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allowing my stay at Universitè Claude Bernard Lyon 1, and expanding

my horizons on the scientific research world.

To all my friends at the Physics Department for making these last five

years memorable.

To my parents for all the support and care.





Abstract

We proceed to describe an implementation of hybrid functionals for-

malism in the open source code Atomic Pseudopotential Engine (APE),

starting with a description of the Hartree-Fock method implementa-

tion required to calculate them. A report on the obtained results is

presented.





Resumo

Descreve-se uma implementação do formalismo de funcionais h́ıbridos

no código aberto Atomic Pseudopotential Engine (APE), começando

na descrição da implementao do método de Harree-Fock necessário

para tal. Apresenta-se uma discussão dos resultados obtidos.
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Chapter 1

Introduction

Modern studies of many-body systems often rely on Density Functional Theory

(DFT) due to its affordable computational effort. One of the advantages of this

formulation resides on the separation of the several parts of the Hamiltonian, with

the effects of the interaction between particles being placed in the Hartree and

exchange-correlation energy functionals, although the exact form of the latter is

unknown. In fact, the used functionals are only approximations (usually using

as starting point the local density approximation and adding correction terms),

built from physical intuition and obeying several rules, arising from the theoretical

formulation (for example, coordinate scaling and asymptotic behaviour) [17].

Currently there is a large variety of exchange-correlation energy functionals

available, ranging from the local density approximation (LDA) to the more com-

plex generalized-gradient approximations (GGA’s). There is a particular kind of

functionals that seeks to include a portion of the exact exchange (coming from

Hartree-Fock calculations) with any other functional. These are hybrid func-

tionals, so called because they mix functionals with explicit dependence on the

density, with an orbital dependent functional (obtained from Hartree-Fock calcu-

lations).

The overall good results of hybrids [9] are the main motivation for this work.

As such we expect to implement a solution to the Hartree-Fock equations within

the Atomic Pseudopotential Engine (APE) and, along with the functional library

LIBXC [25], use it to make calculations with hybrid functionals. With this we
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expect to compute the ionization potentials for several atoms of the Periodic

Table which are easily compared with the experimental data [20].

We hope this work will be the basis for a more ambitious project: the gener-

ation of hybrid functionals pseudopotentials, to be used in computational simu-

lation.

This thesis is structured as follows: in the first chapter, we present some

theoretical background for both Hartree-Fock and DFT formulations. Then we

proceed to present some details on the implementation and results. Finally, we

present some conclusions and prospects for future work.
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Chapter 2

The N-electron problem for

atoms

2.1 Introduction

As a physical system the atom is a complicated one. This fact arises from all the

interactions happening on it: electrostatic, electron spin-electron spin, nucleus

spin-electron spin... However, the more complicated interactions are usually of

higher order than electrostatic ones and can be negleted allowing therefore a non

relativistic treatment of the system.

By doing this, the atom can be described as a point like static nucleus of charge

Z, surrounded by N electrons. Neglecting the spin dependent interactions, the

corresponding Hamiltonian is written as (using atomic units1):

Ĥ = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

Z

ri
+

N∑
i=1

N∑
j>i

1

|ri − rj|
, (2.1)

where ri are the electron coordinates.

In spite of neglecting the electron spin in the Hamiltonian (2.1), an electronic

wavefunction is only fully described if the spins are specified. In this way, the

electronic wavefunction is a function of 3N spacial coordinates and N spin coor-

dinates, xi = {ri, si}, that is, ψ(x1,x2, ...,xN). This wavefunction, must obey the

1In this case, atomic units mean that e = me = ~ = 1
4πε0

= 1
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spin-statistics theorem, which states that a many-electron wavefunction must be

antisymmetric with respect to the interchange of any two electrons:

P̂ij ψ(x1,x2, ...,xi, ...,xj, ...,xN) = −ψ(x1,x2, ...,xj, ...,xi, ...,xN) , (2.2)

where P̂ij is an operator that permutes the coordinates (both space and spin)

of the i and j electrons. Furthermore, since the electrons are indistinguishable

any permutation of coordinates in (2.2) must also be the same solution to the

Hamiltonian (2.1).

Although knowledge of the Hamiltonian and the requisite of the antisymmetry

allow to obtain a solution to the electronic problem, it is still far from solvable.

In order to advance some assumptions about the form of the wavefunctions must

be made.

2.2 The Hartree-Fock method

If the electrons were non interacting, the Hamiltonian (2.1) would merely be

written as the sum of single particle operators:

Ĥ =
N∑
i

ĥ(ri) (2.3)

where,

ĥ(ri) = −1

2
∇2
i −

Z

ri
. (2.4)

This operator has itself a set of orthogonal eigenvalues and eigenfunctions,

ĥ(ri)φj(xi) = εjφj(xi), (2.5)

which allows to write a solution to (2.3) as a product of φj(xi)

ψ = φi(x1)φj(x2)...φk(xN),

representing what is called a Hartree Product. Although mathematically cor-

rect, this product presents crucial deficiencies from the physical point of view: it
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specifically distinguishes electrons and is not antisymmetric with respect to the

change of any two electron coordinates.

To overcome these problems we make use of the spin-statistics theorem and

the indistinguishability of the electrons, and define an antisymetrization operator1

A =
1

N !

∑
α

εαP̂α, (2.6)

which applied to an Hartree product gives

Ψ(x1,x2, ...,xN) =
1√
N !

∑
αβ···ω

εαβ···ωφα(x1)φβ(x2) · · ·φω(xN) , (2.7)

where the εαβ···ω symbol indicates the sign of the permutation in the sum. This

wavefunction can also be written as a determinant,

Ψ(x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
φi(x1) φj(x1) · · · φk(x1)

φi(x2) φj(x2) · · · φk(x2)
...

...
...

φi(xN) φj(xN) · · · φk(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.8)

called a Slater determinant and it represents the basic ansatz of the Hartree-Fock

method: approximate the multi electronic wavefunction as a sum of products of

independent single electron wavefunctions.

The energy of the system is the expectation value of the Hamiltonian,

E =
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 . (2.9)

In Hartree-Fock theory, using (2.7) and (2.1), this is written as (following the

notation of [37])

E[{φα}] =
∑
a

〈a|ĥ|a〉+
1

2

∑
ab

[〈ab|ab〉 − 〈ab|ba〉] (2.10)

1The α here represents any of the available permutations for the applied function, in such
manner that εα is the signal of the permutation.
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where the one electron integral is given by

〈a|ĥ|b〉 =

∫
dx1 φ

†
a(x1)ĥ(x1)φb(x1) , (2.11)

and the two electron integral

〈ab|cd〉 =

∫
dx1 dx2 φ

†
a(x1)φ

†
b(x2)

1

|r1 − r2|
φc(x1)φd(x2) . (2.12)

Expression (2.10) is separated in three terms. The first parcel is easily identi-

fied as the kinetic and nuclear-electron interaction energies. The last two are,

accordingly, the Hartree and exchange energies.

