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Abstract

This thesis addresses minimal problems that involve multiple cameras or a com-
bination of cameras with other sensors, particularly focusing on four cases: extrinsic
calibration between a camera and a laser rangefinder (LRF); full calibration of an
ultrasound array (US) with a camera; full calibration of a camera within a calibrated
network; relative pose between axial systems.

The first problem (LRF-Camera) is highly important in the context of mobile
robotics in order to fuse the information of an LRF and a Camera in localization
maps. The second problem (US-Camera) is becoming increasingly relevant in the
context of medical imaging to perform guided intervention and 3D reconstruction
with US probes. Both these problems use a planar calibration target to obtain a
minimal solution from 3 and 4 correspondences respectively. They are formulated as
the registration between planes detected by the camera and lines detected by either
the LRF or the US.

The third problem (Camera-Network) is concerned with two application scenar-
ios: addition of a new camera to a calibrated network, and tracking of a hand-held
camera within the field of view of a calibrated network. The last problem (Axial
System) has its main application in motion estimation of stereo camera pairs. Both
these problems introduce a 5-dimensional linear subspace to model line incidence
relations of an axial system, of which a pair of calibrated cameras is a particular
example. In the Camera-Network problem a generalized fundamental matrix is de-
rived to obtain a 11-correspondence minimal solution. In the Axial System problem
a generalized essential matrix is derived to obtain a 10-correspondence non-minimal
solution. Although it should be possible to solve this last problem with as few as 6
correspondences, the proposed solution is the closest to minimal in the literature.

Additionally this thesis addresses the use of the RANSAC framework in the
context of the problems mentioned above. While RANSAC is the most widely
used method in computer vision for robust estimation when minimal solutions are
available, it cannot be applied directly to some of the problems discussed here. A
new framework – multiset-RANSAC – is presented as an adaptation of RANSAC
to problems with multiple sampling datasets. Problems with multiple cameras or
multiple sensors often fall in this category and thus this new framework can greatly
improve their results. Its applicability is demonstrated in both the US-Camera and
the Camera-Network problems.
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Resumo

Esta tese aborda os problemas mínimos no contexto de visão por computador,
isto é, problemas com o mesmo número de restrições e de parâmetros desconhecidos,
para os quais existe um conjunto finito e discreto de soluções. A tese foca-se em
particular nos seguintes problemas: calibração extrínseca entre uma câmara e um
sensor laser rangefinder (LRF); calibração completa de uma sonda ultrasom (US)
com uma câmara; calibração completa de uma câmara dentro de uma rede calibrada;
estimação de pose relativa entre sistema axiais.

O primeiro problema (LRF-Camera) é extremamente importante no contexto
de robótica móvel para fundir a informação de um sensor LRF e uma câmara em
mapas de localização. O segundo problema (US-Camera) está-se a tornar cada vez
mais relevante no contexto de imagiologia médica para realizar intervenções guiadas
e reconstrução 3D com sondas ecográficas. Ambos os problemas usam um alvo de
calibração planar para obter uma solução mínima usando 3 e 4 correspondências
respectivamente, e são formulados como o registo 3D entre planos detectados pela
câmara e linhas detectadas pelo LRF ou US.

O terceiro problema (Camera-Network) tem duas aplicações em mente: a intro-
dução de uma nova câmara numa rede calibrada, e o seguimento de uma câmara
guiada manualmente dentro do campo de visão de uma rede calibrada. O último
problema (Axial System) tem a sua maior aplicação na estimação de pose relativa
entre pares de câmaras estéreo. Em ambos os problemas é introduzido um subespaço
linear em 5 dimensões que modela as relações de incidência de linhas num sistema
axial, do qual as câmaras estéreo são um caso particular. No problema Camera-
Network é introduzida uma generalização da matriz fundamental que permite obter
uma solução mínima com 11 correspondências. No problema Axial System é intro-
duzida uma generalização da matrix essencial que permite obter uma solução não
mínima com 10 correspondências. Apesar de ser possível, em teoria, resolver este
último problema com apenas 6 correspondências, a solução apresentada nesta tese
usa um menor número de correspondências que as alternativas existentes.

Adicionalmente esta tese aborda o uso de RANSAC no contexto dos problemas
anteriormente descritos. O RANSAC é o estimador robusto mais utilizado em visão
por computador quando existem soluções mínimas para um determinado problema,
no entanto não pode ser aplicado directamente em algumas das aplicações aqui des-
critas. Um novo método é proposto – multiset-RANSAC – que adapta o RANSAC



para situações que envolvem a amostragem de múltiplos conjuntos de dados. Os
problemas com múltiplas câmaras ou múltiplos sensores encontram-se mutas vezes
nesta categoria, tornando o multiset-RANSAC numa ferramenta que pode melhorar
bastante os resultados em alguns dos problemas focados nesta tese. A utilidade
deste método é demonstrada nos problemas US-Camera e Camera-Network.
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Chapter 1

Introduction

A solution to a problem with N unknowns is called minimal if it is determined from
exactly N constraints. Although in practice most geometric problems in computer
vision deal with over-determined problems, minimal solutions are important to fully
characterize all the constraints involved in a problem and improve other estimation
methods. Minimal solutions can be used to enforce hard constraints in the presence
of noisy data, e.g., to guarantee that a rotation matrix is orthonormal (RTR = I) or
a fundamental matrix is rank deficient (det F = 0). Non-minimal solutions require
an over-parameterization (e.g. rotation represented by it 9 matrix parameters) that
does not guarantee the end result belongs to the solution subspace, and thus an
additional projection step must be performed. Minimal solutions are also useful
to perform robust estimation with RANSAC [1] in datasets contaminated by out-
liers. These problems generally use feature correspondences of the same geometric
entity under di�erent viewpoints to generate constraints [2]. Feature detection and
matching algorithms are prone to errors and therefore some of these correspondences
are outliers. RANSAC iteratively generates solutions by sampling random sets of
correspondences until there is enough evidence that the best solution is generated
only from inlier correspondences. It can be demonstrated that the lowest number
of RANSAC iterations is achieved by generating solutions from the lowest possible
number of random samples and therefore minimal solutions maximize the e�ciency
of this estimator [1]. A more detailed review of RANSAC can be found on the next
chapter.

In most cases, minimal problems boil down to solving polynomial systems. How-
ever, until recently it was very hard to e�ciently solve complex polynomial systems.
Early minimal algorithms were limited to relatively simple problems which only re-
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quire to solve either linear systems, such as the 4-point homography estimation [3],
or very simple polynomial systems, such as the p3p problem [4]. In more complex
cases, some approaches avoid polynomial systems by using non-minimal data to cast
the problem linearly [5, 6].

Polynomial solvers have recently seen a great improvement and as a result a
huge number of solutions to minimal problems have been proposed over the last
years. In a first development, some polynomial systems have been solved by either
carefully casting the problem and engineering a solution [7] or using resultant-based
methods [8]. While each of these alternatives cannot be readily generalized to other
problems, the most recent contributions provide a systematic framework to solve a
wide range of polynomial systems in an e�cient way. A first approach developed a
method to build polynomial solvers by numerically computing a Groebner Basis to a
given polynomial system [9]. Later approaches avoid the computation of Groebner
bases and provide a systematic way to recast polynomial systems as eigenvalue
problems [10,11].

The current state-of-the-art in minimal solutions for computer vision problems
[12] mainly addresses problems involving a single moving camera, including:

• Relative pose [7, 8] and absolute orientation [13] of calibrated cameras

• Relative pose [9] and absolute orientation [14] of cameras with unknown focal
length

• Relative pose [15] and absolute orientation [14] of cameras with unknown radial
distortion

• Relative pose [16] and absolute orientation [17] of non-central systems.

In this thesis we are interested in minimal solutions to problems that, unlike the
cases mentioned above, either involve multiple cameras or a combination of cameras
with other sensor modalities. This includes a much wider variety of problems that
have not been solved yet. In the past few years there have been an increasing interest
in multi-sensor systems. Under some circumstances, the minimal problems involving
non-central systems are equivalent to systems of multiple calibrated cameras [16,18].
Some minimal solutions were also proposed to the relative pose between stereo cam-
era pairs under di�erent configurations of correspondences [19, 20]. Regarding the
combination with other sensor modalities, some examples are the minimal solution
for relative pose [21] and absolute orientation [22] when the additional information
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of an IMU sensor is available, and also the extrinsic calibration between a camera
and an RGB-D sensor [23].

In this thesis we contribute to the following problems:

• A minimal solution to the extrinsic calibration between a camera and a laser-
range finder. This is a widely used set-up in automotive and robotics applica-
tions.

• A minimal solution to the extrinsic calibration between a camera and an ultra-
sound array sensor. This set-up is being increasingly used in medicine in the
context of interventional imaging.

• A minimal solution to the intrinsic and extrinsic calibration of a camera using
pairwise correspondences with a calibrated camera network. This problem
is useful in the context of automatically inserting a new node into a camera
network or tracking a moving camera within the field of view of a camera
network.

• A non-minimal solution to the relative pose of an axial system using inde-
pendent pairwise correspondences. Although in this case we do not provide a
minimal solution, it is the closest to minimal in literature. An axial camera
model can be applied, e.g., to stereo camera setups.

• A RANSAC framework for multiple dataset sampling – multiset-RANSAC,
addressing the required adaptations to the RANSAC-family algorithms when
candidate solutions are obtained by sampling multiple datasets. This prob-
lem arises in most geometric problems involving multiple cameras or multiple
sensor modalities.

1.1 Thesis Organization

In Chapter 2 we describe the multiset-RANSAC formulation, that is further used
to validate the solutions to some of the geometric problems presented in this thesis.
This is unpublished material to be included in a future submission.

Each of the following 4 Chapters focuses a di�erent geometric problem:

Chapter 3 Extrinsic calibration between a camera and a laser range-finder. It
corresponds to the contributions in [24] with some additional simplifications
to the formulation.
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Chapter 4 Extrinsic calibration between a camera and an ultra-sound array. This
is unpublished material to be included in a future submission.

Chapter 5 Extrinsic and intrinsic calibration of a camera given pairwise correspon-
dences with a camera network. It corresponds to the contributions in [25], with
an extended set of unpublished results to be included in a future submission.

Chapter 6 Relative pose between calibrated axial cameras. It corresponds to the
contributions in [26].

Note that the formulation used on Chapter 4 builds on results from Chapter 3,
and the formulation used on Chapter 6 builds on results from Chapter 5.

Finally, Chapter 7 discusses the overall conclusions of this thesis.

1.2 Notation

Scalars are represented by plain letters, e.g. ⁄, vectors by bold symbols, e.g. t,
matrices by letters in sans serif font, e.g. T, sets by letters in mathcal font, e.g. S.

3D lines are expressed in homogeneous Plücker coordinates, e.g. the 6 ◊ 1 vector
L.

The equality up to scale is denoted by ≥ in order to be distinguished from the
strict equality =.

The operator [v]◊ designates the 3 ◊ 3 skew symmetric matrix of a 3 ◊ 1 vector
v.

The operator ¢ designates the kronecker product.
Single valued superscripts, e.g. T{n}, are used to denote the nth column of

matrix T. Additionally we use T{x:y,w:z} to denote a submatrix of T that contains
the elements ranging from row x to y and column w to z.

All plot distributions are done with the Matlab function boxplot that shows the
two middle quartiles of the distribution (25th to 75th percentiles) as a box with
a horizontal line at the median. The whisker edges refer to the lowest and highest
quartiles, and the crosses show data beyond 1.5 times the interquartile range (outliers
in the distribution).
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Chapter 2

Multiset-RANSAC

2.1 Introduction

RANSAC [1] is the most widely used method to eliminate outlier correspondences
when a minimal solution is available. This method assumes that we have a single
set of correspondences from which we can extract the correct model by iteratively
generating candidate solutions from a predefined number of random correspondences
and evaluating them according to some consensus metric. Depending on the flavor
of RANSAC the consensus metric is built on di�erent assumptions about the error
distribution of inliers and outliers. In the most basic RANSAC version [1], the con-
sensus of a candidate solution is evaluated by simply counting the number of inliers
according to a predefined error threshold. MLESAC [27] computes the likelihood of
candidate models, assuming that the error of inliers follows a Gaussian distribution
and the error of outliers follows a uniform distribution over a specified range. An
exhaustive range of di�erent RANSAC approaches can be found in [28] that not
only use di�erent consensus metrics but also di�erent sampling methods.

In many practical scenarios, the multi-sensor problems we are going to address
deviate from the standard assumptions of RANSAC. In order to illustrate this dif-
ference, consider two problems: the relative pose between two views of a single
camera (Fig. 2.1(a)), and the relative pose between two views of a stereo camera
(Fig. 2.1(b)). The first problem can be solved with the 5-point algorithm [7]. We
start by establishing a set of point correspondences between the two views, and
then RANSAC iteratively samples 5 correspondences from this set. In the sec-
ond problem there are many di�erent types of point correspondences that can be
established. Firstly, there can be correspondences across 2, 3, or 4 views. Addition-
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(a) Single camera (b) Stereo camera

Figure 2.1: (a) Two views of a single camera have only one type of point correspon-
dences (red). (b) Two views of a stereo camera have many types of correspondences:
2-views (red), 3-views (green), 4-views (blue). Additionally 2-view and 3-view cor-
respondences can be established between di�erent sets of cameras. Images are taken
from the KITTI Vision Benchmark Suite [30]

ally, correspondences between 2 and 3 views can be established between di�erent
combinations of cameras. Therefore, minimal algorithms for this problem include
di�erent types of correspondences, including: 6 pairwise correspondences from 2
di�erent view pairs [29]; 3 triple correspondences from di�erent views [17]; three 2-
view and one 4-view correspondences [19]; and a mix of 4-view, 3-view, and 2-view
correspondences [20]. In these cases, sampling with RANSAC must be done in a
more structured way.

These di�erences in the sampling procedure change the underlying assumptions
of traditional RANSAC methods. For the stereo relative pose problem, this issue
was briefly addressed in [19]. The authors show that the number of iterations must
be computed di�erently when di�erent datasets have di�erent inlier ratios, and that
4-view and 2-view outliers/inliers must be weighted di�erently when computing an
overall consensus metric.

In this chapter we extend the observations in [19] to di�erent sampling scenarios
and to di�erent consensus metrics, namely maximum likelihood (MLESAC [27]) and
maximum a posteriori estimation (MAPSAC [31]).

2.2 Problem Formulation

Assume a generic problem in which we want to find the model T that best fits into
a dataset D containing K samples, some of which are inliers while the others are
outliers. A standard approach from the RANSAC family iteratively selects a subset
S with s random samples from D and uses a model generator T

C

= g(S) to find the
model that best fits D, according to some consensus metric.
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Now consider a new scenario where we have N datasets {D1, D2, ..., D
N

}. Assume
also that two steps of random sampling are required to generate a candidate model
T

C

= g(S1, S2, ..., S
M

). First we select M datasets from {D1, D2, ..., D
N

}, with M Æ
N , and then from each of them we select subsets {S1, S2, ..., D

M

} with s1, s2, ..., s

M

samples respectively, such that the total number of selected samples is s =
q

M

i=1 s

i

.
Throughout this thesis we refer to this problem as multiset-RANSAC.

There are some sampling scenarios in multiset-RANSAC that require special
attention. In some cases we cannot arbitrarily select M random datasets D

i

due
to the nature of the problem. This is the case in the relative pose between stereo
cameras from 3 point correspondences, where we must sample a 2-view, a 3-view, and
a 4-view correspondence [19]. In this thesis we focus on multiset-RANSAC problems
that are not of this nature, i. e., problems where any arbitrary combination of M

datasets D
i

can be used to generate a candidate model.
Additionally, when the number of datasets D

i

is the same as the number of
datasets required for the model generator, i. e. M = N , the first sampling step
is just a random matching between all datasets D

i

and the amounts of samples s

i

that will be extracted from each of them. This case is also more prone to some
over-fitting problems that will be discussed later.

In the remaining sections of this chapter we discuss the necessary adaptations
to RANSAC, MLESAC, and MAPSAC when dealing with multiple datasets, which
we designate by multiset-RANSAC, multiset-MLESAC, and multiset-MAPSAC re-
spectively.

2.3 Multiset-RANSAC

In the original version of RANSAC it is assumed that inlier samples have a uniform
error distribution over some bounded interval. All samples with an error greater
than a threshold t is considered an outlier. In this case the evaluation cost of
each candidate model is simply the total number of outliers (Fig. 2.2(a)). For the
multiset-RANSAC approach we can use the same evaluation metric by summing up
the outliers in all datasets. We might also consider tuning di�erent thresholds for
each dataset, when it makes sense in a particular problem.

