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ABSTRACT 

 

Dexamethasone (DEX) is an immunomodulator used in neonatal care to enhance fetal lung 

maturation in pregnancies at risk of preterm delivery. Despite of this clinical benefit for the 

newborn, DEX also causes unwanted effects in the central nervous system (CNS), namely 

behavioral changes (e.g. depression and hyper-anxious phenotype). DEX is a synthetic 

glucocorticoid with high affinity to glucocorticoid receptors, which are well known mediators of 

stress responses, becoming detrimental for the immature brain. In rodents, these behavioral 

changes were associated with several morphological and functional changes in neurons, such as 

an increase in the number of morphologically immature synapses. However, to date it was not 

clarified if these changes result from a direct neuronal effect or if they could be mediated by 

microglia. Since microglia are key player cells in neuroinflammatory processes, and DEX is an 

anti-inflammatory compound, it was intended to know if there was also an effect upon 

microglia, in particular in the morphology of these cells. Nevertheless, more than understanding, 

it would be desirable to prevent and/or rectify these unwanted effects in synaptic dysfunction 

and microglia reactivity. In this context, adenosine receptors emerged as potential 

pharmacological targets, namely adenosine A1 and A2A receptors (A1R and A2AR), taking into 

consideration their involvement in the pathophysiology of anxiety and depression, as well as in 

the control of microglia morphology and function. 

In the present study, a microglial cell line (N9 cells) was incubated with different 

concentrations of DEX (0.1 µM, 1 µM and 10 µM) during 3, 6, 24 and 48 hours, and the density 

of A1R, A2AR and glucocorticoid receptors (GR) was determined by western blot analysis of cell 

lysates. The same analysis was performed in brain extracts (prefrontal cortex, striatum, nucleus 

accumbens, hippocampus and amygdala) at postnatal day 1 and 7 in Wistar rats treated in utero 

with DEX 1 mg kg
-1

. The short- and long-term impact of DEX upon microglia morphology was 

evaluated through tridimensional reconstructions of microglia Iba-1 immunoreactivity in the 

prefrontal cortex of in utero DEX-treated rats at postnatal day 1, 7 and at 3 months age (young 

adult females). Anxiety-like profile was evaluated in young adult Wistar females by the elevated 

plus maze test.    

In the in vitro study performed in the cell line, DEX induced changes in the density of A2AR, 

an effect that was dependent on the concentration and exposure time to DEX. The ex vivo 

analysis of brain sections from in utero DEX-treated animals, the density of A1R, A2AR and GR was 

also affected in a manner dependent on the brain region and the age of the animal. The 

morphology of microglia was also affected by the prenatal DEX treatment, a long-term effect 
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that persisted until adult age. Adult animals exhibited a decrease in the number and length of 

microglial cell processes, although morphometric features of the cell body were not affected by 

DEX. Behavioral analysis confirmed that adult females treated in utero with DEX exhibit a hyper-

anxious phenotype.       

In conclusion, the present results indicate that besides neurons, antenatal DEX also affects 

microglia, namely in morphological features (cell processes) strictly implicated in the main 

function of these cells as sensors of the brain parenchyma homeostasis. These changes in 

microglial processes were observed immediately after birth and were not reversible, persisting 

up to adulthood. Importantly, both in vitro and ex vivo studies showed that DEX interferes with 

the adenosinergic system, an important regulator of microglia morphology and function, also 

involved in the pathophysiology of neuropsychiatric conditions, such as anxiety and depression. 

 

Key words: microglia, neurodevelopment, corticosteroids, adenosine 
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RESUMO 

 

A dexametasona (DEX) é um imunomodulador utilizado durante o período neonatal para 

promover a maturação pulmonar do feto em gravidezes de risco de parto prematuro. Apesar 

deste claro benefício para o recém-nascido, a DEX apresenta efeitos secundários a nível do 

sistema nervoso central (SNC), nomeadamente alterações comportamentais (ex. depressão e 

ansiedade). A DEX é um corticosteróide sintético com elevada afinidade para os recetores de 

glucocorticóides (GR), conhecidos mediadores de respostas relacionadas com o stress, sendo 

prejudiciais para o desenvolvimento do SNC. Em roedores, estas alterações comportamentais 

foram associadas a alterações morfológicas e funcionais dos neurónios, como por exemplo o 

aumento do número de sinapses imaturas. No entanto, até à data desconhece-se se os referidos 

efeitos resultam de uma ação neuronial direta da DEX ou se são mediados pelas células da 

microglia. Como a microglia é um importante mediador de respostas inflamatórias no SNC e a 

DEX é um composto anti-inflamatório, pretende-se clarificar se a microglia é afetada pela DEX, 

nomeadamente a nível morfológico. Mais do que tentar perceber estes efeitos, seria desejável 

prevenir e/ou reverter quer os efeitos a nível sináptico, quer a nível da reatividade da microglia. 

Neste contexto, os recetores da adenosina (em particular os recetores A1 e A2A, A1R e A2AR) têm 

potencial como alvos farmacológicos, uma vez que são importantes reguladores da morfologia e 

da função da microglia e estão envolvidos na fisiopatologia da depressão e ansiedade. 

No presente estudo, uma linha celular de microglia (células N9) foi exposta a diferentes 

concentrações de DEX (0.1 µM, 1 µM and 10 µM) durante 3, 6, 24 e 48 horas, e a densidade dos 

recetores A1R, A2AR e GR, foi determinada através de análise western blot dos lisados celulares. O 

mesmo tipo de análise foi realizado em extratos totais de regiões isoladas do cérebro (córtex pré-

frontal, estriado, núcleo accumbens, hipocampo e amígdala) em diferentes períodos de 

desenvolvimento (dias pós-natal 1 e 7), de ratos Wistar tratados in utero com uma dose de 1 mg 

kg-1 de DEX. O impacto da DEX na morfologia da microglia foi avaliado a curto e longo prazo 

através de reconstruções tridimensionais da microglia marcada com Iba-1. Esta análise foi 

realizada no córtex pré-frontal e em diferentes períodos de desenvolvimento (dias pós-natal 1 e 

7) e na idade adulta (fêmeas Wistar com 3 meses de idade). O perfil ansiogénico nas fêmeas 

adultas foi testado através do teste do labirinto em cruz elevado.   

Os estudos in vitro indicaram alterações na densidade dos recetores A2AR da microglia, 

alteração dependente da concentração de DEX utilizada e do tempo de exposição ao fármaco. 

No modelo animal foram detetadas alterações na densidade dos recetores em estudo após o 

tratamento pré-natal com DEX, sendo variáveis em função da região do cérebro e da idade do 
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animal. A nível morfológico também se observaram alterações na microglia, alterações que se 

mantiveram na idade adulta. Aos 3 meses de idade, a microglia apresentou um menor número 

de processos de menor comprimento, embora a análise morfométrica do corpo celular não tenha 

revelado diferenças entre o grupo tratado com DEX e o grupo controlo. Os resultados da análise 

comportamental confirmaram um perfil ansioso nos animais tratados in utero com DEX. 

Concluindo, os resultados apresentados indicam que, para além dos neurónios, a 

administração de DEX durante o neurodesenvolvimento também afeta a microglia, 

nomeadamente em parâmetros morfológicos (processos celulares) que suportam a principal 

função destas células enquanto sensores de homeostasia do parênquima cerebral. Estas 

alterações foram observadas imediatamente após o nascimento e persistiram até à idade adulta. 

Os estudos in vitro e ex vivo mostraram que, paralelamente a estas alterações, a DEX afetou o 

sistema adenosinérgico, importante regulador da morfologia e função da microglia, também 

envolvido na fisiopatologia de doenças neuropsiquiátricas, nomeadamente a ansiedade e a 

depressão. 

 

Palavras-chave: microglia, neurodesenvolvimento, corticosteróides, adenosina  
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On the front page: 

Schematic representation of a microglial cell manually reconstructed using Neurolucida 

software. The tridimensional image used for the reconstruction was acquired in the prefrontal 

cortex region of a young adult female Wistar rat (post-natal day 90) that received a unique 

dose in utero of dexamethasone (1 mg kg
-1

). 
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1. Introduction 

Microglia are supporting cells of the central nervous system (CNS) with innate immunity 

competences. In physiological conditions, microglia exert important functions as sensors of the 

brain parenchyma homeostasis (Davalos et al., 2005; Nimmerjahn et al., 2005), in order to assess 

deviations from normality eventually requiring a rectifier intervention. Microglial cells regulate 

neuronal activity, by interacting with neuronal cellular compartments, namely the synapse (for a 

review see, e.g. Kettenmann et al., 2013). In non-physiological conditions, microglial cells are 

known to respond to an insult/damage, by changing cell shape (e.g. Gyoneva et al., 2014), 

migrating to the affected area (Duan et al., 2009), phagocytosing dead or dying neurons, cell 

debris and extracellular components (Brown and Neher, 2014), as well as secreting inflammatory 

mediators (e.g. Frank et al., 2007). Reestablished brain homeostasis, microglia re-acquire the 

original ramified morphology and survey the brain parenchyma by expanding and retracting 

processes (reviewed in Tremblay et al., 2011). Of note, the dynamic of extension and retraction 

of processes is under the control of purines, in particular adenosine (Gyoneva et al., 2009; 2014; 

Orr et al., 2009). 

 

1.1. Microglia 

Microglia are the resident immune cells of the CNS and play an important role during 

neurodevelopment and in adulthood. These cells were first distinguished from other CNS cells by 

Ramón y Cajal, that classified microglia as the ‘third element’ due to the morphological 

differences when compared with neurons and astrocytes (Cajal, 1913). However, the term 

‘microglia’ was first used by del Rio Hortega, a student of Ramón y Cajal, around 1920. Del Rio 

Hortega distinguished microglia from oligodendrocytes and characterized their response and 

morphology in brain lesions. Much of what we know about microglia is due to del Rio Hortega 

and, for this reason, he can be considered the ‘father of microglia’ (Del Rio Hortega, 1937; 

Kettenmann et al., 2011).  

In contrast to the other CNS cells, microglia are from a hematopoietic origin and colonize 

the brain during the embrionary period (Dalmau et al., 1997). During brain development, which 

is a period of remarkable plasticity with the formation of new synapses, microglia exert 

important functions in the elimination of supra-numerary or unwanted synapses, but also in the 

formation and maturation of new synapses (Kettenmann et al., 2013).  
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1.1.1. Microglial brain colonization and relevant morphological and physiological 

characteristics during neurodevelopment 

 

a) Colonization 

Microglial cells are derived from mesoderm (primary germ layer localized between 

ectoderm and endoderm) and take up residence in the brain during early fetal development 

(Kaur et al., 2001). These cells share similar properties with macrophages, namely the 

haematopoietic origin (derived from mesoderm) and the expression of macrophage-associated 

markers (e.g. ionized calcium binding adaptor molecule 1 (Iba1) and cluster of differentiation 

molecule 11b (CD11b); Saijo and Glass, 2011).  