In order to obtain the integro-differential equations for the orbitals, the energy

functional must be minimized subjected to the orthonormality constrains. This is

done by introducing a set of Lagrange multipliers, εab, and requiring the functional

F[{φα}] = E[{φα}]−
∑
ab

εab (〈a|b〉 − δab) (2.13)

to be stationary, δF = 0, with respect to infinitesimal changes of the orbitals, i.e.

φa → φa + δφa. The final result of such procedure gives a set of N differential

equations [37][
ĥ(x1) +

N∑
b=1

(Jb(x1)−Kb(x1))

]
ψa(x1) =

N∑
b=1

εabφb(x1), (2.14)

where we define the Coulomb operator,

Jb(x1)φa(x1) =

∫
dx2

φ†b(x2)φb(x2)

|r1 − r2|
φa(x1) , (2.15)

and the Exchange operator,

Kb(x1)φa(x1) =

∫
dx2

φ†b(x2)φa(x2)

|r1 − r2|
φb(x1) . (2.16)

Since the sum of the Coulomb and exchange operators is invariant with respect
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to a unitary transformation, it is possible to transform the wavefunctions, diag-

onalizing the Lagrange multipliers matrix. When such procedure is taken one

usually refers to the canonical Hartree-Fock equations.

The value for the energy obtained through the solutions of (2.14) is larger

than the real value1, since it is obtained by a variational principle. The difference

between these two values is called the correlation energy2 [24],

EC = E
(real)
0 − E(HF )

0 , (2.17)

and is, by construction, negative. The value of EC reflects the failures of the

Hartree-Fock method to correctly describe electron correlation due to being a

mean field approximation theory.

Conceptually, the correlation energy can be divided in two types: static and

dynamic. Static correlation is associated with situations where there are nearly

degenerate states and a single determinant is no longer an acceptable approxima-

tion for the wavefunction. On the other hand, dynamic correlation is related to

the dynamics of electron-electron interaction: in Hartree-Fock theory, the motion

of opposite spins electrons is not correlated. These problems are tackled by going

beyond Hartree-Fock and using more than one determinant while describing the

wavefunction. For example, the configuration interaction [37], which uses a sum

of excited determinants with fixed orbitals (obtained from Hartree-Fock calcula-

tions) and minimizes the expansion coefficients, and multiconfiguration methods

[7], where the orbitals are also varied thus making it a more costly method. In

general however, direct implementation of these methods becomes prohibitive for

large systems.

2.2.1 Koopman’s theorem

Consider a configuration of N electrons. If, by any means, an electron, lets say

j, were to be removed, and therefore form the N −1 configuration, the ionization

1Strictly speaking, it could also be equal but this only happens for the hydrogen case in
which Hartree-Fock is exact.

2This definition is commonly applied in determinantal methods. In the case of density
functional theory another definition applies.
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potential for the process would be written as

IP = E
(N)
0 − E(N−1)

j . (2.18)

Supposing the removal of the electron does not affect the form of the remaining

orbital (i.e. neglecting orbital relaxation), this difference can be written simply

as

IP = −〈j|ĥ|j〉 . (2.19)

This is a statement of Koopman’s Theorem: the ionization potential of a electron

from a given configuration is equal to the negative of it’s orbital energy. From

the derivation of Koopman’s theorem an accurate result is not expected, since

orbital relaxation actually happens in a real ionization process.

Despite the approximated nature of this theorem, it gives an explicit meaning

to orbital energies in the Hartree-Fock method. Also, it gives a consistency test

when calculating ionization potentials of a given system, since we expect the value

obtained from the theorem to be close to the one calculated correctly.

2.3 Radial Hartree-Fock

For a N electron atom, the general single determinant Hartree-Fock, requires a

set of N differential equations to be solved in 3 dimensions. This number can be

reduced if subsequent approximations are made.

In the non-relativistic regime, a spin orbital is specified by a set of four quan-

tum numbers (n, l, ml and ms). In order to reduce the number of orbitals, we

neglect the angular and spin projection numbers, ml and ms respectively, which

means a restricted formulation is assumed. Here neglect means that the final

description of the wavefunctions will not depend on these numbers. We get rid of

ms by assuming the spatial part of orbitals with spin up and spin down are equal;

ml disappears after spherically averaging the atom as will be seen in section 2.3.3

(which leads to a spherical atom). This way, since the one electron wavefunctions

with same n and l numbers are equal, the number of wavefunctions to calculate

is reduced from N (the number of electrons) to m (the number of shells). By

doing this, the electronic structure of the atom is specified by a set of orbitals

8



and their occupations, ωnl,

(n1l1)
(ωn1l1

)(n2l2)
(ωn2l2

)...(nmlm)(ωnmlm ) . (2.20)

Using a method identical to the hydrogen atom, separation of variables for

the wavefunctions can be considered,

φnlmms(x) = Rnl(r)Ylm(θ, ϕ)χms , (2.21)

where the Ra are the radial wavefunctions, Ylm the spherical harmonics and χ

the spin wavefunction, and by doing so, reduce the problem to one dimension.

The radial wavefunctions should obey the orthonormality relations for the same

angular number l ∫ ∞
0

dr r2R∗nalRnbl = δna,nb
. (2.22)

These tools will allow for a radial formulation of the Hartree-Fock equations.

2.3.1 One Electron Integrals

The first term of (2.10) is the simplest to rewrite in a radial formulation. Since

the one electron part of the Hamiltonian only depends on the coordinates, the

integration over spin is immediate. Furthermore, since the Coulomb potential

does not depend on the angular coordinates, and the laplacian is separable into

[21]

∇2 =
1

r2
d

dr

(
r2

d

dr

)
− 1

r2
L̂2,

the term can be rewritten as

N∑
{nlmlms}

〈a|h|a〉 =
m∑
{nl}

ωa

∫
r2drR∗a

[
−1

2

d2

dr2
− 1

r

d

dr
+
la(la + 1)

2r2
− Z

r

]
Ra ; (2.23)

the summation is now limited only to (nl) since the radial part of every orbital

sharing the same n and l numbers is, by construction, equal.
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2.3.2 Two Electron Integrals

The two electron integrals of the exchange and correlation energies are more

complicated to integrate. This happens because the Coulomb kernel,1/|r−r′|, is a

function of both the radial and angular coordinates. To overcome this, we expand

the kernel using the spherical harmonics as [16]

1

|r1 − r2|
=
∞∑
k=0

k∑
m=−k

4π

2k + 1

rk<
rk+1
>

Y ∗km(r̂1)Ykm(r̂2), (2.24)

where r> = max{|r1| , |r2|} and r< = min{|r1| , |r2|}.
Introducing equation (2.24) in (2.12) and integrating over the spins, the two

electron integral becomes

〈ab|cd〉 =
∞∑
k=0

k∑
m=−k

4π

2k + 1
δ(msa,msc)δ(msb,msd)

×
∫

dΩ1 Ykm(r̂1)Y
∗
lamla

(r̂1)Ylcmlc
(r̂1)

×
∫

dΩ2 Y
∗
km(r̂2)Yldmld

(r̂2)Y
∗
lbmlb

(r̂2)

×
∫∫

dr1dr2 r
2r22R

∗
a(r1)R

∗
b(r2)

rk<
rk+1
>

Rc(r1)Rd(r2) .