In standard RANSAC the number of iterations n is determined by guaranteeing
that at least one model was generated from only inlier samples with a probability p,
set to a value close to 1. The sampling process is approximated by a succession of s

Bernoulli trials, i. e., sampling with replacement, and n is updated in each iteration
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by
n = log(1 ≠ p)

log(1 ≠ “

s) (2.1)

where s is the number of samples and “ is the probability of randomly selecting one
inlier sample, i. e., the inlier ratio of the dataset. This value is updated in each
iteration according to the best available model.

In the multiset-RANSAC case n must be computed di�erently since the sampling
process is di�erent and each dataset D

i

might have a di�erent inlier ratio “

i

. The
probability of obtaining an inlier by first selecting a random dataset D

i

and then
selecting a random sample from it is

p

in

= 1
N

Nÿ

k=1
“

k

(2.2)

If we approximate the second sampling process by a succession of Bernoulli trials,
the probability of selecting s

i

inliers by first selecting a random dataset D
i

and then
selecting s

i

random samples from it is

p

ins

= 1
N

Nÿ

k=1
“

s

i

k

(2.3)

If we further approximate the first sampling process by a succession of Bernoulli
trials with replacement, the complete multiset-RANSAC sampling process is sim-
plified to selecting a random dataset M times and for each of them successively
selecting s1, s2, ..., s

M

samples. The probability of selecting only inliers in this
process is

p

inall

=
MŸ

j=1

1
N

Nÿ

k=1
“

s

j

k

(2.4)

We want to guarantee that after n multiset-RANSAC iterations the probability
of never selecting only inliers is smaller or equal to a very small probability 1 ≠ p, i.
e.

(1 ≠ p

inall

)n Æ 1 ≠ p. (2.5)

Therefore, the minimum number of RANSAC iterations must be

n = log (1 ≠ p)
log (1 ≠ p

inall

) . (2.6)
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-t t rj

c

(a) RANSAC
-t t rj

- Log L(T |rj)

(b) MLESAC

Figure 2.2: Cost evaluation metrics for a model T, given a sample d

j

with residue
r

j

. The threshold t separates inliers (green) from outliers (red). In RANSAC the
cost function c only dependends on whether d

j

is an inlier or not. In MLESAC the
cost function approximates a least squares problem if d

j

is an inlier and a has a
constant maximum cost if d

j

is an outlier.

Note however that when M is close to N the first sampling step cannot be
approximated by a succession of Bernoulli trials. Specifically in the case that M = N

the above equation might grossly underestimate the number of required iterations.
In this case, there are N ! possible dataset selections, and to obtain p

inall

we must
weight in the probability of each of them selecting only inliers. We revisit this
problem in Chapter 5 for a particular scenario where N = M = 2.

All the results derived for computing the number of multiset-RANSAC iterations
also extend to the multiset-MLESAC and multiset-MAPSAC formulations presented
in the following sections.

2.4 Multiset-MLESAC

MLESAC [27] aims at finding the model T with minimum negative log-likelihood,
given a set of measurements D. Each sample d

j

in D can be put into one of two
subsets: the inliers I or the outliers O.

The residue of samples in I follows a Gaussian distribution N(0, ‡). A model T,
given an inlier sample d

j

with residue r

I
j

, has a likelihood

L(T|rI
j

) = 1Ô
2fi‡

e

≠|r
j

|2

2‡

2 (2.7)

The samples from O are observations independent from the model, and their
residue follows a uniform distribution over an interval [≠v

2 ,

v

2 ]. A model T, given an
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outlier sample d
j

with residue r

O
j

has a constant likelihood

L(T|rO
j

) = 1
v

(2.8)

Each sample from dataset D follows a mixed distribution of inliers and outliers (Fig.
2.2(b)) and therefore the likelihood L(T|r

j

) of a model T, given a random sample
d

j

from D with residue r

j

is

L(T|r
j

) =
A

“

3 1Ô
2fi‡

4
e

≠|r
j

|2

2‡

2 + 1 ≠ “

v

B

(2.9)

where “ is the probability of d

j

being an inlier, i. e., the inlier ratio in D.
The MLESAC problem can now be formulated by considering the negative log-

likelihood of T given all K samples in D

min
T

≠
Kÿ

j=1
log L(T|r

j

) (2.10)

Note that the inlier ratio “ is updated in each iteration using expectation maxi-
mization using the following constraint:

“

i

= 1
K

Kÿ

i=1
Pr(rI

j

|“) (2.11)

where “ is initialized to 0.5 on the left side of the equation and is iteratively updated
until convergence.

We now consider the multiset-MLESAC problem. When sampling from N dif-
ferent datasets we aim at maximizing the likelihood of model T given datasets D1,
..., D

N

, each of them with a number of samples K

i

, an inlier standard deviation ‡

i

,
an outlier range v

i

, and an inlier ratio “

i

. In this case the likelihood of a model T,
given a sample d

i,j

from dataset D
i

and with a residue r

i,j

is

L(T|r
i,j

)

Q

a
“

i

3 1Ô
2fi‡

i

4
e

≠|r
i,j

|2

2‡

2
i + 1 ≠ “

i

v

i

R

b (2.12)

The multiset-MLESAC problem for N datasets can now be formulated as

min
T

≠
Nÿ

i=1

K

iÿ

j=1
log L(T|r

i,j

) (2.13)
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Note that to compute “1, ..., “

N

in each iteration we have to solve N expectation
maximization problems with the form of equation 2.11.

After an accurate model has been found, the inliers can be selected by checking
for each sample if

“

i

L(T|rI
i,j

) > (1 ≠ “

i

)L(T|rO
i,j

) (2.14)

which can be rewritten as

|r
i,j

|2 < ≠2‡

2
i

ln
Ô

2fi‡

i

(1 ≠ “

i

)
“

i

v

i

(2.15)

The most notable di�erence when we step from a standard MLESAC formulation
to multiset-MLESAC is that di�erent datasets might have di�erent inlier ratios “

i

.
This reflects a practical scenario in which some datasets are consistently more reliable
than others. Multiset-MLESAC is able to capture those di�erences by estimating
separate values “

i

for each dataset, which in turn results in a di�erent cost function
and inlier threshold for each dataset.

2.5 Multiset-MAPSAC

The MLESAC formulation can be further generalized to a maximum a posteriori
problem (MAPSAC [31]). While [31] does a very exhaustive bayesian analysis of
random sampling for geometric problems, we are only interested in its key observa-
tion that an algorithm from the RANSAC family does not only estimate the param-
eters of model T but also an additional set of latent parameters, namely deciding
whether each sample is an inlier or an outlier through the expectation maximization
of the inlier ratio “. Taking this into account we formulate the multiset-MAPSAC
problem as

max
T,“1,...,“

N

Pr(T, “1, ..., “

N

|R1, ..., R
N

) (2.16)

where R1, ..., R
N

represent the residues of all samples from D1, ..., D
N

respectively,
which follow the mixed inlier-outlier distribution described in the previous section.
This formulation can be re-written as

max
T,“1,...,“

N

Pr(“1, ..., “

N

, T)Pr(R1, ..., R
N

|T, “1, ..., “

i

) (2.17)

Note that although this is a MAP formulation, it is not a step-by-step generaliza-
tion of the MAPSAC method described in [31], which deals with the marginalization
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of parameter “ and the e�ect of additional latent parameters, e.g. reconstructed 3D
points. In this thesis we do not take these issues into account.

When compared to multiset-MLESAC, equation 2.17 has an additional prior on
the model and the latent parameters Pr(“1, ..., “

N

, T). Prior knowledge about the
model T is a very specific issue in each application scenario and we ignore it in the
context of multiset-MAPSAC. Our main motivation behind this formulation is to
account for prior knowledge about the inlier ratios “

i

. While multiset-MLESAC as-
sumes that parameters “

i

are independent from each other, with multiset-MAPSAC
we want to account for the possibility that this is not the case. In Chapter 5 we
encounter this issue and detail a particular set of scenarios in which using prior
knowledge on the inlier ratios is essential to obtain accurate results.

2.6 Multiset-RANSAC/MLESAC/MAPSAC in Practice

The application of this framework to the particular problems in this thesis is dis-
cussed case by case in each of the corresponding Chapters:

LRF-Camera Calibration (Chapter 3): We use standard RANSAC for validat-
ing our algorithm, however, we explain how multiset-RANSAC can be used to
improve results in future work.

US-Camera Calibration (Chapter 4): We use multiset-RANSAC in all experi-
mental validations.

Camera Networks (Chapter 5): This chapter presents the most extensive dis-
cussion and validation of multiset-RANSAC. This is a challenging case where
the multiset-MAPSAC formulation is often required.
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Chapter 3

Extrinsic calibration of a
camera and a laser-range finder

3.1 Introduction

There are many systems and applications that combine perspective cameras and
invisible 2D Laser-Rangefinder (LRF). A non-exhaustive list of examples includes
the acquisition of ground-based city models by using an LRF for obtaining structure,
and a camera for rendering texture [32]; the fusion of laser shape features with
visual appearance for object classification [33] and pedestrian detection [34]; or the
joint use of camera and laser for recognition and modeling of landmarks in outdoor
self-localization and mapping [35]. In all these cases the fusion of the two sensor
modalities requires knowing in advance the relative pose between camera and laser
for projecting the depth readings into the images. Our article addresses this extrinsic
calibration problem.

The number of published works in the extrinsic calibration of a camera and a LRF
is relatively small. The most broadly used method was proposed by Zhang and Pless
in [36], and describes a practical procedure where a checkerboard pattern is freely
moved in front of the two sensors as shown in Fig. 3.1. The poses of the checkerboard
are computed from plane-to-image homographies [37], and the camera coordinates
of the planes are related with laser depth readings for establishing a set of linear
constraints in the extrinsic calibration parameters. The solution of the system of
equations provides an initial estimate for the relative rotation and translation, that
is subsequently refined by iterative minimization of the re-projection error (similar
to bundle adjustment [38]). Zhang’s algorithm su�ers from two major drawbacks:
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i

'
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'

Figure 3.1: Input data for estimating the relative pose between camera and LRF
reference frames with origins in O and OÕ. The checkerboard plane is represented in
camera coordinates �

i

that are determined from the plane-image homography. The
LRF reads the depth of the points lying on the line where the pattern intersects the
scan plane �Õ. The calibration problem is formulated as the registration of planes
�

i

and co-planar lines LÕ
i

that are fitted to the depth readings.

(i) the system of linear equations does not directly enforce the rotation matrix to be
in SO(3), which often leads to poor initialization that cause the iterative estimation
to run into local minima; and (ii) the closed-form algorithm requires at least 5 input
planes being clearly a non-minimal solution for the calibration problem.

This paper proposes a minimal solution for the described extrinsic calibration
that estimates the rigid displacement between camera and LRF from 3 input planes.
We fit lines to the laser depth readings and carry the Euclidean registration of 3
planes with 3 co-planar lines in an optimal and closed-form manner. Our main
contribution is this new registration algorithm that is used as an e�cient hypothe-
sis generator in a RANSAC paradigm [1] for robust camera-LRF calibration. The
minimal solution is tested in simulation and its singularities are discussed. Experi-
ments using both synthetic and real data show that the proposed calibration method
outperforms the state-of-the-art [36] in terms of robustness, accuracy, and required
number of input planes.

3.1.1 Related Work

This article is closely related to Zhang’s work [36], where the extrinsic camera-LRF
calibration is achieved by freely moving a checkerboard pattern. The procedure is
simple to execute, and the checkerboard images can be used in parallel for cali-
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brating the camera intrinsics [39, 40]. Like in [36], it is possible to use our method
to jointly refine the intrinsic and extrinsic calibration during the final global opti-
mization step. However, we do not discuss this feature and assume that the camera
intrinsics are accurately known at all time. The calibration method presented in [41]
is conceptually equivalent to [36], as is acknowledged by its authors.

Alternatives to Zhang’s method can only be applied to a limited set of situations.
Some contributions assume specific setups, like the LRF mounted on a calibrated
rotating platform [42], or prior information, like an initial pose obtained through
physical measurements [43,44]. In other cases additional inertial data is used [45,46].
A minimal solution for the extrinsic calibration of a camera and a LIght Detection
And Ranging sensor (LIDAR) has been recently proposed [47]. The method uses a
planar pattern for establishing correspondences between points in the LIDAR and
lines in the image. The calibration problem is formulated as the 3D registration of
co-planar points with planes intersecting into a single point. This leads to a system
of polynomial equations that is solved using Macaulay resultants, obtained from 6
input images. Another minimal solution was proposed to calibrate both intrinsic
and extrinsic parameters of a camera and a visible range finder [48]. In this case it
is easy to make data associations between laser depth readings and visible laser dots
projected on the camera without using a calibration target. This procedure requires
the LRF-camera system to acquire 3 dot associations in 5 di�erent positions. These
last two approaches cannot be directly extended to the invisible LRF because they
also use additional sensory information for the data association.

Since we formulate the camera-LRF calibration as the problem of aligning planes
with co-planar lines, the article also relates with the literature in 3D Euclidean
registration and related topics. In particular, we use previous results in registering
two clouds of 3 or more 3D points [13]; in estimating the camera pose from the images
of 3 or more 3D points (the so called Perspective-n-Pose (PnP) problem) [4,49]; and
in determining from 3 correspondences the relative rotation between two views with
known baseline [50]. Olsson et al. have recently proposed in [51] a Branch-and-
Bound framework to solve di�erent Euclidean registration problems: point-to-point,
point-to-line, and point-to-plane. Within this topic, the recent work of Ramalingam
et al. [52] in minimal solutions for the registration of points and planes is specially
relevant. It is possible to adapt their algorithm for aligning 3 planes with 3 generic
lines where each line is parameterized as a pair of points. Although such approach
can eventually lead to a minimal solution for camera-LRF calibration, we propose
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an alternative registration algorithm that simplifies the problem by conveniently
exploring the fact that the lines are co-planar.

3.2 Notation

In addition to the notation presented in Chapter 1, the remaining sections from this
Chapter use additional notation. We use a prime symbol to designate geometric
entities represented in the LRF reference frame, e.g. �Õ, LÕ

i

. Plain letters are used
to designate geometric entities in the camera reference frame, e.g. �

i

, d
i

. The
same letter with and without prime, e.g. �, �Õ represent the same geometric entity
under the camera and LRF reference frames, respectively.

3.3 The Calibration Problem

Consider a camera and a LRF for which the local coordinate systems have origin in
O and OÕ as shown in Fig. 3.1. The extrinsic calibration aims at determining the
rigid transformation T such that:

A
QÕ

1

B

=
A

R t
0T

3 1

B

¸ ˚˙ ˝
T

A
Q
1

B

, (3.1)

where Q and QÕ are respectively non-homogeneous point coordinates in camera and
LRF reference frames, R denotes a rotation matrix, and t is the translation vector.

In [36] the calibration is carried from N images of a checkerboard pattern that is
freely moved in front of the two sensors. Let �

i

be the homogeneous representation
of the calibration plane in camera coordinates, that is estimated from plane-to-image
point correspondences [37]:

�
i

≥
A

n
i

1

B

, i = 1, 2 ... N (3.2)

For each plane �
i

, the LRF provides depth readings of a set of 3D points QÕ
ij

that lie on the line where the checkerboard intersects the scan plane �Õ. Let the
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non-homogeneous coordinates in the laser reference frame be

QÕ
ik

=

Q

cca

x

ik

y

ik

z

ik

R

ddb , k = 1, 2 ... K

i

Zhang and Pless assume, without loss of generality, that �Õ is coincident with the
Y plane. By inverting equation 3.1 and taking into account that y

ik

is always zero,
it follows that:

Q
ik

= RT

Q

cca

1 0
0 0 ≠t
0 1

R

ddb

¸ ˚˙ ˝
H

Q̊
ik

, (3.3)

with Q
ik

being the point representation in camera coordinates and

Q̊
ik

=

Q

cca

x

ik

z

ik

1

R

ddb .

Since the points detected by the laser are in the checkerboard pattern, then the
following must hold

�
i

T Q
ik

= 0 .

Replacing by the results of equations 3.2 and 3.3, it yields that

nT
i

H Q̊
ik

= ≠1 , ’
i,k

(3.4)

Note that H is a metric homography, and therefore it has a fixed scale such that
the magnitude of the translation t is consistent with the depth measurements of the
LRF.

In summary, the checkerboard planes �
i

, expressed in camera coordinates, and
the points QÕ

ik

, represented in LRF coordinates, define a set of linear constraints in
the entries of matrix H that encodes the rigid displacement between the two sensors.
In [36], Zhang and Pless propose to compute H in a DLT-like manner [53], and
factorize the result into the rotation R and translation t. Unfortunately the linear
estimation of matrix H is carried without enforcing the structure of equation 3.3.
This means that in general the direct factorization does not provide a valid rotation
matrix R, and a non-optimal projection into SO(3) is required. Moreover, for each
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calibration plane �
i

there are only two constraints of the form of equation 3.4 that
are linearly independent. Since matrix H has 9 entries, then the estimation requires
N Ø 5 calibration planes. The fact that the calibration algorithm is non-minimal
and sub-optimal often leads to erroneous results as shown later.

