Enantioselective HPLC-UV method for determination of eslicarbazepine acetate (BIA 2-093) and its metabolites in human plasma

Gilberto Alves, Isabel Figueiredo, Margarida Castel-Branco, Ana Loureiro, Ana Fortuna, Amílcar Falcão* and Margarida Caramona

1Laboratory of Pharmacology, Faculty of Pharmacy, Coimbra University, 3000-141 Coimbra, Portugal
2Department of Research and Development, BIAL, 4745-457 S. Mamede do Coronado, Portugal

Received 14 February 2007; accepted 13 March 2007

ABSTRACT: Eslicarbazepine acetate (BIA 2-093) is a novel central nervous system drug undergoing clinical phase III trials for epilepsy and phase II trials for bipolar disorder. A simple and reliable chiral reversed-phase HPLC-UV method was developed and validated for the simultaneous determination of eslicarbazepine acetate, oxcarbazepine, S-licarbazepine and R-licarbazepine in human plasma. The analytes and internal standard were extracted from plasma by a solid-phase extraction using Waters Oasis® HLB cartridges. Chromatographic separation was achieved by isocratic elution with water–methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LichroCART 250-4 ChiraDex (β-cyclodextrin, 5 μm) column at 30°C. All compounds were detected at 225 nm. Calibration curves were linear over the range 0.4–8 μg/mL for eslicarbazepine acetate and oxcarbazepine, and 0.4–80 μg/mL for each licarbazepine enantiomer. The overall intra- and interday precision and accuracy did not exceed 15%. Mean relative recoveries varied from 94.00 to 102.23% and the limit of quantification of the assay was 0.4 μg/mL for all compounds. This method seems to be a useful tool for clinical research and therapeutic drug monitoring of eslicarbazepine acetate and its metabolites S-licarbazepine, R-licarbazepine and oxcarbazepine. Copyright © 2007 John Wiley & Sons, Ltd.

KEYWORDS: eslicarbazepine acetate (BIA 2-093); oxcarbazepine; human plasma; bioanalytical method validation; enantioselective HPLC-UV method

INTRODUCTION

Until the last decade of the twentieth century, epileptic seizures were still managed by antiepileptic drugs (AEDs) such as carbamazepine (CBZ), phenytoin, valproic acid, ethosuximide, phenobarbital and some benzodiazepines (Levert et al., 2002). However, since the beginning of the 1990s, an explosion in knowledge about the neurobiology of epileptogenesis has taken place and several new AEDs have been introduced in clinical practice, such as vigabatrin, zonisamide, lamotrigine, gabapentin, felbamate, topiramate, tiagabine, oxcarbazepine (OXC) and levetiracetam (Bazil and Pedley, 1998; Ducan, 2002). Despite the currently available therapeutic arsenal of old and new AEDs, about 30% of epileptic patients are still not seizure-free, and therefore, there is a substantial need to develop more effective drugs simultaneously with less potential for drug interactions and side effects (Deckers et al., 2003; Bialer, 2006).

Eslicarbazepine acetate (ESL) [S(-)-10-acetoxy-10,11-dihydro-5H-dibenzo[b,f]azepine-5-carboxamide], previously known as BIA 2-093, is a novel chiral drug presently completing phase III clinical trials, as add-on therapy in refractory partial epilepsy, and undergoing phase II clinical trials, as monotherapy in partial epilepsy and in bipolar disorder (Almeida and Soares-da-Silva, 2007). ESL is chemically related to CBZ and OXC (Benes et al., 1999). CBZ is a very effective first-generation AED that is used as a major first-line drug for partial and generalized tonic–clonic seizures (Arroyo and Kramer, 2001; Coppola, 2004). In humans, the major metabolic pathway of CBZ is oxidation to carbamazepine-10,11-epoxide, which seems to be responsible for several unwanted adverse effects and CBZ-related drug interactions resulting from the induction of hepatic microsomal cytochrome P450 enzymes (Myllynen et al., 1998; Arroyo and Kramer, 2001; Coppola, 2004). OXC is a second-generation CBZ, presenting a similar spectrum of anticonvulsant activity but showing a more favourable tolerability profile (Reinikainen et al., 1987;
Schachter, 1999). Chemically, OXC differs from CBZ by a keto-group in the tenth position. Therefore, in humans, the achiral produg OXC is rapidly reduced in liver by cytosolic arylketone reductases to the pharmacologically active metabolite licarbazepine or 10-hydroxy-carbazepine (May et al., 2003; Flesch, 2004). Nevertheless, OXC first-pass reduction to licarbazepine is stereoselective, appearing in plasma as S-licarbazepine (S-LC) and R-licarbazepine (R-LC) in the enantiomeric ratio of approximately 4:1 (Flesch et al., 1992; Volosov et al., 1999). In fact, it is well known that enantiomers of chiral drugs may have different pharmacodynamic, pharmacokinetic and toxicological effects in biological systems (Mislananov and Hutta, 2003).