The angular and radial parts can be further manipulated. In the angular case we

see that each line contains a term that is the complex conjugate of the other two.

Using the relation Ylm = (−1)mY ∗l−m it becomes possible to change the integrands

into trios of spherical harmonics, and, by doing so, the usage of the property∫
dΩ Yl1m1(r̂)Yl2m2(r̂)Yl3m3(r̂) =

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
(2.25)

allows to write the angular integrals in terms of the Wigner 3j symbols.
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For the radial part, following the notation on [6], the quantity

Rk
ab;cd =

∫∫
dr′dr r2r′2R∗a(r)R

∗
b(r
′)
rk<
rk+1
>

Rc(r)Rd(r
′) (2.26)

is defined, along with the particular cases, F k
a;b = Rk

ab;ab and Gk
a;b = Rk

ab;ba.

With this information in mind, the only thing left to do is write the specific

form for the Coulomb and exchange integrals. Acording to their definition, the

Coulomb integrals are given by

〈ab|ab〉 =

2min{la,lb}∑
k=0

aka,bF
k
a;b, (2.27)

where

ak(lamla;lbmlb)
= (−1)mla+mlb(2la + 1)(2lb + 1)

(
k la la

0 0 0

)(
k lb lb

0 0 0

)

×

(
k la la

0 −mla mla

)(
k lb lb

0 mlb −mlb

)
. (2.28)

In the same manner, for the exchange integrals we have

〈ab|ba〉 = δ(msa,msb)

la+lb∑
k=|la−lb|

bk(lamla;lbmlb)
Gk
a;b, (2.29)

where

bk(lamla;lbmlb)
= (2la + 1)(2lb + 1)

(
k la lb

mla −mlb −mla mlb

)2(
k la lb

0 0 0

)2

. (2.30)

2.3.3 Spherically Averaged Atom

The main interest of the radial formulation is to be able to write the Hartree-

Fock equations in terms of the radial coordinate only. The previously calculated

quantities, although written in terms of radial integrals, still present a depen-

dence on the angular part of the atom through the angular quantum numbers.
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To remove this dependency, it is necessary to average the integrals over all the

possible configurations for a given set of shells, effectively spherically averaging

the atom.

In spite of the effective independent particle potential in the Hartree-Fock

method not being truly spherical (this only happens for closed shell systems),

the true many body potential is actually spherically symmetric [10]. Physically

this is attained by having partial equal occupations on every sub-shell (which are

degenerate in this level of approximation) and it gives physical motivation to the

averaging process.

This process is thoroughly described in [34]. In short, it starts by separating

pairs of equivalent (same shells) and non-equivalent electrons (different shells)

and calculate the average of the exchange and Coulomb energies for a given type

of pair. After calculating the number of possible combinations for each type, the

result is immediate.

As a final result, the energy of the averaged atom can be written as [11]

E[{Ra}] =
m∑
a=1

waI(a, a) +
m∑
a=1

2la∑
k=0

wa
wa − 1

2
fklaF

k
a,b+

+
1

2

m∑
a=1

m∑
b=1
b6=a

wawb

F 0
a,b +

la+lb∑
k=|la−lb|

gkla,lbG
k
a,b

 , (2.31)

where

fkla =


1 for k = 0

−4la + 2

4la + 1

(
la k la

0 0 0

)2

for k > 0
(2.32)

and

gkla,lb = −1

2

(
la k lb

0 0 0

)2

. (2.33)

Rearranging the terms, a more explicit form can be obtained, dividing the
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energy on its several contributions [39]:

E =
m∑
a=1

waI(a, a) + EH + Ex , (2.34)

where the Hartree energy is written as

EH =
1

2

∑
pq

ωpωqR
0
pq;qp (2.35)

and the exchange energy,

Ex = −1

2

∑
pq

lp+lq∑
L=|lp−lq |

ΘL
pqR

L
pq;qp (2.36)

with

ΘL
pq =



1

2
ωpωq

(
lp L lq

0 0 0

)2

for p 6= q

1

2
ωp(ωp − 1)

4lp + 2

4lp + 1

(
lp L lp

0 0 0

)2

for p = q and L 6= 0

ωp for p = q and L = 0

(2.37)

It can be shown that the weight factor (2.37) cancels the self interaction term

of the Hartree energy. The energy expressions presented are both equivalent;

equation (2.31), although more complicated, has the advantage of not having

double counts, but usage of equations (2.35) and (2.36) makes explicit the physical

meaning of the terms.

2.3.4 Differential Equations

The desired radial functions are the ones that minimize the energy funcional,

while subjected to the orthogonality constraint (equation (2.22)). Following the

same procedure as in subsection 2.2, we introduce the Lagrange multipliers, λab,

13



and require the functional

F [{Ra}] = E[{Ra}]−
∑
ab

λabδlalb

[(∫ ∞
0

drr2 R∗nalaRnblb

)
− δna,nb

]
(2.38)

to be stationary with respect to infinitesimal changes in the wavefunctions (i.e.

for Ra → Ra + δRa we have that δF = 0). Therefore, taking the functional

derivative in order to Ra(r) of (2.38) and equalling to zero we obtain the radial

Hartree-Fock equations for a spherically averaged atom [11]:

(
−1

2

d2

dr2
− 1

r

d

dr
+
la(la + 1)

2r2
− Z

r
+
Ya(r)

r
− εaa

)
Ra(r) =

− Xa(r)

r
+

m∑
b 6=a

δlalbεabRb(r) , (2.39)

where the off-diagonal energy parameters, εab, are related to the Lagrange multi-

pliers by

εab =
λab
ωa
. (2.40)

The non-linear term is

Xa(r) =
m∑
b=1
b 6=a

wb

(la+lb)∑
k=|la−lb|

gkla,lbY
k
ab(r)Rb(r) (2.41)

and the local potential term,

Ya(r) = (wa − 1)
2la∑
k=0

fklaY
k
aa(r) +

m∑
b=1
b 6=a

wbY
0
bb(r) , (2.42)

where

Y k
ab(r) = r

∫ ∞
0

r′2
rk<
rk+1
>

Ra(r
′)Rb(r

′)dr′ (2.43)

are the Hartree screening functions.

