
DEPARTAMENTO DE CIÊNCIAS DA VIDADEPARTAMENTO DE CIÊNCIAS DA VIDA
FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE DE COIMBRA

Prothrombotic status in Myeloproliferative Neoplasms:Prothrombotic status in Myeloproliferative Neoplasms:

the role of JAK2V617F allele burden and

platelets/leukocytes activation

Dissertação apresentada à Universidade de
Coimbra para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em
Biologia Celular e Molecular, realizada sob a
orientação científica da Professora Doutora
Letícia Ribeiro (Departamento HematologiaLetícia Ribeiro (Departamento Hematologia
CHC, EPE).

Margarida Carreira Revez Pereira Coucelo

2010



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Study partially supported by the grant PTDC/SAU-GMG/74375/2006 FCT, 

Portugal. 
 

 

 

 

 



4 
 

AGRADECIMENTOS 

 

 

À Doutora Maria Letícia Ribeiro pela oportunidade de desenvolver este 

trabalho, pela orientação, disponibilidade e extraordinário rigor científico. Agradeço 

também o seu incentivo e confiança. 

 

À Doutora Celeste Bento pela disponibilidade, ajuda e crítica científica. 

 

À Dra. Cristina Menezes e à Dra. Marta Beja pela colaboração na 

recolha da informação clínica e na obtenção de amostras de pacientes cujos dados 

são aqui apresentados. Agradeço também a amizade e pronta disponibilidade para 

esclarecimento de qualquer dúvida. 

 

À Dra. Manuela Fortuna, à Dra. Paula Pina-Cabral e à Dra Teresa 

Fidalgo pela disponibilidade, orientação e pelo incentivo no desenvolvimento deste 

trabalho.  

 

À Susana Santos pela amizade, incentivo e pela sua infinita paciência. 

 

  A todos os colegas do Departamento de Hematologia por toda ajuda e 

acima de tudo pela amizade e boa disposição. 

 

  À minha família e amigos pela paciência, incentivo e compreensão. 

 

 

 

 



5 
 

ABBREVIATIONS 
  

A – Adenine nucleotide 

ADP – Adenosine diphosphate 

AML – Acute myeloblastic leukemia 

ASA – Aspirin 

ASO-PCR – Allele specific oligonucleotide polymerase chain reaction 

ASXL1 – Additional Sex Combs-Like 1 gene 

ATP – Adenosine triphosphate 

BM – Bone marrow 

C – Cytosine nucleotide 

CBL – Casitas B-lineage lymphoma proto-oncogene 

CML – Chronic myeloid leukemia  

CN – copy number 

DNA – Deoxyribonucleic acid 

ECLAP – European Collaboration of Low dose Aspirin 

EPI – Epinephrine 

EPO – Erytropoietin 

ET – Essential thrombocythemia 

FCM – Flow Cytometry 

G – Guanine nucleotide 

GM-CSF – Granulocyte-macrophage colony-stimulating factor 

GP – Glycoprotein 

HU – Hydroxyurea 

IDH1 – Isocitrate dehydrogenase 1 

IDH2 – Isocitrate dehydrogenase 2 

IKZF1 – IKAROS family zinc finger 1 

JAK2 – Janus 2 kinase gene  



6 
 

LAMP – Lysossomal membrane protein 

LOH – Loss of heterozygosity 

LPS – Lypopolysaccharide  

mAb – Monoclonal antibodies 

MDS – Myelodysplastic syndrome 

MESF – Molecules of equivalent soluble fluorochrome  

MFI – mean fluorescence intensity 

MFI – Median fluorescence intensity 

MPL – Myeloproliferative leukemia virus oncogene 

MPN – Myeloproliferative neoplasm 

P – Phosphate 

PCR – Polymerase chain reaction 

Ph – Philadelphia 

PIP2 – Phosphatidyl inositol bi-phosphate 

PIP3 – Phosphatidyl inositol tri-phosphate 

PMF – Primary myelofibrosis 

PMN – Polymorphonuclear leukocytes 

PSGL-1 – P-selectin glycoprotein ligand 1 

PV – Polycythemia vera 

RQ-PCR – Real time quantitative polymerase chain reaction 

SEM – standard error median 

SPD – Storage pool deficiency 

SSCP – strand conformation polymorphism 

T - Thymine nucleotide 

TET – TET oncogene family member 2 

TF – Tissue factor 

TPO – Trombopoietin 

TRAP6 – Thrombin receptor agonist peptide 



7 
 

UPD – Uniparental disomy 

VWD – von Willebrand disease 

VWF – von Willebrand factor 

WHO – World Health Organization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

RESUMO ...................................................................................................................... 11 

ABSTRACT .................................................................................................................. 13 

 

CHAPTER 1 - INTRODUCTION  .................................................................................. 15 

1.1. Myeloproliferative Neoplasms ......................................................................... 16 

1.1.1. Polycythemia Vera .................................................................................. 17 

1.1.2. Essential Thrombocythemia .................................................................... 18 

1.2. Clinical features of MPN ..................................................................................... 19 

1.2.1. Bleeding .................................................................................................. 19 

1.2.2. Thrombosis ............................................................................................. 19 

1.2.2.1. Microcirculatory disturbances ................................................... 20 

1.2.2.2. Arterial Thrombosis .................................................................. 20 

1.2.2.3. Venous Thrombosis .................................................................. 21 

1.2.3. Risk factors for bleeding and thrombosis ................................................ 21 

1.3.  Platelets in MPN ................................................................................................ 22 

1.3.1. Platelets normal function ......................................................................... 22 

1.3.2. Platelets abnormalities in MPN ............................................................... 24 

1.3.2.1. Platelet receptors ...................................................................... 25 

1.3.2.2. Platelet activation ..................................................................... 25 

1.3.2.3. Acquired storage pool deficiency .............................................. 26 

1.3.2.4. Thrombocytosis ........................................................................ 26 

1.4.  Leukocytes in MPN ........................................................................................... 27 

1.5.  Molecular Mechanisms of MPN ......................................................................... 29 

1.5.1. The JAK2 mutations ................................................................................ 29 

1.5.1.1. JAK2V617F mutation ................................................................ 32 

1.5.1.2. Exon 12 JAK2 mutations .......................................................... 33 

1.5.2. The MPL mutations ................................................................................. 33 



9 
 

1.5.3. One mutation and different phenotypes .................................................. 34 

CHAPTER 2 - OBJECTIVES  ...................................................................................... 36 

2.1. Main Objective ................................................................................................. 37 

2.1.1. Specific objectives ................................................................................... 37 

CHAPTER 3 – MATERIAL AND METHODS ............................................................... 38 

3.1. Patients ............................................................................................................ 39 

3.2. Blood samples and Reagents .......................................................................... 39 

3.3. Routinel hematological assays ........................................................................ 40 

3.4. Molecular studies ............................................................................................. 40 

3.4.1. DNA extraction ........................................................................................ 40 

3.4.2. DNA quantification .................................................................................. 40 

3.4.3. Allele specific polymerase chain reaction for JAK2V617F mutation ....... 41 

3.4.3.1. Gel electrophoresis of amplification products ........................... 41 

3.4.4. Real-Time quantitative PCR for JAK2V617F mutation  .......................... 42 

3.4.5. Reference to MPL mutations screening  ................................................. 43 

3.5. Flow cytometry ................................................................................................ 43 

3.5.1. Platelet baseline and activation studies .................................................. 44 

3.5.2. Platelet mepacrine uptake and release test ............................................ 44 

3.5.3. Evaluation of platelet-leukocyte aggregates ........................................... 45 

3.5.4. CD11b and TF expression in PMN and monocytes at baseline and after 

LPS stimulation ................................................................................................. 45 

3.6. Statistical analysis ........................................................................................... 46 

 

 CHAPTER 4 – RESULTS ............................................................................................ 47 

4.1. Characteristics of the patients ......................................................................... 48 

4.2. Molecular studies ............................................................................................. 49 

4.2.1. Allele specific polymerase chain reaction for JAK2V617F mutation ....... 49 



10 
 

3.4.4. MPL exon 10 mutations screening  ......................................................... 49 

3.4.4. Real-Time quantitative PCR for JAK2V617F mutation  .......................... 50 

4.3. Flow cytometry ................................................................................................ 50 

4.3.1. Platelet activation studies ........................................................................ 50 

4.3.2. Mepacrine uptake and release test ......................................................... 52 

4.3.3. Platelet-leukocyte aggregates ................................................................. 52 

4.3.4. CD11b expression: baseline and after LPS stimulation .......................... 53 

4.3.5. Monocyte TF expression: baseline and after LPS stimulation ................ 54 

4.4. Influence of JAK2V617F allele burden ............................................................ 55 

4.4.1. Platelet studies ........................................................................................ 56 

4.4.2. Platelet-leukocyte aggregates ................................................................. 57 

4.4.3. CD11b expression in monocytes and PMN ............................................ 58 

4.4.4. Tissue factor expression in monocytes ................................................... 59 

4.5. Thrombosis and JAK2V617F mutation ............................................................ 59 

 CHAPTER 5– DISCUSSION ....................................................................................... 61 

 CHAPTER 6 – CONCLUSION .................................................................................... 67 

CHAPTER 7 – BIBLIOGRAPHY .................................................................................. 70 

 

 

 

 

 

 

 



11 
 

RESUMO 
 

Introdução: As neoplasias mieloproliferativas (MPN) são doenças da “stem-cell” 

hematopoiética e que estão associadas à ocorrência de eventos trombohemorragicos. 

Diferentes estudos sugerem que doentes com Policitémia Vera (PV) e Trombocitémia 

Essencial (ET) apresentam um estado protrombótico e que este poderá estar 

relacionado não só com a activação constitutiva da via JAK/STAT mas também com a 

carga alélica da mutação JAK2V617F. 

Objectivo: Investigar a presença de marcadores de activação hemostática e a relação 

destes com a carga alélica JAK2V617F e trombose.   

Métodos: Foram estudados 28 PV, 47 ET e 48 controlos saudáveis. Os doentes estão 

clinicamente estáveis e sob tratamento com Hidroxiureia; tempo de seguimento de 78 

meses nas PV e de 84 meses nas ET. Sete doentes com PV e 16 com ET 

apresentaram história de trombose ao diagnóstico. Após consentimento informado, os 

doentes suspenderam a aspirina nos 10 dias prévios ao estudo. Por citometria de fluxo 

(FACSCalibur, BD) avaliou-se: expressão de P-selectina (CD62P) e granulofisina 

(CD63) plaquetar, basal e após estímulo com agonistas; capacidade de captação e 

libertação de mepacrina nas plaquetas; agregados plaqueta-leucócito; expressão de 

CD11b nos leucócitos e de factor tecidular (TF) nos monócitos, basal e após estímulo 

com LPS. A pesquisa da mutação JAK2V617F foi efectuada por PCR alelo específica 

e a quantificação por PCR em Tempo Real (JAK2 MutaQuant, Ipsogen). O screening 

de mutações no exão 10 do gene MPL, foi efectuado por SSCP e as mutações 

identificadas por sequenciação (ABI 310 Genetic Analyzer, AB).  

Resultados: A mutação JAK2V617F foi encontrada em 28 PV (100%) e 28 ET (60%); 

2 doentes com ET, apresentam mutações no exão 10 do gene MPL: W515L e R524C. 