The initial colonization of the CNS by microglia is related with the development of the 

vascular brain system, following a caudal-cephalic gradient (for review, see Harry and Kraft, 

2012). Furthermore, there is evidence that microglia can also entry in the brain by alternative 

routes, such as the brain ventricles and meninges (Dalmau et al., 2003). In humans, brain 

colonization by microglia starts between 13-24 weeks of gestation (gestation period: 36 weeks), 

which is more or less equivalent to mice, where it occurs around the gestational day 9.5 (GD 

9.5). In rats, migration starts slightly later, around GD 15-16 (gestation period: 21 days), and 

microglia acquire a more ramified and differentiated phenotype (GD 18-19) earlier than in 

humans and mice (Harry and Kraft, 2012).           

Microglial amoeboid cell precursors migrate through the developing brain, proliferate and 

become ramified, originating mature microglia, as present in the adult brain. Only a percentage 

of microglial cell precursors persist and differentiate into ramified microglia, indicating that a 

large number of primitive microglial cells die during the process of colonization (Chan et al., 

2007). Quantitative studies have shown that there is a significant expansion of the microglial cell 

population from PND 6 to PND 9 in the CNS, resultant from the proliferation of amoeboid 

microglia and primitive ramified cells. Microglial proliferation peaks coincide with the period of 

maximal dendritic growth, synapse formation and myelination. On the other hand, the reduction 

of microglia observed between PND 9 and PND 18 coincides with a period of maturation of the 

cytoarchitecture of most brain regions. Taking out these periods of high proliferation and 

subsequent decrease, microglia maintain a relatively constant density during development 

(Figure 1.1.; Dalmau et al., 2003).  

The colonization and maturation of microglia during development is gender-dependent; 

hormonal secretion in the neonatal brain interferes with microglia and there are differences in 
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the number and in the function of microglia between males and females during development 

(Schwarz et al., 2012b). These differences disappear at PND 17 in all brain regions analyzed 

(Schwarz et al., 2012a,b).   

 

 

Figure 1.1| Microglial population growth in the developing brain. After colonization, primitive microglia migrate 

through the brain and proliferate. Therefore, not only the entrance via blood vessels, ventricles and meninges are 

important for the establishment of mature resident microglia, but also cell division during pre-natal and post-natal 

periods account for this stability. Meanwhile, many of these cells die by apoptosis. AM, amoeboid microglia; PRM, 

primitive ramified microglia; RM, resting microglia; bv, blood vessels; CNS, central nervous system (Dalmau et al., 

2003).  

 

b) Morphology 

The morphology of microglia during development is different from the adult healthy brain. 

Microglial cells in the developing brain are round and slightly ramified, more similar to adult 

amoeboid microglia, typically associated with an ‘activated’ profile, in which cells appear more 

round-shaped and with small processes. The diverse morphological phenotypes that can be 
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found in the developing brain, as well as the respective ages where they are present, is 

summarized in Table I.i (Dalmau et al., 1998a).       

  

Table I.i| Classification of the morphological types of microglial cells in the post-natal rat hippocampus. AM, 

amoeboid microglia; PND, postnatal day (Dalmau et al., 1998a). 

TYPE OF CELL SHAPE CELL PROCESSES DIAMETER 
TIME COURSE OF 

APPEARANCE 
CELL MORPHOLOGY 

AM type 2 Round 
None occasional 

filopodia 
15-20 µm 

PND0-PND9, 

scarcely at 

PND12 
 

AM type 3 Pleomorphic 
Filopodia and/or 

pseudopodia 
15-50 µm 

PND0-PND9, 

some at PND15 
 

Primitive 

ramified 

microglia 

Oval to slightly 

elongated 

Scantly 

developed 

processes 

showing a 

beaded shape 

50-75/80 µm 

PND0-PND12, 

some at PND15 

and rarely at 

PND18 
 

‘Resting’ 

microglia 
Oval to roundish 

Fully developed 

processes 
85-100 µm 

Some at PND12, 

PND15-PND18 

 

Reactive-like 

microglia 

Large, plump, 

round to oval 

Retracted, 

coarse processes 
40/50-80 µm 

Mainly from 

PND9 to PND18 

 

 

Morphological maturation of microglia starts during the period of spine formation, 

suggesting that these cells may be actively involved in synaptogenesis, which in turn may also 

influence the arrangement of microglial cells in different sub-regions (Dalmau et al., 1998a). 

Differentiation processes are also accompanied by changes in the expression of purine-related 

enzymes in microglia, namely 5’Nase and PNPase (Dalmau et al., 1998b).  

Microglial precursor cells colonize the brain presenting a round shape, without 

cytoplasmatic projections with the form of little spikes. Later in development, amoeboid 

microglia start to acquire filopodia and pseudopodia (temporary cytoplasmatic projections), 
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gradually assuming the so-called primitive ramified microglia (PRM) profile, that represent the 

intermediate form of the differentiation process between amoeboid and ramified, mature 

microglia (Dalmau et al., 2003).  

    

c) Function  

 

During development, microglia is mainly located within the neuropil layers, which are 

regions enriched in synaptic elements and with low number of cell bodies (e.g. neocortex and 

olfactory bulb) (Dalmau et al., 1997). This suggests that these cells, alone or in coordination with 

other glial cells, namely astrocytes, may play a role in synaptogenesis. Indeed, it was recently 

shown that microglia, besides the known role in developmental synapse phagocytosis, also 

contribute to the formation/maturation of new synapses (Cristóvão et al., 2014; Lim et al., 2013; 

Parkhurst et al., 2013). Studies performed by Paolicelli and collaborators (2011), have shown 

that microglia can engulf and eliminate synapses during normal brain development, by a process 

called synaptic pruning, and deficient synaptic pruning results in an excess of dendritic spines 

and increase of immature synapses. Synaptic pruning is a regulatory process that facilitates 

structural changes in neurons and synapses, and occurs during late development until sexual 

differentiation in humans (Iglesias et al., 2004).  

In summary, microglia have an important role in the support of neurons and 

formation/maintenance or elimination of synapses during development. Thus, any interference 

with microglia during neurodevelopment is prone to impact on brain functioning and health, 

consequences that may last throughout life.    

 

  

1.2. Corticosteroids 

Corticosteroids are hormones naturally produced in our body and induce a variety of cellular 

and organic responses (e.g. immune response, energy metabolism, behavior). However, in some 

situations, such as at risk of premature delivery, exogenous corticosteroids can be prescribed to 

promote lung maturation of the fetus. Exogenous corticosteroids negatively impact on the 

developing brain, and may have implications for the newborn at school age, such as higher 

susceptibility for depression and pathological anxiety (Yeh et al., 2004).  

Corticosteroids are divided in two groups: glucocorticoids (GC) and mineralocorticoids (MC), 

which act selectively through the activation of receptors, glucocorticoid receptors (GR) and 

mineralocorticoid receptors (MR), respectively. These receptors are mainly localized at the 
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cytoplasm, and their activation requires the access of the hormone to the intracellular milieu. In 

the brain, GR are widely distributed, being more abundant in hypothalamic neurons and 

pituitary cells that produce melanocyte-stimulating hormone, adrenocorticotropic 

hormone (ACTH) and lipotropin. MR are not so spread in the brain as GR; however, they can be 

found in higher concentrations in the hippocampus and brain stem (De Kloet et al., 1998).  

The affinity for MR and GR varies according to the circulating levels of corticosteroids, being 

MR preferentially activated in basal conditions, while both MR and GR are activated in situations 

characterized by an increase corticosteroids levels, such as stress conditions.  

Stress is a state that results from an adverse or demanding circumstance. In stress 

conditions, occurs the release of GC (in humans, cortisol) from the adrenal gland, subsequent to 

the activation of the hypothalamic-pituitary-adrenal (HPA) axis. Briefly, the cascade of events 

begins with the release of the corticotrophic releasing hormone (CRH) in the paraventricular 

nuclei of the hypothalamus. This hormone acts on the anterior pituitary, stimulating the release 

of adrenocorticotrophic hormone (ACTH) into the circulatory system. ACTH then stimulates the 

biosynthesis and release of GC, namely cortisol. In order to prevent deleterious effects of 

chronic exposure to GC, HPA axis is protected by a negative feedback loop whereby cortisol 

binds to receptors in the pituitary gland and hypothalamus, as well as in the hippocampus and in 

the prefrontal cortex, inhibiting or turning of HPA axis response (Figure 1.2; Waffarn et al., 2012).              

 

Figure 1.2| Hypothalamic–pituitary–adrenal axis. In stress conditions, the hypothalamus releases CRH, which 

stimulate the anterior pituitary gland to secrete ACTH. This hormone will enter in the bloodstream and induce the 

release of cortisol by the adrenal glands. CRH, corticotrophic releasing hormone; ACTH, adrenocorticotrophic 

hormone (Waffarn et al., 2012). 



Introduction 

 

9 

 

 

In situations of chronic stress, there is a disruption of the HPA axis. The increase of GC leads 

to an increase of GR activation, with consequences for brain structure and function (McArthur et 

al., 2005). Higher activation of GR affects the induction of long-term potentiation (LTP), impairs 

cognitive performance and causes atrophy of neuronal dendrites, which results in the reduction 

of hippocampal and prefrontal cortex (PFC) volume (Figure 1.3.). Hippocampus (HIP) is a critical 

brain region for learning and memory, while prefrontal cortex is involved in anxiety, mood, 

cognitive function and behavioral control (Cerqueira et al., 2005; Cerqueira et al., 2007; 

Cerqueira et al., 2008). The connection between HIP and PFC occurs by pyramidal cells of the 

subiculum and ventral CA1 regions of the hippocampus that travel through the fimbria fornix 

system until the prefrontal cortex, where they establish glutamatergic contacts with pyramidal 

cells and interneurons. This connection has particular importance in cognition, as well as in the 

regulation of HPA axis (Sousa et al., 2008). The activity and plasticity of these two regions, in 

particular, may have a role in the physiology and behavior in situations of chronic stress (Sousa 

et al., 2008; Oliveira et al., 2013). Chronic stress may progress to a more severe condition, 

resulting in psychiatric disorders, such as depression and pathological anxiety. 

 

 

←Figure 1.3| Impact of chronic stress in the hippocampus and prefrontal cortex. Changes in GR activation will 

trigger cellular and molecular changes in these regions, and leading to behavioral impairment. HPA axis, 

hypothalamic–pituitary–adrenal axis; GR, glucocorticoid receptors; LTP, long-term potentiation; HIP, hippocampus; 

PFC, prefrontal cortex (Sousa et al., 2008). 
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1.2.1. Impact of the administration of exogenous corticosteroids for brain wiring and function 

 

Exogenous corticosteroids are usually prescribed to pregnant women in late gestation at 

risk of preterm delivery to help pulmonary maturation of newborns, reducing the risk of 

morbidity and mortality by respiratory distress syndrome (Brownfoot et al., 2013). One of the 

corticosteroids prescribed is dexamethasone (DEX; Romagnoli et al., 1999), a synthetic 

glucocorticoid with anti-inflammatory and immunosuppressant properties. Despite the benefits 

for the newborn in terms of respiratory function, DEX has also demonstrated unwanted side 

effects for the newborn. Children exposed in early stages of development, have increased 

susceptibility to develop cardiovascular, metabolic and auto-immune disorders, as well as 

neuropsychiatric abnormalities, such as depression and pathological anxiety (Yeh et al., 2004; 

Nagano et al., 2008; Purdy et al., 2013). 

