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Summary 

The prevalence of obesity is a growing problem worldwide. Such scenario urges for 

additional efforts in both investment on prevention and research relating to the identification of 

risk factors that may aid early intervention. It is widely accepted that obesity is a complex 

multifactorial and heterogeneous condition with an important genetic component in the 

susceptibility risk. Therefore, the identification of associated gene variants could be essential in 

the design of prevention strategies and management of individuals genetically predisposed to 

obesity. In 2007, it was identified the first single nucleotide polymorphism (SNP) located in the 

FTO gene (rs9939609) associated with obesity by genome-wide association studies (GWAS). 

Until now, more than 52 genetic loci have been unequivocally associated with obesity related-

traits in several European populations. However, none of these studies was performed before in 

a sample of Portuguese population.  

The main aims of this study were i) to estimate the prevalence of obesity in 6-12 years old 

children from the central region of Portugal; ii) to investigate whether 14 previously described 

SNPs in obesity-related genes are associated with the risk of obesity in Portuguese children; iii) 

to identify MC4R gene mutations in children with morbid obesity (BMI ≥99th) that could justify 

this phenotype. 

Anthropometric parameters such as weight, height and waist circumference were 

measured in a random representative sample of 1433 children (747 girls and 686 boys) between 

6-12 years old from several public schools in 2011. The International Obesity Task Force (IOTF) 

cut-offs were used to define obesity. Children classified with overweight (320) and obesity (154), 

and 256 randomly selected lean subjects with 18.5<BMI<25 kg/m2, were selected for 

genotyping. Polymorphisms were examined in DNA samples by TaqMan® assay. Sequencing of 

the MC4R gene was carried out in all individuals with BMI ≥99th. 

The prevalence of overweight/obesity found in the total sample was 33.0%; 10.7% were 

obese children. Overweight was significantly higher in boys than in girls (25.9% and 19.0% 

respectively, p=0.04), whereas no gender differences was found for obesity (10.6 % and 10.7% 

respectively, p=0.57). Comparison with previous studies showed a slightly increase in 

overweight/obesity in children of central Portugal in the last 10 years, reaching values of 40.0% 

prevalence in the 7-9 years old children. 
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For three study polymorphisms located in the FTO gene, we found significant associations 

for SNPs rs9939609 and rs1421085 with weight, BMI, BMI Z-score and waist circumference 

(p<0.05 in all traits). For rs1861868, marginally significant associations were obtained with 

weight (p=0.08) and BMI (p=0.09). Logistic regression analysis, in the additive model, revealed 

both rs9939609 and rs1421085 SNPs significantly associated with obesity (OR=1.41; p=0.02 and 

OR=1.45, p=0.01, respectively). Haplotype analyses (rs1861868-rs1421085-rs9939609) identified 

two combinations (ACA and GCA) associated with a higher risk of obesity (OR=1.53; p=0.02 and 

OR=1.73; p=0.03, respectively). 

We tested the association between the -13910C>T polymorphism, located in the lactase 

(LCT) gene, and obesity-related traits, and found indication for an association between the -

13910*T allele and abdominal obesity (OR=1.41; p=0.03). Under the dominant model, significant 

association was observed between the LCT-13910 CT/TT genotypes and abdominal obesity 

(OR=1.65; p=0.02). No association was detected with the risk of obesity (p=0.35) or 

anthropometrics traits (p>0.05). 

Finally, we tested for the association of obesity-related quantitative traits in Portuguese 

children with ten polymorphisms in the obesity related genes MSRA, TFAP2B, MC4R, NRXN3, 

PPARGC1A, TMEM18, SEC16B, HOXB5 and OLFM4. The MC4R rs12970134 polymorphism was 

nominally associated with BMI (p=0.03), BMI Z-score (p=0.04) and waist circumference (p=0.02), 

and borderline associated with weight (p=0.05). Near nominal associations were also found for 

the PPARGC1A rs8192678 polymorphism with weight (p=0.06), and for the MSRA rs545854 

polymorphism with BMI (p=0.05) and BMI Z-score (p=0.05). Furthermore, logistic regression 

under the additive model showed that MC4R rs12970134 and TFAP2B rs987237 were nominally, 

respectively, associated (OR=1.47; p=0.02) and borderline associated (OR=1.47; p=0.05) with the 

obese phenotype. 

Additionally, 32 children who present a BMI ≥99th were screened for MC4R gene mutations. 

We found two previously described polymorphisms at heterozygous state in two children: the -

174A>C (rs34114122) polymorphism in the 5´UTR region in a girl with BMI Z-score=2.51; and the 

common missense mutation 307G>A (Val103Ile) in the MC4R gene coding region identified in a 

boy with a BMI Z-score=2.60. No other pathogenic MC4R gene mutations were detected. 
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 In conclusion, this study shows a high prevalence of overweight/obesity among Portuguese 

children, following the trend of other European countries. We highlighted for the first time the 

possible association of FTO, MC4R, PPARGC1A, MSRA and TFAP2B SNPs with several obesity-

related traits in a sample of Portuguese children. FTO SNPs showed the strong association with 

the risk of obesity in line with previous studies performed in European populations. Our study is 

a significant contribution to the knowledge of the genetic basis of obesity in the Portuguese 

population, but further studies are needed to a better understanding of the genetic factors 

linked to the obesity risk. Such information could be used in the future for the development of 

new obesity preventive strategies. 
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Resumo 

A prevalência da obesidade tem vindo a aumentar em todo o mundo. Tal cenário implica 

esforços adicionais no investimento tanto em matéria de prevenção como de investigação 

relacionados com a identificação de fatores de risco que podem ajudar a intervenção precoce. É 

amplamente aceite que a obesidade é uma condição multifatorial e heterogênea complexa com 

uma importante componente genética. Portanto, a identificação de variantes genéticas 

associadas poderão ser essenciais em estratégias de prevenção em indivíduos geneticamente 

predispostos à obesidade. Em 2007, foi identificado o primeiro polimorfismo de nucleótido 

simples (SNP) localizado no gene FTO (rs9939609) associado à obesidade em estudos de 

associação do genoma (GWAS). Mais de 52 loci genéticos foram já associados à obesidade em 

várias populações Europeias. No entanto, nenhum estudo do género foi até agora realizado 

numa amostra da população Portuguesa.  

Os principais objetivos deste estudo foram i) estimar a prevalência de obesidade em 

crianças dos 6-12 anos da região centro de Portugal; ii) investigar se 14 SNPs previamente 

descritos em genes relacionados com a obesidade, estão associados com o risco de obesidade 

em crianças portuguesas; iii) identificar mutações no gene MC4R em crianças com obesidade 

mórbida (IMC ≥99th) que poderão justificar o fenótipo. 

Os parâmetros antropométricos, tais como, peso, altura e circunferência da cintura (CC) 

foram medidos numa amostra aleatória de 1433 crianças (747 raparigas e 686 rapazes) entre os 

6-12 anos, de várias escolas públicas em 2011. Os limites do International Obesity Task Force 

(IOTF) foram usados para definir obesidade. Crianças classificadas com excesso de peso (320) e 

obesidade (154), e 256 indivíduos normais escolhidos aleatoriamente com 18,5<IMC<25 kg/m2, 

foram selecionados para a genotipagem. Os polimorfismos foram examinados em amostras de 

DNA por ensaios com sondas TaqMan®. A sequenciação do gene MC4R foi realizada nos 

indivíduos com IMC ≥99th. 

A prevalência de excesso de peso/obesidade obtida na amostra total foi de 33,0%; 10,7% 

das crianças eram obesas. O excesso de peso foi significativamente maior nos rapazes do que 

nas raparigas (25,9% e 19,0%, respetivamente, p=0,04), não tendo sido encontradas diferenças 

entre os sexos para a obesidade (10,6% e 10,7%, respetivamente, p=0,57). A comparação com 

estudos anteriores mostrou um ligeiro aumento no excesso de peso/obesidade em crianças do 
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centro de Portugal nos últimos 10 anos, atingindo valores de prevalência de 40,0% nos 7-9 anos 

de idade. 

Dos três polimorfismos estudados localizados no gene FTO, foram encontradas associações 

significativas dos SNPs rs9939609 e rs1421085 com peso, IMC, IMC Z-score e CC (p<0,05 em 

todos os parâmetros). Para o SNP rs1861868, foram obtidas associações marginalmente 

significativas com peso (p=0,08) e IMC (p=0,09). A análise de regressão logística, no modelo 

aditivo, revelou os SNPs rs9939609 e rs1421085 significativamente associados com a obesidade 

(OR=1,41; p=0,02, e OR=1,45, p=0,01, respetivamente). A análise de haplótipos (rs1861868-

rs1421085-rs9939609) identificou duas combinações (ACA e GCA) associadas a um maior risco 

de obesidade (OR=1,53; p=0,02, e OR=1,73; p=0,03, respetivamente). 

Foi testada a associação entre o polimorfismo -13910C>T, localizado no gene da lactase 

(LCT), e a obesidade, tendo sido encontrada indicação para uma associação entre o alelo -

13910*T e a obesidade abdominal (OR=1,41; p=0,03). Sob o modelo dominante, foi observada 

uma associação significativa entre os genótipos CT/TT e obesidade abdominal (OR=1,65; p=0,02). 

Nenhuma associação foi observada com o risco de obesidade (p=0,35) ou características 

antropométricas (p>0,05). 

Finalmente, foi testada a associação de características quantitativas relacionadas com a 

obesidade em crianças portuguesas com dez SNPs nos genes relacionados com a obesidade 

MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 e OLFM4. O SNP MC4R 

rs12970134 foi encontrado nominalmente associado com IMC (p=0,03), IMC Z-score (p=0,04) e 

CC (p=0,02), e no limite de significância com peso (p=0,05). Foram também encontradas 

associações nominais para o polimorfismo PPARGC1A rs8192678 com peso (p=0,06), e para o 

polimorfismo MSRA rs545854 com IMC (p=0,05) e IMC Z-score (p=0,05). A regressão logística 

sob o modelo aditivo mostrou que os SNPs MC4R rs12970134 e TFAP2B rs987237 se encontram, 

nominalmente, respetivamente, associado (OR=1,47; p=0,02) e no limite de significância 

associado (OR=1,45; p=0,05) com o fenótipo obeso. 

Adicionalmente, 32 crianças que apresentavam um IMC ≥99th foram rastreadas para 

mutações no gene MC4R. Foram encontrados dois SNPs, previamente descritos, em 

heterozigotia em duas crianças: o SNP -174A>C (rs34114122) na região 5'UTR numa rapariga 

com IMC Z-score=2,51; e a mutação missense comum 307G>A (Val103Ile) na região codificante 
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do gene num rapaz com um IMC Z-score=2.60. Não foram detetadas outras mutações no gene 

MC4R.  

Em conclusão, este estudo mostrou uma alta prevalência de excesso de peso/obesidade nas 

crianças portuguesas, seguindo a tendência de outros países europeus. Foi encontrada pela 

primeira vez numa amostra de crianças portuguesas, uma possível associação dos SNPs nos 

genes FTO, MC4R, PPARGC1A, MSRA e TFAP2B com várias medidas de obesidade. Os 

polimorfismos no gene FTO mostraram a associação mais forte com o risco de obesidade em 

linha com estudos previamente realizados em populações europeias. O nosso trabalho é uma 

importante contribuição para o conhecimento da base genética da obesidade na população 

portuguesa, mas são necessários mais estudos para melhor compreender estes fatores genéticos 

associados ao risco da obesidade. Esta informação poderá vir a ser usada no futuro para o 

desenvolvimento de novas estratégias de prevenção para a obesidade. 
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Resumen 

La prevalencia de la obesidad es un problema creciente en todo el mundo. Tal escenario 

exige esfuerzos adicionales e inversión, tanto en materia de prevención como en investigación 

enfocada a la identificación de factores de riesgo que puedan ayudar a la intervención precoz. 

Está ampliamente aceptado que la obesidad es un complejo trastorno multifactorial y 

heterogéneo cuyo componente genético supone un importante factor de riesgo. Por lo tanto, la 

identificación de variantes genéticas asociadas podría ser esencial en el diseño de estrategias de 

prevención y de manejo de individuos genéticamente predispuestos a la obesidad. En 2007 se 

identificó el primer polimorfismo de nucleótido simple (SNP) asociado a la obesidad, localizado 

en el gen FTO (rs9939609), por un estudio de asociación del genoma completo (GWAS). Hasta 

ahora más de 52 loci genéticos han sido asociados inequívocamente a rasgos relacionados con la 

obesidad en varias poblaciones europeas. Sin embargo, ninguno de estos estudios se realizó 

antes en una muestra de población portuguesa. 

Los principales objetivos de este estudio fueron (i) estimar la prevalencia de la obesidad en 

niños de 6-12 años de edad de la región central de Portugal; (ii) investigar si 14 SNPs 

previamente descritos en los genes relacionados con la obesidad están asociados con el riesgo 

de obesidad en niños portugueses; (iii) identificar en niños con obesidad mórbida (IMC ≥ 

percentil 99) mutaciones en el gen MC4R que podrían justificar el fenotipo. 

Se midieron parámetros antropométricos tales como peso, altura y circunferencia de la 

cintura en una muestra aleatoria representativa de 1433 niños (747 niñas y 686 niños) de 6-12 

años de varias escuelas públicas en 2011. Para definir la obesidad se utilizaron los puntos de 

cortes de la International Obesity Task Force (IOTF), y con ellos se seleccionaron para el 

genotipado 320 niños con sobrepeso, 154 con obesidad, y 256 de peso normal escogidos al azar 

para el grupo control de un total de 928 (18.5<IMC<25 kg/m2). Los SNPs se estudiaron en 

muestras de ADN mediante ensayos TaqMan®. La secuenciación del gen MC4R se realizó en 

individuos con IMC ≥ percentil 99. 

La prevalencia de sobrepeso/obesidad en la muestra total fue de 33,0%; 10,7% eran obesos. 

El sobrepeso fue significativamente mayor en niños que en niñas (25,9% y 19,0% 

respectivamente, p=0,04), mientras que no se encontraron diferencias de sexo en los obesos 
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(10,6% y 10,7% respectivamente, p=0,57). La comparación con estudios anteriores mostró un 

ligero aumento del sobrepeso/obesidad en los niños del centro de Portugal en los últimos 10 

años, alcanzando una prevalencia del 40,0% en los 7-9 años de edad. 

De los SNPs localizados en el gen FTO se encontró una asociación significativa de rs9939609 

y rs1421085 con el peso, IMC, IMC Z-score y circunferencia de la cintura (p<0,05 en todas las 

asociaciones), mientras que el SNP rs1861868 presentó una asociación marginalmente 

significativa con el peso (p=0,08) y el IMC (p=0,09). El análisis de regresión logística, con el 

modelo aditivo, reveló una asociación significativa entre los SNPs rs9939609 y rs1421085 y la 

obesidad (OR=1.41 p=0.02; y OR=1.45 p=0.01; respectivamente). Los análisis de haplotipos 

(rs1861868, rs1421085, rs9939609) identificaron dos combinaciones (ACA y GCA) asociadas a un 

mayor riesgo de obesidad (OR=1,53 p=0,02; y OR=1,73 p=0,03; respectivamente). 

En el SNP -13910C>T, situado en el gen de la lactasa (LCT), se encontraron indicios de 

asociación entre el alelo -13910*T y la obesidad abdominal (OR=1,41 p=0,03). Bajo el modelo 

dominante, se observó una asociación significativa entre los genotipos CT/TT y la obesidad 

abdominal (OR=1,65 p=0,02), pero no se detectó asociación con el riesgo de obesidad (p=0,35) o 

con rasgos antropométricos (p>0,05). 

Por último, se estudiaron otros diez SNPs de genes relacionados con la obesidad (MSRA, 

TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 y OLFM4). El SNP rs12970134 

MC4R mostró una asociación nominal con el IMC (p=0,03), el valor Z-score (p=0,04) y la 

circunferencia de la cintura (p=0,02), y en el límite de significancia con el peso (p=0,05). En el 

límite se encuentran también las asociaciones nominales obtenidas para el SNP rs8192678 

PPARGC1A con el peso (p=0,06), y para el SNP rs545854 MSRA con el IMC (p=0,05) y el IMC Z-

score (p=0,05). Por otra parte, la regresión logística bajo el modelo aditivo mostró que los SNPs 

MC4R rs12970134 y TFAP2B rs987237, en relación con el fenotipo obeso, estaban nominalmente 

asociados (OR=1.47; p=0.02) y nominalmente en el límite de la asociación (OR=1.47; p=0.05), 

respectivamente. 

Además, se realizó el cribado de mutaciones del gen MC4R en los 32 niños que presentaban 

un IMC ≥ percentil 99. Se encontraron dos SNPs descritos anteriormente en estado heterocigoto: 

el polimorfismo -174A>C (rs34114122) en la región 5'UTR en una niña con IMC Z-score=2,51; y la 
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mutación común missense 307G>A (Val103Ile) en la región codificante del gen MC4R de un niño 

con IMC Z-score=2,60. No se detectaron otras mutaciones patogénicas en el gen MC4R. 

En conclusión, este estudio muestra una alta prevalencia de sobrepeso/obesidad entre los 

niños portugueses, siguiendo la tendencia de otros países europeos. Además, se destaca por 

primera vez la posible asociación de SNPs  en los genes FTO, MC4R, PPARGC1A, MSRA y TFAP2B 

con varios rasgos relacionados con la obesidad en una muestra de niños portugueses. Los SNPs 

del gen FTO mostraron una fuerte asociación con el riesgo de obesidad, en línea con estudios 

previos realizados en poblaciones europeas. Este trabajo es una contribución significativa al 

conocimiento de las bases genéticas de la obesidad en la población portuguesa, pero se 

necesitan más estudios para una mejor comprensión de este componente genético, lo que 

podría ser utilizado en el futuro para el desarrollo de nuevas estrategias preventivas frente a la 

obesidad. 
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 This chapter was partially based on the following 
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López R, Manco L, Nóbrega C. Current review of 

genetics of human obesity: from molecular 

mechanisms to an evolutionary perspective. Mol 
Genet Genomics, 2015 [Accepted for publication]. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



G e n e r a l  I n t r o d u c t i o n  
 

 
3 

Introduction 

 

For a considerable period of prehistory, hominins were primarily hunter-gatherers. In that 

period food was severely limited and this resulted in a natural selection for humans who had the 

capability of storing energy as fat. Today, food is easily available in modern societies, and this 

environment change could act in an ancient genetic background selected to store energy. On the 

other hand, the changes in our environment occurred more rapidly than the modifications in our 

genetic background. In fact, our genetic background is not very different from 12,000 years ago, 

which correspond to the beginning of the agriculture development [1]. This means that there 

might be a delay in the adjustment of the genetic profile to environment, and that our genetic 

background is similar to the one from the time our forefathers were foragers. Therefore, when 

considering the imbalance in our modern lifestyle and our “ancient” genetic profile, it is 

understandable that many people gain weight so easily. When human morphology is considered, 

there are profound individual differences, such as body size, hair color/form, eyes color/form, 

etc. These human variations were due, in part, to evolutionary forces, genetic drift, 

environmental conditions, among others. However, in all societies and subpopulations, there are 

both obese and non-obese individuals. The difference arises primarily as a consequence of 

genetic factors, as is revealed by the high heritability for body mass index (BMI) (40-70%)  [2–5]. 

A trait can reflect the activity of a single-gene (Mendelian or monogenic) or more than one gene 

(polygenic); both cases could be influenced by environmental factors. The polygenic 

multifactorial condition reflects the additive contribution of many genes conferring different 

degrees of susceptibility. Accordingly, we may understand a polygenic trait as the combined 

action of several genes producing a “continuously varying” phenotype. With the advent of the 

Human Genome Project (1990-2003), millions of DNA sequence variants were discovered in the 

human genome. This large and diverse database of polymorphism markers provided a novel 

opportunity to study the human genetic basis of several complex diseases through population 

approaches. In the study design of population approaches, a significant amount of individuals 

must be screened for a large number of polymorphisms. If a polymorphism increases 

susceptibility to a specific disease of interest, we should note that it is more common among 
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individuals affected by this condition than among non-affected individuals. Thus, through the 

genotyping of significant number of individuals, the population genetics tools are able to 

highlight the genetic basis of polygenic diseases, such as obesity. 

 

1. What is Obesity? 

Human obesity is a global public health concern and results from an excessive accumulation 

of body fat that can adversely affect health [6]. The global rise of obesity has serious effects, and 

may contribute for a significant number of diseases including type 2 diabetes mellitus, 

cardiovascular diseases, metabolic syndrome, and some cancers [6, 7]. Beyond co-morbidities, 

obesity has an important social impact with direct and indirect costs in healthcare services [7]. 

Excessive fat accumulation results from a persistent positive energy balance, that is, the amount 

of energy consumed exceeds the amount of energy expended [5]. So, obesity could be a 

consequence of an imbalance between energy intake and energy expenditure [8]. The energy 

balance represents a conglomerate of traits, each one influenced by numerous variables such as 

behavior, diet, environment, social structures, metabolic factors and genetics [9]. The result of 

this complex interaction among all of these variables contributes to individual differences in the 

development of obesity.  

Interestingly, at the early 2000s emerged in the literature a considerable number of studies 

with a controversy surrounding the idea of the “obesity paradox”. According to it, some 

individuals with overweight or obesity can be considered healthy regarding to their metabolic 

and cardio-respiratory fitness. Concretely, this paradox suggests that individuals with a high BMI 

have a better prognosis than individuals with normal BMI concerning the risk association with 

cardio-vascular diseases and many other chronic diseases [10]. For example, and to cite only one 

study, Romero-Corral et al. [11] showed that overweight individuals had a significantly lower risk 

of all-cause mortality, and a trend towards decreased cardiovascular mortality, comparing to 

individuals with normal BMI. Some hypotheses were proposed trying to explain this obesity 

paradox. For example, this could be a result of a possible selection bias and inability to control 

non-measurable confounding factors [12]. In fact, BMI cannot distinguish between an elevated 

body weight due to high levels of lean vs. fat body mass. Therefore, an excess of body fat is more 

frequently associated with metabolic abnormalities than a high level of lean body mass [13]. The 



G e n e r a l  I n t r o d u c t i o n  
 

 
5 

genetically inherited leptin or other adipokines deficiency was also investigated and could have 

an important role in obesity paradox, in which increased levels of leptin could be 

cardioprotective [14]. However, until now the underlying mechanisms for obesity paradox 

remain unclear, and the idea controversial. A more detailed discussion about this topic could be 

found in detail in other studies [10, 12, 15]. 

 

1.1. How obesity is defined? 

Currently, the BMI, which is a simple index of weight-for-height, is the most commonly 

measure used to classify overweight and obesity [16]. It is defined as a person’s weight in 

kilograms divided by the square of his height in meters (kg/m2). 

 The BMI is a measure that was devised in the 19th century by Adolphe Quetelet, although 

only in 1972 it became a world reference for measuring body fat in adults. Decades of research 

have shown that BMI provides a good estimate for body fat, although more sophisticated and 

accurate measures are also being used nowadays. Currently, it is widely accepted that BMI is a 

reliable and easy way to access to body fat, which make an important advantages of its use as an 

obesity measure. Also importantly several studies related the risk of developing health problems 

and risk of death with BMI. According to the world health organization (WHO) for a healthy adult 

the BMI should range from 18.5 to 24.9 kg/m2. Overweight is defined as a BMI of 25 to 29.9 

kg/m2, whereas obesity is defined as a BMI above 30 kg/m2 [16]. If for adults these cutoffs are 

more or less consensual, the definition of children obesity based in BMI was more controversial. 

Depending of the age and gender it is normal for children and adolescents to have different 

amounts of body fat, thus several scales based in age and gender are currently used (WHO, 

United States the Centers for Disease Control and Prevention (CDC), and International Obesity 

Task Force (IOTF)). Despite the great advantages and the broad use, BMI have also some 

limitations. For example, being an indirect measure of body fat it does not distinguish between 

body fat and lean body mass. Also, it is not so accurate in younger ages compared to adults and 

it does not take into account normal differences between gender or ethnic groups. Thus, other 

indirect methods were developed to measure body fat (for example waist circumference or 

waist-to-hip-ratio) and currently more sophisticated direct methods such as magnetic resonance 
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imaging or dual energy X-ray absorptiometry are being used. However, despite all these 

methods and techniques, BMI remains the simple, cheap and most used measure of obesity. 

 

1.2. Prevalence of Obesity 

Epidemiological studies indicate that adiposity, as reflected by BMI, has increased 

worldwide over the past decades [17]. Moreover, obesity is more common in some countries 

than in others, though precise cross-country comparisons can be difficult because not all 

samples are representative of the relevant populations. Nonetheless, available data suggest that 

the increase in the prevalence of obesity began to emerge during the 1980s and ever since more 

countries have joined the global obesity pandemic [17, 18]. Between 1980 and 2008, the global 

change per decade for age-standardized mean BMI was increased ~0.4 kg/m2 and ~0.5 kg/m2 in 

men and women, respectively [17]. By 2013, the global estimated prevalence of 

overweight/obesity in men and women was 36.9% and 38.0%, respectively, comparing with 

28.8% and 29.8%, respectively, in 1980. In children and adolescents the prevalence of 

overweight and obesity has increased from 1980 to 2013 in developed countries (23.8% and 

22.6%, in boys and girls, respectively), but also in developing countries with an increase around 

5% of both boys and girls. In some countries like Kiribati, Federated States of Micronesia, Libya, 

Qatar, Samoa among others the estimated prevalence of obesity in adults exceeded 50% of the 

population [18]. In 1989, worldwide estimates for the prevalence of overweight and obesity 

among adults (>20 years) was around 857 million individuals, comparing to the 2.1 billion in 

2013 [18]. These values represent an increase of ~41% in 33 years. 

Concerning the Portuguese population, the prevalence of overweight in adults (>18 year-

old) were 46.7% and 38.1% in men and women, respectively, and obesity prevalence was 

reached the 20.0% in both sex [19]. In children aged 3-10 years 28.0% were overweight or obese 

(19.7% overweight; 8.2% obese) [20]. Among adolescents (11-17 years-old) the prevalence of 

overweight/obesity was around 20% for boys and 17% for girls between 2002 and 2010 [21]. 

In modern societies, despite obesity awareness campaigns and efforts to decrease in energy 

intake and increase in energy expenditure, obesity prevalence is increasing. However, we don’t 

yet understand why not everyone in our societies becomes obese. Obesity has a multi-factorial 

etiology, involving various non-genetic and genetic factors [6, 22]. Probably most cases of 
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obesity results of a cluster towards the middle of this spectrum, which can be best described as 

the outcome of an adverse obesogenic environment, working on a susceptibility genotype. 

Effectively, the genetic susceptibility can potentially be mediated through defects in several 

different homeostatic mechanisms. Certainly, the exposure to an obesogenic and other 

environmental factors should be the main cause of the increase in the prevalence of high BMI 

over the last 30 years [6, 7, 17].  

The field of genetic epidemiology aims to use systematic methods to investigate the 

influence of human genetic variation on health and disease, and also the relationship between 

environmental factors and disease.  

  

2. Genetics of obesity 

The increase in the obesity prevalence around the world has been broadly attributed to the 

change in environment, which is more obesogenic, against an evolutionary background, that 

could be maladaptive in this new obesogenic context. On the other hand, specific features of the 

energy balance mechanisms can effectively protect against obesity, possibly explaining why one 

third or more of the population remains lean [23]. The obesity phenotype only emerges if food 

consumption exceeds the energy expenditure on a lasting basis, resulting in a prolonged positive 

energy balance. However, there are many risk factors that predict the development of obesity 

and generally all involve the interaction of biological and social factors. Numerous studies are 

consistent with the hypothesis that the personal genetic profile could be a cause for individual 

differences in the predisposition to weight gain. It is, therefore, interesting that most of the 

genes involved in the susceptibility of obesity are also related to food intake and regulation of 

energy balance [23]. Based on genetic and phenotypic characteristics, three types of obesity 

forms can be considered: monogenic syndromic obesity, monogenic non-syndromic obesity and 

polygenic (common) obesity. 

 

2.1. Evidence for a genetic component to obesity 

Over the last 30 years, the increase in the prevalence of obesity could be attributed 

primarily to environmental changes, or to high-calorie food intake together with the sedentary 

lifestyle of modern societies [22]. The fact that the prevalence of obesity in many countries has 
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increased 3-fold over the last 3 decades seems difficult to conjugate with the notion that 

genetics are the primary cause of obesity, as revealed by twin and adoption studies [2–5]. 

Nevertheless it is now believed that environmental factors can influence the genetic background 

contributing to the increase in obesity prevalence. Moreover, epigenetic mechanisms, in which 

environmental factors cause changes in the expression of genes, could also help explaining the 

observed increase in obesity prevalence. 

Heritability represents the proportion of phenotypic variation among individuals due to 

genetic contribution. Hence, it is not surprising that one important risk factor for childhood and 

adolescent obesity is parental obesity. Whitaker et al. [24] found that when both parents are 

obese there is an increase of more than double of the risk for childhood obesity. However, most 

of the studies found a small to medium effect of parental obesity as risk factor for childhood 

obesity [25]. Other studies have found a stronger effect for maternal obesity compared to 

paternal obesity, which may reflect pre- and postnatal environmental factors [26]. Moreover, 

maternal weight gain in pregnancy has been positively associated with BMI of the children into 

adulthood [27]. Several studies found that environmental conditions experienced in utero are an 

important factor in programming obesity. 

Twin studies have been used to model the genetic component of a given trait, due to the 

fact that monozygotic (MZ) twins are genetically identical, while non-identical dizygotic (DZ) 

twins share only 50% of their genetic material [22]. In 1977, Feinleib et al. [2] studied the 

correlations for weight in 250 MZ and 264 DZ male veteran twin pairs, and established for the 

first time that familial aggregation for obesity results mainly from genetic influence. In 1986, 

Stunkard et al. [4] confirmed these results in a 25-year follow-up study using more than 4000 MZ 

and DZ twin pairs. High heritability values for BMI were observed for the same subjects at 20 

years (h2=0.77) and at 45 years (h2=0.84). The heritability of fat mass among MZ twins has been 

reported to range from 70-90%, while in DZ twins it is 35-45%. Adoption studies have 

strengthened the evidence of a strong genetic influence on human body weight. Body 

corpulence of adopted children correlates more strongly with BMI of their biologic parents 

versus the BMI of their adoptive parents [3]. Recently, Silventoinen et al. [5] conduct a review of 

studies in twins and adopted children, suggesting that genetic factors could have a much 

stronger effect than environmental factors on the BMI trends in children up to the age of 18 
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years.  

Another genetic component for obesity is highlighted through the different prevalence 

between racial groups. For example, it was found that obesity prevalence in Caucasian and Asian 

populations is of about 35% or less compared to 50% or more found among Pima Indians living 

in New Mexico [28]. However, the search for underlying genotypes that cause of obesity has 

been challenging due to the complex interactions involved in the regulation of adiposity. Indeed, 

many of individual genotypes (especially those obtained with a lower odds ratio) that have been 

associated with elevated body mass have not been replicated in a reliable fashion. Moreover, 

environmental factors and cultural diversity also account for the different obesity prevalence 

found across ethnicities. 

