
DEPARTAMENTO DE CIÊNCIAS DA VIDA 
FACULDADE DE CIÊNCIAS E TECNOLOGIA 

UNIVERSIDADE DE COIMBRA 

Alteration of GABAAR trafficking 
during cerebral ischemia: 

 the role of Huntingtin-associated protein 1 

  

Maria Cristina Aspromonte  

2014 

Dissertação apresentada à Universidade de Coimbra para 
cumprimento dos requisitos necessários à obtenção do 
grau de Mestre em Biologia Celular e Molecular, 
realizada sob a orientação científica do Doutor Professor 
Carlos Duarte (Departamento de Ciências da Vida,  
Faculdade de Ciências e Tecnologia, Universidade de 
Coimbra) e da Doutora Miranda Mele (Centro de 
Neurociências e Biologia Celular)  



�



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work was performed at the Center for Neuroscience and Cell Biology, University of 

Coimbra, Portugal, with support from the Portuguese Foundation for Science and 

Technology (FCT) and FEDER/COMPETE with FCT grants: PTDC/NEU-

NMC/0198/2012 and PEst-C/SAU/LA0001/2013-2014.  

 

 

 

 





 

Agradecimentos/Acknowledgmentes 

Um agradecimento especial è para o Professor Carlos Duarte por me ter acolhido no seu 

grupo, oferecendo-me a oportunidade de crescer profissionalmente e também pela sua total 

disponibilidade e paciência. 

Ringrazio la professoressa Lorella Canzoniero che mi ha spinta ed incentivata ad affrontare 

questo cambiamento con positività e determinazione e per avermi fatto capire l’importanza 

di una tale esperienza.  

Il mio grazie più affettuoso è rivolto a Miranda, la mia “Cheffa”, che ha reso questo anno 

memorabile non solo per la complicità laboratoriale creatasi ma soprattutto per il forte 

legame di amicizia che si è instaurato fin da subito. La sua esperienza lavorativa e la sua 

capacità di comunicarla agli altri hanno contributo ad accrescere le mie conoscenze. 

Um agradecimento carinho è para o Rui com quem tive uma “relaçao complicada” mas 

tambem muito especial. Muitas vezes ele foi uma ajuda real e preciosa. 

Um sincero agradecimento a todos os meninos de laboratório por me ter acolhido desde o 

principio com carinho e simpatia e ter tornado o trabalho de laboratorio produtivo, mas 

antes de mais muito agradável.  

Para os “Fixinhos” da salinha, com seu afeto e sua sincera amizade me acolheram e me 

fizeram sentir em casa todos os dias. Obrigada para os dias inesquecível. 

Muito obrigada a todas as pessoas do segundo piso, nao há um piso com as pessoas e 

bolinhos milhores. 

Un grazie di cuore alla mia famiglia che mi ha sostenuta ogni giorno in questo anno così 

lontana da casa. Grazie per non avermi fatto mai sentire la vostra mancanza e avermi 

sempre spinta a dare il massimo.   

Grazie a mia sorella Lina, costantemente presente nella mia vita anche in questo anno di 

lontananza e alla mia migliore amica Rossella, con la quale condivido da anni tutti i 

momenti della mia vita. Ci siete sempre state per me in ogni istante.  

Agli italiani trapiantati a Coimbra, in particolare al mio compagno di avventura Fabio con il 

quale ho condiviso molti momenti memorabili in questo anno e a tutti miei colleghi Italiani, 

è stato davvero bello e divertente aver condiviso momenti portoghesi con voi ed aver 

colonizzato insieme il CNC.  

 

 

 



 

Agli italiani trapiantati a Coimbra, in particolare al mio compagno di avventura Fabio 

con il quale ho condiviso molti momenti memorabili in questo anno e a tutti miei 

colleghi Italiani, è stato davvero bello e divertente aver condiviso momenti portoghesi 

con voi ed aver colonizzato insieme il CNC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I 
 

INDEX 

 

ABBREVIATIONS ................................................................................................................ 1 

KEY WORDS ............................................................................................................................................................... 5 

PALAVRAS CHAVE ............................................................................................................................................... 5 

SUMÁRIO ...................................................................................................................................................................... 7 

ABSTRACT ................................................................................................................................................................... 9 

INTRODUCTION ................................................................................................................................................... 11 

1.1. Cerebral Ischemia ...................................................................................................... 13 

1.1.1. Experimental models of global and focal ischemia ............................................ 15 

1.1.1.1. In vivo models ............................................................................................... 15 

models of global ischemia ......................................................................................... 15 

models of focal ischemia ........................................................................................... 15 

1.1.1.2. In vitro model of global ischemia: oxygen and glucose deprivation ............ 16 

1.1.2. Ischemia-induced cell death: features and mechanisms ...................................... 16 

1.2. GABA mediated neurotransmission .......................................................................... 18 

1.2.1. GABAAR structure and function ......................................................................... 20 

1.2.2. Trafficking of GABAAR ..................................................................................... 21 

1.3. HAP1 and its role in GABAAR trafficking ................................................................ 22 

1.3.1. HAP1 – structure, function and localization ....................................................... 22 

1.3.2. The role of HAP1 in GABAAR trafficking ......................................................... 24 

1.4. Effects of ischemia on GABA neurotrasmission ....................................................... 25 

1.5. OGD-induced altereation of GABAAR β3 recycling and its interaction with HAP1 26 

OBJECTIVES ............................................................................................................................................................ 29 

MATERIALS AND METHODS ...................................................................................................................... 31 

2.1. Hippocampal cultures ................................................................................................ 35 

2.2. Cortical neuron cultures ............................................................................................. 35 

2.3. Glial cell cultures ....................................................................................................... 36 

2.4. Astocyte cultures ........................................................................................................ 36 

2.5. Oxygen-glucose deprivation (OGD) of hippocampal, cortical neurons and glial cells

 .......................................................................................................................................... 36 

2.6. Middle cerebral artery occlusion ............................................................................... 38 

2.7. Western blotting ......................................................................................................... 39 



II 
 

2.8. Immunocytochemistry ............................................................................................... 40 

2.9. q-PCR analyses .......................................................................................................... 41 

2.9.1. Total RNA extraction, RNA quality and RNA concentration ............................ 41 

2.9.2. Reverse transcription reaction ............................................................................. 41 

2.9.3. Primer design....................................................................................................... 41 

2.9.4. Real-time PCR..................................................................................................... 42 

2.10. Plasmidic DNA amplification and purification ....................................................... 42 

2.10.1. Bacteria transformation ..................................................................................... 42 

2.10.2. Bacteria growth ................................................................................................. 43 

2.11. Transfection of primary neuronal cultures ............................................................... 44 

2.12. Immunocitochemistry for membrane associated proteins ....................................... 44 

2.13. Fluorescence assay of receptor internalization ........................................................ 45 

2.14. Receptor recycling assay ......................................................................................... 46 

RESULTS .................................................................................................................................................................... 49 

3.1. Characterization of cultured hippocampal neurons ................................................... 51 

3.2. OGD decreases HAP1 total protein levels by a calpain dependent mechanism ........ 51 

3.3. Inhibion of PP1/PP2A phosphatases prevents OGD-induced reduction of HAP1 

protein levels ..................................................................................................................... 56 

3.4. HAP1 total protein levels are increased after transient MCAO, an in vivo model of 

cerebral ischemia .............................................................................................................. 57 

3.5. OGD decreases HAP1 total protein levels in cortical neurons and increases its levels 

in glial cells ....................................................................................................................... 58 

3.6. OGD-induced HAP1 mRNA alteration in glial cells ................................................. 61 

3.7. Overexpression of HAP1 protein abrogates the ogd-induced reduction of GABAAR 

β3 subunit recyling ratio ................................................................................................... 62 

DISCUSSION AND CONLUSIONS ............................................................................................................. 65 

REFERENCES .......................................................................................................................................................... 69 

 

 



 

1 
 

ABBREVIATIONS 

 

Ab, antibody 

Ala, alanine  

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AP2, adaptor protein 2 

Arg, arginine 

Asp, aspartic acid  

ATP, adenosine-5’-triphosphate  

BSA, bovine serum albumine  

[Ca
2+

]i, cytosolic calcium concentration 

CA1, cornu ammonis 1 region of the hippocampus 

cDNA, complementary DNA 

DG, dentate gyrus 

DIV, days in vitro 

DMEM, Dulbecco's modified eagle medium 

dNTP, deoxyribonucleoside triphosphate  

DOC, deoxycholic acid 

DTT, dithiothreitol 

E, embryonic 

ECF, enhanced chemiofluorescence 

EDTA, ethylenediaminetetraacetic acid 

EGTA, ethylene glycol tetraacetic acid 

ER, endoplasmic reticulum 

FBS, fetal bovine serum 

FDU, 5-Fluoro-2′-deoxyuridine 



 

2 
 

FSK, forskolin 

GABA, γ-aminobutyric acid  

GABAAR, GABA type A receptor 

GABABR, GABA type B receptor 

GABARAP, GABAAR-associated protein 

GAD, glutamic acid decarboxylase 

GAT, GABA transporter 

GFAP, glial fribrillary acidic protein 

GFP, green fluorescence protein 

Gln, glutamine  

HAP1, huntingtin-associated protein 1 

HAP1-A, huntingtin-associated protein 1 A 

HAP1-B, huntingtin-associated protein 1 B 

HBSS, Hank's balanced salt solution 

HD, Huntington’s disease  

HEPES, 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid  

htt, huntingtin  

ICD, intracytoplasmic domain 

IgG, immunoglobulin G 

IP3, inositol 1,4,5-trisphosphate  

LB, lysogeny broth medium 

MAP2, microtubule-associated protein 2 

MAPKs, mitogen-activated protein kinases  

MCA, middle cerebral artery 

MCAO, middle cerebral artery occlusion 

MDL28170, N-[(1S)-1-[[(1-formyl-2-phenylethyl)amino]carbonyl]-2- methylpropyl]-

carbamic acid, phenylmethyl ester 

http://en.wikipedia.org/wiki/Broth


 

3 
 

MEM, minimum essential medium 

mIPSC, miniature inhibitory post-synaptic currents 

mRNA, messenger RNA 

MTP, mitochondrial transition pore  

NMDA, N-methyl-D-aspartate 

NMDAR, NMDA receptor 

ns, not significant  

NSF, N-ethylmaleimide-sensitive factor 

OGD, oxygen and glucose deprivation 

p50, protein 50 

PBS, phosphate buffered saline 

PCD, programmed cell death  

PKA, protein kinase A 

PKC, protein kinase C 

PLC, phospholipase C 

PLIC, proteins linking integrin-assocated protein with cytoskeleton 

PMA, phorbol-12-myristate-13-acetate 

PMSF, phenylmethylsulfonyl fluoride 

PP1, protein phosphatase 1 

PP2A, protein phosphatase 2A 

PP2A-C, protein phosphatase 2 catalytic subunit C 

PP2C, protein phosphatase 2C 

PSD, postsynaptic density 

PVDF, polyvinildene difluoride 

qPCR, quantitative PCR 

rCBF, regional cerebral blood flow 



 

4 
 

RIPA, radioimmunoprecipitation assay lysis buffer 

RNA, ribonucleic acid  

ROS, radical oxygen species 

RT, room temperature  

SDS, sodium dodecyl sulphate 

SEM, standard error of the mean 

Ser, serine  

TE, tris-EDTA 

TM, transmembrane domains 

TS, thymidylate - synthase 

VGAT, vesicular GABA transporter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

KEY WORDS 

 

Huntigtin - associated protein 1 (HAP1) 

Cerebral ischemia 

GABAA receptor  

Oxygen/glucose deprivation (OGD) 

Neurons  

 

 

PALAVRAS CHAVE 

 

Proteína associada a huntingtina de tipo 1 (HAP1) 

Isquémia cerebral  

Receptores de GABA do tipo GABAA  

Privação de oxigénio e glucose (OGD) 

Neurónios 

 

  



 

6 
 

 

  



 

7 
 

SUMÁRIO 

 

A isquémia cerebral resulta de um fornecimento insuficiente de sangue ao cérebro, levando 

a uma desregulação no equilíbrio entre a neurotransmissão excitatória/inibitória e 

consequente morte celular por excitotoxicidade. No sistema nervoso central (SNC) a 

regulação deste equilíbrio é determinada principalmente pelo balanço entre a 

neurotransmissão glutamatérgica e GABAérgica e diversos estudos têm mostrado que a 

neurotransmissão glutamatérgica e GABAérgica está aumentada e reduzida, 

respectivamente, nas lesões isquémicas. Ao contrário das alterações na neurotransmissão 

glutamatérgica na isquémia cerebral que têm sido amplamente investigadas, poucos estudos 

têm abordado os mecanismos moleculares que contribuem para as alterações na 

neurotransmissão GABAérgica. Resultados recentes do nosso laboratório, obtidos 

utilizando o modelo de isquémia cerebral baseado na privação de oxigénio e glicose 

(OGD), mostraram que o insulto isquémico induz a desfosforilação e consequente 

internalização dos receptores de GABA do tipo A (GABAAR), contribuindo para a morte 

neuronal. Após a internalização os GABAAR são rapidamente reciclados e voltam para a 

membrana plasmática ou são encaminhados para os lisossomas a fim de serem degradados. 