DEX has affinity for glucocorticoid receptors, rather than for mineralocorticoid receptor 

(Sorrels et al., 2009). Most negative brain effects of DEX have been attributed to the selective 

activation of GR (Mesquita et al., 2009; Yu et al., 2010). Their small size and high lipophilicity 

allow them to cross the placenta and easily access the brain, increasing glucocorticoid levels, 

which impact on the developing brain (Mesquita et al., 2009). The impact of these insults during 

development and the persistence throughout life is largely influenced by the embryonic stage 

where DEX is administrated, and also by the number and interval between treatments (Rice et 

al., 2000). On the other hand, sex steroids, such as testosterone, also have an impact in the 

developing brain: males are more susceptible to more severe neuropsychiatric conditions in a 

more premature phase, while females are more likely to be diagnosed with disorders, typically 

later in life (Schwarz et al., 2012b).  

Studies using pregnant Wistar rats that received a single dose of DEX in the last third of 

pregnancy have shown that male progeny display an anxious phenotype and signs of impaired 

GC negative feedback in adulthood (Oliveira et al., 2006; Mesquita et al., 2009). In addition, 

prenatal DEX treatment does not affect the litter size or the sex of the progeny that received in 

utero DEX (Oliveira et al., 2006; Roque et al., 2011). 

At cellular and molecular levels, animals prenatally treated with DEX also have a significant 

reduction in the volume and number of cells in the nucleus accumbens (Nacc), a component of 

the mesolimbic reward circuit, including a reduction of dopaminergic enervation (Leão et al., 

2007; Oliveira et al., 2012). It was also observed that glucocorticoids have an impact upon 

neuronal differentiation and migration during critical phases of neurodevelopment (Fukumoto et 

al., 2009). In the hippocampus, the adult progeny have a significant impairment in the spatial 

learning and long-term potentiation (LTP) and in the volume and number of cells and synaptic 
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contacts. Prenatal treatment with DEX also impairs PFC (Diaz et al., 2010). In addition, the HIP-

PFC pathway is also affected by chronic stress exposure (Sousa et al., 2008). Furthermore, it was 

also reported that antenatal exposure to GC reduces the expression of the serotonergic receptor 

5-HT1A, with impairment for the cognitive, learning and memory behaviors (Van den Hove et al., 

2006), indicating that a variety of neurotransmitter systems and signaling cascades are affected 

by DEX.  

    

 

1.2.2. Impact of corticosteroids upon microglia 

 

Microglia are immunocompetent cells of the CNS, with an important function in synapse 

formation and/or removal, as previously stated, particularly during development. On the other 

hand, corticosteroids are well known for their anti-inflammatory and immunosupressive 

properties. However, the role of corticosteroids in inflammatory processes in the brain is not 

consensual; corticosteroids can increase or decrease neuroinflammation (Sorrells et al., 2009; 

Carrillo de Sauvage et al., 2013).  

One of the factors that may determine the response of microglia is the origin of the 

corticosteroids, i.e., if they are naturally produced or synthetic. This distinction is crucial because 

natural and synthetic GC have different receptor binding affinities. Natural GC, such as cortisol 

and corticosterone, have high affinity to corticosterone-binding globulin (CBG) and only a small 

percentage of unbound GC cross the blood-brain barrier (BBB) and cell membranes. Once in the 

cytoplasm, natural GC can bind not only to the GR but also to the MR, which affinity is higher 

and the effects are not so severe as compared with synthetic compounds. Synthetic GC, namely 

DEX, do not bind to CBG and MR, and have a stronger affinity to GR. Thus, the effects of 

synthetic GC are much stronger than natural GC. Both activated MR and GR cross the nucleus, 

where they mediate changes in gene transcription. In combination, they can produce an 

‘inverse-U’ pattern, where the effect produced is the opposite between basal and elevated GC 

levels (Sorrells et al., 2009). 

Another factor that can interfere with the inflammatory response to DEX are brain regional 

differences in GR and MR expression. For example, GR activation during chronic stress increases 

TNF-α, IL-1β and iNOS expression in the HIP and frontal cortex upon bacterial lipopolysaccharide 

(LPS) administration, while in the hypothalamus there is a decrease of these factors (Munhoz et 

al., 2006). In the particular case of frontal cortex, GR signaling seems to be essential for chronic 

stress, as demonstrated by the administration of GR inhibitors during chronic stress (De Pablos 

et al., 2006).   
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Inflammatory responses can also be influenced by the duration of the exposure to the GC 

(acute, subacute or chronic), by the administered dose and by the exposure time. Finally, the 

nature of the inflammatory response triggered by DEX may also be affected by factors such as 

species, strain, gender, age, circadian rhythm, immune challenge used and the outcome 

measured (Sorrells et al., 2009).          

In stress conditions, microglia exhibit a pro-inflammatory profile, becoming ‘activated’, i.e., 

retracts their processes and acquire an amoeboid shape. They also release pro-inflammatory 

cytokines, such as interleukin-1β (Nair et al., 2006; Frank et al., 2007). Moreover, another study 

indicated that GC inhibit reactive oxygen species (ROS) production, as well as nitric oxide (NO) 

species in microglial activated by LPS (Huo et al., 2011). However, corticosterone exposure, a 

nonselective corticosteroid, after a stress condition reverses the pro-inflammatory profile of 

microglia (Sugama et al., 2013).  

 

 

1.3. The adenosinergic system 

 

Purines, namely ATP and adenosine, are molecules that can act in the brain as 

neurotransmitters or neuromodulators, through the activation of purinergic receptors. 

Adenosine is an endogenous compound, widely present in the brain, which belongs to the 

purinergic family. It is an important neuromodulator that regulates neuronal functions (Dias et 

al., 2013), as well as microglial responses (Haskó et al., 2005). To date, four subtypes of 

adenosine receptors were identified and cloned: A1R, A2AR, A2BR and A3R, with distinct 

pharmacological and functional properties (Fredholm et al., 2001; Pedata et al., 2001).  

The formation of adenosine in the brain occur both intracellularly, being released by 

bidirectional nucleoside transporters (Cunha, 2008; Latini and Pedata, 2001), as well as 

extracellularly, by nucleotides metabolism, through the activity of ecto-nucleotidases (Latini and 

Pedata, 2001). Adenosine can be degraded to adenosine monophosphate (AMP) by 

phosphorylation by adenosine kinase (AK), or to inosine, by adenosine deaminase (ADA). 

Adenosine can also be degraded through a minor pathway that corresponds to the reversible 

reaction catalysed by S-adenosyl homocysteine (SAH) hydrolase, originating SAH from L-

homocysteine (Fredholm et al., 2001). 

 Adenosine receptors have seven-transmembrane domains and are coupled to G-proteins 

(Stiles, 1992). They can be pharmacologically differentiated based on the respective signaling 

pathway: A1R and A3R are usually coupled to Gi/o proteins, mediating the inhibition of adenylate 

cyclase, while A2AR and A2BR are typically coupled to Gs/o proteins, stimulating adenylate cyclase 
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and increasing cyclic adenosine 5’-monophosphate (cAMP; Fredholm et al., 2007; Figure 1.4.). The 

affinity of these receptors to adenosine is variable and the activation is determined by the 

concentration of adenosine, that varies under pathophysiological conditions and in general 

neuronal activity (Fredholm et al., 2001). In addition, A1R and A2AR are high affinity receptors; for 

this reason, are more relevant in physiological conditions in the brain. 

   

  

Figure 1.4| Adenosine formation and respective molecular pathways. A1R and A3R are coupled to Gi proteins, mainly 

performing an inhibitory function, while A2AR and A2BR are coupled to Gs stimulatory proteins. ATP, adenosine 

triphosphate; AMP, adenosine monophosphate; E-NPP, Ecto-nucleotide pyrophosphatase/ phosphodiesterase; CD73, 

cluster of differentiation 73 or ecto-5’-nucleotidase; A1, adenosine A1 receptor; A2A, adenosine A2A receptor; A2B, 

adenosine A2B receptor; A3, adenosine A3 receptor; Gi, guanosine nucleotide binding protein with inhibitory function; 

Gs, guanosine nucleotide binding protein with stimulatory function; cAMP, cyclic adenosine monophosphate; Ca
2+

, 

calcium ion; K
+
, potassium ion (adapted from Sperlágh et al., 2007; Landolt et al., 2012).  

 

Among adenosine receptors, A1R are the most abundant and widespread receptors in the 

adult rodent brain. They are not homogeneously distributed and their abundance depends on 

the brain region; it is highly expressed in the brain cortex, cerebellum, hippocampus, and dorsal 

horn of the spinal cord. A2AR are highly expressed in the striatum and olfactory bulb and less 

expressed in the other regions (Ribeiro et al., 2003; Figure 1.5.). In addition to neurons, in 

particular nerve terminals, both A1R and A2AR can also be found in other CNS cells, namely 

microglia and astrocytes. 
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Figure 1.5| Distribution of adenosine A1 and A2A receptors in the adult rat brain (sagital view). Depending on the 

brain region, high levels of adenosine A1R and A2AR are indicated by bigger alphabets, while low levels are indicated 

with smaller alphabets. A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor (adapted from Ribeiro et al., 2003). 

 

 

Microglia are equipped with all adenosine receptor subtypes and their functions are mainly 

related with the control of the innate immune response (Daré et al., 2006).  

A2AR control the synthesis and release of different inflammatory mediators: nerve growth 

factor (NGF), brain-derived neurotrophic factor (BDNF; Gomes et al., 2013), cyclooxygenase-2 

(COX-2), prostaglandin E2 (PGE2) and nitric oxide (NO; Saura et al., 2005). Furthermore, A2A 

receptors are responsible for the retraction of the microglial processes in chronic inflammation 

underlying pathological conditions (Orr et al., 2009; Gyoneva et al., 2009, 2014).  

Activation of A2AR by adenosine or by an agonist (e.g. CGS21680) regulates the transcription 

and de novo synthesis of diverse subtypes K
+
 channels, via cAMP and protein kinase C (PKC) 

pathways, and the expression of the subtype Kv1.3 of K
+
 channels. This mechanism participates 

in the transition of the ‘resting’ state to the ‘active’ form on microglia (Kettenmann et al., 2011; 

Saijo and Glass, 2011).  

In addiction, is also known that the activation of A2AR can be dependent on glutamate 

levels, going from an anti-inflammatory to a pro-inflammatory action (Dai et al., 2010).  

Main functions of microglial adenosine receptors are listed in Table I.ii (Domercq et al., 2013). 
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Table I.ii| Function of microglial adenosine receptors. A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; 

A2BR, adenosine A2B receptor; A3R, adenosine A3 receptor.  

RECEPTOR FUNCTION REFERENCES 

A1R 
Anti-inflammatory properties  

Prevention of neuropathic pain 

Haselkorn et al., 2010 

 Luongo et al., 2012 

A2AR 
Process retraction 

 Microglial activation 

Orr et al., 2009 

Yao et al., 2012 

A2BR Anti-inflammatory properties; release of IL-10 Koscsó et al., 2012 

A3R Process extension and migration Ohsawa et al., 2012 

 

 

The presence and expression of A1R and A2AR in the neonatal brain was already studied. 