 Studies have shown that genetic population substructure, economic disadvantages, 

psychosocial stress, or access to medical care could have an important impact in obesity 

development and prevalence. The cultural context could also influence obesity, by defining for 

example the type and quality of food intake. Also, in some cultural contexts the obesity 

phenotype could represent a signal of wealth and high social status. Another important factor is 

the genetic architecture, which is different across population (population substructure) and 

might be differentiated in ethnic clusters. This could presuppose that disease-causing alleles are 

more likely to be present in some groups or even be specific to other groups. This point could be 

considered as the population genetic predisposition to develop the disease. For example, it is 

well demonstrated that in the US black-white population occur disparities in the risk of 

developing cardiovascular disease [29]. Also, social factors such as economics disadvantage or 

psychosocial stress between groups could have a real impact in causes of ill health. For example, 

disparities originated by the limited access of quality medical care between different ethnics 

groups living in the same population might influence health, causing different disease rates.  

The role of maternal nutrition and stress suffered during pregnancy, mostly due to social 

disparities or cultural differences could also influence biological processes and responses across 

the life cycle that will be discussed later. All these factors affect the intrauterine environment 

reflecting differences in birth weight. However, nowadays is still evident that genetic factors play 

a considerable role in obesity. Three distinct forms of obesity could be found: monogenic, 

syndromic and polygenic obesity. 
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2.2. Mendelian forms of obesity 

Monogenic forms of obesity result from an alteration of a single gene and are rare, affecting 

about 5% of the population, and severe [30, 31]. There are more than 200 described cases of 

human obesity associated with homozygous forms of a single gene mutation [32, 33]. Two forms 

of Mendelian inheritance of obesity could be found: syndromic and non-syndromic. Most of 

these monogenic forms of obesity are characterized by an early-onset of the disease and an 

extreme phenotype [30]. In the search for homologous mutations in mice, several human forms 

of obesity have been identified [34]. Thus, murine models appear useful to understand the 

molecular pathogenesis of human obesity [35]. Family studies based on individuals with extreme 

obesity, also proved to be very successful in the detection of obesity-related mutations [36]. 

Below is presented a brief and general review about the two syndromic forms of obesity. 

 

2.2.1. Non-syndromic form of obesity 

Over the past 15-20 years, several gene mutations have been shown to cause autosomal 

recessive or co-dominant forms of obesity. More than 200 single-gene mutations have been 

found to cause human obesity [37]. Interestingly, all these mutations can be found in only ten 

genes [33]. However, these mutations are rare and lead to extreme obesity with an early-onset 

obesity and other endocrine disorders [31]. There are eight well-known genes in monogenic 

non-syndromic form of obesity explaining up to 10% of cases with early-onset extreme obesity, 

affecting LEP, LEPR, POMC, PCSK1, MC4R, BDNF, NTRK2 and SIM1 (Table 1.1) [30, 31, 38]. All 

these genes code for proteins with a central role in the leptin-melanocortin signaling pathway 

present in the hypothalamus, and therefore affect regulation of food intake and energy 

expenditure [31]. This pathway is activated when LEP is secreted by the adipose tissue, binds to 

its receptor, localized in the surface neurons in the arcuate nucleus of the hypothalamus [39]. 

The signal that regulates satiety and energy homeostasis  is  then  propagated  through  the  

POMC/cocain  and  amphetamine  related  transcript (CART) and melanocortin system [31]. 

While POMC/CART neurons synthesize anorexigenic peptide alpha-melanocyte-stimulating 

hormone (α-MSH), a distinct group of neurons synthesizes the orexigenic peptide neuropeptide 

Y (NPY) and agouti related protein (AGRP), which act as inhibitors of MC3 and MC4 receptors 

[40].  
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Table 1.1. Monogenic forms (syndromic and non-syndromic) of obesity. 

 

Non-syndromic forms 

Gene name 
Gene 

symbol 

Chromosome 

location 
Mutations Obesity Phenotype 

Leptin  
 

LEP 7q32.1 ΔG133, Arg105Trp 
Extreme, early-onset 
obesity, hyperphagia. 

Leptin receptor  
 

LEPR 1p31.3 
Exon 16 splice donor 
GA 

Extreme, early-onset 
obesity, hyperphagia. 

Pro-opiomelanocortin 
 

POMC 2p23.3 

G7013T, 7133delC, 
C3804A, A6851T, 
6906delC, 6996del, 
7100insGG, 7134delG 

Early onset obesity. 

Proconvertase 1  PCSK1 
5q15 

 

Gly483Arg, AC+4 
intron 5 donor splice site, 
Glu250Stop, Del213Ala 

Childhood onset obesity,  
elevated proinsulin,  
hypocortisolemia,  
depressed POMC,  
reactive hypoglycemia. 

Melanocortin-4 receptor  
 

MC4R 18q21.32 >150 

Early onset obesity,  
hyperphagia, increased  
fat mass, increased lean  
mass. 

Brain-derived 
neurotrophic factor  
 

BDNF 11p13 46, XX, inv(11)(p13p15.3) 
Severe obesity, 
Hyperphagia, body weight. 

Neurotrophic tyrosine 
kynase receptor type 2 
 

NTRK2 9q22.1 Y722C 
Severe early onset obesity, 
hyperphagia. 

Single-minded homolog 1  SIM1 6q16.3 
de novo balanced 
translocation 1p22.1 and 
6q16.2.  

Early-onset obesity, 
hypotonia, developmental 
delay. 

Syndromic forms 

Syndrome Gene Chromosome location Obesity Phenotype 

Prader Willi syndrome (PWS) 
Contiguous 
gene disorder 

15q11-13 
Neonatal hypotonia, poor feeding, 
evolving into extreme hyperphagia,  
central obesity. 

Bardet-Biedl syndrome (BBS)  BBS1-BBS12 11q13.2 progressive late childhood obesity 

Alstrom syndrome ALMS1 2p13.1 Mild truncal obesity 

WAGR syndrome BDNF 11p14.1 Obesity 

16p11.2 deletion 
 

16p11.2 Progressive obesity 
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The derived peptide nature of POMC depends of the endoproteolytic type enzyme present, 

specific in brain region. In the anterior pituitary, the PCSK1 enzyme produces 

adrenocorticotropic hormone (ACTH) and β-lipotropin (β-LPH), while the combined presence of 

PCSK1 and PCSK2 in the hypothalamus control the production of α-, β-, γ- MSH and β-endorphins 

[31]. Individuals carrying mutations in the MC4R, LEP and LEPR genes represents the most 

extreme phenotype and become obese at a very young age. 

The protein encoded by the MC4R gene, is a membrane-bound receptor and a member of 

the melanocortin receptor family [41]. The protein interacts with adrenocorticotropic and MSH 

hormones and is mediated by G proteins. The MC4R gene is composed by a single exon, and is 

located in the chromosome 18q21.3, encoding for the 332-amino acid seven-transmembrane G-

protein-linked receptor, critically involved in regulating energy balance [42]. It is expressed 

mainly in the central nervous system, including in the hypothalamus, contributing to food intake 

and energy expenditure regulation [42, 43]. In 1998, two independent groups reported a 

mutation in the MC4R gene, which result in a non-functional receptor causing severe early-onset 

obesity [44, 45]. In morbidly obese individuals, deficiency in the MC4R gene activity represents 

the most common cause (1 to 6%) for the obese phenotype [45–47]. More than 150 variants of 

this gene have been described, usually classified into five classes depending of their molecular 

effects [41]. 

The LEP gene (chromosome 7q31.2) encodes a protein that is secreted by white adipocytes, 

which plays a central role in body weight regulation [39]. This protein, acts as part of a signaling 

pathway that can inhibit food intake and/or regulate energy expenditure to maintain constancy 

of adipose mass. In 1997, in a screening for serum level concentrations in severely obese 

subjects, two children of the same family were found with undetectable levels of leptin [48]. 

Subsequently research revealed that leptin deficiency is inherited and produces extreme early 

onset obesity [49]. This deficiency can be caused by a frameshift mutation (del G133), which 

produces a truncated protein that is not secreted [49] or a missense mutation Arg105Trp, which 

is associated with low levels of circulating leptin [50]. 

The protein encoded by the LEPR gene (chromosome 1p31.3) belongs to the gp130 family 

of cytokine receptors, which stimulate gene transcription via activation of cytosolic STAT 

proteins, predominantly in the hypothalamic neurons [51]. This protein is a receptor for leptin 
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and is involved in regulation of fat metabolism. A splice site mutation in the exon 16 is 

associated with leptin receptor deficiency, producing extreme obesity [52]. 

 

2.2.2. Syndromic form of obesity  

Syndromic forms refer to obesity cases that occur in a distinct set of associated clinical 

phenotypes, such as mental retardation or organ-specific developmental abnormalities [53]. 

There are more than 30 Mendelian disorders that result in obesity [37]. Research is beginning to 

determine the genetic basis of some of these syndromes, thus elucidating the pathogenesis of 

the chronic positive energy balance. The genetic basis of these disorders is extremely 

heterogeneous. Table 1.1 presents the most common forms of early-onset syndromic obesity for 

which the genetic basis is, at least, partially understood, including WAGR (Wilm´s tumor, 

aniridia, genitourinary anomalies and mental retardation), Prader-Willi, Bardet-Bield, Altröm and 

Cohen syndromes. 

WAGR syndrome is a rare genetic disorder characterized by a deletion at chromosome 

11p13 in a region containing the Wilm´s tumor 1 (WT1) and paired box 6 (PAX6) genes [30]. A 

specific type of WAGR has been associated with a deletion in the brain-derived neurotrophic 

factor (BDNF) gene, which results in an obese phenotype. 

Prader-Willi syndrome (PWS) can have several etiologies, characterized by central obesity, 

neonatal hypotonia, hyperphagia, hypothalamic hypogonadism and mild mental retardation, 

with such abnormalities as short stature and peculiar facial features [30]. Most of the cases were 

associated with loss of expression from paternal deletions of the 15q11.2-q12 chromosomal 

region [31]. 

Bardet-Biedl syndrome (BBS) is characterized by early-onset obesity, which is associated 

with progressive cone-rod dystrophy, morphological finger abnormalities, dyslexia, learning 

disabilities, and progressive renal disease [30]. BBS has extensive genetic heterogeneity with at 

least 14 loci, (often called BBS gene) and several mutations identified within these loci [31].  

Alström (ALMS) and Cohen syndromes are associated with childhood mild truncal obesity 

and small stature [30, 31]. Both of them are autosomal recessive and genetically homogenous. 

ALMS is caused by a balanced translocation of chromosome 2p13 that disrupts ALMS1 gene or 

by a small number of mutations in this gene. Cohen syndrome results from mutations in the 
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COH1 gene, located at chromosome 8q22, which encodes a transmembrane protein of unknown 

function [30]. 

Finally, we can also found ciliary dysfunction, collectively termed “ciliopathies”. These 

comprise a group of several disorders associated with genetic mutations encoding defective 

proteins, affecting normal function or formation of cilia [54]. Ciliary dysfunction can manifest as 

a set of heterogeneous features including retinal degeneration, renal disease, cerebral 

anomalies, congenital fibrocystic diseases of the liver and pancreas, diabetes, obesity and 

skeletal dysplasias [55]. Due to the heterogeneous phenotype, ciliopathies have been associated 

with mutations in more than 40 genes including the genes involved in BBS and ALMS syndromes.  

 

2.3. Polygenic or common obesity 

In most modern societies, the environment favors weight gain rather than loss, due to food 

abundance and lack of physical activity. Furthermore, the increase of common obesity in both 

adults and children has increased in the last decade worldwide. However, the genetic and 

molecular mechanisms involved in body weight regulation are complex. The genetic profile of 

polygenic obesity results from the effects of several altered genes. In theory, the genetic basis of 

polygenic obesity implies that the specific set of variants relevant for obesity vary considerably 

from one obese person to the next [36]. For this reason, the study of common obesity is far 

more complex. However, the advent of new techniques facilitated this study by allowing the 

analysis of several loci at the same time.  

 

2.3.1. Genetic approach for common obesity  

The study of common obesity is based in the analysis of gene variation in genomic DNA 

(single nucleotide polymorphism, or microsatellites) situated within or near candidate genes. In 

contrast with monogenic obesity, in polygenic obesity each variant confers susceptibility, 

requiring additionally the presence of other variants and an obesogenic environment to 

determine the obese phenotype [56]. There are some approaches used in the detection and 

analysis of a candidate gene in body weight regulation: linkage studies, candidate gene 

association studies and GWA studies. Their objective is to determine whether an association 

between a genetic variation and an obesity-related trait do exist. Until now, GWAS had 
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identified more than 52 loci associated with obesity-related traits [57].  

Recently, with the advent of automated DNA sequencing instruments, involving advances in 

engineering, chemistry, molecular biology, and software, open a number of new opportunities 

[58]. Currently, molecular diagnosis based on Sanger’s sequencing is restricted to only a few 

genes as this technology is expensive, time consuming, and labor intensive. The advent of next-

generation sequencing (NGS) technology provides a new method for molecular diagnosis, 

allowing the sequencing of whole genomes or exomes, or several genes at the same time [59]. 

NGS promises to change the landscape of genetic testing with innovative cost-efficient methods 

for sensitive obesity multi-gene screening.  

Only a few studies have used NGS technology to study obesity. Saeed et al. [60] analyzed 26 

susceptible genes for obesity in a sample of 39 Pakistani children with early-onset obesity. They 

found two new LEPR mutations at the homozygous state: a splice site mutation in exon 15 

(c.2396-1 G>T), and a nonsense mutation in exon 10 (c.1675 G>A).  Sällman et al. [61] amplified 

the entire region of the fat mass and obesity-associated (FTO) gene (412 kilo base pairs), from 

524 severely obese and 527 lean Swedish children. They detected 705 single nucleotide 

polymorphisms, from which 19 were novel obesity-associated polymorphisms within the first 

intron of the FTO gene. An interesting finding was the fact that 10 of them have a stronger 

association with obesity (p<0.007) when comparing with the commonly studied rs9939609 

polymorphism (p<0.012). This study concluded that within the entire region of the FTO gene the 

first intron was the only one associated with obesity. Bonnefond et al. [62] searched for 

mutations with NGS in 40 patients, with a monogenic form of diabetes (n=19) or obesity (n=21), 

in which the causing mutation was already known. The study found the same mutations 

described as the phenotype cause, except for one variant (mean of 98.6%). On the other hand 

novel mutations were found in 3 patients with a putative deleterious effect.  

The NGS approach could be used as an efficient tool with highly sensitive screening for 

mutations in genes associated with obesity or other diseases. Further, sequencing the human 

genome can now be accomplished in the data-generation phase within two weeks at a cost of 

approximately US $5,000 [58]. However, the price for genome sequencing continues to 

decrease; in 2014 Illumina announced that would produce a new system called HiSeq X Ten that 

can deliver full coverage of human genomes for less than US $1,000. However, until now the 
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majority of loci associated with obesity susceptibility were found by GWAS. For this reason we 

described the loci found by this technique

 

2.4. Common loci associated with obesity

The GWAS approach is the most commonly methodology used, allowing geneticists to scan 

numerous polymorphisms (~0.1

powerful statistical methods to identify 

start of the GWAS era in 2005, there have been five waves of GWAS’ discoveries for BMI. The 

first loci identified through GWAS was the 

have been identified as being associated with at least one obesity

1.1).  

 
 

 
 

Figure 1.1. Loci associated with obesity
chromosome it was found a locus linked to predisposition to obesity
abdominal fat, fat percentage or extreme obesity).

 

associated with obesity susceptibility were found by GWAS. For this reason we 

found by this technique in more detail and in a chronological order

associated with obesity-susceptibility discovered through GWAS

The GWAS approach is the most commonly methodology used, allowing geneticists to scan 

numerous polymorphisms (~0.1-5 million of polymorphisms) across the entire genome using 

al methods to identify loci associated with a particular phenotype. Since the 

start of the GWAS era in 2005, there have been five waves of GWAS’ discoveries for BMI. The 

through GWAS was the FTO gene, and until now more than 50 genetic 

have been identified as being associated with at least one obesity-related trait [8, 22, 63]

associated with obesity-related phenotypes. Almost in every human 
chromosome it was found a locus linked to predisposition to obesity-phenotype (BMI, 

percentage or extreme obesity). 

associated with obesity susceptibility were found by GWAS. For this reason we 

order.  

susceptibility discovered through GWAS 

The GWAS approach is the most commonly methodology used, allowing geneticists to scan 

5 million of polymorphisms) across the entire genome using 

associated with a particular phenotype. Since the 

start of the GWAS era in 2005, there have been five waves of GWAS’ discoveries for BMI. The 

more than 50 genetic loci 

[8, 22, 63] (Figure 

related phenotypes. Almost in every human 
phenotype (BMI, 
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2.4.1. First discoveries by GWAS: the FTO gene 

The first locus associated with obesity was the insulin-induced gene 2 (INSIG2) [64]. 

However, replication studies demonstrated very inconsistent results. So, the first locus 

unequivocally associated with obesity by a GWA study was the FTO gene [65]. Initially, Frayling 

et al. [65] conducted a GWA study to test the correlation between polymorphisms across the 

entire human genome and type II diabetes (T2D). They found that the rs9939609 polymorphism, 

located in the first intron of the FTO gene was strongly associated with T2D and increased BMI. 

However, after adjustment for BMI, the apparent association of the polymorphism with T2D was 

not maintained. The effect size of FTO polymorphism on BMI is modest, with homozygous 

individuals for the risk allele (in this case the “A-allele”) weighing on average 3 kg more than 

those homozygous for the protective allele (in this case the “T-allele”), with the difference 

representing approximately 0.36 kg/m2 [22].  

These findings have been independently replicated and have consistently confirmed the 

association of rs9939609 polymorphism with the etiology of common obesity in several 

populations: European [65–68], Asian [69–72] and African [73–75], both in children and adults. 

Two following studies reported other polymorphisms in the intronic FTO region also consistently 

associated with severe early-onset childhood and adult obesity (rs1421085 and rs17817449) 

[76], and have extended the association to other obesity-related traits including body weight 

and waist-to-hip circumference ratio (WHR) (rs9930506) [67]. The FTO polymorphisms were also 

associated with abdominal obesity, waist circumference and waist-to-hip ratio (WHR) [77, 78], 

and also with body fat percentage [79]. Although these posterior reports replicate well the initial 

findings, the FTO polymorphisms explain only 1-3% of the variance in BMI [65, 67]. 

To date, over 500 studies have been performed concerning the association of FTO 

polymorphisms with obesity in several populations worldwide, and more than 60 

polymorphisms in this gene were significantly associated with obesity [61]. All these 

polymorphisms were found within a 47 kb linkage disequilibrium (LD) block encompassing parts 

of the first two introns as well as exon 2 of the FTO gene [80]. This is a region where the 

sequence is strongly conserved across species, with polymorphisms highly correlated (LD r2 > 

0.80 in CEU of the HapMap) in Caucasian populations [81].  

The functional mechanism underlying FTO role in obesity remains unknown, as well as the 
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pathway underlying that role. The FTO is a very large gene with 9 exons spanning more than 400 

kilobase (kb) in the chromosome 16q12.2 [82]. It was originally identified in 1999 in the Fused 

toes (Ft) homologue mutants, in a deletion of 1.6 megabase (Mb) on chromosome 8 [83]. 

Homozygosity of Ft mutants is embryonically lethal. To investigate the biological function of FTO 

gene, two mouse models were used. Homozygous FTO-/- mice introduced by Fischer et al. [84] 

show postnatal growth retardation, significant reduction in fat and lean body mass compared to 

the wild-type animals [85]. In other mice model, Church et al. [86] observed a lean phenotype in 

mice carrying a missense mutation in exon 6 of FTO (FTOI367F mice). These results seem to 

indicate that FTO could play a role in food intake control, energy expenditure and homeostasis. 

The predicted human protein consists of 505 amino acids, characterized as a 2-

oxoglutarate-dependent enzyme that is localized in the cell nucleus, belonging to the (2OG) 

oxygenases AlkB family of proteins [87]. The AlkB is a DNA repair enzyme, which catalyzes Fe(II)- 

and 2OG-dependent demethylation of damaged DNA substrates [88]. Recently, Jia et al. [89] 

indicated that FTO also demethylates N6-methyladenosine (m6A) residue in nuclear RNA. FTO 

variation appears to lead to an increase in energy intake [90] by modifying hypothalamic control 

of appetite [81]. The crystal structure of FTO has recently been published and reveals the basis 

for its substrate specificity [91]. 

Moreover, it was found that the FTO gene is also a transcriptional co-activator [92] and a 

possible regulator of telomere length [93]. A recent study found that BMI-associated FTO 

variants interact with the promoter region of iroquois homeobox 3 (IRX3) gene in the human, 

mouse and zebrafish genomes [94]. They also found that in Irx3-deficient mice, there is a 

reduction in body weight of 25 to 30%. This study suggests that IRX3 gene is a functional long-

range target of obesity-associated polymorphisms within FTO. On the other hand, the FTO 

deficiency remains still poorly understood in the context of obesity development and confirm 

the complexity of the genetics underlying common obesity.  

 

2.4.2. Five waves of GWAS 

Following the discovery of the FTO locus, investigators enhanced GWA studies by increasing 

the sample size improving statistical power to uncover additional obesity-susceptibility loci 

(Table 1.2). Subsequently, a large-scale international consortium, called the Genetic 
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Investigation of Anthropometric Traits (GIANT) emerged. The association data of 16,876 

Caucasians from seven GWAS for BMI were combined in a meta-analysis [95]. This study 

confirmed the strong association of obesity with polymorphisms in the FTO gene, and identified 

one new locus near the MC4R gene which mutations are known to be the common cause of 

extreme childhood obesity [30]. The MC4R was the second gene significantly associated with 

common obesity [95, 96]. The rs17782313 polymorphism near the MC4R gene was associated 

with obesity among both adults and children [95]. Another polymorphism (rs12970134) near the 

MC4R gene also appears to increase the risk of obesity among Europeans [97]. Several 

polymorphisms near the MC4R gene have subsequently been found and replicated in various 

European populations, as well as in Asians [98], African-American [98], both in children and 

adolescents [73, 75]. 

In the third wave of discoveries, a meta-analysis was performed using 15 GWAS for BMI in 

Caucasians (n > 32,000) and replicated in another 14 studies for a second-stage sample of 59,082 

individuals [99]. They confirmed the association of the FTO and MC4R genes, and found six new 

genes positively associated with obesity: MTCH2, GNPDA2, KCTD15, SH2B1, NEGR1 and 

TMEM18. At the same time, a GWAS of 31,392 individuals, predominantly from Iceland 

population, found seven new genetic loci near or in BDNF, SEC16B, ETV5 and FAIM2, as well as 

FTO and MC4R genes associated with BMI [97]. Four of the seven newly identified loci were 

common with the results from Willer et al. [99].   

In 2010, the fourth wave, the GIANT consortium expanded its GWAS stage to comprise 

249,796 individuals of European origin, and reveal 18 new loci associated with BMI near or in: 

PRKD1, SLC39A8, GPRC5B, MAP2K5, QPCTL, RBJ, LRRN6C, FLJ35779, CADM2, TMEM160, FANCL, 

LRP1B, TNNI3K, MTIF3, TFAP2B, ZNF608, NRXN3, RPL27A, PTBP2 and NUDT3 [100]. By 2011, 

GWAS had identified 32 genetic loci unequivocally associated with BMI. 

The most recent and fifth wave expanded the GIANT meta-analysis, to comprise 263,407 

individuals of European ancestry [57]. Besides confirming all 32 BMI-associated loci previously 

identified by the fourth wave, they found seven new loci, ZZZ3, RPTOR, ADCY9, GNAT2, 

MRPS33P4, HS6ST3 and HNF4G, explaining an additional 0.09% of the variability in BMI [57]. 
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Table 1.2. Currently established loci associated with BMI in GWAS. 

Wave Gene symbol Gene name SNP ID 
Effect size BMI (OR 

95%CI)* 
Discovery study 

First  FTO Fat mass and obesity associated rs9939609 1.31 (1.23-1.39) [65, 67] 
      
Second Near MC4R Melanocortin-4 receptor rs17782313 1.12 (1.08-1.16) [95] 
      
Third Near TMEM18 Transmembrane protein 18 rs7561317 1.20 (1.13-1.27) 

[97, 99] 

   rs6548238 1.19 (1.10-1.26) 
 FAIM2 Fas apoptotic inhibitory molecule 2 rs7138803 1.14 (1.09-1.19) 
 Near GNPDA2 Glucosamine-6-phosphate deaminase 2 rs10938397 1.12 (1.07-1.17) 
 SEC16B S. cerevisiae Sec16 rs10913469 1.11 (1.05-1.18) 
 BDNF Homolog of brain-derived neurotrophic 

factor 
rs925946 1.11 (1.05-1.16) 

 Near ETV5 Ets variant 5 rs7647305 1.11 (1.05-1.17) 
 SH2B1 SH2B adaptor protein 1 rs7498665 1.11 (1.06-1.17) 
 Near NEGR1 Neuronal growth regulator 1 rs2568958 1.07 (1.02-1.12) 
 Near KCTD15 Potassium channel tetramerization domain 

containing 15 
rs29941 1.10 (1.04-1.15) 

   rs11084753 1.04 (0.98-1.10) 
 MTCH2 Mitochondrial carrier 2 rs10838738 1.03 (0.98-1.08) 
      
      
Fourth Near PRKD1 Protein kinase D1 rs11847697 1.10 (1.03-1.17)  

SLC39A8 Solute carrier family 39, member 8 rs13107325 1.10 (1.05-1.15)  

     

TFAP2B Transcription factor AP-2 beta rs987237 1.09 (1.05-1.12)  

QPCTL Glutaminyl-peptide cyclotransferase-like rs2287019 1.09 (1.05-1.12) 

[100] 

 NRXN3 neurexin 3 rs10150332 1.09 (1.05-1.12) 
 Near GPRC5B G protein-coupled receptor, family C, group 

5, member B 
rs12444979 1.08 (1.04-1.11) 

 Near RBJ-
DNAJC27 

DnaJ (Hsp40) homolog, subfamily C, 
member 27 

rs713586 1.07 (1.05-1.09) 
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 MAP2K5 Mitogen-activated protein kinase 5 rs2241423 1.07 (1.04-1.10) 
 Near TMEM160 Transmembrane protein 160 rs3810291 1.06 (1.03-1.08) 
 Near FANCL fanconi anemia, complementation group L rs887912 1.06 (1.03-1.08) 
 Near FLJ35779-

POC5 
centriolar protein 

rs2112347 1.05 (1.03-1.08) 

 NearLRP1B low density lipoprotein receptor-related 
protein 1B 

rs2890652 1.05 (1.02-1.08) 

 MTIF3 mitochondrial translational initiation factor 
3 

rs4771122 1.05 (1.01-1.08) 

 LRRN6C leucine rich repeat neuronal 6C rs10968576 1.04 (1.02-1.06) 
 TNNI3K interacting kinase rs1514175 1.04 (1.02-1.07) 
 CADM2 cell adhesion molecule 2 rs13078807 1.03 (1.00-1.06) 
 NUDT3 nucleoside diphosphate linked moiety X 

type motif 3 
rs206936 1.03 (1.01-1.06) 

 Near RPL27A ribosomal protein L27a rs4929949 1.03 (1.01-1.05) 
 Near ZNF608 izinc finger protein 608 rs4836133 1.03 (1.01-1.05) 
 Near PTBP2 polypyrimidine tract binding protein 2 rs1555543 1.02 (0.99-1.04) 
      
Fifth GNAT2 guanine nucleotide binding protein (G 

protein) alpha transducing activity 
rs17024258 1.27 (p=0.02) 

[57]
#
 

HS6ST3 heparin sulphate 6-O-sulfotransferase 3 rs7989336 1.09 ( p=0.0001) 

HNF4G hepatocyte nuclear factor 4, gamma rs4735692 1.09 ( p=1.97x10-5) 

 RPTOR regulatory associated protein of MTOR, 
complex 1 

rs7503807 1.08 ( p=7.07x10-5) 

 MRPS33P4 mitochondrial ribosomal protein S33 
pseudogene 4 

rs13041126 1.08 (p=0.001) 

 ZZZ3 zinc finger, ZZ-type containing 3 rs17381664 1.08 (p=0.001) 

 ADCY9 adenylate cyclise 9 rs2531995 1.06 (p=0.01) 

 

 

Abbreviations: BMI, body mass index; OR, odd ratio; 95%CI, confidence interval; SNP ID, polymorphism identification. 
*Effect size from first discovery study. 
# This study not reported confidence intervals, but rather p-values. 
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To date, more than 35 loci have been found associated with the increase of BMI (explaining ~1-

4% of the variance in BMI), while other loci correlate with abdominal obesity, establishing 13 loci 

associated with it, assessed by the WHR [101]. Other loci, such as the Lactase gene (LCT) have been 

associated with BMI and abdominal obesity, but more studies are required to confirm associations 

[102–104]. A study identified two new loci with body fat percentage: IRS1 and the other near SPRY2 

[105]. There is a gap between the explained variance of BMI due to known common polymorphisms 

(1-4%), and the estimated heritability (40-70%). One of the main problems pointed out in GWAS is 

the failure to detect loci that are associated with traits whose effect sizes are too small to reach 

genome-wide statistical significance (false negative rate). To circumvent this “missing heritability” 

the genome-wide complex trait analysis (GCTA) method appears to show a multitude of low 

penetrance common polymorphisms, each with causal effects but too small to allow detection by 

GWA studies. Using this approach, Yang et al. [106] estimated in 17% the BMI variance due to 

common genetic variation and a recent analysis of twin studies revealed that additive effects of 

multiple common polymorphisms could explain 37% of BMI [107]. Most GWAS were performed in 

population samples of Caucasians adults, and only a few in children. However, it seems important to 

determine the genetic predisposition in children, as obesity tends to develop from childhood into 

adult life. 

 

2.5. Testing adult-discovered loci in children  

Childhood obesity is a major health problem in developing countries throughout the world. 

Most of obesity susceptible genes were found in studies with adults, which prompted an effort to 

replicate findings in studies with children [75, 108]. Knowledge of the genetic risk factors of obesity 

in children could be used as a first step to develop possible prevention measures. The FTO locus 

remains the most replicated gene and the strongest gene associated with obesity susceptibility, both 

in adults and children [75, 109]. Results from longitudinal studies suggested a possible age-related 

change in the association between the FTO rs9939609 polymorphism and higher BMI. Sovio et al. 

[110] studied subjects of European ancestry aged from early infancy to 13 years-old. In that sample, 

individuals’ carriers of the minor A-alleles of this polymorphism showed lower BMI in infancy and 

higher BMI later in childhood. In another study, Hallman et al. [111] analyzed a sample of non-

Hispanic white children and adolescents (8-18 years). It was found a significant age-by-genotype 
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interaction predicting that in individuals with AA genotype the BMI would be ~0.7 kg/m2 higher at 

age 8, and ~1.6 kg/m2 higher at age 17, comparing to those with AT or TT genotypes. The results 

reported in these studies might help to reveal mechanisms regulating body mass in humans during a 

critical period of development. Genes TMEM18 and GNPDA2 were also associated with obesity 

susceptibility, with a similar effect of the FTO gene [112]. Remaining loci with evidence for 

association with obesity in children were INSIG2, MC4R, NEGR1, BDNF and KCTD15 [112, 113]. 