Os doentes apresentam um aumento significativo de expressão basal de CD62P e de 

CD63 e de resposta ao ácido araquidónico; em todos os doentes a resposta ao TRAP6 

está significativamente diminuída; 77% das PV e 50% das ET apresentam um fenótipo 
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de “storage pool disease”. Todos os doentes apresentam um aumento significativo de 

expressão basal de CD11b nos leucócitos e de TF nos monócitos. Os agregados 

plaqueta-leucócito estão significativamente aumentados em todos os doentes, sendo 

que os agregados plaqueta-neutrófilo (PMN) estão significativamente aumentados nas 

ET vs PV. Os doentes com carga alélica JAK2V617F>50% apresentam um aumento 

significativo na expressão de CD11b nos leucócitos e de agregados plaqueta-PMN, 

em comparação com os doentes com carga alélica <50%; as PV com carga alélica 

>50% apresentam um aumento estatisticamente significativo de TF nos monócitos. 

Nas ET, foi encontrada uma correlação estatisticamente significativa entre trombose e 

a presença de mutações JAK2V617F ou MPL, e entre  trombose e carga alélica>50%. 

Esta associação não foi encontrada nas PV. A relação entre carga alélica e alterações 

plaquetares é difícil de estabelecer, uma vez que não foram encontradas alterações 

estatisticamente significativas. 

Discussão: Os dados apresentados mostram, com significado estatístico, que os 

doentes com PV e ET apresentam plaquetas e leucócitos activados e um aumento de 

agregados plaqueta-leucócito em circulação. Os doentes com carga alélica>50% 

apresentam marcadores de activação significativamente aumentados em comparação 

com os doentes com carga alélica <50%, consistente com a influência da carga alélica 

e perda de heterozigotia para a mutação JAK2V617F na activação celular. Nas ET a 

presença da mutação e a carga alélica >50% está significativamente associada a 

eventos trombóticos ao diagnóstico. 

Conclusão: Uma vez que as tromboses representam, nos doentes com MPN, uma 

das principais causas de co-morbilidade, foram investigados marcadores de activação 

da hemostase e a sua relação com a carga alélica JAK2V617F. Os resultados 

apresentados ilustram diferentes mecanismos que favorecem a trombose nas PV e 

ET, nomeadamente, activação basal das plaquetas, monócitos e PMN, aumento de FT 

nos monócitos e de aumento de agregados plaqueta-leucócito em circulação. 
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ABSTRACT 
 

Introduction: Myeloproliferative neoplasms (MPN) are stem cell-derived proliferative 

diseases associated with thrombohemorragic diathesis. Different studies suggested 

that Polycythemia Vera (PV) and Essential Thrombocythemia (ET) patients have a 

baseline protrombotic status, which could be related to constitutive JAK2/STAT 

signalization in correlation with JAK2V617F mutation allele burden.  

Objective: Investigate the baseline hemostatic activation markers and their correlation 

with the JAK2V617F allele burden and thrombosis.   

Methods: 28 PV and 47 ET patients and a control group of 48 healthy volunteers were 

studied.  All the patients are under hydroxyurea treatment and remain clinically stable 

with follow up periods of 78 months for PV and 84 months for ET. Seven PV and 16 ET 

patients have a history of thrombosis at diagnosis. With patients’ written informed 

consent, aspirin was withdrawn for 10 days prior the studies. Using flow cytometry 

(FACSCalibur, BD), we evaluated: platelet P-selectin (CD62P) and granulophysin 

(CD63), at baseline and after stimulation with agonists; platelet uptake and release of 

mepacrine; platelet-leukocyte aggregates, leukocyte CD11b and monocyte Tissue 

factor (TF) at baseline and after stimulation with LPS. JAK2V617F allele was detected 

by Allele specific PCR and quantified by Allele specific Real Time PCR (JAK2 

MutaQuant, Ipsogen). MPL exon 10 mutations were screened by SSCP and identified 

by direct sequencing (ABI 310 Genetic Analyzer, Applied Biosystems). 

Results: JAK2V617F mutation was found in 28 PV patients (100%) and in 28 ET 

patients (60%). In two other ET patients we found MPL gene exon 10 mutations: 

W515L and R524C. All patients have, at baseline, a significant increased expression of 

CD62P and CD63, and a significant increase response to arachidonic acid and 

diminished levels of CD62P and CD63 following TRAP6 activation. A phenotype of 

storage pool disease was found in 77% of PV and 50% of ET patients. At baseline all 

patients have activated leukocytes with a statistically significant increase in CD11b 
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expression and monocyte-TF. The latter was significantly elevated in PV vs ET 

patients. Circulating platelet-leukocytes aggregates were significant higher in all 

patients; in the ET, platelet-PMN aggregates were significantly increased vs PV 

patients. Patients with JAK2V617F>50%, have a statistically significant increase in 

leukocytes CD11b expression and in platelet PMN-aggregates, in comparison with 

those with JAK2V617F<50%;PV patients with allele burden >50% have a statistically 

significant increase in monocytes-TF. In ET patients we found a statistically significant 

correlation between thrombosis and JAK2 or MPL mutations, furthermore, ET patients 

with JAK2V617F allele burden >50% have statistically higher incidence of thrombosis. 

No such correlation in PV patients. Regarding to platelets activation, it’s not evident 

such effect since no significantly differences were found.    

Discussion: These data shown, with statistically significance that PV and ET patients 

have circulating activated platelets and leukocytes, and increased number of platelet-

leukocyte aggregates. Consistent with the influence of allele burden and acquisition of 

loss of heterozygosity for the JAK2V617F mutation in leukocyte activation, all patients 

with allele burden >50% presented significantly increased activation markers 

comparing to patients with allele burden >50%. In ET patients the presence of 

JAK2V617F mutation and allele burden>50% was significantly associated with a 

previous history of thrombosis.  

Conclusion: As thrombosis is one of the main co-morbilities in MPN patients, we 

investigated the baseline hemostatic activation markers and their correlation with the 

JAK2V617F allele burden.  These data clearly illustrate several mechanisms favoring 

thrombosis in PV and ET patients, namely, the baseline activation of platelets, 

monocytes and PMNs leukocytes, increased monocyte-TF and platelet-leukocytes 

aggregates.  

 

 

 



15 
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1.1. MYELOPROLIFERATIVE NEOPLASMS 

 

Myeloproliferative neoplasms (MPN) constitute a group of hematopoietic 

malignancies that feature enhanced proliferation and survival of one or more myeloid 

lineage cells (i.e. granulocytic, erythroid, megakaryocytic and mast cell (Swerdlow et 

al., 2008). In 1951, William Damesked highlighted the phenotypic similarities among 

chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia 

(ET) and primary myelofibrosis (PMF). In 1960, CML became the first cancer to be 

associated with a specific cytogenetic marker, the Philadelphia chromosome (Ph), 

which was shown to harbor a reciprocal chromosomal translocation, t(9;22)(q34,q11) 

and led to the identification of disease-causing mutation (BCR-ABL) (Tefferi and 

Gilliand, 2007). Accordingly, the classic MPN were sub-classified into Ph-positive 

(CML) and Ph-negative chronic myeloproliferative neoplasms including PV, ET and 

PMF. Collectively, MPN are stem cell-derived clonal proliferative diseases that share a 

common stem cell-derived clonal heritage and their phenotypic diversity is attributed to 

different configurations of abnormal signal transduction, resulting from a spectrum of 

mutations affecting protein tyrosine-kinases or related molecules (Tefferi and 

Vardiman, 2008). Despite an insidious onset each MPN has the potential to undergo to 

a stepwise progression that terminates in marrow failure due to myelofibrosis, 

ineffective haematopoiesis or transformation to acute blast phase (Swerdlow et al., 

2008). 

 In early 2005, the identification of a gain-of-function mutation in the Janus 

kinase 2 gene, named JAK2V617F, opened a new era in the understanding of Ph-

negative neoplasms. Since then, the discovery of mutations in MPL and in JAK2 exon 

12 was also reported. The presence of any of these molecular abnormalities, that point 

a clonal myeloproliferations, stands as a major diagnosis criteria in the revised 2008 

classification of myeloid neoplasms of the World Health Organization (WHO).  
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The three main Ph-negative neoplasms are Polycythemia Vera (PV), Essential 

Thrombocythemia (ET) and Primary Myelofibrosis (PMF) – here we will focus only on 

PV and ET. 

 

 

1.1.1. Polycythemia Vera  

 

 PV is characterized by increased red blood cell production independent of 

mechanisms that normally regulate erythropoiesis. Virtually all patients carry the 

somatic gain-of-function mutation of the Janus 2 kinase gene (JAK2), JAK2V617F, or 

another functionally similar JAK2 mutation that causes the proliferation not only of the 

erythroid lineage but of the granulocytes and megakaryocytes as well, i.e., 

panmyelosis. The natural progression of PV includes a low incidence of evolution to a 

myelodysplastic/preleukaemic phase and/or to acute leukaemia (AML) (Swerdlow et 

al., 2008). The reported annual incidence of PV increases with advanced age and 

varies from 0.7 to 2.6 per 100000 inhabitants in Europe and North America. Most 

reports indicate a slight male predominance, with M:F ratio ranging from 1-2:1. The 

median age at diagnosis is 60 years; patients younger than 20 years are rarely 

reported. Median survival times >10 years are commonly reported. Most patients die 

from thrombosis or hemorrhage, but up to 20% succumb to myelodysplasia or acute 

myeloid leukemia. Among patients who have not been treated with cytotoxic agents the 

incidence of MDS and acute leukemic transformation is only 2-3%, but it increases to 

10% or more following certain types of chemotherapy. The predictive risk factors for 

thrombosis or hemorrhage are not well defined. 
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1.1.2. Essential Thrombocythemia  

  

ET is a myeloproliferative neoplasm that involves primarily the megakaryocytic 

lineage. It is characterized by sustained thrombocytosis ≥ 450x109/L in the peripheral 

blood, increased numbers of large, mature magakaryocytes in the bone marrow (BM), 

and clinically by episodes of thrombosis and/or haemorrhage. No specific molecular 

genetic or cytogenetic abnormalities are known associated with ET. Approximately 40-

50% of the ET patients carry the JAK2V617F or a similar functional mutation 

(Swerdlow et al., 2008). These mutations are present in almost all the PV and in some 

MF patients. A MPL gain-of-function mutation, MPL W515K/L, has been reported in 1% 

of ET cases. The true incidence of ET is estimated to be 0.6-2.5 per 100000 persons 

per year. Most cases occur in patients with 50-60 years, with no major sex tendency. 

However, another peak in frequency, particularly in women, occurs at about 30 years of 

age. It can also be seen in children, albeit infrequently. ET is an indolent disorder 

characterized by long symptom free intervals, interrupted by occasional life-threatening 

thromboembolic or hemorrhagic episodes. Median survives of 10-15 years are 

reported. Because ET usually occurs late in middle age, many patients life expectancy 

is nearly normal (Swerdlow et al., 2008). Transformation to acute myeloid leukemia or 

MDS occurs in <5% of patients and, when it does occur, it is likely related to previous 

cytotoxic therapy. After many years a few patients may develop BM fibrosis associated 

with myeloid metaplasia, although such progression in uncommon.    
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1.2. CLINICAL FEATURES OF MPN 

 

1.2.1. Bleeding 

 

 The reported incidence of bleeding in PV and ET at initial presentation varied 

from 1.7-20% and 3.6-37%, respectively. Retrospective studies estimated the overall 

risk of bleeding in ET in 0.33%/ patient-year (Elliott and Tefferi, 2004). 