We propose instead to fit lines to the laser points and formulate the problem as
the 3D registration of a set of co-planar lines LÕ

i

with a set of planes �
i

. In other
words, we aim to find the rotation R and the translation t such that the planes �Õ

i

,
given by

�Õ
i

=
A

R 0
≠tTR 1

B

¸ ˚˙ ˝
T≠T

�
i

, i = 1, 2 ... N (3.5)

go through the lines LÕ
i

.
In [24] we show that, by formulating the problem in the dual 3D space, the rota-

tion and translation can be estimated separately. Finding the rotation is equivalent
to determining the relative orientation between two views with known baseline. As
proved in [50], this last problem can be cast as a standard P3P problem [4] admit-
ting at most 8 distinct solutions. For each rotation solution there is a corresponding
translation that can be found by solving an additional system of linear equations.
In this thesis we use a more intuitive and simple approach to show the equivalence
between finding the rotation and the P3P problem.

3.4 P3P Problem

Consider the Figure 3.4 that represents a calibrated pinhole camera observing three
3D points PÕ

12, PÕ
13, PÕ

23 as 2D image projections with homogeneous coordinates d12,
d13, d23. Consider as well that the coordinates of the 3 points are known in a world
reference frame while the pose of the camera is unknown. The P3P problem consists
in finding the 3 depths –12, –13, –23 between the principal point of the camera and
the 3 points PÕ

12, PÕ
13, PÕ

23.
The unknown depths can be obtained by solving the following quadratic system

of equations
Y
___]

___[

–

2
12 + –

2
13 ≠ –12–12d12

Td13 = ||PÕ
12 ≠ PÕ

13||2
–

2
12 + –

2
23 ≠ –12–12d12

Td23 = ||PÕ
12 ≠ PÕ

23||2
–

2
13 + –

2
23 ≠ –12–12d13

Td23 = ||PÕ
13 ≠ PÕ

23||2
. (3.6)
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Figure 3.2: The P3P problem: determining depths –12, –13, –23 given the 3D points
PÕ

12, PÕ
13, PÕ

23 and the image ray directions d12, d13, d23 of a calibrated camera at
an unknown pose.

This system has in up to 8 possible solutions, of which only up to 4 have positive
depth values. The solutions containing negative depths are normally ignored since
they are physically invalid in the context of pinhole camera projection. Di�erent
solutions have been described in the literature to solve this system [4,54,55]. In this
thesis we use Grunert’s method [56] described in [4].

After determining the depths –12, –13, –23 we can obtain the coordinates of
the 3D points P

ij

= –

ij

d
ij

in the reference frame of the camera and use 3D point
registration to find the pose of the camera in the world reference frame (absolute
orientation problem [13]).

3.5 Minimal Solution

Consider Fig. 3.3(a), that represents 3 line measurements LÕ
1, LÕ

2, LÕ
3 in the LRF

cutting plane �Õ. In general, each pair of lines LÕ
i

, LÕ
j

intersects at a point PÕ
ij

.
Now consider the 3 planes �Õ

1, �Õ
2, �Õ

3 that represent the calibration target in OÕ.
Each plane �Õ

i

contains its correspondent line LÕ
i

. In general, each pair of planes
�Õ

i

, �Õ
j

intersects at a line lÕ
ij

that goes through the correspondent point PÕ
ij

(Fig.
3.3(b)). The 3 planes also intersect at a single point mÕ. The lines l

ij

(i. e. the
representation of lines lÕ

ij

in O) can be easily determined by intersecting the known
planes �

i

, �
j

.
Consider now a virtual pinhole camera with reference frame V (Fig. 3.3(b)) such

that its orientation is the same as the real camera at O and its center of projection
is point mÕ. Consider also that for each line l

ij

its direction vector, denoted by d
ij

,
represents an image ray in the virtual camera of the 3D point PÕ

ij

with depth –

ij

.
It is now evident that determining all three depths –

ij

is a problem with the same
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Figure 3.3: From registration of planes and co-planar lines to the p3p problem: (a)
Each pair of lines LÕ

i

, LÕ
j

measured by the LRF intersects at point PÕ
ij

; (b) Each
pair of planes �Õ

i

, �Õ
j

intersects at line l
ij

; the three planes intersect at point mÕ;
we define a virtual camera V with projection center at mÕ and the same orientation
as the real camera at O; (c) the classic P3P problem is obtained by defining each
direction d

ij

of line l
ij

as an image point projection of PÕ
ij

in the virtual camera V.

geometric structure as the P3P problem with image points d12, d13, d23 and 3D
points PÕ

12, PÕ
13, PÕ

23 (Fig. 3.3(c)).
This system can be solved by standard P3P algorithms [4]. Unlike in the original

problem however, the scalar unknowns –

ij

do not have the physical meaning of depth
and are allowed to take negative values. Hence there can be up to 8 distinct solutions
to equation 3.6.

After determining the depths –

ij

we can compute the rotation R and translation
mÕ from V to OÕ by solving the absolute orientation problem [13]. Once the pose of
the virtual camera is known the transformation T from the real camera to the LRF
can be obtained as shown in Fig. 3.3(b) by

T =
A

R mÕ

0 1

B A
I ≠m
0 1

B

=
A

R mÕ ≠ Rm
0 1

B

(3.7)

3.5.1 Degenerate configurations

This problem has degenerate configurations that arise in two situations. There is
a translation ambiguity when two lines lÕ

ij

, lÕ
ik

are parallel, placing the point mÕ at
infinity. A camera center at infinity is a well known degeneracy of the P3P problem
(Fig. 3.4(a)). The danger cylinder configuration is another known degeneracy of
the P3P problem [4]. This happens when the point mÕ belongs to the cylinder
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Figure 3.4: Degenerate configurations: (a) the lines where the checkerboard
planes intersect are parallel and mÕ is at the infinity; (b) the intersection point mÕ

of the 3 checkerboard planes lies in the danger cylinder [4] defined by the intersection
points of lines LÕ

1, LÕ
2, LÕ

3.

that contains points P1, P2, P3 and is orthogonal to the plane defined by them
(Fig. 3.4(b)).

3.5.2 Outline of the registration algorithm

This algorithm determines the relative pose T that aligns a set of planes �
i

with a
set of co-planar lines LÕ

i

. Its inputs are 3 correspondences (�
i

, LÕ
i

) and its output is
a set of up to 8 relative poses T defined by their rotations R and translations t.

1. For each two planes �
i

, �
j

in the camera reference frame determine the di-
rection d

ij

of their intersecting line l
i

, by cross-multiplying the plane normals.

2. For each two lines LÕ
i

, LÕ
j

in the laser reference frame determine their point of
intersection PÕ

ij

.

3. Formulate the P3P problem with each PÕ
ij

as a 3D point, and each direction
d

ij

as its respective image point.

4. Solve the P3P problem using any standard approach [4] to obtain the rotation
R and the translation mÕ. There are up to 8 solutions.

5. Determine the point intersection m of planes �
i

6. Determine the translation t as mÕ ≠ Rm.
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3.6 Extrinsic Calibration Algorithm

Section 3.5 derives a closed-form algorithm for computing the M Æ 8 rigid trans-
formations that align 3 planes with 3 co-planar lines. We now show how this new
registration method can be used for obtaining the extrinsic calibration between the
camera and the laser.

Let’s recall that the inputs for calibration are the planes �
i

with i = 1, 2 . . . N ,
expressed in camera coordinates, and the points QÕ

ik

with k = 1, 2 . . . K

i

, represented
in non-homogeneous LRF coordinates. The application of plane-line registration
requires fitting lines LÕ

i

to the points QÕ
ik

using a standard regression method. If
the number of input planes is N = 3, then the registration algorithm provides
M Æ 8 solutions T(m) with m = 1, 2 . . . M , but we cannot decide about the rigid
displacement between the two sensors without further information. For the case of
N > 3, each triplet of plane-line correspondences gives rise to a set of solutions, and
the correct relative pose T can be found using an hypothesize-and-test framework
as detailed in section 3.6.1. Note that in practice accurate calibrations are obtained
with a relatively low N (between 5 and 12) and therefore it is feasible to test all
combinations of 3 correspondences.

In both situations the final calibration estimates can be further refined by min-
imizing the re-projection errors in the camera and LRF using iterative non-linear
optimization. Thisfinal refinement step is discussed in section 3.6.3.

3.6.1 Initial Estimation

Consider N > 3 correspondences between planes �
i

and lines LÕ
i

. The initial
estimate T for the extrinsic calibration is obtained as follows:

1. Initialize the solution T = I

2. Select 3 correspondences and apply the algorithm of section 3.5.2 for finding
the transformations T(m) that align lines and planes (m = 1, 2 . . . M).

3. For each solution T(m), compute the LRF coordinates �Õ(m)
j

of the remaining
N ≠ 3 planes, and determine the Euclidean distance d

(m)
j

in the dual space
between �Õ(m)

j

and the corresponding line LÕ
j

.

4. Rank each solution T(m) by assigning the score

score(T(m)) =
ÿ

j

max(t, d

(m)
j

) ,
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where t is a pre-defined threshold. This operator is similar to the one used in
the MSAC robust estimator proposed in [27].

5. If score(T) > score(T(m)), then make T = T(m) and consider as inliers the
correspondences for which d

(m)
j

< t (the 3 correspondences that generated the
solution have d

(m)
j

= 0).

6. Until all combinations of 3 correspondences are tested, return to step 2 for a
new iteration.

Since the number of input correspondences is usually small (N < 20), we run an
exhaustive search where all possible plane-line triplets are considered as solution
generators. For a large N the hypothesize-and-test can be performed in a Random
Sample Consensus manner in order to keep the computation tractable [1].

3.6.2 Multiset-RANSAC

In the previous section we formulated this calibration problem in terms of a single
dataset containing N plane-line correspondences, each of them corresponding to
one LRF-Camera acquisition. Although in most cases this is su�cient to accurately
solve the calibration problem, there is still room for improvement by formulating the
problem without explicitly computing the LRF lines LÕ

i

before using a hypothesize-
and-test framework.

Instead we can use a multiset-RANSAC framework if we formulate the calibration
problem as N datasets, each of them containing K

i

points QÕ
ik

and a plane �
i

. In
this case an initial estimation can be obtained by iteratively generating hypotheses
with a two step sampling procedure: first select 3 LRF-Camera acquisitions and
then select two points from each dataset. Lines LÕ

i

are estimated independently in
each iteration.

This formulation can be useful for two main reasons. The estimation of LRF lines
LÕ

i

can improve slightly, since the best generated hypothesis will use the lines that
best fit to all acquisitions instead of using independent line estimations. But most
interestingly, we can use multiset-RANSAC to decrease the necessity of human input
during the calibration procedure by performing automatic line detection from the
LRF depth measurements. In practice the LRF acquisitions output many undesired
outlier measurements outside the extent of the calibration plane. These outliers
are usually removed manually, since the background might contain other lines (e.g.
walls) that would mislead an automatic line detector. With multiset-RANSAC we
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Li'

'

Figure 3.5: The LRF reconstructs points QÕ
ik

(red) by measuring depth along the
radial directions rÕ

k

. The minimization is carried over the distance between points
QÕ

ik

and points ÂQÕ
ik

(blue). The latter are obtained by mapping the inlier planes �
i

into the LRF reference frame and intersecting the result with the radial directions
rÕ

k

.

can skip this manual selection step and allow the generated hypotheses to choose
the correct measurements of the calibration plane.

We do not pursue this approach further in this thesis, and thus it serves as a ref-
erence for future research directions. However, in the next Chapter we use multiset-
RANSAC to perform automatic line detection in a similar calibration problem.

3.6.3 Iterative least-squares refinement

The initialization procedure provides an extrinsic calibration T and a set of plane-
line correspondences that are classified as inliers. The calibration accuracy can be
further improved by minimizing the re-projection errors in the camera and/or LRF
using iterative least squares refinement similar to bundle adjustment [38].

The LRF measures depth along a set of radial directions rÕ
k

that are uniformly
distributed in the scan plane �Õ around the projection center. Please note that we
assume that this projection center is not coincident with the origin OÕ of the laser
reference frame. The depth readings enable to reconstruct the points QÕ

ik

that give
rise to the lines LÕ

i

that are considered in the 3D registration. After obtaining an
initial calibration estimate T, each inlier plane �

i

is mapped into the LRF reference
frame using equation 3.5, and the resulting plane �Õ

i

, expressed in laser coordinates,
is intersected with the radial lines rÕ

k

yielding a set of points ÂQÕ
ik

(see Fig. 3.5). The
LRF residue to be minimized is the sum of the square distances between the points
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ÂQÕ
ik

and the points QÕ
ik

that were originally reconstructed from the depth readings:

e

LRF

=
ÿ

i

ÿ

k

||QÕ
ik

≠ ÂQÕ
ik

||2

The errors in the orientation of planes �
i

can also be minimized with the standard
cost function used in camera calibration methods [39], i. e. the re-projection error
of the checkerboard grid corners X

il

against their 2D point image detections h
il

e

CAM

=
ÿ

i

ÿ

l

||h
il

≠ KH
i

X
il

||2 (3.8)

where K is the camera intrinsics matrix and H
i

is the metric homography from plane
�

i

to the camera such that

H
i

=
1
r1,i

r2,i

t
i

2
(3.9)

r3,i

= r1,i

◊ r2,i

(3.10)

�
i

=
A

r3,i

t
i

T
r3,i

B

. (3.11)

The LRF and the camera residues can be jointly minimized with the following cost
function

min
T,r3,1,t1,...,r3,N

,t
N

e = e

LRF

+ Ÿ e

CAM

, (3.12)

where Ÿ is a weighting parameter that should be adjusted to normalize the variance
of camera and LRF residue distributions. The minimization is carried with respect
to the extrinsic calibration T and the pose of the inlier planes �

i

expressed in
camera coordinates. The camera residue e

CAM

depends both on the planes �
i

and
the camera intrinsics K. We will assume that K is accurately known but, like in [36],
this formulation can be potentially used to refine simultaneously the intrinsic and the
extrinsic calibration, by considering the independent parameters of K (focal length,
skew, aspect ratio and principal point) as variables to be refined.

25



3.7 Experiments with Synthetic Data

A first set of experiments is conducted in a simulation environment that considers
a 0.25¶ resolution LRF and a 1280 ◊ 960 resolution pin-hole camera. The LRF is
assumed to be stationary and the pin-hole camera is randomly placed in a pre-defined
region according to a uniform distribution. The camera placement is such that there
is always a significant overlap between the fields of view of the two sensors. Given
the camera and the LRF, we simulate a set of N checkerboard planes with random
poses. Once again the plane placement is such that guarantees intersection with
the laser scan plane and a minimum number of grid points visible in the camera.
We add Gaussian noise to both the image grid points and the laser depth readings.
Please note that the pose of the checkerboard plane a�ects the number of points
QÕ

ik

that are reconstructed by the LRF, and hence the accuracy of the lines LÕ
i

used
for the plane-line registration.

This simulation environment provides input data for performing the extrinsic
calibration. The estimations for the relative rotation R and a translation t are
compared with the ground-truth R

GT

and t
GT

. The accuracy is typically quanti-
fied by the angular magnitude of the residual rotation RTR

GT

, and by the relative
translation error ||t ≠ t

GT

|| / ||t
GT

||.

3.7.1 Extrinsic calibration with minimum data (N = 3)

In this experiment the extrinsic calibration is carried using N = 3 calibration planes.
For each trial, we randomly generate one camera pose and three checkerboard planes.
The simulated image points and laser depths are used as calibration input after
adding Gaussian noise. Since the noise a�ects both the estimation of planes �

i

and
lines LÕ

i

, the result of the plane-line registration is in general di�erent from the correct
rigid displacement between the two sensors 1. Fig. 3.6 shows the distribution of these
errors in 100 independent trials, for increasing amounts of noise in the camera and/or
laser. For visualization purposes, we do not plot results without noise, however, we
also simulated this situation to perform a sanity check, yelding to maximum errors of
0.0021% for translation and 0.0012 degrees for rotation. The median error is below
10≠10% for translation, and below double precision for rotation.

The figure shows compact error distributions with few outliers, which suggests
that the calibration algorithm is numerically stable. For low noise levels we can still

1
As stated in section 3.5, the plane-line registration has up to 8 analytical solutions and it is not

possible to choose the one corresponding to the extrinsic calibration without further information.