In a GIANT meta-analysis, Zhao et al. [108] examined 32 genetic loci in 1,097 obese cases and 

2,760 lean controls, aged between 2 and 18 years old, in a pediatric European American sample. 

They found evidence of associations with nine of these loci, namely FTO, TMEM18, NRXN3, MC4R, 

SEC16B, GNPDA2, TNNI3K, QPCTL, and BDNF. Overall, 28 of the 32 loci showed directionally 

consistent effects to that of the adult BMI meta-analysis. 

Another similar report by the Early Growth Genetics (EGG) consortium investigated the effect of 

established adult BMI with two recently associated loci with childhood obesity (HOXB5 and OLFM4 

genes) [114] in a Greek adolescents cohort [115]. The genetic risk score of the 34 (GRS-34) variants 

was calculated and found that variants at the FTO, TMEM18, FAIM2, RBJ, ZNF608 and QPCTL loci 

produced nominal evidence for association with BMI and/or obesity risk. Overall, 27 out 34 variants 

showed consistent effects with those reported by large-scale meta-analyses adult BMI. 

These results showed clearly that these obesity-conferring variants operate early in life, 

suggesting that individual preventative lifestyle intervention in childhood could be important to 

obesity development. 

 

2.6. GWAS-related investigations in other ethnicities 

There are remarkable disparities in the prevalence of obesity between ethnic groups. To date 

most of GWAS published reports have been performed in populations of European origin. Only one 

study identified, at the first discovery stage, a locus near MC4R gene associated with waist 

circumference and insulin resistance in a cohort of South Asian population [96]. This could be partly 

due to the fact that some susceptible loci only affect a specific ethnic group, while others might 

affect any ethnic group. Indeed, the human genetic architecture differs across ethnicities, which is 

well illustrated by differences in linkage disequilibrium (LD), whereas haplotype blocks vary only 

somewhat among human populations [116]. 
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As a case in point, FTO locus also have consistently correlated with BMI and risk of obesity in 

populations of African [73–75, 117], Asian [69–72] and Pacific-Islander [118] ancestry. Despite the 

fact that effect sizes were similar to those observed in white European populations, the risk allele 

frequency varies substantially:  around 45% in white Europeans, 25% in Asian, and range of 7 to 18% 

in African origin [119]. In the case of FTO gene, Peters et al. [120] genotyped 3,756 polymorphisms 

across a 646 kb region, encompassing the large FTO gene (16q12.2) and the flanking gene RPGRIP1L 

in 20,488 African Americans. Authors reported the rs56137030 polymorphism as the most 

significantly associated with BMI. Interestingly, they found that in individuals of European ancestry, 

this polymorphism represents a cluster of 103 polymorphisms (r2>0.50), whereas in African 

Americans this cluster includes only 29 polymorphisms (at r2>0.50). 

Two recent independent meta-analysis were performed in both East Asian and African 

populations [121, 122]. Wen et al. [121] performed a meta-analysis using 27,715 individuals, 

followed by in silico and de novo replication studies in a further 37,691 and 17,642 individuals of East 

Asian origins, respectively. Seven previously identified loci were detected (FTO, SEC16B, MC4R, GIPR-

QPCTL, ADCY3-RBJ, BDNF and MAP2K5) and three new loci were uncovered, near or in CDKAL1, 

PCSK1 and GP2 genes. Data also implicated three loci, GNPDA2, TFAP2B (previously identified) and 

PAX6, which all reached the genome-wide significance threshold. A recent meta-analysis was 

conducted to examine the association of >3.2 million polymorphisms with BMI in 39,144 adults of 

African ancestry [122]. It identified one new locus at 5q33 (GALNT10, rs7708584 polymorphism) and 

another at 7p15, when data from the GIANT consortium was included (MIR148A-NFE2L3, rs10261878 

polymorphism). They also found evidence of an association at 6q16 (KLHL32, rs974417 

polymorphism) in African-ancestry sample. Overall, 32 of the 36 previously established BMI variants 

showed consistent effect in this GWAS. The 36 known BMI loci explain in average 1.30% of the 

variance in BMI of African ancestry compared with 1.67% and 1.25% in European and Asian ancestry 

populations, respectively [122]. More recently, Tan et al. [123] replicated six confirmed obesity genes 

(FTO, CTNNBL1, ADRB2, LEPR, PPARG and UCP2 genes) in eight different population samples from 

different ancestries (five Caucasian, one Chinese, one African-American and one Hispanic 

population). The main goal of this study was to explore whether the same genes contribute 

differentially to obesity susceptibility in populations of different ancestries. Regarding the FTO gene 

they found 35 polymorphisms significantly associated with obesity in Caucasian populations. 
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However, none of them showed evidence of associations with obesity in another ethnic group.  

Association studies across different populations can help us to define more precisely which loci 

or variants could play a role in the obesity etiology, and help to understand the genetic and 

environmental factors contributing to obesity. As we can see, polymorphisms in the FTO gene are 

associated with obesity in several ethnicities. However, the allele frequencies of the BMI-associated 

FTO polymorphisms vary substantially across the different ethnicities. The highest prevalence of 

minor risk allele is observed in Europeans and the smaller frequency in Asian and African 

populations. The LD cluster of FTO polymorphisms was clearly demonstrated by Loos and Yeo [82], in 

which Europeans present the larger cluster, followed by Asian populations that do not overlap with 

the African cluster (probably without association with obesity-related traits). The discovery of new 

loci in replication studies at established loci found in other populations reflect differences in allele 

frequency and effect size. Further studies will be needed to test the biological function at the 

associated loci and take into account difference observed regarding LD.  

 

2.7. Obesity risk-allele scores 

As noted, several GWAS have identified a large number of obesity susceptibility loci. Nevertheless, 

the major part of these studies only identified single genetic loci associated with obesity. It has 

indeed been demonstrated that combining information from all these obesity loci into genetic risk-

allele scores (GRS) could be a convenient way to summarize risk-associated variations across the 

genome [124] and more useful when individual genetic effects are moderate [125]. The simplest way 

to calculate a GRS is by summing the number of accumulated risk alleles associated with the disease. 

Using this approach, Zhu et al. [126] analyzed 28 BMI-associated polymorphisms in a sample of Han 

Chinese and found 26 nominally associated with BMI. To assess the combined effect of all 

polymorphisms studied with BMI, they create a GRS which was associated with increased risk of 

obesity (OR= 1.06; CI95%: 1.03-1.10), and each additional BMI-increasing allele in the GRS was 

associated with 0.11 kg/m2 higher BMI (p=1.54x10-7). Willer et al. [99] found effect sizes between 

0.06 kg/m2 to 0.33 kg/m2 per allele in BMI changes and that account for 0.40% of the variance of BMI 

analyzing six loci together (TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1). When they 

included the FTO and MC4R genes in the combined effect the variance increases to 0.84%. Similar 

results have also been found in other studies trying to explain the variance of BMI. Combining 12 
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polymorphisms in a sample of 20,431 of European descent, the GRS obtained by Li et al. [127] 

explained 0.9% of BMI variation. Apart the nominally association between 15 polymorphisms located 

in or near the INSIG2, FTO, MC4R, TMEM18, GNPDA2, NEGR1, BDNF, KCTD15, and 1q25 with BMI, 

Zhao et al. [128] explained 1.12% of the total variation for BMI z-score in a sample of children of 

European ancestry. In other sample of European descent González et al. [129] create a GRS including 

six polymorphisms located in the FTO, TFAP2B, SEC16B, ETV5 and SH2B1 genes and found that 

individuals carrying ≥7 risk-alleles had 3.1 (OR=3.11; CI95%: 1.58-6.61) times increase in the odds of 

developing the obese phenotype. Individually, each risk allele conferred an estimated increased risk 

of 1.69 (OR= 1.69; CI95%: 1.46-1.97) times to develop obesity.  

This is particularly more evident when the allele score consists either of many common 

polymorphisms with small effects, or of rare polymorphisms [125]. Generally, when several 

polymorphisms are combined, the estimated genetic score may explain a considerable proportion of 

variation in the risk factor, even if none of the polymorphisms individually does. This is partially due 

to the fact that the “signal” obtained from a GRS is more robust to imperfect linkage than each 

polymorphism individually [125]. In complex diseases it is likely that the effects of different genetic 

loci related to obesity operate in an interactive fashion. Future research should investigate this 

possibility using classification or regression tree analyses, which are well suited to detecting complex 

non-linear interactions.  

The identification of the complex interplay among all genes in the genome-wide context is 

essential to unravel the molecular mechanisms in the obesity etiology. However, as previously 

demonstrated there are differences between populations regarding to allele frequencies. Belsky et 

al. [125] developed a GRS for obesity using results obtained in 16 previously published GWAS in 

European descent samples. Analyzing 32 locus they found a significantly predictor of BMI and obesity 

among Europeans. However, the predictive effects for this GRS did not replicate among African 

Americans due particularly to the differences in risk-allele distributions.  

In less than 10 years we assisted to the discovery of several genes associated with obesity-related 

traits. Despite the discoveries, all these genes only explain a small percentage of obesity 

susceptibility. Of course, several genes remain to be found and certainly in the next year’s novel 
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candidate loci will appear. However, and more recently, new fields called epigenetic emerge as a new 

potential factor influencing the obese phenotype and helping to found differences in obesity risk 

based in the environment that surrounds us. 

 

2.8. Epigenetics 

Epigenetic regulation of gene expression emerged in the last few years as a potential factor that 

might explain individual differences in obesity risk [130]. Epigenetics can be defined as heritable 

changes that are mitotically stable (and potentially meiotically) and affect gene function but do not 

involve changes in the DNA sequence [131]. At the molecular level, epigenetic markers include 

genomic DNA methylation, changes in chromatic organization by histone modifications, the non-

coding microRNAs (miRNA), genomic imprinting, non-covalent mechanisms, and other nuclear 

proteins that are critical for epigenetic gene regulation [132]. Currently, there is a growing interest in 

the study of the relations between genetic variation, epigenetic variation, and disease 

simultaneously. 

Emerging studies have characterized the potential mechanisms by which epigenetic factors 

could increase the risk for obesity (Table 1.3). 

Moreover, unlike DNA genotypes, epigenetic markers can change during lifetime, and have a 

heterogeneous distribution in tissues. DNA methylation is the most well know epigenetic marker, 

which has been proposed as a new generation of biomarkers. It is a biologic process that consists of 

the addition of a methyl group at the carbon-5 position of cytosine, in the context of the CpG 

dinucleotides, and usually associated with gene silencing in the promoter regions [131, 133]. The 

universal methyl donor is DNA methyltransferases (Dnmts) that maintain the cellular DNA 

methylation patterns [130]. Despite the high number of DNA methylation candidate genes and some 

epigenome-wide association studies (EWAS), most of the associations have not yet been replicated in 

other samples to further confirm and establish whether those loci are reliably associated with 

obesity. 
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Table 1.3. Some human genes related to obesity through epigenetic mechanisms. 

Gene 

symbol/EWAS 

Associated 

genes 

Epigenetic 

mechanisms 
Tissue Study sample Role in obesity References 

EWAS UBASH3A, TRIM3 DNA methylation Peripheral blood 

leukocytes 

14 African-American men 

(14-18) 

Replication: 46 Obese (14-

18) and 46 lean (14-30) 

African-American men  

Obesity [134] 

EWAS in individuals 

carriers FTO risk allele 

(rs9939609) 

KARS, TERF2IP, DEXI, 

MSI1, STON1, BCAS3 

DNA methylation Whole blood 33 obese and 24 normal-

weight preadolescent girls 

Caucasian (Greek) (9-13 

years) 

Obesity [135] 

SLC6A4 SLC6A4 DNA methylation Peripheral blood 

leukocytes  

84 MZ twin pairs Caucasian 

(~55.1 year)   

BMI, body weight, 

waist circumference 

[136] 

PPARGC1A, PPARG, 

Tfam 

PPARGC1A DNA methylation Umbilical cord tissue 

and white blood cells  

88 healthy pregnant women 

(~29.7 year) and their 

babies 

Maternal BMI [137] 

 

 

MC4R MC4R DNA methylation Brain tissues Berlin fat mouse (Mus 

musculus) 

Fat diet [138] 

 

 

EWAS HSP90B3P, NAV1, 

NR5A2, CCDC48, 

GPR125, SNCA, 

EHMT2, IER3, 

DNA methylation, 

mRNA expression 

Adipose tissue 31 healthy Caucasian men 

(Sweden) (~37.4) 

Adipocyte metabolism [139] 
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SERPINB1, STX1A, 

PVT1, LHX6, ENKUR, 

CTTN, HCCA2, 

PKNOX2, ANO2, 

ITPR2, RB1, PACS2, 

CRTC3, KIFC3, 

MIR1910, ZFHX3, 

MSI2, RPTOR, TRPM4, 

C20orf160, 

LOC647979, MLC1, 

CDX4, KCND1 

EWAS Diferences between 

number of 

differentially 

methylated CpG sites 

and number of 

differentially variable 

CpG sites 

DNA methylation Peripheral blood 

leukocytes 

48 obese and 48 lean 

African-American (14-20) 

Obesity [140] 

LEP LEP DNA methylation Troncal blood and 

retroperitoneal 

adipose tissue 

Male Wistar rats diet [141] 

RXRA, eNOS, SOD1, 

IL8, PI3KCD 

RXRA, eNOS DNA methylation Umbilical cord tissue 78 Caucasian women (≥16) 

Replication: 239 children  

Fat mass and %fat 

mass 

[142] 
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Using a genome wide approach, obesity has been related to changes in DNA methylation status 

in peripheral blood leukocytes of lean and obese adolescents for two genes. In the ubiquitin-

associated and SH3 domain-containing protein A (UBASH3A) gene, a CpG site showed higher 

methylation levels in obese cases, and one CpG site in the promoter region of Tripartite motif-

containing 3 (TRIM3) gene, showed lower methylation levels in the obese cases [134]. In a recent 

work, Godfrey et al. [142] measured the methylation status of 68 CpGs 5' from five candidate genes 

in umbilical cord tissue DNA from healthy neonates, and found that methylation higher levels within 

promoter region of retinoid X receptor-a (RXRA) gene, measured at birth, was strongly correlated 

with greater adiposity in later childhood [142]. A positive correlation between maternal BMI and 

promoter methylation in peroxisome proliferator-activated receptor-gamma co-activator 1alpha 

(PPARGC1A), a gene encoding a transcriptional coactivator of the peroxisome proliferator-activated 

receptor (PPAR) α and У, playing an essential role in energy homeostasis, was observed when 

analyzing promoter genomic DNA from umbilical cord newborns [137].  

The obesity risk allele of FTO has been associated with higher methylation of sites within the 

first intron of the FTO gene, suggesting an interaction between genetic and epigenetic factors [137]. 

Moreover, Almén et al. [135] determined the methylation profile on a genome-wide scale by 

sampling DNA from peripheral whole blood in female preadolescents. The sample included obese 

and a normal weight groups, both of which contains homozygous carriers of both the FTO normal 

and risk alleles (rs9939609). They analyzed how the risk allele for rs9939609 polymorphism affects 

the methylation status of sites related to other genes (KARS, TERF2IP, DEXI, MSI1, STON1 and BCAS3), 

showing that the FTO gene may influence the methylation level of other genes [135]. 

 A study examined the MC4R gene, which is associated with common and morbid obesity and 

encodes for a protein that is a membrane-bound receptor and member of the melanocortin receptor 

family controlling food intake and energy expenditure. Mouse genomic DNA of brain tissue was 

examined to determine the methylation status of the MC4R exon. Results indicated that methylation 

of the CpGs was decreased in response to high-fat diet [138]. A study examining whether a high-

energy diet may affect promoter methylation of LEP gene, encoding an adipokine involved in body 

weight and food intake regulation, showed in DNA isolated from retroperitoneal adipocytes in rats 

that leptin methylation pattern can be influenced by diet-induced obesity [141]. Zhao et al. [136] 

demonstrated that promoter hypermethylation in the serotonin transporter gene (SLC6A4) was 
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associated with an increase in BMI, body weight and waist circumference. Xu et al. [140] studied 

470,000 CpG sites from 48 obese and lean youth African-American (14-20 years-old); they found a 

differential variability in CpG sites which was more variable in obese than lean subjects, constituting 

an important feature of obesity related with methylation changes. In another recent EWA study, 

Rönn et al. [139] analyzed 476,753 CpG sites to evaluate the possible alteration of DNA methylation 

patterns after a six-month exercise intervention. A global DNA methylation changes were found in 

17,975 individual CpG sites altering the levels of DNA methylation in response to physical activity 

[139]. 

Thus, most of these DNA methylation sites need to be confirmed as being associated with 

obesity, taking into account the tissue sampled, obesity history, and eating behaviors. However, the 

high number of new studies concerning obesity epigenetics will undoubtedly permit the confirmation 

some of these associations, thereby establishing an epigenetic basis for human obesity. Interestingly, 

one recent work of genome wide analysis revealed that carriers of the FTO risk allele (rs9939609) had 

a significant differential methylation level in 6 loci (KARS, TERF2IP, DEXI, MSI1, STON1 and BCAS3) 

compared to non-carriers controls [138]. This work could elucidate the mechanisms underlying the 

association of obesity with genetic variants, possibly due to epigenetic factors. 

Studies based on pre-conceptual, in utero, and postnatal developmental environment showed 

an impact on long-term risk for adult-onset obesity by a set point of adaptive changes. It could be 

understood as a “critical period” where environmental conditions experienced in utero may have a 

life-long effect on the propensity to develop the obese phenotype. The Agouti mouse viable yellow 

(Avy) model is one of the best examples on how early environmental exposures interact with 

epigenetic gene regulation influencing the phenotype [143]. Briefly, the murine agouti gene 

influences DNA methylation in early development, affecting coat color, which correlates with adult 

body weight. Varying the mother´s diet tends to produce offspring with a wide variation in individual 

coat color and obese phenotype as epigenetic modifications of agouti gene were established in early 

development [144]. These variations in phenotypes are caused by DNA methylation patterns, which 

were acquired during early embryonic development and passed through the female germline that 

results in stable intergenerational transmission [145].  

In a recent report, Relton et al. [146] evidenced that DNA methylation patterns in 9 of 24 

(37.5%) genes at birth, show association with at least one index of body composition (BMI, fat mass, 
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lean mass, height) at age of 9 years. This observation suggests that variation in DNA methylation 

patterns at birth in multiple target genes may influence body size in childhood. Moreover, maternal 

diet can alter later child´s adiposity, accompanied by epigenetic changes in genes controlling the 

energy homeostasis. Parental pre-conceptional environmental exposures could also have an effect in 

the health status of the offspring in later life. In two recent studies regarding parental obesity 

conducted by Soubry et al. [147, 148] it has been observed an association between DNA methylation 

profiles at human imprinted genes, such as MEST, PEG3, and NNAT, in children born from obese 

parents, when compared with children born from non-obese parents. Changes related to maternal 

obesity were also detected at loci PLAGL1, MEG3 and H19 [147, 148]. Hypomethylation at the IGF2 

gene was associated with paternal obesity [148]. These results points to a pre-conceptional influence 

of parental life-style or over-nutrition on the reprogramming of imprint marks during gametogenesis 

and early development [147, 148]. The trans-generational effects of parental obesity can influence 

the offspring’s future health status. These reports evidenced that peri-natal events are important in 

defining the epigenetic marks that will persist until the adult age. In the future it might be used as 

early prognostic markers to identify those individuals with more risk to develop obesity. However, 

the knowledge of mechanisms by which maternal nutritional environment induces such changes 

remains largely unknown.  

 

microRNAs 

Another type of epigenetic mechanisms is microRNAs (miRNAs). The gene expression in humans 

is precisely controlled in cellular, temporal, and condition specific manner. Because miRNAs have 

been shown to be important in gene regulation, it is not surprising that they have been implicated in 

the development of obesity [149]. Therefore, the understanding of the regulatory mechanisms of 

gene expression can shed some light on the underlying mechanisms causing obesity. miRNAs are 

endogenous short single-stranded non-protein-coding RNAs with about 21/25 nucleotides in length 

which are involved in post-transcriptional regulation of gene expression by partially complementary 

binding to the 3’ untranslated region (3’ UTR) of target mRNAs [150, 151]. 

Several miRNAs expression patterns have been profiled during adipocyte differentiation [152–

154], others have been linked to adipocyte phenotype, and other obesity parameters [152–160] 

(Figure 1.2). For example, miR-21 was strongly expressed in human adipose tissue and positively 



 

correlated with BMI [158]. These studies revealed that miRNAs may represent biomarkers for 

obesity, and could also be implicated in the molecular mechanisms leading to this disease. However, 

further studies are needed to elucidate the effect of miRNAs and other epigenetic mechanisms in the 

etiology of obesity. 

Continuous advances in research show promising results about the implication of epigenetics 

mechanisms in the etiology of obesity. Epigenetics has shown 

to determine our phenotype and that our behaviors can alter the expression of our genotypes. 

However, additional research is needed, particularly with regard to which cell types should be 

explored in EWAS. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2. Gene expression profile in obesity
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that increase risk for an obese phenotype and how has this predisposition to obesity evolved? 
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. These studies revealed that miRNAs may represent biomarkers for 

obesity, and could also be implicated in the molecular mechanisms leading to this disease. However, 

e needed to elucidate the effect of miRNAs and other epigenetic mechanisms in the 

Continuous advances in research show promising results about the implication of epigenetics 

that our genes are not the only factor 

to determine our phenotype and that our behaviors can alter the expression of our genotypes. 

However, additional research is needed, particularly with regard to which cell types should be 

related phenotypes. Several microRNAs were found 
altered in obesity, and others were found significantly correlated with BMI and morbid obesity. 

The evidence for a genetic component of obesity has been well established in recent years [32]. 

The question about the evolution of obesity is: how has natural selection favored the spread of genes 

that increase risk for an obese phenotype and how has this predisposition to obesity evolved? 

g of the etiology of obesity. However, 
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our knowledge about the evolution of body-weight regulation mechanisms in humans remains 

incomplete. Nevertheless, four different types of evolutionary perspective have been proposed in an 

attempt to address these questions [161, 162]. 

The first hypothesis, called “thrifty gene”, is that the modern genetic predisposition to obesity 

was adaptive in the past, when storing large amounts of fat could have been selectively 

advantageous [163]. It explain the prevalence of obesity and diabetes in modern societies due to a 

change in lifestyle from that of Paleolithic hunters-gatherers to a subsistence based on agriculture, a 

pattern characterized by more sedentary occupations. The basis of this hypothesis states that during 

evolution of the modern humans, genes that promoted efficient fat accumulation would be 

extremely advantageous for primitive humans, because they allow their holders to survive famine 

periods [164]. In modern societies, where food supply is always available, such genes are 

disadvantageous and the result is the widespread obesity [162, 164]. 

Studies were conducted to try and identify genes under positive selection that have a role on 

obesity. A study lead by Myles et al. [165], suggested that the high frequency of the risk allele of the 

Gly482Ser variant in the PPARGC1A gene in Polynesians populations remains a thrifty allele in the 

Pacific populations. Another variant, the PC-1 Gln121, was also considered as a possible thrifty gene 

supported by studies in African and other groups [166]. A recent study provides evidence for a 

positive selection of TRIB2 gene, which influences visceral fat accumulation in East Asians [167]. In 

addition to these few examples showing a possibly positive selection in our evolutionary history with 

metabolic traits, other loci have been extensively studied, one of them being the lactase (LCT) gene, 

at ~7,000 years bp, which is considered a prototypic example of selective advantage leading to rapid 

human evolution compatible with the agricultural innovations [168]. In European populations, the -

13910C>T polymorphism, located ~14 kb upstream of the LCT gene, has been associated with the 

persistence of the lactase enzyme in adulthood: individuals carrying the CC genotype possess 

insufficient enzyme activity in intestinal cells and are classified as lactase non-persistence (i.e., show 

lactose intolerance), which is considered the ancestral condition in humans, whereas individuals 

carrying at least one T allele are considered lactase persistent [169]. Nevertheless, this adaptive 

hypothesis reveals some problems: if accumulating extra adipose tissue was advantageous in the 

past populations, many people with these thrifty genotypes in modern society do not develop the 

obese phenotype, despite the environmental change favoring fat storage. On the other hand, 
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population genetic models predict that thrifty genes would not have sufficient advantage or even 

time to spread in the human population [170]. 

A second explanation, for the evolutionary perspective favoring obesity is that most mutations 

in the obesity susceptibility genes are neutral and have been drifting over evolutionary time [162, 

171]. The neutral theory of molecular evolution, postulates that most evolutionary changes at the 

molecular level is not caused by natural selection, but by genetic drift [172]. According to this theory, 

the majority of genetic variation observed within and between species is selectively neutral, i.e. does 

not affect the fitness of individuals, in contrast to the theory of natural selection for which most of 

the genetic variation observed in populations affect the fitness of individuals and thus is subject to 

selection [173]. This new “drifty genes” hypothesis is a non-adaptive scenario providing an 

explanation for why some individuals get obese while others remain obesity resistant [162, 171]. 

The maladaptive viewpoint is another hypothesis that suggests that obesity is not adaptive and 

may never even have existed in human evolution history, except in some individuals with unusual 

genetic modifications such as the monogenic forms of obesity [162]. Nevertheless, genes that 

actually predispose to obesity could be favored as a maladaptive by-product of positive selection on 

some other advantageous trait. One example of this maladaptive interpretation is a work suggesting 

that obesity could result from individual differences in brown adipose tissue (BAT) [161]. This recent 

point of view emerged highlighting the differences in genetic susceptibility to develop an obese 

phenotype based on BAT.  

Sellayah et al. [161] proposed the thermogenesis hypothesis, in which climatic selection 

pressures in the evolutionary history could exert a strong influence on genes. Effectively, climate 

changes played a key role in our evolution, representing the principal engine of evolutionary change 

(climate is an important factor in determining anatomical differences among different geographical 

populations). In fact, we can see around the world several differences among warm-adapted and 

cold-adapted species. Regarding human populations there is a significant variation in their body 

form, by an adaptation to different climates, suggesting a link between body shape and climate, 

probably related to thermoregulation. In warm climates, individuals have a large surface area relative 

to body mass (e.g. slim, long trunk) that facilitate heat loss, whereas in cold climates individuals have 

a small surface area relative to body mass (e.g. bulky, short trunk) allowing heat retention. In most 

eutherian mammals, BAT is an essential factor in thermogenesis helping to maintain their body 
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temperature regardless of the ambient temperatures. The uncoupling protein 1 (UCP1) gene was 

found with a key role to maintain body temperature in cold climates, which is highly expressed in 

BAT [174]. Some polymorphisms were found in the UCP1 gene associated with body fat 

accumulation, body weight gain and BMI in response to a high-fat diet [175]. Feldmann et al. [176] 

demonstrated in mice exempt from thermal stress that UCP1 ablation induced itself obesity, even in 

mice fed with control diet. They conclude that ambient temperature has an important role in UCP1 in 

mediating diet-induced adrenergic thermogenesis. They suggest that, UCP1 activity could be 

determinative for obesity in mice, and possibly in humans. As it was stated by Sellayah et al. [161], 

epidemiological studies found different rates of obesity (including other metabolic disorders) across 

certain ethnic groups. These studies demonstrated that in United States there are ethnically 

differences; with blacks, Hispanics, and people of Native American ancestry being more prone to 

develop an obese phenotype than European Caucasians and people of East Asian ancestry (Chinese, 

Japanese, and Koreans). When we look to these ethnic population distributions it could be observed 

that people living in warm climates have a higher obesity prevalence compared to people living in 

cold temperatures. In evolution history, genes with an essential role to survival, especially in 

newborn and young children, were positively selected.  

So, Sellayah et al. [161] proposed in the thermogenesis hypothesis that migration to colder 

climates could result in a more efficient BAT and UCP1 gene function. This fact, would endow the 

capacity of higher energy expenditure and energy-burning capacity, providing a higher metabolic 

rate, which then could reduce body fat. At the opposite side, Africans and South Asians whose 

ancestors had no need to evolve efficient BAT and UCP1 function due to the warm climate, show an 

increased propensity for obesity when subjected to sedentary and hypercaloric lifestyle. 

Regarding the thrifty and drifty genotype hypotheses that attempt to explain how human 

obesity evolved, at least one fact remains unclear. Obesity emerged in industrialized countries, which 

then exported their sedentary and hypercaloric lifestyle. One of the principal drawbacks in these two 

hypotheses is that it cannot explain the clear evidence for ethnic differences in susceptibility to 

develop obesity. On the opposite side, the thermogenesis point of view it will be interesting; as 

during the out of Africa migration, genes involved in the BAT thermogenic function could be 

positively selected to a better cold adaptation, although it has also some drawbacks. So, further 

investigation in the UCP1 gene and other in genes involved in metabolic regulation could help 
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unraveling the causes of obesity susceptibility, and to explain the differences among populations and 

why not all people in the same environment seem to have the same predisposition for obesity. 

However, it should be mentioned that these hypotheses are not mutually exclusive and it is possible 

that all have some valid arguments explaining the evolutionary origin of obesity. Thus, understanding 

human evolution could help us to understand modern human behavior and traits.  

 

 

4. Prevention and treatment based on genotyping 

4.1.          Nutrigenetics  

Nutrition is one of the lifestyle factors contributing to the development and progression of 

obesity. An appropriate intake of energy and nutrients has been commonly accepted to prevent 

weight gain. Furthermore, epigenetics studies have demonstrated that several nutrients and 

bioactive food could play a role in the complex machinery involving the interaction between genome 

and the epigenome, which regulate gene expression [177]. The ingestion of these nutrients 

introduces some bioactive components that have signal molecules that carry information from the 

external environment [178]. Many dietary components can modulate epigenetic phenomena by 

inhibiting enzymes such as DNA methyltransferases and histone deacetylases [177], with the most 

well know vitamin B-12 and folate providing methyl groups for DNA methylation reaction [179, 180]. 

New research has attempted to understand the variability in metabolic responses to diet and food 

components, which could affect health. Nutrigenetics and nutrigenomics are defined of the effect of 

genetic variation on dietary response and the role of nutrients and bioactive food compounds in 

gene expression, respectively [181]. These areas aim to develop diagnostic tools that can “read” 

genetic susceptible loci in order to offer a personalized diet, taking into account the individual needs. 

Interactions among genetic loci and diet were found for obesity in IL-6, with daily food intake, PPAR-

gama2 and FTO with fat intake [182]. The Mediterranean diet is known to be rich in folates, which is 

crucial for the DNA methylation status. Ortega-Azorín et al. [183] found a significant gene-diet 

interaction of the FTO rs9939609 and MC4R rs17782313 polymorphisms with type 2 diabetes 

depending on diet, in which the Mediterranean diet counteracts the genetic predisposition. A cross-

sectional study found that individuals carrying both AA risk allele of the rs9939609 polymorphism 

were positively associated with a high intake of total fat (>34% energy) and low fiber consumption 
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(<16 g/day), independently of BMI [184]. It has also been reported in a recent study that obesity 

susceptibility genes (FAIM2, FLJ35779, FTO, LRRN6C, RBJ, and SEC16B) were found to interact with 

dietary carbohydrates (sugar-sweetened beverages) to increase BMI when one or more servings are 

consumed per day [185]. Other two genes, β-adrenergic receptor 2 (ADRB2) and MC4R, were also 

suggested being related with carbohydrate intake [182]. 