Experiments carried out by Weaver in the 1990s, have shown that A1R and A2AR are expressed at 

GD 14, soon after the first sets of neurons complete neurogenesis (Weaver, 1993 and 1996).  
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2. Rationale and aims of the study 

Dexamethasone (DEX) is a synthetic GC clinically used in neonatal care to prevent 

respiratory distress in pregnancies at risk of preterm delivery. Despite this benefit for the 

newborn, DEX also causes unwanted effects in CNS, namely neuropsychiatric disorders (e.g. 

anxiety and higher susceptibility to depression; Roque et al., 2011). The cellular and molecular 

mechanism by which DEX induces these neuropsychiatric abnormalities is not already known. 

A recent study from Rodrigues and collaborators (Rodrigues et al., 2012), indicates that these 

neuropsychiatric phenotypes are related with structural changes in neurons, namely an 

increase in the number of immature synapses. Microglial cells, which are key players in CNS 

inflammatory events, also have the potential to interfere with synapse formation when primed 

by immunomodulators (Cristóvão et al., 2014).  

Based on these evidences, the main goal of the present study is to understand whether 

microglia of the progeny is affected by DEX administered during gestation, and if this could be 

paralleled by an anxious phenotype later in life. Considering the described crosstalk between 

corticosteroids and adenosine, the ability of adenosine receptors to control microglial 

functions and the ability of adenosine receptors modulation to interfere with neuropsychiatric 

disorders (Gomes et al. 2011), another goal of the present work is to verify if DEX alters A1R 

and A2AR density in different regions of the brain. 

To address these questions, I will use an in vitro model, in order to analyze the ability of 

DEX to selectively interfere with microglia, namely in the density of microglial adenosine and 

glucocorticoid receptors. After clarifying the ability of DEX to modulate microglial A2AR, which 

are known to regulate microglial processes dynamic (Orr et al., 2009), I will switch to an ex vivo 

model to analyze the impact of DEX upon microglia morphology, with particular focus on the 

morphometric analysis of cellular processes. This analysis will be performed at different ages, 

culminating at adulthood, where DEX-induced neuropsychiatric consequences are studied by 

behavioral analysis.  

Although A1R and A2AR mapping will be performed in different brain areas, the main focus 

will be given to the PFC, which is critically involved in stress, anxiety and depression. 
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3. Experimental Procedures 

3.1. Cell cultures and pharmacological treatment 

An immortalized mouse microglial cell line, N9 (a kindly gift from Professor Claudia 

Verderio, National Research Council, Neuroscience Institute, Cellular and Molecular 

Pharmacology, Milan, Italy), was used to test the impact of dexamethasone (DEX) in the 

corticosteroid and adenosinergic systems of microglia. This cell line was left to grow in Roswell 

Park Memorial Institute (RPMI) medium, pH 7.2, supplemented with 5% Fetal Bovine Serum 

(FBS) heat-inactivated, 1% streptomycin and penicillin (GIBCO, Porto, Portugal), 23.8 mM 

sodium bicarbonate buffer and 30 mM glucose (Sigma, Sintra, Portugal), and maintained at 

37°C in a humidified atmosphere containing 5% carbon dioxide (CO2) and 95% oxygen (O2; 

Gomes et al., 2013). Once reached the adequate confluence (70-80% of the total area of the 

culture flask), N9 cells were detached from the culture flasks (75 cm
2
, Corning, USA) by 

trypsinization (0.12% trypsin and 0.02% ethylenediamine tetraacetic acid (EDTA) in phosphate 

buffered saline (PBS), pH 7.4) followed by a step of trypsin inactivation by the action of serum 

included in the culture medium. Then, the number of cells in suspension was estimated by 

using a hemocytometer, which required previous cell staining  with the vital dye trypan blue 

(Sigma, Portugal). Cells were cultured in 6-well plates in the density of 2.5x10
5
 cells per well in 

a final volume of 1.5 mL of RPMI medium. After a 24h period of cell stabilization, different 

concentrations of DEX (0.1 µM, 1 µM and 10 µM; see section 3.1.5.) were added to the culture 

medium for different periods (3, 6, 24 and 48 hours). Completed the incubation time, cells 

were lysed with radio-immunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl, 150 mM 

sodium chloride (NaCl), 1% IGEPAL (NP-40; v/v), 0.5% sodium deoxycholate (w/v), 1 mM 

ethylenediaminetetraacetic acid (EDTA), 0.1% sodium dodecyl sulfate (SDS; w/v)) 

supplemented with protease inhibitors 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 µg mL
-1

 

CLAP, 1 mM sodium ortovanadate and 1 mM sodium fluoride (NaF), and total extracts were 

collected and stored at -20°C. 

 

3.1.1. Tetrazolium viability assay 

The metabolic activity of N9 cells exposed to DEX (0.1 µM, 1 µM and 10 µM) during 24h 

was evaluated by the quantification of the enzymatic reduction of tetrazolium salt (MTT; 3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; Mosmann, 1983). Cells were 

washed with Krebs solution (132 mM NaCl, 4 mM KCl, 1.4 mM MgCl2.6H2O, 1 mM CaCl2.2H2O, 

6 mM D-glucose, 10 mM HEPES, 10 mM NaHCl3, pH 7.4) previously heated at 37°C, and 
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incubated with MTT solution (0.5 mg/mL diluted in Krebs solution; Sigma, Portugal) during 45 

min at 37°C in a humidified atmosphere containing 5% CO2 and 95% O2. The reduction reaction 

resulted in the formation of purple formazan crystals, that were dissolved in 0.04 M HCl (in 

absolute isopropanol). Cell viability was obtained by the difference between the absorbance of 

viable cells that absorbed at 570 nm and non-viable cells at 620 nm.  

 

3.1.2. Bicinchoninic acid protein assay 

Total protein content present in the sample solutions was determined by the 

bicinchoninic acid (BCA) protein assay. Total protein concentration in the solution is inferred 

from the quantifiable color change from light green to purple, proportional to protein 

concentration and resultant from the reduction of Cu
2+

 ions to Cu
+
 and the subsequent 

chelatation of Cu
+
 by bicinchoninic acid (Smith et al., 1985), which results in the formation of 

the purple product that strongly absorbs at 570 nm. A standard concentration curve of bovine 

serum albumin (BSA; Sigma, Portugal) was prepared by serial dilutions (0 µg µL
-1

; 0.0625 µg µL
-

1
; 0.125 µg µL

-1
; 0.25 µg µL

-1
; 0.5 µg µL

-1
; 1 µg µL

-1
; 2 µg µL

-1
; 4 µg µL

-1
) in  milli-Q water. 

Samples and lysis buffer (RIPA with protease inhibitors) were also diluted (5-10x) in milli-Q 

water in order to be within the concentration curve. Standard concentration curve and diluted 

samples were applied in triplicate in a 96-well plate. Diluted lysis buffer was added to the 

concentration curve and milli-Q water to the samples. The plate was then incubated with the 

BCA reagent (A:B=50:1; Pierce, USA) at 37°C during 30 min, and the absorbance measured at 

570 nm.    

 

3.1.3. Western blotting 

After determining total protein concentration, each sample solution was diluted in 1 

volume of sample buffer 6x (500 mM Tris.Cl pH 6.8, 30% glycerol (v/v), 10% SDS (w/v), 600 mM 

dithiotreitol (DTT) and 0,024% bromophenol blue (w/v)) and in milli-Q water (volume obtained 

by the subtraction of the total volumes of sample and sample buffer 6x), in order to get a 

normalized amount of total protein among samples. After equalizing total protein, samples 

were denatured (heated in a digital thermoblock at 70°C (ideal temperature for heptaspan 

membrane receptors) during 7-8 min to enable the access of the antibody to the portion of the 

protein of interest (epitope). Samples were then separated according to the molecular weight 

by sodium dodecyl sulfate polyacrylamide gel electrophoresis  (SDS-PAGE), using a 10% 

resolving gel (H2O milli-Q, 1.5 M Tris pH 8.8, 10% acrylamide (v/v), 1% SDS (w/v), 2% 
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ammonium persulfate (APS; w/v) and tetramethylethylenediamine (TEMED)) with a 4% 

stacking gel (milli-Q water, 0.5 M Tris pH 6.8, 4% acrylamide (v/v), 1% SDS (w/v), 2% APS (w/v) 

and TEMED) under reducing conditions (192 mM bicine, 25 mM Tris, 0.1% SDS, pH 8.3), at 120 

V during approximately 60 min at room temperature (RT). Proteins were then transferred to a 

polyvinylidene difluoride (PVDF) membrane (Bio-Rad Laboratories, Portugal) previously 

activated in 100% methanol (30 s), immersed in ultra-pure water to remove the excess of 

methanol (2 min) and in transfer buffer (10 mM CAPS pH 11 and 10% methanol (v/v) during 5 

min. Electrotransference occurred at 1A during 2 hours at 4°C and moderate agitation to 

maintain the solution homogeneity. Membranes were blocked to prevent unspecific binding of 

the antibody with 5% non-fat dry milk diluted in 0.1% TBS-T (Tris buffered saline solution, 20 

mM Tris, 1.5 M NaCl, pH 7.6 with 0.1% Tween-20 (v/v)) during 1 hour at RT, and incubated 

overnight at 4°C in the diluted primary antibody in 1% non-fat dry milk (in 0.1% TBS-T). 

Dilutions used for the primary antibodies are summarized in the Table III.i. Membranes were 

washed in 0.1% TBS-T (3 x 15 min), and incubated with the correspondent secondary antibody 

diluted in 1% non-fat dry milk (in 0.1% TBS-T; Table III.i) during 2 hours at RT. After a final 

washing step in 0.1% TBS-T (3 x 15 min), membranes were incubated with ECF, a fluorescent 

substrate for alkaline phosphatase-based detection (30s to 2 min; GE Healthcare, Portugal). 

The chemoluminescent reaction product was detected in a VersaDoc Imaging System (Bio-Rad 

Laboratories, Portugal) connected to Quantity One software. Membranes were always re-

probed to confirm the amount of loaded protein by measuring the immunoreactivity against 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; enzyme involved in the glycolytic 

pathway) or β-actin (cytoskeletal protein), that were not affected by the pharmacological 

treatment. Briefly, the membranes were first submerged in 40% methanol, during 30 min at RT 

with moderate agitation, to remove the ECF reaction product and, after washed in 0.1% TBS-T 

(3 x 10 min), antibodies were removed using stripping solution (200 mM glicine, 10% SDS 

(w/v), 0.1% Tween 20 (v/v), pH 2.2). Then, membranes were washed again (2 x 10 min), 

blocked to prevent unspecific binding and re-incubated with the respective primary and 

secondary antibodies, as previously described. The bands obtained in the Western blot 

procedure were quantified by using Image Lab 4.1 software (Bio-Rad Laboratories) and 

normalized to the correspondent GAPDH or β-actin protein band density.    
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Table III.i| Primary and secondary antibodies used for western blotting. 