In the synthetic experiments we always consider the solution that is closest to the ground-truth
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Figure 3.6: Error distribution when the extrinsic calibration is carried using N = 3
calibration planes (minimum solution). The labels in the horizontal axis refer to
the standard deviation of the added Gaussian noise. We consider 1 pixel steps for
the camera, and 15 mm steps for the LRF (e.g. a magnitude of 0.25 corresponds to
image noise of 0.25 pixels and laser noise of 3.75 mm).

detect some outliers, that mainly result from the degenerate configuration depicted
by situation 1 in figure 3.4. Input data close to this configuration occur due to
generating input planes with bounded orientation variations, so that both sensors
can fully detect them. The extrinsic calibration accuracy decreases with increasing
amounts of noise, but this degradation is relatively smooth. The rotation estimation
seems to be less sensitive to noise than the translation. This is partially explained by
the fact that the rotation is computed first and its error propagates to the translation
component. In overall terms the results are satisfactory and prove that, if the
measurements are not too noisy and the checkerboard orientations are carefully
chosen, then the extrinsic camera-LRF calibration can be achieved in practice using
only N = 3 input planes.

3.7.2 Comparison with Zhang’s method

The simulation framework is now used to compare our algorithm against the cali-
bration method proposed in [36]. For the sake of fairness, Zhang’s method is imple-
mented in a hypothesize-and-test framework that is in every respect similar to the
one described in section 3.6.1, except that it requires 5 plane-line correspondences
to generate a hypothesis. The experiment considers a variable number N of calibra-
tion planes and, for each case, it runs 100 calibration trials and compares the error
distributions. The noise is constant and set to 1 pixel in the camera and 15 mm in
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Figure 3.7: Calibration using synthetic data. We compare our algorithm against the
method presented in [36] when the number N of calibration planes increases. The
additive Gaussian noise has constant standard deviation of 1 pixel in the camera
and 15 mm in the LRF.

the LRF. Fig. 3.7 shows the results for the two methods before and after running
the non-linear optimization discussed in section 5.6.3.

A careful analysis of the graphics show that our algorithm provides much better
initial estimates both in terms of the extrinsic calibration error and residue in the
laser. This fact significantly decreases the chances of divergence during the iterative
optimization step, specially when the number N of calibration planes is small. It
can be observed that, for the case of N = 5 and N = 6, while our calibration results
never diverge significantly from the ground-truth, the final calibration obtained using
Zhang’s method is often completely erroneous. The stability and final accuracy of
the two methods tends to become similar for a large number of input planes (N > 8).
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3.8 Experiments with Real Data

In this experiment we set up a SICK LMS 200 [57] and a camera at fixed positions,
and acquire 12 calibration frames by moving a checkerboard pattern in front of
the two sensors. It should be taken into account that acquiring frames with a
wide range of plane orientations and distances to the LRF generally yelds more
accurate calibration results. The camera intrinsic parameters and the homogeneous
coordinates �

i

of the planes are estimated using the intrinsic calibration software
described in [40]. Since the re-projection error in the plane-to-image homographies is
typically very low ( 0.2 pixels), there is no advantage in considering the planes �

i

in
the final iterative refinement described in section 5.6.3. Thus, we decided to optimize
the cost function of equation 3.12 only with respect to the LRF residue (Ÿ = 0).
Like in the previous experiment, the extrinsic calibration is carried for an increasing
number of calibration planes using both our method and the hypothesize-and-test
version of Zhang’s algorithm. We consider for each N all possible combinations of
the 12 frames, which means that the number of trials is

#
N

= 12!
N ! (12 ≠ N)!

In the absence of reliable ground-truth, Fig. 3.8 shows the distribution of the
achieved calibration results. More specifically Fig. 3.8(a) refers to the angle of
the rotation R, Fig. 3.8(b) concerns the magnitude of the translation vector t, and
Fig. 3.8(c) depicts the LRF residues.

From Fig. 3.8 it comes that our minimal solution outperforms Zhang’s approach
when the number of input planes is small. While the former requires 4-to-5 planes for
providing accurate estimation results, the latter needs 7 or more planes for achieving
a reliable calibration. Fig. 3.9 confirms that, for the case of N = 5, Zhang’s extrinsic
calibration is in general non plausible. This is justified by the noise in the input
data and the existence of frames with few laser readings that are unable to fully
constrain the estimation problem. As the number of input planes increases, the
hypothesize-and-test procedure discards these frames as outliers, and the output
of the two methods converges to the same result. Nevertheless, it is important
to remark that this only happens after the final refinement step. While Zhang’s
initialization is often a coarse estimate of the correct rigid displacement, our closed-
form solution is always very close to the global optimum, and the improvements in
accuracy achieved by the iterative refinement are somewhat marginal. In addition
our approach, being a minimal solution, requires the testing of less hypothesis which
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Figure 3.8: Calibration using real data. The graphics show the distributions of the
calibration results obtained using our method and Zhang’s algorithm [36]

is an indisputable advantage in terms of computational complexity. For the case of
N = 12, an exhaustive search of the solution space requires 220 trials, while the
same search with Zhang’s method corresponds to 792 tests.
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Figure 3.9: Projection of the LRF points into the images using the extrinsic calibra-
tion results obtained from 5 sampled planes with our method (circles) and Zhang’s
algorithm (crosses).
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Chapter 4

Extrinsic Calibration between a
Camera and an Ultra-sound
array

4.1 Introduction

A 2D ultrasound array (US) is a sensor that measures the sound impedance along
a single measurement plane and displays it as a 2D image where di�erent grayscale
levels represent di�erent materials with a di�erent sound impedance (B-scan). The
acoustic impedance for each pixel is obtained by emitting ultrasound pulses within a
certain frequency range and measuring the magnitude and time-response of the echo
signals. The frequency of the emitted pulses will a�ect the resolution and the mea-
surement range of the US probe, i. e., high frequencies (8 – 20 MHz) are able to mea-
sure impedances with fine detail (high mm/pixel ratio) but are absorbed by tissue
within a very short period, while low frequencies (2 – 4 MHz) measure impedances
with a lower resolution but are able to propagate through longer distances. High
frequencies are therefore used for close-range imaging (e.g. musculoskeletal) while
low frequencies are used to image deeper regions within the body (e.g. cardiac,
obstetrics).

There is an increasing number of medical applications that require 6D pose
tracking of an US. These applications include registration with 3D models [58],
assisted coordination with other medical instruments [59], and also 3D ultrasound
reconstruction [60].
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There are di�erent alternatives available for tracking the pose of an US, namely
magnetic sensors [61], optical trackers [62, 63], and robot manipulators [64]. All
these alternatives have di�erent degrees of applicability depending on the particular
scenario [65], however, all of them require to rigidly attach the US to a tracking
device and solve a hand-eye calibration problem to determine the transformation
that maps US image coordinates to the 3D Euclidean reference frame of the tracking
device.

This hand-eye calibration procedure usually involves using a known calibration
target that is measured by the US under di�erent poses until there are enough geo-
metric constraints to determine a unique hand-eye transformation. The calibration
target can be a set of thin wires [66–68], a surface with known shape [69], a robot-
manipulated instrument [64], or a single plane surface [70]. An extensive review of
di�erent calibration methods can be found in [65]. Recent contributions predomi-
nantly use wire-based targets, particularly z-shaped wires that allow for a greater
flexibility in capturing US measurements under di�erent poses [67,68].

In this chapter we focus on the plane-based calibration introduced in [70]. In this
method the US measures line-sections of a single plane under di�erent poses, and
the calibration problem is formulated as the 3D Euclidean registration of co-planar
lines in the US image with planes in an external reference frame. This method
has the significant advantage of not requiring to build a complex calibration target
with precise measures. A plane can be easily obtained, e.g., as the bottom of a
water filled tank. Despite these advantages, this method is rarely used in practice
due to two major drawbacks: 1) Measuring planes at moderately skewed angles
produces undesired US surface reflections that make line detections less accurate 2)
All available methods are based on iterative local optimization, which means that
we either collect a huge number of measurements to avoid local minima or use other
means to obtain a su�ciently accurate initialization.

The first problem can be reduced by using a Cambridge phantom [70] or by
measuring a thin membrane instead of a thick tank wall [71]. We will address
the second problem by proposing a closed-form minimal solution to the hand-eye
calibration from 4 plane measurements. This minimal algorithm can be used as a
model generator within multiset-RANSAC to produce a robust calibration that is
suitable for initializing a local optimization method. To the best of our knowledge,
this is the first closed-form solution to the plane-based US calibration.

In our formulation we assume that US tracking is performed with a stationary
camera and a visual marker attached to the US. In previous formulations [70] the

34



pose of the calibration plane is unknown in the reference frame of the tracking device,
and thus it must be estimated simultaneously with the hand-eye parameters. The
camera-based tracking makes it easy to know the plane position beforehand, reducing
the complexity of the calibration problem. Our formulation is also valid for other
tracking devices, provided that the pose of the calibration plane can be previously
determined.

4.2 Notation

In addition to the notation presented in Chapter 1, the remaining sections from this
Chapter use additional notation. We use a lower-case letter with prime symbol to
designate geometric 2D entities represented in the US image, e.g. xÕ

i

, pÕ
i

, and an
upper-case letter with prime symbol for 3D entities represented in the US reference
frame, e.g. �Õ, LÕ

i

. An asterisk denotes 3D geometric entities in the camera reference
frame, e.g. �ú

i

, Dú
i

. Plain letters are used to designate geometric entities in the
visual marker reference frame, e.g. �

i

, D
i

. The same letter with/without these
additional symbols, e.g. �ú, �Õ, � represent the same geometric entity under the
camera, the US, and the visual marker reference frames respectively.

4.3 Problem formulation

Consider a US sensor rigidly attached to a visual marker, whose local coordinate
systems have origin at OÕ and O respectively, as shown in Fig. 4.1(a). The pose of
the visual marker is detected by a camera whose reference frame has origin at Oú.

The calibration aims at mapping 2D homogeneous image coordinates xÕ
j

in the
US to 3D points X

j

in the visual marker reference frame. This requires to determine
both the intrinsic parameters K and the extrinsic parameters TUM. One possible
approach to do this would be to first determine the intrinsic parameters K using a
calibration phantom with known dimensions and then perform extrinsic calibration
using plane-line correspondences in a similar way to the LRF-camera problem of the
previous chapter. In this thesis, however, we focus on the joint calibration of both
intrinsic and extrinsic parameters as this allows to use a single calibration phantom
and greatly simplifies the calibration procedure. A simple and fast work-flow during
calibration is a key element in calibration of medical instruments since they often
need to be performed in the operating room in a very controlled environment with
strict temporal and spatial constraints.
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Figure 4.1: (a) Calibration set-up: The US is rigidly attached to a visual marker that
is tracked by a stationary camera. The US measures lines LÕ

i

from a calibration plane
�, while the camera measures the transformation TCM,j and maps the calibration
plane to the Marker reference frame. (b) The US-Camera calibration problem can
be formulated as the registration between planes �

i

represented in O and coplanar
lines LÕ

i

represented in OÕ.

The US intrinsic parameters K map 2D points xÕ
j

in pixels to 3D points XÕ
j

in
metric coordinates, represented in OÕ

XÕ
j

= KxÕ
j

(4.1)

with

K =

Q

cca

f

≠1
x

0
0 f

≠1
y

0 0

R

ddb , f

x

> 0, f

y

> 0 (4.2)

Note that, without loss of generality, we consider that points XÕ
j

lie in the plane
z = 0.

The extrinsic parameters TUM consist of rigid transformation with a rotation R
and translation t that map points XÕ

j

from the US reference frame to points X
j

X
j

=
A

R t
0 1

B A
KxÕ

j

1

B

(4.3)

The full intrinsic and extrinsic transformation from image coordinates xÕ
j

to 3D
coordinates X

i

can be represented by

X
j

=
A

A t
0 1

B A
xÕ

j

1

B

(4.4)
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with
A =

1
a1 a2

2
=

3 r1
f

x

r2
f

y

4
(4.5)

where a1, a2 are the first and second columns of A, and r1, r2 are the first and
second columns of R.

Note that both K and R can be easily extracted from A, thus determining the
9 parameters in a1, a2, t solves the calibration problem. Additionally, since R is an
orthogonal matrix the following quadratic constraint must be verified

a1
Ta2 = 0 (4.6)

Therefore this problem can be solved minimally with 8 additional constraints on
a1, a2, t.

4.3.1 Line-Plane Registration

In an analogous way to the LRF-Camera problem from Chapter 3, this calibration
problem can be formulated as the registration between lines LÕ

i

on the US cutting
plane �Õ and planes �

i

represented in O (Fig. 4.1(b)). The measurement of planes
�

i

requires a stationary camera that can detect both the fixed plane �ú and the
varying pose TCM,j

of the visual marker.
If the intrinsics K are known beforehand this problem is equivalent to the LRF-

Camera calibration problem and it can be solved with 3 plane-line correspondences
using the algorithm presented in the previous chapter. However, in order to solve for
both intrinsic and extrinsic parameters, the lines LÕ

i

are a�ected by the two unknown
scaling factors f

x

, f

y

and additional plane-line correspondences are required to solve
the problem. As it will be shown in this section, a minimal solution can be obtained
from 4 correspondences.

When there are N plane-line correspondences, in general each of the N !
(N≠2)! pairs

of lines LÕ
i

, LÕ
j

intersects at a point PÕ
ij

. Additionally, each of the N !
(N≠2)! pairs of

planes �
i

, �
j

intersects at a line B
ij

and each triplet of planes �
i

, �
j

, �
k

intersects
at a point M

ijk

. Particularizing for 4 plane-line correspondences there are 6 points
PÕ

ij

(Fig. 4.2(a)), 6 lines with directions D
ij

, and 4 points M
ijk

(Fig. 4.2(b), 4.2(c)).
In this case we can think in terms of 4 virtual cameras V

ijk

with projection centers
at M

ijk

and the same orientation as the visual marker with origin at O (Fig. 4.2(d)).
Each of these cameras measures 3D points P

i

, P
j

, P
k

as their image projections D
i

,
D

j

, D
k

. Finding the pose of these virtual cameras solves our calibration problem.
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Figure 4.2: Registration of 4 Line-plane correspondences: (a) 4 lines LÕ
i

intersect
at 6 points PÕ

ij

; (b), (c) For each line LÕ
i

there is a plane that intersects it. These
4 planes intersect at 6 lines with directions D

ij

and 4 points M
ijk

; (d) Each point
M

ijk

can be thought as the principal point of a virtual pinhole camera V
ijk

whose
orientation is aligned with the reference frame at O. Each of these virtual cameras
observes 3 points P

ij

such that their image projection rays have directions D
ij

.

Unlike in the LRF-Camera Calibration, in this problem the location of 3D points
PÕ

ij

is not known due to the unknown US intrinsics K. Instead we can determine
points pÕ

ij

on the US image such that

PÕ
ij

= KpÕ
ij

(4.7)

For each virtual camera V
ijk

the re-projection of a 3D point KpÕ
ij

is defined by
the direction D

ij

as

D
ab

≥
1
R t ≠ M

ijk

2 A
KpÕ

ab

1

B

, a, b œ {i, j, k} · a ”= b (4.8)
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This equation can be re-written as
1
pÕ

ab

T ¢ [D
ab

]◊ [D
ab

]◊
2 1

a1T a2T tT
2T

= [D
ab

]◊M
ijk

(4.9)

Each instance of equation 4.9 puts 2 linear constraints on a1, a2, t. There
are only up to 8 linearly independent constraints of this form, while the calibration
problem has 9 unknowns, thus equation 4.6 must be used to determine the remaining
unknown parameter.

4.3.2 Outline of the minimal solution

We now summarize our minimal algorithm step by step. Consider as input 4 cor-
respondences between planes �

i

in the visual marker reference frame and 4 lines lÕ
i

in US image coordinates. The algorithm returns up to 2 solutions to the vectors r1,
r2, t and the scalars f

x

, f

y

defined in equations 4.4 and 4.5.

1. Determine the line direction D
ij

for the intersection of each pair of planes �
i

,
�

j

in the visual marker reference frame.

2. Determine the point of intersection M
ijk

for each triplet of planes �
i

, �
j

, �
k

in the visual marker reference frame.

3. Determine the point of intersection pÕ
ij

for each pair of lines lÕ
i

, lÕ
j

in US image
coordinates.

4. Find 8 linearly independent equations using instances of equation 4.9.

5. Solve the linear system up to one scalar unknown –, such that A = –A1 + A2
and t = –t1 + t2.

6. Determine – by solving equation 4.6. There are up to 2 solutions.

7. For each (a1, a2, t) solution, find the positive values f

x

, f

y

such that r1,r2 from
equation 4.5 have unitary norm.

4.3.3 Degenerate Configurations

From Fig. 4.2(d) we can observe that if we ignore the 2 unknown scale factors f

x

,
f

y

our problem is equivalent to aligning a set of image rays from di�erent projection
centres with a set of co-planar 3D points. This is a particular case of the absolute
orientation problem for generalized cameras [17]. The addition of the unknown scale
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Figure 4.3: Degenerate configurations: (a) When the lines detected by the US are
parallel there is an ambiguity in translation (b) When the planes measured by the
visual tracker all intersect in parallel lines there is an ambiguity in translation (c)
When the the planes measured by the visual tracker intersect at the same point
there is an ambiguity in scale and translation

factors makes our problem similar in some aspects to the pose-and-scale problem for
generalized cameras [72]. Although this problem is slightly di�erent, the degenerate
cases discussed in this paper are relevant in the context of our problem.