As with equations (2.14), the implicit dependence of the potential terms on

the wavefunctions require the system to be solved in a self consistent manner.
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2.4 Density Functional Theory

Traditionally speaking, all quantum mechanical observables can be derived in

terms of expectation values using the wavefunction. However, for some systems

(molecules for example) wavefunction approximations beyond Hartree-Fock must

be considered (e.g. Configuration Interaction) for good results. In practice these

methods scale poorly with the particle number (for a N electron system there

are 3N space coordinates which in a mesh with M points means at least M3N

entries) making them unsuitable for said systems.

In 1964, Hohenberg and Kohn presented a paper [15] where was shown that

quantum mechanical observables can be considered unique functionals of the

ground state density. Although their work was based on the non relativistic

workframe, in the following years it was generalized to include degenerate ground

states and time and spin dependent formulations. Using this knowledge one could,

in principle, study any system by using only the density which is a three variable

scalar function. This represents the basis of Density Functional Theory (DFT).

2.4.1 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems are the cornerstone of DFT as they establish a

relation between the external potential and the ground state density. Since they

are extensively discussed in the literature (see for example [38] [17] [26]) only a

simple exposition is done here.

Lets start by considering the non-relativistic Hamiltonian, with the kinetic

operator

T̂ =
N∑
i=1

−1

2
∇2
i , (2.44)

the potential operator

V̂ =
N∑
i=1

vi(ri) = v(r), (2.45)
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and the electron-electron interaction

Ŵ =
1

2

N∑
i,j
i 6=j

ω(ri, rj). (2.46)

In this case, the potential operator represents the nuclei-electron electrostatic

interaction and ω(ri, rj) = 1
|ri−rj | , although the exact form of the electron-electron

interaction is not relevant as long as it is symmetric and spin independent.

Let V be the set of all external potentials, V̂ , differing from each other by

more than a constant and that originate a physical non degenerate ground state

wavefunction, Ψ0, and W the set of physical non degenerate ground states that

differ from each other by more than a phase factor. Also, let N be the set of

physical ground state densities. By construction any map between any of these

sets is surjective. If A to be the map from V to W and B the map from W to

N the first Hohenberg-Kohn theorem states that the map A ◦B is invertible. To

prove this, one must prove that both A and B are invertible.

Going from the potential to the density is trivial. If we consider an element

of V, its mapping to W is simply done by the Schrödinger equation. Moreover,

since we are restricted to non degenerate ground states, no element of V can be

mapped to two different elements of W.

The mapping W→ N is done by the definition of density,

n0(r) = N
∑

σ1,··· ,σN

∫
dr2 · · · drN |Ψ0(r, σ1,x2, · · · ,xN)|2 (2.47)

which also shows that no element of W can be mapped to two different densities.

We must now analyse the inverse direction of mapping starting with the map

A : W→ V. Consider two different potentials, V̂ and V̂ ′, which, by assumption,

have the same ground state. Then, using Schrödinger equation
[
T̂ + V̂ + Ŵ

]
|Ψ0〉 = E0 |Ψ0〉[

T̂ + V̂ ′ + Ŵ
]
|Ψ0〉 = E ′0 |Ψ0〉

, (2.48)
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which upon subtraction give[
V̂ − V̂ ′

]
|Ψ0〉 = [E0 − E ′0] |Ψ0〉 . (2.49)

This statement contradicts the premise that the elements of V differ by more

than a constant and so, by reductio ad absurdum we conclude no two elements

of V can map the same element of W. This allows us to say that the map A is

injective and (since also surjective) invertible.

Now it is necessary to prove that B is also invertible. Proceeding by reductio

ad absurdum we assume that the ground states (of different systems) Ψ0 and Ψ′0

originate the same density n0(r) = n′0(r). The energy associated to each ground

state is

E0 = 〈Ψ0|Ĥ|Ψ0〉 E ′0 = 〈Ψ0|Ĥ ′|Ψ0〉 . (2.50)

Using the variational principle1 we can write

E ′0 < 〈Ψ0|Ĥ ′|Ψ0〉 = 〈Ψ0|Ĥ + V̂ ′ − V̂ |Ψ0〉 = E0 +

∫
dr[v(r)′ − v(r)] , (2.51)

E0 < 〈Ψ′0|Ĥ|Ψ′0〉 = 〈Ψ0|Ĥ ′ + V̂ − V̂ ′|Ψ0〉 = E ′0 +

∫
dr[v(r)− v(r)′] . (2.52)

Adding both equations we arrive at the following contradiction

E0 + E ′0 < E0 + E ′0 (2.53)

which proves that n0(r) 6= n′0(r). These two arguments prove that B is unique

(there is a one-to-one correspondence between the elements of W and N).

Since both maps A and B are invertible then A ◦ B is also invertible, or in

other words, V̂ , Ψ0 and n0 determine each other uniquely (up to a constant for V̂

or a constant phase factor for Ψ0) through some functional relation, conclusion

that forms the first Hohenberg-Kohn theorem.

Theorem 1 For any system of particles in an external potential, the potential

v is uniquely determined, up to a constant, by the ground state density n0.

1 It was already established that V and W are a bijection and therefore Ψ′
0 cannot be the

ground state of Ĥ (and vice-versa). Because of this the equality in the variational principle
cannot occur for the cases presented.
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As a consequence of the first Hohenberg-Kohn theorem, the existence of the

functional Ψ[n] means that every observable can be written as a functional of the

density since

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉 . (2.54)

This is particularly true for the energy. Consider a ground state density, n0,

associated with a given potential, v0.

Ev0 [n0] = 〈Ψ0[n0]|T̂ + Ŵ + V̂0|Ψ0[n0]〉 = F [n0] +

∫
dr n0(r)v0(r) , (2.55)

where the functional

F [n0] = 〈Ψ0[n0]|T̂ + Ŵ |Ψ0[n0]〉 (2.56)

contains all internal energies of the system. If we consider a different V -representable1

density, say n, then, by the variational principle, the quantity

Ev0 [n] = F [n] +

∫
dr n(r)v0(r) (2.57)

must obey the inequality

E[n0] < E[n], (2.58)

which is a statement of the second Hohenberg-Kohn theorem.

