproduction test as 

shown (E). *Asterisk denotes that response means from that treatment concentration and above are 

significantly different from respective controls (P < 0.05) (see Table 4) 
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Table 9: Ecotoxicity parameters based on adult survival and reproduction endpoints for four soil 

invertebrate species exposed to acetamiprid in artificial OECD soil. 

Organism Endpoint 
Parameter

a
 

(mg kg
-1

) 
Estimate with 95% CI

b
 SSI

c
 

F. candida
e
 

Adult survival 

LC10 0.24 (0.22 – 0.26) 

2 

LC50 0.40 (0.37 – 0.43) 

NOEC < 0.3 

LOEC 0.3 

Reproduction 

EC10 0.20 (0.10 – 0.30) 

EC50 0.29 (0.27 – 0.31) 

NOEC < 0.3 

LOEC 0.3 

E. andrei
f
 

Adult survival 

LC10 1.94 (0.19 – 3.70) 

17.77 

LC50 2.31 (1.46 – 3.16) 

NOEC 1.15 

LOEC 2.6 

Reproduction 

EC10 0.13 (0.06 – 0.21) 

EC50 0.88 (0.37 – 1.88) 

NOEC 0.5 

LOEC 1.15 

E. crypticus
g
 

Adult survival 

LC10 5.06 (2.84 – 7.28) 

12.22 

LC50 12.34 (9.37 – 15.31) 

NOEC 7.8 

LOEC 19.5 

Reproduction 

EC10 1.01 (0.74 – 1.28) 

EC50 1.90 (1.64 – 2.16) 

NOEC 0.5 

LOEC 1.6 

H. aculebifer
h
 Reproduction 

EC10 447.27 (292.42 – 602.11) 

NA
d
 

EC50 650.60 (493.37 – 807.83) 

NOEC 454 

LOEC 952 
a
Parameter ⇛ LC10 = 10% lethal concentration; LC50 = median lethal concentration; EC10 = 10% effective concentration; 

EC50 = median effective concentration; LOEC = lowest-observed-effect concentration; NOEC = no-observed-effect 

concentration. 
b
CI = Confidence intervals. 

c
SSI = Sublethal sensitivity index (LC50/EC10). NA

d  
= 

 
SSI could not be 

calculated due to inability to estimate LC50. NOEC/LOEC for reproduction: 
e
determined by One-way ANOVA 

followed by Tukey’s HSD; 
f
determined by Kruskal’s test, followed by Siegel-Castellan multiple comparisons; 

g
determined in the same way as for E. andrei; 

h
determined by One-way ANOVA, followed by Dunnett pairwise 

comparison. 
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Figure 6: Sublethal effects of acetamiprid on F. candida, E. crypticus, E. andrei and H. aculeifer using 

reproduction as endpoint. Graphs show concentration-response relationships as predicted by the model 

 

3.5.2 Relating Lethal and Sublethal effects 

Generally for the four invertebrates tested, reproduction appears to be more sensitive than 

survival for all estimated endpoint parameters as presented in Figure 3 and Table 4, which is the 

consensus for most ecotoxicity studies given the relevance of reproductive endpoints for 

assessing population-level effects of pesticides (Stark & Banks 2003; van Gestel 2012). When 

chronic LC50/EC10 ratios, also called sublethal sensitivity index (SSI), are compared among these 

organisms, F. candida has the lowest value meaning survival and reproduction is adversely 

affected at similar concentrations of acetamiprid. It could then be inferred that F. candida 

maintains population growth up till the occurrence of lethal effects when exposed to 

concentrations of acetamiprid. However, for E. crypticus and H. aculeifer, we can conclude that 

from their high SSI values, survival takes on higher priority than reproduction when exposed to 

increasing acetamiprid concentrations (Crommentuijn et al. 1995).  
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3.5.3 Comparing concentration-response modeling with hypothesis testing 

The use of hypothesis testing in generating ecotoxicity data for regulatory testing have been 

criticized and the replacement of NOEC/LOEC with point estimates have been proposed due to 

problems in the statistical and testing procedures used in determining its values (Fox 2008; 

Warne & Dam 2008). In most cases, NOECs/LOECs are highly variable and inaccurate; NOECs 

normally correspond to 10 – 30% effect concentrations, while LOECs correspond to > 30% 

effect concentrations (Warne & Dam 2008). However, this study found NOEC and LOEC values 

to correspond to EC10 & EC50 values respectively (see Table 4) though estimated EC values were 

more conservative and hence more accurate. These results show that NOEC/LOEC values can 

still be generated as an alternative to regression-based ECX method provided eco-toxicity tests 

are properly designed and conducted with a high degree of precision. This could be achieved 

through increased replication, choosing an appropriate lowest treatment concentration, choosing 

a spacing factor not exceeding 3.2, etc. 

 

3.5.4 Initial considerations for Environmental Risk Assessment 

Following the risk assessment scheme defined by the European and Mediterranean Plant 

Protection Organization (EPPO 2003b) in order to assess the chronic toxicity of acetamiprid to 

soil fauna, predicted environmental concentrations, calculated as 14 & 28-day TWAC, was 

compared to EC10 values (PEC/EC10) to obtain exposure-toxicity ratios (ETRs) for all test 

invertebrates except E. andrei. ETRs obtained were found to be less than the trigger value of 0.2 

preset by the EU (EC 1991). It can therefore be maintained with some measure of confidence 

that formulated acetamiprid (20% SG) poses low risk to field populations of F. candida, E. 

crypticus and H. aculeifer following a single maximum application rate of 100 g a.i ha
-1

 by foliar 

spraying to young citrus plants.  