When all lines LÕ
i

are parallel there is a translational ambiguity along the same
direction (Fig. 4.3(a)). In our calibration problem we are in this configuration
when all acquisitions are done by moving the US without rotation, or just with
rotations that are either around the x≠axis of the US reference frame or around
an axis perpendicular to the calibration plane. When all the line directions D

ij

are
parallel, there is a translational ambiguity along the same direction (Fig. 4.3(b)).
This happens in our problem when all planes �

i

have co-planar normals, i. e., all
acquisitions are done by rotating the US along an axis parallel to the calibration
plane. Finally, when all points M

ijk

are coincident, there is a scale factor ambiguity
(Fig. 4.3(c)). In this case we can always scale f

x

,f
y

in order to put the US further
away or closer to the calibration plane. This case is analogous to the scale factor
ambiguity that results from estimating motion/structure with a single camera [7,72].
This situation occurs when all acquisitions are done by rotating the US around a
single point on the calibration plane.

To summarize, degenerate configurations can be avoided by measuring di�erent
regions of the calibration plane and by exploring all three degrees of freedom in
rotation when moving the US between di�erent acquisitions.
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Figure 4.4: Line detection on US images with Hough transform and PEARL: (a)
The green line segment is a correct detection of the calibration plane while the red
is an incorrect detection produced by an undesired artifact on the US image (b)
Line segment detections are represented by start and end points wÕ

i,j

, zÕ
i,j

. multiset-
RANSAC uses as error metric the orthogonal distances between these points and
the re-projected line lú

i,j

.

4.4 Practical considerations

4.4.1 Line Detection

We perform automatic line segment detection on US images with the Hough trans-
form [73]. However, there are undesired reflections and artifacts that can clutter
the measurements and produce Hough peaks for di�erent lines. While we want to
ignore spurious line detections, in many cases it is not guaranteed that the maxi-
mum Hough peak corresponds to the correct line. In order to deal with this problem
we use the PEARL approach for multi-model fitting [74] to minimize the number of
line detections, while still considering multiple line segment candidates in ambiguous
cases (Fig. 4.4(a)). For each US image PEARL detects K

i

line segments defined by
their start and end points wÕ

i,j

, zÕ
i,j

(Fig. 4.4(b)). We then can then use multiset-
RANSAC to select the correct line candidates based on geometric constraints.

4.4.2 Multiset-RANSAC

multiset-RANSAC is used when there are more than 4 plane-line correspondences
available. Consider N pairs of US and Camera image acquisitions. Each US acqui-
sition contains K

i

start and end points wÕ
i,j

, zÕ
i,j

in homogeneous image coordinates
that define a 2D line lÕ

i,j

. Each camera provides a single reliable estimation of the
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calibration plane �
i

. The K

i

samples from each US-Camera acquisition are repre-
sented by vectors d

i,j

=
1
wÕT

i,j

zÕT
i,j

�T
i

2T
.

Candidate solutions are generated by first sampling 4 random US-Camera ac-
quisitions and then from each of them sampling one random vector d

i,j

.
The residue metric r

i,j

for each sample d
i,j

, given a candidate solution (K, R, t),
is the squared sum of the orthogonal distances between points wÕ

i,j

, zÕ
i,j

and the 2D
line re-projection lú

i

of the calibration plane �
i

onto the image (Fig. 4.4(b))

r

i,j

= ||�zÕ
i,j

||2 + ||�wÕ
i,j

||2 (4.10)

4.4.3 Iterative least-squares refinement

A final refinement of the calibration solution is performed by iterative least-squares
minimization using the Levenberg-Marquadt algorithm. After removing outliers
with multiset-RANSAC, we convert each line segment into a discrete set of points
p

j,i

corresponding to each line pixel. We also re-project each plane � onto the US
image by representing it in the US reference frame and intersecting it with the plane
z = 0. We minimize the total squared orthogonal distance between points p

j,i

and
the re-projected lines lú

i

in pixels (Fig. 4.4(b))

min
T,K

ÿ

i

ÿ

j

p
j,i

Tlú
i

||Dlú
i

|| (4.11)

with

D =

Q

cca

1 0 0
0 1 0
0 0 0

R

ddb (4.12)

4.5 Validation

We validate our calibration method in experiments with both synthetic and real data.
In all experiments we use multiset-RANSAC and iterative least-squares refinement
as detailed in the previous section.

For real data acquisition we use a TITAN SONOSITE ultrasound system with a
2–4 Mhz probe inside a water tank and a Grasshopper2 camera calibrated with the
EasyCamCalib toolbox. We measure the bottom of the water tank directly, without
using any additional method to increase the accuracy of US line detections, i. e. the
Cambridge phantom [70] or the thin membrane method [71], and thus our results
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reflect a worst case scenario in terms of US measurement accuracy. In the synthetic
experiment we try to approximate as close as possible to this set-up by defining
virtual sensors with similar error magnitudes and measurement ranges.

We represent the US intrinsic parameters in terms of focal length f =


f

x

f

y

and aspect ratio a =
Ò

f

x

f

y

.

4.5.1 Synthetic data

We use a simulated environment that contains a 1280 ◊ 720 resolution pin-hole
camera, a US with focal length f

GT

= 3 and aspect ratio a

GT

= 1, a visual marker
attached to the US with 100 planar features, and a calibration plane at z = 0. The
camera is placed at a fixed pose while the US is randomly placed in a pre-defined
region such that the visual marker can always be seen by the camera. The US
measurements range from distances between 80mm and 100mm to the calibration
plane, and thus are representative of a 2≠≠4 MHz low frequecy probe. We simulate a
set of N US/Camera measurements for di�erent random US poses. We add Gaussian
noise to both the visual tracker features measured by the camera (‡ = 0.2px) and
the US line measurements (‡ = 1px). The noise in the camera is in line with the
re-projection errors that can be achieved with the EasyCamCalib toolbox, while the
noise in the US is set to a higher level due to the intrinsic di�culties in measuring
plane cuts with an US [70]. Note that in this setup only one line is detected for each
US measurement, and thus there are no outliers.

We perform 50 random calibration trials using di�erent numbers of plane-line
correspondences and compare the results against groundtruth values. Fig. 4.5 shows
the error distribution for all calibration trials, quantified by the angular magnitude
of the residual rotation RTR

GT

, the relative translation error ||t≠ t
GT

|| / ||t
GT

||, the
relative focal length error |f

GT

≠f |
f

GT

, and aspect ratio error |a ≠ a

GT

|.
The results show that for the specified noise, even without outliers, using just 5

acquisitions is significantly inaccurate, with translation errors that can surpass 10%.
Our calibration method converges to a stable solution for 15 images.

4.5.2 Real data

Our setup for real data acquisition consists of a stationary calibrated camera that
tracks a checkerboard grid attached to the US. The US measurements are made
inside a water filled tank. In a first step we place a checkerboard grid on the bottom
of the empty tank to locate the calibration plane in the camera reference frame (Fig.
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(a) (b)

(c) (d)

Figure 4.5: Error distributions with synthetic data. For each case we perform 50
trials and compare them against groundtruth values.

4.6(a)). Then we fill the tank with water and perform 20 synchronized US-Camera
acquisitions with the US under di�erent poses (Fig. 4.6(b)). Finally we validate our
results with a 403 GS LE phantom (Fig. 4.6(c)).

In an analogous way to the synthetic set-up, we perform 50 calibration trials
using 5, 10, 15, and 20 US-Camera acquisitions. For each calibration trial we ran-
domly select a subset of the 20 acquisitions. Note that the calibration trials with
20 acquisitions always use the same input data. Since multiset-RANSAC is not
deterministic, its results can be slightly di�erent in each trial and thus we want to
evaluate its repeatability.

In Fig. 4.7 we display, for all calibration trials, the estimation distributions in
focal length, aspect ratio, translation norm, and rotation angle with respect to the
z≠axis of the calibration plane reference frame. We confirm our initial observations
from the synthetic experiment that using less than 15 images leads to unstable
results. It is also noteworthy that the overall results are worse than in simulation.
The main reason is the presence of outlier line detections, which makes the problem
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(a) (b) (c)

Figure 4.6: Experimental set-up: (a) Detection of the calibration plane (bottom
of the empty tank) in the camera reference frame; (b) after filling the tank with
water we perform US-Camera synchronized acquisitions; (c) Validation of calbration
results is done with a precision phantom.

slightly more challenging. We are able to obtain stable calibration results with 20
images. This is a significant advance over the alternative plane-based methods that
require hundreds of acquisitions in order to converge [70].

We evaluate the accuracy of our calibration with 20 acquisitions using a preci-
sion phantom that contains a set of horizontal parallel wires immersed in a tissue
mimicking gel, such that their relative positions are accurately known. Note that in
the phantom’s gel, the sound travels 3% faster than in water, thus the focal length
must be adjusted by the same factor in this validation.

In order to represent the wires in the reference frame of the calibration plane
we position the phantom such that the wires are oriented along the y≠axis of the
calibration plane (as displayed in Figs. 4.6(a), 4.8(a)). Additionally we manually
mark one of the wires in an US image (blue point in Fig. 4.8(a)) to define the origin
of the phantom reference frame. Now we are able to represent the wires as 3D lines
in the reference frame of the calibration plane (Fig. 4.8(b)). Finally the remaining
wires are re-projected on the US image using our estimation of the extrinsic and
intrinsic calibration (green points in Fig. 4.8(a)). The coincidence between the re-
projected points and the US measurements shows that our calibration is accurate.
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Figure 4.7: Distribution of the calibration parameters with real data. For each case
we perform 50 trials.
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Figure 4.8: Phantom validation: (a) the blue point is manually marked to define the
origin. The green points are re-projected according to the phantom specifications
and a calibration with 20 acquisitions; (b) 3D representation of the validation set-
up. The blue lines are the phantom wires and the points are their intersections with
the US cutting plane.
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Chapter 5

Full camera calibration from
independent pairwise
correspondences

5.1 Introduction

Camera networks are sets of cameras whose fields of view are usually shared between
two or more cameras within a network. They find applications in several domains
that are concerned with the capture, the recording, and the analysis of dynamic
scenes, for instance surveillance and animation modelling applications [75]. Most of
these applications require the calibration of cameras in order to perform geometric
operations such as reconstruction. One widely proposed appproach to achieve this
purpose is to use a calibration pattern or rig [76–81], which is typically an o�ine
procedure, requiring human intervention. However, there are many situations where
a simpler and unsupervised scheme is desirable, in particular when adding a camera
or modifying its location or characteristics while operating the network.

Without prior 3D information, image correspondences between cameras must be
considered. Since camera networks are often sparse, correspondences in 3 or more
images can be di�cult to obtain, hence preventing the use of traditional calibration
tools [37]. In contrast, correspondences between 2 images are more likely to be
available by construction of camera networks.

This chapter addresses the issue of fully calibrating a camera given independent
correspondences with 2 calibrated cameras. The situations particularly targeted are
the addition or the modification of a camera in a calibrated network under operation,
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Figure 5.1: We consider the problem of fully calibrating the camera C, given pairwise
correspondences with two calibrated cameras C

A

and C
B

.

which are common situations in practical camera network setups. The literature
provides solutions when correspondences with 3 or more cameras are available [37],
as well as when there is a mixture of corresponences with 2 and 3 cameras [82].
However, few e�orts have been made to solve for the case with only 2-view corre-
spondences. We investigate this issue and derive a minimal solution that requires
11 correspondences to estimate the 11 parameters of the unknown camera.

5.2 Problem Statement

Let us consider two calibrated cameras C
A

and C
B

, such that the matrices of in-
trinsic parameters are K

A

and K
B

, and the absolute poses are expressed in a world
coordinate system O

w

by the rotations matrices R
A

and R
B

, and the translation
vectors t

A

and t
B

. Consider an additional camera C for which both the intrinsic
calibration K, and the extrinsic calibration R, t are unknown. Our article addresses
the problem of calibrating this third camera using as input data a set of a image
correspondences (x(i)

, x(i)
A

) between C and C
A

, and set of b image correspondences
(x(a+j)

, x(j)
B

) between C and C
B

(Fig. 5.1). We assume that the two sets of pairwise
matches are independent, meaning that

xi ”= xa+j

, ’
i=1...a, j=1...b

.

In other words, there are no triplets of correspondences generated by scene points
that are simultaneously seen by the three cameras. The absence of triple matches
precludes the application of the standard calibration techniques that are described
in text books [3, 37]. These approaches typically rely on the recovery of 3D points
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using the calibrated stereo views and standard triangulation [83]. These 3D points
can in turn be used as reference points for the calibration of the 3rd camera (re-
section) [37, 77]. A possible alternative is to build a measurement matrix with the
image correspondences, and perform projective factorization using the Sturm-Triggs
algorithm [84] with a suitable extension for handling missing data [76]. However,
this class of methods is meant for problems with multiple cameras and large num-
ber of correspondences, and it is unlikely that they will converge to a solution with
pairwise correspondences only. One could also represent the camera network as a
collection of fundamental matrices and obtain the trifocal tensor constraints with
the new camera [85] and although this avoids an explicit 3D reconstruction of points,
it still requires triple correspondences in order to calibrate the new node.

In summary, and to the best of our knowledge, the calibration of a camera
using independent pairwise correspondences with two other views has never been
addressed in the literature before. We present in the following a minimal solution
when 7 or more matches with one of the views are available.

5.3 Linear system of equations with a minimum number
of unknowns

In this section we derive a system of linear equations that has a minimum number of
unknowns and fully constrains the camera calibration. The problem is formulated
in the context of epipolar geometry between general camera models [18], with one
side being the uncalibrated pin-hole camera C, and the other side being the pair of
calibrated cameras C

A

and C
B

that can be understood as a particular instance of a
non-central imaging device denoted by C

A

fi C
B

. It is shown below that under such
configuration the corresponding back-projection lines must satisfy a bilinear relation
expressed by a 3 ◊ 5 matrix, and that the estimation of the epipolar geometry using
a DLT-like approach cannot be achieved with less than 14 pairwise matches.

Note that when the intrinsics are known, this problem is a particular case of the
pose estimation between calibrated general camera models [18] that has already been
solved both linearly [6] and using the minimal number of 6 pairwise correspondences
[16].
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5.3.1 Line Incidence Relations

Let x
A

and x
B

be image points in C
A

and C
B

. Since the cameras are fully calibrated,
the corresponding back-projection lines L

A

and L
B

can be expressed in the common
world reference frame O

w

by a homogeneous Plücker vector

L
A/B

≥
A

d
A/B

m
A/B

B

,

with the 3-vectors d
A/B

and m
A/B

being respectively the direction and the momen-
tum of the line belonging to either camera A or B. In a similar manner, an image
point x in C gives rise to a back-projection line L that is represented in the local
camera reference frame by

L ≥
A

d
0

B

,

with the direction depending on the matrix of intrinsic parameters K

d ≥ K≠1 x . (5.1)

If x and x
A/B

are image correspondences, then the back-projection lines L and
L

A/B

must be incident. Given the rigid displacement between the reference frames
O

w

and C, and the condition for two lines in Plücker coordinates to intersect, it
comes that the following condition must hold

LT
A

0 I
I 0

B A
R 0

[t]◊R R

B

L
A/B

= 0 .

Since the momentum of L is always zero, then the above equation can be re-written
as

dT
1
[t]◊R R

2
L

A/B

= 0 (5.2)

Equation 5.2 is the particular case of the generalized epipolar constraint proposed
in [18] when one of the cameras is a conventional pin-hole. However, and similarly
to the general case, the bilinear relation between back-projection lines is expressed
by a 3 ◊ 6 matrix that encodes the calibration parameters. Therefore, the linear
estimation of the 18 entries of the matrix up to a global scale factor still requires a
minimum of 17 image correspondences between C and the camera pair C

A

fi C
B

.
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Figure 5.2: Line subspaces; in each figure, the dotted lines represent possible lines
that could result from the linear combination of the generation basis.

5.3.2 Analysis using linear line subspaces

In our case the parametrization of equation 5.2 leads to a linear estimation problem
that is sub-determined. This is a situation similar to the degenerate configura-
tions recently reported in [6] in the context of motion estimation using a calibrated
multiset-camera rig. We use the theory of linear line subspaces [86] to explain the
underlying reasons of the sub-determination, and prove that the calibration problem
can be formulated in a linear manner using a minimum of 15 parameters.

It is well known that a line in 3D represented in Plücker coordinates can be
thought as a point in P5 lying in the so-called Klein Quadric. Let us consider a
generic hyperplane in P5 with dimension N Æ 5. The hyperplane intersects the
quadric in a locus that defines, via Plücker mapping, a certain subset of lines in the
original 3D space. This subset is called a linear line subspace (LLS) of dimension N ,
and each line L in the LLS is in the linear span of N other lines G with independent
Plücker vectors [86].