 Bleeding manifestations in both PV and ET are predominantly mucocutaneous, 

with particular involvement of the gastrointestinal and genitourinary tracts. Bruising, 

epistaxis, and superficial mucosal hemorrhages are the most common. This type of 

bleeding pattern is consistent with platelets defects (quantitative or qualitative) or von 

Willebrand Disease (VWD) (Elliott and Tefferi, 2004). However the lack of correlation 

between platelet function abnormalities and clinical bleeding suggest alternate 

mechanisms might be involved. The risk of spontaneous hemorrhage may be 

increased when platelets counts are greater than 2000x109/L. Aspirin is an important 

contributing factor to the overall hemorrhage in MPN (Rao, 2007).  

 

 

1.2.2. Thrombosis 

  

PV and ET patients have an increased risk for both arterial and venous 

thromboses, associated with microcirculatory disturbances (Landolfi et al., 2006). The 

manifestations are particularly common at diagnosis and can occur during the latent 

phase of the disease. The precise incidence is hard to ascertain; at presentation it has 

been reported as 12-39% in PV and 11-25% in ET. The overall risk of thrombosis for 

ET was estimated in 6.6% patient-year (Elliott and Tefferi, 2004; Rao, 2007).  In two 

large trials thrombotic events occurred in 34 and 41% of the PV patients (Rao, 2007).  
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1.2.2.1. Microcirculatory disturbances 

 

 Microcirculatory disturbances are the most typical thrombotic manifestations, 

which are associated with erythromelalgia, visual and hearing symptoms, Raynaud 

phenomenon and untreatable headhache. Erythromelalgia never occurs in secondary 

thrombocytosis, suggesting that qualitative platelet abnormalities have a major 

implication in the pathogenesis of this phenomenon (Landolfi et al., 2006); 

histopathological studies demonstrate platelet-rich arteriolar microthrombi with 

endothelial inflammation and intimal proliferation (Rao, 2007). Other clinical 

manifestations of microcirculatory disturbances are transient neurological and ocular 

ischaemias (Landolfi et al., 2008). 

 

 

1.2.2.2. Arterial thromboses 

 

 Arterial thromboses dominate venous events, in both PV and ET, and are quite 

common at diagnosis with an apparent reduction during follow-up (Landolfi et al., 

2008). Thrombotic occlusions of large arteries most commonly involve cerebrovascular 

accidents (stroke and transient ischemic attacks), myocardial infarction and peripheral 

arterial occlusion (Elliott and Tefferi, 2004; Landolfi et al., 2008). A European 

Collaboration of Low dose Aspirin in PV (ECLAP) study reported a high prevalence of 

stroke at diagnosis and a tendency to thrombophilia 5-6 years previous to diagnosis 

(Landolfi et al., 2008). 
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1.2.2.3. Venous thromboses 

 

 Deep vein thrombosis and superficial phlebitis are frequent in PV and ET and 

generally involves the lower extremities (Landolfi et al., 2006). Among PV, venous 

thromboses represent approximately one-third of the total events. Thromboses at 

unusual sites, such as renal, mesenteric, portal, splenic hepatic and subclavian veins 

and intracranial sinuses, have been reported, and should lead to a careful search of a 

latent myeloproliferative neoplasm (Landolfi et al., 2006). In patients with hepatic vein 

thrombosis the prevalence of a latent MPN has been estimated to range between 40 

and 60% (Landolfi et al., 2008).  

 

 

1.2.3. Risk factors for bleeding and thrombosis 

 

ET patients with high platelet counts have more hemorrhagic than thrombotic 

complications. Also, aspirin use has been repeatedly reported as the possible cause of 

major gastrointestinal bleeding. A history of previous bleeding is an important predictor 

of major bleeding during follow-up (Landolfi et al., 2006). 

It is widely accepted that age and a previous thrombosis are predictive risk 

factors for recurrent thrombosis, in both PV and ET (DeStefano et al., 2008; Harrison, 

2005). Regarding the conventional risk factors for cardiovascular disease, such as 

arterial hypertension, diabetes, smoking, and hypercholesterolemia, conflicting results 

are found in the literature (Barbui et al., 2009; Passamonti et al., 2008). Hereditary 

thrombophilic states, such as congenital deficiencies of natural anticoagulants 

(antithombin, protein C and protein S) and genetic mutations (factor V Leiden and 

prothrombin G20210A) may play a role in the pathogenesis of venous thromboses. 

Elevated homocysteine levels and the presence of antiphopholipid antibodies can 

increment the risk for both venous and arterial thromboses (Landolfi et al., 2006).  
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More recently, disease-related risk factors have been considered, including 

leukocytosis at diagnosis, presence of JAK2V617F mutation, JAK2V617F allele burden 

and the role of platelet and neutrophil activation.    

 

 

1.3. PLATELETS IN MPN 

 

1.3.1. Platelets normal function  

 

 Platelets are anuclear cellular fragments derived from BM megakaryocytes. 

They contain numerous cytoplasmic structures important to hemostasis; in addition to 

mitochondria, microtubules, microfilaments and lysosomes, platelets have two major 

intracellular types of granules: the α-granules and dense granules, which are found 

only in megakaryocytes and platelets. The α-granules contain platelet thrombospondin, 

fibrinogen, fibronectin, platelet factor 4, von Willebrand factor (VWF), platelet derived 

growth factor, β-thromboglobulin and anticoagulant factors V and VIII. The dense 

granules contain ADP, ATP, serotonin and lysosomal membrane proteins such as 

CD63 (LAMP-3) and LAMP-2. Lysosomes in platelets, like those in other cells contain 

acid hidrolases, cathepsins, and lysosomal membrane proteins (LAMP-1, LAMP-2 and 

CD63) (Reed, 2007).  When platelets are stimulated, both the α and dense granules 

are released through the open canalicular system (Triplett, 2000).   

  Platelets play an important role in the hemostasis maintenance, representing 

the first line of defense in the prevention of hemorrhage. In primary hemostasis 

platelets interact with elements of the damage vessel wall, leading to the initial 

formation of a “platelet plug”. This interaction involves a series of events that includes 

platelet adhesion to components of the subendothelium, activation and shape change, 

release of platelet granular contents (α- and dense granules) with subsequent 

formation of fibrin-stabilized platelet aggregates, and clot retraction (Figure 1).  
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  Platelets promote hemostasis by four interconnected mechanisms: i) adhesion 

to damage vascular surface promoted by VWF, a large multimeric protein secreted into 

the extracellular matrix from endothelial cells, that binds to platelet surface glycoprotein 

(GP) Ib/IX/V. Platelets can also adhere to vascular wall-associated fibrin or fibrinogen 

via GPIIb-IIIa which is expressed when platelets are activated; ii) releasing compounds, 

of both α- and dense granules, into the surrounding milieu. The granule membranes 

contain many integral glycoproteins on their inner leaflet, such as P-selectin (CD62P) 

and gp53 (CD63) which become expressed on the outer platelet membrane. The ADP 

released from dense granules leads to a fibrinogen receptor conformational change, 

and then the GPIIb/IIIa receptor that initiates the next step;  iii) the process of platelet 

aggregation, whereby the GPIIb/IIIa receptor of one platelet is bound to the same 

receptor on adjacent platelet via a fibrinogen bridge. The platelet release reaction and 

aggregation lead to the recruitment of many other platelets to the vessel wall with the 

formation of a hemostatic platelet plug, and iv) providing a procoagulant surface for 

activated coagulation proteins complexes on their phospholipid membranes. Platelet 

Figure 1 – Stages in platelet thrombus formation (adapted from 

www.med.monash.edu.au). After vessel injury, platelets adhere to 

endothelium, spread and aggregate leading to thrombus formation.  
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membrane phospholipids undergo a rearrangement during activation, with 

phosphatidylserine exposure, providing a binding site for phospholipid-dependent 

coagulation complexes that activate both factor X and prothrombin (Kottke-Marchant 

and Corcoran, 2002).   

Platelet activation results from exposure of the platelet to damage endothelium 

or underlying components of the vessel wall. Other biological compounds are involved 

in platelet activation, including thrombin, epinephrine, ADP, and thromboxane A2 

(Triplett, 2000).  

 

 

1.3.2. Platelets abnormalities in MPN 

 

 Owing to the particular features of a thrombohemorrhagic diathesis in MPN, 

most experimental in vitro studies have attempted to demonstrate and characterize 

possible platelet defects. A large number of morphological, functional and biochemical 

abnormalities have been identified including qualitative and quantitative platelet 

defects; however, their clinical significance remains elusive. Platelets abnormalities 

likely result from an abnormal clone of stem cells, however some alterations may be 

secondary to in vivo enhanced platelet activation. These abnormalities possibly 

contribute to the morbidity and mortality of these disorders, but the precise 

mechanisms are poorly understood (Rao, 2007). Platelet function is most commonly 

assessed by platelet aggregation studies; unfortunately, although platelet aggregation 

studies are frequently abnormal (demonstrating either or both hypo- and 

hyperfunction), a disappointing lack of clinical correlation with haemostatic 

complications (either bleeding or thrombosis) has been the rule (Elliott and Tefferi, 

2004; Shafer, 1984). Nevertheless, aggregation measurements have provided some 

interesting findings, such as the reduced platelet response to some aggregating agents 

that include decreased primary and secondary aggregation patterns to either or both 
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epinephrine and ADP and decreased response to collagen, with generally normal 

responses to arachidonic acid (Shafer, 1984). The occurrence of bleeding and 

thrombotic events in the same patient creates further complexity in the interpretation of 

the laboratory findings.  

 

 

1.3.2.1 Platelet receptors 

 

The hemostatic response of an individual’s platelets is influenced by the 

quantity and quality of receptors expressed on the platelet surface. In MPN, receptor 

abnormalities have been reported in GPIb, GPIIb/IIIa, GPIV, GPVI adrenergic receptors 

and in the trombopoietin receptor MPL (Harrison, 2005). A study by Jensen at al (2000) 

demonstrated an increased expression of GPIV in association with a thrombotic 

history. 

 

 

1.3.2.2 Platelet activation 

 

Enhanced platelet activation is common reported in MPN. Increased expression 

of P-selectin, thrombospondin and the activated receptor GpIIb/IIIa have been variably 

correlated with thrombosis (Harrison, 2005). Platelet activation includes formation of 

platelet microparticles that are associated with procoagulant activity. Currently, the 

pathogenesis of platelet activation in MPN is unknown, although some studies revealed 

that a proportion of patients have a deficiency of lipoxygenase, which could increase 

availability of endoperoxides to produce tromboxane A2 (Shafer, 1984). Alternative 

explanations for increased platelet activation include an effect of JAK2-activating 

mutation, interaction of the abnormal hematocrit and activated white cells.  Activated 



26 
 

platelets interact with other blood components, both cellular and circulating, and have 

the capacity to provoke endothelial activation/damage (Harrison, 2005).     

 

 

1.3.2.3 Acquired storage pool deficiency 

 

Deficiency of the platelet dense granule pool of ATP and ADP (storage pool 

deficiency, SPD) is associated with impaired platelet function and bleeding diathesis. 