Regarding risk characterization, since F. candida may not be the most sensitive species in the 

soil ecosystem, and calculated hazard quotient i.e. PEC/PNEC ratio was found to be greater than 

1, it can be concluded initially that the effect of acetamiprid in the soil compartment is 

unacceptable pending further ecotoxicity testing that can lead to the refinement of the PEC and 

PNEC. The PEC/PNEC ratio as defined by the EU Technical guidance document on the risk 

assessment of chemicals (EC 2003) was used to extrapolate from laboratory results to other soil 

organisms since derived PNEC can be taken as the concentration of acetamiprid below which an 

unacceptable effect is unlikely to occur in the soil ecosystem. 

 

3.6 CONCLUSION 
Both survival and reproduction endpoint parameters showed that Folsomia candida was highly 

sensitive to acetamiprid (LC50: 0.40 mg kg
-1

; EC50: 0.29 mg kg
-1

). In a general manner, survival 

endpoint parameters proved to be less sensitive compared to reproduction as expected, except for 
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F. candida where survival and reproduction occurred at very similar concentrations (SSI = 2). 

The use of hypothesis testing in ecotoxicological procedures is also supported, as determined 

NOEC/LOEC values corresponded with estimated LC/EC values in this study. Finally, while the 

risk of acetamiprid to F. candida, E. crypticus and H. aculeifer was shown to be low following a 

single maximum application of 100 g a.i ha
-1 

(Epik 20% SG), hazard quotient of > 1 indicates the 

unacceptable risk of acetamiprid to the soil compartment.  
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Chapter 4 

 

4 GENERAL DISCUSSION 
 

Jeschke et al (2011) stated that all neonicotinoid insecticides are grouped into the same mode of 

action class (Group 4A) as agonists of nicotinic acetylcholine receptors (nAChRs) by the 

insecticide resistance action committee (IRAC). Among the major categories of insecticides with 

the exception of pyrethroids, neonicotinoids show the highest selectivity for insect nAChRs 

compared to mammalian ones (Sánchez-Bayo 2012a). Neonicotinoids are also known to exhibit 

high and moderate toxicities to the survival of arthropods and worms respectively (Sánchez-

Bayo 2012b). From the range-finding (14 days) and definitive (28 days) tests conducted in this 

study, the toxicity of acetamiprid and thiacloprid especially to Folsomia candida and 

Enchytraeus crypticus was shown to augment with an increase in exposure time. Although this 

situation is just as expected for systemic pesticides, acetamiprid and thiacloprid are non-

persistent insecticides with average half-lives of 5 days and their metabolites have low toxicity to 

non-target soil invertebrates (EC 2004a; EC 2004b). However, constant uptake from pore water 

concentration and the irreversible neurotoxic mode of action of neonicotinoid insecticides can be 

a reasonable explanation for this observation (Sanchez-Bayo 2013).    

Relative sensitivities of the four test invertebrates to thiacloprid and acetamiprid using both 

reproduction and survival endpoints were the same and can be expressed as F. candida > E. 

andrei > E. crypticus > H. aculeifer where F. candida was the most sensitive organism. This 

outcome is probably due to the fact that the route of exposure and mode of action of these two 

neonicotinoids to each of the tested invertebrates are similar. Compared to thiacloprid, 

acetamiprid showed higher toxicity to the test invertebrates. For instance, based on median lethal 

concentrations in the range-finding tests, acetamiprid was 82 times more toxic to F. candida. 

Similarly for the chronic reproduction tests, acetamiprid showed higher toxicity to all test 

invertebrates except for E. andrei where the 8-week reproduction test was invalid.  

It is important to note that while the definite cause(s) responsible for the existing differential 

toxicity between acetamiprid and thiacloprid is not fully known, several reasons can be 

suggested using relevant information from scientific literature. Most times, these reasons often 

originate from differences present in their chemical structures. The chemical structure of a 

particular toxicant affects its toxicity as the chemical structure is normally responsible for the 

mechanism of action, physico-chemical, toxicokinetic and toxicodynamic properties of a 

particular compound (Blaauboer, 2003). For instance, the rate of uptake of acetamiprid in pore 

water by soil invertebrates is bound to exceed that of thiacloprid. This is because acetamiprid, 
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like other non-cyclic compounds is more hydrophilic than thiacloprid which has a cyclic 

structure. In addition, the presence of a sulphur atom in the ringed structure of thiacloprid may 

contribute to its lower toxicity to the test invertebrates. This is because of the presence of non-

carbon atoms in ringed compounds may affect toxicity. The relative potency of these atoms is as 

follows: Nitrogen > Carbon > Sulphur > Oxygen (Matsuda et al. 2001).  

Regarding the mechanism of action, Tan et al (2007), in a study on the agonist actions of 

neonicotinoids on nAChRs receptors of cockroaches discovered that non-cyclic neonicotinoids 

(e.g. acetamiprid, clothianidin, dinotefuran) were more effective agonists compared with 

heterocyclic neonicotinoids (e.g. thiacloprid, imidacloprid, etc). This finding could be a 

reasonable explanation for the outcome of this study where acetamiprid was generally more toxic 

to the four soil invertebrates. 
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