The lines going through a generic 3D point Q form a line bundle that is often
used to model the back-projection rays of a pin-hole camera (Fig. 5.2(a)). The
line bundle is a LLS of dimension N = 3, and each line L going through Q can be
uniquely expressed as the linear combination of any other three non-coplanar lines
in the bundle. It is said that these three lines {G1, G2, G3} are a basis for the LLS.
Consider now an additional line G4 that is not in the bundle. In this case the span
of {G1, G2, G3, G4} contains a LLS of dimension N = 4 that comprises all the
lines that go through point Q, and all the lines that lie in the plane � defined by Q
and G4 (Fig. 5.2(b)). Finally, the addition of a fifth line G5 to the basis gives raise
to a LLS of dimension N = 5 that is called a linear line congruent (LLC) [86]. The
LLC includes all the lines intersecting an axis S that, in the particular case of Fig.
5.2(c), is defined by the center Q and the point R where G5 meets the plane �.
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Let us return to our calibration problem where the generalized camera C
A

fi C
B

is modeled by the union of two distinct line bundles. The key observation is that
every possible back-projection line L

A/B

must be tangent to the line going through
C

A

and C
B

(the baseline). Thus, and since the lines L
A/B

are contained in a LLC,
they can be represented in a unique manner as the linear combination of any 5 lines
G

i

that intersect the baseline

L
A/B

≥
1
G1 G2 G3 G4 G5

2

¸ ˚˙ ˝
G

⁄
A/B

,

where G is a 6 ◊ 5 matrix with full rank, and ⁄
A/B

is a 5-vector defined up to scale.
Replacing in equation 5.2 yields

dT
1
[t]◊R R

2
G ⁄

A/B

= 0 (5.3)

We have just re-written the epipolar constraint of equation 5.2 as a bilinear
relation between the direction d of the line L in camera C, and the representation
⁄

A/B

of the back-projection line L
A/B

in the generalized camera C
A

fiC
B

. Since the
bilinear relation is now encoded by a 3 ◊ 5 matrix with 15 entries, then 14 image
point correspondences are su�cient for estimating the epipolar geometry in a DLT-
like manner. The discussion clearly explains why the 18 parameter formulation of
equation 5.2 is ambiguous [6], and shows that a compact linear formulation of the
stated calibration problem must necessarily have 15 parameters because the lowest
dimensional linear sub-space containing all the back-projection rays of two pin-holes
is a LLC.

5.3.3 Compact linear formulation

Given the two arbitrary calibrated cameras, it is always possible to perform a change
of reference frames for achieving the configuration exhibited in Fig. 5.3. We consider,
without any loss of generality, that the world reference frame is aligned with the
coordinate system of camera C

A

, and that the X-axis is coincident with the baseline
defined by the projection centers of the two pin-holes. The local reference frame
of the second camera is assumed to have origin in C

B

and to be parallel to the
coordinate system of C

A

. Under such circumstances the rigid transformation that
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Figure 5.3: The space generated by two bundles of lines (the rays of 2 pinhole
cameras) can be fully represented as the linear span of {G1, G2, G3, G4, G5}.

maps point coordinates from C
B

to C
A

is given by

T
BæA

=
A

I h
0 1

B

with I being the 3 ◊ 3 identity matrix and h =
1
h 0 0

2T
. Since the axes X, Y, Z

of the system of coordinates of C
A

, and the axes Y, Z of the reference frame of C
B

are linearly independent lines, then they can be used to establish a basis G for the
LLC defined by the baseline. It comes that

G ≥
A

I I{2,3}

0 [h]{2,3}
◊

B

with the upper script {2, 3} denoting the second and third columns of the matrix.

Let us now consider an image correspondence (x, x
A

) between C and C
A

. The
back-projection of x

A

is a line L
A

with direction d
A

expressed in the reference frame
of C

A

. Given the basis G above, it comes that L
A

≥ G ⁄
A

with

⁄
A

≥
1
dT

A

0 0
2T

.

Replacing in equation 5.3, and making d ≥ K≠1 x, yields

xT F
A

d
A

= 0 (5.4)
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with F
A

being the standard fundamental matrix between the uncalibrated camera
C and the calibrated view C

A

F
A

= K≠T [t]◊ R (5.5)

Repeating the reasoning for the case of an image correspondence (x, x
B

) between
C and C

B

, it comes that

⁄
B

≥
1
d

B,1 0 0 d

B,2 d

B,3
2T

.

with d
B

≥
1
d

B,1 d

B,2 d

B,3
2T

being the direction of the back-projection line L
B

expressed in the local reference frame of camera C
B

. Making L
B

≥ G ⁄
B

in equation
5.3, and taking into account that the first column of [h]◊ is a null vector, we obtain
that

xT F
B

d
B

= 0 (5.6)

with F
B

being the fundamental matrix between C and C
B

that can be written as

F
B

= F
A

+ K≠1R[h]◊. (5.7)

It follows from the equation above that the first columns of matrices F
A

and F
B

are
always equal (F{1}

A

= F{1}
B

).
Given the image correspondences (x(i)

, x(i)
A

), with i = 1, . . . a, and (x(a+j)
, x(j)

B

)
with j = 1, . . . b, we can determine the line directions d(i)

A

≥ K≠1
A

x(i)
A

and d(j)
B

≥
K≠1

B

x(j)
B

, and establish a system of linear equations (equation 5.8) based on the
bilinear constraints of equations 5.4 and 5.6.
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Q

ccccccca

F{1}
A

F{2}
A

F{3}
A
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B

F{3}
B

R

dddddddb

= 0 (5.8)

If a + b Ø 14 then the fundamental matrices F
A

and F
B

can be determined up
to a common scale factor using a standard DLT approach.
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5.4 A minimal solution for the estimation of F
A

and F
B

We have shown that the two fundamental matrices, F
A

and F
B

, that encode the
calibration information K, R, and t, can be determined from a minimum of 14
independent image correspondences. However, the total number of independent
unknowns is 11 (5 intrinsic parameters and 6 extrinsic parameters) meaning that
the estimation problem can be further constrained. Two of these constrains are
rather obvious:

det(F
A

) = 0 (5.9)
det(F

B

) = 0 (5.10)

For the third constraint it must be observed that the sum of F
A

and F
B

is still a fun-
damental matrix. From equations 5.5 and 5.7 it comes after algebraic manipulation
that

F
A

+ F
B

= K≠1[2t + Rh]◊R ,

which means that the following condition must hold

det(F
A

+ F
B

) = 0 (5.11)

The equation above basically enforces the condition that F
A

and F
B

must be two
fundamental matrices encoding the same rotation R.

5.4.1 Outline of the estimation algorithm

This section outlines an algorithm for estimating F
A

and F
B

from pairwise corre-
spondences between an uncalibrated camera C and two calibrated cameras C

A

, C
B

.
Each pairwise correspondence contains a homogeneous point x in pixel coordinates
belonging to C and a homogeneous point d

A/B

in metric coordinates belonging to
either C

A

or C
B

. Consider as input the correspondences (x(i)
, d(i)

A

), with i = 1, . . . a,
and (x(a+j)

, d(j)
B

) with j = 1, . . . b, where a + b Ø 11. The solution is found by de-
termining the 4-dimensional null space of the measurement matrix of the the linear
system of equation 5.8, followed by intersecting the span of this null-space with the
locus defined by the polynomials constraints of equations 5.9 to 5.11. Instead of
solving a system of 3 third order polynomials in 3 variables, we explore the sparsity
of the measurement matrix and simplify the problem to solving 1 cubic polynomial
in 1 variable, and a system of 2 quadratic polynomials in 2 variables. In order for
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this to be possible 7 of the 11 image matches must be in the same calibrated view
(a = 7, b = 4).

1. Build the linear system of equation 5.8 from the 11 pairwise correspondences,
and determine the 4-dimensional solution space using SVD decomposition (A =
USVT). The solution space is spanned by the columns of the 15 ◊ 4 matrix
V{12...15} (the last 4 columns of V)

2. The first 9 rows of V{12...15} define always a rank 2 sub-matrix due to the
structure of the linear system and the fact that a = 7. Thus, the solution
space of F

A

is spanned by the two columns of the sub-matrix, a and aÕ, that
are linearly independent, which enables to write F

A

(–) = AÕ + –A with –

being a free parameter.

3. Compute – by solving the cubic constraint of equation 5.9 and determine the
fundamental matrix F

A

.

4. Substitute F
A

in the linear system which results in 4 equations in 7 unknowns.
The solution space of this system is 3-dimensional and F

B

can be written as
the linear span F

B

(—1, —2) = BÕÕ + —1BÕ + —2B)

5. Substitute F
A

and F
B

(—1, —2) in equations 5.10 and 5.11. This leads to a
bivariate system of 2 quadratic equations that corresponds geometrically to
determining the point intersections of two conic curves. Compute —1 and —2
by solving the bivariate system [87], and determine the fundamental matrix
F

B

.

Since the cubic equation of step 3 gives up to 3 discrete solutions, and the
bivariate system of quadric equations has at most 4 distinct solutions, then there is
a maximum of 12 possible solutions for the pair of fundamental matrices (F

A

, F
B

).

5.5 Factorization of F
A

and F
B

So far we have shown how to estimate the fundamental matrices F
A

and F
B

from a
minimum of 11 pairwise correspondences. In order to solve the calibration problem,
F

A

and F
B

must be factorized into the intrinsic parameters K and the relative pose
R, t . The absence of intrinsics in the right side of the fundamental matrices leads
to a simplified version of Kruppa’s equations [3, 37] that enable the recovery of
K in a relatively straightforward manner. This section discusses how this can be
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Figure 5.4: Conic envelope � establishes linear relations sTKKTs = 0 and rTKKTr =
0.

achieved. After knowing K, we can compute the essential matrix E
A

and apply
standard techniques for determining the rotation R and the translation t up to scale
factor [3,37]. This scale factor can be easily found using the known baseline between
C

A

and C
B

.

Let us now discuss the extraction of the matrix K. Consider the fundamental
matrix F

A

that is given in equation 5.5. After some algebraic manipulations we
obtain that

F
A

FT
A

≥ [Kt]◊ KKT [Kt]◊

From the result above it follows that, if y is a point in the projective plane that
satisfies

yT F
A

FT
A

y = 0 ,

then the line defined by y and the left epipole of F
A

must lie in the conic envelope
KKT that is the dual of the image of the absolute conic (DIAC) [3, 37]. F

A

FT
A

is a
rank 2 symmetric matrix that represents a degenerate conic. Thus, and since this
conic consists in two lines s

A

, r
A

that intersect in the left epipole, it is easy to
conclude that s

A

, r
A

must belong to the DIAC. The same reasoning can be applied
to the fundamental matrix F

B

of equation 5.7

F
B

F
B

T ≥ [K(Rh + t)]◊KKT[K(Rh + t)]◊ ,

and to the matrix F
B

≠ F
A

that is still rank deficient because the first columns of
the two fundamental matrices are equal

(F
B

≠ F
A

)(F
B

≠ F
A

)T ≥ [KRh]◊KKT[KRh]◊ .
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Summarizing, and as shown in Fig. 5.4, the DIAC is fully constrained by
the line pairs arising from the rank 2 degenerate conics F

A

FT
A

, F
B

FT
B

, and (F
B

≠
F

A

)(F
B

≠ F
A

)T. It is important to note that, although we have six lines, they only
give rise to five independent constraints on the parameters of the DIAC. This is
explained by the fact that their pairwise intersections are collinear.

Another possible factorization approach would be to use the properties of the
SVD decomposition of a fundamental matrix [88].

5.6 Practical considerations

5.6.1 Multiset-MAPSAC

We now consider this calibration problem in a practical scenario, where in general
there are more than 11 correspondences, some of them being outliers. We have two
datasets: one contains K

A

correspondences between C and C
A

, and the other K

B

correspondences between C and C
B

.
This fits into our multiset-dataset framework from Chapter 2, however, there

are some particularities that must be discussed. Unlike the multiset-RANSAC ap-
plication in Chapter 4, in this case there are 2 available datasets and the minimal
solution requires both of them to generate a candidate solution. Pairwise correspon-
dences with one camera would just give us a fundamental matrix, while the pairwise
correspondences with two cameras give us both the extrinsic and intrinsic camera
calibration. This means that a candidate model with many inliers in one dataset
and very few on the other is a poor solution that is over-fitting to a particular fun-
damental matrix. To tackle this issue we use the multiset-MAPSAC approach and
define a prior probability function that penalizes significantly uneven distributions
of inliers.

To use multiset-MAPSAC we generate candidate solutions by first randomly
selecting from which of the two datasets we sample 7 and 4 correspondences, and
then randomly selecting the respective number of samples from each dataset.

The error of a candidate solution is measured in terms of the perpendicular
distances between point correspondences and their epipolar lines. Given a pairwise
point correspondence (x,

‚x) between two cameras related by a fundamental matrix
F, the epipolar error r is the distance in pixels between point x and the epipolar line
of ‚x

r = xTFT‚x
||I2◊3FT‚x|| . (5.12)
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Analogously, the distance between point ‚x and the epipolar line of x is

‚
r =

‚xTFx
||I2◊3Fx|| . (5.13)

Note that in this context the F is the standard fundamental matrix between two
views and not F

A

or F
B

.

In each iteration we estimate the inlier ratios of each dataset “

A

, “

B

with expec-
tation maximization, and then the multiset-MAPSAC cost function is given by the
posterior probability

c = Pr(“
A

, “

B

)L(F
A

, F
B

|r1,

‚
r1, ..., r(K

A

+K

B

)‚
r(K

A

+K

B

)) (5.14)

The likelihood term is defined by equation 2.9 from Chapter 2 (multiset-MLESAC).
As a rule of thumb, we assume a Gaussian variance of 1 pixel for inliers, and an
outlier range equal to the diagonal length of each image in pixels. The prior term
Pr(“

A

, “

B

) is a probability density function that penalizes uneven distributions of
inliers

Pr(“
A

, “

B

) = (– + 1)2(“
A

“

B

)– (5.15)

where – is set to a value with the same order of magnitude as the number of cor-
respondences in each dataset. Note that the constant factor (– + 1)2 is just to
guarantee that Pr(“

A

, “

B

) is a probability density function for “

A

, “

B

between 0
and 1. In our context of maximum a posteriori estimation it can be ignored.

As stated in Chapter 2, when the minimal solution requires all available datasets,
some additional concerns should be taken into account in order to compute the
number of multiset-MAPSAC iterations. In this case, equation 2.4 is not suitable
to compute the probability p

inall

of sampling only inliers in each iteration. In the
dataset sampling step there are only two possible outcomes: choosing from which
dataset we select 4 and 7 correspondences. Therefore, the probability of selecting
only inliers in this process is

p

inall

= 1
2(“7

A

“

4
B

+ “

4
A

“

7
B

) (5.16)

The multiset-MAPSAC formulation can also be extended to a scenario where we
have correspondences with N cameras C1,...,C

N

. In this case the multiset-MAPSAC
first samples 2 random datasets and then extracts 4 and 7 correspondences from each
of them. Note, however, that the over-fitting case discussed above can only happen
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when a candidate solution fits well into just one dataset. Thus, the prior term
Pr(“

A

, “

B

) should be computed using only the two highest values from “1,...,“
N

.

5.6.2 Pre-filtering

Using multiset-MAPSAC with our calibration method raises another important
practical issue. The minimal solution for our problem requires 11 points, a very
high number that can lead to a huge computational cost in the presence of datasets
highly contaminated by outliers.

With very challenging datasets the number of iterations can be drastically re-
duced with a pre-filtering stage. Each set of pairwise correspondences must verify
a 2-view constraint with respectively F

A

and F
B

. This means that the 7-point
algorithm can be used within RANSAC to eliminate outliers on both sets of corre-
spondences. Note, however, that we should not use these independent estimations
for F

A

and F
B

, since the constraint det(F
A

+ F
B

) = 0 is neglected. It is also likely
that some outlier correspondences still remain after this step. In the experimental
section of this chapter with real data, outlier ratios after pre-filtering range between
0% and 10%. Therefore, this pre-filtering stage should only be used to remove a first
round of outliers, while in a second stage, muli-MAPSAC is used with the 11-point
algorithm to find a consistent solution to F

A

and F
B

on datasets with much lower
ratios of outliers.

5.6.3 Iterative least-squares refinement

A final refinement with bundle adjustment should be performed to achieve an op-
timal solution. Usually bundle adjustment minimizes the re-projection of recon-
structed 3D points onto the cameras. However, since our formulation only uses
pairwise correspondences, the introduction of unknown 3D points is an unnecessary
burden. As described in [37], an explicit representation of 3D points can be avoided
by minimizing the perpendicular distances between point correspondences and their
epipolar lines.