Accordingly, the enantiomeric dilution of the active metabolite of OXC is a negative aspect and the development of a single enantiomer (eutomer) or the manipulation of the enantiomeric ratio could be performed in order to optimize the therapeutic index. Thus, ESL, a third-generation CBZ or second-generation OXC, was specifically designed to circumvent its further biotransformation to toxic metabolites, such as epoxides, and to avoid enantiomeric impurity and unnecessary production of enantiomers or diastereoisomers of its metabolites, without losing anticonvulsant potency (Benes et al., 1999; Hainzl et al., 2001). As a result, ESL exhibits a ‘cleaner’ metabolism and higher enantiomeric purity than OXC (Hainzl et al., 2001). Previous reports indicated that ESL is extensively metabolized to S-LC (95–98%) and to a minor extent to R-LC and OXC (Almeida and Soares-da-Silva 2004; Almeida et al., 2005).

Over the years, several chromatographic methods for OXC and racemic licarbazepine determination have been developed (Noirfalise and Collinge, 1983; Menge et al., 1987; Elyas et al., 1990; Rouan et al., 1994; Pienimaki et al., 1995; Souppart et al., 2001; Levert et al., 2002; Mandrioli et al., 2003; Franceschi and Furlanut, 2005; Lanckmans et al., 2006). However, only three chiral HPLC assays have been validated to determine S- and R-LC enantiomers, in which a very expensive column and mobile phase were employed (Flesch et al., 1992; Pichini et al., 1995; Volosov et al., 2000). ESL and its metabolites S-LC, R-LC and OXC have also been previously evaluated by a chiral HPLC-MS method, but it was not completely described (Hainzl et al., 2001; Almeida et al., 2005).

As ESL is a new drug in final phase of clinical trials, in our opinion it would be essential to develop and validate a simple chiral HPLC-UV method for simultaneous and stereoselective determination of ESL and its main metabolites in human plasma. Moreover, considering that epilepsy is a neurological disease with high prevalence and high incidence in patients younger than 1 year and older than 75 years (Arroyo and Kramer, 2001; Jarrar and Buchalter, 2003), the availability of an easy-to-use HPLC-UV method is also imperative to achieve individualized dosage regimens and to improve the overall clinical outcomes by monitoring plasma drug concentrations in these special populations (Perucca, 2000; Johannessen et al., 2003; Neels et al., 2004).

The purpose of this paper is to describe an accurate, sensitive and practical enantioselective HPLC-UV assay to quantify ESL and its metabolites in human plasma, within a wide concentration range, which could be applied not only to clinical research but also to therapeutic drug monitoring.

EXPERIMENTAL

Chemicals and reagents. Standards of ESL (BIA 2-403, lot number 000012976, 100% pure by HPLC), S-LC (BIA 2-194, lot number PC020131B, 99.79% pure by HPLC), R-LC (BIA 2-195; lot number PC040144, 100% pure by HPLC), OXC (lot number 97.12.17, >98% pure by HPLC) and BIA 2-265 (used as internal standard, lot number PC050704, 97.4% pure by HPLC) were kindly supplied by BIAL (Porto, Portugal; Fig. 1). Methanol (HPLC grade, SDS), water milli-Q (HPLC grade, >15 MΩ, home-made), acetonitrile, ethyl acetate, sodium dihydrogen phosphate dihydrate, di-sodium hydrogen phosphate dehydrate and hydrochloric acid fuming 37% were purchased from Merck KGaA (Darmstadt, Germany). Drug-free human plasma from healthy donors was kindly provided by the Portuguese Blood Institute after the written consent of each subject.