O rumo que os GABAAR endocitados tomam depende da interacção das subunidades β1-3 

com a proteína associada à huntingtina 1 (HAP1). Estudos anteriores do nosso laboratório 

mostraram que a OGD transitória também reduz a reciclagem e o regresso para a membrana 

plasmática dos GABAAR, e diminui a interacção dos receptores com a proteína HAP1 em 

neurónios do hipocampo em cultura.  

A proteína HAP1 existe em duas isoformas, HAP1-A e HAP1-B, que compartilham a 

mesma região central (aminoácidos 277-445). A HAP1 está associada a microtúbulos e a 

diversos tipos de organelos, incluindo as mitocôndrias, lisossomas e vesículas sinápticas. 

Tendo em consideração estas observações, no presente trabalho investigámos o papel da 

HAP1 na redução da expressão à superfície e reciclagem dos GABAAR em neurónios de 

hipocampo em cultura após OGD. Os resultados obtidos mostram que a exposição 

transitória de neurónios de hipocampo a OGD (90 min) reduz os níveis da proteína HAP1, 

quando testado por western blot duas horas após o insulto isquémico. Este efeito 
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dependente do tempo de incubação, não foi observado em neurónios incubados na presença 

do inibidor das calpaínas MDL28170. A inibição das fosfatases PP1/PP2A com ácido 

ocadáico também diminuiu a redução de HAP1 induzida pela OGD.  

A diminuição dos níveis da proteína HAP1 foi também observada em neurónios corticais 

expostos a OGD, à semelhança dos resultados obtidos em neurónios do hipocampo em 

cultura. Porém, a oclusão transitória da artéria cerebral média (MCAO), um modelo in vivo 

de isquémia cerebral, teve o efeito oposto sobre os níveis da proteína HAP1 no núcleo 

isquémico, localizado na região cortical. Esta discrepância pode ser devida ao efeito do 

insulto isquémico sobre os níveis da proteína Hap1 em células da glia, presentes no tecido 

cerebral mas ausentes nas culturas neuronais. De acordo com essa hipótese, a análise por 

western blot realizada com extractos de células da glia em cultura expostas a 90 min de 

OGD seguido de 12 h de pós-incubação mostraram um aumento dos níveis de proteína 

HAP1. 

Para investigar o papel modulador de HAP1 nas alterações do tráfego dos GABAAR 

induzidas pelo OGD, foram realizadas experiências em culturas de neurónios de hipocampo 

transfectados com as isoformas HAP1-A ou-1B. A sobre-expressão das duas isoformas de 

HAP1, em neurónios de hipocampo em cultura, preveniu a redução da expressão superficial 

da subunidade β3 do GABAAR induzida pela OGD. Este efeito foi devido ao aumento da 

reciclagem da subunidade β3 do receptor GABAAR, como mostrado através do ensaio de 

reciclagem.  

Em resumo, os nossos resultados sugerem que a proteína HAP1 desempenha um papel 

fundamental na redução da neurotransmissão GABAérgica durante a isquémia cerebral. 
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ABSTRACT 

 

Cerebral ischemia is a pathological condition characterized by a reduction of blood flow to 

the brain leading to an imbalance between excitatory and inhibitory neurotransmission and 

consequent neuronal cell death. In the CNS this balance is mostly regulated by glutamate 

and GABA meurotransmitters. Several studies have shown that during an ischemic insult 

the glutamatergic and GABAergic neurotransmission is up- and down-regulated 

respectively. However, few studies have addressed the molecular mechanisms contributing 

to the alterations in GABAergic neurotransmission in brain ischemia. Recent data from our 

laboratory using the oxygen and glucose deprivation (OGD) model of brain ischemia 

showed that the ischemic insult induces the dephosphorylation and consequent 

internalization of GABAA receptors (GABAAR), contributing to the death of cultured 

hippocampal neurons. Following internalization, GABAAR are rapidly recycled back to the 

plasma membrane or targeted for lysosomal degradation. The sorting of endocytosed 

GABAAR depends on the interaction of GABAAR β1-3 subunits with huntingtin-associated 

protein 1 (HAP1). Previous studies from our laboratory also showed that transient OGD 

reduces the recycling of GABAAR back to the plasma membrane and decrease the 

interaction of the receptors with the HAP1 protein in cultured hippocampal neurons.  

HAP1 consists of two isoforms, HAP1-A and HAP1-B, which share the same middle part 

(amino acids 277-445). The protein is associated with microtubules and with various types 

of membranous organelles, including mitochondria, lysosomes and synaptic vesicles. 

Taking into consideration these observations, in the present work we investigated the 

putative role of HAP1 in the reduction of the surface expression and recycling of GABAAR 

in cultured hippocampal neurons subjected to OGD. Our results show that exposure of 

hippocampal neurons to OGD (90 min) downregulates HAP1 protein levels when tested 2 h 

after ischemic insult by western blot analysis. This effect was time dependent and was 

inhibited in the presence of the calpain inhibitor MDL28170. Inhibition of PP1/PP2A 

phosphatases with okadaic acid also reduced the OGD-induced downregulation of HAP1.  

A decrease in HAP1 protein levels was also observed in cortical neurons exposed to OGD, 

but transient middle cerebral artery occlusion (MCAO), an in vivo model of cerebral 

ischemia, had the opposite effect on HAP1 protein levels in the ischemic core located in 
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cortical region. This discrepancy may be due to the effect of the ischemic insult in HAP1 

protein levels in glial cells present in the brain tissue but not in neuronal cultures. 

Accordingly, western blot analysis performed with extracts of cultured glial cells exposed 

to 90 min of OGD followed by 12 h of post-incubation showed an increase of HAP1 

protein levels.  

To investigate the modulatory role of HAP1 in OGD-induced changes in the traffic of 

GABAAR, experiments were performed in cultured hippocampal neurons transfected with 

HAP1-A or -1B isoforms. Overexpression of the two isoforms of HAP1 in cultured 

hippocampal neurons decreased the OGD-induced downregulation of the surface 

expression of GABAAR β3 subunits. This effect was due to the increased recycling of 

GABAAR β3 as shown with receptor recycling assay. Taken together, our results suggest 

that HAP1 protein has a key role in the down-modulation of GABAaergic 

neurotransmission during cerebral ischemia.  
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1.1. CEREBRAL ISCHEMIA  

Stroke is a pathological condition caused by blockage or rupture of a blood vessel. An 

ischemic stroke occurs when a blood vessel supplying blood to the brain becomes blocked, 

for example by a clot. An hemorrhagic stroke occurs when a blood vessel bursts, leaking 

blood into the brain (Figure 1.1). This condition may result from a number of factors 

defined as risk factors (Sacco 1997) that are considered markers for increased stroke risk. 

For example hypertension, smoking, diabetes, high cholesterol, and lack of physical 

activity are defined modifiable risk factors (Prabhakaran and Chong 2014); age, sex and 

race are considered unmodifiable risk factors (Willey et al. 2014). 

 

 

 

Figure 1.1. (A) Blockage of a blood vessel leads ischemic stroke; (B) Bleeding of a blood vessel of 

the brain induces an hemorrhagic stroke. 

 

Cerebral ischemia, caused by insufficient blood supply to the brain, normally resulting from 

an arterial obstruction, leads to a cascade of damaging events in the brain. The severity and 

the extent of the damage depends on the degree and duration of the ischemic event 

(Aronowski et al. 1999; Back 1998; Fisher and Garcia 1996). In cerebral ischemia the 

blood flow can be transiently blocked to the entire brain, resulting in delayed and selective 

neuronal death (global ischemia) (Brillman 1993; Petito et al. 1987; Swain et al. 1993) or, 

alternatively, blood flow can be locally blocked in a temporary or permanent manner, 

injuring a specific area of the brain (focal ischemia) (Figure 1.2). Under the latter 

conditions it is possible to distinguish two different regions within the lesioned area: i) the 

core, corresponding to the center of the stroke that receives essentially no blood supply; this 
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region contains cells that are dependent on the affected blood vessel to obtain oxygen and 

nutrients required for their metabolism; ii) the penumbra, which is the region surrounding 

the core, containing cells that receive a supply of oxygen and nutrients from nearby non-

affected blood vessels, although it is not sufficient to keep the normal metabolic activity 

(Hossmann 1994; Fisher and Garcia 1996). Focal ischemia in humans occurs mainly as a 

consequence of stroke, cerebral hemorrhage, or traumatic brain injury, whereas global 

ischemia is a consequence of cardiac arrest, open-heart surgery, profuse bleeding, or carbon 

monoxide poisoning.  

 

 

 

Figure 1.2. (A) Focal ischemia: temporary or permanent obstruction of local blood supply, injuring 

a specific area of the brain; (B) Global ischemia: blood flow is transiently blocked to the entire 

brain, resulting in delayed and selective neuronal death. 

 

The brain regions that are more vulnerable to ischemic injury are the hippocampal CA1 

area with pyramidal neurons, the dentate gyrus (DG), medium aspiny neurons of the 

striatum, pyramidal neurons in neocortical layers II, V, and VI, and cerebellar Purkinje 

neurons (Crain et al. 1988; Kirino 1982). The molecular mechanisms underlying the cell-

specific pattern of global ischemia-induced neuronal death are not well understood. In order 

to address this question it is important to choose a model of brain ischemia that mimics the 

molecular and cellular mechanisms involved in neuronal damage following stroke in 

humans.  
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1.1.1. EXPERIMENTAL MODELS OF GLOBAL AND FOCAL ISCHEMIA 

Different models of stroke have been used to study the mechanisms involved in focal and in 

global ischemia, including in vivo and in vitro models described below (Povlsen et al. 

2012). 

 

1.1.1.1. IN VIVO MODELS  

MODELS OF GLOBAL ISCHEMIA 

The most commonly used models of global ischemia are:  

a) the four-vessel occlusion model in rats (4-VO) (Pulsinelli and Buchan 1988). This model 

consists in a permanent occlusion of both vertebral arteries and temporary ligation of the 

two common carotid arteries. In this model neuronal death is mainly restricted to pyramidal 

neurons of the hippocampal CA1 region. 

b) the two-vessel occlusion (2-VO) also known as temporary bilateral common carotid 

occlusion, or BCCO in gerbils (Kirino 1982; Kitagawa et al. 1998) or (less commonly) 

mice (Kitagawa et al. 1998; Oguro et al. 2001). This model consists in a temporary 

occlusion of the common carotid arteries combined with induced systemic hypotension. 

These models induce extensive bilateral forebrain injury (Eklof and Siesjo 1972) and are 

clinically relevant to study global ischemia associated with cardiac arrest in humans. 

 

MODELS OF FOCAL ISCHEMIA 

The models of focal ischemia are the ones that better mimic stroke or cerebral infarction in 

humans (Oguro et al. 2001; Nagasawa and Kogure 1989). With permanent or temporary 

arterial occlusion (proximal or distal), it is possible to induce a necrotic cell death in the 

core region that leads to an irreversible damage. 

The most commonly used model to study focal cerebral ischemia is the middle cerebral 

artery occlusion (MCAO), in which middle cerebral artery is occluded either transiently or 

permanently. The occlusion is induced by ligation of the common carotid and external 

carotid arteries, followed by insertion of a suture into the internal carotid artery at the 

bifurcation of the common carotid and external carotid arteries (Small and Buchan 2000; 

Ginsberg and Busto 1989; Longa et al. 1989). In the MCAO model the blood flow is lower 
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than 15% in the core region, and drops to less than 40% in the penumbra. Different 

experimental strategies can be used to evaluate the damage in the core region the stroke.  

 

1.1.1.2. IN VITRO MODEL OF GLOBAL ISCHEMIA: OXYGEN AND GLUCOSE 

DEPRIVATION  

The oxygen and glucose deprivation (OGD) is the most commonly used in vitro model to 

study global ischemia (Dawson et al. 1996; Goldberg and Choi 1993). OGD has been 

performed in primary cultures as well as in organotypic slices.  