PROTEIN 
LOADING 

PROTEIN (µg) 

PRIMARY 

ANTIBODY 
HOST TYPE DILUTION 

SECONDARY 

ANTIBODY 
HOST TYPE DILUTION 

A2AR 25-50 

Anti-A2AR 
Santa Cruz 

Biotechnology 

(sc-7504) 

Goat 
Polyclonal 

(R-18) 
1:500 

Anti-goat 
Santa Cruz 

Biotechnology 

(sc-2771) 

Rabbit IgG 1:5000 

A1R 25 

Anti-A1R 
Thermo Scientific 

(PA1-041A) 

Rabbit Polyclonal 1:5000 

Anti-rabbit 
GE Healthcare 

(NIF1317) 

Goat IgG 1:20000 GR 25 

Anti-GR 
Santa Cruz 

Biotechnology 

(sc-1004) 

Rabbit 
Polyclonal 

(M-20) 
1:1000 

GAPDH - 

Anti-GAPDH 
Abcam 

(ab9485) 

Rabbit Polyclonal 1:1000 

β-actin - 

Anti- β-actin 
Sigma 

(A5316) 

Mouse 
Monoclonal 

(AC-74) 
1:20000 

Anti-mouse 
GE Healthcare 

(NIF1316) 

Goat Ig+IgM 1:20000 
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3.1.4. Immunocytochemistry  

Treated cells were fixed in 4% paraformaldehyde (PFA) during 30 min and washed with 

PBS (3 x 10 min) at 4°C. Then, fixed cells were blocked to reduce the unspecific antibody binding 

and permeabilized to allow the access of the antibody to the specific epitope, in a solution with 

5% BSA and 0.1% Triton X-100 during 2 hours at RT with moderate agitation. Cells were 

incubated with primary antibodies: ionized calcium binding adaptor molecule 1 (Iba1) antibody, 

a specific marker of microglia, and adenosine A2A receptor (A2AR) antibody (Table III.ii) diluted in 

the blocking solution and incubated overnight at 4°C with moderate agitation. Some slides were 

incubated in the absence of primary antibodies (negative controls) to confirm the specificity of 

the fluorescent staining. Finished the incubation time, cells were washed with PBS (3 x 10 min) 

and incubated with the secondary antibodies (Table III.ii) during 2 hours at RT. Finally, cells were 

washed again with PBS (3 x 10 min), nuclei were stained with the dye 4',6-diamidino-2-

phenylindole (DAPI; 1:5000) during 10 min and coverslips were mounted in microscope slides 

with glycergel (Dako, Portugal) and left to dry overnight at 4°C. 

 

Table III.ii| Primary and secondary antibodies used for immunocytochemistry. 

Antibody Supplier Host Type Dilution 

Anti-Iba1 
WAKO 

(019-19741) 
Rabbit Polyclonal 1:1000 

Anti-A2AR 

Santa Cruz 

Biotechnology 

(sc-7504) 

Goat 
Polyclonal 

(R-18) 
1:200 

Anti-rabbit 

Alexa Fluor 488 

Invitrogen 

(A21206) 
Donkey IgG (H+L) 1:1000 

Anti-goat 

Alexa Flour 594 

Invitrogen 

(A11058) 
Donkey IgG (H+L) 1:1000 

 

 

3.1.5. Drugs and reagents 

Dexamethasone was purchased from Acros Organics, Geel, Belgium. Dexamethasone 1 

mM (stock solution) was prepared in ultra-pure water, aliquoted and stored at -20°C. Different 

concentrations (0.1 µM, 1 µM and 10 µM) were tested in vitro. 
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Table III.iii| Drugs. 

DRUG LOT CODE SUPPLIER PORTUGUESE DISTRIBUTOR 

Dexamethasone, 96% A0319607 230302500 
Acros Organics, 

Geel, Belgium 

José Manuel Gomes 

dos Santos, LDA 

 

 

3.2. Animal handling and pharmacological treatment 

Drug administration and animal care were performed in ICVS, University of Minho. 

Pregnant female Wistar rats (Charles-River Laboratories, Barcelona, Spain) received 

subcutaneous injections of dexamethasone (1 mg kg
-1

) or saline (Sal) at days 18 or 19 of 

gestation. Newborns were sacrificed one day after birth, at post-natal day (PND) 1, to analyze 

microglial morphology and proteomic changes immediately after birth; at PND 7, an important 

timepoint for the ontogeny of adenosine receptors (Silva et al., 2014) and at adulthood (PND 

90), in order to clarify if eventual changes in microglia morphology are transient or persist at 

adulthood, where neuropsychiatric changes are reported (Roque et al., 2011). Studies 

performed at 3 months of age required the separation of one group of animals at PND 21; these 

animals were housed according to the prenatal treatment, in groups of two to three animals per 

cage until behavior tasks and/or sacrifice, at PND 90. The animals were housed in an animal 

facility at 22°C, relative humidity of 55%, in a 12 hours light/12 hours dark cycle, with food and 

sterile tap water available ad libitum. The care and handling of the animals were in accordance 

with the local animal ethical committee.    

 

 

3.2.1. Behavioral analysis  

3.2.1.1. Elevated plus maze test 

Anxiety-like behavior was accessed by the elevated plus maze (EPM) test, which is based 

on the higher avoidance of open spaces by anxious rodents. The reduction of the anxiety is 

indicated by the increase of time spent in the open arms of the maze consisting of two open 

arms (50.8 x 10.2 cm) and two closed arms (50.8 x 10.2 x 40.6 cm; see Figure 3.1) connected to 

each other at the center and elevated 72.4 cm from the floor (ENV-560; MedAssociates Inc, 

USA). Each animal was placed in the center of the maze, so that it could observe both open and 

closed arms and the time spent in both open and closed arms was recorded during 5 minutes 

using a video camera. Video analysis was blindly performed using Observador software.    
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Figure 3.1| Schematic representation of the elevated plus maze test. Open arms are represented by a thin line, while 

closed arms by a bolder line. Wistar rats were placed in the center, where all arms are connected.   

 

3.2.2. Brain dissection and tissue processing 

3.2.2.1. Whole tissue lysates for western blotting 

Animals were anesthetized with sodium pentobarbital (Eutasil, 60 mg kg-1 i.p.; Ceva 

Saúde Animal, Portugal) and transcardially perfused through the left ventricle with saline. Right 

auricle was open in order to create an open system for blood exit. Then, decapitated heads were 

rapidly frozen in liquid nitrogen during 5 seconds and brains were removed from the cavity. 

Brain regions of interest (prefrontal cortex, dorsal striatum, nucleus accumbens, hippocampus 

and amygdala) were isolated (a courtesy by Dr. Luísa Pinto, ICVS, University of Minho). 

Proteomic analysis was performed in the referred brain regions at PND1 and PND7 to have a 

more precise and complete characterization of the possible changes caused by DEX 

administration. However, further studies were performed in the prefrontal cortex, a core brain 

region implicated in depression and anxiety disorders (Miller et al., 2001).  

Isolated brain areas were carefully kept in dry ice until freezing at -80ºC. For western blot 

analysis, total extracts were digested by adding RIPA buffer supplemented with protease 

inhibitors, 10 µM DTT and 5 µM PMSF, and homogenized using a tissue grinder (Size 0, Thomas 

Scientific, USA). Homogenates were then centrifuged at 400 x g for 10 min at 4°C, and the 

supernatants collected and stored at -20°C until further processing. Quantification of total 

extracts was performed by BCA method, as described in section 3.1.2. and western blot analysis 

was performed, as described in section 3.1.3., with the same loading protein, as well as the 

respective antibodies and dilutions. 
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3.2.2.2. Fixation and cryosectioning for immunohistochemistry 

Perfusion and fixation protocols were performed in ICVS, University of Minho. Briefly, 

animals were anesthetized with sodium pentobarbital and transcardially perfused with saline 

and 4% PFA. Brains were removed from the cavity, fixed in 4% PFA during 6 hours at 4°C and 

transferred to 30% sucrose (in PBS; w/v) overnight at 4°C. After fixation, brains were stored at -

80°C until cryosectioning. 

Brain sections were obtained using a cryostat (Leica, Germany), whose chamber 

temperature (CT) was at -21°C and the object (OT) at -19°C. Adult rat brains involved in optimum 

cutting temperature (OCT) compound (Tissue Tek, The Netherlands) were aligned according to 

the stereotactic coordinates of Paxinos book (1998) and neonatal rat brains also involved in OCT 

compound, were aligned according to Ramachandra et al., 2011. Coronal sections obtained from 

adult brains (50 µm thickness), were collected to 24-well plates previously filled with 

cryoprotection solution (0.1 M phosphate buffer, pH 7.2, 0.876 M sucrose, 30% ethylene glycol 

(v/v)), and neonatal coronal brain sections (40 µm thickness) were collected to gelatinized 

(Fluka, Portugal) microscope slides (Menzel-Gläser, Germany) and stored at -20°C. 

 

3.2.3. Immunohistochemistry 

Immunohistochemistry of adult brain sections was performed in free floating, while the 

sections of neonatal brains were handled in gelatinized microscope slides, where they have been 

collected (see section 3.2.2.2.). In this particular case, a hydrophobic pen (Dako, Portugal) was 

used to provide a barrier and avoid the spillover of the solutions applied. The sections were 

washed in PBS (3 x 10 min) and then blocked and permeabilized with 5% BSA and 0.1% Triton X-

100 for 2 hours at RT with mild agitation. Then, sections were incubated with the primary 

antibody (Table III.iv) diluted in blocking solution, and incubated 48 hours at 4°C with mild 

agitation. Negative controls remained with the same blocking solution. Sections were then 

washed in PBS (3 x 10 min), and incubated with the secondary antibody (Table III.iv) for 2 hours at 

RT with moderate agitation. Then, sections were washed with PBS (3 x 10 min) and incubated 10 

min with DAPI (1:5000), and finally washed with PBS (3 x 5 min). Sections from adult brains were 

carefully mounted in gelatinized microscope slides with DAKO mounting medium (Dako, 

Portugal), with coverslips (Menzel-Gläser, Germany) and left to dry overnight. Regarding 

neonatal sections, DAKO mounting medium was used and the coverslips added; in the next day, 

the slides were sealed with nail polish.  
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Table III.iv| Primary and secondary antibodies used for immunohistochemistry. 

Antibody Supplier Host Type Dilution 

Anti-Iba1 
WAKO 

(019-19741) 
Rabbit Polyclonal 1:1000 

Anti-rabbit 

Alexa Fluor 488 

Invitrogen 

(A21206) 
Donkey IgG (H+L) 1:1000 

 

3.2.4. Image Acquisition 

Images from microglia Iba1 immunoreactivity (IR) were acquired in the prefrontal cortex 

region. Ten z-stack fluorescent images were blindly acquired in the prefrontal cortex of each 

section using a confocal microscope (Observer.Z1, Zeiss, Germany), with LSM T-PMT camera, 

and connected to ZEN 2009 software (Carl Zeiss Imaging Systems). Neonatal sections were 

acquired using a 40x objective (EC Plan-Neofluar 40x/1.30 Oil DIC M27), because cells in this 

developmental stage are less complex and a higher resolution was not necessary. In the case of 

adult sections, it was possible to see all ramifications of microglia with a 63x objective (Plan-

Apochromat 63x/1.40 Oil DIC M27) and this was more adequate and easier for the 

tridimensional reconstruction of microglial cells. Exposure and acquisition times were 

maintained between experiments. To have a general perspective of the analyzed region, some 

images were acquired with a 20x objective (Plan- Apochromat 20x/0.8 M27). 