Chromatographic apparatus and conditions

The HPLC system used for analysis was composed of a BAS-480 liquid chromatograph equipped with a PM-80 pump, a Rheodyne manual injector with a 20 μL loop, a BAS UV-116 UV-vis detector, a BAS LC-22C temperature controller, a BAS DA-5 chromatography control and a data system interface (all from Bioanalytical Systems, West Lafayette, IN, USA). Data collection and integration were achieved by means of BAS Chromograph Control and Chromgraph Report software version 2.30.

The chromatographic separation of all four drugs and internal standard was carried out at 30°C by isocratic elution with water–methanol (88:12, v/v), at a flow rate of 0.7 mL/min, on a LiChroCART 250-4 ChiraDex (β-cyclodextrin, 5 μm) column protected by a LiChroCART 4x4 ChiraDex (β-cyclodextrin, 5 μm) guard column purchased from Merck KGaA (Darmstadt, Germany). The mobile phase was filtered through a 0.45 μm filter and degassed ultrasonically for 15 min before use. A sample volume of 20 μL was injected and the analytes were detected at 225 nm.

Stock solutions, calibration standards and quality control samples

The stock solutions of ESL (2 mg/mL), S-LC (10 mg/mL), R-LC (10 mg/mL), OXC (2 mg/mL) and internal standard (1 mg/mL) were prepared by dissolving appropriate amounts of each compound in acetonitrile. These solutions were
Figure 1. Chemical structures of eslicarbazepine acetate (ESL), S-licarbazepine (S-LC), R-licarbazepine (R-LC), oxcarbazepine (OXC) and BIA 2-265 used as internal standard (IS).

Extraction procedure

Aliquots of human plasma (250 μL) were added to 750 μL of 0.1 M sodium phosphate buffer (pH 5) spiked with 10 μL of the internal standard working solution. The samples were vortex-mixed and loaded into Oasis® HLB (30 mg, 1 mL) cartridges (Waters, Milford, MA, USA), which were previously conditioned with 1 mL of methanol, 1 mL of acetonitrile and 1 mL of water-acetonitrile (95:5, v/v). After sample elution, the loaded cartridges were submitted to −30 kPa and washed twice with 1 mL of water and twice with 1 mL of water–acetonitrile (95:5, v/v). After drying the sorbent under airflow for 5 min, the analytes were eluted with 1 mL of ethyl acetate under gentle vacuum and then the cartridges were dried for 30 s at −30 kPa. The eluates were evaporated to dryness under a nitrogen stream at 45°C and the residues reconstituted in 100 μL of HPLC mobile phase, vortexed for approximately 30 s and placed in an ultrasonic bath at room temperature for approximately 1 min. Following this, the reconstituted extracts were transferred to 0.22 μm Spin-X centrifugal filters, centrifuged at 13,400 rpm for 2 min and 20 μL of the final filtered samples were injected onto the HPLC system.

Method validation

The method was validated according to the general recommendations published in the last few years concerning to bioanalytical method validation and acceptance criteria for validation parameters: selectivity, linearity, sensitivity, precision, accuracy, sample dilution, recovery and stability (Shah et al., 2000; Peters and Maurer, 2002).

Method selectivity. The extracts of blank human plasma samples from six different subjects were tested for endogenous interferences. Furthermore, solutions of several commonly co-prescribed AEDs such as phenobarbital, phenytoin, carbamazepine, valproic acid, felbamate, gabapentin, vigabatrin, lamotrigine, topiramate and levetiracetam, and solutions of non-AED cotherapies including antidepressants (dothiepin, mirtazepine, sertraline, trazodone, escitalopram and paroxetine), anxiolytics or hypnotics (diazepam, cloxazolam, lorazepam and ethyl loflazepate) and antipsychotics (risperidone, olanzapine, chlorpromazine and zuclopenthixol) were also injected to check for drugs which could potentially interfere with eslicarbazepine acetate and its metabolites.

Calibration curve. The linearity of the analytical method was assessed by using calibration standards at five different
concentrations within the range of 0.4–8 μg/mL for ESL and OXC and 0.4–80 μg/mL for R-LC and S-LC. Calibration curves were constructed by plotting drug–internal standard peak height ratio as a function of the respective concentrations in the calibration samples. The data were subjected to a weighted linear regression analysis using 1/x² as weighting factor, which was chosen taking the plots and the sums of absolute percentage relative error into account (Almeida et al., 2002). The sensitivity was evaluated by determining the limit of quantification (LOQ), which is defined as the lowest concentration of the calibration curve that can be measured with acceptable inter- and intraday precision and accuracy, assessed respectively by the coefficient of variation (CV) and the deviation from nominal value (bias) within 20%. The limit of detection (LOD), defined as the lowest concentration that can be distinguished from the noise level, was determined for ESL and its metabolites by analysing plasma samples with known concentrations, after successive dilutions, and was established by visual evaluation of the minimum level at which the analytes can be reliably detected.