Given a pairwise point correspondence (x,

‚x) between two cameras related by a
fundamental matrix F, the epipolar error r is defined by equations 5.12 and 5.13. We
now consider a network with M calibrated cameras with rotations {R1, R2, ..., R

M

},
translations {t1, t2, ..., t

M

}, and intrinsics {K1, K2, ..., K
M

} in a common reference
frame, and a new camera with unknown parameters R, t, K. The new camera has
a set of N

j

pairwise correspondences {(x
j,1,

‚x
j,i

), (x
j,2,

‚x
j,2), ..., (x

j,N

j

,

‚x
j,N

j

)} with
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each calibrated camera j = 1, 2, ...M . Therefore, the bundle adjustment problem
becomes

min
R,t,K

Mÿ

j=1

N

jÿ

i=1
r

2
j,i

+ ‚
r

2
j,i

(5.17)

with

r

j,i

=
A

x
j,i

TF
j

T‚x
j,i

||I2◊3F
j

T‚x
j,i

||

B

(5.18)

‚
r

j,i

=
A

‚xT
j,i

F
j

x
j,i

||I2◊3F
j

x
j,i

||

B

(5.19)

F
j

= K
j

[R
j

Tt + t
j

]◊R
j

TRK. (5.20)

5.7 Experiments

In this section we validate our calibration method using both synthetic data and
real imagery of dynamic scenes acquired in a camera network environment. Real
data was acquired with the Grimage platform [89], a room with a set of calibrated
cameras that acquires synchronized frames of the same scene.

In a first set of experiments we use synthetic data to demonstrate that in chal-
lenging scenarios our multiset-MAPSAC formulation is essential to obtain accurate
calibrations. We then demonstrate the usefulness of our calibration method in prac-
tice. We present two camera network applications where pairwise correspondences
are significantly more abundant than triple correspondences, and therefore our al-
gorithm outperforms competing approaches that require correspondences with more
than two views. The first one is the addition of a new camera to a calibrated net-
work, using a synchronized set of frames at a single time instant. In this case we
compare our method against the 6-point approach that requires triple correspon-
dences. In the second scenario the two methods are compared while performing the
full calibration of a hand-held camera. Both its intrinsic parameters and its trajec-
tory are estimated while capturing a dynamic scene within the field of view of the
calibrated network.

We use SIFT features to establish point correspondences between the images.
For both our method and the 6-point approach we perform a pre-filtering step with
7-point fundamental matrix estimation. For our method we use multiset-MAPSAC
and the bundle adjustment described in section 5.6.3. On the other hand, the 6-
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Figure 5.5: Comparison between multiset-MAPSAC (red) and MLESAC (green)
with synthetic data. Error distributions over 50 calibration trials for di�erent levels
of injected outliers.

point approach is a single dataset formulation and relies on 3D point estimation,
therefore we use the standard versions of both MLESAC and bundle adjustment.

5.7.1 Validation of multiset-MAPSAC

We built a simulated environment in order to show that in some conditions, our
multiset-MAPSAC formulation clearly outperforms a standard MLESAC approach
that assumes all correspondences belong to the same dataset. Note that comparing
multiset-MAPSAC against standard MAPSAC instead of MLESAC would not make
any di�erence in the context of this problem since our defined prior probabilities
depend exclusively on the assumption that di�erent datasets have di�erent inlier
ratios. We generate calibrated cameras C

A

, C
B

, and an uncalibrated camera C in
random poses such that they share a common field of view. Then we generate 500
points that are viewed by cameras C

A

and C and 100 points that are viewed by
cameras C

B

and C. All these correspondences are injected with Gaussian noise with
1 pixel standard deviation, and also a predefined ratio of outliers that are random
points following a uniform distribution within the image limits. We tried to calibrate
camera C using the 11-point algorithm with both multiset-MAPSAC and MLESAC.
We performed 50 calibration trials for each of six di�erent levels of injected outliers
in cameras C

A

and C
B

. In Fig 5.5 we show the error distributions for rotation,
translation, and focal length when compared against groundtruth values. It is clear
that multiset-MAPSAC is able to perform better in situations where the inlier ratios
are significantly di�erent in cameras C

A

and C
B

.
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Figure 5.6: Addition of a new node to a camera network. In each trial we try to
calibrate one of the cameras in (a) assuming that the remaining four are calibrated.
(b), (c), (d), (e) show the comparative performance between 11-pairwise and 6-
triplets for 250 calibration trials

5.7.2 Addition of a new node to a calibrated network

In this experiment we aim at fully calibrating a camera using pairwise correspon-
dences from a set of synchronized frames at a single time instant. For this purpose
we used the stick dataset from the 4drepository [90], which contains synchronized
frames from di�erent calibrated cameras. We selected five cameras from a particu-
lar frame (Fig. 5.6(a)) and tried to calibrate each of them assuming we know the
calibration of the remaining four cameras.

Our method presupposes that pairwise correspondences are only established with
other two calibrated cameras. Therefore, we perform the pre-filtering step with the
four calibrated cameras and select the two with the highest number of inliers. In the
case of the 6-point algorithm all pre-filtered triple correspondences from the four
cameras are used. Note, however, that there is a wide baseline between the five
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cameras, so typically the two closest cameras will produce the majority (if not all)
the reliable correspondences.

After the pre-filtering step, and for each of the five cameras, both 6-triplets
and 11-pairwise are run 50 times, summing up to 250 calibration tests for each
approach. The error distributions for all calibration attempts are provided in Figs.
5.6(b),5.6(c),5.6(d), showing that our algorithm provides more accurate results. This
can be explained by the fact that it is possible to establish a much higher number of
pairwise correspondences than triple correspondences (Fig. 5.6(e)), despite the fact
that triple correspondences are established across the four calibrated cameras, while
for our algorithm we only use the pairwise correspondences from two cameras.

5.7.3 Calibration of a hand-held camera

We acquired a set of synchronized video sequences with both the calibrated network
and a hand-held camera. It is composed of 30 frames in which the hand-held camera
shares its field of view with two other calibrated cameras (Fig. 5.7). The viewed
scene is dynamic, therefore there are only correspondences between images acquired
at the same time instant. The intrinsic parameters of the hand-held camera were
previously determined using a calibration target. We use these values as groundtruth
for comparison with our estimates.

Both the intrinsic parameters and the trajectory of the hand-held camera can
be recovered with our calibration method. In a first step, we calibrate each frame
independently using pairwise correspondences with the synchronized frames from
the calibrated cameras. A final estimation is made with a global refinement step,
using bundle adjustment to minimize the epipolar error (or the re-projection error
in the case of 6-point) while also making the intrinsic parameters across the di�erent
frames converge to constant values. This can be achieved by introducing the variance
of intrinsic parameters along the trajectory as additional terms of the cost function
to be minimized. Adding the variance of each intrinsic parameter is convenient
because the new cost function is still a squared sum of residuals, allowing the use
of the same least squares techniques from standard bundle adjustment. In this step
we assume a camera with zero-skew and four parameters to converge

K =

S

WWU

f

x

0 c

x

0 f

y

c

y

0 0 1

T

XXV . (5.21)
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Figure 5.7: Sample frames from the fixed calibrated cameras (top and center rows)
and the uncalibrated hand-held camera (bottom row).

The error distribution for the intrinsic parameters before and after global refinement
is presented in Figs. 5.8(a) and 5.8(b). The initialization results are in line with
the previous experiment, with 11-pairwise providing more accurate results than the
6-triplets. These initialization results are su�cient for the focal length to converge
to similarly accurate values with both algorithms, however, our algorithm is able
to provide a much better estimation of the principal point due to its significantly
higher number of inlier correspondences (Fig. 5.8(c)). This is also reflected in the
estimation of the camera trajectory (Fig. 5.8(d)). The trajectory estimated by our
algorithm seems more likely to represent a hand-held trajectory, since the estimation
from 6-triplets contains some non-smooth spikes. Since we do not have groundtruth
values for the camera trajectory, in Fig. 5.7.3 both trajectories are projected onto
the image plane of a third calibrated camera in which the person handling the free
camera is visible. This figure contains 3 super-imposed images corresponding to
3 di�erent frames. We can compare the accuracy of 11-pairwise and 6-triplets by
checking if the projected trajectory coincides with the position of the hand-held
camera as captured in the images. This confirms the intuition from Fig. 5.8(d) that
our algorithm provides better trajectory estimations.
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Figure 5.8: Results for the hand-held camera calibration with the 11-point (red)
and the 6-point (blue) algo- rithms: (a), (b) Error distributions for the estimated
intrinsic parameters across the sequence before (11- pair, 6-triple) and after global
refinement (11-ref, 6-ref). (c) Distribution of the number of inliers. (d) Camera
trajectory.
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(a) (b)

(c) (d)

Figure 5.9: Hand-held camera trajectory estimated by 11-point (red) and 6-point
(blue) as viewed by an additional stationary camera. The points of the trajectory
corresponding to each frame are shown with markers.
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Chapter 6

Relative pose between Axial
cameras

6.1 Introduction

Vision systems can be classified as being central or non-central [91]. A particular
imaging device is central i� all the back-projection rays intersect in a single point
in 3D, i. e., the viewpoint of the camera. Whenever a vision system has more than
one viewpoint it is said to be non-central. An axial camera is a particular case of
a non-central camera where every back-projection ray intersects a line in 3D (the
axis). The axial camera can be used to model vision systems and imaging situations
of practical interest. Examples include any catadioptric system that combines a
revolution mirror with a central camera for which the viewpoint is aligned with
the mirror axis (e.g. a pinhole looking at a spherical mirror) [91]; the situation of
a perspective camera looking through multiple flat refractive mediums [92]; or a
multi-camera rig composed by two or more pinhole cameras with collinear optical
centers [6].

This chapter addresses the problem of estimating the relative pose between two
axial cameras using point correspondences. Pless showed that the Plücker coordi-
nates of two corresponding back-projection rays must satisfy a bilinear constraint
that can be expressed by a 6x6 matrix [18]. This general essential matrix can be
estimated from a minimum of 17 point correspondences using a DLT like approach,
and its result factorized into relative camera rotation and translation. Later in [93]
Sturm observed that for the case of axial cameras the estimation of this 6x6 matrix
was under-determined. He proposed a new 5x5 essential matrix that can be linearly

71



(a) Generic axial camera
(16-point algorithm)
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(b) Multi-camera rig with
cross-correspondences
(16-point algorithm)
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c3 c1
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(c) Multi-camera rig with
correspondences between
the same camera (14-
point algorithm)

Figure 6.1: Axial camera configurations

determined from 16 point correspondences. More recently Kim et al. investigated
the problem of motion estimation using a camera rig composed by multiple perspec-
tive cameras with aligned optical centers [6]. They confirmed Sturm’s result for the
case of considering cross-correspondences between di�erent cameras in the rig (Fig.
6.1(b)). However, if only matches between the same cameras are allowed, then it
is possible to linearly determine the relative motion using a minimum of 14 point
correspondences (Fig. 6.1(c)).

Neither the 16-point solution described by Sturm [93], which is applicable to any
axial camera, nor the 14-point algorithm proposed in [6], that is specific to non-
overlapping multiple camera rigs, are minimal solutions. The relative pose problem
has 6 unknowns meaning that in theory 6 point correspondences provide enough
information for determining the relative rotation and translation of the axial camera.
Stewenius et al. proposed in [16] a minimal solution for the relative pose between
generalized cameras. However, their algorithm is complex, provides a large number
of possible solutions (up to 64), and, as reported in [6], it degenerates for most axial
camera configurations. This article does not provide a minimal solution for the
relative pose between axial cameras, but shows how the motion can be computed
using as few as 10 point correspondences. Our 10-point method is an advance with
respect to the previous 16-point [6,93] and 14-point [6] algorithms, that improves the
accuracy and e�ciency of motion estimation using hypothesize-and-test frameworks.

Please note that, although the 10-point algorithm generalizes to any axial cam-
era, most of the derivations and experiments have in mind the particular case of a
conventional stereo camera rig. There are prior works proposing minimal solutions
for 6D stereo visual odometry but they either consider sets of features observed,
respectively, in four, three, and two views [20], or use five point correspondences
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between two particular views plus a sixth match for solving for the scale [94]. Un-
like these works, we model the stereo rig as a generic axial camera and make no
assumptions about the matches. Since any pairwise correspondence can be used as
input, the sampling of the solution space is more thorough, being possible to obtain
correct motion estimation in circumstances for which the methods of [20, 94] are
unable to provide a solution.

6.2 A new parametrization for axial cameras

Sturm describes in [93] a 5x5 essential matrix that relates back-projection rays of
two axial views. We provide a di�erent parametrization of this matrix that, not
only enables to understand the results described in [6], but also proves to be useful
in deriving polynomial equations that will constraint the motion estimation.

6.2.1 Linear subspace for back-projection rays

Our parameterization for axial cameras directly extends the formulation derived in
previous chapter, in which we use a 5D linear subspace that represents all rays from
two calibrated cameras.

We define two reference frames O and ‚O along the camera axis B as depicted
in Fig. 6.2(a), with an arbitrary baseline b. The transformation of homogeneous
coordinates from O to ‚O is given by a reflection

W =

Q

cca

0 0 1
0 ≠1 0
1 0 0

R

ddb (6.1)

and a translation
v =

1
0 0 b

2T
(6.2)

Given that all back-projection rays L
i

of an axial camera intersect the axis B,
they belong to a linear line congruent of dimension 4 [86]. This means that all
rays can be represented as a linear combination of 5 base lines L

x
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Figure 6.2: A new parameterization for axial cameras

These 5 lines that compose the linear mapping � can be arbitrarily chosen,
assuring that they intersect B and are linearly independent. For the purpose of our
formulation we align these lines respectively with the axes x, y, z, ‚y, ‚z in Fig. 6.2(a)
and therefore

� =
A

I3◊3 W{1:3,2:3}

03◊3 [v]{1:3,2:3}
◊

B

(6.4)

6.2.2 Essential matrix for axial cameras

Given a set of intersecting ray correspondences (L
i

, LÕ
i

), we can establish linear
relations using the generalized camera model introduced by Pless [18]

L
i

T
A

[t]◊R R
R 0

B

LÕ
i

= 0 (6.5)

Taking into account equation 6.3 this expression can be rewritten as

⁄

i

T �T
A

[t]◊R R
R 0

B

�
¸ ˚˙ ˝

�

⁄

Õ
i

= 0 (6.6)
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with � being the 5 ◊ 5 essential matrix for axial cameras. By substituting equation
6.4 into � we can define the following matrices

E1 = �{1:3,1:3} = [t]◊R (6.7)
E2 = �{1:3,3:5} = [Rv + t]◊RW (6.8)
E3 = �{3:5,1:3} = [WT(t ≠ v)]◊WTR (6.9)
E4 = �{3:5,3:5} = [WT(Rv + t ≠ v)]◊WTRW (6.10)

The placement of E1, E2, E3, E4 within � can be better visualized in Fig. 6.2(c).
From the above expressions it can be observed that E1, E2, E3, E4 are the 3 ◊ 3
essential matrices that encode the motions represented in Fig. 6.2(b).

From the equations 6.7 to 6.10 we can also derive the following relations

E1 ≠ E2WT ≠ WE3 + WE4WT = 0 (6.11)
E1[v]◊ + [v]◊E1 ≠ [v]◊E2WT ≠ WE3[v]◊ = 0 (6.12)

These constraints provide 8 linear equations on the parameters of � and therefore
they can be used to reduce this matrix from its 25 parameters to a linear combination
of 17 parameters using Gaussian elimination. This means that it is possible to esti-
mate � with a DLT like approach using 16 correspondences, which is in conformity
with the linear formulations introduced in [93].

6.2.3 A particular axial camera: the stereo rig

The above formulation applies directly to the case of motion estimation between
stereo pairs, however, there are particular configurations that require additional
considerations. Furthermore, in this case it is advantageous to consider that refer-
ence frames O and ‚O from Fig. 6.2(a) are coincident with the principal points of
the stereo pair, with the translation v being the baseline between the cameras. This
way all line coordinates in the left and right cameras will have the form

⁄

left

=
1
l1 l2 l3 0 0

2T
(6.13)

⁄

right

=
1
0 0 l3 l4 l5

2T
(6.14)

Considering the 4 cameras in this scenario, {C
left

, C
right

, CÕ
left

, CÕ
right

}, there are
4 di�erent types of correspondences that can be used: (C

left

, CÕ
left

), (C
left

, CÕ
right

),
(C

right

, CÕ
left

), (C
right

, CÕ
right

). If at least 3 of these types of correspondences are
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Figure 6.3: Di�erent configurations when only two types of correspondences are
established between two stereo pairs.

available then we can use the formulation from section 6.2.2. However, when only 2
types are available � cannot be fully known using just linear constraints and thus
we further reduce the number of parameters to estimate. The cases depicted in Fig.
6.3(a) to 6.3(d) only have linear constraints on two contiguous essential matrices
that share 3 parameters (see Fig. 6.2(c)), and therefore we can reduce � to either a
3◊5 or a 5◊3 matrix, which can be linearly estimated from just 14 correspondences.
The cases depicted in Fig. 6.3(e) and 6.3(f) only have linear constraints on essential
matrices that share one single element (either E1 and E4 or E2 and E3), resulting in
17 parameters. However, we must note that the following relations

F1 = WE4WT ≠ E1 = R[v]◊ ≠ [v]◊R (6.15)
F2 = E2WT ≠ WE3 = R[v]◊ + [v]◊R (6.16)

imply that the diagonals of F1 and F2 are respectively
1
a ≠a 0

2T
and

1
a a 0

2T
,

with a being an unkown scalar value. In either case these equations provide 2 linear
constraints that enable to reduce the number of parameters to 15, and therefore we
are able to compute them from 14 correspondences.