Acquired dense granule SPD is a common find in MPN patients (Kottke-Marchant and 

Corcoran, 2002). Decreased numbers of platelets dense-granules have been found by 

both electron microscopy and by fluorescent mepacrine labeling (Wall et al., 1985). 

Diminished intracellular and releasable platelet adenine nucleotides or diminished 

serotonin uptake and release by platelets, in association with aggregation 

abnormalities, are consistent with storage pool disease.  

 Acquired dense granule SPD in myeloproliferative neoplasms appears to result 

of in vivo activation and release of platelet dense granule contents or due to the 

production of abnormal platelets by bone marrow (Kottke-Marchant and Corcoran, 

2002; Shafer, 1984).       

 

 

1.3.2.4 Thrombocytosis 

 

 Platelets counts have not been significantly correlated with thrombotic risk in 

either PV or ET (Austin and Lambert, 2008). Paradoxically, marked thrombocytosis 

might be responsible for hemorrhagic rather than thrombotic manifestations in ET 

patients; this is partially attributed to an acquired von Willebrand syndrome, as result of 

increased clearance of the large von Willebrand factor multimers from plasma. 

Microcirculatory disturbances are more frequent in patients with thrombocytosis than in 
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those with normal platelet counts. Platelets counts reduction lead to a substantial 

amelioration of both hemorrhagic and microcirculatory disturbances. The antithrombotic 

efficacy of chemotherapy in high-risk ET patients is clearly demonstrated and can be 

attributed not only to platelets reduction but also to mechanisms related to inhibition of 

proliferation of all myeloid cell lines, with a possible effect on mechanisms regulating 

platelets and leukocytes activation (Harrison, 2005; Landolfi et al., 2006). 

 

 

1.4.  LEUKOCYTES IN MPN 

 

 Increased white blood cells count – leukocytosis - is a risk factor for thrombosis 

in patients with PV and ET. However, also qualitative abnormalities of leukocytes, 

particularly the polymorphonuclear leukocytes (PMNs), can occur and contribute to the 

hemostatic system activation, thus favoring a hypercoagulable state. 

 Activated neutrophils can affect the hemostatic system mainly by: 1) production 

of reactive oxygen species; 2) release of storage pools granules, such as 

CD11b/CD18, CD66 and β1 integrins, in the circulation; and 3) active interactions with 

other vascular cells, as platelets, monocytes, and endothelial cells.  

The neutrophils and platelets interaction is coordinated through an adhesion 

cascade of events in which platelet P-selectin binds to P-selectin glycoprotein 1 

(PSGL-1) on neutrophils. Subsequent adhesion is mediated by the neutrophil surface 

β-2 integrin CD11b/CD18 (Mac-1) to either platelet GPIb or to fibrinogen bound to 

platelet GPIIb/IIIa. Mac-1 is constitutively expressed on the neutrophil surface and is 

additionally stored in secondary granules, which are mobilized to the cell surface via 

exocytosis (Falanga et al., 2005). In vitro, interaction between the activated platelets, 

neutrophils, and monocytes increases the procoagulant activity. 

The interplay between activated neutrophils and activated platelets generates 

neutrophil/platelet mixed aggregates. Increased levels of circulating mixed aggregates 
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have been found in pathologic conditions associated with a susceptibility to thrombosis 

(unstable angina, cardiac infarction, venous stasis ulceration, stoke) and more recently 

to myeloproliferative neoplasms (PV and ET) (Falanga et al., 2005; McEver, 2007).           

Different studies have attributed this phenomenon to platelet activation, however, PMN 

from MPN patients also express high levels of the β2 integrin CD11b, which is a 

prominent site for platelet activation (Figure 2). In a study of Fallanga et al. (2005), 

circulating PMN/platelets aggregates were measured simultaneously to the levels of 

activated PMN and activated platelets and results suggested a role for the activated 

PMN in the formation of high percentage of circulating mixed aggregates; this was 

further supported by the evidence that, in vitro induced PMN activation resulted in a 

significant increase of PMN-platelet aggregate formation. In ET patients receiving 

aspirin, the increment in CD11b and PMN/platelet aggregates was significantly lower 

compared with non-aspirin treated ET subjects.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 - Mechanisms promoting interaction of platelets,

neutrophils and monocytes and the production of prothrombotic

substances (Landolfi et al, 2008). LAP, leukocyte alkaline phosphatase;

TNF, tumor necrosis factor.  
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1.5. MOLECULAR MECHANISMS OF MPN 

 

1.5.1. The JAK2 mutations  

 

The Janus kinase (JAK) family proteins are cytoplasmic tyrosine kinases that 

participate in cytokine receptor superfamily signaling, which transduces signals 

downstream of type I and II cytosine receptors via signal transducers and activators of 

transcription (STAT). Four JAK proteins have been identified: JAK1, JAK2, JAK3 and 

the tyrosine kinase 2 (Tyk2). On the basis of homology, JAKs share seven homology 

domains (JH), denoted as JH1-JH7 (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

  

From de C to the N terminus, JH1 represents the kinase domain, JH2 the 

pseudokinase domain, JH3 and JH4 contain the SH2-like domain and linker regions, 

whereas JH5-JH7 contain a FERM domain. The FERM domain of JAKs is responsible 

for appending JAKs to cytokine receptors (Kota et al., 2008). JAKs N terminus is 

required for binding to receptors, chaperoning and stabilizing them at the surface, 

whereas the kinase domain is absolutely crucial for signaling. The pseudokinase 

Figure 3 – Schematic illustration of JAK2 and the different homology

(JH) domains (adapter from Kota J et al. 2008). The V617F mutation occurs

in the pseudokinase domain rendering the kinase domain constitutively active.

Exon 12 mutations, such as K539L, occur in the linker region between the

JH3 and JH2 domains. Tyrosine residues that can be phosphorilated are

depicted by their single letter.  



30 
 

domain precedes the kinase domain and, because of sequence differences at key 

residues required for catalysis, it cannot transfer phosphate and thus is catalytically 

inactive. Nevertheless, the pseudokinase domain is structurally required for the 

response of JAKs to cytokine receptor activation and for inhibiting the basal activity of 

the kinase domain. 

 

JAKs are crucial for normal haemopoiesis; The JAK/STAT pathway is the 

crucial step in signaling for numerous cytokines, including erythropoietin (EPO), 

thrombopoietin (TPO), granulocyte-macrophage colony-stimulating factor (GM-CSF), 

growth hormone, interleukin-3 and interleukin-5.  

 

The type I cytokine receptors lack intrinsic tyrosine kinase activity. When a 

ligand binds a receptor, a conformational change in the receptor brings two JAK2 

proteins close enough together to allow them to phosphorylate each other (Figure 4). 

Phosphorylated JAK2 acts as an activated tyrosine kinase, phosphorylating the 

cytoplasmic domains of type I cytokine receptors, which become a docking site of 

STAT proteins. Following activation, Jak kinases are able to phosphorylate another 

family of proteins known as the STAT proteins (signal transducers and activators of 

transcription). Phosphorylated STAT proteins are then able to enter the nucleus and 

bind to DNA acting as transcription factors, and leading to a cellular response. 

Activated Jaks can also phosphorylate the protein Shc, which, in turn, associates with 

the adaptor protein Grb2. The latter connects to the nucleotide exchange factor Sos, 

which controls the GTPase activity of a small membrane-bound protein termed ‘Ras’. 

Activated Ras in the GTP-bound state can then induce signaling via a number of 

phosphorylation cascades, including the MEK–MAP kinase pathway and the 

phosphatidylinositol 3-kinase (PI-3 kinase) pathway, which, in turn, lead to gene 

induction and a cellular response (Smith and Fan, 2008). 
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Most cytokine receptors can associate more than one JAK kinase, but it has 

been shown that Jak2 deficient myeloid progenitors fails to respond to EPO, TPO, or 

GM-CSF, and that Jak2 deficiency results in an absence of definitive erythopoiesis. 

These data suggest that JAK2 is the predominant kinase involved in myeloid cell 

proliferation and differentiation. 

 

 

 

 

 

Figure 4 – JAK2V617F signaling in MPN (Delhommeau F et al., 2006). In the

presence of a homodimeric receptor (like EPOR), the two JAK2V617F proteins

bound to the intracellular domain of the receptor transphosphorylate its tyrosine

residues. In turn, STAT5, PI3K, and RAS signaling pathways are activated, leading

to downstream modulation of transcription and protein levels for cell cycle,

proliferation and apoptosis-related factors. P,phosphate; PIP2 and PIP3,

phosphatidyl inositol bi- and triphosphate.   
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1.5.1.1. JAK2V617F mutation  

 

In 2005, while studying the mechanisms responsible for the Epo-independent 

growth characteristic of PV progenitors, and the acquired uniparental disomy (UPD) of 

chromosome 9p24, several groups reported the presence of a mutated form of the 

JAK2 protein (Kilpivaara and Levine, 2008). They found a G→ T transversion at 

nucleotide 1849, in exon 14, resulting in the substitution of valine to phenylalanine at 

codon 617 - JAK2V617F (Kralovics et al., 2005). The JAK2V617F mutation occurs in 

the pseudokinase domain (JH2) of JAK2 gene, and is found in the majority of patients 

with Ph-negative MPN (PV, ET, PMF). The precise structure of JH2 domain has not 

been solved, however, based on the homology to JH1 domain, it has been suggested 

that JH2 domain negatively regulates JH1 kinase activity, likewise to the autoinhibitory 

role of juxtamembrane domains in receptor tyrosine kinases. Thus, it is expected that 

JAK2V617F mutation disrupts the inhibitory effect on JAK2 kinase activity (see Figure 

2) (Kota et al., 2008). The V617F amino acid change results in a gain-of-function of 

JAK2, which, in an autonomous growth factor-independent manner, activates 

downstream signaling pathways (Figure 3). This mutation is not present in the germ 

line, consistent that JAK2V617F is acquired as a somatic disease allele in the 

hematopoietic compartment (Levine and Gilliand, 2008). The JAK2 is the predominant 

kinase involved in myeloid cell proliferation and differentiation, therefore, the V617F 

gain-of-function mutation in JAK2 is observed in a spectrum of myeloid malignancies 

and JAK2V617F positive cells are hypersensitive to cytokine stimulation.  

The identification of JAK2V617F provided an important insight into the 

pathogenesis of PV, ET and MF. However, the same JAK2V617F is present in 95% of 

PV in about 50% of ET and MF, raising questions how a single mutation is commonly 

associated with apparently distinct phenotypes.  
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1.5.1.2. Exon 12 JAK2 mutations   

 

Since 2007, different somatic missense, deletion and insertion mutations in 

JAK2 exon 12 have been identified in JAK2V617F-negative PV involving amino acid 

residues F537-E543 (Butcher et al., 2007). This region of seven highly conserver 

amino acids lies between the Scr homolog 2 (SH2)-like motif and the JH2 domain of 

JAK2.  In vitro studies demonstrated that mutations is this region make hematopoietic 

cells’ growth cytokine independent, and expression of JAK2 exon 12 in vivo causes 

polycythemia and leukocytosis, as is observed for JAK2V617F. Studies have found 

these alleles in PV but not in ET or MF.    