Precision and accuracy. Intra- and interday precision and accuracy were assessed by using QC samples in replicate at three different concentration levels representative of all calibration ranges (n = 5). The concentrations tested were 0.4, 4 and 8 μg/mL for ESL and OXC and 0.4, 40 and 80 μg/mL for each licarbazepine enantiomer. The acceptance criterion, for precision, was a CV within 15% (or 20% in the LOQ) and, for accuracy, a bias within 15% (or 20% in the LOQ).

Sample dilution. Dilution effect (1:10) was also investigated with QC samples at 40 μg/mL for ESL and OXC and at 400 μg/mL for R-LC and S-LC to ensure that plasma samples exceeding the highest concentration of the calibration range could be diluted with blank human plasma and accurately quantified. The precision and accuracy of the diluted QC samples were determined in both intra- and interday assays (n = 5).

Recovery. The relative recovery from human plasma was calculated at 0.4, 4 and 8 μg/mL for ESL and OXC and at 0.4, 40 and 80 μg/mL for licarbazepine enantiomers (n = 5). The absolute recovery of the internal standard was also evaluated at the concentration used in sample analysis. The relative recoveries of the analytes were calculated by comparing the analyte–internal standard peak height ratios for extracted samples with the corresponding ratios obtained with non-extracted standards that represent 100% of recovery. The absolute recovery of the internal standard was also determined by calculating the peak height ratio of the internal standard in extracted samples and non-extracted standards.

Stability. Human plasma stability of ESL and its metabolites was assessed, at low and high concentration levels, by 24 h at 4°C and 30 days at −30°C to simulate sample handling and storage time in the freezer before analysis (n = 5). Stability was assessed by comparing the data of QC samples analyzed before (reference samples) and after being exposed to the conditions for stability assessment (stability samples). The stability sample/reference sample ratios of 85–115% were accepted as stability criterion.

RESULTS

Chromatographic separation and selectivity

The separation of R-LC, S-LC, OXC, ESL and internal standard in spiked human plasma was achieved successfully using the chromatographic conditions and the solid-phase extraction (SPE) procedure previously described. Under these analytical conditions the last-eluting analyte was ESL, with a retention time of approximately 24 min, and the order of elution was internal standard, R-LC, S-LC, OXC and ESL, respectively.

Representative chromatograms of the extracts of blank and spiked human plasma samples are shown in Fig. 2. The lack of response in blank human plasma samples at internal standard and analytes retention times was demonstrated at 225 nm. Likewise, none of the possibly co-prescribed drugs or commonly prescribed AED cotherapies tested interfered with the internal standard or analytes.

Calibration curve

The calibration curves obtained in human plasma from five calibration standards were linear for ESL and OXC in the range of 0.4–8 μg/mL and for licarbazepine enantiomers in the range of 0.4–80 μg/mL. Respectively, the regression equations of calibration curves were $y = 0.0547x + 0.0005$ ($r^2 = 0.993$) for ESL, $y = 0.1609x - 0.0061$ ($r^2 = 0.998$) for OXC, $y = 0.1320x - 0.0005$ ($r^2 = 0.998$) for R-LC and $y = 0.1086x - 0.0009$ ($r^2 = 0.998$) for S-LC. These results demonstrated a good linearity ($r^2 > 0.99$) between peak height ratios and concentrations. The LOQ of the assay was set at 0.4 μg/mL for all analytes with acceptable precision and accuracy (Table 1), and the LOD was 0.1 μg/mL for ESL and 0.04 μg/mL for OXC, R-LC and S-LC.