The most commonly used primary cultures in OGD studies are neurons or glia (Matute et al. 

2002) isolated from different brain regions, such as the neocortex, hippocampus, 

cerebellum and hypothalamus of embryonic or early postnatal rats or mice (Gottron et al. 

1997). Organotypic slices of the hippocampus are also frequently used in this type of 

studies (Newell et al. 1995; Rimvall et al. 1987; Strasser and Fischer 1995).  

Primary cultures of neurons or organotypic slice cultures are usually incubated in a 

deoxygenated and glucose-free medium (OGD) to mimic the interruption of the oxygen and 

nutrient supply to the brain during the ischemic episode. Following the ischemic stimulus 

the cultures are normally incubated in fresh or conditioned culture medium, in an oxygen-

containing atmosphere environment, to simulate the in vivo blood flow reperfusion period. 

Similarly to what happens in in vivo models, OGD induces apoptotic as well as necrotic cell 

death. Despite being an in vitro model and considered a less complete model, the use of cell 

cultures in OGD experiments is a good system to analyze the molecular mechanisms of 

brain ischemia. 

 

1.1.2. ISCHEMIA-INDUCED CELL DEATH: FEATURES AND MECHANISMS 

In the ischemic brain cell death is induced by multiple factors, including a decrease in pH 

and ATP, free radical production by the mitochondrial respiratory chain, increased 

intracellular Na
+
 concentration and membrane depolarization. These processes lead to 

secondary changes, resulting in the activation of damaging processes (Pulsinelli et al. 1982). 

Ischemic neuronal death is commonly considered a long and delayed process. In fact, 

between the insult and the manifestation of cell damage in some cases it may take days or 
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even weeks (Kirino et al. 1984; Du et al. 1996). However, this depends of the intensity and 

duration of the insult, as well as the brain region affected.  

In addition to the multiple mechanisms that contribute to cell death, ischemic injury can 

also induces distinct modes of cell death. The most studied and accepted pathways of 

ischemic cell death are the necrotic and apoptotic cell death. In fact, both in global and 

focal ischemia it is possible to recognize hallmarks of necrotic as well as apoptotic events 

(Choi 1996; Ginsberg and Busto 1989). The hallmarks of necrotic cell death are the 

expansion of endoplasmic reticulum, disaggregation of polyribosomes, selective swelling 

of dendrites, dilation of organelles and intranuclear vacuoles (Kalimo et al. 1977; Kalimo et 

al. 1982). Apoptosis or programmed cell death (PCD) is a result of a series of events 

mediated by a dedicated set of gene products. Apoptotic neurons exhibit characteristic 

morphologic features that differentiate them from necrotic neurons, including cytoplasmic 

shrinkage, chromatin condensation and apoptotic bodies (Radi et al. 2014).  

In general it is thought that in the initial periods of reperfusion there is the prevalence of 

necrotic markers due to immediate energy failure. Given that apoptotic cell death needs 

energy for cellular modifications such as cytoskeletal proteolysis and DNA alteration (Roy 

and Sapolsky 1999), its hallmarks appear later when mitochondrial physiology alterations 

occur. 

The depletion of energy stores following an ischemic episode induces an ionic imbalance 

leading to increased neurotransmitter release and inhibition of the Na
+
-dependent reuptake 

mechanisms. In particular the deregulation of glutamate and its receptors play an important 

role in the ischemic pathophysiology in different ways (Michaelis 1998). First, the 

increased binding of glutamate to ionotropic NMDA receptors and reduction of calcium 

impermeable subunit of AMPA receptors increase the influx of Ca
2+

 (Pellegrini-Giampietro 

et al. 1999) and the consequent [Ca
2+

]i overload leads to the downstream activation of 

proteases that degrade membrane proteins, including phospholipases and proteases, 

inhibition of ATP production and also an increase of intracellular glutamate, thus, 

propagating the excitotoxic injury (Lo et al. 2003). In addition, ionotropic glutamate 

receptors promote an excessive influx of Na
+ 

with concomitant cell swelling and edema. 

Glutamate-induced neuronal cell death is associated with apoptosis, as evidenced by 

characteristic fragmentation of DNA, morphological changes, activation of calpains and 
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induction of caspase-dependent and -independent mechanisms (Strasser and Fischer 1995; 

Jover et al. 2002; MacManus et al. 1993). However, excessive stimulation with glutamate 

was shown to trigger necrotic cell death (Ankarcrona et al. 1995). In addition to the [Ca
2+

]i 

dysregulation, the alterations in the homeostasis of other ions is also critical upon ischemia. 

For example, Zn
2+

 is an essential cofactor for many enzymes and transcription factors and 

its intracellular accumulation after cerebral ischemia is deleterious for the cells by affecting 

mitochondrial function and consequently inducing cell swelling and production of reactive 

oxygen species (ROS) by mitochondria (Weiss et al. 2000; Dineley et al. 2005; Lewen et al. 

2000; Jiang et al. 2001).   

ROS including the superoxide anion (O
2−

), the hydroxyl radical (OH), hydrogen peroxide 

(H2O2), are particularly responsible for oxidative stress. After ischemia, particularly during 

the reperfusion period, the oxygen radical production and oxidative stress facilitate 

mitochondrial transition pore (MTP) formation. This process dissipates the proton gradient 

required for oxidative phosphorylation and ATP generation (Kroemer and Reed 2000). 

Oxidative stress has been shown to activate several intracellular signaling cascades that 

may have deleterious effects on the cellular homeostasis, such as activation of mitogen-

activated protein kinases (MAPKs) (Cao et al. 2005). In addition to those already known, 

several other targets need to be identified and explored for the development of future 

therapeutic strategies in the brain ischemia field.  

 

1.2. GABA MEDIATED NEUROTRANSMISSION 

In the Central Nervous System (CNS), synaptic transmission is predominantly mediated by 

the neurotransmitters glutamate and γ-aminobutyric acid (GABA) (Bloom and Iversen 

1971), which have an excitatory and inhibitory action, respectively. This work is focused 

on the neurotransmission by GABA which is considered the major inhibitory 

neurotransmitter of the CNS.  

GABA is produced from glutamate by the cytosolic enzyme glutamic acid decarboxylase 

(GAD) and is stored inside small synaptic vesicles by a mechanism dependent on the 

activity of the vesicular inhibitory amino acid transporters. The neurotransmitter GABA is 

exocytosed into synaptic cleft and exerts its inhibitory control by acting on two classes of 

receptors with distinct electrophysiological and pharmacological properties: GABA type A 
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receptors (GABAAR) (Macdonald and Olsen 1994; Wu and Sun 2014; Boue-Grabot et al. 

1998) and GABA type B receptors (GABABR). GABAAR are ionotropic fast-acting ligand-

gated chloride channels (Sieghart 2006) while GABABR are metabotropic G protein-

coupled receptors (Bettler and Tiao 2006) (Figure 1.3). Activation of GABAAR leads to the 

entrance of chloride into the cell according to the concentration gradient, causing 

membrane hyperpolarization.  

GABABR are responsible for the late and slower component of inhibitory synaptic 

transmission (Bettler and Tiao 2006). Their activation induces intracellular signal cascades 

that produce hyperpolarization in postsynaptic membrane and modulate neurotransmitter 

release in presynaptic neurons. The effects of GABABR are typically mediated by 

activation of G-proteins coupled to the inhibition of adenylyl cyclase or voltage-gated Ca
2+

 

channels, and activation of inward rectifying K
+ 

 channels (Couve et al. 2000; Benke 2013). 

Inhibitory synapses exert a strong control on the neuronal response by modulating neuronal 

activity induced by excitatory neurotransmission. 

 

 

Figure 1.3. Schematic representation of a GABAergic synapse. GABA is synthesized in 

inhibitory neurons by glutamate decarboxylation performed by the enzyme glutamic acid 

decarboxylase (GAD), and is transported into synaptic vesicles by a vesicular neurotransmitter 

transporter (VGAT). GABA can be released both by exocytosis or by reversal of the plasma 

membrane transporters. GABA can acts through the activation of different classes of receptors: 

GABAA and GABAB receptors. GABAAR are pentameric receptors associated to chloride channel. 

GABAB receptors are metabotropic receptors that cause presynaptic inhibition by suppressing 

calcium influx. GABA reuptake by surrounding neurons and glia occurs through the activity of 

plasma membrane GABA transporters (GAT).   
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1.2.1. GABAAR STRUCTURE AND FUNCTION  

As mentioned above GABA is the major inhibitory neurotransmitter in the CNS, and its 

fast inhibitory control is mediated by GABAAR which belong to the ionotropic family of 

neurotransmitter receptors (Sieghart 2006). Different gene products contribute to the 

formation of the GABAAR heteropentameric chloride channel, and the diversity of  

GABAAR is further increased by alternative splicing. The studies performed in mammals 

identified 19 genes encoding GABAAR subunits (α1–α6, β1–β3, γ1–γ3, δ, ε, τ, π, ρ1– ρ3), 

and most receptors belonging to this class are formed by the assembly of 2α and 2β 

subunits together with a single γ2 or δ subunit. In fact, the majority of GABAAR in brain 

are composed of α1β2γ2 subunits, followed by α2β3γ2 and α3β2γ2 (Knight et al. 2000; 

Massaria et al. 1976; Chang et al. 1996; Tretter et al. 1997; Luscher et al. 2011). 

The different composition in subunits is the major determinant of the ligand binding and 

gating properties of the GABAAR channels. The precise subcellular localization of different 

GABAAR subtypes and the difference in subunit composition between synaptic and 

extrasynaptic receptors are reflected in a differential modulation of phasic and tonic 

signaling. Moreover depending on the subunit composition GABAAR have also different 

physiological and pharmacological properties. 

Each GABAAR subunit present a structure characterized by an extracellular N-terminal 

domain that is also the site of action of various drugs, four hydrophobic transmembrane 

domains (TM1-4) and an extended cytoplasmic loop region (ICD) between TM3 and TM4 

that mediates the interaction with trafficking and signaling factors and is subject to a 

number of posttranslational modifications. The C-terminal region of GABAAR subunits is 

extracellular (Sieghart 2006). 

It is well established that GABAAR functions and synaptic strength are influenced by the 

number of postsynaptic receptors. The density of surface GABAAR, and in particular the 

number of synaptic receptors, is determined by the balance between the rate of receptor 

exo- and endocytosis, to and from the membrane surface respectively (Belelli et al. 2009) 

(Brickley and Mody 2012), as well as by the lateral diffusion of receptors from and into the 

synaptic region. 

 

 



INTRODUCTION 

21 
 

1.2.2. TRAFFICKING OF GABAAR 

GABAAR are assembled upon oligomerization of the receptor subunits in the endoplasmic 

reticulum (ER). The receptors exit the ER only when the proteins are correctly folded, and 

the misfolded or unassembled receptor subunits are targeted for proteasomal degradation 

(Kittler et al. 2002). This process is negatively regulated by Plic-1, which binds to receptor 

α- and β-subunits and may also increase subunit maturation and production (Saliba et al. 

2008). Following the assembly, GABAAR are transported to the Golgi apparatus where 

they bind the GABARAP/NSF complex. The receptors are then incorporated in vesicles 

and transported to the plasma membrane (Chen et al. 2000; Everitt et al. 2004). 