During pregnancy and early postnatal life, an individual can be programmed for nutritional thrift 

to adapt and survive in an environment scarce in resources. In 2008, Heijmans et al. [186] studied the 

degree of methylation at five DNA sites in the insulin-like growth factor 2 (IGF2) gene on the 

population exposed to the Dutch famine of 1944-1945. Prenatal exposure to the Dutch famine was 

associated with the risk of obesity. Kucharski et al. [187], provided evidence that epigenetic 

information could be differentially altered by the nutritional input in honeybee (Apis mellifera). 

Moreover, they found that epigenetic modifications could provoke profound changes in 

developmental fates with implications in reproductive and behavioral status. When bee larvae are 

fed royal jelly, it turns off the expression of DNA Dnmt3 and other genes are expressed, turning some 

of them into a queen, whereas bee larvae that are not fed royal jelly, Dnmt3 remains active and the 

larval development produces the worker variety of bees. 

In the past few years, a new window of research opened concerning the possible influence of 

the diversity of human gut microbiota (microorganisms that populate the adult intestines) in obesity 

[188]. Some studies found that the gut microbiota of nonobese individuals is more diverse than that 

of obese individuals [189]. Furthermore, several studies found an increase or decrease of different 

phyla between diet modification (e.g. reduced-carbohydrate, fiber, high-fat, etc.) and weight 

gain/loos [188, 189]. However, the mechanisms underlying gut microbiota affecting obesity in 

humans remain largely unknown. Thus, new studies and discoveries about how the gut microbiota 

affects the host metabolism could provide a more comprehensive understanding on how it affects 

obesity. A dietary intervention could be helpful in prevention as a potential instrument that can 

complement dietary advice. However, there are some limitations concerning nutrigenetics 

applications, such as, the lack of studies analyzing the evidence of common polymorphisms, 

polymorphisms differ on ethnic background, and the high cost of the genetic analyses. More 

generally, compliance with nutrient based recommendations, such as reducing intake of fat and 

sugar, has been very poor. 
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4.2.          Physical activity–genotype interactions in obesity 

Physical activity is another important component involved in the heterogeneous set of factors 

influencing obesity. Regular exercise is one of the most promising behavioral candidates for 

preventing and reducing weight gain, with other health and psychological benefits [190]. The most 

extensively studied example of a gene interaction with physical activity in obesity is the FTO locus; 

evidencing that physical activity attenuates the association of FTO variants with obesity-related traits 

[190–195]. A meta-analysis by Kilpeläinen et al. [79] observed that the estimated effect of the A risk 

allele of rs9939609 increased the odds ratio of obesity by 1.23-fold/allele, but this effect is 

attenuated by 27% in physical active adults (pinteraction =0.001). Similarly, the meta-analysis conducted 

by Ahmad et al. [196] showed a statistical significant GRS and physical activity interaction effect in 

obesity (pinteraction =0.015). In this analysis of 111,421 adults of European ancestry, data support the 

interaction effect between physical activity and a genetic risk score (combining 12 polymorphisms) in 

obesity disposition (pinteraction =0.015). So, higher levels of physical activity may attenuate the 

influence of obesity susceptibility polymorphisms on BMI during adolescence. 

However, several studies have provided evidence that the propensity to be physically active has 

also a strong genetic component in both animals and humans [197]. In humans, physical activity has 

been shown to aggregate in families; more active parents have more active children relative to 

inactive parents [198]. The physical activity heritability ranges from 9% in Mexican-American families, 

to almost 80% in European twins [197]. Common polymorphisms in the MC4R gene were also found 

associated with self-reported physical inactivity in French-Canadian families and Mexican-Americans 

[199, 200]. Another variant, the Gln223Arg polymorphism located in LEPR gene, was found to be 

associated with lower 24h energy expenditure and physical activity levels in individual homozygotes 

for the Arg223 allele compared to Gln homozygotes in Pima Indians population [201]. Summarizing, it 

appears that some variation in our DNA could contribute to the variation in the physical activity level. 

Thus, new studies and the identification of new loci implicated in this interaction could better enligth 

and help to understand the causes contributing to the development of obesity. 

 

4.3.          Drug genotype interaction 

The use of drugs as a treatment option for obesity could be indicated for individuals with a BMI 

>30 kg/m2 with existing co-morbidities such as diabetes, dyslipidemia or hypertension [202]. In the 
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last decade, with the discovery that some drugs were affected by hereditarily variation, the concept 

of “pharmacogenetics” emerged [203]. This new field focuses on the study of polymorphisms within 

one or more candidate genes for associations with pharmacologic phenotypes. So, common 

polymorphisms may alter the response to pharmacotherapy affecting drug metabolism, drug 

transport or drug targets [202, 203]. Relating to obesity, at least 35 loci were validated as being 

associated with BMI and the advent of GWAS and next generation sequencing will likely lead to the 

identification of additional genetic biomarkers. Until now, only three obesity-related drugs were 

approved for continuous use in the United States of America (USA): orlistat (Xenical®, Alli®), 

lorcaserin HCL (Belviq®), and phentermine and topiramate extended release (Qsymia™) [202]. 

Orlistat is a drug that alters metabolism by inhibiting the gastro-intestinal absorption of triglycerides 

[204]. Lorcaserin HCL and Phentermine are drugs that act centrally as an appetite suppressant [202, 

205]. At the end of 2014, the US Food and Drug Administration (FDA) approved a new drug the 

Saxenda® (Novo Nordisk), an agonist of a glucagon-like peptide 1 (GLP-1). 

In the future, it may be possible to determine which sub-populations will respond optimally to 

particular doses of drugs, allowing more effective personalized pharmacologic intervention. To 

achieve this end, it would be ideal if pharmacogenetic studies could identify differences in drug 

response and tolerability, and investigate gene regulation, epigenetic modifications, and DNA-protein 

interactions that could explain individual differences in responses to drugs beyond genetic variation. 

Ultimately, it will also be necessary for clinical trials to evaluate pharmacologic interventions that are 

guided by genetic tests. 

 

4.4.         Surgical intervention 

 For patients with morbid obesity (BMI ≥40 kg/m2) and overweight (BMI ≥35 kg/m2), suffering also 

of obesity-related comorbidities, which failed diet, exercise, and drug therapy, a surgical intervention 

could be the only option for the resolution of obesity problem. This approach could be a definitive 

way in many situations to reduce loss weight. However, some patients present a significant weight 

gain after chirurgical intervention. There are several guidelines and procedures that 

surgeons/gastroenterologists need to follow [206]. In this section we will not detail about surgical 

intervention strategies, which have been reviewed elsewhere [207], but about a possible relation 

between some genetic variants and the success to maintain weight loss after surgical intervention.  
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 Throughout this introduction we discuss the importance that genetics factors play in the etiology 

of obesity, and for that it should be a factor taking into account in patients undergoing surgery. 

Effectively, there is a high degree of inter-subject variability for surgical outcomes [208]. Generally, 

patients submitted at a surgical intervention have a durable weight loss [209]. However, despite its 

effectiveness not all people lose the same amount of weight or obtain the same clinical benefits after 

the intervention. Some studies emerged associating specific polymorphisms with the response to 

bariatric surgery. Still et al. [210] used a summative allele risk score to found the presence of an 

association between several polymorphisms (including the FTO, and MC4R genes) with postoperative 

weight loss. De Luis et al. [211] investigated the role of rs6923761 polymorphism at GLP-1R gene on 

outcomes after biliopancreatic diversion. They found that homozygous individuals for the rs6923761 

G allele showed higher weight loss 12 and 18 months after bariatric surgery than individuals A allele 

carriers. In another study, Hatoum et al. [209] found that a 15q26.1 locus was significantly associated 

with weight loss after Roux-en-Y gastric bypass surgery. Using the same surgery intervention, in 

2013, a GWAS identified 17 polymorphisms whose frequencies were significantly different between 

two phenotypic extremes of weight loss at two years after surgery [212].            

 There are some evidences for the use of genomics to identify response to surgical procedures 

[209, 213]. Thus, the identification of genetic contributors could be useful to select those individuals 

who will obtain a better benefit from a weight-loss surgery. However, these results need to be 

interpreted with some caution due to the few number of replication studies.  
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5. Objectives  

The main goal of this study was to investigate for the first time the genetics of common obesity 

in Portuguese children, which could allow in the future the identification of a genetic predisposition 

to obesity, and help developing possible approaches to treat this condition. 

 

From this general goal, we pointed out more detailed objectives, specifically: 

 
• To assess prevalence of overweight and obesity in a sample of 6-12 years old children 

with Portuguese origin. 

• To assess the association between three FTO polymorphisms with obesity-related 

traits in the sample previously established. 

• To test the association in the sample of Portuguese children, the -13910C>T (LCT) 

polymorphism with obesity-related traits. 

• To investigate the nominal association of ten obesity-related polymorphisms within 

or near genes MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, SEC16B, HOXB5 

and OLFM4 in the previously established sample. 

• To search in children with morbid obesity (BMI ≥99th) for possible mutations in MC4R 

gene. 
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1. Selection of polymorphisms  

In the beginning of this PhD project, in 2009, eleven single nucleotide polymorphisms, identified 

from the literature as being related to obesity or obesity-related traits in populations of European 

origin, were selected for this study. Throughout the development of the study, three new 

polymorphisms were included in the analysis, totaling fourteen polymorphisms.  

 

FTO gene 

Three polymorphisms located within the first intron of the FTO gene were selected: two that 

have been closely associated with obesity and prominent in the literature, rs9939609 (position: 

chr16:53820527), described by Frayling et al. [65], rs1421085 (position: chr16:53800954), reported in 

the work of Dina et al. [76], and the yet poorly studied rs1861868 polymorphism (position: 

chr16:53790402), described in only two studies [66, 192]. 

 

MC4R gene 

Two polymorphisms located in the MC4R gene, prominent in the literature, rs17782313 

(position: chr18:57851097) and rs12970134 (position: chr18:57884750), were chosen. 

 

NRXN3, PPARGC1A, TMEM18, SEC16B genes 

Four poorly studied polymorphisms comprising rs10146997 (position: chr14:79945162) in 

NRXN3, rs8192678 (position: chr4:23815662) in PPARGC1A, rs7561317 (position: chr2:644953) in 

TMEM18 and rs10913469 (position: chr1:177913519) in SEC16B, were chosen. 

 

MSRA and TFAP2B genes 

Two polymorphisms associated in adult´s populations but never replicated in sample children, 

rs545854 (position: chr8:9860080) in MSRA and rs987237 (position: chr6:50803050) in TFAP2B [214], 

were chosen. 
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LCT gene 

The rs4988235 (-13910C>T) (position: chr2:136608646) polymorphism located ~14 kb upstream 

from the LCT gene coding region, reported in 2010 as a new candidate related with obesity in adults 

of European origin [102–104], was chosen. 

 

HOXB5 and OLFM4 genes 

The two remaining polymorphisms were chosen due to their recent (2012) association with 

childhood obesity, but never replicated in an independent study: rs9299 (position: chr17:46669430) 

in HOXB5 and rs9568856 (position: chr13:54064981) in OLFM4 [114]. 

 

2. Ethical procedures 

The study protocol was approved by Direcção-Geral de Inovação e de Desenvolvimento 

Curricular, the ethical committee of the Ministério da Educação e Ciência (Portugal). The 

authorization can be found at the http://mime.gepe.min-edu.pt homepage, using the identification 

number process nº: 0151100001. The study protocol was also conducted in accordance with the 

institutional guidelines of the University of Coimbra (Portugal).  

After having obtained the written informed consent of children´s parents/guardians, children 

with positive consent were included in this study. 

 

3. Study subjects 

Subjects were selected in 2011 (April-June) from several public schools in the central region of 

Portugal. The study subjects were derived from five grouping of schools: Agrupamento de escolas Dr. 

Manuel Fernandes (Abrantes), Agrupamento de escolas Pêro da Covilhã (Covilhã), Agrupamento de 

escolas da Pedrulha (Coimbra), Agrupamento de escolas Carolina Beatriz Ângelo (Guarda) and 

Agrupamento de escolas das Dairas (Vale de Cambra). All children from these groups of schools, aged 

between 6 to 12 years old, were chosen to integrate this study. From a total of 4028 initially selected 

children, 1468 parents gave their written informed consent. Thirty-five children were excluded from 

the study due to non-Portuguese origin: African (n=8), Asian (n=2), or other European origins (n=15). 

After this exclusion, the final sample was composed by 1433 children with Portuguese ancestry, 

comprising 747 girls and 686 boys.  
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4. Anthropometric measures  

Some anthropometric measures are used by anthropologists to assess variation in physical size 

and shape of the body in humans. These analyses can provide data and clues about the cause of 

human variation. A trait can be described and reflect the activity of a single-gene (Mendelian or 

monogenic) or more than one gene (polygenic). Both of them can be multifactorial influenced in the 

same time by environment factors. A polygenic multifactorial condition reflects additive contribution 

of several genes conferring different degrees of susceptibility.  

 

4.1. Anthropometry 

Anthropometry arises as a branch of biological science that aims the study of body size. The 

principal study object is the different character measurable in human morphology, such as height, 

weight, waist circumference, and subcutaneous fold. It has the particularity to be a universally 

applicable, inexpensive and non-invasive method to assess the size and composition of human body. 

This field was developed mostly in the early nineteenth century and in other phase in the early of the 

twentieth century. Initially constituted an attempt, through the physical dimensions of man, to 

subdivide and classify human in "race". In the last decade, its focus was mainly devoted to human 

growth and physical classification. 

 

 

4.2. Body mass index (BMI) in adults 

To define and classify the body weight in adults, we used the Body Mass Index (BMI) [215]. The 

BMI is a weight parameter corrected for height. This is calculated by dividing body weight (in kg) by 

height (in square meters) [215]. Table 2.1 presents the values for BMI for adults, according to the 

classification of the World Health Organization (WHO). BMI between 18.6 and 24.9 kg/m2 are 

considered with normal weight. However, values above 25kg/m2 mean excess of weight [16]. 
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Table 2.1. World Health Organization classification for BMI in adults. 

Classification Body Mass Index (BMI), kg/m
2
 

Underweight <18.5 
Normal range 18.5 – 24.9 
Overweight 25 – 29.9 
Obese 30.0 - 34.9 
Severely obese (Class I) 35.0 – 39.9 
Morbidly obese (Class II) 40.0 – 49.9 
Super obese (Class III) >50.0 

 

One of the main advantages of the BMI is to be relatively inexpensive, easy to use, non-invasive, 

and does not cause any discomfort to people. This has numerous advantages in the clinical setting, 

making BMI generally used as a measure of total body fat. Despite this advantage, there are some 

limitations to its use as BMI does not measure the amount of body fat directly, therefore can lead to 

an inaccurate assessment of adiposity. Nevertheless, it has clinical validity and acceptable, but must 

be used with caution [216, 217]. 

A major problem of fat deposits in the body that can lead to metabolic risk, especially with regard 

to the central abdominal fat, is measured by waist circumference and can be associated with the 

development of metabolic risk factors, diabetes, cholesterol and cardiovascular diseases 

(hypertension) [218]. Thus, the waist circumference has become a good indicator of central obesity, 

since it quantifies the accumulated body fat in the abdomen. Understanding pathogenic central fat 

distribution may help in understanding the relationship between adiposity and cardiovascular 

disease risk. It is through the ratio of the circumference of waist / hip ratio that the indicator of 

abdominal obesity and associated risk is obtained. According to the National Institute of Health 

(USA), men and women with a waist circumference greater than 100 cm and 80 cm, respectively, are 

more likely to become obese [219]. 

 

4.3. Body mass index in children and adolescents 

Body mass index Z-scores, also called BMI standard deviation (s.d.) scores (BMI Z-score), are 

measures of relative weight adjusted for child age and sex [220]. Given a child's age, sex, BMI, and an 

appropriate reference standard, a BMI Z-score (or its equivalent BMI-for-age percentile) can be 

determined. It should be noted that BMI Z-scores are calculated relative to a national or international 

reference.  
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Body mass index Z-scores correspond to growth chart percentiles, and can be converted into 

their equivalent BMI-for-age percentiles by comparison to a normal distribution table [221] (Figure 

2.1). For example, using the US BMI-for-age reference, a 5-year-old boy with a BMI of 20 kg/m2 has a 

BMI Z-score of approximately 2.5 (BMI >99th percentile) and a 15-year-old boy with a BMI of 20 

kg/m2 has a BMI Z-score of approximately 0.0 (BMI= 50th percentile). In the United States, BMI-for-

age percentiles above the 95th percentile in children and adolescents are labeled “obese” and BMI-

for-age percentiles between the 85th and 95th percentiles are labeled “overweight” [222]. Therefore, 

although both the 5- and 15-year-old boys described above have a BMI equal to 20 kg/m2, only the 5-

year-old would be considered obese.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Percentile ranks and standard scores in relation to the normal curve (SD, standard 
deviation). Adapted from [223]. 
 

 

4.4. Anthropometric measurements  

All children participants in this study underwent anthropometric measurements of height (cm), 

weight (kg), waist and hip circumference (cm) using a standardized protocol by the same operator. 

The equipments used were a compact digital weighing scale (Seca, model 872, Germany), a portable 

stadiometer (Seca, model 213, Germany) and a flexible measurement tape (Seca, model 201, 

Germany). 

Body weight (kg) and height (cm) were taken with participants dressed in lightweight clothing 

without shoes. Waist circumference (WC) was measured midway between the lowest rib and the iliac 
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crest to the nearest 0.1 cm after inhalation and exhalation. Hip circumference (cm) was measured at 

the point over the buttocks yielding the maximum circumference. 

The BMI was calculated as the weight in kilograms (kg) divided by the square of height in meters 

(kg/m2). Overweight and obesity were defined according to the International Obesity Task Force 

(IOTF) reference data, making a correspondence between the traditional adult cutoff (BMI in adult’s 

cut-points of 25 kg/m2 and 30 kg/m2 respectively for overweight and obesity) and specific values for 

children according to gender and age [221]. A Z-score was calculated for each child using the LMS 

(lambda-mu-sigma) method and the calculation was determined using the LMS growth add-in for 

Microsoft Excel [224].  

 

5. Genotyping 

5.1. Collecting buccal samples 

For each child, individuals packaged containing a sterile brush was used (Sarstedt, Nümbrecht, 

Germany) to collect buccal cells. After 1-2 minutes rubbing into mouth, buccal swab sample were 

released in an eppendorf tubes containing 1ml of ethanol (absolute) for conservation, for subsequent 

DNA extraction, and PCR analysis. All tubes were properly blindly numbered for a posteriori 

identification with the child phenotype. 

 

5.2. DNA extraction 

From the original sample of 1433 subjects, a total of 730 children were selected for genotyping 

including 154 subjects as obese, 320 subjects as overweight, and 256 for the control group random 

chosen from the total of 928 children with a normal BMI (18.5>BMI<25.0 kg/m2).  

The genomic DNA was extracted from buccal cells using the PureLink Pro 96 Genomic DNA Kit 

(Invitrogen Corporation, Carlsbad, CA, USA), according to the instructions of the manufacturer. 

 

5.3. DNA quantification 

After the DNA extraction we performed the quantification of the sample to determine the 

average concentration of DNA present, as well as the purity. For this purpose we used the 

NanoDrop™ 2000C spectrophotometer (Thermo Scientific, Wilmington, DE, USA) according to the 

instructions of the manufacturer. This technology is based on the absorption of ultraviolet light at 
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12 ng/µl    A260/280nm = 1.88    A260/230 nm = 1.80 

260 nm by nucleic acids, and a photo-detector measures the light passes through the sample. When 

more light is absorbed by the sample, higher is the nucleic acid concentration in the sample. In 

molecular biology is common for nucleic acid samples to be contaminated with other molecules (i.e. 

proteins, organic compounds, other). To assess the purity of the sample, the ratio of absorptions at 

260 nm vs. 280 nm is used. Generally, pure nucleic acids yield a 260/280 ratio of ~1.8 for DNA. If the 

sample present values out of range it will probably require further optimization before the isolation 

technique used. 

Due to the higher number of quantified samples we only present the mean values obtained in 

our sample collection: 
 

 

 

 

5.4. Allelic discrimination using TaqMan® probes approach 

The detection of polymorphisms in the genome is a growing approach due to the development 

of new technologies. The real-time polymerase chain reaction urged as a more promising PCR 

method for high through put assays. The real time PCR also called quantitative polymerase chain 

reaction (qPCR) method is a technique that involves simultaneously amplification, detection and 

quantification of a specific nucleic acid target in a biological sample. The introduction of a fluorescent 

reporter molecule in the PCR reaction allows a quicker detection of polymorphisms in large scale. 

TaqMan® (Applied Biosystems, Foster City, USA) probes are oligonucleotide fragments labeled 

with two fluorophores at the 5´and 3´ends. The 5′ nuclease activity of Taq polymerase is used to 

cleave a non-extendable oligonucleotide hybridization probe during the extension phase of PCR. This 

methodology use dual-labeled fluorogenic hybridization probes for two alleles, including a reporter 

(R) dye FAM™ (6-carboxyfluorescein) for one allele and a reporter dye VIC® for the second allele  

covalently linked to the 5′ end, whose emission spectra is quenched (Q) by a second dye TAMRA (6-

arboxytetramethylrhodamine), covalently linked to the 3′ end. During a PCR cycle, the probe 

specifically hybridizes to the corresponding template, cleaves via the 5′ to 3′ exonuclease activity of 
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Taq DNA polymerase and subsequently increases the FAM

2.2). 

Except for the rs4988235 (-13910C>T at the 

were amplified for allelic discrimination assays, using TaqMan® probes (Applied Biosystems, Foster 

City, USA). For the rs4988235 polymorphism we used previously reported primers and labeled 

probes for genotyping [225]. The TaqMan® probes used are described in 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Representation of the TaqMan® PCR based on the 5
polymerase. This method uses a probe (additional primer), which also binds specifically to the target 
DNA sequence. Probes have a fluorescent ‘reporter’ dye (R) at
which inhibits fluorescence at the other. During the extension stage (phase 3) the probe is broken 
apart by the DNA-polymerase and begins to fluoresce more strongly. The fluorescence can be 
measured at each cycle and increases in proportion to the number of target sequence copies 
produced.  

 

DNA polymerase and subsequently increases the FAM™ and VIC® fluorescent emission (Figure 

13910C>T at the LCT gene) polymorphism all the polymorphisms 

were amplified for allelic discrimination assays, using TaqMan® probes (Applied Biosystems, Foster 

City, USA). For the rs4988235 polymorphism we used previously reported primers and labeled 

. The TaqMan® probes used are described in Table 2.2. 

 

Representation of the TaqMan® PCR based on the 5′-3′-exonuclease activity of 
polymerase. This method uses a probe (additional primer), which also binds specifically to the target 
DNA sequence. Probes have a fluorescent ‘reporter’ dye (R) at one end and a ‘quencher’ dye (Q), 
which inhibits fluorescence at the other. During the extension stage (phase 3) the probe is broken 

polymerase and begins to fluoresce more strongly. The fluorescence can be 
eases in proportion to the number of target sequence copies 

fluorescent emission (Figure 

gene) polymorphism all the polymorphisms 

were amplified for allelic discrimination assays, using TaqMan® probes (Applied Biosystems, Foster 

City, USA). For the rs4988235 polymorphism we used previously reported primers and labeled 

 

exonuclease activity of Taq 
polymerase. This method uses a probe (additional primer), which also binds specifically to the target 

one end and a ‘quencher’ dye (Q), 
which inhibits fluorescence at the other. During the extension stage (phase 3) the probe is broken 

polymerase and begins to fluoresce more strongly. The fluorescence can be 
eases in proportion to the number of target sequence copies 
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Table 2.2. Description of TaqMan® probes (20X) used for amplification of DNA target.  

Chromosome Gene Polymorphism TaqMan® probes* 

1q25 SEC16B rs10913469 C__3193319_10 

2q21 LCT rs4988235 [225]# 

2p25 TMEM18 rs7561317 C__11804554_10 

4p15 PPARGC1A rs8192678 C__1643192_20 

6p12 TFAP2B rs987237 C__9489781_10 

8p23 MSRA rs545854 C__27120820_10 

13q14 OLFM4 rs9568856 C__30191235_20 

14q31 NRXN3 rs10146997 C__30288512_10 

16q12.2 FTO rs9939609 C__30090620_10 

16q12.2 FTO rs1421085 C__8917103_10 

16q12.2 FTO rs1861868 C__11717119_10 

17q21 HOXB5 rs9299 C__2906037_20 

18q21 MC4R rs12970134 C__3058722_10 

18q22 MC4R rs17782313 C__32667060_10 
 
*Applied Biosystems, Foster City, USA 
#
Regarding the LCT gene the previously described probes in [225] were used, VIC®-labelled probe 

ATAATGTAGTCCCTGGCCT to detect the T-allele and the 6-FAM™-labelled probe ATAATGTAGCCCCTGGC to 
detect the C-allele. 

 

 

All polymerase chain reactions (except for the rs4988235 polymorphism) were carried out in a 

total volume reaction of 20 µl containing 1x of SsoFast™ Probes Supermix (Bio-Rad, Hercules, CA, 

USA), 0.5 μl of specific TaqMan® polymorphism Genotyping Assays (20x) (Applied Biosystems, Foster 

City, USA) and 2 μl (~12 ng/μl) of genomic DNA, according to the manufacturer΄s instruc�ons.  

 

For the rs4988235 polymorphism of the LCT gene, the reaction was carried out in a total volume 

of 20 µl containing 1x of SsoFast™ Probes Supermix (Bio-Rad, Hercules, CA, USA), 0.4 μM of each 

primers, 0.2 μM of each probe, and 2 μl (~12 ng/μl) of genomic DNA (Table 2.3). 

 

Thermal cycling conditions for all polymorphisms were 10 minutes at 95°C, and 35 cycles of 95°C 

for 15 seconds and 60°C for 1 minute. The fluorescence was observed through a MiniOpticon real 

time PCR system (Bio-Rad, Hercules, CA, USA). 
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6. Genotyping reproducibility 

6.1. Amplification of DNA target by Polymerase Chain Reaction (PCR) 

To assess genotyping reproducibility, about 10% random samples were re-genotyped for all 

polymorphisms by the Single Strand Conformation Polymorphism (SSCP) method or sequencing by 

the Sanger’s dideoxy chain termination reaction, using oligonucleotides detailed in Table 2.3. 

The PCR technique allows obtaining a large number of copies of a specific segment of DNA, 

called DNA target. The principle of this technique consists in using two primers (small sequences of 

DNA with about 18-24 nucleotides) that will bind to the complementary DNA strands of the two sites 

bounding the region to be amplified. The elongation of complementary strands from the primers is 

ensured by a polymerase enzyme. This technical concept was developed by Kary Mullis in 1983 [226], 

which earned him the Nobel Prize for Chemistry in 1993. Although the principle of PCR have been 

described in 1986, it was in 1988 that the better PCR performance was obtained using Taq 

polymerase derived from Thermus aquaticus bacteria isolated from the hot springs of Yellowstone 

Park, which has the property of being stable at heat temperatures (~100°C) [227]. This revolutionary 

method becomes one of the most universal techniques used in the field of molecular biology. 

In this study, the PCR conditions were performed in a final reaction volume of 25 μl, 

containing 50 ng of PCR primers, 0.2 mM of each dNTPs, 3 mM of MgCl2, 1x Taq buffer [750 mM Tris-

HCl (pH 8.8 at 25°C), 200 mM (NH4)2SO4, 0.1% (v/v) Tween 20], 0.5 U Taq DNA Polymerase (Thermo 

Scientific, Fermentas) and about 20 ng of genomic DNA. Amplification conditions consisted in 35 

cycles of 45 seconds denaturation at 94°C, 45 seconds annealing at 56-62°C and 45 seconds 

extension at 72°C. A 5 minutes initial denaturation at 95°C and a 5 minutes final extension at 72°C 

were performed (Table 2.3). 
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Table 2.3. Description of primers and PCR conditions used for amplification of DNA target. 

 

Gene Poly. ID Pr. Primers sequences (5´- 3´) 
Amplification conditions (x35 cycles) Size 

(pb) Denaturation Annealing Elongation 

SEC16B rs10913469 
F AGGACGTTCAAACATCAGCA 

94°C – 45´´ 57°C – 45´´ 72°C – 45´´ 154 
R TCTACTGAACTTTTCCTCATTAGCTT 

LCT* rs4988235 
F AAATGCAACCTAAGGAGGAGAGTTC 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 71 
R CTGCGCTGGCAATACAGATAAG 

TMEM18 rs7561317 
F CCTTCCCAGAGGTGAGGTCT 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 153 
R CAGGGCTCATTCACGCTTAT 

PPARGC1A rs8192678 
F CCTTGCAGCACAAGAAAACA 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 211 
R CTTCGCTGTCATCAAACAGG 

TFAP2B rs987237 
F ACCGCCGCTCATATGAATTA 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 206 
R AAGTGTGCCCCATTCTTCC 

MSRA rs545854 
F CCCCATCACATGGTTTAAGG 

94°C – 45´´ 56°C – 45´´ 72°C – 45´´ 196 
R CGGTTGCCTTTCGTAGAGAC 

OLFM4 rs9568856 
F TGTGCATATTGTGTTTGGGATT 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 169 
R TTTGCTTGTGTGATTAGGCATC 

NRXN3 rs10146997 
F ATGCCGTGTCATCATTGAAA 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 242 
R CAACAGCTTACAGGGTCCAG 

FTO rs9939609 
F CATCAGTTATGCATTTAGAATGTCTG 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 132 
R TCCCACTCCATTTCTGACTGT 

FTO rs1421085 
F AATCTCATTGTTCCTCCTGCT 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 179 
R ACAGTGGAGGTCAGCACAGA 

FTO rs1861868 
F CGCATCTCTGCAACTCTTTT 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 171 
R CCCCTTGCATCAGAGTGTTT 

HOXB5 rs9299 
F GGGAGCATGGAAGGAAAATA 

94°C – 45´´ 62°C – 45´´ 72°C – 45´´ 187 
R CTGGCCCCTCCAATCCTC 

MC4R rs17782313 
F AAGGGCATAAGCAAGTTCTACC 

94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 211 
R GCTACCTCAATCCCAGATGC 

MC4R rs12970134 
F CAGATTATTTCGGTTCTAAGCAA 

94°C – 45´´ 56°C – 45´´ 72°C – 45´´ 99 
R CAGGTACTAACAAGCACCCTTC 

 
*Primers previously described in [225]. 
All primers described (except for the LCT gene) were designed for this study based on the Primer3 program, 
version 0.4.0 [228] (freely available in http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 
 
 

 

All amplifications were performed in a Biometra TProfessional Thermocycler (Biomedizinische 

Analytik GmbH, Göttingen, Germany). 