 

 

1.5.2. The MPL mutations  

 

MPL (myeloproliferative leukemia virus oncogene) belongs to the hematopoietin 

receptor superfamily. MPL is the key growth and survival factor for megakaryocytes  

and is located on chromosome 1p34, includes 12 exons and encodes for the 

thrombopoietin receptor (Tefferi, 2008). MPL somatic mutations were first described in 

2006 among patients with JAK2V617F-negative PMF and induce PMF-like disease 

with thrombocytosis in mice. MPL mutations are rare and their occurrence is largely 

limited to patients with MPN, namely ET and PMF. MPLW515L, the most frequent 

MPN-associated MPL mutation, results from a G to T transition at nucleotide 1544 

(exon 10), resulting in a tryptophan to leucine substitution at codon 515. MPLW515K 

and MPLS505N were described in ET and PMF, with mutational frequencies ranging 

from 3 to 15%. MPLS505N has been found in familial thrombocytosis, associated with 

an MPN phenotype, including splenomegaly, myelofibrosis and increased risk to 

thrombosis (Kilpivaara and Levine, 2008). 
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Like JAK2 mutations, MPL515 mutations are stem cell-derived events that 

involve both myeloid and lymphoid progenitors (Tefferi, 2010). MPL mutant-induced 

oncogenesis also results in constitutive JAK-STAT activation. Some patients with ET or 

PMF display multiple MPL mutations and others a low allele burden JAK2V617F clone 

together with a higher allele burden MPL. Homozygosity for MPL mutations is also 

ascribed to acquired UPD (Tefferi, 2010).   

 

 

1.5.3. One mutation and different phenotypes 

 

How does a single mutation contribute to the pathogenesis of three clinical 

distinct clinical disorders, PV, ET and MF?  

The answer to this question remains unclear, but clinical, biological and 

pathological data have lead to three potential hypotheses that although explanatory, 

are not mutually exclusive.  

The gene dosage hypothesis, postulates a correlation between disease 

phenotype and the proportion of JAK2V617F mutant alleles introducing the concept of 

allele burden, i.e,  ratio between mutant and wild type JAK2 in hematopoietic cells 

(Francesco and Elisa, 2009). Studies describing JAK2V617F identified subsets of 

patients homozygous for the JAK2V617F allele, consistent with the loss of 

heterozygosity (LOH) at the JAK2 locus. Unlike classical LOH observed with tumor 

suppressor genes, in which one allele is inactivated by mutation and the second by 

deletion, LOH and the resultant JAK2V617F homozygosity is copy neutral – result of 

acquired uniparental disomy (UPD) at chromosome 9p24 after mitotic recombination 

(Kilpivaara and Levine, 2008). Conceivably, duplication of mutant allele is expected to 

result in a higher level of JAK2/STAT activation than in cells harboring one mutant and 

one wild-type allele, possibly because of the loss of competition between normal and 

mutated allele and/or impaired interaction of mutant JAK2 with cellular regulators such 
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as the suppressor of cytokine signaling-3 (SOCS3) (Vannucchi and Guglielmelli, 2008). 

Patients’ genetic data is consistent with the notion that JAK2V617F gene dosage 

influences MPN phenotype, as homozygous JAK2V617F mutant erythroid colonies are 

observed in most patients with PV, but are rarely observed in ET. Thus, a high level of 

JAK2 signaling favors an erythroid phenotype and a low JAK2 state favors a 

megakaryocyte phenotype. 

A second hypothesis advocates the existence of a pre-JAK2 phase in which 

additional somatic mutations or inherited predisposing alleles establish clonal 

hematopoiesis before the acquisition of JAK2V617F. Blast cells of AML developed in 

patients with a preceding JAK2V617F-positive MPN were often JAK2V617F negative, 

indicating that they might derive from the transformation of a pre-JAK2V617F mutated 

hematopoietic stem cell that was originally at the basis of the MPN itself (Vannucchi 

and Guglielmelli, 2008). 

Finally, host genetic factors may contribute to phenotypic diversity among 

patients with MPN. The possibility of independently emerging multiple abnormal clones 

has recently been raised and challenges the prevailing concept that considers an 

ancestral abnormal clone that gives to mutually exclusive subclones. Recently, a 

number of stem cell-derived mutations involving JAK2 (exon 14 and 12), MPL (exon 

10), TET (across several exons), ASXL1 (exon 12), CBL (exons 8 and 9), IDH1 (exon 

4), IDH2 (exon 4) and IKZF1 (deletion of several exons) have been described in 

chronic or blast-phase MPN (Tefferi, 2010).  
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CHAPTER 2 – OBJECTIVES 
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2.1. MAIN OBJECTIVE 

 

As thrombosis is one of the main co-morbilities in MPN patients, we 

investigated the baseline hemostatic activation markers and their correlation with the 

JAK2V617F allele burden.   

 

 

2.1.1. Specific objectives 

 

 quantify JAK2V617F allele burden, using Real Time Quantitative-PCR; 

 evaluate baseline activation markers accessing by flow cytometry: 

 platelet activation and response to agonists; 

 platelet leukocyte-aggregates; 

 monocytes and PMNs leukocytes CD11b expression; 

 monocyte-TF; 

 correlate the allele burden and activation parameters; 

 correlate the JAK2V617F allele burden and thrombosis. 
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CHAPTER 3 – MATERIAL AND METHODS 
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3.1. PATIENTS 

 

  Seventy-four patients with PV and ET were enrolled into the study after giving 

written informed consent. The patients were diagnosed according to WHO 2008 

classification and included 28 patients with PV and 47 patients with ET. All the patients 

are under hydroxyurea treatment and remain clinically stable with follow up periods of 

78 months for PV and 84 months for ET. Forty-eight healthy subjects without history of 

thrombohemorrhagic events acted as the control group.   

 

 

3.2. BLOOD SAMPLES AND REAGENTS 

 

Peripheral blood samples were obtained in trisodium citrate tubes (vacutainer 

system) and the first 3 ml of blood were discarded. Platelet studies were initiated within 

one hour after blood collection and leukocyte studies were accomplished within a 

maximum of 4 hours after sample collection. Monoclonal antibodies (mAbs) used were 

all purchased from Becton Dickinson (BD, USA).  Platelets were activated using 

Thrombin Receptor Activator Peptide 6 (TRAP6), ADP, Arachidonic Acid sodium salt 

and Epinephrine bitartrate salt (Sigma Chemical, St Louis, USA). Quinacrine (Sigma 

Chemical, UK) was used as fluorescent to detect platelets dense granules. For 

leukocyte activation studies was used lipopolysaccharide (LPS) from E. coli (Sigma 

Chemical, USA). 
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3.3. ROUTINE HEMATOLOGICAL ASSAYS 

 

White blood cell differential count, hematocrit, hemoglobin, red blood cell and 

platelet counts were determined by automated methods using a Cell Dyn 4000 

(Abbott). 

 

 

3.4. MOLECULAR STUDIES 

 

3.4.1. DNA extraction 

 

DNA was extracted from whole blood using JETQUICK Blood & Cell Culture 

Spin Kit  (Genomed)  protocol according to manufacture instructions.  Briefly, whole 

blood cells were lysed by a combination of proteolytic enzyme (Proteinase K), 

detergent and a chaotropic salt. The lysate was directly applied in high specified silica 

membrane; several washes were performed to remove contaminants, and the purified 

DNA was eluted in 100 µL of water. DNA samples were stored at 4ºC or -20ºC. 

 

 

3.4.2. DNA quantification 

 

DNA was quantified by spectofotometry with a NanoDrop1000 (Thermo 

Scientific). Samples were diluted in sterile water at a final concentration of 5 ng/µL for 

RQ-PCR assays. 
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3.4.3. Allele-specific polymerase chain reaction for JAK2V617F mutation  

 

Allele-specific polymerase chain reaction (ASO-PCR) exploits the fact that 

oligonucleotides primers must be perfectly annealed at their 3’ ends for a DNA 

polymerase to extend these primers during PCR. In this technique, primers are 

designed to match with a specific nucleotide and to increase the specificity of primer 

binding, a mismatch at the third nucleotide from the 3’ end is included to maximize 

discrimination of the wild-type and mutant alleles. 

The ASO-PCR for the JAK2V617F mutation enables simultaneous amplification 

of the mutant and normal alleles plus a DNA control band with two pairs of primers in a 

single PCR tube. The primers used were the follow:   

Primer F0: 5’ TCCTCAGAACGTTGATGGCAG  3’  

Primer R0: 5’ ATTGCTTTCCTTTTTCACAAGAT 3’ 

Primer F wild-type: 5’ GCATTTGGTTTTAAATTATGGAGTATATG  3’  

Primer R mutant: 5’ GTTTTACTTACTCTCGTCTCCACAAAA 3’  
Note: mismatch nucleotide are pointed in italic; specific wild type and mutant nucleotide in bold. 

    

For the ASO-PCR, 2 µL of DNA were added to a final reaction volume of 20 µL, 

containing Quiagen Multiplex PCR Kit (Quiagen), primers F0, R0, F wild-type and R 

mutant, and water.  Amplification was performed in a thermocycler (Biometra), with an 

initial enzymatic activation of 95ºC, 10 minutes, followed by 30 cycles of amplification 

with denaturation at 95ºC, 30 seconds, annealing at 58ºC, 30 seconds, and extension 

at 72ºC during 60 seconds.   

 

 

3.4.3.1. Gel electrophoresis of amplification products  

 

PCR products were submitted to electrophoresis in agarose gel 2% 

(Ultrapure™ agarose, Invitrogen). Gel stain was performed using Sybr® Safe DNA 
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(Molecular Probes, Invitrogen) and a 100 bp DNA ladder (DNA ladder 100bp, 

Invitrogen) was used as reference for amplification products. Amplification products 

were visualized in a UV transiluminator and after photographed (Vilber Lourmat, UV 

Kodac EDAS 290).  

 

 

3.4.4. Real-Time quantitative PCR for JAK2V617F mutation 

 

Real-time quantitative PCR (RQ-PCR) permits accurate quantification of PCR 

products during the exponential phase of the PCR amplification process. The method 

employed here uses a hydrolysis probe, FAM-TAMRA, which consists of an 

oligonucleotide labeled with a 5’ reporter dye (FAM) and a downstream 3’ quencher 

dye (TAMRA).  Hydrolysis probes exploit the 5’-nuclease activity of the Taq 

polymerase; when the probe is intact, the proximity of the reporter dye to the quencher 

results in the suppression of the reporter fluorescence. If the probe hybridizes to the 

target, DNA polymerase cleaves the probe between the reporter and the quencher and 

probe fragments are then displaced from the target. The increase in fluorescence is 

directly proportional to the target copy number amount in the sample at the beginning 

of the amplification. The number of PCR cycles necessary to detect a signal above the 

threshold is Cycle threshold (Ct) and is directly proportional to the amount of target 

present at the beginning of the reaction. When using standards with a known number 

of molecules, a standard curve can be established and the precise amount of target 

present in the sample determined. 

 

The quantitative allele specific PCR technology employed here is based on the 

use of specific forward primers, for the wild-type and the V617F allele respectively. All 

samples with JAK2V617F mutation (ASO-PCR) were quantified using 
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JAK2MutaQuantTM Kit (Ipsogen) according to manufacture instructions, using a Real-

Time PCR 7300 from Applied Biosystems. 