It is noteworthy that [6] only addresses the case depicted in Fig. 6.3(f), and that
in the previous chapter we address the cases 6.3(a) to 6.3(d). On the other hand
our analysis in this section covers all the cases.

6.3 Towards a minimal solution

Henceforth we will only address the general axial case, but analogous conclusions
can be drawn for the particular cases of Fig. 6.3.
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Using equations 6.7 to 6.10 we can write the following expression

–E1 + —E2WT + “WE3 + ”WE4WT = [–t + —(Rv + t) + “(t ≠ v) + ”(Rt + t ≠ v)]◊R
(6.17)

with –, —, “, ” being any real values. This means that any matrix E
i

that is a linear
combination of E1, E2WT, WE3, WTE4W is itself an essential matrix, verifying the
cubic constraints

2E
i

E
i

TE
i

≠ tr(E
i

E
i

T)E
i

= 0 (6.18)
det E

i

= 0 (6.19)

From this result we are able to generate a high amount of polynomial equations by
choosing di�erent values for –, —, “, ”. Using simulated data we were able to find
78 linearly independent equations. These equations can then be used in a similar
fashion to [7] in order to reduce the number of required correspondences to solve our
problem. If we use 16 ≠ N correspondences, we can compute a N + 1 dimensional
linear subspace using the equations 6.6, 6.11 and 6.12. Posteriorly we introduce this
subspace into instances of equations 6.18 and 6.19 to form a polynomial system in
N variables.

The minimal solution for this problem requires only 6 correspondences, which
means that a polynomial system in 10 variables would need to be solved. However, as
the number of variables grows, the more di�cult it becomes to generate a numerically
stable polynomial solver. Solving polynomial systems can be achieved with the
action matrix method described in [10].

Solving a polynomial system using the action matrix method requires a minimum
number of linearly independent polynomial equations, which is usually determined
on a case by case basis. However, it is a general rule of thumb that this number
increases with the number of di�erent monomials that are present in the equations.
If for a given system we have less equations than the minimum required, it means
that new higher order equations need to be generated by multiplying the existing
ones by other polynomials, resulting in new equations that although being redundant
can be useful to solve the system if they are linearly independent.

Equations 6.18 and 6.19 always produce dense cubic polynomials, which means
that they generally have non-zero coe�cients for all monomials up to the 3rd degree.
In this particular case, the system is guaranteed to be solvable if the number of
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n. of variables 1 2 3 4 5 6 7 8 9 10
n. of monomials 4 10 20 35 56 84 120 165 220 286
n. of leading monomials 1 4 10 20 35 56 84 120 165 220

Table 6.1: Number of monomials in dense cubic polynomials

linearly independent equations is greater than or equal to the number of leading
monomials (3rd degree). Note however that this is not a necessary condition.

In table 6.1 we list the number of leading monomials for a varying number of
variables in a dense cubic equation. Since we can generate a maximum of 78 linearly
independent cubic equations, it is possible to solve the system for a maximum of
6 variables without the need for generating higher order equations. With a higher
number of variables the polynomial system becomes infeasibly complex for our action
matrix approach. This means that we are able to implement a 10-point algorithm
using this technique, which requires 56 equations and outputs 56 possible solutions.
In our implementation we generated equations from the constraints of the following
set of essential matrices: {E1, E2WT

, WE3, WTE4W, E1 + E2WT
, E1 + WE3}. Note

that since this is a non-minimal solution the polynomial system is over-constrained
and therefore it is not possible to find its exact solution. This means that all 56
solutions determined with the action matrix method will have non-zero residue in
the polynomial equations and therefore we must select the one with the minimum
residue.

6.4 Additional non-linear constraints

From the analysis of equations 6.7 to 6.10 it is possible to derive the following
additional quadratic constraints:

(E1 ≠ WE3)(E1 ≠ WE3)T = ≠[v]2◊ (6.20)

(E1 ≠ E2WT)T(E1 ≠ E2WT) = ≠[v]2◊ (6.21)

From the analysis of the previous section it is evident that these equations can
provide a great help in reducing the number of required correspondences. Since these
constraints are quadratic, while the constraints discussed in the previous section are
cubic, it is possible to multiply equations 6.20 and 6.21 by each of the unknown
variables in the system to obtain additional polynomial equations without increas-
ing the number of existent monomials. Since we can use this method to generate
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more than 6 linearly independent quadratic and cubic equations, we can build a
polynomial system with more than 84 equations and thus, by analysis of table 6.1,
we can remove at least one more variable from the non-linear system and solve the
problem from 9 correspondences.

In this thesis we do not pursue this analysis further, however, it still remains
unclear whether these equations can be used to simplify the polynomial system, e.g.
by Gaussian elimination of some monomials. These observations call for a more
thorough investigation of this problem in future work.

6.5 The 10-point algorithm

In this section we summarize the steps required to estimate the relative pose (R, t)
between two calibrated axial cameras using pairwise point correspondences. Each
point from an axial camera is represented by its image ray as line coordinates L

i

.
Consider as inputs 10 or more correspondences (L

i

, LÕ
i

) between the two axial sys-
tems.

1. Map correspondences (L
i

, LÕ
i

) into 4D homogeneous coordinates (⁄
i

, ⁄

Õ
i

) taking
into account the relation of equation 6.3.

2. Stack 10 instances of equation 6.6 in terms of the 25 parameters of �, and
then use equations 6.11 and 6.12 to eliminate 8 parameters in �

3. Generate a 7 dimensional linear subspace of solutions using SVD. Since the
linear solution is up to scale, one of the parameters can be set to 1, resulting
in 6 unkowns.

4. Introduce the linear expression with 6 unknowns into the polynomial con-
straints resulting from the following set of essential matrices:
{E1, E2WT

, WE3, WTE4W, E1 + E2WT
, E1 + WE3}.

5. Use 56 polynomial equations to compute the action matrix, and obtain 56
solutions that correspond to its eigenvectors.

6. Substitute all 56 solutions back into the polynomial system and select the
solution with the smallest residue as the correct one.

7. Project E1, E2, E3, E4 individually onto the essential matrix manifold using
SVD decomposition.
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8. For each of the four 3◊3 essential matrices, make an independent factorization
to find R and estimate t with the correct scale by substituting R into equation
6.6.

9. From the four di�erent estimations of (R, t) choose the one with minimum
residue in equation 6.6 (alternatively, measure the re-projection errors).

6.6 Experimental Validation

In this section we validate our algorithm with both synthetic and real data in the case
of pose estimation between stereo cameras. We allow all types of correspondences
and therefore we use the 17-parameter formulation of the problem.

We test our algorithm using minimal data in the first synthetic experiment and
then compare our algorithm against the 16-point linear approach from Kim et al. [6]
with both synthetic and real data. In its original version [6] has a refinement step
that alternates between successive translation and rotation estimations. We do not
implement this step in our experiments because it aims at being fast and simple,
sacrificing some robustness and optimality. This step would not likely be used in
a real scenario, where refinement would be accomplished with bundle adjustment.
Additionally, we compare both algorithms within RANSAC.

Please note that, unlike other stereo relative pose algorithms [20,29], both the 16-
point and our 10-point work with arbitrary distributions of correspondences across
the di�erent image pairs. This means that our multiset-RANSAC approach is not
required in this context and instead we use a standard RANSAC where correspon-
dences across all pairs of cameras are sampled indiscriminately.

6.6.1 Synthetic data

We built a simulated environment in which two stereo camera pairs are randomly
positioned with overlapping field of views, and in front of them a set of 3D points is
randomly generated within a bounded region. The input to the algorithms are the
back-projections of the 3D points according to the pinhole model a�ected by image
Gaussian noise.

Given a motion estimation (R, t) and the groundtruth values (R
GT

, t
GT

), the
error in rotation is measured by the Euler angle of the residual rotation RTR

GT

, the
error in translation direction is measured as the angle defined by t and t

GT

, and
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Figure 6.4: Error distributions for 10-point estimations with synthetic data. We
perform 250 trials for each noise level.

the ratio ||t||/||t
gt

|| evaluates the quality in the estimation of the translation scale
factor.

In a first simulation our algorithm is tested 250 times using 10 input pairwise
correspondences for di�erent noise magnitudes without RANSAC. The error distri-
butions for translation and rotation displayed in Fig 6.4 show that in a noise free
scenario our algorithm outputs the exact solution. However, for a noise magnitude
over 0.5 pixels the stability decreases significantly, which suggests that a robust es-
timation is required to improve performance. It is also noticeable that with high
levels of noise there is a bias that systematically underestimates the translation scale
factor, which calls for further study of the problem in the future.

In a second simulation our algorithm is compared against the 16-point linear
algorithm for a di�erent number of input correspondences while injecting noise with
1 pixel of standard deviation. Again, 250 trials were tested for each case and the
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Figure 6.5: Error distributions for estimations with the 10-point and the 16-point
algorithms. We perform 250 trials for number of correspondences.

error distributions for translation and rotation are displayed in Fig. 6.5. The bet-
ter performance of our algorithm is specially evident when using a low number of
correspondences. But it also must be noticed that for a higher number of corre-
spondences, while the stability between both algorithms is similar, our algorithm
is significantly faster due to the fact that RANSAC is sampling 10 points instead
of 16. The RANSAC procedure eliminates the previously observed bias in the esti-
mation of translation scale factor induced by our 10-point algorithm, furthermore,
this e�ect is still visible on the 16-point algorithm for estimations with 16 and 18
correspondences, in which RANSAC provides little to none advantage.
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Figure 6.6: Performance comparison between 10-point algorithm and 16-point algo-
rithm with real data.

6.6.2 Real data

We used data from the KITTI Vision Benchmark Suite [30], which contains fully cali-
brated stereo sequences and GPS measurements acquired by a vehicle in an urban en-
vironment. We selected a set of images from the sequence ”2011_09_28_drive_0001”
and compare the trajectories estimated by both algorithms.

Correspondences were obtained by matching SIFT features [2] on the four com-
binations of image pairs of consecutive frames (Fig. 6.6(a)). Both our 10-point algo-
rithm and the 16-point algorithm are used within a RANSAC framework. Given the
high amount of sampling points for both algorithms the number of RANSAC itera-
tions can become infeasibly high. We also perform the pre-filtering step explained in
Section 5.6.2, Chapter 5 by using a 5-point RANSAC [7] in all four combinations of
matched image pairs. The set of input correspondences after pre-filtering contains a
very high inlier ratio which significantly decreases the number of iterations required
to find an accurate estimation. We use these algorithms just to make odometry
estimations, i. e., the trajectory is not refined by bundle adjustment. This way the
accumulation of drift error serves as an evaluation of comparative accuracy, showing
that our algorithm provides more robust estimations (Fig. 6.6(b)).
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Chapter 7

Conclusions

In this thesis we discuss minimal problems in di�erent multi-camera or multi-sensor
applications, namely:

• extrinsic calibration between a laser rangefinder and a camera;

• full calibration of an ultrasound array with a camera;

• full calibration of a camera within a network;

• relative pose between axial cameras.

In each of these cases our algorithms use less correspondences than the correspond-
ing state-of-the-art alternatives. In practice, this introduces two advantages: the
number of RANSAC iterations is minimized; the number of acquisitions to obtain
a pre-determined level of accuracy is decreased. The first advantage is more rele-
vant in the applications that might require real-time performance. This includes the
hand-held camera experiment from Chapter 5 and the relative motion between axial
cameras of Chapter 6. Note, however, that even in o�ine calibration procedures it
might be desirable to reduce its computational time, specially in problems that deal
with extremely high number of RANSAC samples (e.g. Chapter 6) where the de-
crease in terms of execution time from a non-minimal solution to a minimal solution
might be from several hours to a few minutes. The second advantage is evident in
the experimental section of the LRF-camera calibration problem (Chapter 3) when
comparing the performance of the minimal solution against a non-minimal solution
for a varying number of acquisitions. It is always the case that a given level of accu-
racy can be achieved with less acquisitions using the minimal solution, making the
calibration procedure easier to perform. Getting a pre-determined level of accuracy
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wit the minimum amount of acquisitions is an important feature in the US calibra-
tion problem. In this case the calibration must be done in the operating room by a
doctor, and thus a time consuming and complex procedure must be avoided at all
costs.

All the proposed solutions are broadly based on two new insights to tackle ge-
ometric problems in computer vision. In the first and second minimal problems
(Chapters 3 and 4) we observe that the registration in 3D Euclidean space between
planes and co-planar lines can be re-stated in terms of their point and line inter-
sections. In this way we are able to model this type of problems as virtual pinhole
cameras observing 3D points and take useful insights from the extensive literature
on absolute orientation [4, 13, 49, 72]. In the last two problems (Chapters 3 and 4)
we take advantage of the fact that a pair of calibrated cameras can be modelled
as a single axial sensor. We derive extended fundamental and essential matrices
that are able to capture the line incidence relations of all viewpoints in an unified
way. These are two general insights that can be useful in the context of other prob-
lems that either involve plane-line registration or point correspondences with stereo
cameras.

The multiset-RANSAC/MLESAC/MAPSAC framework is a new contribution
that adapts the RANSAC formulation to more complex random sampling schemes
involving multiple datasets. This situation arises frequently in problems with mul-
tiple cameras or multiple sensors when di�erent types of correspondences must be
sampled in a specific way. This framework is especially useful in the problems from
Chapters 4 and 5.

The camera network problem from Section 5 requires multiset-RANSAC to sam-
ple a very high number of correspondences. This poses the question of what is the
threshold when minimal-solvers and RANSAC start to be impracticable due to the
complexity of the problem at hands. Although this highly depends on computa-
tional power, which will push this threshold further over time, currently RANSAC
sampling of 10 or 11 correspondences with a moderate amount of outliers might
translate into several hours of runtime execution, if pre-filtering techniques are not
used. In problems with a similar or higher complexity than this problem, it might
be a competitive approach to use non-minimal solutions with a posterior projection
on the solution space.

The contributions in this thesis also point to several possible research directions
in the future.
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Multiset-RANSAC is a general framework that can be used in many di�erent
problems outside the scope of this thesis (e.g. [95,96]). With some additional mod-
ifications, multiset-RANSAC can also be extended to other sampling schemes that
were not considered in here, namely when di�erent datasets cannot be selected in-
discriminately [20], and when there is not a strict number of samples to select from
each dataset (the stereo rig application in Chapter 6). Some more intelligent sam-
pling methods, e.g. PROSAC [97] or guided-MLESAC [98], could also be adapted to
the multiple-dataset framework to improve the computational e�ciency of multiset-
RANSAC. This could be an alternative to the pre-filtering step used in the camera
network and the axial camera problems.

Multiset-RANSAC can also be used in the LRF-Camera calibration problem to
automatically detect lines in the LRF-Camera calibration procedure, by sampling
directly the LRF depth measurements instead of previously estimated lines. This,
however, would drastically increase the outlier ratio in the input data (all depth
measurements that do not belong to the grid) and make the use of a minimal 3-
correspondence solution significantly more crucial.

The US-Camera calibration method still needs to be validated more thoroughly
in practice and extended to applications that are closer to the real medical environ-
ment. The accuracy of line detection can be improved using a Cambridge phantom
or a thin membrane. This method should also be tested on close-range US probes
(7.5 – 10 MHz) that would likely provide better line measurements with less reflec-
tions. The accuracy of this method should also be validated with data from real
medical imagery, e.g., to guide an instrumented tool through the US image.

The camera calibration within a network can in principle be solved minimally
with either 7 and 4 pairwise correspondences from di�erent cameras, or alternatively
6 and 5 correspondences. This second case has not been solved yet, as the resulting
non-linear constraints is harder to solve. It also remains unanswered to which extent
an 11 point algorithm is more e�cient and/or reliable than just performing indepen-
dent 7-point estimations (pre-filtering step) and stepping directly to the non-linear
iterative refinement, avoiding the multiset-RANSAC altogether.

Finally, the minimal solution to the relative pose between axial systems is still
an unsolved problem. Section 6.4 briefly mentions a set of additional polynomial
equations that are not used in the 10-point algorithm proposed in this thesis, which
calls for further investigation of this problem.
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