GABAAR surface expression is very dynamic and regulated. Once in the membrane they 

can reach the postsynaptic region through lateral diffusion, and the synaptic receptors may 

be stabilized by interacting with its scaffold protein gephyrin. When localized in extra 

synaptic compartment the receptors can be removed from the plasma membrane by 

clathrin- and dynamin-dependent endocytosis. This process is facilitated by interactions of 

the GABAAR β and γ subunits intracellular domains with the clathrin adaptor protein AP2 

(Kittler et al. 2000; Kittler et al. 2005; Kittler et al. 2008). This process is negatively 

regulated by phosphorylation, and therefore GABAAR are internalized when they are 

dephosphorylated (Kittler et al. 2005). The efficient endocytosis of GABAAR requires a di-

leucin motif present in the intracellular loop region of the β subunit (Herring et al. 2003; 

Herring et al. 2005). Especially important for AP2/clathrin/dynamin-mediated GABAAR 

internalization in neurons is an amino acid sequence motif that includes a major 

phosphorylation site in the cytoplasmic loop region of β1-3 subunits (S408/409) and the γ2 

subunit (Y365/367). The interaction between AP2 and β1-3/γ2 subunits can be regulated 

both by protein kinase A (PKA) and protein kinase C (PKC) while the same interaction 

with β2 subunit is regulated only by PKC (Kittler et al. 2005; Kittler et al. 2008). 
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1.3. HAP1 AND ITS ROLE IN GABAAR TRAFFICKING 

1.3.1. HAP1 – STRUCTURE, FUNCTION AND LOCALIZATION 

Huntingtin-associated protein-1 (HAP-1) was initially identified using the yeast two-hybrid 

system as an interacting partner for huntingtin (htt), the protein encoded by the Huntington 

disease (HD) gene (Li et al. 1995). Three transcripts that differ for their 3’-end (hap1A, 1B, 

and 1C) are expressed from the mouse hap1 gene due to alternative splicing but only two 

distinct protein isoforms (HAP-1A and HAP-1B) are encoded (Bertaux et al. 1998; 

Dragatsis et al. 2000). These two isoforms, HAP1-A (75 kDa) and HAP1-B (85 kDa), are 

different for their short C-terminal sequences (amino acids 579–599 of HAP1-A versus 

amino acids 579–629 of HAP1-B) and their localization in the brain (Gutekunst et al. 1998; 

Li et al. 1998a). 

HAP1 contains coiled-coil domains in the middle region and multiple N-myristoylation 

sites. Coiled-coil domains and N-myristoylation sites are present in a large number of 

proteins that are associated with membrane-associated proteins and involved in vesicular 

trafficking. HAP1 does not contain transmembrane domains and nuclear localization 

signals, suggesting its cytoplasmic localization. It was also shown that the middle region of 

HAP1 (amino acids 277-445), which is present in both HAP1-A and HAP1-B isoforms, is 

responsible for the self-association (Figure 1.4). Moreover, this region also interacts with 

N-terminus of htt suggesting a role in the interaction of HAP1 with htt (Li et al. 1998a). 

 

 

Figure 1.4. Schematic diagram of the two isoforms of HAP1: HAP1-B (85 kDa) and HAP1-A 

(75 kDa). rHAP1-A and rHAP1-B were isolated from rat brain cDNA libraries. The two isoforms 

have identical sequences in the overlapping regions, with different amino acids in the carboxy-

terminus.  
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HAP1 is expressed in the olfactory bulb, hypothalamus, brain stem, striatum, cerebellum, 

hippocampus and colliculi of mouse and rat, as detected by northern blot and in situ 

hybridization analyses (Li et al. 1995; Bertaux et al. 1998; Dragatsis et al. 2000; Page et al. 

1998). Expression of HAP1 has also been demonstrated in human different brain regions, 

including the amygdala, caudate nucleus, corpus callosum, substantia nigra, subthalamic 

nucleus and thalamus (Li et al. 1998c). So far hap1 transcripts have been associated with 

neurons and not glia (Li et al. 1996). Immunoblotting and immunohistochemistry studies 

have confirmed the expression of HAP1 protein in several regions of the central nervous 

system (CNS) (Li et al. 1995; Martin et al. 1999). During mouse development, hap1 

transcripts are detected in the neuroepithelium, starting from the embryonic day 8.5 (E8.5), 

and are abundantly expressed in the hypothalamus, superior colliculus and cerebellum by 

E17.5 (Dragatsis et al. 2000). Furthermore, the two isoforms of HAP1 were found to be 

differently distributed. In developing hippocampal neurons in culture, HAP1-A 

immunoreactive puncta appear prevalently in neuronal processes, whereas HAP1-B 

staining remains diffuse (Li et al. 2000). In mature neurons (15 days), the majority of 

HAP1-A is concentrated in synaptic structures, in contrast with the majority of HAP1-B 

which remained diffuse in the cytoplasm and neurites (Li et al. 2000). In older neurons 

(>15 days) HAP1-A is highly expressed in axonal regions that might be in contact with 

dendrites, but the expression in dendrites is reduced when compared to younger neurons (Li 

et al. 2000). Studies performed in mice showed that HAP1 expression is not restricted to 

the brain, and the protein was found to be present at high levels in testis and at lower levels 

in lung and spleen. Furthermore, a differential expression of the two isoforms was also 

detected in these regions (Bertaux et al. 1998). 

The molecular function of HAP1 is not completely understood. However, HAP1 has a 

crucial role in the regulation of rodent postnatal feeding behaviour. In fact, mice with 

homozygous disruption at the hap1 locus displayed normal brain and organ structure at 

birth, but showed decreased body weights. Interestingly, hap1
-/-

 pups did not grow after 

birth and die around the 9
th

 postnatal day due to decreased feeding (Chan et al. 2002). This 

phenotype may be caused by the degeneration of hypothalamic neurons that control feeding 

behaviour. Indeed, several lines of evidence suggest that HAP1 is involved in different 

cellular processes including vesicular transport, possibly along microtubules, and neuronal 
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transport of organelles and molecules. The role of HAP1 in intracellular trafficking was 

suggested by its interaction with proteins associated with microtubules. More specifically, 

HAP1 binds p150glued, a dynactin subunit that mediates the interaction of the motor 

protein dynein with microtubules (Li et al. 1998b; Engelender et al. 1997), thereby 

collaborating in the retrograde transport in neurons (McGuire et al. 2006). Furthermore, 

HAP1 also interacts with Duo (alternatively named P-CIP10 or Kalirin-7), a brain specific 

rac1 guanyl-nucleotide exchange factor that binds postsynaptic density-associated proteins 

(Colomer et al. 1997; Penzes et al. 2001).  

The molecular functions of HAP1 are correlated with its subcellular localization. HAP1 has 

been observed to be associated with crude synaptic vesicles (Li et al. 1996; Engelender et al. 

1997), and co-sediments with polymerized endogenous microtubules. Immunocytochemical 

studies indicated that HAP1 is primarily found in the cytoplasm of neurons within punctate 

structures (Li et al. 1996; Martin et al. 1999; Li et al. 1998b). This evidence was confirmed 

using electron microscopy, which showed HAP1 cytoplasmic localization and its 

association with axon terminals and post-synaptic dendritic spines (Gutekunst et al. 1998; 

Martin et al. 1999). Studies performed in PC12 cells transfected with HAP1-A also showed 

that this protein promotes neurite extension, suggesting an additional role in neuronal 

differentiation (Li et al. 2000). Nevertheless the precise function of HAP1 and its role in 

neuronal dysfunction remains to be elucidated, being this protein a possible contributor in 

different pathologies. 

 

1.3.2. THE ROLE OF HAP1 IN GABAAR TRAFFICKING  

After endocytosis GABAAR are targeted for lysosomal degradation or rapidly recycled 

back to the cell surface (Kittler and Moss 2003; Barnes 2000). It was shown that during 

short intervals the majority of internalized GABAAR are rapidly recycled back to the cell 

surface, but after longer periods of time the receptors are degraded. The degradation of 

GABAAR occur in lysosomes, and this was demonstrated in studies showing a reduction of 

receptor degradation in the presence of the lysosomal protease inhibitor leupeptin (Kittler et 

al. 2004). Blocking lysosomal activity or disrupting the trafficking of ubiquitinated cargo to 

lysosomes was shown to  increase the accumulation of GABAAR at synapses with a 

consequent increase of GABAergic inhibition.  
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Previous studies  provide evidence that a direct interaction of GABAAR with HAP1 might 

be involved in the endocytic receptor sorting under physiological condition (Kittler et al. 

2004). HAP1 inhibits degradation of GABAAR and facilitates receptor recycling. 

Furthermore, HAP1 overexpression in cultured neurons showed an increase recycling of 

GABAARs to the cell surface (Kittler et al. 2004). Y2H screen of a rat hippocampal library 

showed  that rat HAP1 interacts specifically with β1-subunit intracellular domain of 

GABAAR (Bedford et al. 2001; Couve et al. 2000). This strong interaction was confirmed 

through pull-down assay and immunoprecipitation, identifying an intracellular domain of 

the protein HAP1 (residues 220-520) that interact with GABAAR (Kittler et al. 2004). 

Another piece of evidence suggesting a role for HAP1 in the intracellular fate of GABAAR 

was the co-localization of HAP1 with clathrin-coated vesicles (Li et al. 2002). Furthermore, 

HAP1 overexpression was shown to increase the surface levels of GABAAR and the 

miniature inhibitory post-synaptic currents (mIPSC) amplitude (Kittler et al. 2004). 

 

1.4. EFFECTS OF ISCHEMIA ON GABA NEUROTRASMISSION  

The reduction of blood flow that characterizes cerebral ischemia induces an imbalance 

between excitatory/inhibitory neurotransmission that is one of the major causes of 

excitotoxic neuronal death. The changes in metabolism associated to an insufficient energy 

supply to the brain induce the extracellular accumulation of glutamate (see section 1.1.2.) 

with the consequent overactivation of excitatory synapses. Under these conditions there are 

also pre- and post-synaptic alterations in GABAergic synapses. One of the early alterations 

occurring at inhibitory synapses upon an ischemic insult is the transient accumulation of 

GABA in the extracellular space which increases GABA-mediated neurotransmission 

(Hutchinson et al. 2002). This event is possibly caused by an increased Ca
2+

-dependent 

release of GABA, as well by reversal of GABA transporters induced by plasma membrane 

depolarization with consequent changes in the Na
+
 electrochemical gradient (Bazan 1970; 

Phillis et al. 1994). 

Important also are the effects on GABAAR and the reduction of their activity. There are 

evidences in vivo that after transient cerebral ischemia GABAA receptors are down-

regulated in regions such as the hippocampus and cerebral cortex, within 30 min of the 

reperfusion onset (Alicke and Schwartz-Bloom 1995). This down-regulation may result 
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from receptor internalization, but the cell surface density of GABAAR returns to normal 

within 2 h after ischemia. It was also shown that together with the down-regulation of 

GABAAR, there is a very rapid decrease of the mRNA for α1 and β3 GABAAR subunits in 

the CA1 and CA3 hippocampal areas, as well as in the dentate gyrus (Li et al. 1993).  

Exposure of cultured hippocampal neurons to oxygen and glucose deprivation (OGD), in 

vitro model of global ischemia, was used to examine molecular changes in GABAergic 

neurotrasmission. Previous results from our laboratory (Mele et al. 2014) established that in 

cultured hippocampal neurons subjected to 90 minutes of OGD there is a down-regulation 

of the GABAAR subunits α1, α2, β3, and γ2 when measured 8h after the stimulus. 

Moreover, western blot analysis using a phosphospecific antibody against serine residues 

408/409 [which are the major sites of phosphorylation for PKA (protein kinase A)] showed 

that OGD reduces the phosphorylation of GABAAR β3 subunit by a mechanism sensitive to 

okadaic acid. Furthermore, transfection of hippocampal neurons with a phospho‐mimetic 

mutant of the GABAAR β3 subunit (SS432/433AA) (homologous of mouse 408/409) 

showed an accumulation of the receptors at cell surface due to the reduction of the OGD‐

induced internalization. This mechanism also protected neurons from OGD-induced cell 

death (Mele et al. 2014). 

 

1.5. OGD-INDUCED ALTEREATION OF GABAAR Β3 RECYCLING AND 

ITS INTERACTION WITH HAP1 

Previous results from our laboratory (Mele et al. 2014) uncovered the molecular 

mechanisms underlying GABAAR downregulation in cultured hippocampal neurons 

subjected to the OGD in vitro model of brain ischemia. Transient exposure of hippocampal 

neurons to OGD also down-regulated the total protein levels of GABAAR subunits (see 

previous section) by a mechanism dependent on the activity of calpains. Moreover, it was 

found that OGD i) decreases GABAAR/Gephyrin interaction, ii) induces the internalization 

of GABAAR via clathrin-dependent endocytosis, iii) reduces the recycling of GABAAR 

back to the plasma membrane and iv) decreases their interaction with the HAP1 protein. 

Based on these observations a new model was proposed to explain the key steps in 

GABAergic down-modulation during cerebral ischemia (Figure 1.5). According to this 
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model, the increase in GABAAR internalization in brain ischemia is followed by a decrease 

in recycling, possibly due to a reduction in the interaction with the HAP1 protein. 

 

 

 
 

FIGURE 1.5. Model of the alteration in GABAAR trafficking during cerebral ischemia (Mele 

et al. 2014).  