Theorem 2 For a particular v(r) the ground state energy of the system is the

global minimum of the energy functional; the density that minimizes it is the

ground state density.

Although the Hohenberg-Kohn theorems assure that an observable is a func-

tional of the density, it does not provide a way to extract that information from

the density. To do so, some method is necessary, like the scheme proposed by

Kohn and Sham.

1 If there exists a physical density that is the ground state for a given potential, such density
is said to be V -representable.
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2.4.2 Kohn-Sham Ansatz

Using the Hohenberg-Kohn theorems we can find the ground state density by

looking for the minimum of the energy functional with the restriction for the

electron number

N =

∫
dr n(r). (2.59)

Introducing the Lagrange multiplier µ, we need only to solve the equation

δ

δn(r)

[
F [n] +

∫
dr n(r)v(r)− µ

(∫
d rn(r)−N

)]
= 0⇔

⇔ δF [n]

δn(r)
+ v(r) = µ . (2.60)

This equation is not solvable since the exact form of F [n] is unknown. Now enters

the fundamental hypothesis of Kohn and Sham [19]: we assume the existence of

a N non interacting particle system with the same density of the real one, to be

used as an auxiliary system. In this system, the Hamiltonian, Ĥs, presents only

the kinetic and external potential terms,

Ĥs = T̂s + V̂s.

The ground state density must be a solution to

δTs[n(r)]

δn(r)
+ vs(r) = µ (2.61)

but the exact form of the implicit density functional Ts[n(r)] is only known as

an approximation at best. However, being an independent particle system, the

ground state can be expressed as a Slater determinant (defined in (2.8)), and the

respective orbitals must obey the equation(
−1

2
∇2 + vs(r)

)
φi(r) = εiφi(r) (2.62)
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This also allows to write Ts as an explicit functional of the orbitals

Ts[φ[n0s]] = −1

2

N∑
i=1

∫
dr φ†i [n0s]∇2φi[n0s] , (2.63)

and the ground state density as

n0s(r) =
N∑
i=1

|φi(r)|2 . (2.64)

This allows to easily solve the independent particle problem. The Kohn-

Sham approach now starts by rearranging the terms in the energy functional for

the interacting system

Ev0 [n] = T [n] +W [n] +

∫
dr n(r)v0(r)

= (T [n]− Ts[n]) + (W [n]− EH [n]) + Ts[n] + EH [n] +

∫
dr n(r)v0(r)

= Ts[n] + EH [n] +

∫
dr n(r)v0(r) + Exc , (2.65)

where EH is the Hartree energy (the classical Coulomb interaction of the electron

density with itself),

EH [n] =
1

2

∫∫
drdr′

n(r)n(r′)

|r− r′|
. (2.66)

The Exc term, which is written as

Exc[n] = T [n]− Ts[n] +W [n]− EH [n] , (2.67)

is called the exchange-correlation energy. It is a functional of the density and

(in a certain way) represents the difference between the real system and the non

interacting one (through the first two terms), and the non classical part of the

electron-electron interaction (the last two terms).

Minimization of (2.65) translates into

δTs[n(r)]

δn(r)
+ v(r) +

∫
dr′

n(r′)

|r− r′|
+
δExc[n(r)]

δn(r)
= µ . (2.68)
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Comparing (2.61) with (2.68) we see that the two equations are formally identical

if we identify (neglecting the constant terms)

vs[n](r) = v[n](r) +

∫
dr′

n(r′)

|r− r′|
+ vxc[n](r) , (2.69)

where the exchange-correlation potential is defined as

vxc[n](r) =
δExc[n(r)]

δn(r)
. (2.70)

Substitution of (2.69) into (2.62) gives the Kohn-Sham equations, which

solved self-consistently would give the exact ground state if the exact form of

the exchange-correlation potential was known.

Before proceding, there are a couple of valuable observations to be made. In

Kohn-Sham theory, the wavefunctions {φi} and eigenvalues {εi} do not have any

direct physical interpretation, except that they allow to derive useful quantities

(like the density). There is however one exception: for a finite system, the highest

occupied eigenvalue equals minus the ionization energy [1]:

εN = −IP (2.71)

This quantity also relevant in describing the long range behaviour of the system

since the asymptotic density is regulated by the occupied state with the highest

eigenvalue [23].

Also, although both the Kohn-Sham and Hartree-Fock equations have the

same functional form, the former contains only local terms while the later are

evaluated using a non-local Coulomb term. Therefore, Kohn-Sham orbitals can-

not be identified with Hartree-Fock orbitals.

2.4.3 Exchange-Correlation Functionals

Given the definition for the exchange-correlation energy in (2.67) it can be divided

in two terms, the exchange and correlation energies

Exc[n] = Ex[n] + Ec[n] , (2.72)
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Frequently Exc[n] is also written as an integral

Exc[n] =

∫
dr n(r)εxc(n(r)) , (2.73)

where εxc is the exchange-correlation energy per particle of the system. This

quantity is also separable in each of its (correlation and exchange) components.

Since the exact form of the functional is not known there is a certain liberty to

the construction of the functional. In theory, however, the functional should obey

a set of physical constrains (obeyed by the exact functional) [17]. For example,

the exchange functional should scale as

nλ(r) = λ3n(r)

Ex[nλ] = λEx[n]
, (2.74)

while the global exchange-correlation functional is restrained by the Lieb-Oxford

condition

Ex[nλ] ≤ Exc[nλ] ≤ 2.273ELDA
x [nλ] . (2.75)

Other properties apply, in particular the adiabatic connection formula [10].

Consider a normalized and antisymmetric wavefunction Ψλ
n that yields density

n and also minimizes 〈T̂ + λŴ 〉, where the constant λ belongs to the range

[0, 1]. For the case λ = 0, Ψλ=0
n represents the non-interacting wavefunction (the

Kohn-Sham wavefunction) while in the case λ = 1 the interacting wavefunction

is recovered. Using equation (2.67), the exchange-correlation energy for Ψλ
n is

written as

Exc = 〈Ψλ
n|T̂ + λŴ |Ψλ

n〉
∣∣∣
λ=1

+ 〈Ψλ
n|T̂ + λŴ |Ψλ

n〉
∣∣∣
λ=0
− EH [n]

=

∫ 1

0

dλ
d

dλ
〈Ψλ

n|T̂ + λŴ |Ψλ
n〉 − EH [n] , (2.76)

Using the Feynman-Hellman theorem

d 〈O〉
dλ

= 〈Ψ|dÔ
dλ
|Ψ〉 , (2.77)
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this last equation can be rewritten as

Exc[n] =

∫ 1

0

dλ 〈Ψλ
n|Ŵ |Ψλ

n〉 − EH [n] (2.78)

Since the wavefunctions originate the physical density, the Hartree energy term

can be absorved in the integral

Exc[n] =

∫ 1

0

dλ
[
〈Ψλ

n|Ŵ |Ψλ
n〉 − EH [n]

]
=

∫ 1

0

dλ Eλ
xc[n] (2.79)

so that the integrand is comprised of potentials terms only, the kinetic contribu-

tion to Exc[n] having been absorbed by the coupling constant integration. This

formula is known as the adiabatic connection formula since it connects the non-

interacting Kohn-Sham orbitals (λ = 0) to the real ones (λ = 1) through a set of

partially interacting (and non physical) systems.