JAK2V617F allele burden was calculated using the formula: JAK2V617F % = 

[CN V617F/ (CN V617F + CN WT)]*100, where CN is the copy number. 

 

 

3.4.5. Reference to MPL mutations screening 

 

Samples negative for JAK2V617F, were screened for MPL exon 10 mutations 

using single strand conformation polymorphism (SSCP). In the presence of an altered 

mobility compared with control, samples were sequenced by Sanger method in an ABI 

310 Genetic Analyzer (Applied Biosystems). Note:  MPL mutation screening was performed 

by other element of the group. 

 

 

3.5. FLOW CYTOMETRY 

 

Flow cytometry (FCM) is a technique that simultaneously measures and 

analyzes multiple physical characteristics of single particles, usually cells, as they flow 

in a fluid stream through a beam of light. Briefly, single cells in a suspension are 

labeled with a fluorescent conjugated monoclonal antibody (mAb) and then passed 

through a flow chamber through the focused beam of a laser. After the laser light 

activates the fluorophore at the excitation wavelength, detectors process the emitted 

fluorescence and light scattering properties of each cell. The intensity of the emitted 

light is directly proportional to the antigen density. 
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3.5.1. Platelet baseline and activation studies 

 

A whole blood FCM assay was used to evaluate platelets P-selectin (CD62P) 

and CD63 (dense granules). For activation assays AA, TRAP6, EPI and ADP were 

added at final concentration of 0.1 mM, 5 µM and 25 µM, 20 µM and 5 µM, 

respectively. Briefly, whole blood was diluted in saline (1:10) and anti-CD42b-FITC and 

anti-CD62P-PE or anti-CD63-PE mAbs and were added to the polypropylene tube. 

Samples were left undisturbed for 15 minutes in the dark, at room temperature, and 

resuspended in saline before analysis in a FACSCalibur.  Platelets were identified by 

their characteristic side-scatter and FITC-conjugated anti-CD42b positivity. Ten-

thousand events were collected from each sample, and data acquisition and 

processing were performed with Cell-Quest software (BD). Results for CD62P and 

CD63 were expressed as percentage.  

 

 

3.5.2. Platelet mepacrine uptake and release test 

 

Platelets have been shown to selectively take up mepacrine (Quinacrine) into 

the dense granules of platelets. The uptake of mepacrine is useful because it emits a 

green fluorescence when excited at the appropriate wavelength of light (Wall et al., 

1985). 

For mepacrine uptake are release assay, citrated whole blood was diluted 1:10 

with saline and incubated for 20 minutes, in the dark at room temperature, with 

mepacrine 40 µM (uptake test); for release test, TRAP6 30 µM was added to the tube. 

Samples were resuspended in saline and analyzed by FCM. Ten-thousand events 

were collected and platelets were identified by their forward/side-scatter logarithmic 

mode, and green fluorescence (FL1) associated to mepacrine was quantitated. A 

positive result was recorded when mean fluorescent index (MFI) ratio between 
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mepacrine uptake and release was greater than 1.5. For each analysis a normal 

control sample was included. 

 

 

3.5.3. Evaluation of Platelet-leukocyte aggregates 

  

Whole blood samples (50 µl) were incubated with FITC-conjugated anti-CD42b, 

PE-conjugated anti-CD14 and PerCP-conjugated anti-CD45. After 15 minutes of 

incubation, samples were lysed, centrifuged, resuspended in PBS and analysed on the 

FACSCalibur (BD). 50000 events were collected for each sample. Platelet-

polymorphonuclear leukocytes aggregates (platelet-PMN) were identified by the 

forward/side-scatter proprieties of PMN and positivity for CD42b and platelet-monocyte 

aggregates were identified by CD14 and positivity for CD42b. PMN and monocyte 

aggregates were expressed as the percentage of PMN and monocytes, respectively, 

with bound platelets. 

 

 

3.5.4.  CD11b and Tissue factor (CD142) expression in PMN and Monocytes 

at baseline and after LPS stimulation  

 

Whole blood samples (50 µL) were incubated with FITC-conjugated anti-CD14, 

PE-conjugated anti-CD11b or anti-CD142 PE and PerCP-conjugated anti-CD45. After 

15 minutes of incubation at room temperature, samples were lysed, centrifuged and 

ressuspended in PBS, before analysis in the FACSCalibur (BD). For the activation 

assays, we used a method adapted from Amirkhosravi et al (1996). Briefly, 1 mL of 

citrated whole blood was incubated at 37ºC with LPS (10 µg/ml) for 1 hour, and 

subsequently processed as per other samples.  
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PMN and monocytes were identified by their forward and side-scatter properties 

and monocytes were identified by gating the CD14 positive cells; 50000 events were 

collected from each sample. Since CD11b is constitutively expressed by PMN and 

monocytes, and the number increases upon activation, therefore the results are 

expressed as mean fluorescence intensity (MFI units), representing the mean level of 

marker’s expression/cell; CD142, tissue factor, is a glycoprotein synthesized by 

monocytes, and is expressed as percentage of positive cells because is not 

constitutively expressed, and is expected that upon activation the number of positive 

cells increases. To circumvent the day to day variations in MFI values, we convert MFI 

values to molecules of equivalent soluble fluorochrome (MESF) units using 

standardized fluorescent beads (Quantum™ PE Medium Level, BangsLabs, USA).  

 

 

3.6. STATISTICAL ANALYSIS 

 

t-test was performed to assess the significance of differences between the 

mean values of continuous variables among the groups. Chi-squared (χ2) was used to 

determine significance between nominal variables. Differences were considered 

significant at a p-value<0.05. StatView 5 was used for statistical analysis.  
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CHAPTER 4 – RESULTS 
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4.1. CHARACTERISTICS OF THE PATIENTS 

 

  A total of 75 adult patients, 47 ET and 28 PV, entered in this study. At the time 

of the study all patients were receiving cytoreductive therapy with hydroxyurea (HU). All 

patients signed a written informed consent to suspend aspirin 10 days prior flow 

cytometry studies.  Patients and controls hematological parameters are summarized in 

Table 1. Platelets are significantly increased in ET patients (p<0.01). Regarding to 

thrombotic manifestations, 16 ET and 7 PV patients have a positive history of 

thrombosis at diagnosis.  

 

Table 1 – Characteristics of study subjects. 

 Controls ET PV 
    

Subjects (n) 48 47 28 

Male/Female 15/33 25/22 11/17 

Age (years) 30 (20-64) 65 (29-96) 75 (52-92) 

Hemoglobin (g/L) 13.9 (11.9-17.4) 13.9 (9.6-16.5) 14.0 (10.6-14) 

Hematocrit (%) 41.2 (35.6-51.9) 40.8 (27.6-49.9) 41.5 (29-54) 

Red blood cells (x1012/L) 4.5 (4.0-5.7) 3.9 (2.5-5.7) 3.9 (2.5-8.1) 

Leukocytes (x109/L) 6.8 (4.4-10.1) 6.3 (4-11.1) 7.1 (2.1-15) 

Platelets (x109/L) 271.5 (127-524) 457.0* (110-794) 288.0 (51-288) 
 

Thrombotic antecedents (n) 
 

0 
 

7 
 

16 
 

All values are expressed as median (range). 

*p<0.01 versus controls and PV  
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463 bp

270 bp  
229 pb  

 1        2       3      4      5

Figure 5 – Gel electrophoresis of ASO-PCR products for

JAK2V617F. The 463 bp fragment corresponds to PCR internal control;

the 270 bp to the V617F allele and the 229 bp to the wild-type allele.    

Legend: lane 1: 100 bp DNA ladder; lane 2 and 3: samples with V617F

allele and normal allele; lane 4: normal sample; lane 5: negative control.  

4.2. MOLECULAR STUDIES 

 

4.2.1. Allele-specific polymerase chain reaction for JAK2V617F mutation  

  

The JAK2V617F point mutation was detected by ASO-PCR in 28 PV (100%) 

patients and in 28 ET (60%) patients. All ET patients with no detectable JAK2V617F 

mutation were screened for MPL exon 10 mutations. 

 

  

 

 

 

 

 

 

 

 

 

 

 

4.2.2. MPL exon 10 mutations screening 

 

SSCP revealed a difference in electrophoretic mobility in 2 ET patients in 

relation to control samples. MPL gene exon 10 direct sequencing revealed two different 

mutations: W515L, a G to T transition, and a non described R524C mutation, a C to T 

transition.  
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4.2.3. Quantitative Real Time PCR for JAK2V617F 

 

  JAK2V617F allele burden was evaluated by RQ-PCR in all patients that have 

the mutation: 28 PV and 28 ET patients. PV patients present significantly higher levels 

of JAK2V617F allele burden compared to ET patients (66.1% vs 32.4%, p<0.01) 

(Figure 6). In 18 PV patients JAK2V617F allele burden was >50% and in the ET group 

10 patients presented JAK2V617F allele burden>50%.  

 

 

 

 

 

 

 

 

 

 

 

4.3. FLOW CYTOMETRY 

 

4.3.1. Platelet activation studies 

 

  Platelet activation studies were performed to evaluate platelet baseline 

expression of CD62P and CD63, and to evaluate platelet degranulation of both alpha 

(CD62P) and dense granules (CD63) after stimulus with different agonists. Results are 

summarized in Table 2. 

Figure 6 – JAK2V617F allele burden in PV and ET patients.

The JAK2V617F allele burden found in PV patients was

significantly higher than in ET. The horizontal line marks the

median and the bars show the upper and lower range of values. 
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 Baseline platelet CD62P and CD63 expression were significantly elevated in 

patients with NMP compared with controls (p<0.01). Platelet response to AA was 

significantly increased in both PV and ET (p<0.01). Regarding the TRAP6 agonist, no 

difference was found in CD62P expression after exposure to low TRAP6 (5 µM) 

concentration, however, statistically significant differences were observed after 

exposure to a higher concentration of TRAP6 (25 µM). CD63 expression in patients’ 

platelets was significantly diminished after TRAP6 activation, in both concentrations, 

comparing to controls. No difference in CD62P expression was observed between 

patients and controls after stimulation with Epinephrine and ADP.  

 

 

 

Table 2– Platelet activation studies. 

 Controls (n=48) ET (n=47) PV (n=27) 

    

% CD62P    

Baseline  2.8 (1.0-8.3) 7.1 (1.0-45.3)* 8.2 (2.3-18.3)* 

AA 0.1 mM  11.8 (2.6-47) 24.4 (2.1-82.8)* 30.5 (4.3-44.2)* 

TRAP6, 5 µM  84.4 (4-98.8) 66.5 (1.1-95) 59.8 (13.2-92) 

TRAP6, 25 µM  97.4 (87.9-99.4) 92.1 (8.9-98.5)* 89.1 (28.2-98)* 

EPI 20 µM  29.3 (9.3-52.9) 39.3 (9.9-87.8) 38.5 (5.6-59.2) 

ADP 5 µM  74.4 (31.4-98) 70.6 (41.6-93.3) 76.7 (49.9-89.6) 

% CD63    

Baseline  1.9 (0.8-3.7) 2.8 (0.5-32)* 3.4 (0.4-18.5)* 

TRAP6, 5 µM  37 (1.4-89.2) 22.2 (1.3-76.3)* 15.6 (4-57.3)* 

TRAP6, 25 µM  76.4 (49.4-96.6) 54.8 (6.2-92.9)* 49.2 (6.7-96)* 

 

All values are expressed as median (range). *p<0.01 vs controls 
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4.3.2. Mepacrine uptake and release test 

 

Platelet mepacrine uptake and release tests were negative (ratio<1.5) in 20 out 

of 26 PV patients (63%) and in 22 out of 44 ET patients (50%) (Table 3). In all controls 

the test was positive. A statistically significant reduced mepacrine uptake was verified 

in both groups of patients (p<0.01). Mepacrine release after TRAP stimulation is 

decreased in PV (p=ns). 