 

The amplification efficiency was confirmed by and electrophoresis run with 5 μl of the amplified 

product in a gel of 1.5% agarose containing ethidium bromide (final concentration 4 μg/ml) and 

visualized under ultraviolet (UV) light. A negative control was also used in all amplifications to verify a 

possible contamination, as well as a molecular weight marker (pBR322/Hinf1) to compare the size of 

the amplified band. 
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6.2. Allelic discrimination by SSCP 

The Single-Stranded Conformation Polymorphism (SSCP) method was used to corroborate the 

results obtained by TaqMan® probes for rs1421085, rs1861868, rs7561317, rs8192678, rs987237, 

rs545854, rs10146997, rs12970134 polymorphisms. The SSCP technique developed by Orita et al. 

[229] allows the detection of polymorphisms based on the three-dimensional configuration of a 

single chain DNA. It relies on the fact that single stranded DNA acquires a particular structure 

depending on their nucleotide composition. A variation of one or more nucleotides directly translates 

into a modification of the 3D structure of the chain, which can be detected. 

The SSCP method involves denaturation of the two strands of DNA amplified by PCR at elevated 

temperatures (± 94°C) in the presence of formamide, followed by rapid cooling preventing that these 

single strands become annealed again. The two chains independently acquire a three-dimensional 

structure itself. The PCR products are separated by electrophoresis in non-denaturing gel. Depending 

on their structure, migration will also be different in the electrophoresis run. The polymorphism 

detection is made by comparison of the different electrophoretic profiles from different individuals. 

The amplification reaction was made using primers previously described in Table 2.3. Then, it 

was added a denaturing solution with 95% deionized formamide, 0.1% bromophenol blue, 0.1% 

xylene cyanol, 10 mM EDTA, 0.1% SDS 1:1 giving a final volume of 6 μl/tube. The mixture was 

denatured by heat (94°C for 5 min) in a thermocycler (40 Robocycler, Stratagene) and subsequently 

placed in a vertical polyacrylamide gel. After, 4 μl of the solution was applied to a mini-gel (7.2 x 10.2 

cm) constituted by: 12% acrylamide-bisacrylamide (C = 1.3%), 10% glycerol and 200 mM TBE buffer 

(89 mm Tris, 89 mm boric acid, 2 mM EDTA, pH 8.3).  

 

Electrophoresis was performed at 60 volts (V) for 16 hours. 

 

The DNA bands were visualized by staining with silver nitrate using the following solutions and 

steps [230]: 

1) 10% of acetic acid, for 20 minutes; 

2) Distilled water, twice, for 2 minutes; 

3) 0.1% silver nitrate (100ml) with 37% formaldehyde (150 μl), for 30 min; 

4) Distilled water, for 30 second; 
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5) 3% Sodium carbonate (100ml), with 37% formaldehyde (150 μl) and 10% sodium thiosulfate 

solution (20 μl), for 2 to 5 minutes; 

6) 10% acetic acid, for 30 seconds; 

7) Distilled water.  

 

6.3. Automated DNA sequencing  

Automated DNA direct sequencing was used to corroborate the results obtained by TaqMan® 

probes for rs9939609, rs10913469, rs17782313, rs9568856, rs9299, and rs4988235 polymorphisms, 

using an ABI Prism 310 sequencer (Applied Biosystems, Foster City, CA, USA). The BigDye® 

Terminator v1.1 Cycle Sequencing kit Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA) 

was used to sequence DNA fragments. The amplified PCR products (4 µl) were purified with 1 µl of 

ExoSAP enzyme (Pharmacia Biotech) (conditions: 37°C for 15 minutes followed by 80°C for 15 

minutes) and used directly in reactions of cyclic dideoxynucleotide sequencing (Sanger et al, 1977): 2 

μl of the purified PCR product, 1 μl of reagent BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied 

Biosystems, Foster City, CA, USA), 0.5 μl (100 ng/µl) of primer (Table 2.3) and 6.5 μl of bi-distilled 

water, for a total volume of 10 μl. The conditions used for the sequencing reaction were 25 

successive cycles of denaturation at 96°C for 20 seconds and annealing and extension at 60°C for 2 

minutes. The sequenced samples were then purified using Centri-Sep Columns (DyeEx 2.0 Spin 

Columns Qiagen, Hilden, Germany) according to the manufacturer instructions, and applied directly 

on the ABI PRISM 310 automated sequencer (Applied Biosystems, Foster City, CA, USA). Sequence 

analysis was performed using the Sequencing Analysis v5.2 software (Applied Biosystems, Foster City, 

CA, USA). 

Nevertheless, for all the studied polymorphisms the 3 different genotypes were confirmed by 

automatic sequencing of selected samples based on the allelic discrimination by TaqMan® assay, 

using primers described in Table 2.3. 

 

7. Direct sequencing of the MC4R gene  

In all children that present a morbid obese phenotype (BMI ≥99th), the entire sequence of MC4R 

gene was screened. 
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DNA was amplified by polymerase chain reaction (PCR), using primers and conditions previously 

published for the MC4R coding sequence [231]. For the promoter region, primers were designed with 

the Primer3 software, v0.4.0 [228] (freely available in http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) (Table 2.4). 
 

 

Table 2.4. Description of primers and PCR conditions used for amplification of MC4R DNA fragments. 

 

Frag. Pr. Primers sequences (5´- 3´) 
Amplification conditions (x35 cycles) 

Denaturation Annealing Elongation 

MC4R-Prom# F CGCCTACAGCCCCTAACACT 94°C – 45´´ 57°C – 45´´ 72°C – 45´´ 
R CCTCCTGGGTCAGGGAGT 

MC4R-A* F ATCAATTCAGGGGGACACTG 94°C – 45´´ 57°C – 45´´ 72°C – 45´´ 
R CATGGGTGAATGCAGATTCT 

MC4R-B* F GTGATTGTGGCAATAGCCAA 94°C – 45´´ 58°C – 45´´ 72°C – 45´´ 
R TCCACTGCAATTGAAAGCAG 

MC4R-C* F TGTAGCTCCTTGCTTGCATC 94°C – 45´´ 60°C – 45´´ 72°C – 45´´ 
R GGCCATCAGGAACATGTGGA 

MC4R-D* F ACCATGTTCTTCACCATGCTG 94°C – 45´´ 55°C – 45´´ 72°C – 45´´ 
R GAGACATGAAGCACACACAA 

MC4R-E* F CCATTCTTCCTCCACTTAAT 94°C – 45´´ 55°C – 45´´ 72°C – 45´´ 
R TGCATGTTCCTATATTGCGTG 

 

Abbreviations: Frag., fragment; Pr., primer; F, forward; R, reverse; °C, Celsius degree; ´, minute; ´´, second.   
*Primers previously described in [231]. 
#Primers for the promoter region  were designed for this study based on the Primer3 program, version 0.4.0 
[228] (freely available in http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 

 

The PCR conditions were performed in a final reaction volume of 25 μl, containing 50 ng of PCR 

primers, 0.2 mM of each dNTPs, 3 mM of MgCl2, 1x Taq buffer [750 mM Tris-HCl (pH 8.8 at 25°C), 200 

mM (NH4)2SO4, 0.1% (v/v) Tween 20], 0.5 U Taq DNA Polymerase (Thermo Scientific, Fermentas) and 

about 20 ng of genomic DNA. Amplification consisted in 35 cycles of 45 seconds denaturation at 

94°C, 45 seconds annealing at 55-60°C and 45 seconds extension at 72°C. A 5 minutes initial 

denaturation at 95°C and a 5 minutes final extension at 72°C were performed 

All amplified fragments were purified with the enzyme ExoSAP-IT (GE Healthcare, New Jersey, 

USA). The conditions used for purification were one cycle at 37°C for 2 hours follow by one cycle at 

95°C for 5 minutes (21 μl of PCR product add with 1.0 μl of ExoSap-IT). 

For the sequencing reaction 5 μl of purified product with 1.0 μl BigDye® Terminator v3.1 Reagent 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), 1.5 μl buffer and 1.0 μl (100 ng/µl) of 



G e n e r a l  l a b o r a t o r y  m e t h o d s : …  

 
59 

primer (F or R) was added to 1.5 μl of double distilled water to a total volume of 10 μl. This step was 

realized for both forward and reveres strands. The conditions used for the sequencing reaction were 

25 successive cycles of denaturation at 95°C for 30 seconds, annealing at 52°C for 15 seconds and 

extension at 60°C for 2 minutes. The sequenced samples were then purified using the conditions 

described above:  

1) Addition of 1 μl of 125 mM EDTA and 40 μl 1:25 3M NaOAc: 100% ethanol during 15 minutes 

at room temperature; 

2) Centrifugation at 4000 rpm  during 30 minutes at 4°C; 

3) Discard the flow; 

4) Washed with 60 μl of 70% ethanol; 

5) Centrifugation at 1000rpm during 2 minutes at 4°C (2 times); 

6) Discard the flow; 

7) Dry the pellet; 

8) Add 15 μl of formamide and wait 15 minutes (to re-suspend the pellet); 

9) Denaturation at 95°C for 5 minutes. 

 After this purified step, samples were applied directly on an automated sequencer ABI 3130 DNA 

Analyzer (Applied Biosystems, Foster City, CA, USA).  

Sequencing data were analyzed with the Staden Package software [232] and the SeqScape 

software v2.5 (Applied Biosystems, Foster City, CA, USA). The sequences obtained were compared 

with the standard MC4R gene sequence (ENSG00000166603). 

 

8. Statistical analysis 

The quantitative variables were expressed as means and standard deviation (SD), whereas 

qualitative variables were expressed as absolute numbers and frequencies. For the rs4988235 

polymorphism (LCT gene), a dominant model was used in all the statistical analyses: children with CT 

or TT genotypes were grouped and compared with CC children. This was performed because 

individuals of European populations carrying the T allele possess sufficient activity in intestinal cells 

and are classified as lactase persistence, whereas individuals carrying the CC genotype are classified 

as lactase non-persistence. 
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All SNP allele, genotype and haplotype frequencies were estimated by direct counting. The 

software package Arlequin, v3.11 [233] (freely available in 

http://cmpg.unibe.ch/software/arlequin3/), was used to: 

- Estimate allele, genotype and haplotype frequencies; 

- Estimate statistical significance levels (p-values) for the Hardy-Weinberg equilibrium and 

population differentiation; 

- Test of non-random association of alleles at different loci, D´and r2 values for linkage 

disequilibrium (LD); 

- Assess haplotype phase by statistical inference via the ELB algorithm; 

 

8.1. Association of quantitative traits 

Normality of the data was examined using the Kolmogorov–Smirnov test. Due to lack of the 

normal distribution, non-parametric tests have been used in the statistical analyses. For each 

obesity-related quantitative parameters (BMI, BMI Z-score, weight, height, and waist circumference), 

the nonparametric Kruskal-Wallis test was used to evaluate differences among the three genotypes 

in all polymorphisms (except for the LCT gene). Regarding the LCT gene the Mann-Whitney test was 

used to compare means of obesity-related traits between genotypes (CT/TT vs. CC).  

All these statistical analyses were performed using the Statistical Package for the Social Sciences 

(SPSS, for windows version 18.0; Chicago, IL, USA), as well as graphical analysis. A p-value below 0.05 

was considered as statistical significant.  

  

8.2. Case-control study 

A case-control study is used to determine if an exposure is associated with an outcome (i.e. 

disease). Is an analytical study, which compares individuals who have a specific disease, “cases”, with 

a group of individuals without the disease, “control”. Frequencies of each of the measured variables 

in each of the two groups were calculated. As a measure of the strength of the association between 

an exposure and the outcome, case-control studies yield an odd ratio (OR). An OR is the ratio of the 

odds of an exposure in the case group to the odds of an exposure in the control group. A 95% 

confidence interval (CI) is also calculated for each OR. A 95% CI that not includes 1.0 could be 

associated between the exposure and the disease at the 0.05 significance level. Logistic regression is 
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regularly used to analyze relationship between a dichotomous (or binary) dependent variable 

(phenotypes) and metric or dichotomous independent variables (genotypes), as in the case of most 

obesity genetic studies. It focuses instead upon the relative probability (odds) of obtaining a given 

category. 

In our study sample, children were classified into three groups based in their phenotype “obese”, 

“overweight”, and “normal-weight” (as control group). Logistic regression, under an additive genetic 

model (except for the LCT gene), was used to test the risk of being overweight (normal vs. 

overweight subjects) and the risk of being obese (normal vs. obese subjects) calculating OR, 95% CI 

and p-values. The association between polymorphisms and the risk of developing obesity was 

adjusted for age and sex. 

All these statistical analyses were done using the set-based tests implemented on PLINK software 

v1.07 [234] (freely available in http://pngu.mgh.harvard.edu/purcell/plink/). A significant p-value was 

considered below 0.05.  

 

8.3. Power calculation 

The power of a statistical test represents the chance that the study will be successful in 

detecting a true effect and is dependent on a number of factors, including sample size, study design, 

and the specified false-positive rate. In case-control study, performing a power calculation it is 

important because the association with a functional locus can vary due to the random sampling 

process (each replicated sample differs slightly in its estimated odd ratio) [235]. The chance of 

detecting true effects brings two types of inferential error: the type I error (or false-positive) that 

detect a nonexistent effects; and the type II error (or false-negative) that do not detect the true 

effects [236]. In many studies, investigators have adopted by convention the value of 80% power as 

representing a realistic and adequate trade-off. 

To estimate the power calculation for each polymorphisms studied, QUANTO version 1.1 power 

calculator (freely available in http://hydra.usc.edu/gxe/) for genetic association studies was used to 

estimate the power of association as a function of the frequency of the effect allele assuming an 

additive model [237]. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III 
  

 
Assessment of obesity and 

abdominal obesity among 

Portuguese children 
  
 This chapter was mainly based on the following 

original paper: Albuquerque D, Nóbrega C, Samouda 
H, Manco L. Assessment of obesity and abdominal 

obesity among Portuguese children. Acta Med Port 
2012, 25(3): 167-173. 
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1. Abstract 

Background: Childhood obesity is a major public health issue in developed countries, and frequently 

proceeds into adulthood. The aim of this study was to estimate the prevalence of obesity and 

abdominal fat distribution in 6-12 years old children from the central region of Portugal, providing 

new data about trends on prevalence, epidemiology and evolution in obesity. 

 

Methods: Weight, height and waist circumference were measured in a random representative 

sample of 1433 children (747 girls and 686 boys) from public schools in 2011. International Obesity 

Task Force (IOTF) cut-offs were used to define overweight and obesity. Abdominal obesity was 

estimated using the sex and age-specific ≥90th waist circumference percentile and waist-to-height 

ratio cut-off. 

 

Results: The prevalence of overweight and obesity among children was 33.0%; 10.7% were obese. 

Overweight was significantly higher in boys than in girls (p=0.044), whereas no gender differences 

was found in obesity (10.6 % in boys and 10.7% in girls, p=0.571). The prevalence of abdominal 

obesity based on waist circumference was similar in girls and boys (3.8% vs. 3.9% respectively; 

p=0.924), but significantly higher in boys than in girls based on waist-to-height ratio (28.1% vs. 19.4%, 

respectively; p=0.009). Comparison with previous studies showed a slightly increase in 

overweight/obesity in children of central Portugal in the last 10 years, reaching values of 40.0% 

prevalence in the 7-9 years old. 

 

Conclusion: In conclusion, this study shows a very high prevalence of overweight/obesity and 

abdominal obesity among Portuguese children, following the trend of other southern European 

countries. Thus, it is of the utmost importance the development of preventive and treatment 

strategies. 
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2. Introduction 

The prevalence of overweight and obesity in childhood, according to the World Health 

Organization (WHO), is a growing problem worldwide, in many European countries as well as in 

developing countries [16, 238]. The health consequences of overweight and obesity during childhood 

are strongly associated with risk factors for cardiovascular diseases, diabetes, orthopedic problems 

and it is an important predictor of adult obesity [239]. In fact, it tends to develop from childhood into 

adult life, resulting in an elevated risk of illness and premature mortality [239]. In Portugal, the 

majority of obesity and overweight prevalence studies were carried in adults, although it is reported 

a tendency for weight increase in children along the last 30 years [240]. 

The definition of obesity during childhood and adolescence is controversial due to the gender 

differences, and the variability in growth rate. The standard measure of adult overweight and obesity 

is Body Mass Index (BMI): weight (kg) / height (m)2. It started being used for measuring children 

obesity after the development of a BMI for age and sex as an international standard for the 

assessment of childhood overweight and obesity [221]. However, this alone could be insufficient as 

an obesity indicator because it is limited to give an approximation of the total adiposity in the body 

[218]. The use of other complementary obesity measures can overcome this problem, as it gives a 

better approximation of overweight and obesity in children. 

Waist circumference (WC) can be defined as an excessive accumulation fat around the organs 

inside the abdominal cavity and it is calculated between the lowest rib and the superior border of the 

iliac crest [219]. It can also be a good indicator of abdominal fat reported in the development of 

cardiovascular risk factors [219]. Recently, waist-to-height ratio (WHtR) emerged as a good predictor 

for abdominal obesity and cardiovascular risk factors [241]. This measure is very simple to use, and it 

can be applied to both genders and ages with a cut-off of WHtR ≥0.50 defining those with excess 

abdominal fatness [241]. 

This study aimed to estimate the prevalence of overweight, obesity and abdominal fat 

distribution among 6-12 years old Portuguese children from the central region of Portugal, providing 

new data based on different obesity measures, from a recent sampling in 2011. 

 

 



C h a p t e r  I I I  

 
67 

3. Material and Methods 

3.1 Study Subjects 

Subjects were selected in 2011 from several public schools in the central region of Portugal. 

Children derived from five grouping of schools; Agrupamento de escolas Dr. Manuel Fernandes 

(Abrantes), Agrupamento de escolas Pêro da Covilhã (Covilhã), Agrupamento de escolas da Pedrulha 

(Coimbra), Agrupamento de escolas Carolina Beatriz Ângelo (Guarda) and Agrupamento de escolas 

das Dairas (Vale de Cambra), and all children from these groups of schools, aged between 6 to 12 

years old, were chosen to integrate this study. From a total of 4028 initially selected children, only 

1468 parents gave their written informed consent. Thirty-five children were excluded from the 

purpose due to had African (n=8), Asian (n=2), or other European origins (n=15). After these 

exclusions, the final sample was composed by 1433 children with Portuguese ancestry, comprising 

747 girls and 686 boys. 

The study protocol was approved by Direção-Geral de Inovação e de Desenvolvimento Curricular, 

the ethical Committee of the Ministério da Educação (available at http://mime.gepe.min-edu.pt/ 

with the identification number process: 0151100001), and was conducted in accordance with the 

institutional guidelines of the University of Coimbra. 

 

3.2 Anthropometric measurements and analyses 

Height (cm) and weight (kg) were measured with participants dressed in lightweight clothing 

and without shoes. Waist circumference (cm) was measured midway between the lowest rib and the 

iliac crest to the nearest 0.1 cm after inhalation and exhalation. Hip circumference (cm) was 

measured at the point over the buttocks yielding the maximum circumference. The BMI was 

calculated as the weight in kilograms divided by the square of height in meters (kg/m2). The 

definition of overweight and obesity were defined using the International Obesity Task Force (IOTF) 

cut-offs [221], derived from the BMI in adults cut-points of 25 kg/m2 and 30 kg/m2 respectively. 

Abdominal obesity was defined using the sex and age-specific ≥90th waist circumference percentile 

[242] and waist-to-height ratio was calculated as the ratio of waist and height using the cut-off value 

of ≥0.5 [218]. Comparisons between groups for all the characteristics were made using the student t-
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test. All statistical analyses were performed using the Statistical Package for the Social Sciences 

(SPSS, for windows version 18.0; Chicago, IL). 

 

4. Results 

The children characteristics are shown in Table 3.1. 

Table 3.1. Characteristics of the sampled Portuguese children. 

Characteristics 
Overall 

(n=1433) 

Boys 

(n=686) 

Girls 

(n=747) 
p-value 

Age (years)  9.3 ± 1.77 9.2 ± 1.77 9.4 ± 1.76 0.952 

Height  (cm)  136.6 ± 11.90 136.3 ± 11.30 136.9 ± 12.43 0.002 

Weight (kg)  34.3 ± 10.00 34.1 ± 9.59 34.6 ± 10.38 0.033 

BMI (kg/m2)  18.1 ± 3.08 18.0 ± 3.04 18.1 ± 3.12 0.370 

BMI Z-score  0.40 ± 1.02 0.45 ± 1.05 0.35 ± 0.99 0.080 

WC (cm)  63.9 ± 7.20 64.7 ± 7.21 63.1 ± 7.11 0.619 

HC (cm)  76.0 ± 9.41 75.4 ± 8.86 76.5 ± 9.84 0.006 

WHR  0.84 ± 0.06 0.86 ± 0.05 0.83 ± 0.06 0.003 

WHtR 0.47 ± 0.05 0.48 ± 0.05 0.46 ± 0.05 0.953 

 

Data are presented as mean ± standard deviation. 
Abbreviations: BMI, body mass index; BMI Z-score, body mass index standard deviation score; WC, waist 
circumference; HC, hip circumference; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio. 
p-value significant (p ≤0.05) in bold. 

 

Significant statistical differences were found between boys and girls regarding height (p=0.002), 

weight (p=0.033), hip circumference (p=0.006) and waist-to-hip ratio (p=0.003). The prevalence of 

overweight and obesity found in the sample ranged 33.0% (36.5% in boys and 29.7% in girls), with 

22.3% children classified as overweighed and 10.7% as obese (Table 3.2). 

 

 



 

Table 3.2. Prevalence of overweight, obesity and abdomina

gender according to the International Obesity Task Force (IOTF) cut

  
 

 
Body mass index

 
n 

Overweight 
and obese

Overall 1433 33.0 (473)

Boys  686 36.5 (250)

Girls  747 29.7 (223)

p-value  0.002

 
* According to the International 
Abbreviations: WC, waist circumference; WHtR, waist
p-value significant (p ≤0.05) in bold.
 

Boys presented higher prevalence of overweight than girls (25.9% for boys and 19.0% for girls, 

≤ 0.05), but obesity prevalence was statistically similar between genders. Regarding the prevalence 

of abdominal obesity it was found that 7.8% of the children had a waist circumference 

23.6% had a waist-to-height ratio (WHtR) 

among boys (28.1%) than in girls (19.4%) (

increased with age until the 10 years

ages (Figure 3.1). From the 959 children with a BMI < 25

points), 928 were classified as normal weight (64.8%) and 31 (2.2%) were classified as underweight 

(BMI < 18.5 kg/m2, derived from the BMI in adults cut

 

 

 

 

 

 

Figure 3.1. Prevalence of overweight and obesity among Portuguese children by age and gender.

Prevalence of overweight, obesity and abdominal obesity among Portuguese children by 

gender according to the International Obesity Task Force (IOTF) cut-offs of BMI.

Body mass index*, % (n)  Abdominal obesity, % (

Overweight 
and obese 

Overweight Obese 
 

WC ≥90th 

(473) 22.3 (320) 10.7 (154)  7.8 (111) 

36.5 (250) 25.9 (179) 10.6 (71)  3.9 (52) 

29.7 (223) 19.0 (141) 10.7 (82)  3.8 (59) 

0.002 0.044 0.571  0.924 

International Obesity Task Force (IOTF) cut-offs of BMI. 
Abbreviations: WC, waist circumference; WHtR, waist-to-height ratio. 

0.05) in bold. 

Boys presented higher prevalence of overweight than girls (25.9% for boys and 19.0% for girls, 

0.05), but obesity prevalence was statistically similar between genders. Regarding the prevalence 

of abdominal obesity it was found that 7.8% of the children had a waist circumference 

height ratio (WHtR) ≥ 0.50 (Table 3.2). The WHtR was significantly higher 

among boys (28.1%) than in girls (19.4%) (p=0.009). The prevalence of overweight and obesity 

increased with age until the 10 years-old in boys, while in girls no trend was detected across different 

the 959 children with a BMI < 25 kg/m2 (derived from the BMI in adults cut

points), 928 were classified as normal weight (64.8%) and 31 (2.2%) were classified as underweight 

derived from the BMI in adults cut-points). 

 

Prevalence of overweight and obesity among Portuguese children by age and gender.
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l obesity among Portuguese children by 

offs of BMI. 

Abdominal obesity, % (n) 

WHtR ≥0.50 

23.6 (338) 

28.1 (193) 

19.4 (145) 

0.009 

Boys presented higher prevalence of overweight than girls (25.9% for boys and 19.0% for girls, p 

0.05), but obesity prevalence was statistically similar between genders. Regarding the prevalence 

of abdominal obesity it was found that 7.8% of the children had a waist circumference ≥ 90th, and 

The WHtR was significantly higher 

=0.009). The prevalence of overweight and obesity 

old in boys, while in girls no trend was detected across different 

(derived from the BMI in adults cut-

points), 928 were classified as normal weight (64.8%) and 31 (2.2%) were classified as underweight 

Prevalence of overweight and obesity among Portuguese children by age and gender. 
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5. Discussion 

We found that overweight and obesity are common among Portuguese children. Comparing our 

data with a study of 2004 (data collected from October 2002 to June 2003) [240], we observe a 

slightly higher prevalence (1.5%) in overweight and obesity, but a decrease in children classified as 

obese (10.7% in this study and 11.3% in the 2004 study). However, if we consider only the children 

with 7-9 years old (like in the 2004 study) the prevalence of overweight and obesity increased during 

the last 10 years (overweight and obesity was estimated 40.7%, and 12.6% were classified as obese), 

which represents an increase of 10% in overweight and obesity comparing to 2004 study. These 

values revealed a high prevalence of overweight and obesity in this Portuguese region, mainly in the 

7-9 years old age category, being these values similar to those reported for Spain, Greece and Italy 

[243, 244]. This data indicates that, in Europe, 31.8% of children are estimated to be overweight and 

of these 7-9% are obese [244]. Our recent data (collected in 2011) reveals an increase in prevalence 

for overweight and obesity in central region of Portugal during this last 10 years [245], with values 

particularly dramatic for 7-9 years old children, as observed in Greek children [243]. This study 

provides further evidence that there were strong increases in BMI among Portuguese children 

between 2002/2003 and 2011. 

The changes in the social and economic structures in Portugal in the last three decades led to a 

global improvement of the living conditions [240]. These changes also had some negative effects 

leading to higher percentages of sedentary lifestyle for adults [240]. Several studies shown that the 

prevalence of obesity is common in families with low socio-economic status [246, 247]. Different 

studies have proved that healthier diets are more expensive than low quality diets, and could affect 

the acquisition of healthy foods both for parents and schools with lower budgets [246]. 

The prevalence of overweight and obesity was particularly high in boys (36.5%) when compared 

to girls (29.7%) (p=0.002). These differences remain significant when comparing the prevalence of 

overweight (p=0.044). However the same cannot be said about obesity, where prevalence values are 

similar in both genders (p=0.571). This trend is also observed across different age children, with a 

higher prevalence of overweight and obesity in boys comparing with girls. This prevalence is reverse 

when compared to the 2004 study [240], where prevalence of overweight and obesity was higher in 

girls. This fact could be due to the lack of physical activities in detriment of spending more time 
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playing electronic games/computer, which is more typical in boys than in girls. It was previously 

shown a relation between Portuguese children who spend more time playing electronic 

games/computer with higher values of BMI [248]. It is possible that Portuguese children especially 

boys display also a highly sedentary behavior, contributing to their increase in overweight/obesity. If 

we compare this results to other southern European countries, Portugal follows the trend found in 

Spain and Greece [249, 250] and the frequency of obesity in the last decade has increased more in 

boys than in girls [250]. A trend study from 1997-2007 in 8-9 years old Greek children, showed an 

increase of overweight and obesity in boys (26.5% and 12.2%, respectively), and in girls (26.7% and 

11.2%, respectively) [243]. In that study, the prevalence obtained in 2007 for overweight/obesity was 

estimated in 38.3%, and from these 11.7% were obese [243]. In our study, the prevalence of obesity 

is similar in boys and in girls, but overweight is higher in boys than in girls. We also analyzed 

abdominal obesity in the children, as it could be a better predictor for cardiovascular disease risk in 

children than BMI [219], and also important in weigh management [251]. Furthermore according to 

our data, BMI seems a better tool than WC for discriminating obesity prevalence. We also looked to 

WHtR as it might be a useful index to identify metabolic risk in overweight children [252]. This index 

showed a similar trend to BMI in both gender, and these could indicate that WHtR is a good tool for 

discriminating the prevalence of abdominal obesity, and also a possible measure of total obesity 

prevalence. All these measures are useful in measuring overweight and obesity prevalence, but they 

all have limitations and the use of all depicts a more accurate picture of the prevalence in a sample. 

Traditionally, BMI has been used to predict body composition whereas WC is a measure of adipose 

tissue, but both are important in prediction of health risks in children [219, 241]. Recently, WHtR also 

emerged has a good tool for evaluating obesity prevalence and health risk in children [252]. Our data 

are in agreement with this, as we detected a higher prevalence (above ≥ 0.50) in boys and girls using 

this index, than using BMI or WC. The higher value for WHtR than for WC could be due to the fact 

that WHtR takes into account differences in body height. Curiously, the trend of adults in European 

countries such as Spain shows that abdominal obesity is more frequent in women than in men [253]. 

We found that abdominal obesity in Portuguese children has a similar frequency in boys and girls 

using waist circumference percentile, but it is more frequent in boys than in girls using waist-to-heigh 

ratio cut-off. Nevertheless, data on secular trends in WC and WHtR are scarce in Portuguese children, 
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thus it is impossible to compare these results with previous studies. Future studies concerning 

overweight and obesity trends in children should also consider WC and WHtR as screening tools.  

Children obesity and overweight is a major public health issue, not only in developed but also in 

emerging countries. Our data in central Portugal showed a prevalence of childhood overweight and 

obesity similar to other southern European countries. However, our data also shown an increase in 

overweight and obesity prevalence in the last decade in the Portuguese children, indicating that the 

rate of prevalence could be increasing. It seems important to reverse this scenario, making 

prevention since childhood, and by that helping to reduce the higher incidence of cardiovascular 

diseases, that are the major cause of death in Portugal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV 
  

 
Association of FTO polymorphisms 

with obesity and obesity-related 

outcomes in Portuguese children 
  
 This chapter was mainly based on the following 

original paper: Albuquerque D, Nóbrega C, Manco L. 
Association of FTO polymorphisms with obesity-

related outcomes in Portuguese children. PLoS one 
2013, 8(1): e54370. 
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1. Abstract 

Background: Several studies have reported an association between single nucleotide polymorphisms 

in the first intron of the FTO gene and body mass index (BMI) or obesity. However, this association 

has not yet been studied among the Portuguese population. This study aims to assess the association 

of three FTO polymorphisms (rs1861868, rs1421085 and rs9939609) with obesity-related outcomes 

in a sample of Portuguese children. 

 

Methods: We examined a total of 730 children, 256 normal-weight, 320 overweight and 154 obese, 

aging from 6 to 12-years-old, recruited randomly from public schools in the central region of 

Portugal. DNA samples were genotyped for the three polymorphisms by allelic discrimination 

TaqMan® assay. Association of the FTO polymorphisms with several anthropometric traits was 

investigated. Additionally, we tested association with the risk of obesity using overweight and obese 

vs. normal-weight children group. 