Available functionals do not always obey all of the requisites imposed by

the theory. This has some implications on their effectiveness in calculations but

nonetheless, it is possible to build increasingly precise (and therefore complex)

functionals.

2.4.3.1 Jacob’s Ladder

The several degrees of approximation for the exchange-correlation functional are

usually presented in what is called the Jacob’s Ladder1. This construction ranges

from the rudimentary ”Hartree World” (of no correlation) to the desired chemical

accuracy and in the rungs between lay the several functional approximations to

Exc.

The simplest approximation for Exc is the local density approximation (LDA).

In this scheme, the exchange-correlation energy of the system is locally equal to

the exchange-correlation energy of the homogeneous electron gas (heg) of the

1In biblical terms, Jacob’s ladder is a staircase ranging from Earth to Heaven (hence prompt-
ing the comparison) that appears in a dream to the biblical Patriarch Jacob. Said event is
described in the Book of Genesis.
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same density, εhegxc , making Exc the integral

ELDA
xc [n] =

∫
dr n(r)εhegxc (n(r))

=

∫
dr n(r)(εhegx (n(r)) + εhegc (n(r))) . (2.80)

Although the εhegx term is exactly known,

εhegx = − 3

4π
(3π2n)1/3 , (2.81)

for correlation term analytic expressions are known only for certain limits [10]:

in the high-density case we have

εhegc ≈ c0 ln(rs)− c1 + c2rs ln(rs)− c3rs + · · · (2.82)

and for the low-density case

εhegc ≈ −d0
rs

+
d1

r
3/2
s

+ · · · , (2.83)

where

rs =

(
3

4πn

)1/3

(2.84)

is the Wigner-Seitz radius. For intermediate values of the density, εhegc is calcu-

lated using Monte-Carlo methods, and the coefficients of (2.82) and (2.83) can

be found by interpolation in the respective regimes.

The LDA works reasonably well for several properties (atomic and molecu-

lar energies, equilibrium geometries and vibrational frequencies are reproduced

within a few percent error) but it presents some deficiencies: LDA does not pro-

duce stable negative ions and, due to wrong asymptotic behaviour, band gaps

and eigenvalues typically present large errors.

In order to improve the approximations for Exc, gradient terms are introduced,

thus contemplating the effects of a non homogeneous electron gas. Historically,

this was done by writing the xc-functional in a way reminiscent of a Taylor ex-
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pansion, in what is called the gradient expansion approximation (GEA) [10],

Exc[n] =

∫
dr n(r)εhegxc (n)Fxc(n,∇n,∇2n, · · · ) (2.85)

≈
∫

dr n(r)
(
εhegxc (n) + Cs2 + · · ·

)
, (2.86)

where the Fxc(n,∇n) is a dimensionless term that presents all the corrections to

the heg and

s =
|∇n|
2kfn

, (2.87)

is sometimes called the reduced density gradient [10] (kf is the Fermi moment).

Analytical expressions for this expansion can be calculated [14] [36], however, the

lack of higher order terms results in violation of relevant constrains and often

leads worse results than LDA.

In order to surpass the difficulties presented by GEA, the family of generalized

gradient approximations (GGA), with general form

EGGA
xc [n] =

∫
dr n(r)εGGAxc (n) (2.88)

=

∫
dr n(r)εhegxc (n)FGGA

xc (n,∇n) , (2.89)

was developed.

Contrarily to GEA, GGA are not derived from systematic higher order deriva-

tion. Different approaches can be taken while building a GGA: although many

are built to obey as many of the exact properties as possible by introducing ade-

quate terms (some of which may have an empirical input) there is an important

class of GGAs that only care about the results obtained with the functionals, re-

gardless of the physical constrains they obey. Since there is a certain freedom to

the construction, it is possible to find a myriad of functionals (B88 [2], LYP [22],

PW91 [30] are some of them). As an example let us consider the GGA proposed
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by Perdew, Burk and Ernzerhof (PBE) [29]. The exchange part is

εPBEx = εhegx F PBE
x

F PBE
x = 1 + k − k

1 + (µs2/k)
.

(2.90)

Here k and µ are both numerical factors with values k = 0.804 and µ = 0.21951.

The correlation part is, as usually, much more complicated to write, so it will not

be presented here. Nonetheless, both parts depend up to the first derivative of

the density.

In general, GGA present good results for energy calculations but fail to re-

produce the asymptotic behaviour of vxc.

Following GGA, the next functional family is the meta-generalized gradient

approximation (meta-GGA, mGGA),

EmGGA
xc [n] =

∫
dr n(r)εmGGAxc (n,∇n,∇2n, τ) . (2.91)

These functionals include not only a second order derivative but also the Kohn-

Sham orbital kinetic energy densities

τ(r) =
1

2

∑
i

|∇φi|2 , (2.92)

which are implicit functionals of the density.

The next step of the ladder will show the hyper-GGA functionals which in-

clude an obrital dependency through the Hartree-Fock exchange. Hybrid func-

tionals are a subset of the hyper-GGA. Further climbing will show functionals

that depend on virtual orbitals.

2.4.3.2 Hybrid Functionals

Exchange is frequently the dominant part of the exchange-correlation functional

giving motivation to treat this part of the functional exactly. The original idea for

this method was proposed by Becke [3] and makes use of the adiabatic connection
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formula (2.78) by approximating it to an interpolation at the extremes

Exc[n] =

∫ 1

0

dλ Eλ
xc[n] ≈ 1

2
(Eλ=0

xc [n] + Eλ=1
xc [n]) , (2.93)

in what is called the ”half-and-half” approximation. Here, Eλ=1
xc [n] is simply the

functional for the interacting system and it can be approximated by any other

functional available (in his 1993 paper, Becke used the local spin density approxi-

mation). At the lower limit however, the functional reduces to the exact exchange

which can be exactly calculated using the Kohn-Sham Slater determinant. In

practice the Kohn-Sham determinant is approximated by the Hartree-Fock de-

terminant.