Precision and accuracy

Precision and accuracy data for intra and interday QC plasma samples are presented in Table 1. The overall intra- and interday CV value was ≤9.25%. Intra- and interday bias varied between −0.56 and 4.98%. These data indicated that the developed HPLC method is reproducible and accurate, given that neither CV nor bias exceeded 15% (or 20% in the LOQ), in agreement with literature recommendations. The precision and accuracy of the diluted plasma samples varied from 0.89 to 2.63% and from −1.96 to 0.38%, respectively. These results revealed that a 10-fold dilution with blank human plasma can be rightly applied if the concentration of a trial sample exceeds the highest concentration of the calibration curve.
Figure 2. Typical chromatograms of extracted human plasma: (A) blank human plasma; (B) human plasma spiked with internal standard (IS) (concentration = 8 μg/mL), R-licarbazepine (R-LC), S-licarbazepine (S-LC), oxcarbazepine (OXC) and eslicarbazepine acetate (ESL) (concentration = 0.4 μg/mL); (C) human plasma spiked with IS (concentration = 8 μg/mL), R-LC and S-LC (concentration = 20 μg/mL), OXC and ESL (concentration = 2 μg/mL); (D) human plasma spiked with IS (concentration = 8 μg/mL), R-LC and S-LC (concentration = 80 μg/mL), OXC and ESL (concentration = 8 μg/mL).
Table 1. Intra- and interday precision (CV, %) and accuracy (bias, %) for the simultaneous determination of eslicarbazepine acetate (ESL), oxcarbazepine (OXC), S-licarbazepine (S-LC) and R-licarbazepine (R-LC) in human plasma (n = 5)

<table>
<thead>
<tr>
<th>C<sub>Nominal</sub></th>
<th></th>
<th>Plasma</th>
<th>Intraday</th>
<th>Interday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ESL</td>
<td>OXC</td>
<td>ESL</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>5.52</td>
<td>2.53</td>
<td>9.25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.24</td>
<td>0.36</td>
<td>2.86</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.91</td>
<td>4.05</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>S-LC</td>
<td>4.10</td>
<td>3.21</td>
<td>6.26</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>1.18</td>
<td>1.02</td>
<td>2.57</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0.76</td>
<td>0.50</td>
<td>2.60</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>4.98</td>
<td>4.22</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Recovery

The relative drug recoveries from human plasma are presented in Table 2. The mean relative recoveries, taking ESL and its metabolites into account, ranged from 92.36 to 102.85% and showed low CV values. The absolute recovery of the internal standard was 84.99%, with a CV of 2.78%. All average recoveries calculated are high and reproducible, either for analytes or internal standard.

Table 2. Relative recovery (%) of eslicarbazepine acetate (ESL), oxcarbazepine (OXC), S-licarbazepine (S-LC) and R-licarbazepine (R-LC) in human plasma

<table>
<thead>
<tr>
<th>C<sub>Nominal</sub></th>
<th>n</th>
<th>Plasma</th>
<th>Relative recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ESL</td>
<td>OXC</td>
</tr>
<tr>
<td>0.4</td>
<td>5</td>
<td>90.10</td>
<td>8.06</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>100.00</td>
<td>1.87</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>101.16</td>
<td>1.98</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>97.09</td>
<td>6.67</td>
</tr>
<tr>
<td></td>
<td>S-LC</td>
<td>97.36</td>
<td>5.38</td>
</tr>
<tr>
<td>0.4</td>
<td>5</td>
<td>101.01</td>
<td>4.22</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>104.09</td>
<td>1.38</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>101.57</td>
<td>1.33</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>101.01</td>
<td>1.33</td>
</tr>
</tbody>
</table>

* Nominal concentration (μg/mL); n, number of samples; CV, coefficient of variation.
Stability
From the stability data obtained at 0.8 and 4 μg/mL for ESL and OXC and at 2 and 40 μg/mL for S-LC and R-LC no significant loss was observed when spiked plasma samples were stored for 24 h at 4°C or for 1 month at −30°C. Thus, ESL, OXC and both licarbazepine enantiomers were revealed to be stable in the assayed conditions.