 

Table 3 - Platelet mepacrine uptake and release test.  

 

 

Mepacrine 

Uptake (MFI) 

Mepacrine 

Release (MFI) 

Ratio 

uptake/release 

Positive 

results (%) 

     

Controls (n=46) 11.3 (8.5-16.3) 5.3 (3.7-9) 1.97 (1.5-3) 100% 

ET (n=44) 8.2 (5.8-19.6)* 5.4 (3.1-14.9) 1.5 (1-2.9) 50% 

PV (n=26) 8.5 (3.6-18.7)* 6.3 (3.3-14-3) 1.36 (1.1-1.9) 23% 

     

 

MFI- median fluorescence intensity.   All values are expressed as median (range). Results are considered 

positive when ratio uptake/release>1.5. 

 *P<0.01 vs controls 

 

 

4.3.3. Platelet leukocyte-aggregates  

 

 Circulating platelet-monocyte (PM) and platelet-PMN aggregates, were 

determined as the percentage of monocytes and PMN, respectively, positive for 

CD42b. The results show statistically significant increased levels of PM and platelet-

PMN aggregates in both ET and PV patients compared with the control group (Figure 

7). Particularly, the percentage of PM-aggregates was 83±13 in ET, 80±10 in PV and 

64.8±13 in controls (p<0.0001) and the percentage of platelet-PMN aggregates was 

31.1±13.2 in ET and 22.5±8.9 in PV patients versus 16.1±7.2 in controls (p<0.01). ET 
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patients present a statistically significant increase in platelet-PMN aggregates 

comparing to PV patients (p<0.01).  

 

 

 

4.3.4. CD11b expression: baseline and after LPS stimulation  

 

 Monocytes and neutrophils express CD11b antigen at membrane surface; 

increased CD11b levels are expected in response to an activating stimulus, as result of 

cell degranulation and mobilization of storage pool granules.  Results are summarized 

in Table 4. 

 

 

 

 

 

 

 

§ §  § 

* 

Figure 7 – a) Platelet-monocyte and b) platelet-PMN aggregates. Percentage of

circulating platelet-monocyte and platelet-PMN aggregates. Results are expressed as

mean ± SEM. §p<0.0001 vs controls; *p<0.05 vs controls; p<0.01 ET vs PV.    
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 Baseline monocyte-CD11b expression was statistically significant increased in 

patients compared to the control group (p<0.0001). Baseline PMN-CD11b was 

statistically significant increased in ET patients comparing to control subjects (p<0.01), 

and although increased in PV patients no statistically significant differences were found 

comparing with controls. Stimulation with LPS increased monocyte and PMN CD11b 

surface expression in all groups. Statistically significant differences were observed after 

monocytes and PMN LPS stimulation of both ET and PV patients comparing to control 

subjects (p<0.01). Whether at baseline or after LPS activation, no significantly 

differences were observed between ET and PV subjects.  

 

 

4.3.5. Monocyte tissue factor expression: baseline and after LPS 

stimulation 

 

 Lipopolysaccharide (LPS) has been shown to stimulate monocytes TF 

expression. The percentage of monocytes bearing TF (CD142) was evaluated by 

whole blood flow cytometry before and after LPS stimulation. In basal conditions, PV 

and ET patients show a statistically significant increase of TF (p<0.0001) compared to 

Table 4 – Monocyte and PMN CD11b expression in controls and patients. 

 
 

CD11b - Monocytes 
 

CD11b - PMN 

 Baseline LPS Baseline LPS 

 

Controls (n=48) 138±98 342±129 70.9±41 398±156 

ET (n=47) 232±127** 432±120* 90±38* 487±150* 

PV (n=28) 274±153** 456±153* 102±95 499±149* 

 

Results are expressed in MESFx103 units and are given as mean and standard deviation. 

** p<0.0001 vs controls 

*p<0.01 vs controls 
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controls (PV: 15.7±17%; ET: 5.7±4.8%; CT: 2±1.6%) (Figure 8). The percentage of 

monocytes bearing TF, was significant increased in PV patients when compared to ET 

(p<0.05). After 1 hour incubation with LPS, an increased expression of TF in 

monocytes was observed in all groups (PV: 45.1±25%; ET: 41±19%; CT: 21.5±16%), 

with statistically significant differences between patients and controls (p<0.0001), and 

no differences between PV and ET.  

 

 

4.4. INFLUENCE OF JAK2V617F ALLELE BURDEN  

 

  In order to evaluate the influence of JAK2V617F allele burden in all the studies 

performed above, ET patients were divided in three groups: ET no mutation (JAK2 

wild-type) (n=17), ET JAK2V617F<50% (n=18) and ET JAK2V617F>50% (n=10). The 

two patients who presented MPL mutation were excluded to this analysis. PV patients 

were divided in two groups: PV JAK2V617F<50% (n=10) and PV JAK2V617F>50% 

(n=18). 

 

 

Figure 8 – Percentage of monocyte expressing tissue factor. a) Baseline

conditions, b) after incubation with LPS. Results are expressed as mean ± SEM.

§p<0.0001 vs CT; *p<0.05 PV vs ET.    

 

§*

§ 

§ 

§
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4.4.1 Platelet studies 

 

  PV and ET patients with JAK2V617F allele burden >50%, when compared to 

the others groups, have a diminished expression of both CD62P and CD63 after 

stimulation with the different agonists (Table 5). PV patients with mutant allele burden 

>50% have a significant reduced expression of CD63 after TRAP6 25 µM and a 

significant reduced expression of CD62P after ADP when comparing with PV 

JAK2V617F<50%.  Mepacrine test results are not significantly different between 

groups. 

 

Table 5 – Platelet activation and mepacrine test according to patients’ mutant allele burden. 

 
 

ET 

 

PV 

 
No mutation 

(n=17) 
 

V617F<50%
(n=18) 

 

V617F>50%
(n=10) 

 

V617F<50% 
(n=10) 

 

V617F>50%
(n=18) 

 

      

% CD62P      

Baseline  10.1 ± 10 12.5 ± 12  8.6 ± 9.5 8.5 ± 3.1 7.7 ± 3.7 

AA 0.1mM  26 ± 19 30 ± 19 27.8 ± 14 29.6 ± 11 30.5 ± 8.8 

TRAP6, 5µM  61.3 ± 30 62.8 ± 25.9 35.2 ± 22 50.6 ± 26.5 56.3 ± 19.8 

TRAP6, 25µM  83.3 ± 22.8 91.3 ± 5.7 57.3 ± 25.7 84.4 ± 18.2 80.1 ± 17.5 

EPI 20µM  38.3 ± 20.2 41.6 ± 18.1 32.9 ± 13.9 44.7 ± 16.2 32.6 ± 14.4 

ADP 5µM  

 

69.8 ± 17 72.2 ± 11.4 67.7 ± 10.4 81.2± 10 71.8 ± 10.3* 

% CD63      

Baseline 3.1 ± 2.5 5.9 ± 8.3 3.6 ± 2 5.6 ± 4.3 5.3 ± 4.6 

TRAP6, 5µM  25 ± 20.9 29.4 ± 18.5 21.9 ± 13.4 21.4 ± 17.1 21.3 ± 13.4 

TRAP6, 25µM  49.6 ± 22.2 58.6 ± 13 42.2 ± 19.6 52.1 ± 24.8 43.4 ± 23.9* 
 

Mepacrine  

positive test 

 

1 (17%) 
(n=6) 

 

5 (28%) 
(n=18) 

 

8 (50%) 
(n=16) 

 

9 (53%) 
(n=17) 

 

4 (40%) 
(n=10) 

 

All values are expressed as mean ± standard deviation; *p<0.05: PV<50% versus PV>50% 
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Figure 9 – a) Percentage of plateler-PMN aggregates and b) percentage of PM-aggregates

in patients with no mutation, JAK2V617F allele burden <50% and >50%. *p<0.05 when

comparing: ET>50% vs ET <50%; ET>50% vs ET no mutation; PV<50% vs PV>50%; ET and PV

groups. Boxes represent the maximum and minimum values and the horizontal line the mean;

the bars show the upper and lower range of values. 

 

*

*

a) Percentage of p latelet-PMN aggregates b) Percentage of platelet-monocyte aggregates

4.4.2. Platelet-leukocyte aggregates 

 

The percentage of platelet-PMN aggregates was found higher in patients with 

JAK2V617F>50% (ET: 39.7% ±12, PV: 25.6±9%), and statistically significant different 

from ET patients with no mutation and from ET and PV patients JAK2V617F<50% 

(Figure 9). No differences were found on the percentage of platelet-monocyte 

aggregates, regarding allele burden. 
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4.4.3. CD11b expression in monocytes and PMN 

 

ET and PV patients with JAK2V617F allele burden >50% have increased 

monocyte and PMN CD11b expression, at baseline levels and after activation with LPS 

(Figure 10). 

 

 

 

 

 

 

Figure 10 – Monocyte and PMN CD11b expression in patients with ET and PV according to 

allele mutation burden. a) at baseline level, *p<0.01: ET >50% vs ET no mutation and ET 

<50%; PV>50% vs PV<50%; b) after LPS activation, *p<0.01: ET >50% vs  ET no mutation and 

ET <50%; c) at baseline level, *p<0.01: ET>50% vs ET<50% and no mutation, PV>50% vs 

PV<50%; d) after LPS activation, *p<0.01: PV >50% vs PV <50%.  

*  *

* 

*  * 

*
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*

*

4.4.4. Tissue factor expression in monocytes  

 

  Patients with JAK2V617F allele burden >50% present an increased percentage 

of TF at monocyte surface, both at baseline and after LPS activation (Figure 11). PV 

patients with allele burden >50% have a statistically significant increase on TF at 

baseline compared with PV patients with allele burden <50% (22.4±18 versus 3.8 ±2.6, 

p<0.01). ET patients with allele burden >50% have higher baseline TF (7.3 ±3.5), 

comparing to ET patients with no mutation (5.1 ±5.9) and to the allele burden <50% 

(5.3 ±4.3), although differences are not statistically significant. After LPS stimulus, an 

increased monocytes TF expression occurs in both PV and ET samples, with 

statistically significant differences observed in PV patients with mutant allele burden 

>50% (p<0.01). 

 

 

 

 

4.5. THROMBOSIS AND JAK2V617F MUTATION 

 

  Our data show that ET patients with the JAK2V617F mutation have a 

statistically significant higher incidence of thrombosis (p<0.01, χ2=5.3) and that patients 

Figure 11 – Percentage of monocyte expressing TF. a) Baseline conditions, b) after

incubation with LPS. Results are expressed as mean ± SEM. *p<0.05 PV<50% vs PV>50%.   
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with JAK2V617F allele burden >50% have the highest incidence of thrombosis, with 

statistical significance (p<0.01, χ2=9). In PV patients, no association was found 

between allele burden and previous thrombosis (Table 6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 – Allele burden and thrombosis at diagnosis. 