More sophisticated functionals have since been presented in the literature. In

1996, Perdew, Burke and Ernzerhof proposed the hybrid [31]

Ehyb,λ
xc = EDFA,λ

xc + (Ex − EDFA
xc )(1− λ)m−1 , (2.94)

where DFA is a LDA or a GGA and m an integer such that m ≥ 1. Using

equation (2.78) their functional is written as

Ehyb
xc =

∫ 1

0

dλ Ehyb,λ
xc = EDFA

xc +
1

m
(Ex − EDFA

xc ) . (2.95)

In order to obtain m they argue that its value should be equal to the lowest

order of perturbation theory provinding adequate results in the λ expantion of

the exact Ehyb,λ
xc

Ehyb,λ
xc ≈ c0 + c1λ+ · · ·+ λm−1cm , (2.96)

which should differ according to the system in analysis; in practice the standard

value is m = 4 [31]. The PBE0 functional is the particular case when DFA is the

PBE.

Empirical hybrids also exist. One of the most famous is B3LYP (Becke, three-

parameter, Lee-Yang-Parr) [35]

EB3LYP
xc = (1− a)ELDA

x + aEx + bEB88
x + cELYP

c + (1− c)ELDA
c , (2.97)
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where the constants a,b and c are chosen to best reproduce the data from the G2

set.

In general, hybrids are quite accurate in terms of energies but they will not

satisfy the exact properties that their DFA does not, and therefore may fail for

certain specific systems (for example, since B3LYP does not reproduce the correct

homogeneous limit it fails for certain metals [38]).
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Chapter 3

Implementation Details

In order to solve the Hartree-Fock equations the Atomic Pseudopotential Gen-

erator (APE) [28] program was modified as to include this set of differential

equations. This program is capable of solving the Kohn-Sham equations (for

both the non-relativistc and relativistc cases) in a radial real space grid, using

the exchange-correlation functionals from the LIBXC library [25].

The code was written using FORTRAN 90 for the most part, but since nu-

merical methods are computed using the GNU Scientific Library (GSL) [12], C

interfaces are needed in order to call the functions.

3.1 Self-consistent field cycle

Due to the implicit nature of the exchange and potential terms, direct solution of

the differential equations is not possible. Therefore, such as in solving the Kohn-

Sham, an iterative method is used, dubbed self-consistent field cycle (SCF), and

29



the algorithm goes as follows:

t = 0 ;

while t ≤ MaxIter do
Orthogonalize {φti} ;

Update V , X, εij ;

Solve (2.39) to obtain {φt+1
i } and {εt+1

i } ;

if Calculation converged then
exit ;

else

φt+1
i ← Mix(φt+1

i , φti) ;

t← t+ 1 ;

end

end

The orthogonalization of the states batches was done using the modified

Gram-Schmidt [13], in order to avoid numerical instability. Initially, the SCF

cycle did not include the orthogonalization process. However, since the algorithm

did not converge correctly when more than one orbital was present, and the final

orbitals did not obey the orthogonality rules, the routine was implemented in

order to analyse its influence (this is discussed in section 4.3).

Updating the potential and exchange terms merely implies computing equa-

tions (2.41) and (2.42) with the new iteration of the wavefunction. To calculate

the off-diagonal energy parameters we use the same process as in [11]. We start

by considering the equations for two distinct states and, for each one take the

inner product with the other. Depending on the occupations the resulting equa-

tions are then summed or subbtracted. If the states have different occupation,

subraction gives

εij =
θj

θj − θi

∫
dr r [RjXi −RiXj +Ri(Yi − Yj)Rj] , (3.1)

while for same occupation

2εij = 〈Ri|L|Rj〉+ 〈Ri|L|Rj〉+

∫
dr r [RjXi +RiXj +Ri(Yi + Yj)Rj] (3.2)
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where

L = −1

2

d2

dr2
− 1

r

d

dr
− Z

r
+
l(l + 1)

2r2
. (3.3)

After a cycle of the iteration the new wavefunctions are mixed with the ones

of the previous iteration. This is commonly done in order to avoid large fluc-

tuations in the solutions that would dificult convergence. Two types of mixing

are available, linear and modified Broyden [18] methods. In the linear mixing

method, as the name implies, the new iteration wavefunctions are merely a linear

combination of the current and previous interations,

φt+1
i = aφti + (1− a)φt+1

i . (3.4)

The modified Broyden method is more complicated and its discussion is done

in [18] but, in short, it is built using a least square minimization of the error in

the iteration increment. This is the standard method of mixing since it greatly

reduces the number of iterations needed to reach convergence.

The remaining important aspects of the algorithm (solution of (2.39) and

some numerical aspects) are discussed bellow.

3.2 Solution of the eigenvalue problem

To solve the differential equations (2.39), the shooting method is used which

allows to simultaneously find the eigenvalue and the wavefunctions. In order to

apply this method we start by separating the second order differential equations

on the wavefunction (here descrived by f) into a set of two first order differential

equation on f and its derivative g. The method then goes as follows [28]

1. Choose an arbitrary value for the eigenvalue, ε;

2. Choose an arbitrary initial value for f at the practical origin (r0) and prac-

tical infinity (r∞);

3. Compute the initial values for g(r0) and g(r∞). This is done using the small

and large r expansions for the wavefunction;
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4. Using the initial conditions, integrate f and g from r0 up to an intermediate

point, rm, thus obtaining f→(r) and g→(r);

5. Integrate f and g from r∞ to rm, thus obtaining f←(r) and g←(r);

6. Multiply f←(r) and g←(r) by f→(rm)
f←(rm)

. This process makes f continuous;

7. Evalulate τ(ε) = [g→(rm)− g←(rm)]ε.

Since whenever τ(ε) = 0 we have that ε is an eigenvalue of the functions, finding

them is reduced to finding the roots of τ . Several possible eigenvalues may be

found; in such case, to find the correct one, care must be taken to assure the

calculated wavefunctions present the adequate number of nodes.

Integration of the differential equations is made resorting to adaptative step

methods in order to obtain the best accuracy possible.

3.3 Grids

Due to the localized nature of atomic orbitals, in real space methods it becomes

convenient to have a higher concentration of grid points near the regions where

the wavefunction varies the most, in order to assure numerical precision. This

can be assured, for example, using a coordinate transformation like Fischer [11],

ρ = log(Zr)⇔ r =
eρ

Z
, (3.5)

and Chernysheva [5]

x = αr + β log(r) . (3.6)

In the same spirit, APE has implemented two types of logarithmic grid to be

used, defined as

ri = beai , (3.7)

(which is equivalent to (3.5) through an appropriate choice of coefficients) and

ri = bea(i−1) , (3.8)
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where the parameters a and b are determined by the extremes and the number

of points of the grid. A linear mesh is also available.