 

Results: We found significant associations of rs9939609 and rs1421085 polymorphisms with weight, 

BMI, BMI Z-score, and waist circumference (p<0.05 in all traits). For rs1861868 polymorphism, 

significant associations were obtained with weight (p=0.004), BMI (p=0.011), and waist 

circumference (p=0.024). In case-control studies, both rs9939609 and rs1421085 polymorphisms 

were significantly associated with obesity (OR=1.41; 95% CI, 1.05-1.89; p=0.023; OR=1.45; 95% CI, 

1.08-1.95; p=0.012, respectively) but not with overweight (p>0.05). Haplotype analyses (rs1861868-

rs1421085-rs9939609) identified two combinations (ACA and GCA) associated with a higher risk of 

obesity (OR=1.53; 95% CI, 1.06-2.22; p=0.023; OR=1.73; 95% CI, 1.06-2.87; p=0.030, respectively). 

 

Conclusions: This study provides the first evidence for the association of FTO polymorphisms with 

anthropometric traits and risk of obesity in Portuguese children. 
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2. Introduction 

Overweight and obesity are a major health issue associated with risk factors for the 

development of hypertension, type 2 diabetes and cardiovascular diseases [254]. This complex 

phenotype results from the interaction of environmental and multiple genetic factors influencing 

body mass index (BMI), with heritability estimated at 40-70% [255]. 

The advent of Genome Wide Association Studies (GWAS) emerged as a powerful approach to 

identify genetic variants associated with common diseases [256]. Until now, GWAS deliver the 

identification of at least 52 genetic loci robustly associated with obesity [63]. In 2007, a strong 

association was detected between common single nucleotide polymorphisms in the first intron of the 

fat mass and obesity-associated gene (FTO), on the chromosome 16q12.2, and risk of obesity [65, 

67]. Of those polymorphisms, the rs9939609 is one of the most extensively studied, explaining about 

1% of BMI heritability [65]. Each rs9939609-A allele in this gene increases body weight by 1.5 kg in 

adult, with similar effects observed in children and adolescents [65]. Subsequently, several other 

studies have consistently confirmed the association of a cluster of polymorphisms within the first 

intron of the FTO gene with obesity-related traits in several European [65–68, 76, 192], Asian [69–72, 

257] and African [73, 74] populations. 

Knowledge of the genetic risk factors associated with common childhood obesity, can be helpful 

to design prevention strategies. Although in the Portuguese population several studies were made 

concerning the prevalence of overweight and obesity [240, 258], until now, no studies reporting the 

association of genetic variants with the risk of common obesity have been generated. Thus, the aim 

of this study was to evaluate the association between three FTO polymorphisms, including rs9939609 

and rs1421085, prominent in the literature, and rs1861868, yet poorly studied, with the susceptibility 

to obesity in a sample of Portuguese children. 

 

 

3. Material and Methods 

 

3.1. Study subjects 

Children aging 6 to 12 years old were randomly selected from several public schools in the 

central region of Portugal. A total of 1433 Portuguese children of European descent comprising 747 
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girls and 686 boys were recruited [258], and were classified using age and sex specific BMI cut-offs 

provided by the International Obesity Task Force (IOTF) [221]. From the 1433 analyzed children, 

three BMI groups were formed: 320 subjects were classified as overweight (resulting from the BMI in 

adult’s cut-points between ≥25 kg/m2 and <30 kg/m2), 154 as obese (BMI ≥30 kg/m2), 928 as normal 

weight (18.5 ≥ BMI <25 kg/m2), [31 children were classified as underweight (BMI <18.5 kg/m2) and 

excluded of this study]. 

 

The study protocol was approved by Direção-Geral de Inovação e de Desenvolvimento Curricular, 

the ethical Committee of the Portuguese Ministry of Education (available at http://mime.gepe.min-

edu.pt/ with the identification number process: 0151100001), and was conducted in accordance with 

the institutional guidelines of the University of Coimbra. Written informed consent was previously 

obtained from the children´s parents. 

 

3.2. Anthropometric Measurements 

Height (cm) and weight (kg) were taken with participants dressed in lightweight clothing without 

shoes. Waist circumference (cm) was measured midway between the lowest rib and the iliac crest, to 

the nearest 0.1 cm after inhalation and exhalation. Hip circumference (cm) was measured at the 

point over the buttocks yielding the maximum circumference. The BMI was calculated with the 

weight in kilograms divided by the square of height in meters (kg/m2). Abdominal obesity was 

defined using the sex and age-specific ≥90th waist circumference percentile [259] 

 

3.3. Selected and genotyping of the FTO polymorphisms 

Samples were analyzed for three polymorphisms located within first intron of the FTO gene: two 

that have been closely associated with obesity and prominent in the literature, rs9939609 (position: 

chr16:53820527), described by Frayling et al. [65], and rs1421085 (position: chr16:53800954), 

reported in the work of Dina et al. [76], and the yet poorly studied rs1861868 polymorphism 

(position: chr16:53790402), described in two studies [66, 192]. 

A buccal swab sample was collected from each child for genetic studies. The genomic DNA was 

extracted from buccal cells using the PureLink Pro 96 Genomic DNA Kit (Invitrogen Corporation, 
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Carlsbad, CA, USA), according to the instructions of the manufacturer, and was only used for the 

polymorphisms genotyping. 

Samples were genotyped for the three FTO polymorphisms by allelic discrimination assays using 

TaqMan® probes (C_30090620_10, C_11717119_10 and C_8917103_10; Applied Biosystems, Foster 

City, CA, USA). The PCR amplification was carried out in 25 µl of a total reaction volume containing 2 

µl (~20 ng) of DNA, 0.5 µl TaqMan® probes (Applied Biosystems, Foster City, CA, USA) in 1x of 

SsoFast™ Probes Supermix™ (Bio-Rad, Hercules, CA, USA). The PCR conditions were an initial 

denature step for 10 minutes at 95°C, followed by 40 cycles consisting of 1minute at 60°C and 15 

seconds at 95°C. Fluorescence was visualized through a MiniOpticon real time PCR system (Bio-Rad, 

Hercules, CA, USA). 

To identify the allele associated with the FAM probes, the automatic sequencing by Sanger’s 

method was used. After the PCR product amplification, using oligonucleotides 5´-

CATCAGTTATGCATTTAGAATGTCTG-3´ (forward) and 5´-TCCCACTCCATTTCTGACTGT-3´ (reverse) for 

rs9939609, 5´-AATCTCATTGTTCCTCCTGCT-3´(forward) 5´-ACAGTGGAGGTCAGCACAGA-3´(reverse) for 

rs1421085, and 5´-CGCATCTCTGCAACTCTTTT-3´ (forward) and 5´-TGCTTTGTTAAGGCCATAGG-3´ 

(reverse) for rs1861868, PCR fragments were purified with the enzyme ExoSAP-IT (GE Healthcare, 

New Jersey, USA) and subsequently subjected to Sanger´s dideoxy chain termination sequencing 

reaction using BigDye® Terminator v1.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, 

USA), according to protocols recommended by the manufacturer and analyzed in an ABI 310 

automatic sequencer (Applied Biosystems, Foster City, CA, USA). Base calling was performed with 

Sequencing Analysis software v5.2 (Applied Biosystems, Foster City, CA, USA). 

To assess genotyping reproducibility a selection of 10% random samples was re-genotyped for all 

SNPs with 100% concordance by the Single Strand Conformation Polymorphism (SSCP) method, using 

oligonucleotides previously described (see conditions in chapter II). 

 

3.4. Statistical analysis 

The allele and haplotype frequencies were estimated by direct gene counting. The software 

package Arlequin, v3.5. (http://cmpg.unibe.ch/software/arlequin35/) [233], was used to calculate 

allele frequencies, Hardy-Weinberg equilibrium probability values and D’ and r2 values for linkage 

disequilibrium (LD). Haplotype phase was determined by statistical inference via the ELB algorithm 
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implemented in Arlequin, v3.5. The quantitative variables were expressed as means and standard 

deviation, and qualitative variables were presented as absolute numbers and frequencies. Normality 

of data was assessed using the Kolmogorov-Smirnov test. For each obesity-related quantitative 

parameters (BMI, BMI Z-score, weight and waist circumference), the nonparametric Kruskal-Wallis 

test was used to evaluate differences among the three genotypes in all polymorphisms. These 

statistical analyses were performed using the SPSS software (Statistical Package for the Social 

Sciences for Windows, version 18.0, SPSS inc., Chicago, IL, USA). Logistic regression under an additive 

genetic model, allowing for analysis of a binary outcome (a case–control status), was used to test 

obesity and overweight phenotype polymorphism associations, adjusted for age and sex, by 

calculating odds ratios (OR) with 95% of confidence intervals (CI) and p-values. This statistical analysis 

was done by using the set-based tests implemented on PLINK software v.1.07. 

(http://pngu.mgh.harvard.edu/purcell/plink/) [234]. Statistical significance was taken at p-values 

<0.05 for all comparisons. QUANTO, v1.1. power calculator (http://biostats.usc.edu/software) was 

used to estimate the power of association as a function of the frequency of the effect allele assuming 

an additive model [237]. 

 

4. Results  

The analyzed children were divided into three groups according to the definition of BMI 

specified by IOTF cut-offs [221]. From a total of 1433 children measured for anthropometric traits, 

genotyping was performed in a total of 730 children comprising 320 subjects classified as overweight 

(≥25 kg/m2 BMI <30 kg/m2), 154 classified as obese (BMI ≥30 kg/m2) and a control group of 256 

subjects randomly selected from the total normal weight children (n=928, 18.5≤ BMI <25 kg/m2). A 

descriptive study of the total genotyped sample, stratified by phenotype distribution, is shown in 

Table 4.1. 
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Table 4.1. General characteristic of the sampled children by phenotype distribution. 

Characteristics Overall 
Phenotype distribution* 

Normal Overweight Obese 

N 730 256  320 154 
Girls (%) 50.7 55.9 45.3 53.2 
Age (years) 9.1 ± 1.7 8.6 ± 1.6 9.5 ± 1.6 9.0 ± 1.7 
Height (cm) 136.2 ± 11.7 131.1 ± 11.1 139.5 ± 11.1 137.9 ± 10.6 
Weight (kg) 37.2 ± 11.3 28.1 ± 6.6 40.2 ± 9.3 46.1 ± 11.0 
BMI (kg/m2) 19.6 ± 3.4 16.1 ± 1.5 20.3 ± 1.8 23.8 ± 2.5 
BMI Z-score 0.93 ± 0.97 -0.15 ± 0.78 1.3 ± 0.23 1.99 ± 0.23 
Waist circumference (cm) 67.2 ± 7.8 60.3 ± 4.5 68.9 ± 5.4 75.1 ± 6.6 
Hip circumference (cm) 79.0 ± 10.3 70.4 ± 6.5 81.9 ± 8.0 87.1 ± 9.4 
WHR 0.85 ± 0.06 0.86 ± 0.06 0.85 ± 0.06 0.87 ± 0.05 

 

Data are presented as mean ± standard deviation. 
*Phenotype distribution was determined using age and gender specific BMI cut-offs provided by the 
International Obesity Task Force (IOTF). 
Abbreviations: BMI, body mass index; BMI Z-score, body mass index standard deviation score; WHR, waist-to-
hip ratio. 

 

The genotyping success rate of the three selected polymorphisms varied between 93.3% and 

99.6%. Genotype frequencies for the total sampled population were in accordance with Hardy-

Weinberg equilibrium (p=1.000 for rs9939609, p=0.598 for rs1421085, and p=0.937 for rs1861868). 

The minor allele frequency observed for the three polymorphisms in the total sample was 44.8% for 

the rs9939609-A allele, 45.4% for the rs1421085-C allele, and 46.1% for the rs1861868-G allele. The 

estimated power of association observed was above 95% for the rs9939609 and rs1421085 

polymorphisms and, 56% for the rs1861868 polymorphism. 

We analyzed anthropometric traits among different genotypes of FTO polymorphisms and found 

statistical significant differences in the mean score for rs9939609 and rs1421085 polymorphisms for 

increasing weight, BMI, BMI Z-score, and waist circumference (WC) (p≤0.05 for all traits) (Table 4.2). 

The strongest associations were found with weight (p=0.002) and waist circumference (p=0.003) 

(Table 4.2). The rs9939609 per-A allele increases was ~0.6 kg/m2 in BMI, ~1.2 cm in waist 

circumference and ~1.7 kg in weight; similar values were obtained for each rs1421085-C allele: 0.55 

kg/m2, 1.25 cm and 1.55 kg, for BMI, waist circumference and weight, respectively. The rs1861868 

polymorphism also showed associations with weight, BMI, and waist circumference (Table 4.2). 
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Table 4.2. Minor allele frequencies and Hardy-Weinberg equilibrium test of the 3 studied FTO polymorphisms in the sampled Portuguese children and their 

associations with obesity-related quantitative traits. 

 

Polymorphism Chr. Gene Alleles* n MAF HWE 

No. 

11/12/22 

Genotype (mean ± SD) 
 

p-value 

11 12 22 
 

rs9939609 16q12.2 FTO T:A 721 0.45 1.000 220/357/144      
BMI (kg/m2)        19.0 ± 3.4  19.7 ± 3.4  20.2 ± 3.5   0.005 

BMI Z-score        0.78 ± 1.1  0.97 ± 0.9  1.1 ± 0.9   0.011 

Weight (kg)        35.5 ± 11.7  37.7 ± 11.1  38.9 ± 10.9   0.003 

Waist C (cm)        65.9 ± 7.9  67.7 ± 7.6  68.4 ± 7.6   0.002 

rs1421085 16q12.2 FTO T:C 727 0.45 0.598 213/368/146      

BMI (kg/m2)        19.1 ± 3.5 19.6 ± 3.4  20.2 ± 3.5  0.013 

BMI Z-score        0.76 ± 1.0  0.95 ± 0.9  1.1 ± 0.9   0.012 

Weight (kg)        35.6 ± 11.7  37.4 ± 11.2  38.7 ± 10.9   0.012 

Waist C (cm)        65.9 ± 7.8 67.5 ± 7.6  68.5 ± 7.8  0.006 

rs1861868 16q12.2 FTO A:G 668 0.47 0.937 195/342/144      

BMI (kg/m2)        18.8 ± 3.2 19.6 ± 3.5 20.0 ± 3.5  0.011 

BMI Z-score        0.75 ± 1.0 0.95 ± 0.9 1.0 ± 0.8  0.162 
Weight (kg)        34.5 ± 10.3 37.4 ± 11.6 38.6 ± 11.3  0.004 

Waist C (cm)        65.6 ± 7.5 67.4 ± 7.8 68.1 ± 7.6  0.024 

 

Abbreviations: Chr., chromosome; n, number of genotyped children; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; BMI, body mass  
Index; BMI Z-score, body mass index standard deviation; SD, standard deviation; Waist C, waist circumference. 
* Alleles: Major (1): Minor (2). 
p-values were obtained using the Kruskal-Wallis test.  
p-value significant (p<0.05) are in bold and italic. 
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We performed nominal association analysis under the additive model using BMI case-control 

groups (Table 4.3). When compared obese vs. normal-weight groups the rs9939609 minor A-allele 

showed significant association with risk of obesity (OR=1.41; 95% CI, 1.05-1.89; p=0.023). 

Accordingly, 23.4% of the obese individuals were AA homozygotes compared to 16.2% of the control 

subjects. Significant association was also observed with increased risk of being obese for the 

rs1421085 minor C-allele (OR=1.45; 95% CI, 1.08-1.95; p=0.012). For this polymorphism, 26.6% of the 

obese individuals had the CC genotype, against 17.7% with normal weight. For the rs1861868 

polymorphism, it was not found a significant association with obesity (OR=0.85; 95% CI, 0.63-1.15; 

p=0.318) (Table 4.3). Association analysis under an allelic model, comparing obese vs. normal-weight 

groups, showed similar significant results for the rs9939609 A-allele (OR=1.44; 95% CI, 1.08-1.91; 

p=0.012) and rs1421085 C-allele (OR=1.48; 95% CI, 1.12-1.98; p=0.007), but not for rs1861868 

(OR=1.20; 95% CI, 0.89-1.61; p=0.228). We detected no significant association when comparing 

overweight vs. normal-weight groups (p≥0.05) (Table 4.3). 

We further investigated the difference in the genotype distribution between cases and controls 

for abdominal obesity by logistic regression analysis. In the total of 730 children, 111 revealed 

abdominal obesity (using sex and age-specific ≥90th waist circumference percentile). From the three 

polymorphisms studied, none of them showed association with increased abdominal obesity. 
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Table 4.3. Allele frequencies of the 3 studied FTO polymorphisms in the Portuguese children, and their associations with risk of obesity among phenotypic 

groups. 

 

SNP ID/ 

Gene 
Allele 

  Obese vs. normal 
 

Overweight vs. normal 

Normal*  Obese* OR CI 95% p-value 
 

Overweight* OR CI 95% p-value 

rs9939609 
FTO T>A 

T 0.591  0.503 
1.41 (1.05-1.89) 0.023 

 0.546 
1.15 (0.89-1.47) 0.274 

A 0.409  0.497  0.454 
           
rs1421085 
FTO T>C 

T 0.572  0.474 
1.455 (1.08-1.95) 0.012 

 0.560 
1.00 (0.78-1.29) 0.944 

C 0.428  0.526  0.440 
           
rs1861868 
FTO A>G 

A 0.504  0.552 
0.859 (0.63-1.15) 0.318 

 0.557 
0.886 (0.68-1.14) 0.350 

G 0.496  0.448  0.443 

          
 

Abbreviations: SNP ID; single nucleotide polymorphism identification; OR, odds ratio; CI, confidence interval; vs., versus. 
*Phenotypic groups was determined using age and sex specific BMI cut-offs provided by the International Obesity Task Force (IOTF). 
Logistic regression was used to compare genotype distribution. p-values (asymptotic p-value for t-statistic) shown are for an additive model and are adjusted for age and 
sex. OR is shown for the minor allele.  
p-value significant (p<0.05) are in bold and italic.  
 

 

 



C h a p t e r  I V  

 
84 

Haplotype analysis associating the three studied FTO polymorphisms (rs1861868-rs1421085-

rs9939609), revealed all the eight possible haplotypes, being the most commons GTT (33%), ACA 

(32%), ATT (19%) and GCA (12%) (Table 4.4). Three haplotypes had an estimated frequency below 1% 

(GCT, ATA and GTA). Compared with the most common and non-risk haplotype (GTT), two 

haplotypes (ACA and GCA) were significantly associated with a higher risk of being obese (OR=1.534; 

95% CI, 1.06-2.22; p=0.023; OR=1.739; 95% CI, 1.06-2.87; p=0.030, respectively). 

Regarding allelic combinations, polymorphisms rs9939609 (position: chr16:53820527) and 

rs1421085 (position: chr16:53800954), distant from one another about 19.6 kb, were found in high 

LD (D’= 0.91; r2=0.82). The rs1861868 polymorphism (position: chr16:53790402) was found in low LD 

(D’= 0.39; r2=0.11) with rs9939609, distant about 30.1 kb, as well with rs1421085 (D’= 0.44; r2=0.13), 

distant about 10.6 kb. 
 

 

Table 4.4. Haplotype frequencies associating FTO rs1861868-rs1421085-rs9939609 polymorphisms in 

the sampled Portuguese children. 

 

 

 

 

 

 

 

 

Rare: haplotypes with a frequency under 1% (GCT, ATA and GTA).  
Abbreviations: OR, odd ratio; CI, confidence interval.  
p-value significant (p<0.05) in bold and italic form. 
 

 

 

 

 

Haplotype Frequency OR 95% CI p-value 

GTT 0.33 Reference   

ATT 0.19 1.133 0.73-1.75 0.572 

ACA 0.32 1.534 1.06-2.22 0.023 

GCA 0.12 1.739 1.06-2.87 0.030 

ACT 0.02 2.000 0.68-5.89 0.209 

Rare 0.02 1.200 0.42-3.42 0.733 



A s s o c i a t i o n  o f  F T O  p o l y m o r p h i s m s  …  

 
85 

5. Discussion 

 

Recently, the growth in studies regarding the association of obesity, or obesity-related traits, 

with SNPs in the FTO gene has been reported for several populations across the world [65–74, 76, 

192, 257]. Most studies confirmed that FTO polymorphisms are strongly associated with BMI and/or 

obesity [65–74, 76, 192, 257]. However, in Portugal there are no studies to confirm the association 

between genetic variants and common obesity, which could permit the comparison with data from 

other European populations. Despite the similar genetic background between European populations, 

it is known that for several polymorphisms, frequencies can vary within different Caucasian 

populations [168, 260]. Moreover, a few studies failed to associate some FTO polymorphisms and 

obesity [261, 262], highlighting the need of more studies in different populations to better 

understand the role of FTO gene in obesity. The present study is the first to test whether common 

FTO gene polymorphisms are associated with obesity or to related anthropometric traits in children 

of Portuguese origin. 

Our research showed a significant genetic association of rs9939609 and rs1421085 

polymorphisms, in strong linkage disequilibrium (r2=0.82), with the risk of obesity in Portuguese 

children. Consistently, we also observed significant association with several anthropometric 

measurements including weight, BMI, waist circumference and hip circumference. These results are 

similar to those found in previous studies performed in other European populations reporting the 

association of FTO polymorphisms with obesity [65, 67, 76, 263]. In our study, the effect obtained for 

each copy of rs9939609-A allele was ~0.6 kg/m2 in BMI, ~1.2 cm in waist circumference and ~1.7 kg 

in weight, similar to the effect stated by Frayling et al. [65]. 

Regarding rs1861868 polymorphism, association with BMI was first described in a sample of Old 

Order Amish with low physical activity [192] and replicated in a sample of Spanish children [66]. 

However, in this last study, it was not found a significant association with BMI or obesity. Our study 

showed an association with weight, BMI, waist circumference and hip circumference.  

Our results show that in Portuguese children the rs9939609 and rs1421085 polymorphisms are 

in association with obesity, with no differences between girls and boys, and in line with previously 

reported studies in other European populations [65–68, 76, 192]. We found an odd ratio of 1.41 for 

the rs9939609 polymorphism under the additive model. This result appears similar to the effects 
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reported by Frayling et al. [65] in UK children (OR=1.35; 95% CI, 1.14-1.61), and Hinney et al. [264] in 

German children/adolescents (OR=1.57; 95% CI, 1.30-1.90). We also found an odd ratio of 1.45 for 

the rs1421085 polymorphism similar to that reported by Dina et al. [76] in French children (OR=1.43; 

95% CI, 1.25-1.64), and Meyre et al. [265] in German children (OR=1.50; 95% CI, 1.25-1.79). The 

rs9939609 polymorphism was the most replicated polymorphism associated with obesity across the 

world, nevertheless, in our study the strongest association was obtained with the rs1421085 

polymorphism (OR=1.45; 95% CI, 1.08-1.95; p=0.012, additive model), similar to the result obtained 

by Price et al. [266] in a sample of Caucasian women when analyzing both polymorphisms. 

None of the three study polymorphisms showed evidence of association with overweight in the 

sample. This means that the FTO risk allele predominates in individuals with higher BMI; hence the 

association was detected in severe obesity rather than in overweight population, similarly to the 

results obtained by Liu et al. [257]. 

The FTO risk allele frequencies observed in our study are within range of reported values in 

European populations [65–68, 76, 192]. Both rs9939609 and rs1421085 polymorphisms were found 

in high LD (r2=0.82) in our study reflecting the high LD across the 19.6 kb region within the intron 1 of 

FTO gene. Polymorphisms rs9939609 and rs1421085 are both part of a set of BMI-associated 

polymorphisms within a 47 kb LD block encompassing parts of the first two introns as well as exon 2 

of the FTO gene [80] suggesting that they all tag a same genetic signal in that region. The low LD 

(r2=0.13) observed in our study between rs1861868 5’ apart 10.6 kb from rs1421085, complement 

the lower genetic predictive power of rs1861868 for the studied obesity related parameters, 

suggesting that LD block decline between these two polymorphisms. As we show (Table 4.4) the only 

two common haplotypes that seem to confer risk to obesity were ACA (p=0.023) and GCA (p=0.030), 

which include both risk alleles A and C for rs9939609 and rs1421085, respectively. For the haplotype 

ACT, presenting only one risk allele, no association (p=0.209) with obesity was found. This seems to 

reflect that haplotypes combining the risk alleles for the two SNPs rs9939609 and rs1421085 have 

increased risk of obesity. 

In 1962, Neel proposed the thrifty gene hypothesis [163] suggesting that populations whose 

ancestral environments were characterized by periods of feast and famine, experienced positive 

selection for thrifty alleles that promote the storage of fat and energy. Thus, under modern 

conditions, populations with such thrifty alleles are expected to have high rates of obesity. Regarding 
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the ancestral alleles for polymorphisms rs9939609 and rs1421085 comparing sequence similarity 

with non-human primates, the ancestral rs9939609-A allele is associated with the obesity risk but not 

the ancestral rs1421085-T allele. This different genetic association pattern is not consistent with the 

thrifty gene hypothesis, as also suggested in a previous report [118], because under this hypothesis 

we should expect a similar pattern regarding ancestry of the risk alleles. 

This is the first study reporting allele and genotype frequencies of the FTO polymorphisms in the 

Portuguese population. We found evidence that the previously reported common polymorphisms 

rs9939609 and rs1421085 in FTO gene increase the risk of obesity in the Portuguese children. Further 

studies on other polymorphisms from FTO and other genes are needed, to establish the genetic basis 

contributing to the risk of obesity in the Portuguese population.  
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 
  
 

The lactase persistence -13910C>T 

polymorphism shows indication of 

association with abdominal obesity 

among Portuguese children 
  
 This chapter was mainly based on the following 

original paper: Albuquerque D, Nóbrega C, Manco L. 
The lactase persistence -13910C>T polymorphism 

shows indication of association with abdominal 

obesity among Portuguese children. Acta Paediatr 
2013, 102(4): e153-157. 
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1. Abstract 

Aim: The -13910C>T (rs4988235) single nucleotide polymorphism located upstream of the lactase 

gene (LCT) was found tightly associated with lactase persistence in European populations. Recently, it 

was also associated with body mass index (BMI) and obesity in European adults. The aim of this study 

was to test the association of -13910C>T polymorphism, with obesity-related traits and risk of obesity 

in children.  

 

Methods: We genotyped 580 Portuguese children (6-12 years-old) for the -13910C>T polymorphism 

using Dual-labeled probes by real-time PCR. Anthropometric measurements were assessed in all 

children. Obesity was defined according to the IOTF cut-offs and abdominal obesity using the sex and 

age-specific ≥90th waist circumference percentile.  

 

Results: We found indication for association between the -13910*T allele and children abdominal 

obesity (OR=1.41; 95% CI: 1.03-1.94; p=0.030). Under the dominant model, the indicative association 

was observed between the LCT -13910 CT/TT genotypes and abdominal obesity, remaining significant 

after adjustment for age and gender (OR=1.65; 95% CI: 1.04-2.60; p=0.029). No association was 

detected with the risk of obesity (p=0.350). 

 

Conclusion: Our results suggest that the -13910C>T polymorphism may predispose to abdominal 

obesity in Portuguese children. The association with BMI or obesity risk, previously observed in 

adults, was not confirmed. 
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2. Introduction 

 

The lactase gene (LCT; MIM 603202, chromosome 2q21) was recently reported as a new 

candidate related with BMI and obesity in adults of European origin. Three independent studies 

reported a strong association of the -13910C>T (rs4988235) single nucleotide polymorphism, located 

~14kb upstream from the LCT coding region, with BMI and obesity: the -13910*T allele carriers (CT 

and TT genotypes) had higher weight, BMI and risk of obesity [102–104]. 

All newborns display an adequate expression of the lactase enzyme that decline significantly in 

quantity following weaning, and this condition is apparently the major reason for avoiding milk in 

diet [267]. However, substantial numbers of individuals maintain the ability to digest milk and other 

dairy products into adulthood. This lactase persistence (LP) phenotype is an autosomal dominant 

condition that reaches its highest values in north-western Europe (80-90%), declining to the south 

and east (~50%) [268, 269]. The lactase non-persistence (LNP) is considered the ancestral condition 

in humans and these individuals are unable to digest significant amounts of lactose, suffering from 

adverse unspecific abdominal symptoms, including bloating, abdominal pain and diarrhea, after 

ingestion of milk [270]. In European populations the -13910C>T polymorphism was found tightly 

associated with the persistence of the lactase enzyme in adulthood: TT or TC individuals possess 

sufficient enzyme activity in intestinal cells to be classified as LP, and individuals carrying the CC 

genotype are classified as LNP [169]. The prevalence of the -13910*T allele vary across Europe, 

reaching 70-80% in Northern European populations, and 5-10% in Southern European populations 

from Greece and Italy [271]. In Northern Portugal the -13910*T allele frequency was estimated 

37.0% [272]. 

Until now, the genetic background of LCT -13910C>T polymorphism in obesity has not yet been 

examined among children of European descent. Thus, the aim of this study was to test the 

association between LCT -13910C>T polymorphism and obesity or obesity-related traits in a sample 

of Portuguese children. 
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 3. Material and Methods 

 

3.1. Subjects and measures 

The study comprised 580 children with Portuguese ancestry (6-12 years old) randomly selected 

from several public schools in a Northern-Central region of Portugal located between Mondego and 

Douro rivers. Samples were collected from three geographic areas: municipalities of Coimbra 

(n=266), Vale de Cambra (n=147) and Guarda/Covilhã (n=167). 

Anthropometric measurements were assessed in all children. Children were distributed in three 

groups: 140 with obesity, 233 with overweight and 207 with normal weight. The definition of 

overweight and obesity was obtained using the International Obesity Task Force (IOTF) cut-offs [221], 

resulting from the BMI in adult’s cut-points of 25 kg/m2 and 30 kg/m2, respectively. Abdominal 

obesity was defined using the sex and age-specific ≥90th waist circumference percentile [259]. 

The study protocol was approved by Direção-Geral de Inovação e de Desenvolvimento Curricular, 

the ethical Committee of the Portuguese Ministry of Education (available at http://mime.gepe.min-

edu.pt/ with the identification number process: 0151100001), and was conducted in accordance with 

the institutional guidelines of the University of Coimbra. Written informed consent was previously 

obtained from all the children´s parents.  

 

3.2. Genotyping 

Genomic DNA was extracted from buccal swabs using the PureLink Pro 96 Genomic DNA Kit 

(Invitrogen Corporation, Carlsbad, CA, USA), according to the instructions of the manufacturer. 

The -13910C>T polymorphism (Chr.2: 135851076 position) was genotyped using dual-labeled 

probes for real-time polymerase chain reaction (PCR) on a MiniOpticon instrument (Bio-Rad, 

Hercules, CA, USA) using primers and labelled probes previously reported [225]. The PCR 

amplification was carried out in 20 μl of a total reaction volume containing 2 μl (~20 ng) of DNA, 0.4 

μM primers, 0.2 μM probes in 1x of SsoFast™ Probes Supermix (Bio-Rad, Hercules, CA, USA). PCR 

conditions were an initial denature step at 95°C for 10 minutes, followed by 40 cycles of 1 minute at 

60°C and 15 seconds at 95°C. To assess genotyping reproducibility, a random 10% selection of 

samples was re-genotyped with 100% concordance (see conditions in chapter II). 
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3.3. Statistical analysis 

Allelic and genotypic frequencies of the -13910C>T polymorphism were estimated by direct 

counting. Hardy-Weinberg equilibrium probability value, heterozygosity and exact p values for 

population differentiation [273] were achieved using the software package Arlequin, v3.11 

(http://cmpg.unibe.ch/software/arlequin3/) [233]. 