DISCUSSION
The present paper describes the first reversed-phase HPLC-UV-SPE chiral assay fully validated to quantify ESL and its main metabolites S-LC, R-LC and OXC in human plasma. This HPLC method appears to be accurate, precise and sensitive in assessing ESL and its metabolites in human plasma, but its major advantages involve the very simple chromatographic conditions. Unlike the methods previously published by Flesch et al. (1992), Pchini et al. (1995) and Volosov et al. (2000) concerning to independent quantification of licarbazepine enantiomers, this enantioselective assay was carried out on reversed-phase using a safe and economical mobile phase essentially composed of water. In the preceding methods, the analysis took place on normal-phase chromatographic columns using more expensive, pollutant and toxic mobile phases, such as n-hexane:2-propanol, n-hexane:ethanol or n-hexane:ethanol:2-propanol. Besides the specific chromatographic conditions, the SPE procedure used here in sample pretreatment offers many other benefits over the traditional liquid–liquid extraction methods, such as faster sample preparation, lower cost, greater recoveries, less sample handling, improved safety and easy automation (Soriano et al., 2001; Camel, 2003). Even though ESL and its metabolites could be analyzed using MS detection systems (Hainzl et al., 2001; Almeida et al., 2005), most hospitals and laboratories are not equipped with such high-cost instruments (Velandian et al., 2004; Janchawee et al., 2007). Therefore, the availability of the current method will be important and it may be easily adopted to perform clinical studies. Among the several strategies to separate enantiomers, the enantiomeric resolution of S-LC and R-LC was achieved by the easiest of them, direct HPLC using a chiral stationary phase composed of β-cyclodextrins bounded covalently to silica gel.

Thus, the present method seems to be a useful tool to individually assess the pharmacologically active metabolites licarbazepine enantiomers and their prodrugs ESL and OXC. The wide working range tested, as well as all the other advantages previously referred to, will allow its application not only in the support of clinical trials but also in the routine therapeutic drug monitoring assays or in bioequivalence studies that involve the new antiepileptic drug ESL and the already marketed OXC.

Acknowledgments
This work was supported by Fundação para a Ciência e a Tecnologia, Programa POCTI (SFRH/BD/12694 2003), Portugal and by BIAL, Portugal. The authors would like to thank the Portuguese Blood Institute for help in obtaining drug-free human plasma from healthy donors.

REFERENCES
Almeida AM, Castel-Branco MM and Falcão AC. Linear regression
for calibration lines revisited: weighting schemes for bioanalytical
Almeida L and Soares-da-Silva P. Safety, Tokrability, and pharma-
cokinetic profile of BIA 2-093, a novel putative antiepileptic, in
a rising multiple-dose study in young healthy humans. Journal of
Almeida L and Soares-da-Silva P. Eslicarbazepine acetate (BIA
Almeida L, Falcão A, Maia J, Mazur D, Gellert M and Soares-
da-Silva P. Single-dose and steady-state pharmacokinetics of eslicar-
bazepine acetate (BIA 2-093) in healthy elderly and young subjects.
Arroyo S and Kramer G. Treating Epilepsy in the Elderly: Safety
Bazil CW and Pedley TA. Advances in medical treatment of
Benes J, Parada A, Figueiredo AA, Alves PC, Freitas AP, Leammon
DA, Cunha RA, Garrett J and Soares-da-Silva P. Anticonvulsant
and sodium channel-blocking properties of novel 10,11-dihydro-5h-
dibenzo[a,b]fleazine-5-carboxamide derivatives. Journal of Medicinal
Bialer M. New antiepileptic drugs that are second generation
to existing antiepileptic drugs. Expert Opinion on Investigative
Camel V. Solid phase extraction of trace elements. Spectrochimica
Coppola G. Treatment of partial seizures in childhood: an overview.
CNS Drugs 2004; 18: 133–156.
Deckers CLP, Genton P, Silib SJ and Schmidt D. Current limitations
of antiepileptic drug therapy: a conference review. Epilepsy
Duncan JS. The promise of new antiepileptic drugs. British Journal
Elyas AA, Goklberg VD and Patulos P. Simple and rapid micro-
analytical high-performance liquid chromatographic technique for
the assay of oxcarbazepine and its primary active metabolite 10-
hydroxyoxcarbazepine. Journal of Chromatography 1990; 528:
473–479.
Flesch G. Overview of the clinical pharmacokinetics of oxcar-
Flesch G, Francotte E, Heli F and Degen PH. Determination of
the R-(−) and S-(+) enantiomers of the monohydroxylated metabo-
lite of oxcarbazepine in human plasma by enantioselective high-
performance liquid chromatography. Journal of Chromatography
Francesch L and Furlanut M. A simple method to monitor plasma
concentrations of oxcarbazepine, carbamazepine, their main
metabolites and lamotrigine in epileptic patients. Pharmacological
Hainzl D, Parada A and Soares-da-Silva P. Metabolism of two new
antiepileptic drugs and their principal metabolites S-(+) and R-(−)
10,11-dihydro-10-hydroxy carbamazepine. Epilepsy Research 2001;

Copyright © 2007 John Wiley & Sons, Ltd.