 

3.2.5. Morphometric analysis of microglia 

Microglial cells were manually drawn in several planes of the same image using 

Neurolucida software, in order to reconstruct cells at the tridimensional level. For each neonatal 

section were drawn 20 microglial cells, while in adult brain sections 10 microglial cells were 

drawn per section. The results from the quantification of morphologic characteristics of 

microglial cells were obtained using Neurolucida Explorer, an extension of Neurolucida software. 

In this work, we focused in the perimeter, area, diameter and roundness of the cell body and in 

the number and length of the ramifications of microglia (for further review Beynon et al., 2012; 

Pinto et al., 2012).     
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Figure 3.2| Representative scheme showing a tridimensional reconstruction of an adult microglial cell analyzed by 

sholl method (by radius). Localization of nodes and ends of microglia are also indicated in the figure.   

 

  3.3. Statistical analysis 

Statistical analysis was performed in GraphPad Prism version 6.01 software. Quantitative 

data are expressed as mean ± SEM (standard error of the mean) of n experiments. Replicates 

were used for each experiment. Differences across experimental groups were obtained using 

Student’s t test for independent means or by a one-way ANOVA followed by a Newman-Keuls 

post hoc test, for absolute values, which were considered significant for (*) p<0.05 or (**) 

p<0.01. Statistical analysis was performed in all experimental conditions with the absolute 

values obtained for each experiment and compared with the respective control conditions. 

However, graphic representations are expressed as % effect in the case of the western blot 

experiments.   
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4. Results 

 

4.1. In vitro analysis of dexamethasone impact upon microglial adenosine receptors 

Dexamethasone is, as stated above, an anti-inflammatory, immunosuppressive drug. 

Before evaluating if in utero administration of DEX is able to change any morphological feature 

of microglial cells, it is important to check if the drug affects microglial cell viability. This issue is 

more adequately evaluated by using a cell line, without the presence and influence of other 

cells of the nervous system. Indeed, it is important to recall the main goal of the present work: 

to disentangle if DEX effect upon neuronal structure (formation of aberrant, immature 

synapses) and neuropsychiatric impact at adulthood could be paralleled by changes in microglial 

cells. The other main goal of this thesis is to quantify eventual changes in microglial adenosine 

receptors, under the exposure to DEX, considering that these receptors, in particular A2AR 

control the dynamics of microglial cell processes. Regarding this question, it is important to 

mention that the quality of the antibodies against A2AR is not adequate to accurately evaluate 

changes in the density of microglial receptors. This technical limitation led us to address the 

question by performing in vitro studies in a cell line. Although the nature of the information is 

different, it helps strengthening the main working hypothesis of the thesis. 

 

4.1.1. Evaluation of the density of adenosine and corticosteroid receptors in microglial cells in 

the presence of dexamethasone: Effect of concentration and exposure time  

 The interaction between adenosine system and corticosteroids is already described 

(Seasholtz et al., 1988). This interaction, together with the ability of both adenosine and 

glucocorticoids to control microglial functions, led us to test the ability of DEX to alter the 

density of adenosine receptors. Keeping in mind that several therapeutic regimens (doses and 

intervals between doses) are used clinically, it was considered of importance to analyze the 

impact of concentration and time of exposure upon the density of different receptors. These 

experiments are also important in the sense it will help defining experimental conditions to be 

performed in future experiments. 

To address this question, N9 cells were incubated with different concentrations of DEX 

(0.1, 1 and 10 µM during 3, 6, 24 or 48 hours) and the density of GR, adenosine A1R and A2AR 

was determined by western blot analysis of cell lysates.  
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← Figure 4.1| Glucocorticoid, adenosine A1 and A2A receptor levels in microglial cells treated with dexamethasone. 

N9 cells were incubated with different concentrations of DEX (0.1 µM 1 µM and 10 µM) during 3, 6, 24 and 48 hours. 

The density of GR, adenosine A1R and A2AR was determined by western blot analysis of cell lysates. Receptor levels 

for the concentration 0.1 µM DEX are present in (A), 1 µM DEX in (B) and 10 µM DEX in (C). Representative images 

from western blot analysis are shown in (D) taking into account time and concentration of DEX. Results are expressed 

as mean ± SEM of 7 independent experiments performed in triplicate (*p<0.05, **p<0.01, compared with control 

conditions, Student’s t test). SEM, standard error of the mean; DEX, dexamethasone; NT, non-treated; GR, 

glucocorticoid receptor; A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase.  

 

3 hours of exposure to the lower concentration of DEX (0.1 µM) resulted in an increase of 

GR density (131.6 ± 13.6%; n=7; p=0.0169, compared with non-treated cells). On the other 

hand, at 6 hours and for the highest concentration of DEX, a decrease in the density of GR was 

observed (84.27 ± 4.4%; n=7; p=0.0169, compared with non-treated cells), which was transient 

and not observed at 24 or 48 hours. On the other hand, at 24 hours there was an increase in the 

density of A2AR in the presence of DEX 1 µM (135.6 ± 13.6%; n=7; p=0.0343, compared with non-

treated cells), that remained at 48 hours (131.3 ± 15.9%; n=7; p=0.0203, compared with non-

treated cells). Concerning A1R, no significant changes were observed in microglial cells in vitro; 

however, a tendency for a slight decrease was observed at 24 hours in the presence of the 

lower concentration of DEX (90.46 ± 7.4%; n=7; p=0.1789, compared with non-treated cells).  

 

Table IV.i| Summary of the results obtained for the density of corticosteroid and adenosine receptors in function of 

the exposure time and concentration of DEX. 

 

 
Concentration 

 

 
DEX 0.1 µM DEX 1 µM DEX 10 µM 

Time 

3 hours ↑GR - - 

6 hours - - ↓GR 

24 hours - ↑A2AR - 

48 hours ↑A2AR ↑A2AR - 

 

In summary, these results indicate that DEX alters the density of corticosteroid and 

adenosine receptors, in a concentration- and time of exposure-dependent manner, which is 

particularly important considering that different therapeutic regimens with different doses and 

intervals between doses are clinically used. 
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Figure 4.2 shows a representative image of an immunocytochemistry performed in N9 cells, 

suggestive of an altered morphological phenotype, characterized by process retraction and 

increased density of A2AR. Note that this analysis, although not quantitative, corroborates the 

observed increase in the density of A2AR in the presence of DEX and is highly suggestive of DEX-

induced morphological changes, observations in line with the reported ability of A2AR to 

regulate the dynamics of microglial processes (Orr et al., 2009). 

 

Figure 4.2| Representative image of the morphological aspect of microglia and A2AR labelling in the presence of 

DEX. Cells were incubated with DEX 1 µM for 48 hours and then fixed and stained with the microglial marker Iba1 

(green) and A2AR (red), and with the dye DAPI (blue) for the nucleus. Images were acquired in fluorescence at 40x. (A-

D) are represented the images for non-treated microglial cells, and in (E-H) the respective images for cells treated 

with DEX. DEX, dexamethasone; DAPI, 4',6-diamidino-2-phenylindole; Iba1, ionized calcium binding adaptor molecule 

1; A2AR, adenosine A2A receptor. Scale bar: 50 µm. 

 

4.1.2. Effect of dexamethasone upon microglial cell viability 

N9 cell viability was assessed by performing the viability assay MTT, as described in the 

Experimental procedures section. N9 cells were exposed to DEX in different concentrations 

(0.1, 1 and 10 µM) for 24h, the time point considered of interest for further in vitro studies, 

considering DEX-induced changes in A2AR density (see section 4.1.1.).  Importantly, 24h in the 

presence of DEX, even at the highest concentration tested, did not decrease cell viability. Figure 

4.3 shows preliminary data indicating that DEX 0.1 µM (122.8 ± 13.5%; n=2), 1 µM (134.8 ± 

14.7%; n=2) and 10 µM (140.2 ± 0.1%; n=2) does not decrease N9 viability, when compared with 

non-treated cells.  
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Figure 4.3| Microglial cell viability after DEX treatment, as assessed by MTT assay. N9 cells were exposed to 

different concentrations of DEX (0.1, 1 and 10 µM) for 24 hours and cell viability was calculated by the quantification 

of the metabolic reduction of tetrazolium salt (MTT). Results are expressed as mean ± SEM of 2 independent 

experiments performed in duplicate. SEM, standard error of the mean; DEX, dexamethasone.   

 

4.2. In vivo behavioral analysis of anxiety of adult Wistar females treated with in utero 

dexamethasone  

The behavioral effect of in utero administration of DEX, although already explored in male 

Wistar rats, was not studied in females. Considering the gender influence in the colonization of 

the brain by microglia and the sexual dimorphic susceptibility to anxiety and depression, it was 

considered of relevance to test if females exposed to DEX in utero also exhibit an hyper-anxious 

phenotype, as previously described for males (Roque et al., 2011; Rodrigues et al., 2012).  

The anxiety-like profile in prenatal DEX treated females at PND 90, adulthood, where the 

neuropsychiatry changes were observed in the male progeny, was accessed by the elevated plus 

maze; the reduction of anxiety correlates with the increase of time spent in open arms. It was 

observed that prenatal DEX also induces an anxious phenotype in the female progeny at 

adulthood (time spent in the open arms: 0.1930 ± 0.03 sec; n=8; p=0.0140, compared with 

control conditions; Figure 4.4).  
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Figure 4.4|Impact of pre-natal DEX on the anxiety-like behavior of Wistar females at PND 90. Pregnant Wistar rats 

received 1mg kg
-1

 DEX at 18-19 gestation days and anxiety-like behavior of the female progeny was assessed by the 

elevated plus maze test at PND 90. Results are expressed as mean ± SEM from 7 to 8 animals per group (*p<0.05,  

compared with control conditions, Student’s t test). SEM, standard error of the mean; DEX, dexamethasone; PND, 

postnatal day. 

 

4.3. Ex vivo evaluation of the consequences of in utero administration of dexamethasone on 

adenosine receptors density and microglia morphological features 

In order to clarify which regions were affected by DEX, diverse brain regions (prefrontal 

cortex, dorsal striatum, nucleus accumbens, hippocampus and amygdala) of animals treated in 

utero with DEX were analyzed by western blot to screen eventual changes in the density of 

adenosine and glucocorticoid receptors. This screening throughout the brain will be the basis for 

future studies; the main focus of the present thesis in terms of microglial characterization will 

be the prefrontal cortex, which is particularly involved in the regulation of the HPA axis and GC-

induced behavioral changes. Thus, the morphometric analysis of microglia was only performed 

in the prefrontal cortex, aiming at characterizing short- (PND 1 and 7) and long-term (PND day 

90) effects of DEX upon microglia morphology. 