The strength of inhibitory synapses is determined by the postsynaptic GABAAR receptor pool size 

which is regulated by their stabilization on the membrane surface and their trafficking between the 

plasma membrane and intracellular compartment. Ischemic insult (1) overactivates NMDAR 

signalling (2) and the resulting stimulation of calcineurin decreases GABAAR/Gephyrin interaction 

(3). In parallel, OGD reduces phosphorylation of GABAAR β3 subunit by a mechanism sensitive to 

okadaic acid (4), inducing the internalization of GABAAR via clathrin dependent endocytosis (5, 6). 

OGD also reduces GABAAR/HAP1 interaction and GABAAR recycling rate (7, 8), driving 

GABAAR to degradation. 
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OBJECTIVES 

The insufficient blood supply to the brain that characterize cerebral ischemia causes an 

imbalance between excitatory/inhibitory neurotransmission and excitotoxic neuronal death. 

GABAA receptors (GABAAR) are the major mediators of inhibitory neurotransmission in 

the CNS and play an essential role in maintaining this balance, required for the correct 

function of neuronal networks (Smith and Kittler 2010).  

The strength of inhibitory synapses is determined by the postsynaptic GABAAR receptor 

pool size which is regulated by their stabilization on the membrane surface and their 

trafficking between the plasma membrane and intracellular compartment. The number of 

plasma membrane receptors is mostly determined by the processes of internalization from 

plasma membrane (Kittler et al. 2000), and recycling to the surface. The GABAAR 

recycling is regulated by their interaction with the HAP1 cytoplasmic protein (Kittler et al. 

2004).  

The exposure of hippocampal neurons to OGD, an in vitro model of cerebral ischemia, was 

shown to increase the internalization of GABAAR via clathrin dependent endocytosis, and 

to reduce the recycling of GABAAR back to the plasma membrane, in addition to 

decreasing their interaction with the HAP1 protein (Mele et al. 2014). The major aim of this 

work was to investigate the role of the HAP1 protein on the alteration of GABAAR 

trafficking in cerebral ischemia. More specifically we investigated the effect of transient 

ischemia on: 

 the total protein levels of HAP1 in hippocampal neurons, cortical neurons and glial 

cells subjected to OGD; The role of calpains and phosphatases in the alterations of 

HAP1 total protein levels was also investigated; 

 

 the alterations in total HAP1 protein levels in the MCAO in vivo model of focal 

bran ischemia;  

 

  the expression of HAP1 mRNA levels in glial cells exposed to OGD; 
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 the effects of HAP1 overexpression on the OGD-induced alteration of surface 

GABAAR and their recycling in cultured hippocampal neurons 
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MATERIALS AND METHODS 
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The antibodies and other reagents used in this work are listed in Tables 2.1 and 2.2. 

 

Table 2.1. List of antibodies used in this work. 

ANTIBODIES 

Name Used dilution Supplier 

 Western Blot  Immunocytochemistry  

anti-Calpastatin 1:200  Santa Cruz Biotechnology 

anti-Chicken IgG conjugated 

with AMCA Fluor 350 

 1:200 Invitrogen 

anti-GFAP   1:1000 NeuroMab 

anti-GFP (rabbit) 1: 500 1:1000 MBL 

anti-HAP1 1:750 1:250 Santa Cruz Biotechnology 

anti-MAP2  1:10000 Abcam 

anti-mouse IgG conjugated 

with Alexa Flour 488 

 1:500 Invitrogen 

anti-mouse IgG conjugated 

with Alexa Flour 568 

 1:500 Invitrogen 

anti-Synaptophysin 1:20000  Abcam 

anti-β-tubulin 1:300000  Sigma-Aldrich 

goat Alexa Flour Far-red 647 

anti-mouse 

 1:500 Invitrogen 

 

 

Table 2.2. List of reagents used in this work.  

REAGENTS 

Name Supplier 

FDU Sigma-Aldrich 

Actynomicin D  Calbiochem 

Antipain Sigma-Aldrich 

Bromophenol blue Merk 

BSA Enzytech or Sigma-Aldrich 

CaCl Panreac 

Chloroform Fisher-Scientific 

Cyclosporin A Santa Cruz Biotechnology 

DAKO Denmark 

DOC Sigma-Aldrich 

DMSO Sigma-Aldrich 

DMEM  Sigma-Aldrich 

DTT Enzytech 

ECF GE Healthcare 

EDTA Sigma-Aldrich 

EGTA Sigma-Aldrich 

Ethanol Fisher-Scientific 

Experion RNA StdSens 

Analysis Kit  

Bio-Rad 

Fetal bovine serum  Invitrogen 

Forskolin Tocris Bioscience 
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Gentamycin Invitrogen 

Glucose VWR Chemicals Prolabo 

Glutamate Sigma-Aldirch 

Glutamine Sigma-Aldrich 

Glycerol Amresco 

HEPES Fisher-Scientific 

Horse serum Invitrogen 

iScript cDNA synthesis kit Bio-Rad 

Isopropanol Panreac 

KCl Panreac quimica S.A.U 

KH2PO4 Panreac quimica S.A.U 

Kynurenic acid Sigma-Aldrich 

Leupeptin Sigma-Aldrich 

MDL28170 Calbiochem 

MEM  Sigma-Aldrich 

MgSO4 Merck 

Na2HPO4.2H2O Merck 

NaCl Panreac quimica S.A.U 

NaF Sigma-Aldrich 

NaHCO3 Merck 

Neurobasal medium  Invitrogen 

Okadaic acid  Santa Cruz Biotechnology 

PenStrep  Invitrogen 

Pepstatin Sigma-Aldrich 

Phenol red Sigma-Aldrich 

PMA Biomol, as part of Enzo Life 

Sciences 

PMSF Sigma-Aldrich 

PVDF membranes Millipore 

Pyruvic acid  Sigma-Adlrich 

RNAase free water GIBCO Invitrogen 

SM1 supplement  Stem Cell Technologies  

SDS Ficher-Scientific 

Sodium orthovanadate Sigma-Aldrich 

SsoFast
TM 

Eva
 
Green SuperMix Bio-Rad 

Sucrose VWR Chemicals Prolabo 

TripleXtractor, reagent for 

RNA isolation 

Grisp 

Tris Millipore 

Triton X‐100 Sigma-Aldrich 

Trypsin GIBCO Invitrogen 

Tween Fisher-Scientific 

β-mercaptoethanol Sigma-Aldrich 
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2.1. HIPPOCAMPAL CULTURES 

Primary cultures of hippocampal neurons were prepared from the hippocampi of E18-E19 

Wistar rat embryos. After dissection, hippocampi were treated with trypsin (0.06%, 15 min, 

37°C) in Ca
2+ 

- and Mg
2+

 - free Hank’s balanced salt solution (HBSS; 5.36 mM KCl, 0.44 

mM KH2PO4, 137 mM NaCl, 4.16 mM NaHCO3, 0.34 mM Na2HPO4.2H2O, 5 mM glucose, 

1 mM sodium pyruvate, 10 mM HEPES and 0.001% phenol red). The hippocampi were 

then washed with HBSS containing 10% fetal bovine serum, to stop trypsin activity and 

transferred to Neurobasal medium supplemented with SM1 supplement (1:50 dilution), 25 

µM glutamate, 0.5 mM glutamine and 50 µg/ml gentamycin. The cells were dissociated in 

this solution, and the homogenate was filtered (filter of 0.22 µm) to selected only the well 

dissociated cells. The cells were counted and plated on 6 well plates at the density of 

90.0x10
3
cell/cm

2
, previously coated with poly-D-lysine (0.1 mg/mL) or on poly-D-lysine 

coated glass coverslips at the density of 80x10
3
 cell/cm

2
. The cells were maintained in a 

humidified incubator with an atmosphere of 95% air and 5% CO2, at 37°C for 15 days. At 

day 2 in vitro the cell division inhibitor 5-Fluoro-2′-deoxyuridine (FDU, 10µM, Sigma-

Aldrich) was added to the cultures in order to prevent the proliferation of non-neuronal 

cells. After 7 days in vitro, one third of the culture medium was replaced with fresh 

medium without glutamate. 

 

2.2. CORTICAL NEURON CULTURES 

Primary cultures of cortical neurons were prepared from the brain cortex of E18-E19 

Wistar rat embryos. After dissection, the cortices were washed with HBSS and were then 

treated with trypsin (0.25%, 15 min, 37°C). The trypsinized tissue was washed 6 times and 

the cells were dissociated in planting medium (MEM supplemented with 10% horse serum, 

0.6% glucose and 1 mM pyruvic acid). The resulting suspension was filtered (filter of 0.22 

µm) to isolate the well dissociated cells. The cells were plated at a density of 100x10
3
 

cells/cm
2
. After 2 hours the plating medium was replaced with Neurobasal medium 

supplemented with SM1 supplement (1:50 dilution), 0.5 mM glutamine and 50 µg/ml 

gentamycin. The cells were maintained in a humidified incubator with an atmosphere of 

95% air and 5% CO2,  at 37°C for 15 days. At day 2 in vitro the cell division inhibitor FDU 
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(10 µM) was added to the culture medium. One third of the culture medium was replaced 

with fresh medium twice a week. 

 

2.3. GLIAL CELL CULTURES 

Cultures of glial cells were prepared from the brain cortex of E18 Wistar rat embryos. After 

dissection, the brain cortices were washed with HBSS and mechanically dissociated in 

DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 20% of fetal bovine 

serum (FBS) and 1% PenStrep. The cells were dissociated in this solution, and the resulting 

suspension was filtered with a filter of 0.22 µm to better separate the cells. Finally, the 

dissociated cells were plated in the same medium. The cells were kept in a humidified 

incubator at 37°C with an atmosphere of 95% air and 5% CO2. The day after the culture 

medium was completely replaced with fresh medium, and additional changes of the 

medium were performed twice per week, with decreasing amount of FBS (20%, 15%, 10%) 

until the cells became confluent.  

 

2.4. ASTROCYTE CULTURES 

Astrocyte cultures were prepared from the brain cortex of E20 Wistar rat embryos. After 

dissection, the brain cortices were washed with HBSS and carefully homogenised. The 

resulting suspension was filtered with a filter of 0.22 µm to better separate the cells. The 

dissociated cells were then plated in the in 75 cm
2
 flasks with glia medium (MEM 

supplemented with 10% of FBS, 6% glucose, 1% PenStrep) at the concentration of ~2-

3x10
6
 cells/flask. The cells were kept in a humidified incubator at 37°C with an atmosphere 

of 95% air and 5% CO2. The day after the culture medium was completely replaced with 

fresh medium to remove dead cells. Twice a week, the flasks were vigorously shake and the 

medium was changed (this step allow the detachment of contaminating cells contributing 

for the purity of astrocyte cultures). Once confluent the astrocytes are ready to be used. 

 

2.5. OXYGEN-GLUCOSE DEPRIVATION (OGD) OF HIPPOCAMPAL, 

CORTICAL NEURONS AND GLIAL CELLS  

Hippocampal and cerebrocortical neurons (15 DIV) were incubated in a glucose-free saline 

medium (25 mM sucrose, 1.8 mM CaCl2, 25 mM NaHCO3, 10 mM HEPES, 116 mM NaCl, 
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5.4 mM KCl, 0.8 mM MgSO4, 1 mM NaH2PO4, 0.0005% Phenol red), while glial cells 

were incubated in a glucose and sucrose-free saline medium (1.8 mM CaCl2, 25 mM 

NaHCO3, 10 mM HEPES, 116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO4, 1 mM NaH2PO4, 

0.0005% Phenol red) in an anaerobic chamber with 10% H2, 85% N2, 5% CO2 (Forma 

anaerobic System, Thermo Fisher Scientific), at 37°C for 1.5 h. The OGD medium was 

then replaced by conditioned medium or fresh medium in the case of glial cells, and the 

cultures were returned to the humidified 95% air/5% CO2 incubator for the indicated 

periods of time (indicated as post-incubation period in the results section) (Chapter 3). 

Under control conditions (Sham) the cells were incubated in the saline buffer (25 mM 

glucose, 1.8 mM CaCl2, 25 mM NaHCO3, 10 mM HEPES, 116 mM NaCl, 5.4 mM KCl, 

0.8 mM MgSO4, 1 mM NaH2PO4, 0.0005% Phenol red) and kept in the humidified 95% 

air/5% CO2 incubator at 37°C.  

When appropriate neurons were incubated with phosphatase inhibitors: Cyclosporin A 1µM 

(inhibitor of calcineurin) and Okadaic acid 1 µM (inhibitor of serine/threonine protein 

phosphatases PP2A-C), with the calpain inhibitor MDL28170 (50 µM) and with the 

phosphorylation activators: Forskolin (FSK, 1 µM) and Phorbol-12-Myristate-13-Acetate 

(PMA, 20 nM). Transcription inhibition was performed by incubation with Actynomicin D 

(1 µM). When tested, the calpain inhibitor and Actynomicin D were added 30 min before 

OGD and were also present during and after the insult. 