Since the differential equation integration is usually made in an adaptative

grid, passing to the logarithmic grid makes use of spline interpolation methods.

Several methods are supplied by the GSL from which cubic splines are used

(a description of the method is given in [33]). Numerical differentiation and

integration are evaluated using spline interpolation, although the former can also

be evaluated with finite difference methods.
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Chapter 4

Numerical results

In this section we present the results obtained using the implementation done on

the Atomic Pseudopotential Engine (APE) [28].

In short, the hydrogen and helium atoms are correctly solved but for lithium

and above we found some issues that did not allow the correct solution to be

found.

4.1 Hydrogenoid Series

The hydrogen atom is the only atom for which the Schrödinger equation is exactly

solvable. As such the energy and wavefunctions are readily available and present

(e.g. [21]) a good precision test for any atomic implementation. The energy of a

hydrogenoid atom is simply given by

Eteo = −Z
2

2
. (4.1)

The calculated relative error,

∆ =
Ecalculated − Eteo

Eteo
, (4.2)

for the hydrogenoid series is presented in figure 4.1. The obtained errors are of a

small magnitude and only significant for large atomic numbers (Z ≥ 50).
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Figure 4.1: Relative errors (dots) for the hydrogenoid series.

4.2 Helium Atom

The Hartree-Fock results for the helium atom are presented in table 4.1 and figure

4.2. Our energy values are in good agreement with those obtained using ORCA

(using an Ahlrichs triple zeta valence basis set) [27] and the results published by

C. F. Fischer [11]; the wavefunctions are also superposable.

4.3 Lithium Atom

As previously stated, the Hartree-Fock calculation for the lithium atom did not

converge to the expected values and, therefore, it is not possible to present any

proper result. Still we present some data from the simulations in figure 4.3 and

table 4.2

Since lithium presents the first atom with a second occupied shell, the orthog-

onalization process now becomes relevant. Although the scf converged without
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Figure 4.2: Comparison between 1s wavefunction of He obtained in this work and
the results from C. F. Fischer [11].

Atom This work Ref [11] Ref [27]

He Ek 2.861679 2.861680 2.859894
Eee 2.051536

 -5.723361

 -5.723360

 -5.719790Ene -6.749129
Ex -1.025768
Etot -2.861681 -2.861680 -2.859895
ε1s -0.91796 -0.91796 -0.91687

Table 4.1: Calculated energies for the helium atom. Here, Ek is the kinetic energy,
Eee the electron-electron interaction energy, Ene the nucleus-electron interaction
energy, Ex the exchange energy and εi the orbital energies. All energy values are
in Hartree units. The ORCA values were computed using a Ahlrichs triple zeta
valence basis set.
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forcing the orthogonalization, the obtained orbitals (1s and 2s in this case) were

not orthogonal, violating equation (2.22).

One would expect the calculations to converge to orthogonal solutions, which

happens naturally in solving the Kohn-Sham equations, but without the orthog-

onalization process this did not happen. However, the Hartree-Fock implemen-

tations found in literature present such a procedure, and a possible reason is

because the computation of the off-diagonal energy parameters (the Lagrange

multipliers) requires the orbitals to be orthogonal. Although this is true for the

first iteration (when the orbitals are hydrogenoid) the presence of the non ho-

mogeneous term in the next iteration may lead to overlap, and ultimately a non

orthogonal ”solution”.

A different implementation was attempted, using the set of differential equa-

tions obtained by minimizing the energy with the explicit form of the equations

(2.35) and (2.36) (as done in [39]). This effectively makes the potential term

equal for every orbital, by writing it as a sum of the Hartree,

vH(r) =
∑
a

∫
ωa|Ra(r

′)|2

r<
r′2 dr′ , (4.3)

and Coulomb potentials, and placing every orbital dependent term in the rewrit-

ten inhomogeneous term

Xa = −
∑
b

la+lb∑
L=|la−lb|

1

ωa
ΘL
abY

L
ab(r)Rb(r) . (4.4)

The main difference of this formulation is that here the inhomogeneous term is

never null, making the solution of the hydrogen and helium atoms qualitatively

similar to the lithium one in the original implementation.

It was found that the eigenvalues bracketing even for the hydrogen and helium

atoms was not possible, due to the alteration created by the inhomogeneous term,

the same effect saw in solving the lithium atom. This effect can be viewed in

figure 4.4, where the logarithmic derivative of the 1s wavefunction of helium

is plotted against the eigenvalue values near the correct eigenvalue (we choose

to plot helium’s data since there comparison with a successful calculation was
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〈R1s|R1s〉 〈R1s|R2s〉 〈R2s|R2s〉
With 1.000 0.000 1.000

Whithout 1.000 -0.232 1.000

Ek Epot Etot ε1s ε2s
With 7.322731 -14.743800 -7.421070 -2.55763 -0.16031

Without 7.322027 -15.035199 -7.713171 -2.71609 -0.10128
Ref. [11] 7.432727 -14.865454 -7.432727 -2.47774 -0.19632

Table 4.2: Upper table: final results for the inner product of the 1s and 2s orbitals
with and without the orthogonalization process. Lower table: Energy results for
the lithium atom with and without orthogonalization process, and the results
from C. F. Fischer. In here Epot = Ene + Eee + Ex.

available). The Kohn-Sham plot was created using the default functionals in

APE, Perdew-Wang LDA [32] correlation and LDA exchange [4] [8] functionals.

The exact origin of this problem is yet to be determined but it is known that it

arises during the bracketing steps. It could be due to the long range behaviour of

the inhomogeneous term introducing instabilities but this remains an hypothesis.
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Chapter 5

Conclusions and future work

We report on the work done in the implementation of Hartree-Fock and hybrid

formulation for atoms in the Atomic Pseudopotential Engine (APE). As said

in previous chapters, the global goal of this work was not fully met; since the

Hartree-Fock implementation was incomplete, the hybrid formalist could not be

implemented and tested.

The main objective for future work is therefore to solve the problems with the

Hartree-Fock part of the code. This step should be achieved quickly as no more

implementation is required. Still finding the exact nature of the problem can turn

out to be problematic as is common of this type of situations. It is also desirable

to alter some aspects of the code, for example, create some data structures in

order to reduce the amount of calculated quantities and the overall computation

time.

Important as it is, this is not the most desirable goal as stated in the in-

troduction: from here we want to proceed to a good implementation of hybrid

functionals. This part is mostly comprised by extensive testing of the obtained

results. Once achieved, this will allow to proceed even further, to the creation of

adequate hybrid pseudopotentials.
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