 

4.3.1. Impact of pre-natal dexamethasone treatment on adenosine receptors density in the 

brain 

The density of adenosine A1 and A2A receptors, as well as glucocorticoids receptors was 

analyzed by western blot in total extracts of isolated brain regions (PFC, prefrontal cortex; dSTR, 

dorsal striatum; NAcc, nucleus accumbens; HIP, hippocampus; AMY, amygdala) from Wistar 

rats, treated in utero with DEX. The analysis was performed at PND 1 and 7 (limitations of time 

did not allow the evaluation of samples from PND90).  
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a) Postnatal day 1 

In general, at PND 1 no significant differences in receptor density were detected. 

However, in PFC we could observe a trend for a decrease in the density of A1R (45.56 ± 6.4%; 

n=3; p=0.0507, compared with control conditions).  
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←Figure 4.5| Density of corticosteroid and adenosine receptors at PND 1. Pregnant Wistar rats received 1mg kg
-1

 

DEX at 18 or 19 gestation day and the density of receptors was analyzed by western blot from total extracts obtained 

from the progeny at PND 1. Graphs and representative images of western blot analysis are shown in (A) for the 

density of GR, (B) for A1R density and (C) for A2AR density. Results are expressed as mean ± SEM of 5 animals 

(*p<0.05, **p<0.01, compared with control conditions, Student’s t test). SEM, standard error of the mean; DEX, 

dexamethasone; GR, glucocorticoid receptor; A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; GAPDH, 

glyceraldehyde-3-phosphate dehydrogenase.   

 

b) Postnatal day 7 

PND 7 is period of important synapse formation and with the significant expansion of 

microglia, as reported by Dalmau and colleagues (2003). At this endpoint, we observed a 

significant increase of GR density in the PFC (138.2 ± 7.9%; n=5; p=0.0070, compared with 

control conditions) and in the nucleus accumbens (147.0 ± 19.1%; n=5; p=0.0104, compared 

with control conditions). These effects were paralleled by a significant decrease of A1R density in 

the PFC (77.88 ± 8.7%; n=5; p=0.0133, compared with control conditions) and a significant 

increase in amygdala (121.7 ± 8.3; n=5; p=0.0164, compared with control conditions). Regarding 

A2AR, a significant increase (145.7 ± 10.2; n=5; p=0.0322, compared with control conditions) was 

observed in the dorsal striatum. The density of A2AR in the hippocampus at PND 7 was not clear 

in the western blot membrane; for this reason, A2AR density quantification was not performed.     
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Figure 4.6| Density of corticosteroid and adenosine receptors at PND 7. Pregnant Wistar rats received 1mg kg
-1

 DEX 

at 18 or 19 gestation day and the density of receptors was analyzed by western blot of total extracts obtained from 

the progeny at PND 7. Graphs and representative images obtained from western blot analysis are shown in (A) for the 

density of GR, (B) for A1R density and (C) for A2AR density. Results are expressed as mean ± SEM of 5 animals 

(*p<0.05, **p<0.01, compared with control conditions, Student’s t test). SEM, standard error of the mean; DEX, 

dexamethasone; GR, glucocorticoid receptor; A1R, adenosine A1 receptor; A2AR, adenosine A2A receptor; GAPDH, 

glyceraldehyde-3-phosphate dehydrogenase.   

 

Table IV.ii summarizes the results obtained from the analysis of the density of 

corticosteroid and adenosine receptors in animals treated in utero with DEX.      
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Table IV.ii| Summary of changes in the density of corticosteroid and adenosine receptors with the pre-natal DEX 

treatment per brain region and post-natal age. 

  Age 

  PND1 PND7 

Brain region 

PFC - 
↑GR 

↓A1R 

dSTR - ↑A2AR 

NAcc Not analyzed ↑GR 

HIP - - 

AMY - ↑A1R 

 

In summary, DEX affects the density of corticosteroid and adenosine receptors, an affect 

that is dependent of the age and the brain region of the animals treated in utero with 

dexamethasone. 

 

4.3.2. Impact of pre-natal dexamethasone treatment on adenosine receptors density and 

microglial morphology in the prefrontal cortex 

4.3.2.1. Adenosine receptors density in the prefrontal cortex after prenatal dexamethasone 

treatment 

As referred above, the density of GR and A1R was affected in the PFC, and no changes 

were observed for A2AR in this region at PND 1 and 7. Figure 4.7 shows a selection of data relative 

to PFC analysis, already presented in this thesis, for the sake of clarity. 
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←Figure 4.7| Density of corticosteroid and adenosine receptors in the PFC after the pre-natal DEX treatment. 

Pregnant Wistar rats received 1mg kg
-1

 DEX at 18 or 19 gestation day and the density of receptors was analyzed by 

western blot of total extracts obtained from the progeny at PND 1 and 7. Graphs and representative images obtained 

from western blot analysis are shown in (A) for the density of GR, (B) for A1R density and (C) for A2AR density. Results 

are expressed as mean ± SEM of 3 to 5 biological samples (*p<0.05, **p<0.01, compared with control conditions, 

Student’s t test). SEM, standard error of the mean; DEX, dexamethasone; GR, glucocorticoid receptor; A1R, adenosine 

A1 receptor; A2AR, adenosine A2A receptor; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.   

 

 

4.3.2.2. Morphology of microglia in the prefrontal cortex after prenatal dexamethasone 

treatment 

In order to analyze if prenatal DEX impacts on microglia morpholog at short- and long-

term, we quantified particular morphological features (morphometry) of microglia in PFC at PND 

1, 7 and 90 after birth. Microglia was identified by Iba1 staining and reconstructed at the 

tridimensional level by using Neurolucida software. The 3D-reconstruction was manual because 

the automatic tool was not accurate enough to reconstruct microglia. Reconstructed microglial 

cells were analyzed taking into account diverse features of the cell body and processes. In the 

cell body it was analysed the perimeter, area, feret’s diameter and roundness. Regarding 

microglial processes, it was analyzed the number and the diameter of the processes by branch 

order and by radius (sholl analysis), as well as the total length and volume of the processes.   

 

a) Postnatal day 1 

One day after birth microglial cells are still colonizing and migrating along the brain.  In 

PFC, it was observed that some cells start to differentiate and become slightly ramified, while 

others were still small and round. Other cells exhibit small pseudopodia at the tip of small 

branches, suggestive of migrating processes. For the morphometric analysis, migration regions 

were avoided and 20 cells were blindly acquired in PFC for each codified slice. The region 

chosen was the medial PFC with an interaural between 12.70 and 12.20 mm, and bregma 

between 3.70 and 3.20 mm (sagital view; according to the rat brain atlas of Paxinos, 1998).  
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Figure 4.8| Effect of prenatal DEX treatment in the number and length of processes, ends, nodes and volume of 

microglia in the PFC at PND 1. Pregnant Wistar rats received 1mg kg
-1

 DEX at 18 or 19 gestation day, microglial cells 

of neonatal brains were stained with Iba1 at PND 1 and 3D reconstructions were performed using Neurolucida 

software. In (A-J) are shown representative images obtained from the Iba1 staining of microglia; (K-N) graphs from 

perimeter, area, feret’s diameter and roundness from the cell body analysis; and (O and P) graphs from the analysis 

of the number and length of processes by order and by radius. Results are expressed as mean ± SEM of 3-4 biological 

samples (*p<0.05, **p<0.01, compared with control conditions, Student’s t test). SEM, standard error of the mean; 

DEX, dexamethasone.    

 

In general, the morphometric analysis of the main features of the cell body (perimeter, 

area, feret’s diameter and roundness) did not show any particular impact of antenatal DEX at 

PND1, as shown in Figure 4.8 (K-N).  

By the analysis of processes, significant changes were already detected at PND7 at the 

level of the number and the length of the processes. A significant decrease in the number and 

length of processes of order 3 and 4 was observed at this post-natal age (number of processes 

of order 3: 3.82 ± 0.2; n=4; p=0.0272, compared with control conditions; and order 4: 2.98 ± 0.3; 

n=4; p=0.0251, compared with control conditions; length of processes of order 3: 17.26 ± 0.8 

µm; n=4; p= 0.0313, compared with control conditions; order 4: 12.61 ± 0.9 µm; n=4; p=0.0173, 

compared with control conditions). In the analysis of processes by radius (more general and less 
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specific method), differences were also found in the number of processes at radius 20 (distance 

from cell body; 1.55 ± 0.2; n=4; p=0.0500, compared with control conditions) and radius 30 

(0.36 ± 0.1; n=4; p=0.0205, compared with control conditions). In the length of processes there 

was a decrease at radius 20 (38.57 ± 3.0 µm; n=4; p=0.0466, compared with control conditions).  

 

b) Postnatal day 7  

At PND 7, microglial cells were, in general, more ramified in the PFC when compared with 

the same region at PND 1.  
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Figure 4.9| Effect of prenatal dexamethasone treatment in the number and length of processes, ends, nodes and 

volume of microglia in the prefrontal cortex at post-natal day 7. Pregnant Wistar rats received 1mg kg
-1

 DEX at 18-19 

gestation days, microglial cells of neonatal brains were stained with Iba1 at postnatal day 7 and tridimensional 

reconstructions were performed using Neurolucida software. In (A-J) are shown representative images obtained from 

the Iba1 staining of microglia; (K-N) graphs from perimeter, area, feret’s diameter and roundness from the cell body 

analysis; and (O and P) graphs from the analysis of the number and length of processes by order and by radius. 

Results are expressed as mean ± SEM of 3-4 biological samples (*p<0.05, **p<0.01, compared with control 

conditions, Student’s t test). SEM, standard error of the mean; DEX, dexamethasone. 

 

Interestingly, and in contrast to PND 1, at this developmental stage differences were 
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antenatal DEX treatment (571.0 ± 7.9 µm
2
; n=5; p=0.0069, compared with control conditions) as 

well as the feret’s diameter (9.53 ± 0.1 µm; n=5; p=0.0410, compared with control conditions).  

Regarding microglial processes, a tendency for a decrease was observed in the number of 

processes of third order (7.23 ± 0.3; n=5; p=0.1080, compared with control conditions) and the 

respective length (37.88 ± 2.6 µm; n=5; p=0.0618, compared with control conditions), although 

without statistical significance. Sholl analysis points towards a decrease in the number of 

processes for radius 40 (0.75 ± 0.1; n=5; p=0.0069, compared with control conditions).  

 

c) Adulthood 

At PND 90 (3 months), microglial cells are fully differentiated. Microglial cells are 

equipped with long, thin and highly branched processes and a small cell body. No amoeboid 

microglia was detected in the brain, and in particular in the PFC. Microglia were scattered 

throughout all brain in a more or less homogeneous way. Morphometric analysis of microglia 

was performed in the PFC of adult female progeny that received in utero DEX. 
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Figure 4.10| Effect of prenatal dexamethasone treatment in the number and length of processes, ends, nodes and 

volume of microglia in the prefrontal cortex at postnatal day 90. Pregnant Wistar rats received 1mg kg
-1

 DEX at 18-

19 gestation days, microglial cells of brains were stained with Iba1 at postnatal day 90 and tridimensional 

reconstructions were performed using Neurolucida software. In (A-J) are shown representative images obtained from 

the Iba1 staining of microglia; (K-N) graphs from perimeter, area, feret’s diameter and roundness from the cell body 

analysis; and (O and P) graphs from the analysis of the number and length of processes by order and by radius. 