In statistical analyses we follow a dominant model, and subjects with CT and TT genotypes were 

grouped and compared with CC subjects. Normality of the data was examined using the 

Kolmogorov–Smirnov test. Due to lack of the normal distribution, non-parametric tests have been 

used in the statistical analyses. The Mann-Whitney test was used to compare means of obesity-

related traits between genotypes. Logistic regression was used to estimate p-values, odds ratio (OR), 

and 95% confidence intervals (CI), assessing the association of -13910C>T polymorphism with risk of 

obesity and abdominal obesity. Statistical analyses were performed using the SPSS software 

(Statistical Package for the Social Sciences for Windows, version. 18.0, SPSS inc., Chicago, IL, USA). A 

significant p-value was considered at <0.05 for all comparisons. 

 

4. Results 

The anthropometric characteristics of the study subjects distributed by phenotype are shown in 

Table 5.1. 

The LCT -13910C>T genotype distributions regarding whole sample (n=580) were: CC 42.8%, CT 

44.8% and TT 12.4%. Individual LP -13910*T allele frequency was 34.8% (Table 5.2). The similar allele 

frequencies across the three sampled subgroups (-13910*T allele frequency values of 34.6%, 32.3% 

and 37.4% in Coimbra, Vale de Cambra and Guarda/Covilhã municipalities, respectively) indicate 

absence of population stratification for the -13910C>T polymorphism (p=0.466 on the exact test of 

sample differentiation). No deviations from the Hardy-Weinberg equilibrium were observed in any 

population subgroup, neither in the whole sample (p>0.05). 
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Table 5.1. Body size and genetic characteristics of the children participants according to phenotype. 

Characteristics Overall 
Phenotype* 

Normal Overweight Obese 

N 580 207 233 140 

Age (years) 9.0 ± 1.7 8.6 ± 1.6 9.6 ± 1.6 9.0 ± 1.8  

Girls (%) 51.9 54.1 48.1 55.0 

Height (cm) 136.1 ± 11.8 130.8 ± 11.1 139.8 ± 11.3 137.8 ± 10.8 

Weight (kg) 37.4 ± 11.6 27.9 ± 6.6 40.5 ± 9.5 45.9 ± 11.2 

BMI (kg/m
2
) 19.7 ± 3.5 16.1 ± 1.4 20.4 ± 1.8 23.8 ± 2.6 

BMI Z-score 0.95 ± 0.9 -0.11 ± 0.8 1.28 ± 0.24 1.98 ± 0.2 

Waist circumference (cm) 67.4 ± 7.8 60.4 ± 4.4 69.1 ± 5.4 74.9 ± 6.6 

Hip circumference (cm) 79.2 ± 10.5 70.4 ± 6.3 82.3 ± 8.3 87.1 ± 9.5 

Waist-to-Height Ratio 0.86 ± 0.06 0.86 ± 0.06 0.84 ± 0.06 0.86 ± 0.05 

Abbreviations: n, total subjects; BMI, body mass index; BMI Z-score, body mass index standard deviation. 
*Phenotype was defined using the International Obesity Task Force (IOTF) cut-offs.  
Data are presented as mean ± standard deviation. 

 

Testing the association with anthropometric variables, we found no association between the -

13910C>T polymorphism and obesity-related traits, as BMI, weight or waist circumference (p>0.05 

for all traits) (Table 5.3). 

Logistic regression analysis was used to test the association of the -13910C>T polymorphism 

with the risk of obesity and abdominal obesity (Table 5.4). We observe indication of an association 

between the LP -13910*T allele and abdominal obesity (OR=1.41; 95% CI: 1.03-1.94; p=0.030). In a 

dominant model of genetic effect, the -13910 CT/TT genotypes show also indication of an association 

with abdominal obesity (unadjusted OR=1.64; 95% CI: 1.04-2.62; p=0.034), remaining significant after 

adjustment for age and gender (OR=1.65; 95% CI: 1.04-2.60; p=0.029). No association was found 

between the -13910 CT/TT genotypes and obesity (OR=1.24; 95% CI: 0.79-1.92; p=0.350) or 

overweight (OR=0.86; 95% CI: 0.59-1.28; p=0.769). 
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Table 5.2 The LCT -13910C>T polymorphism genotype and allelic distribution among municipalities. 

 

Municipalities 
 Genotype distribution, % (n)  Allele frequencies 

HWE He 
N CC CT TT  C T 

Coimbra 266 43.6 (116) 43.6 (116) 12.8 (34) 
 

0.654 0.346 0.589 0.453 

Vale de Cambra 147 45.6 (67) 44.2 (65) 10.2 (15) 
 

0.677 0.323 1.000 0.439 

Guarda/Covilhã 167 38.9 (65) 47.3 (79) 13.8 (23) 
 

0.626 0.374 1.000 0.469 

Total 580 42.8 (248) 44.8 (260) 12.4 (72) 
 

0.652 0.348 0.788 0.454 

 

Abbreviations: n, total subjects; HWE, exact p-value for the Hardy-Weinberg equilibrium (p significant <0.05); He, expected heterozygosity.  
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Table 5.3. Comparison of anthropometric parameters among different genotypes of LCT -13910C>T 

polymorphism. 

 

 LCT -13910C>T genotypes 
p-value CC 

 (n=248) 
CT/TT 

(n=332) 

Age (years) 9.0 ± 1.7 9.1 ± 1.7 0.706 

Height (cm) 135.3 ± 11.8 136.8 ± 11.7 0.328 

Weight (kg) 36.5 ± 11.4 37.9 ± 11.7 0.252 

BMI (kg/m2) 19.5 ± 3.4 19.8 ± 3.6 0.308 

BMI Z-score 0.91 ± 0.9 0.98 ± 0.9 0.316 

Waist circumference (cm) 67.0 ± 7.7 67.7 ± 8.0 0.350 

Hip circumference (cm) 78.6 ± 10.6 79.6 ± 10.4 0.393 

Waist-to-Height Ratio 0.85 ± 0.04 0.86 ± 0.05 0.977 
    

Data are presented as mean ± standard deviation. 
p-values were obtained using the Kruskal-Wallis test. 
p-values significant <0.05 in italic and bold. 
 

 

 

 

 



T h e  l a c t a s e  p e r s i s t a n c e  - 1 3 9 1 0 C > T …  
 

 

98 

Table 5.4. Associations of LCT -13910C>T polymorphism with risk of obesity and abdominal obesity [OR (95% CI)]. 

 

 
 

Genotype distribution, % (n)  OR (95% CI) 

 Normal 
n=207  

Overweight 
n=233 

Obese 
n=140 

Gluteofemoral 
n=483 

Ab obesity 
n=97 

 Normal vs. 
Obese 

Normal vs. 
Overweight 

Gluteofemoral 
vs. Ab obesity  

Dominant Model          

CC 43.0 (89) 45.5 (106) 37.9 (53) 44.7 (216) 33.0 (32)  1 1 1 

CT/TT 57.0 (118) 54.5 (127) 62.1 (87) 55.3 (267) 67.0 (65)  
1.24 (0.79-1.92) 

p=0.350 
0.86 (0.59-1.28) 

p=0.769 
1.65 (1.04-2.60) 

p=0.032 

Allelic Model          

C 65.6 (273) 65.7 (307) 61.7 (174) 66.4 (641) 58.2 (113)  1 1 1 

T 34.4 (141) 34.3 (159) 38.3 (106) 33.6 (325) 41.8 (81)  
1.17 (0.86-1.62) 

p=0.305 
1.00 (0.76-1.32) 

p= 1.00 
1.41 (1.03-1.94) 

p=0.029 

 

Abbreviations: Ab obesity; abdominal obesity defined using the sex and age-specific ≥90
th

 waist circumference percentile. Gluteofemoral, children under the <90
th

 waist 
circumference percentile. OR, odds ratio; CI, confidence interval. 
Overweight and obesity was defined using the International Obesity Task Force (IOTF) cut-offs. 
p-value under the dominant and allelic model was adjusted for age and gender (p-value significant <0.05 in bold).  
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5. Discussion 

 

Several genetic polymorphisms have been reported to be associated with obesity or obesity-

related phenotypes both in children and adults [274], which is a growing problem worldwide 

including Portugal [240, 258]. To better understand the genetic basis of obesity it is important to 

replicate these results in different populations across the world. Recently it was reported that LCT -

13910C>T polymorphism is strongly associated with BMI and obesity in European adults by three 

studies that found adult’s carriers of the -13910 CC genotype with lower weight and BMI [102–104]. 

There are some controversial data regarding effects of dairy products intake on body weight and 

fat [275]. Several studies in adults support for an increase in body weight associated with dairy 

products intake [276–278]. One possible explanation for this association could be that the extension 

of consumption of dairy products in daily diet, often high in energy content, potentially increase 

calorie intake in adulthood [278]. In children, relationship between dairy products consumption and 

weight/body composition indicate either a beneficial or a neutral effect [279, 280]. However, no 

studies were performed to see if individual LCT genetic profiles influence the relationship between 

dairy products consumption and body weight. 

We conducted a population study to test whether the -13910C>T polymorphism, tightly 

associated with LP in individuals of European descent, was associated with obesity and/or obesity-

related traits in Portuguese children. The exact test of sample differentiation based on allele 

frequencies showed no significant differences between the three study geographic areas of Coimbra, 

Vale de Cambra and Guarda/Covilhã, excluding population substructure and possible bias in 

association signals for the -13910C>T polymorphism, a locus that was shown to be prone to 

population stratification [281]. We found indication of an association between the LP -13910 CT/TT 

genotypes and abdominal obesity (OR=1.65; p=0.032), however, we did not find evidence for the 

association of the -13910C>T polymorphism with the children risk of obesity or other anthropometric 

measurements. 

Considering previous studies showing that obesity risk in adulthood is significantly higher in T-

allele carriers (TT and CT genotypes) than in CC subjects [102–104], our findings suggest that, by a 

continuous intake of rich fat dairy products, individuals with -13910 CT/TT genotypes could have a 
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more predisposition to develop obesity into adulthood than individuals with -13910 CC genotype, 

associated with adult hypolactasia. 

This study suggests that LP -13910 CT/TT genotypes may predispose to abdominal obesity in 

Portuguese children. Association of the -13910C>T polymorphism with BMI or risk of obesity, 

previously observed in adults, was not confirmed in children. Further studies are needed i) to 

replicate the present results in children from other populations; ii) to see whether individual LCT 

genetic profiles influence the relationship between dairy products consumption and obesity-related 

traits. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI 
  

 
Association study of common 

polymorphisms in MSRA, TFAP2B, 

MC4R, NRXN3, PPARGC1A, TMEM18, 

SEC16B, HOXB5, and OLFM4 genes 

with obesity-related traits among 

Portuguese children 
  
 This chapter was mainly based on the following 

original paper: Albuquerque D, Nóbrega C, Rodríguez-
López R, Manco L. Association study of common 

polymorphisms in MSRA, TFAP2B, MC4R, NRXN3, 

PPARGC1A, TMEM18, SEC16B, HOXB5, and OLFM4 

genes with obesity-related traits among Portuguese 

children. J Hum Genet 2014, 59(6): 307-313. 
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1. Abstract 

Background: At least 52 genetic loci were associated with obesity-related traits. However, little is 

known about the genetic basis of obesity among children. This study aims to test whether 10 

polymorphisms in obesity-related genes MSRA, TFAP2B, MC4R, NRXN3, PPARGC1A, TMEM18, 

SEC16B, HOXB5 and OLFM4 are associated with the risk of obesity in Portuguese children. 

 

Methods: A total of 730 children aging from 6 to 12 years-old, recruited randomly from public 

schools in Portugal, were analyzed. Anthropometric measurements were obtained and children were 

classified into three phenotypic groups, normal-weight (n=256), overweight (n=320), and obese 

(n=154), according to the IOTF cut-offs. Polymorphisms were genotyped by allelic discrimination 

TaqMan® assays. 

 

Results: The MC4R rs12970134 polymorphism was nominally associated with BMI (p=0.035), BMI Z-

score (p=0.043) and waist circumference (p=0.020), and borderline associated with weight (p=0.053). 

Near nominally associations were also found for the PPARGC1A rs8192678 polymorphism with 

weight (p=0.061), and for the MSRA rs545854 polymorphism with BMI (p=0.055) and BMI Z-score 

(p=0.056). Furthermore, logistic regression showed that MC4R rs12970134 and TFAP2B rs987237 

were nominally, respectively, associated (p=0.029) and borderline associated (p=0.056) with the 

obese phenotype. 

 

Conclusion: This study highlighted the possible association of MC4R, PPARGC1A, MSRA and TFAP2B 

polymorphisms with several obesity-related traits in a sample of Portuguese children. The two 

significant associated TFAP2B rs987237 and MC4R rs12970134 polymorphisms showed an opposite 

direction of effect to that in the original reports. 
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2. Introduction  

 

The obesity phenotype has been increasing in the last decades and the causes for this complex 

disorder are thought to be related with an imbalance between energy intake and energy expenditure 

due to changes in lifestyles including exposure to an obesogenic environment [282]. Furthermore, it 

is estimated that the heritable predisposition to obesity may range from 40 to 70% [5, 283, 284]. 

In less than seven years, genome wide association studies (GWAS) have successfully identified 

more than 52 genetic loci, which were unequivocally associated with obesity-related traits [63]. The 

first locus associated with obesity was the fat mass and obesity associated (FTO) gene by Frayling et 

al. [65] which is the most replicated gene across the world, both in adult and children samples [66, 

69, 73], including in the Portuguese population [285]. Subsequently, several other studies emerged 

associating single nucleotide polymorphisms in several genes across the genome, most of them in 

adults [214, 286], and a few in children [114]. Nevertheless, candidate and replication studies of 

obesity loci among different populations emerge as an important step to identify and clarify which 

variants are indeed associated with obesity. The frequency of obesity-susceptibility alleles varies 

between populations, and these allele distributions could be a consequence of population-specific 

obesogenic environments associated with specific demography and cultural histories. Replication 

studies are also relevant to determine which polymorphisms previously associated with obesity in 

adults are also linked in children, and, in a final instance, to better understand the complexity of 

obesity susceptibility. 

In this study, a sample of Portuguese children was tested for the association of obesity and 

obesity-related quantitative traits with ten polymorphisms in nine candidate genes including, 

methionine sulfoxide reductase A (MSRA), transcription factor AP-2 beta (TFAP2B), melanocortin 4 

receptor (MC4R), neurexin 3 (NRXN3), peroxisome proliferator-activated receptor gamma 

coactivator 1 alpha (PPARGC1A), transmembrane protein 18 (TMEM18), homolog of S. cerevisiae 

Sec16 (SEC16B), homeobox B5 (HOXB5) and olfactomedin 4 (OLFM4). 

 

 

 

 



C h a p t e r  V I  
 

 
105 

3. Material and Methods 

 

3.1. Study subjects 

The original sample consisted of 1433 Portuguese children of European descent, aging between 6-

12 years old, randomly selected from several public schools in the central region of Portugal [258]. 

From this original sample, three body mass index (BMI) groups, using age and sex specific BMI cut-

offs provided by the International Obesity Task Force (IOTF) [221], were attained in a total of 730 

children, including: i) 154 obese subjects (resulting from the BMI in adult’s cut-points ≥30 kg/m2); ii) 

320 overweight subjects (resulting from the BMI in adult’s cut-points between 25 kg/m2 and 29 

kg/m2); and iii) 256 lean controls randomly selected from the initial group of 928 children with 18.5≥ 

BMI <25 kg/m2 [31 children were classified as underweight (BMI<18.5) and excluded of this study]. 

 

The study protocol was approved by Direção-Geral de Inovação e de Desenvolvimento Curricular, 

the ethical Committee of the Portuguese Ministry of Education (available at http://mime.gepe.min-

edu.pt/ with the identification number process: 0151100001), and was conducted in accordance with 

the institutional and ethical guidelines of the University of Coimbra. Written informed consent was 

previously obtained from the children´s parents. 

 

3.2. Anthropometric measurements 

All children underwent anthropometric measurements of height, weight, waist and hip 

circumference using a standardized protocol. Body weight (kg) and height (cm) were taken with 

participants dressed in lightweight clothing without shoes to determine the BMI. Waist 

circumference (WC) (cm) was measured midway between the lowest rib and the iliac crest, to the 

nearest 0.1 cm after inhalation and exhalation. Hip circumference (cm) was measured at the point 

over the buttocks yielding the maximum circumference. The BMI was calculated by dividing weight 

(in kilograms) by height (in meters) squared (kg/m2). Abdominal obesity was defined using the sex 

and age-specific ≥90th waist circumference percentile [259]. 
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3.3. Selection and Genotyping of polymorphisms 

Ten single nucleotide polymorphisms identified from the literature significantly associated to 

obesity or obesity-related traits in children of European origin were selected: rs17782313 (Chr 

18:60183864 position) and rs12970134 (Chr 18:60217517 position) near MC4R, prominent in the 

literature; rs10146997 (Chr 14:79478819 position) in NRXN3, rs8192678 in (Chr 4:23814039 position) 

PPARGC1A, rs7561317 (Chr 2:644953 position) near TMEM18 and rs10913469 (1:177944384 

position) in SEC16B, poorly studied; rs545854 (Chr 8:10002570 position) in MSRA and rs987237 (Chr 

6:50835337 position) in TFAP2B, associated in adult’s populations [214] but never replicated in 

children; and rs9299 (Chr17:48592068 position) in HOXB5 and rs9568856 (Chr 13:53490846 position) 

in OLFM4, recently associated with childhood obesity [114] but never replicated. 

The genomic DNA was extracted from buccal cells using the PureLink® Pro 96 Genomic DNA Kit 

(Invitrogen Corporation, Carlsbad, CA, USA), according to the instructions of the manufacturer. 

Samples were genotyped for all SNPs by allelic discrimination assays using TaqMan® probes 

(Applied Biosystems, Foster City, CA, USA). All polymerase chain reactions (PCRs) were done in a total 

volume of 20 µl containing 1x SsoFast™ Probes Supermix (Bio-Rad, Hercules, CA, USA), 0.5 μl of 

specific TaqMan® SNP Genotyping Assays (20x) (Applied Biosystems, Foster City, CA, USA) and about 

20 ng of genomic DNA, according to the manufacturer´s instructions. Thermal cycling conditions 

were 10 minutes at 95°C, and 35 cycles each of 95°C for 15 seconds and 60°C for 1 minute. The 

fluorescence was observed through a MiniOpticon real time PCR system (Bio-Rad, Hercules, CA, 

USA). To assess genotyping reproducibility, a selection of 10% random samples was re-genotyped for 

all SNPs with 100% concordance by the Single Strand Conformation Polymorphism (SSCP) method or 

sequencing by the Sanger’s dideoxy chain termination reaction using Big-Dye Terminator v1.1 Cycle 

Sequencing kit (Applied Biosystems, Foster City, USA) and the ABI 310 sequencer (Applied 

Biosystems, Foster City, USA). 

 

3.4. Statistical analysis 

The allelic and genotypic frequencies of all polymorphisms were estimated by direct counting. 

Hardy-Weinberg equilibrium probability values were achieved using an exact test [287]. Logistic 

regression under an additive genetic model, allowing for analysis of a binary outcome (a case–control 

status), was used to test obesity and overweight phenotype polymorphism associations, adjusted for 
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age and sex, by calculating odds ratios (OR) with 95% of confidence intervals (CI) and p-values. For 

MC4R rs17782313 and rs12970134 polymorphisms, linkage disequilibrium (r2) values and a 

case/control (normal vs. obese) haplotype association were assessed. All these statistical analyses 

were done by using the set-based tests implemented on PLINK software v.1.07 

(http://pngu.mgh.harvard.edu/purcell/plink/) [234]. Normality of the data was assessed using the 

Kolmogorov-Smirnov test. For each obesity-related quantitative parameters (BMI, BMI Z-score, 

weight and waist circumference), the nonparametric Kruskal-Wallis test was used to evaluate 

differences among the three genotypes in all the polymorphisms. This statistical analysis was 

performed using the SPSS software (for windows, version 18.0, SPSS inc., Chicago, IL, USA). A 

significant p-value was considered below 0.005 (0.05/10) by applying a Bonferroni correction for 

multiple testing, and a p-value between 0.005 and 0.05 has been considered as nominally significant. 

QUANTO, v.1.1 power calculator (freely available http://hydra.usc.edu/gxe/) was used to 

estimate the power of association as a function of the frequency of the effect allele assuming an 

additive model [237]. 

 

4. Results 

The anthropometric characteristics of the study subjects distributed by phenotype are shown in 

Table 6.1. 

The genotyping success rate varied between 96.3% and 99.7%. The minor allele frequencies 

observed for all polymorphisms in the total sample were: 15% for rs7561317-A (TMEM18), 16% for 

rs10913469-C (SEC16B), 36% for rs8192678-A (PPARGC1A), 18% for rs987237-G (TFAP2B), 16% for 

rs545854-C (MSRA), 12% for rs9568856-A (OLFM4), 18% for rs10146997-G (NRXN3), 32% for rs9299-

C (HOXB5), 21% for 17782313-C (MC4R) and 22% for rs12970134-A (MC4R) (Table 6.2). These 

frequencies are in accordance with those found in the HapMap CEU population 

(http://www.ensembl.org/). Genotype distributions among the control group were in agreement 

with Hardy-Weinberg equilibrium for all the studied polymorphisms (p>0.05). 
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Table 6.1. General characteristics of the Portuguese children participants. 

 Total 
Phenotype distribution* 

Normal Overweight Obese 

Subjects  730 256  320 154 
Girls, % 50.7 55.9 45.3 53.2 
Age, years 9.1 ± 1.7 8.6 ± 1.6 9.5 ± 1.6 9.0 ± 1.7 
Height (cm) 136.2 ± 11.7 131.1 ± 11.1 139.5 ± 11.1 137.9 ± 10.6 
Weight (kg) 37.2 ± 11.3 28.1 ± 6.6 40.2 ± 9.3 46.1 ± 11.0 
BMI (kg/m2) 19.6 ± 3.4 16.1 ± 1.5 20.3 ± 1.8 23.8 ± 2.5 
BMI Z-score 0.93 ± 0.97 -0.15 ± 0.78 1.3 ± 0.23 1.99 ± 0.23 
WC (cm) 67.2 ± 7.8 60.3 ± 4.5 68.9 ± 5.4 75.1 ± 6.6 
HC (cm) 79.0 ± 10.3 70.4 ± 6.5 81.9 ± 8.0 87.1 ± 9.4 
WHR 0.85 ± 0.06 0.86 ± 0.06 0.85 ± 0.06 0.87 ± 0.05 

 
Data are presented as mean ± standard deviation. 
*Phenotype distribution was determined using age and sex specific BMI cut-offs provided by the International 
Obesity Task Force (IOTF). 
Abbreviations: BMI, body mass index; BMI Z-score, body mass index standard deviation score; WC, waist 
circumference; HC, hip circumference; WHR, waist-to-hip ratio. 

 

 

We analyzed the obesity-related quantitative traits BMI, BMI Z-score, weight and waist 

circumference among different genotypes for each of the studied polymorphisms. The mean values 

for the anthropometric traits among the three different genotypes are detailed in Table 6.2. The 

MC4R rs12970134 major G-allele was found nominally associated with increase in BMI (p=0.035), 

BMI Z-score (p=0.043) and waist circumference (p=0.020), and borderline associated with weight 

(p=0.053). Near nominal associations were also found for the PPARGC1A rs8192678 minor A-allele 

with weight (p=0.061) and waist circumference (p=0.093), and for the MSRA rs545854 major G-allele 

with BMI (p=0.055) and BMI Z-score (p=0.056). After correction for multiple testing no statistically 

significant associations were found. 

Genotype distributions of obesity-related parameters for the MC4R rs12970134 polymorphism, 

which showed the highest statistical significant associations with the obesity-related traits, are 

detailed in Figure 6.1. Homozygotes for the minor A-allele have the lowest value distributions for all 

the analyzed quantitative parameters (BMI, BMI Z-score, waist circumference and weight). 
 



 

 

Figure 6.1. Box plot demonstrating the distribution of untransformed BMI, BMI Z

waist circumference within each genotype group of 

represents the anthropometric traits values between the 25

within the boxes indicates the median values. 

 

 

. Box plot demonstrating the distribution of untransformed BMI, BMI Z

waist circumference within each genotype group of MC4R rs12970134 polymorphism. Each box 

represents the anthropometric traits values between the 25th and 75th quartiles, and the dark line 

within the boxes indicates the median values.  
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. Box plot demonstrating the distribution of untransformed BMI, BMI Z-score, weight and 

rs12970134 polymorphism. Each box 

quartiles, and the dark line 
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Table 6.2. Minor allele frequencies and Hardy-Weinberg equilibrium test of the 10 studied polymorphisms in the sampled Portuguese children and their 

associations with obesity-related quantitative traits. 

Polymorphism Chr. Gene Alleles* n MAF HWE 

No. 

11/12/22 

Genotype (mean ± SD) 
 

p-value 

11 12 22 
 

rs10913469 1q25 SEC16B C:T 728 0.16 0.479 20/186/522      
BMI (kg/m2)        19.6 ± 3.6  19.5 ± 3.5  19.6 ± 3.4   0.930 
BMI Z-score        0.99 ± 0.9  0.92 ± 1.0  0.93 ± 1.0   0.902 
Weight (kg)        37.5 ± 13.4  36.9 ± 11.9  37.0 ± 11.1   0.736 

Waist C (cm)        67.9 ± 8.6  66.9 ± 8.3  67.3 ± 7.5   0.709 
rs7561317 2p25 TMEM18 A:G 721 0.15 0.886 16/191/514      

BMI (kg/m2)        19.2 ± 3.6 19.2 ± 3.3  19.7 ± 3.5  0.141 
BMI Z-score        0.81 ± 1.1  0.84 ± 0.9  0.97 ± 1.0   0.120 
Weight (kg)        36.7 ± 13.1  36.3 ± 11.4  37.6 ± 11.2   0.306 

Waist C (cm)        66.1 ± 7.7 66.3 ± 7.5  67.6 ± 7.8  0.121 
rs8192678 4p15 PPARGC1A A:G 703 0.36 1.000 89/323/291      

BMI (kg/m2)        20.0 ± 3.6 19.8 ± 3.4 19.4 ± 3.4  0.198 
BMI Z-score        0.99 ± 1.0 0.97 ± 0.9 0.89 ± 1.0  0.359 
Weight (kg)        38.9 ± 12.3 38.0 ± 11.3 36.1 ± 10.9  0.061 

Waist C (cm)        68.9 ± 8.7 67.5 ± 7.6 66.6 ± 7.5  0.093 
rs987237 6p12 TFAP2B G:A 725 0.18 0.615 21/218/486      

BMI (kg/m2)        19.0 ± 2.9 19.3 ± 3.2 19.7 ± 3.5  0.392 
BMI Z-score        0.87 ± 1.0 0.89 ± 1.0 0.94 ± 1.0  0.536 
Weight (kg)        34.1 ± 9.4 36.8 ± 11.2 37.5 ± 11.5  0.353 

Waist C (cm)        64.9 ± 7.8 66.6 ± 7.3 67.6 ± 7.9  0.130 
rs545854 8p23 MSRA C:G 717 0.16 0.334 22/187/508      

BMI (kg/m2)        18.3 ± 3.7 19.8 ± 3.6 19.7 ± 3.4  0.055 
BMI Z-score        0.51 ± 1,1 0.96 ± 1.1 0.95 ± 1.0  0.056 
Weight (kg)        34.3 ± 10.6 38.0 ± 11.7 37.1 ± 11.4  0.240 

Waist C (cm)        65.1 ± 6.9 67.5 ± 8.3 67.3 ± 7.5  0.282 
rs9568856 13q14 OLFM4 A:G 725 0.12 0.059 17/141/567      
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BMI (kg/m2)        19.2 ± 3.6 19.9 ± 3.4 19.5 ± 3.4  0.374 
BMI Z-score        0.92 ± 0.8 0.97 ± 0.9 0.92 ± 1.0  0.719 
Weight (kg)        35.6 ± 12.2 38.1 ± 11.1 37.0 ± 11.4  0.286 

Waist C (cm)        65.7 ± 8.4 68.0 ± 7.5 67.1 ± 7.8  0.248 
rs10146997 14q31 NRXN3 G:A 716 0.18 0.798 21/212/483      

BMI (kg/m2)        19.1 ± 3.5 19.6 ± 3.3 19.7 ± 3.5  0.672 
BMI Z-score        0.91 ± 1.0 0.92 ± 1.0 0.95 ± 1.0  0.579 
Weight (kg)        34.3 ± 11.9 37.5 ± 11.3 37.4 ± 11.3  0.436 

Waist C (cm)        64.6 ± 7.6 67.3 ± 7.7 67.5 ± 7.8  0.260 
rs9299 17q21 HOXB5 C:T 727 0.32 0.672 78/313/336      

BMI (kg/m2)        19.5 ± 3.4 19.7 ± 3.6 19.5 ± 3.3  0.710 
BMI Z-score        0.87 ± 1.0 0.94 ± 1.0 0.92 ± 0.9  0.751 
Weight (kg)        37.3 ± 11.6 37.5 ± 11.3 37.0 ± 11.4  0.792 

Waist C (cm)        66.9 ± 7.0 67.4 ± 7.9 67.2 ± 7.8  0.896 
rs12970134 18q21 MC4R A:G 729 0.22 0.163 29/266/434      

BMI (kg/m2)        18.1 ± 3.3 19.5 ± 3.5 19.7 ± 3.9  0.035 

BMI Z-score        0.53 ± 1.0     0.89 ± 1.0 0.98 ± 0.9  0.043 

Weight (kg)        32.5 ± 9.1  37.1 ± 11.3 37.7 ± 11.5  0.053 
Waist C (cm)        63.6 ± 5.8 67.1 ± 7.6 67.6 ± 7.9  0.020 

rs17782313 18q22 MC4R C:T 716 0.21 0.432 28/247/441      
BMI (kg/m2)        18.6 ± 3.6 19.7 ± 3.4 19.6 ± 3.5  0.269 
BMI Z-score        0.61 ± 1.1 0.95 ± 1.0 0.94 ± 1.0  0.257 
Weight (kg)        34.4 ± 10.6 37.7 ± 11.0 37.2 ± 11.5  0.260 

Waist C (cm)        65.6 ± 7.5 67.4 ± 7.3 67.3 ± 8.0  0.430 

 

Abbreviations: Chr., chromosome; n, number of genotyped children; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; BMI, body mass  
Index; BMI Z-score, body mass index standard deviation; WC, waist circumference. 
*Alleles: Minor (1): Major (2).  
p-values were obtained using the Kruskal-Wallis test.  
p-value nominally significant (p<0.05) are in bold and italic.  
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Logistic regression analysis, in an additive model, revealed that MC4R rs12970134 major G-allele 

was nominally associated with the obesity risk (OR = 1.477; p=0.029) and that TFAP2B rs987237 

major A-allele and TMEM18 rs7561317 major G-allele are near nominally associated with the risk of 

obesity (OR = 1.455; p=0.056; and OR = 1.416; p=0.092, respectively) (Table 6.3). Only the PPARGC1A 

rs8192678 polymorphism was found nominally associated with the overweight phenotype (OR = 

1.297; p=0.041) (Table 6.3). 