To perform the experiments with calpastatin overexpression (endogenous calpain inhibitor), 

hippocampal neurons (10 DIV) were infected with adenoassociated virus serotype 1 (AAV 

type 1) expressing calpastatin or GFP. Five days after infection neurons were subjected to 

OGD. 

  



MATERIALS AND METHODS 

38 
 

2.6. MIDDLE CEREBRAL ARTERY OCCLUSION  

Focal cerebral ischemia was induced by the transient occlusion of the right middle cerebral 

artery (MCA), using the intraluminal filament placement technique as described previously 

(Nygren and Wieloch, 2005). Briefly, adult male mice were anesthetized by inhalation of 

2.5% isoflurane (IsobaVet, Schering-Plough Animal Health) in O2:N2O (30:70). Anesthesia 

was subsequently reduced to 1.5–1.8% isoflurane and sustained throughout the occlusion 

period. Body temperature was kept at ~37°C throughout the surgery period. To monitor 

regional cerebral blood flow (rCBF), an optical fiber probe (Probe 318-I, Perimed) was 

fixed to the skull at 2 mm posterior and 4 mm lateral to bregma and connected to a laser 

Doppler flow meter (Periflux System 5000, Perimed). A filament composed of 6 – 0 

polydioxanone suture (PSD II, Ethicon) with a silicone tip (diameter of 225–275 µm) was 

inserted into the external carotid artery and advanced into the common carotid artery. The 

filament was retracted, moved into the internal carotid artery, and advanced until the origin 

of the MCA, given by the sudden drop in rCBF (~70% of baseline). After 45 min, the 

filament was withdrawn and reperfusion observed. The animals were placed in a heating 

box at 37°C for the first 2 h after surgery and thereafter transferred into a heating box at 

35°C, to avoid postsurgical hypothermia. Thirty minutes and 24 h after the onset of 

reperfusion, 0.5 ml of 5% glucose were administered subcutaneously. Temperature and 

sensorimotor deficits were assessed at 1, 2 h and 24 h after the surgery. Body weight was 

controlled daily. In sham surgeries, the filament was advanced up to the internal carotid 

artery, and withdrawn before reaching the MCA. The Ethics Committee for Animal 

Research at Lund University approved animal housing conditions, handling, and surgical 

procedures. Eleven to 36 weeks old C57BL/6J male mice (weight: 23.0 g to 37.9 g; Lund 

University breeding facility) were housed under diurnal conditions with ad libitum access 

to water and food before and after surgery. Mice were anesthetized 48 h after MCA 

occlusion (MCAO) or sham surgery, by inhalation of 2.5 % isoflurane and were then 

perfused transcardially with 0.9 % NaCl for 2 min before decapitation. Upon removal of 

meninges, brains were rapidly isolated and frozen by immersion in isopentane at -40°C, 

further cooled down to -70°C and stored at -80°C. The infarct core and remaining 

ipsilateral tissue (designated as penumbra for simplification) were dissected, as well as the 

contralateral cortex, from coronal brain sections covering the majority of damage. More 
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specifically, consecutive 2 mm, 1 mm and 2 mm thick brain sections were made, starting at 

2 mm from the olfactory bulb. Dissections were performed at -15°C, a temperature that 

allows an easy detachment of the infarct core and penumbra. The cortical-striatal infarcts 

obtained were illustrated in (Inacio et al., 2011). Equivalent brain regions were dissected 

from sham-operated mice, which were also designated as infarct core and penumbra, and 

from the contralateral cortex. For each animal, corresponding regions from each of 3 

consecutive brain sections were pulled together. Samples were then homogenized and 

processed for Western blotting as previously described (Inacio et al., 2011). Cellular 

protein extraction was performed by mechanical homogenization of the tissue and 

incubation in lysis buffer: 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1% Triton-X100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerolphosphate, 1 

mM orthovanadate and 1 mM PMSF, supplemented with a protease inhibitor cocktail 

(P8340, Sigma-Aldrich). Following 30 min incubation at 4°C, samples were centrifuged at 

18000x g, for 15 min. Total protein concentration in lysates was determined by the 

Bradford assay, using serum bovine albumin (Sigma) as standard. 

 

2.7. WESTERN BLOTTING 

Total cell extracts were prepared at different time period of post-incubation after OGD as 

indicated in the results section. After washing the cells twice with ice-cold PBS buffer (13.7 

mM NaCl, 2.7 mM KCl, 1.8 mM K2HPO4, 10 mM NaH2PO4.2H20), the cells were lysed 

with RIPA buffer (150 mM NaCl, 50 mM Tris.HCl, 5 mM EGTA, 1% Triton X-100, 0.5% 

Deoxycholic acid, 0.1% Sodium dodecyl sulphate) supplemented with 1 mM DTT and a 

cocktail of protease inhibitors (0.1 mM PMSF, 1 μg/ml chymostatin, 1 μg/ml leupeptin, 1 

μg/ml antipain, 1 μg/ml pepstatin; Sigma‐Aldrich Química). For phosphorylation studies 

the RIPA lysis buffer was also supplemented with 50 mM NaF and 1.5 mM sodium 

orthovanadate. The extracts were frozen (at -80°C), defrost and centrifuged at 16.000xg for 

10 min. In the case of glial cells, before centrifugation, the extracts were sonicated for 5 

min with ultrasonic sonicator bath at 4°C. The protein present in the supernatants was then 

quantified using the BCA method (Thermo Scientific). The samples were diluted with a 5x 

concentrated sample buffer (200 mM Tris.HCl, 8% glycerol, 1.6% SDS, 0.001% 

bromophenol blue and 5% β-mercaptoethanol). Protein samples were separated by SDS‐
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PAGE, in 10% polyacrylamide gels, and transferred to PVDF membranes. Membranes 

were blocked in 5% milk in TBS-T (20 nM Tris, 13.7 mM NaCl, 0.1% Tween, pH 7.6) and 

were then incubated with primary antibodies diluted in 0.5% milk TBS-T (overnight at 

4°C). Finally, the membranes were washed and exposed to alkaline phosphatase‐conjugated 

secondary antibodies (1:20.000 dilution; 1 h at room temperature, GE Healthcare or 

Jackson ImmunoResearch). Alkaline phosphatase activity was visualized using ECF on the 

Storm 860 Gel and Blot Imaging System (GE Healthcare). The following primary 

antibodies were used: anti‐HAP1 (1:750, Santa Cruz Biotechnology); anti-Synaptophysin 

(1:20000, Abcam), anti-β-tubulin (1:300000, Sigma-Aldrich), anti-GFP Rabbit (1:1000, 

MBL), anti-calpastatin  (1:200, Santa Cruz Biotechnology). 

 

2.8. IMMUNOCYTOCHEMISTRY 

Hippocampal neurons (15 DIV) were fixed with 4% paraformaldehyde/sucrose in PBS and 

permeabilized with 0.3% Triton X‐100 in PBS for 5 min. The cells were then incubated in 

PBS/BSA 10% for 60 min at RT, and further incubated with the primary antibodies diluted 

in PBS/BSA 3%, overnight at 4°C. Hippocampal neurons were washed 6 times with PBS 

and were incubated with the appropriate secondary antibodies, for 1 h at RT. The coverslips 

were mounted with a fluorescence mounting medium (DAKO, Denmark). Imaging was 

performed in an Axio Observer 2.1 fluorescence microscope, coupled to an Axiocam HRm 

digital camera, using a 63x oil objective. The primary antibodies used were anti-HAP1 

(1:250, Santa Cruz Biotechnology), anti-GFAP (1:1000, NeuroMab) and anti-MAP2 

(1:10000, Abcam). The secondary antibodies used were: anti-Chicken IgG conjugated with 

AMCA Fluor 350 (1:200, Invitrogen), anti-mouse IgG conjugated with Alexa Flour 488 

(1:500, Invitrogen) or with Alexa Flour 568 (1:500, Invitrogen).  
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2.9. q-PCR ANALYSES  

2.9.1. TOTAL RNA EXTRACTION, RNA QUALITY AND RNA CONCENTRATION  

RNA extraction from cultured glial cells was performed with TripleXtractor (Grisp). 

Briefly, 1 mL of TripleXtractor was added to each well of 6-well cluster plate. The extracts 

were diluted with chloroform and the samples were centrifuged for 15 minutes at 4°C to 

separate the different phases: inferior red phase containing soluble proteins and DNA, 

intermediate chloroform phase containing denatured proteins and top colorless phase 

containing total RNA. The top phase was removed and the RNA was precipitated with 

isopropanol followed by centrifugation. The resulting pellet containing RNA was washed 

with 75% ethanol, centrifuged and air-dried. RNA was resuspended with 20 µl of RNAase 

free water (GIBCO Invitrogen). RNA quality and integrity was evaluated using Experion 

electrophoresis for automated running RNA (Bio-Rad). RNA concentration was determined 

using NanoDrop 2000c/2000 UV –Vis spectrophotomer (Thermo scientific). The samples 

were kept at - 80°C. 

 

2.9.2. REVERSE TRANSCRIPTION REACTION  

First strand cDNA was synthesized from 1 µg of total RNA using iScript cDNA synthesis 

kit (Bio-Rad) following the manufacturer’s specifications. The thermocycler protocol 

includes four steps: 1) 5 min at 25°C; 2) 30 min at 42°C; 3) 5 min at 85°C; 4) Hold at 4°C. 

 

2.9.3. PRIMER DESIGN  

The primers for real-time PCR were designed using “Beacon Designer 7” software (Primer 

Biosoft Internationl), with the following specification: 1) GC content about 50%; 2) 

Anneling temperature (Ta) between 55 ± 5°C; 3) Secondary structures and primer-dimers 

were avoided; 4) Primer length 18-24 bp; 5) Final product length between 100-200 bp. The 

Primers were designed using a sequence common to the two HAP1 isoforms (HAP1-A and 

HAP1-B). The HAP1 Forward primer sequence was: CAGGAAGAAGATCACCGAAGA; 

the reverse primer sequence was: GTGTTCAGGTCCCGTTCT (Sigma).  
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2.9.4. REAL-TIME PCR 

Real-time PCR experiments were performed as previously described (Mele et al. 2014). 

Gene expression analysis was performed using SsoFast
TM 

Eva
 
Green SuperMix (BioRad). 

Briefly, 2 µl cDNA samples were diluted 1:10 and added to 10 µl of EvaGreen 2x and to 

the specific primers at the final concentration of 250 µM in a total volume of 20 µl. The 

thermocycling reaction was composed of the following steps: 1) activation of the Sso7d 

fusion DNA polymerase (95°C for 30 s), 2) denaturation (45 cycles of a 10 s step at 95°C), 

3) annealing (30 s at the optimal annealing temperature for each set of primers), 4) 

elongation (30 s at 72°C). At the end of thermocycling reaction a melting step was 

performed (starting at 55°C with a rate of 0.5°C per 10 s, up to 95°C). The fluorescence 

was measured after the extension step, using the iQ5 Multicolor Real‐Time PCR Detection 

System (BioRad). To calculate the efficiency of each set of primers the assays included a 

nontemplate control and a standard curve of cDNA using serial dilutions (1:10, 1:100, 

1:1000). All reactions were run in duplicate. The value used for the quantification was the 

threshold cycle (Ct; the detectable fluorescence signal above background resulting from the 

accumulation of amplified product), a value that is a proportional measure of the starting 

concentration of the target sequence. The threshold base line was always set at the 

beginning of the exponential phase. Data analysis was performed using the GenEx (MultiD 

Analyses) software for Real‐Time PCR expression profiling. 

 

2.10. PLASMIDIC DNA AMPLIFICATION AND PURIFICATION 

2.10.1. BACTERIA TRANSFORMATION  

The following transformation protocol was used to obtain DNA from kanamycin resistant 

pEGFP-HAP1A and pEGFP-HAP1B vectors: 1µl of vector was added to competent E.Coli 

cells (DH5α) prepared with the Calcium Chloride protocol. After 30 min incubation on ice, 

the cells were submitted to an heat shock at 42°C for 45 s, followed by 5 min on ice. The 

cells were then pleated on Petri dishes containing LB-Agar and 50 µM kanamycin, and 

were then incubated overnight at 37°C.  
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FIGURE 2.1. Map of the kanamycin resistant pEGFP (4724 bp) vector.  