Results are expressed as mean ± SEM of 3-4 biological samples (*p<0.05, **p<0.01, compared with control 

conditions, Student’s t test). SEM, standard error of the mean; DEX, dexamethasone. 
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In adulthood, no differences were detected in the perimeter, area, feret’s diameter and 

roundness of the cell body. Thus, the differences in area and feret’s diameter observed at 

postnatal day 7 were transient and not remained in the adult age. So, dexamethasone does not 

impact upon cell body of microglia. 

In terms of number of processes, there was a decrease in number of processes of order 4 

(25.17 ± 0.7632; n=6; p=0.0478, compared with control conditions) and a tendency to decrease 

at order 5 (25.12 ± 0.9659; n=6; p=0.1068, compared with control conditions). The length of 

processes was also decreased at order 3 (104.3 ± 2.428 µm; n=6; p=0.0241, compared with 

control conditions), order 4 (111.3 ± 4.232; n=6; p=0.0061 µm, compared with control 

conditions), and order 5 (106.5 ± 3.816 µm; n=6; p=0.0202, compared with control conditions).   
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5. Discussion 

Dexamethasone (DEX) is a synthetic drug widely used in neonatal care in order to reduce 

neonatal complications associated with premature newborns, such as respiratory distress 

syndrome. This drug is selective for glucocorticoid receptors, and its administration negatively 

impacts on neurodevelopment.  

The main focus of the present work was on the impact of DEX upon microglial 

morphology, as well as on changes at the level of the adenosinergic system. The major findings 

that conduced to the present thesis are: (1) young adult Wistar females exposed in utero to DEX, 

exhibited an anxious phenotype at adulthood; (2) the density of microglial adenosine A2A 

receptors was altered by DEX in vitro, an effect that dependent on the concentration and time of 

exposure to the drug; (3) the density of adenosine receptors evaluated ex vivo in total extracts of 

different brain regions was affected by antenatal DEX, an effect region-specific and dependent 

on the post-natal age studied; (4) microglia morphology in PFC was affected by prenatal DEX 

treatment, an effect that persisted throughout life. This study provides the first evidence that 

the adenosinergic system, which is a key modulator of microglial function in the mature brain, is 

affected by DEX during early phases of neurodevelopment. It was also showed, for the first time, 

that antenatal DEX triggers a microglial plasticity process that lasts until adulthood and parallels 

the previously described morphological reorganization of neurons and abnormal behavior.  

 

 

5.1. Microglial adenosine receptors density after dexamethasone treatment 

In order to clarify if the adenosinergic system of microglia is directly affected by DEX it was 

considered important to perform in vitro studies in a pure microglial cell line (N9 cells). This was 

due to technical limitations associated with the fluorescent labeling of A2AR by using 

commercially available antibodies. Thus, the use of a microglial cell line was a complementary 

strategy to confirm the ability of DEX to exert a direct effect upon the microglial adenosinergic 

system. These in vitro studies allowed to conclude that DEX directly interferes with the density 

of GR and A2AR, and that this effect depends on the concentration and on the time of incubation 

with DEX. Although aware of the differences between clinics and fundamental science, it is 

considered of relevance this dependence of DEX effects on the concentration and time of 

exposure, considering different therapeutic regimens used and taking into consideration the 

results of the present thesis. A1R were not altered in the conditions tested in this work. 

Interestingly, while GR variations seem to occur for shorter incubation times (3 and 6 hours), 

changes at the level of A2AR were observed at later timepoints (24 and 48 hours), suggesting that 
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a transient change of GR precedes a later and long-lasting change in A2AR density. The proteomic 

analysis of A2AR density, as assessed by western blot assays, was further supported by the 

qualitative analysis of immunocytochemistry data suggesting DEX-induced morphological 

changes temporally correlated with changes in the density of A2AR. This qualitative analysis, 

which pointed towards a retraction of microglial processes, is in line with the ability of A2AR to 

control process dynamics of microglial cells, as described by Orr and coworkers (2009) and 

Gyoneva et al. (2014). Preliminary results on the viability of microglial cells exposed to DEX seem 

to indicate that the drug does not interfere with cell viability, suggesting that DEX-induced 

microglial atrophy is apparently not related with a decrease in viability. 

This in vitro pilot study was the basis for the subsequent ex vivo study of DEX impact on 

microglia morphology. 

 

5.2. Morphology of microglia in the prefrontal cortex after in utero dexamethasone treatment 

The animal model of antenatal DEX administration used in the present work was already 

characterized in terms of neuronal morphologic features and behavior; it was showed that this 

administration regimen is associated with a phenomenon of spine reorganization correlated 

with neuropsychiatric-like abnormalities (depression and anxiety; Rodrigues et al., 2012) in 

males. Considering that microglia is involved in synapse formation and that microglia treatment 

with immunomodulators (e.g. LPS) increases the density of synaptic proteins associated with 

synapse formation (Cristóvão et al., 2014), it was hypothesized that DEX-induced changes in 

microglial cells could mediate neuronal effects. The main goal of the present thesis was to 

characterize microglia morphology in the previously described animal model. The working 

hypothesis was confirmed by tridimensional reconstruction of Iba1 stained microglia in the 

cerebral parenchyma of animals exposed in utero to DEX. DEX is a small and hydrophobic 

molecule, which easily crosses the placenta and the blood-brain barrier and, in consequence, 

impacts on the developing brain. To the mothers, there is no evidence of possible side effects 

caused by DEX administration (Royal College of Obstetricians and Gynaecologists, 2010); thus, 

they were not considered in the present study. However, in future work it would be interesting 

to study the effect of DEX in the maternal brain, namely in terms of microglia morphology and 

density of A2AR.  

Although several regions are related with depression and anxiety-like phenotypes, for the 

present thesis it was only considered the PFC, affected in stress conditions, in which 
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corticosteroids are main effectors. Regarding the progeny, tridimensional reconstructions of 

microglial cells in the PFC revealed DEX-induced changes in microglia morphology at PND 1 and 

PND 7, alterations that persisted until adulthood (PND 90). One of the main goals of the present 

work was to clarify if microglia morphology was only affected during the postnatal period, 

presenting a transient phenotype absent in the adulthood, or if changes triggered by DEX were 

irreversible. Surprinsingly, microglial morphology changes remained throughout life, at least 

until the latest age analyzed (PND 90). 

 Changes in microglia morphology were mainly detected at the level of cellular processes, 

without significant morphological changes in cell body features, except at PND 7 where a 

transient decrease in the area and feret’s diameter of the cell body was observed. Microglial 

processes dynamically survey the brain parenchyma by the constant extension and retraction of 

thin, long and ramified processes in the mature and healthy brain, a function essential to their 

main function (surveillance) in physiologic conditions. The present results suggest that this 

microglial function may be compromised in DEX-treated animals and that this malfunction may 

be the underlying cause of behavioral abnormalities. Further studies on the analysis of microglial 

reactivity an insult (e.g. stressor) may help clarify if the sensor ability of microglia is associated 

with changes in morphology and correlate with behavioral changes. 

    

5.3. Adenosine receptors after in utero dexamethasone treatment 

Microglial dynamics is controlled by adenosine A2A receptors (Orr et al., 2009; Gyoneva et 

al., 2012), as well as other microglial functions. A2AR are also involved in the pathophysiology of 

depression and anxiety (for a review see, e.g. Gomes et al., 2011). For this reason, and 

considering the results of the present thesis, A2AR will be preferentially studied as main 

pharmacological targets in future work.    

In the present work, it was observed that the density of adenosine and glucocorticoid 

receptors are affected by prenatal DEX exposure, an effect that dependent on the age and brain 

region. Of note, a certain liability was observed in the profile of adenosinergic receptors 

throughout the brain during early phases of post-natal development, and it is considered of 

importance to screen the density of adenosine receptors at adulthood, where behavioral 

changes are observed. Further studies are needed in order to confirm the direct involvement of 

adenosine receptors in microglial morphological adaptation and anxious profile subsequent to 

DEX treatment. 
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These observations about the adenosinergic system may also be important for future 

experiments designed to modulate microglia reactivity, as well as to prevent or treat depression 

and anxiety in this particular model of DEX administration. For example, the administration of 

selective antagonists, such as SCH 58261 emerges as a candidate strategy to control microglia 

plasticity and, eventually, the pathophysiologic process of depression and anxiety.  
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6. Conclusions and future directions 

Prenatal treatment with DEX impacts on microglial cell morphology, as well as on the 

adenosinergic system. These findings may be linked to depression and anxious-like phenotype 

observed later in life, and modulation of the adenosinergic system may constitute a new 

approach for the treatment and/or prevention of the pathophysiology of mood disorders.  

In the future, it would be important to perform some experiments using selective 

antagonists of adenosine A2A receptors, such as SCH58261, in animals that received in utero DEX, 

since A2AR antagonists have already proven to be effective in the treatment of neuropsychiatric 

disorders. On the other hand, it would also be interesting to perform a similar study with 

caffeine, a non-selective antagonist of A2AR, given in the drinking water of prenatal treated 

animals, in order to have an epidemiological correlate of the caffeine consumption impact upon 

depression and anxiety-like behavior. An important control study to be performed in parallel 

would be the use of antidepressants with proved efficacy, such as fluoxetine and imipramine.           

Regarding microglia, it would be important to observe processes dynamics in the brain 

parenchyma during development, as well as in adulthood of animals treated with DEX. In future 

work, it would be desirable to perform some experiments using two-photon microscopy for in 

vivo and real time monitoring of process dynamics. Using this technique, it would be possible to 

observe in vivo the dynamics of microglial processes in the parenchyma, i.e., if processes were 

more or less dynamic by prenatal DEX treatment, as well as the respective microglial interactions 

with synapses.  

It would be also important to clarify if the process of colonization by microglia during 

neurodevelopment was or not affected by DEX treatment.  

In the absence of microglia, it would also be important to study the impact of DEX upon 

synapses and neurons. Selective depletion of microglia, could be performed ex vivo using 

chemical tools and/or in vivo by injection of a pharmacological compound able to selectively 

eliminate myeloid cells, including microglia from the brain (e.g. clodronate liposomes). After 

that, it would be necessary to evaluate in vivo or ex vivo, if synaptic transmission is or not 

affected by DEX in the absence of microglia; morphology of neurons and synapses should be also 

observed in those conditions. Ideally, the in vivo model should be preferable since it is also 

important to perform behavior studies in order to evaluate their depressive and anxious-like 

profile in the absence of microglia.  
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Finally, it would be important to observe the morphology of microglia and synaptic 

transmission in the PFC, in knock-out animals that do not express glucocorticoid receptors in 

microglia, and perform behavior studies in order to evaluate the neuropsychiatric profile both in 

the postnatal period and in adulthood.  
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