We further investigated the difference in the genotype distribution between cases and controls 

for abdominal obesity by logistic regression analysis. In the total of 730 children, 111 revealed 

abdominal obesity (using sex and age-specific ≥90th waist circumference percentile). From the ten 

polymorphisms studied, only TMEM18 rs7561317 (major G allele), showed nominal association with 

increased abdominal obesity (OR = 1.589; 95% CI, 1.02-2.50; p=0.042). 

The haplotype analysis for the two MC4R rs17782313 and rs12970134 polymorphisms, located at 

a distance of 33.5 Kb and in high linkage disequilibrium (r2 = 0.74), revealed that the common TG 

haplotype was associated with the risk of obesity (p=0.043) (with frequency of 81.2% in the obese 

group versus 75.0% in the control group). 
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Table 6.3. Allele frequencies of the 10 studied polymorphisms in the Portuguese children, and their associations with risk of obesity among phenotypic 

groups. 

 

SNP ID/ 

Gene 
Allele 

  Obese vs. normal 
 

Overweight vs. normal 

Normal*  Obese* OR CI 95% p 
 

Overweight* OR CI 95% p 

rs10913469 
SEC16B T>C 

T 0.855  0.847 
1.058 (0.71-1.57) 0.780 

 0.825 
1.154 (0.83.1.59) 0.387 

C 0.145  0.153  0.175 
           
rs7561317 
TMEM18 G>A 

G 0.825  0.869 
0.706 (0.47-1.06) 0.092 

 0.850 
0.829 (0.60-1.13) 0.248 

A 0.175  0.131  0.150 
           
rs8192678 
PPARGC1A G>A 

G 0.678  0.642 
1.176 (0.86-1.59) 0.293 

 0.619 
1.297 (1.00-1.66) 0.041 

A 0.322  0.358  0.381 
           
rs987237 
TFAP2B A>G 

A 0.804  0.856 
0.687 (0.46-1.01) 0.056 

 0.817 
0.915 (0.67-1.23) 0.559 

G 0.196  0.144  0.183 
           
rs545854 
MSRA G>C 

G 0.820  0.836 
0.960 (0.65-1.41) 0.838 

 0.847 
0.878 (0.63-1.20) 0.425 

C 0.180  0.164  0.153 
           
rs9568856 
OLFM4 G>A 

G 0.882  0.866 
1.156 (0.75-1.77) 0.504 

 0.884 
0.985 (0.68-1.41) 0.935 

A 0.118  0.134  0.116 
           
rs10146997 
NRXN3 A>G 

A 0.818  0.860 
0.731 (0.49-1.08) 0.119 

 0.808 
1.07 (0.79-1.45) 0.645 

G 0.182  0.140  0.192 
           
rs9299 
HOXB5 T>C 

T 0.679  0.654 
1.122 (0.83-1.51) 0.453 

 0.687 
0.962 (0.74-1.23) 0.762 

C 0.321  0.346  0.312 
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rs12970134 
MC4R G>A 

G 0.749  0.815 
0.677 (0.47-0.96) 0.029 

 0.782 
0.829 (0.63-1.09) 0.183 

A 0.251  0.185  0.218 
           
rs17782313 
MC4R T>C 

T 0.781  0.817 
0.799 (0.55-1.14) 0.221 

 0.780 
1.005 (0.75-1.33) 0.972 C 0.212  0.183  0.220 

      

 

Abbreviations: SNP ID; single nucleotide polymorphism identification; OR, odds ratio; CI, confidence interval. 
*Phenotypic groups was determined using age and sex specific BMI cut-offs provided by the International Obesity Task Force (IOTF). 
Logistic regression was used to compare genotype distribution. p-values (asymptotic p-value for t-statistic) shown are for an additive model and are adjusted for age and 
sex. OR is shown for the minor allele.  
p-value significant (p<0.05) are in bold and italic.  
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5. Discussion  

 

Understanding the genetic basis of obesity in children could be used as a first step to develop 

possible preventive measures. Recent GWAS have identified many (more than 50) different genetic 

variants conferring susceptibility to obesity [57]. However, the modest association with the obesity 

risk observed for most variants implies that replication studies in different populations are required 

to detect and confirm such signals of association, eliminating false positives that may arise by chance 

or systematic bias. 

Focused on ten polymorphisms across the genome (located in or near the MSRA, TFAP2B, NRXN3, 

PPARGC1A, TMEM18, SEC16B, HOXB5, OLFM4 and MC4R genes), previously associated by GWAS 

with obesity-related outcomes in populations of European origin, we conducted a genetic association 

study to investigate their role in the susceptibility of obesity in a sample of Portuguese children. 

Using obesity-related quantitative traits to assess whether the genotypes predicts the trait value, we 

identified the MC4R rs12970134 loci nominally associated with several obesity-related traits, and two 

loci (PPARGC1A and MSRA) near nominally associated with at least one anthropometric parameter 

(Table 6.2). In addition, using logistic regression analyses, the MC4R rs12970134 polymorphism was 

found nominally associated (p=0.029) with the risk of obesity and the TFAP2B rs987237 

polymorphism showed borderline significant association (p=0.056) with the obese phenotype. Thus, 

this study highlights these four polymorphisms as potential genetic markers of the obesity phenotype 

in this Portuguese children sample. 

The MC4R gene is known to be the most common cause of monogenic obesity in extreme 

childhood obesity [63], but also its flanking genomic region has been the third strongest implicated in 

polygenic obesity. The expression of MC4R is restricted to the hypothalamus involved in food intake 

regulation [43]. Until now, several variations of this gene were established with BMI and/or waist 

circumference, showing an independent role in body variation. Polymorphisms rs12970134 and 

rs17782313, located 154 kb and 188 kb, respectively, downstream of the MC4R gene, were found 

associated with obesity and obesity-related traits in several studies in Asian and European 

populations, both in children and adults [95, 96, 128, 288, 289]. In the present study, nominal 

significant associations were found between MC4R rs12970134 and BMI, BMI Z-score and waist 

circumference (p<0.05), as also with the risk of obesity (p=0.029). However, our findings do not 
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replicate previous reports that show the minor A-allele associated with increased risk in BMI and 

waist circumference in children of European [95, 96, 128, 288, 290] or Asian [289] descent. Instead, 

in the present study, Portuguese children showed the minor rs12970134-A allele significantly 

associated with lower BMI (p=0.035), BMI Z-score (p=0.043), waist circumference (p=0.020), and also 

with a lower risk for the obesity phenotype (OR = 0.677; p=0.029). For this polymorphism, the minor 

A-allele frequency was 18.5% in the obese group versus 25.1% in the control group. For the second 

MC4R polymorphism, rs17782313, previous studies showed the C-allele associated with childhood 

obesity (increasing BMI in ±0.22kg/m2) [95], however, in the Portuguese children, no statistical 

association was found with any obesity-related trait. The haplotype analysis showed the MC4R 

rs17782313 / rs12970134 TG haplotype associated with the risk of obesity, confirming the potential 

role of rs12970134 major G-allele in the etiology of obesity in our sample of Portuguese children.  

A GWA scan meta-analysis conducted by Lindgren et al. [78] found that the G allele of the MSRA 

rs545854 polymorphism was associated with waist circumference (p=8.9x10-9) in adults. Bille et al. 

[214] also found significant association between this polymorphism and waist circumference (OR = 

1.08; p=0.02). In our study, nominal borderline significant associations with BMI (p=0.055) and BMI Z-

score (p=0.056) were observed. The biological function between MSRA locus and adiposity remain 

unclear [78]. 

PPARGC1A is a transcriptional co-activator that has been implicated in the regulation of genes 

involved in energy metabolism [291]. The Gly482Ser missense mutation (rs8192678), predicted by a 

G-to-A transition at position +1,564 in exon 8 of the PPARGC1A gene, was found associated with 

obesity indices in middle-aged women of a cross-sectional Austrian population [291] and with 

abdominal obesity in Chinese adults [292]. In our study, near nominal associations were obtained 

with weight (p=0.061) and waist circumference (p=0.093) for the 482Ser variant. 

The molecular function of the TMEM18 gene product is to bind DNA to suppress transcription; it 

could be differently expressed in the hypothalamus and is possibly involved in the regulation of 

feeding [293]. Polymorphism rs7561317, located about 22kb downstream of TMEM18, is the second 

best associated locus with BMI after FTO gene [63]. A GWA study conducted by Thorleifsson et al. 

[97] found that the rs7561317 GG genotype increases BMI in ±0.70kg/m2 and is associated with 

obesity. In the present study, significant associations were not found between any obesity-related 

trait and the TMEM18 rs7561317 polymorphism, however, our findings are directionally consistent 
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with previous studies conducted in children and adolescents, as the rs7561317 major G-allele was 

found marginally associated with the risk of obesity (OR = 0.706; p=0.092). 

 The TFAP2B gene is suggested to be involved in global adipocyte response to positive energy 

balance [78]. The minor G-allele of rs987237 polymorphism was previously found associated with 

increased waist circumference (p=1.9x10-11) and BMI (p=7.0x10-12) in a meta-analysis of 16 GWAS 

within adults of European ancestry [78]; and also in children it was found associated with increased 

waist circumference (p=3.5x10-2) and BMI (p=0.06) [290]. Our data in Portuguese children do not 

replicate previous findings while we observed a nominal borderline significant association of the 

major rs987237 A-allele with the risk of obesity (OR = 0.692; p=0.056). 

 In the present study, the major MC4R rs12970134-G and TFAP2B rs987237-A alleles showed, 

respectively, nominal and near-nominal significant associations with the risk of obesity, but the 

direction of effect was reverse when comparing to that in the original reports. Despite opposite 

direction on the effect of a risk allele is highly unlikely, this was observed in several studies including 

between different populations [294] but also inside a same population [295]. For the TFAP2B 

rs987237 polymorphism, the original significant association was found in adults [78], and to the 

authors knowledge, this study with Portuguese participants is the first replication report involving 

children. Therefore, the opposite direction of association for rs987237-A risk allele could be due to 

differences between children and adults regarding natural physiological differences. 

 All genes studied in this work are considered as candidates for the risk of developing obesity. 

Most of them are involved in homeostasis and energy metabolism, nevertheless the casual effect of 

these polymorphisms in the pathogenesis of obesity remains unclear. In the present study with 

Portuguese children, only the MC4R rs12970134 polymorphism showed nominal significant 

association (p<0.05) with obesity and most of obesity-related traits. In a previous study for the FTO 

gene using the same cohort of individuals [285], significant associations were also found between the 

rs9939609 minor A-allele and increased risk for several anthropometric traits, including weight 

(p=0.019), BMI (p=0.018), BMI Z-score (p=0.011) and waist circumference (p=0.016), in concordance 

with reports worldwide. Thus, both loci FTO and MC4R appear to play a key role in the obesity 

phenotype in Portuguese children. Most of the analyzed polymorphisms in this present study showed 

no nominal effects in obesity-related traits, but this difference with the previous findings may be due 

partly to the sample size, which may have been insufficient to replicate the original findings. The 
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estimated power of association observed ranges from 6% to 72%, but at least for MC4R rs12970134 

polymorphism, the variant most associated to obesity in our sample, the obtained power (72%) is 

close to values (≥80%) commonly considered sufficient to detect genetic variant interaction effects. 

 Among the 10 loci reported in this study, polymorphisms in or near MC4R, PPARGC1A, MSRA and 

TFAP2B genes could be assumed to play a role in the risk of obesity in this population sample of 

Portuguese children. While we could not replicate the original findings concerning the direction 

effect of the MC4R rs12970134 and TFAP2B rs987237 risk alleles our results deserve confirmatory 

studies in other populations. Moreover, our data may show that the polymorphisms provided here 

could play a modest role in the obesity etiology in children, at least when comparing with the FTO 

gene, suggesting the existence of others unknown loci involved in the obesity susceptibility. Our 

replication study could also have public health significance while genes playing an essential role in 

energy homeostasis, such as PPARGC1A or TFAP2B, suggested by our data as obesity-related genes, 

may be used as targets for obesity treatment. Further investigations in the near future regarding 

genetic associations and functional roles of these polymorphisms should be helpful to confirm its 

implication in the development of obesity and if they could be attractive targets for therapeutic 

agents. 
 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VII 
  

 Molecular screening for melanocortin-4 

receptor mutations in Portuguese 

severely obese children. 
  
 This chapter was partially based on the following 

original paper: Albuquerque D, Estévez MN, Víbora 
PB, Giralt PS, Balsera AM, Cortés PG, López MJ, Luego 
LM, Gervasini G, Hernández SB, Arroyo-Díez J, Vacas 
MA, Nóbrega C, Manco L, Rodríguez-López R. Novel 

variants in the MC4R and LEPR genes among severely 

obese children from the Iberian population. Ann 
Hum Genet 2014, 78(3): 195-207. 
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 1. Abstract 

Background: The melanocortin-4 receptor (MC4R) gene is the most common cause of monogenic 

obesity and could be a first step to unravel genetic causes of obesity. The aim of this study was to 

screen for MC4R gene mutations in a sample of Portuguese children with severe obesity. 

 

Methods: A total of 32 severely obese children from Portugal, with a BMI ≥ 99th (ranging 6-10 years-

old), were studied. The MC4R gene promoter and the entire coding region were analyzed by direct 

bidirectional sequencing. 

 

Results: Two MC4R gene mutations were found at heterozygous state: the previously described 

5’UTR single nucleotide polymorphism -178A>C (rs34114122), identified in a girl with a BMI Z-score= 

2.51; and the common missense mutation 307G>A (Val103Ile) (rs2229616) in the MC4R gene coding 

region, identified in a boy with a BMI Z-score= 2.60. The carrier frequency of the Val103Ile mutation 

in the study sample was (3.1%), similar to other studies in European populations (ranging 1 to 5%). 

No other pathogenic MC4R gene mutations were detected in our study sample. 

 

Conclusion: These results suggest that mutations in the MC4R gene might not be a common cause of 

severe obesity in Portuguese children. 
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 2. Introduction 

 

The melanocortin-4 receptor (MC4R) gene (OMIM 155541), located in the chromosome 

18q21.3, is composed by a single exon encoding for the 332-amino acid seven-transmembrane G-

protein-linked receptor, critically involved in regulating energy balance [42]. The MC4R gene is 

expressed mainly in the central nervous system, including the hypothalamus, and has been 

implicated in the regulation of food intake and energy expenditure [42, 296]. 

Deficiency in the MC4R activity associated with MC4R gene mutations is the most common 

cause of monogenic obesity, representing about 6% of severe human obesity [47]. In 1998, two 

independent groups report for the first time a mutation in MC4R gene, which abolishes the receptor 

function, associated with severe obesity [44, 45]. Until now, more than 150 mutations of this gene 

were described decreasing MC4R activity associated with human obesity, and usually classified into 

different classes depending of their molecular effects [41]. 

Most of study screenings of MC4R gene were focused in the coding sequence. Nevertheless, a 

few studies included the MC4R promoter region, which could be helpful to provide further insight in 

the identification of transcriptional mutations affecting MC4R gene expression [297–299]. 

The main goal of this study was to screen for mutations in the promoter and entire coding 

regions of MC4R gene in a sample of severely obese Portuguese children to determine possible 

genetic causes.  

 

 

 3. Material and Methods 

 

3.1. Study subjects  

In a previous study, 1433 Portuguese children were randomly selected from public schools, and 

classified using age and sex specific body mass index (BMI) cut-offs provided by the International 

Obesity Task Force (IOTF) [258]. A total of 32 unrelated children, with a severely obese phenotype, 

which pass the 99 percentile, were identified and selected to screen for mutations at the MC4R 

promoter and entire coding region. 



M o l e c u l a r  s c r e e n i n g  f o r  …  
 

 
123 

The study protocol was approved by Direção-Geral de Inovação e de Desenvolvimento Curricular, 

the ethical Committee of the Portuguese Ministry of Education (available at http://mime.gepe.min-

edu.pt/ with the identification number process: 0151100001), and was conducted in accordance with 

the institutional guidelines of the University of Coimbra. Written informed consent was previously 

obtained from the children´s parents. 

 

3.2. Anthropometric Measurements 

Height (cm) and weight (kg) were taken with participants dressed in lightweight clothing without 

shoes. Waist circumference (cm) was measured midway between the lowest rib and the iliac crest, to 

the nearest 0.1 cm after inhalation and exhalation. Hip circumference (cm) was measured at the 

point over the buttocks yielding the maximum circumference. The BMI was calculated with the 

weight in kilograms divided by the square of height in meters (kg/m2). 

 

3.3. Direct sequencing of the MC4R gene 

A buccal swab sample was collected from each sampled child for genetic studies. The genomic 

DNA was extracted from buccal swabs using the PureLink® Pro 96 Genomic DNA Kit (Invitrogen 

Corporation, Carlsbad, CA, USA), according to the instructions of the manufacturer. 

DNA was amplified by polymerase chain reaction (PCR), using primers and conditions previously 

published for the MC4R coding sequence [231], and primers 5’-CGCCTACAGCCCCTAACACT-3’ 

(forward) and 5-CCTCCTGGGTCAGGGAGT-3’ (reverse), for the promoter region. This primer pair was 

designed with the Primer3 software, v0.4.0 [228] (freely available in http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). 

Bidirectional sequence analysis of genomic DNA was performed in 32 unrelated children. 

Sequencing was performed on an ABI 3130 DNA Analyzer (Applied Biosystems, Foster City, CA, USA) 

using BigDye® Terminator v3.1 Cycle Sequencing Chemistry (Applied Biosystems, Foster City, CA, 

USA), according to protocols recommended by the manufacturer. Base calling was performed with 

Sequencing Analysis v5.2 (Applied Biosystems, Foster City, CA, USA). 

The sequences were analyzed with the Staden package software [232] and the SeqScape 

software v2.5 (Applied Biosystems, Foster City, CA, USA). The obtained sequences were compared 

with the standard MC4R gene sequence (ENSG00000166603). 
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3.4. Bioinformatics analysis 

For potential transcription factor binding site analysis the TFSearch software 

(http://www.cbrc.jp/research/db/TFSEARCH.html), was used based on the TRANSFAC database [300]. 

DNA sequences encompassing approximately 20bp upstream and downstream the polymorphic site 

were provided as input sequence data. Taxonomy matrix was entered as “vertebrate” and the 

threshold score was set at 85.0 for the analysis. For the missense variant, PolyPhen2 (Polymorphism 

Phenotyping v2) software, available online at (http://genetics.bwh.harvard.edu/pph2/) was used to 

assess the phenotypic effect [301]. The amino acid substitution is predicted damaging when the score 

is >0.95. 

 

 

4. Results 

A total of 32 severely obese (BMI≥99th) children from Portuguese origin were screened for 

mutations in the MC4R gene, including the promoter region. The characteristics of the sampled 

children are summarized in Table 7.1. Genomic DNA sequencing revealed two MC4R gene variations 

in two different subjects: the nucleotide change -178A>C (rs34114122) in the promoter region, found 

at heterozygous state in a 8 years-old girl with a BMI Z-score= 2.51 (Height: 128.4 cm; weight: 48.6 

kg); and the missense mutation c.307G>A (Val103Ile) in the coding region, found at the heterozygous 

state in a 6 years-old boy with a BMI Z-score= 2.60 (Height: 134.4 cm; weight: 42.7 kg). The Val103Ile 

(rs2229616) was previously described as a common variant, and the obtained frequency for 

heterozygous subjects in our sample was 3.1% (1/32), similar to previous studies from other 

European countries (Table 7.2). 
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Table 7.1. Characteristics of the sampled Portuguese children screened for MC4R mutations. 

Characteristics Children 

N 32 

Girls/Boys 11 / 21 

Age, years 8.4 ± 1.6 

Height, cm 135.2 ± 9.9 

Weight, kg 47.3 ± 11.2 

BMI, kg/m2  25.5 ± 2.6 

BMI Z-score* 2.3 ± 0.2 

Waist circumference, cm 77.8 ± 5.8 

Hip circumference, cm 89.0 ± 8.8 

WHR 0.87 ± 0.0 

 

Data are presented as mean ± standard deviation. 
Abbreviations: n, number of subjects; BMI, body mass index; BMI Z-score, body mass index standard deviation 
score; WHR, waist-to-hip ratio. 
*BMI Z-score was determined using age and gender specific BMI cut-offs provided by the International Obesity 
Task Force (IOTF). 

 

 

Bioinformatics analysis was used to predict the possible effect of the two identified variants in 

molecular pathway. For the promoter nucleotide change -178A>C, the TFSearch software used to 

screen for putative transcription factor binding sites, indicated an AML-1a binding site with 88.7 

score at the (ACCTCA) sequence when the minor C allele is present. Regarding the Val103Ile missense 

variant, analysis with the PolyPhen2 software indicates a low score (0.021) predicting non 

pathogenicity for this variant. 
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Table 7.2. Frequencies of obese individuals carrying the common Val103Ile missense mutation at 

heterozygous state among several populations. 

Population Cohort characteristics 
n 

(carrier/total) 
Frequency* Reference 

Sweden Unrelated probands 13/284 4.6% [302] 

UK Extremely obese adults 8/190 4.2% [303] 

Malaysia Obese adults 5/118 4.2% [304] 

Sweden Extremely obese adults 9/217 4.1% [305] 

France  
Morbidly obese adults and 
adolescents 

8/209 3.8% [231] 

European/USA Extremely/obese adults 5/140 3.6% [306] 

Serbia Obese adults 2/62 3.2% [307] 

Portugal Severely obese children 1/32 3.1% [308] 

France Morbid Obese adults 23/875 2.6% [309] 

UK HERTS cohort 28/1089 2.6% [299] 

Denmark Men with juvenile-onset obesity 18/750 2.4% [310] 

France Obese children 18/746 2.4% [309] 

Switzerland Severely obese adults 11/469 2.3% [311] 

Belgium 
Morbidly obese adults and obese 
children/adolescents 

5/218 2.3% [47] 

Germany Obese children 6/291 2.1% [312] 

Japan Extremely obese adults 1/50 2.0% [313] 

UK 
Children with severe early-onset 
obesity 

10/500 2.0% [314] 

France Severely obese children 1/63 1.6% [315] 

Germany Extremely obese children/ adolescents 13/808 1.6% [316] 

Italy Obese children/adolescents 4/240 1.6% [317] 

Germany 
Overweight and obese 
children/adolescents 

8/510 1.6% [318] 

Germany Extremely obese children/adolescents 4/306 1.3% [319] 

UK Probands with early-onset obesity 3/284 1.2% [314] 

Italy Obese children and adults 4/120 0.8% [320] 

Finland  
Children with early-onset obesity and 
adults obese 

2/308 0.7% [321] 

USA/France Severely obese adults and children  3/431 0.7% [297] 

Spain Obese adults 1/159 0.6% [322] 

Italy Obese children/adolescents 1/208 0.5% [323] 

USA Severely obese adults 0/47 0% [305] 

*Frequency of individuals with Val103Ile mutation / total number screened (%). 
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5. Discussion 

To our knowledge, this is the first study screening for mutations in the MC4R gene in a 

population sample of severely obese Portuguese subjects. The melanocortin-4 receptor deficiency is 

widely accepted as the most prevalent form of monogenic obesity [41]. Hence, in children whit early-

onset obesity, screening for mutations in the MC4R gene could be a first step to determine genetic 

causes of obesity. We screened the promoter 5’ untranslated region (5’UTR) and coding region of 

MC4R gene to investigate possible genetic causes in severely obese Portuguese children. 

Only one MC4R coding region sequence variation was found at the heterozygous state in a 

Portuguese obese subject: a G to A nucleotide transition at position 307 resulting in the amino-acid 

substitution valine (Val) to isoleucine (Ile) at codon 103 (Val103Ile). This missense mutation was first 

described in two obese British adults at the heterozygous state [303]. In our study, the frequency of 

the rare allele (103Ile) was 1.56% (1/64) and is in line with those reported in previous studies (Table 

7.2). No other mutations were found in the MC4R coding region of our study sample. 

Across world populations, carrier frequencies for the 103Ile in obese individuals range from 0% 

(Black women, USA) to 4.6% (Sweden) (sample size between 40 to 1100 subjects; see Table 7.2). Our 

study sample has a lower population size comparing with previous studies; nevertheless the 

frequency obtained for the Val103Ile carrier individuals is consistent with the findings in other 

European countries. In Southern Europe, carrier frequencies ranged between 0.6% (Spain) to 1.6% 

(Italy), and in Northern European countries this frequency is higher ranging from 1.6% to 4.6% 

(France, Belgium, Germany, UK and Sweden). 

Regarding this polymorphism there are inconsistent findings and ambiguous association with 

obesity in population studies making the functional effect unresolved. Gotoba et al. [303] presumed 

that this mutation was not related to obesity. Moreover, Rosmond et al. [302] has explicitly reported 

that individuals with the 103Ile allele have lower BMI, lower waist-to-hip ratio, and lower abdominal 

obesity. Geller et al. [324], in a sample comprising extremely obese children or adolescents and both 
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parents revealed a reduced transmission of the Ile103 allele to obese offspring: carrier individuals of 

the Ile103 allele have an approximately reduction of 1.6 kg of body weight in a 1.8-m-tall individual. 

A Genome-wide association study (GWAS) conducted by Meyre et al. [265] in a sample on early-

onset extreme obesity adults, found a negative association of the 103Ile polymorphism with obesity. 

Moreover, several case-control studies found similar 103Ile frequencies between extreme obese and 

non-obese individuals, consistent with previous studies showing no association with obesity [46, 231, 

304, 306, 314, 319, 325]. The low score obtained using the PolyPhen2 software (0.021) corroborated 

a benign effect for this amino acid substitution. 

A second nucleotide substitution, the -178A>C transversion, in the 5’UTR region of MC4R gene, 

located 178 nucleotides upstream of the initiation methionine codon, was identified at heterozygous 

state in one severely obese subject. This polymorphism was first described by Jacobson et al. [305] in 

Swedish obese subjects. This single nucletotide change (rs34114122) was described with a minor 

allele frequency of 1% (C-allele) in the general European population and 4% in Iberian populations 

(ENST00000299766). A study conducted by Alharbi et al. [299] found a rs34114122-C allele frequency 

of 0.01% in a UK population and they don’t found any effect on BMI. Another study conducted by 

Cole et al. [326] found this polymorphism at a minor allele frequency of 0.018% in the Hispanic 

population (USA) and concluded that rs34114122 likely has a functional effect on the appetite 

hormone ghrelin. Bioinformatics analysis indicates that -178A>C substitution creates one putative 

transcription factor binding site for AML-1a which might suggest functional significance. Thus, the 

possibility that this nucleotide change in the promoter region of MC4R could be implicated on the 

etiology of obesity cannot be discarded. 

This study is the first to screen for MC4R gene mutations in a sample of Portuguese children 

with severe obesity. Only two severely obese subjects shown sequence variations in a heterozygous 

state: the –178A>C substitution, in the MC4R promoter region, and the missense mutation Val103Ile, 

in the MC4R coding region. Further investigation about the obesity association and the functional 
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function of these two polymorphisms is needed to confirm its implication in the role of obesity. We 

conclude that MC4R gene could not be assumed as an important genetic cause of severe obesity in 

the Portuguese population. 
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1. Conclusions  

 

General conclusions from results presented in this study are summarized below. 

 

� In 2011, the prevalence of overweight and obesity among 6-12 years-old children from 

central region of Portugal was 33.0%, from which 10.7% were obese.  

These values represent an increase in the prevalence of overweight/obesity in Portuguese 

children in the last years: 

o Comparing these results with a previous study using data from 2002, we found a 

slightly higher prevalence in overweight/obesity (~1.5%), however, the prevalence of 

obesity decrease (~0.6%). 

o Prevention and campaigns awareness seems to be insufficient, and Portugal remains 

on the list of European countries with higher prevalence in children obesity. 

� The rs9939609 and rs1421085 polymorphisms located in the FTO gene in high LD (r2=0.82) 

were found associated with the risk of obesity (p=0.02 and p=0.01, respectively), also with 

obesity-related traits, weight, BMI, BMI Z-score and waist circumference (p<0.05 for both 

and all traits) in the Portuguese children. Concerning the rs1861868 polymorphism we 

found association with BMI, weight and waist circumference (p<0.05 for all traits), 

however, no association was found with risk of obesity (p=0.31). 

o When performing a Haplotype analysis (rs1861868-rs1421085-rs9939609), two 

combinations (ACA and GCA) were found associated with a higher risk of obesity 

(p=0.02 and p=0.03, respectively). 

� The -13910C>T polymorphism, located ~14 kb upstream of the LCT gene and associated 

with lactase persistence in European populations, may predispose to abdominal obesity 

however the association with BMI was not confirmed in our sample. 

� The MC4R rs12970134 polymorphism was found associated with BMI, BMI Z-score and 

waist circumference, and nearly associated with weight (p=0.05). An association with the 

risk of obesity was also found (p=0.02). 

� Near nominal association was found between the PPARGC1A rs8192678 polymorphism 

and weight (p=0.06). 
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� The MSRA rs545854 polymorphism was also nearly associated with BMI (p=0.055) and 

BMI Z-score (p=0.05). 

� The TFAP2B rs987237 polymorphism was found nearly associated (p=0.05) with the obese 

phenotype. 

� Regarding the association of MC4R rs12970134 and TFAP2B rs987237 polymorphisms the 

signal detected with obesity showed an opposite direction of effect to that previously 

found in other populations. This result was uncommon, but similar findings were found in 

several studies regarding other conditions. 

�  In our sample, 32 children were classified with morbid obesity (BMI ≥99th). We detected 

no mutations in the MC4R gene associated with this phenotype. However, we found a 

heterozygous individual with the Val103Ile common polymorphism, ranging similar 

frequency to that obtained in other European countries. We also found an heterozygous 

individual with the promoter substitution -178A>C previously described as a non-

pathogenic variant.  

 

Overall, the results gathered in the present study demonstrate the possible association of 

several genes with common obesity in a sample of Portuguese children. Our results also show that 

allele and genotype frequencies obtained were generally similar to those obtained in other European 

populations. 

This study is a significant contribution to the knowledge of the genetic susceptibility of obesity in 

Portuguese children, but could also to help in future meta-analysis studies clarifying which variants 

are truly associated with the predisposition to develop an obese phenotype. This study also helps to 

better understand the genetic diversity that could be associated with obesity in the Portuguese 

population and compare it with other populations. Further studies are needed with larger samples to 

elucidate the real association or not of polymorphisms found nearly associated with obesity. The 

polygenic obesity remains complex because it is determined by the interaction of multiple additional 

factors. Despite eight years of investigation in genetic association studies since the discovery of the 

FTO rs9939609 polymorphism, our knowledge about genetic predisposition to polygenic obesity 

remains unsolved. Today, several other mechanisms were identified as playing a role in obesity 
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predisposition. Epigenetics, nutrigenetics, microbiota, etc. are new promising research branches 

which may explain parts of the missing heritability. 
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