 

 

ET (n= 47) 
 

PV (n=28) 
No thrombosis

(n=31) 
Thrombosis

(n=16) 
No thrombosis 

(n=21) 
Thrombosis

(n=7) 

JAK2V617F allele burden (%) 16.1± 22.4 35.1±25* 58.7± 30.9 56.4± 35 

JAK2V617F<50% (n) 15 6 7 3 

JAK2V617F>50% (n) 3 7* 14 4 

No mutation (n) 13 2 - - 

 

Values are expressed as mean± standard deviation. *p<0.01 vs No thrombosis 
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This study evaluates a group of 79 subjects with myeloproliferative neoplasms, 

28 with polycythemia vera and 47 with essential thrombocythemia. All the patients are 

under hydroxyurea treatment and remain clinically stable with follow up periods of 78 

months for PV and 84 months for ET. Among them, 7 PV and 16 ET patients have a 

positive history of thrombosis at diagnosis. By using allele-specific PCR the 

JAK2V617F mutation was found in 28 PV patients (100%) and in 28 ET patients (60%). 

Two ET patients, JAK2V617F negative, carry a mutation in MPL gene exon 10: W515L 

and R524C.  Both JAK2V617F and MPL mutations are somatic acquired mutations that 

have been shown to induce constitutive JAK/STAT activation. Several studies identified 

patients that carry the JAK2V617F allele in homozygosity, consistent with the lost of 

heterozygosity for the JAK2 locus. This is expected to result in a higher level of 

JAK/STAT activation, possibly due to the lack of competition between normal and 

mutated allele. The same is true for MPL mutations, although less common. Using 

quantitative real time-PCR to distinguish patients “heterozygotic” (<50%) from those 

“homozygotic” (>50%) for the JAK2V617F, we found 18/28 PV (64.3%) and 10/28 ET 

(37.5%) patients with a JAK2V617F allele burden >50%. The mutant allele burden was 

statistically significant greater in PV when compared to ET patients. This observation is 

in line with previous reports (Antonioli et al., 2008; Vannucchi et al., 2008), and in 

agreement to the gene dosage hypothesis which suggests that homozygosity favors 

the erythroid phenotype.   

In addition, other authors found significant correlations between the JAK2V617F 

mutation and the occurrence of complications in MPN patients. In our patients’ group 

we found that ET patients with JAK2 or MPL mutations have a statistically significant 

occurrence of thrombotic events at diagnose. Other studies (Vannucchi et al., 2008) 

described a significant association between thrombosis and homozygosity in ET 

patients, which is sustained after multivariate analysis, and no significant difference in 

thrombotic events between heterozygous and homozygous PV patients.  In line with 

these observations, our data show, in ET patients, a statistically significant correlation 
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between JAK2V617F allele burden >50% and thrombosis. We found no association 

regarding allele burden and thrombosis in PV patients.  

To investigate if JAK2V617F allele burden influenced platelet and leukocyte 

activation, we tested different cellular activation markers and found an increased 

membrane expression of both CD62P (P-selectin) and CD63 (granulophysin) in non-

stimulated platelets, indicating platelet activation. Similar observations were reported 

by (Arellano-Rodrigo et al., 2006; Jensen et al., 2000). When performing stimulation 

assays with different agonists, we observed statistically significant increase response 

to arachidonic acid and diminished expression of CD62P and CD63 following TRAP6 

activation, comparing to controls. The increased response to arachidonic acid could be 

explained by an increased and sustained thromboxane A2 (TXA2) generation, that has 

been reported in 40% of MPN patients, in correlation with lipoxygenase deficiency 

(Shafer, 1984). As it has been suggested, but not demonstrated by other authors, we 

observed an acquired storage pool disease in 20/26 (77%) PV and 22/44 (50%) ET 

patients. This phenotype may be a consequence of a reduced number of platelets 

dense granules or due to continuous activation conjugated with abnormal receptor 

mediated granule secretion, consistent with a low response to TRAP6 agonist. 

As referred above, both PV and ET patients have circulating activated platelets, 

expressing P-selectin, thus may adhere to PMN and monocytes via the PSGL-1, with 

subsequent activation of β2 integrin CD11b/CD18 and generation of mixed aggregates.   

Increased circulating platelet-leukocyte aggregates have been previously demonstrated 

in several pathological conditions associated with thrombosis propensity (Jensen et al., 

2001; McEver, 2007). Accordingly, when comparing to controls, we found a statistically 

significant increase of circulating platelet-monocytes and platelet-PMN aggregates in 

ET, confirming previous findings (Falanga et al., 2007; Vilmow et al., 2003) and in PV 

patients, which have not been described previously. Furthermore, we found that ET 

patients have a statistically significant increase of platelet-PMN aggregates, but not in 

platelet-monocytes, when comparing to PV.  
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Circulating platelet-leukocyte aggregates may be triggered not only by P-

selectin expression at platelets surface, but also by activated leukocytes. Whether the 

presence of activated leukocytes promotes platelets activation and how this interaction 

is translated into hemostatic activation is unclear. During cellular activation, leukocytes 

undergo phenotypic modifications with changes in expression of adhesion molecules 

on the cellular surface. The CD11b integrin (Mac-1) is responsible for the firm 

attachment of leukocytes to endothelium and platelets and is currently accepted as a 

marker of activation. Furthermore, the cooperation between activated leukocytes and 

platelets is suggested to be involved in tissue factor generation and activation of 

extrinsic coagulation system (TF binding to factor VII/VIIa) (Vilmow et al., 2003). In 

normal conditions, 80–90% of monocytes TF is latent or encrypted, having little or no 

procoagulant activity. TF expression is up-regulated by a number of pathophysiological 

agonists, as well as following P-selectin binding to PSGL-1 on monocytes (Bouchard 

and Tracy, 2002).  

When performing in vitro activation assays with LPS, an endotoxin that induces 

inflammatory response, we observed a significantly increase on CD11b and TF 

expression in ET and PV patients and in controls, confirming that cellular activation is 

related to CD11b and TF expression increments. Furthermore, we demonstrate that ET 

and PV patients have baseline activated monocytes and PMNs leukocytes in 

circulation, as they have statistically significant increase in CD11b and monocyte-TF 

when comparing to control subjects, and that TF expression is higher in PV than in ET 

patients, with statistically significant differences. These observations in ET patients are 

in line with Falanga et al (2005) and Arellano-Rodrigo et al (2006) published results; 

they did not study PV patients. Our data strongly suggest that increased monocyte TF 

expression observed in ET and PV patients is a consequence of platelets and 

leukocytes activation.   

Our observation of a consistent increase on platelets and leukocytes activation, 

in PV and ET patients, is expected to have a direct correlation to the intensity of 
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constitutive JAK/STAT pathway activation.  To access this hypothesis we studied the 

influence of allele burden in platelet activation and we found that PV and ET patients 

with allele burden >50% have a low response to agonists, comparing to patients with 

allele burden <50%, but not statistically different. However, in the PV homozygous 

JAK2V617F patients the CD62P expression, in response to ADP, and CD63 

expression, after TRAP6 stimulation, are significantly decreased. The low CD63 

expression may be a consequence of storage pool disease, which also is more 

frequently observed in our PV group of patients.  

On the other hand, we found a correlation between increased leukocytes 

activation parameters in PV and ET patients and mutant JAK2V617F allele burden: 

patients with allele burden >50% present a statistically significant increase in circulating 

platelets-leukocytes aggregates and statistically significant differences in monocytes 

and PMN CD11b for ET and PV, comparing to allele burden <50%. Finally, we found 

that patients with allele burden >50% also have increased expression of TF at 

monocyte surface, with significantly differences in PV patients. 

 The data presented here strongly suggest that homozygosity for the 

JAK2V617F mutation increases leukocyte activation, in line with Oku S. et al (2010) 

suggestion that JAK2V617F signaling stimulates the mobilization of neutrophil 

secretory vesicles (CD11b, leukocyte alkaline phosphatase) through specifically 

activation of STAT3-depedent signaling pathway. We can also conclude that platelet 

activation and abnormal platelet function are not direct consequences of JAK2V671F 

allele burden. 

 

Recently, a retrospectively study  (Antonioli et al., 2010) found that allele burden 

remains stable over a median follow-up time of 34 and 23 months in PV an ET patients, 

respectively, independently of whether patients were or not under hydroxyurea, and 

that the reduction of JAK2V617F allele burden is confined to subsets of patients. Since 

we have longer follow up periods and our patients are being treated with hydroxyurea, 
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it would be interesting to evaluate the allele burden at the time of diagnose, its 

association with thrombosis, and the hetero to homozygous progression over time. 
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We studied a group of patients with myeloproliferative neoplasms - 28 with PV 

and 47 with ET. All PV patients and 28 ET (60%) patients presented the JAK2V617F 

mutation. Two other ET patients have MPL exon 10 mutations. JAK2V617F allele 

burden >50% was more frequently found among PV patients, with statistically 

significance when compared to ET patients. Seven PV and 16 ET patients have a 

positive history of thrombosis at diagnosis.  

 

As thrombosis is one of the main co-morbilities in MPN patients, we 

investigated the baseline hemostatic activation markers and their correlation with the 

JAK2V617F allele burden.   

All patients have, at baseline, a significant increased membrane expression of 

both CD62P (P-selectin) and CD63 (granulophysin), indicating platelet activation, and 

abnormal platelet functional expressed by a significant increase response to 

arachidonic acid and diminished levels of CD62P and CD63 following TRAP6 

activation.  

At baseline all patients have activated monocytes and PMNs leukocytes, in 

circulation as showed by a statistically significant increase in CD11b expression, and 

monocyte-TF, the latter being significantly elevated in PV vs ET patients, probably 

reflecting a higher activation status in leukocytes.  

In all patients circulating platelet-leukocytes aggregates are significant higher, 

likely resulting from platelets and leukocytes activation status. The platelet-PMN 

aggregates were significantly increased in ET than PV patients, in line with a higher 

percentage of thrombosis among ET patients.  

These data clearly illustrate several mechanisms favoring thrombosis in PV and 

ET patients, namely, the baseline activation of platelets, monocytes and PMNs 

leukocytes, increased monocyte-TF and platelet-leukocytes aggregates.  

This activated status probably results from the constitutive JAK/STAT 

signalization, as result of the acquired JAK2V617F mutation. Corroborating this 
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hypothesis in ET patients we found a statistically significant correlation between 

thrombosis and JAK2 or MPL mutations, and those with JAK2V617F allele burden 

>50% have statistically higher incidence of thrombosis. However, as other authors, we 

found no such correlation in PV patients.  

Consistent with the influence of allele burden and acquisition of LOH for the 

JAK2V617F mutation and leukocyte activation we found, in all patients with 

JAK2V617F>50%, a statistically significant increase in leukocytes CD11b expression 

and in platelet PMN-aggregates in comparison with those with JAK2V617F<50%, and 

a statistically significant increase in monocytes TF in PV patients with allele burden 

>50%. Regarding to platelets activation, it’s not evident such effect since no 

significantly differences were found.    

It would be interesting to evaluate the allele burden at the time of diagnose, its 

association with thrombosis, and the hetero to homozygous progression over time. 
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