 

 

 

 

FIGURE 2.2. Schematic representation of the EGFP-HAP1-A and EGFP-HAP1-B fusion 

proteins.  

These sequences were cloned in the kanamycin resistant pEGFP vector (4724 bp).  

 

2.10.2. BACTERIA GROWTH 

One single colony selected by kanamycin resistance after bacteria transformation was 

picked and incubated ON in LB medium supplemented with 50 µM kanamycin. After 

bacteria growth the DNA extraction was performed with HiPure Plasmid Filter Maxiprep 

Kit (Invitrogen) and NzyMiniprep (Nzytech). The concentration of DNA was determined 
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using NanoDrop 2000c/2000 UV–Vis spectrophotomer (Thermo scientific). The samples 

were kept at -20°C. 

 

2.11. TRANSFECTION OF PRIMARY NEURONAL CULTURES  

Hippocampal neurons were transfected with pEGFP, myc-huGABAAR β3 (Mele et al. 

2014), pEGFP-HAP1-A and pEGFP-HAP1-B (Gift from Ghislaine Poizat, Frédéric 

Saudou’s laboratory, Institute Curie, Orsay, France), using the calcium phosphate co-

precipitation method. 2 µg of DNA for each cover slip were used, diluted in Tris-EDTA 

(TE) pH 7.3 and mixed with 2.5 M of CaCl2. The DNA/TE/CaCl2 mix was added to 2x 

HEPES buffered saline solution pH 7.2 (250 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 11 

mM dextrose, 42 mM HEPES). The precipitates were allowed to develop at a room 

temperature for 30 min, protected from light, vortexing every 5 min. Neurons were 

prepared to receive the precipitates by adding 2 mM kynurenic acid (Sigma) in cultured-

conditioned medium for 20 min. The precipitates were added to the cells drop-wise in the 

center of the coverslip and incubated for 2 h at 37°C, in an incubator with 95% air/5% CO2.  

The cells were then washed with glutamate-free Neurobasal medium supplemented with 10 

mM kynurenic acid and incubated for 20 min in an incubator with 95% air/5% CO2. Finally, 

the medium was replaced with the initial culture-conditioned medium, and the cells were 

incubated in a 95% air/5% CO2 incubator for 48 h at 37°C to allow protein expression. Cell 

cultures were then subjected to OGD for 90 min and different times of reoxygenation (0 h 

and 1 h). After the insult the cells were subjected to immunocytochemistry, using a 

fluorescence assay for receptor internalization and recycling.  

 

2.12. IMMUNOCITOCHEMISTRY FOR MEMBRANE ASSOCIATED 

PROTEINS  

A live staining protocol was used to study the effect of OGD on the levels of GABAAR β3 

subunit on the plasma membrane, in the absence of HAP1-A or HAP1-B. Cultured living 

hippocampal neurons (15 DIV), transfected with huGABAAR β3, EGFP-HAP1 A or EGFP-

HAP1 B, and subjected or not to OGD (90 min), were incubated with the primary antibody 

anti-myc GABAAR β3 (1:300 in culture-conditioned medium; Cell Signaling) at RT for 10 

min. The cells were washed with pre-warmed PBS and were then fixed with 4% 
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paraformaldehyde/sucrose in PBS and incubated with the secondary antibody (Alexa Flour 

568 goat anti-mouse, 1:300 Invitrogen) for 1 h at RT. The preparations were washed six 

times with PBS and the cells were permeabilized with 0.3% Triton X‐100 in PBS and 

blocked with 10% BSA in PBS for 60 min at RT. Then the cells were incubated ON at 4°C 

with an rabbit anti-GFP antibody (1:500, MBL), diluted in PBS/3% BSA. The cells were 

washed 6 times with PBS and incubated with the secondary antibody (Alexa Flour 488 goat 

anti-rabbit, 1:500 Invitrogen) for 1 h at RT. The coverslips were mounted in a florescence 

mounting medium and imaging was performed with Axio Observer 2.1 fluorescence 

microscope . 

 

2.13. FLUORESCENCE ASSAY OF RECEPTOR INTERNALIZATION  

The protocol used for fluorescence assay of receptor was previously described (Mele et al. 

2014). After the OGD insult, cultured hippocampal neurons transfected with huGABAAR 

β3, EGFP-HAP1 A or EGFP-HAP1 B, were incubated at RT for 10 min in the presence of 

a high concentration of the primary antibody (mouse) anti-myc (1:300, Cell Signaling) 

diluted in conditioned medium to label the receptors on the cell surface. The cells were then 

washed with PBS at 37°C to remove the unbound antibody and were again incubated in 

conditioned medium for 20 min at 37°C to allow receptor internalization. After this 

incubation the cells were fixed for 15 in 4% paraformaldehyde/sucrose and washed twice 

with PBS. Next, neurons were incubated with a super-saturating concentration (1:300) of 

the first secondary antibody (goat Alexa Flour 568 anti-mouse; Invitrogen) for 1 h at RT 

and washed 4 times with PBS. Then the cells were permeabilized (0.3% Triton X-100 for 5 

min at 4°C) and washed for 5 min at RT before incubation with 10% BSA in PBS for 60 

min at RT. To label the receptors that were internalized, the cells were incubated with the 

second secondary antibody (goat Alexa Flour Far-red 647 anti-mouse; 1:500 Invitrogen) for 

1 h at RT. This strategy allows distinguishing the surface receptors from those receptors 

that have been internalized before fixation (Goodkin et al. 2005). To identify the cells that 

were transfected with EGFP-HAP1 A or EGFP-HAP1 plasmids, the cells were then 

incubated with the primary antibody (rabbit) anti-GFP (1:500, Invitrogen) overnight at 4°C, 

washed 4 times with PBS and incubated with the secondary antibody (Alexa Flour goat 488 

anti-rabbit; 1:500 Invitrogen). Finally, the cells were washed 4 times with PBS and the 
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cover slips were mounted on slides with fluorescence mounting medium (DAKO). The 

coverslips were mounted in a florescence mounting medium and imaging was performed 

with Axio Observer 2.1 fluorescence microscope. 

 

 

 

FIGURE 2.3. Schematic representation of the fluorescence assay used to assess receptor 

internalization. 

 

2.14. RECEPTOR RECYCLING ASSAY  

Cultured living hippocampal neurons (15 DIV), transfected with myc-huGABAAR β3, 

EGFP-HAP1 A or EGFP-HAP1 B, were incubated at RT for 10 min in the presence of a 

high concentration of first primary antibody, mouse anti-myc (1:300, Cell Signaling) 

diluted in conditioned medium. The cells were then washed with PBS pre-warmed at 37°C 

to remove the unbound antibodies and further incubated with conditioned medium at 37°C 

for 20 min to allow the internalization of antibody-bound receptors. The antibodies 

remaining on the cell surface were then removed by incubation with a stripping solution 

(0.5 M NaCl and 0.2 M acetic acid) on ice for 4 min (Passafaro et al. 2001). Neurons were 

then washed extensively with ice-cold PBS and returned back to culture medium at 37°C 

for 20 min to allow the receptor recycling. After recycling, neurons were fixed and myc-
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antibody complexes recycling back to the surface were detected by incubation of the cells 

with the first secondary antibody (Alexa Flour goat 568 anti-mouse; 1:200 Invitrogen). To 

allow the detection of the receptors that were not recycled, the cells were then 

permeabilized and incubated with 10% BSA in PBS for 1 h at RT. After this blocking step, 

the cells were incubated with the secondary antibody for 1 h at RT (goat Alexa Flour 670 

anti-mouse; 1:200 Invitrogen). To detect the cells that were transfected with EGFP-HAP1 

A or EGFP-HAP1 plasmids, cells were incubated with the primary antibody (rabbit) anti-

GFP (1:500) overnight at 4°C. Neurons were the incubated with the secondary antibody 

(Alexa Flour 488 anti-rabbit 1:400 Invitrogen) for 1h at RT. Finally, the coverslips were 

mounted on slides with fluorescence mounting medium (DAKO) and imaging was 

performed with Axio Observer 2.1 fluorescence microscope . 

 

 

FIGURE 2.4. Schematic representation of the receptor recycling assay. 
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3.1. CHARACTERIZATION OF CULTURED HIPPOCAMPAL NEURONS 

The protocol to culture hippocampal neurons was well established and already used in our 

laboratory. To reduce the contamination with astrocytes we supplemented the culture 

medium with 5-fluoro-2’-deoxyuridine (FDU, 10 µM), which inhibits thymidy-late 

synthase (TS) causing an imbalance of the intracellular deoxyribonucleoside triphosphate 

(dNTP) pool with consequent inhibition of DNA synthesis (Yoshioka et al. 1987). This 

inhibitor was added to the cultured hippocampal neurons after two days in culture. After 

fifteen days in culture the cells were fixed and immunocytochemistry was performed to 

label the glial fibrillary acidic protein (GFAP) and the microtubule-associated protein 2 

(MAP2) that is a somato-dendritic marker. The cells were then counted and the percentage 

of glial cells was calculated. The average percentage of glial cells in the cultures was 4.2% 

(n=3) (Figure 3.1). 

 

 

 

Figure 3.1. Characterization of cultured hippocampal neurons at DIV15.  
The culture medium was supplemented with 5-fluoro-2’-deoxyuridine (FDU, 10 µM) at DIV2 to 

inhibit glial cell growth. At DIV15 the cells were fixed and the neurons were labelled with anti-

MAP2 while glial cells were labelled with an anti-GFAP antibody. The glial cells were counted and 

their abundance was calculated as a percentage of the total number of cells (neurons + glial cells). 

The experiment was performed three times in independent preparations. 

 

3.2. OGD DECREASES HAP1 TOTAL PROTEIN LEVELS BY A 

CALPAIN DEPENDENT MECHANISM 

The sorting of GABAAR after internalization is determined by its interaction with the 

HAP1 protein (Kittler et al. 2004). To assess the effect of OGD, a well-established in vitro 

model of global cerebral ischemia (Dawson et al. 1996; Goldberg and Choi 1993), on 

HAP1 total protein levels, we subjected hippocampal neurons to 90 min of OGD and the 
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cells were further incubated in culture-conditioned medium for different time periods. 

HAP1 total protein levels were analyzed with western blot using a specific antibody against 

amino acids common to the two isoforms of HAP1, HAP1-A and HAP1-B. The results 

show no significant differences in HAP1 total protein levels immediately after OGD, but at 

a decrease of ~20% was observed 2 h after the stimulus, and of 40% at 4 h and 6 h after 

injury. HAP1 protein levels were further decreased to ~50% 8 h after OGD (Figure 3.2 A).  

The absence of oxygen and glucose during OGD induces ATP depletion and the dissipation 

of cellular ionic gradients. These mechanisms lead to an increase in the intracellular 

calcium concentration with a consequent activation of calpains (Saido et al. 1994; 

Vanderklish and Bahr 2000), a family of calcium-dependent enzymes which cleave 

cytoskeleton proteins and other substrates (Bevers and Neumar 2008). To understand 

whether calpains are involved in the OGD-induced downregulation of HAP1 protein, 

hippocampal neurons were subjected to OGD (90 min) in the presence or absence of the 

chemical calpain inhibitors MDL28170 (50 µM). The results show that MDL28170 

abrogates the effect of OGD on HAP1 total protein when evaluated 8 h after the insult, 

preventing its reduction in hippocampal neurons subjected to OGD (Figure 3.2 B).  

 

 

 

Figure 3.2. HAP1 total protein levels are downregulated in vitro ischemia (OGD) by a calpain-

dependent mechanism. 

(A) Cultured hippocampal neurons (15 DIV) were exposed to OGD (90 min) and were further 

incubated in culture-conditioned medium for the indicated periods of time: 0 h, 2 h, 4 h, 6 h and 8 h 

(post-incubation). (B) Cultured hippocampal neurons (15 DIV) were exposed to OGD for 90 min in 

the presence or absence of MDL28170 (50 µM) and were further incubated in culture-conditioned 

medium for 8 h (post-incubation) with the same inhibitors. (A-B) HAP1 total protein levels were 
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analyzed with western blot and the results were normalized with the loading control synaptophysin. 

Results are the men ± SEM of at least 3 independent experiments performed in distinct preparations. 

One-way ANOVA was performed as statistical analysis, followed by Dunnett’s and/or Bonferroni 

test. **p<0.01, ***p<0.001, 
##

p<0.01- significantly difference when compared to control conditions 

or for the indicated comparisons. Non-significant differences were indicate as ns. 

 

To further investigate whether calpains act directly on the cleavage of HAP1, we used 

different algorithms that predict potential proteolytic cleavage sites. Polypeptide sequences 

enriched in proline (P), glutamic acid (E), serine (S) and threonine (T) called PEST 

sequences are targeted by proteases for rapid destruction (Rogers et al. 1986). This process 

may be mediated by calpain proteins (Shumway et al. 1999). The Software EMBOSS 

(http://sourceforge.net) was used to identify the sites with the highest PEST sequence score 

in the two rat HAP1 isoforms (HAP1-A and HAP1-B). Figures 3.3 A and B show the 

presence of putative PEST sequences in both HAP1 isoforms: from amino acid 476 to 532 

(score +19.36) and from amino acid 4 to 42 (score +14.8). Using the GPS-CCD program 

(Calpain Cleavage Detector based on the algorithm for Group-based prediction System, 

available at http://ccd.biocuckoo.org/), the sites that were retrieved with the highest score 

were the following: HAP1-A - Gln342 (1.332), Ala367 (1.34), Arg403 (1.079), Ser404 

(1.008); HAP1-B - Gln342 (1.332), Ala367 (1.34), Arg403 (1.079), Ser404 (1.008), 

Asp579 (1.125). 

It was proposed that calpains cleave their substrates in disordered segments of the proteins 

(Tompa et al. 2004). We used the metaPrDOS bioinformatic tool (http://prdos.hgc.jp/cgi-

bin/meta/top.cgi) to predict the disorder tendency in the two isoforms of HAP1 protein. The 

results showed that both HAP1 isoforms presents a considerable degree of disorder in 

different segments (amino acids in HAP1-A: 1 to 71, 88 to 101, 216 to 257, 361 to 378, 390 

to 424, 456 to 520, 564 to 599; amino acids in HAP1-B: 1 to 71, 88 to 101, 106 to 119, 216 

to 258, 365 to 378, 380 to 423, 456 to 520, 564 to 593, 601 to 629) (Figure 3.3 C and D). 

These bioinformatic analyses reinforce the hypothesis that HAP1 protein levels may be 

regulated by calpain activity.  

 

http://sourceforge.net/
http://ccd.biocuckoo.org/
http://prdos.hgc.jp/cgi-bin/meta/top.cgi
http://prdos.hgc.jp/cgi-bin/meta/top.cgi
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Figure 3.3. Identification of putative sites of cleavage by calpains in HAP1 protein. 
Analysis of the putative sites of cleavage by calpains in the HAP1-A (A) and HAP1-B (B), using 

the software EMBOSS. Positive values above the threshold +5.00 correspond to predicted cleavage 

sites. Prediction of the disorder tendency in HAP1-A (C) and HAP1-B (D) based on the analysis of 

amino acids sequences with meta PrDOS bioinformatic tool. Each peak labeled with a red line 

corresponds to disordered segment. The arrows indicate the cleavage sites.  

 

To confirm the results pointing to a role of calpains in the cleavage of HAP1 in 

hippocampal neurons exposed to OGD, we also evaluated the effect of calpastatin 

(endogenous inhibitor of calpains) on the total protein levels of HAP1 after OGD. 

Calpastatin is a natural specific inhibitor of calpains (Ishida et al. 1991; Lee et al. 1992) 

which binds to calpain forming a calpain-calpastatin complex (Tompa et al. 2002). Cultured 

hippocampal neurons (10 DIV) were infected with AAV type 1 virus that express 

calpastatin or GFP, and five days after infection hippocampal neurons were subjected to 

OGD (90 min) or incubated in sham conditions. Total HAP1 protein levels were analyzed 8 

h after the insult by western blot analysis. The results show a significant decrease of HAP1 

total protein levels in non-infected neurons (~40%) after OGD, and a slight but not 

significant reduction in cell death was observed when the cells overexpressing calpastatin 

(Figure 3.4). As expected, this protective effect was not observed in the cells transduced 
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with GFP. These results suggest that an upregulation of calpastatin protein levels reduce the 

OGD-induced downregulation of HAP1, but additional experiments are required to confirm 

the role of calpain in the cleavage of HAP1 using this experimental approach. 

 

 
 

Figure 3.4. Calpastatin prevents the OGD-induced reduction of HAP1 total protein.  

Culture of hippocampal neurons infected or not with AAV type 1 virus expressing calpastatin or 

GFP were exposed to OGD (90 min) and western blot analyses was performed 8 h (post-incubation) 

after the insult. HAP1 total protein levels were determined and successful infection was confirmed 

using specific antibodies against calpastatin and GFP. The results of HAP1 protein were normalized 

with the loading control synaptophysin. Results are the mean ± SEM of 3 independent experiments 

performed in distinct preparations. Statistical analysis was performed by one-way ANOVA, 

followed by Dunnett’s and Bonferroni test. **p<0.01, ***p<0.001, 
#
p<0.05, 

##
p<0.01 - significantly 

difference when compared to control conditions or for the indicated comparisons. Non-significant 

differences are indicated as ns. 
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3.3. INHIBION OF PP1/PP2A PHOSPHATASES PREVENTS OGD-

INDUCED REDUCTION OF HAP1 PROTEIN LEVELS 

It has been found that HAP1 interaction with several different motor proteins is required for 

intracellular transport (Rong et al. 2007; Engelender et al. 1997) and these interactions were 

shown to be affected by protein phosphorylation (Rong et al. 2006). Here we evaluated 

whether HAP1 protein expression is modulated by phosphorylation/dephosphorylation 

mechanisms in hippocampal neurons exposed to ischemic conditions. Cultured 

hippocampal neurons (15 DIV) were subjected to OGD for 90 min, and the cells were 

further incubated for 8 h in the presence of okadaic acid (0.5 µM) [protein serine/threonine 

phosphatase 1, 2A inhibitor (Garcia et al. 2003)], or with cyclosporin A (1µM) (calcineurin 

inhibitor). Incubation of hippocampal neurons with okadaic acid under control conditions 

upregulated HAP1 protein levels. This robust effect may contribute, at least in part, to the 

preservation of HAP1 protein levels, as compared with the control conditions, when 

hippocampal neurons were subjected to transient OGD (Figure 3.5 A). Although 

cyclosportin A had a small but significant effect on HAP1 protein levels under control 

conditions, the phosphatase inhibitor was without effect on the downregulation of HAP1 

observed after OGD (Figure 3.5 A). The effect of protein phosphorylation on OGD-induced 

cleavage of HAP1 was further investigated in experiments where hippocampal neurons 

were incubated with forskolin (FSK), an activator of adenylyl cyclase, or with Phorbol 12-

myristate 13-acetate (PMA), a specific activator of group A (α, βI, βII, γ) and group B (δ, ε, 

η, θ) Protein Kinase Cs (PKCs) (Figure 3.5 B). The results showed no effect of these two 

compounds on HAP1 protein expression upon OGD, suggesting that HAP1 downregulation 

induced by the ischemic insult is not affected by PKA and PKC.  
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Figure 3.5. HAP1 total protein levels are dowregulated in vitro ischemia (OGD) by a 

mechanism dependent on the activity PP1/PP2A phosphatases.  

(A) Cultured hippocampal neurons (15 DIV) were exposed to OGD for 90 min in the presence or in 

the absence of 0.5 µM okadaic acid or 1µM cyclosporin A. (B) Cultured hippocampal neurons (15 

DIV) were exposed to OGD for 90 min in the presence or in the absence of 1 µM FSK or 20nM 

PMA. (A-B) HAP1 total protein levels were determined by western blot analysis, 8 h after the insult, 

and the results were normalized with the loading control synaptophysin. Results are the mean ± 

SEM of at least 3 independent experiments performed in different preparations, and are expressed 

as percentage of the control. Statistical analysis was performed by one-way ANOVA, followed by 

Dunette’s or Bonferroni test. *p<0.05, **p<0.01, ***p<0.001,
 ##

p<0.01  
###

p<0.001 - significantly 

different when compared with control conditions or for the indicated comparisons. Non-significant 

differences were indicated as ns. 

 

3.4. HAP1 TOTAL PROTEIN LEVELS ARE INCREASED AFTER 

TRANSIENT MCAO, AN IN VIVO MODEL OF CEREBRAL ISCHEMIA 

To determine whether HAP1 is also downregulated in brain ischemia in vivo, we measured 

the changes in HAP1 total protein levels in the brain of adult mice subjected to MCAO, a 

model of focal cerebral ischemia. Different regions of the brain, the infarct core, the 

penumbra as well as the ipsilateral brain hemisphere, were analyzed 48 h after transient (45 

min) MCAO. Surprisingly, western blot analysis for HAP1 showed an increase of total 

protein levels of about 50%. No significant differences were observed in the penumbra and 

contralateral cerebrocortical regions (Figure 3.6). These results indicate that MCAO 

upregulates HAP1 protein in the ischemic core brain region. 
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Figure 3.6. HAP1 protein is upregulated in the ischemic core of transient brain ischemia in 

vivo. 
Adult male mice (C57BL/6) were subjected to transient occlusion of the right middle cerebral artery 

(MCA) for 45 min, followed by reperfusion for 48 h. The control (sham) was subjected to surgery 

for the same times. HAP1 total protein levels were analyzed in different brain regions by western 

blot: ischemic core (IC) and penumbra (affected by MCAO) and ipsilateral brain hemisfere. HAP1 

total protein levels were analyzed also for the control in equivalent brain regions. The results were 

normalized with the loading control synaptophysin. Results are the men ± SEM of 3 independent 

experiments, using samples from different animals. Student’s t-test was performed as statistical 

analysis. Significant differences (**p<0.01) were considered from the ischemic core (IC) and Sham 

cortex in operated animals. Non-significant (ns) differences were considered comparing the 

penumbra and controlateral regions to the correspondent region in sham operated animals.  

 

3.5. OGD DECREASES HAP1 TOTAL PROTEIN LEVELS IN CORTICAL 

NEURONS AND INCREASES ITS LEVELS IN GLIAL CELLS 

To understand the differential effect of ischemic injury on HAP1 total protein levels, in the 

in vivo and in vitro models of brain ischemia, we investigated the OGD-induced alterations 

in the abundance of the protein in cultured cortical neurons and in cultured glial cells. In 

fact, a major difference between the in vivo and in vitro models of ischemia used in the 

experiments described above is the cellular heterogeneity of the system: the brain tissue 

analyzed in the MCAO experiments contains neurons and glial cells while the hippocampal 

cultures used in OGD studies are highly enriched in neurons.  
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Cerebrocortical neurons (15 DIV) were subjected to OGD for 90 min and the cells were further 

incubated in culture-conditioned medium for 8 h. HAP1 total protein levels were analyzed with 

western blot and the results showed a decrease of HAP1 total protein by about ~25 % in agreement 

with the results obtained in hippocampal neurons exposed to OGD (Figure 3.7). These results 

indicate that OGD affects the HAP1 protein levels in cultured cortical neurons as well as in 

hippocampal neurons. Similar experiments were performed using cultured cerebrocortical glial cells, 

which were subjected to OGD (90 min) and then incubated in DMEM (Dulbecco’s Modified Eagle 

Medium) supplemented with 15% of fetal bovine serum (FBS) for different periods of post-

incubation (Figure 3.8. A). HAP1 total protein levels were evaluated with western blot analysis 

right after OGD or at 4 h, 8 h, 24 h and 48 h after the stimulus. The results show a time dependent 

and transient effect of OGD on HAP1 protein levels. An increased in HAP1 was observed starting 8 

h after OGD, and the effect was statistically significant at 12 h of post-incubation (~40%). At a later 

time point, 48 h after the insult, we observed a significant decrease in HAP1 (~60%). These results 

suggest that the differential effects of in vivo and in vitro ischemia on HAP1 protein levels may be 

due to the distinct response by neurons and glial cells. 

 

 
 

Figure 3.7. HAP1 protein is downregulated in cortical neurons exposed to OGD.  

Cultured cortical neurons (15 DIV) were exposed to OGD for 90 min and were further incubated in 

culture-conditioned medium for 8 h (post-incubation). Total HAP1 protein levels was analyzed by 

western blot and the results were normalized with the loading control synaptophysin. Results are the 

mean ± SEM of at least 3 independent experiments performed in distinct preparations, and are 

expressed as percentage of the control. Statistical analysis was performed by Student’s t-test. 

**p<0.01 - significantly different when compared to control condition.  
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This is the first work in which HAP1 is shown to be present in glial cells. Although 

previous studies suggested the absence of HAP1 in mature astrocytes (Xiang et al. 2014), 

the results of the western blot experiments shown in Figure 3.8 B indicate that the protein is 

also expressed in mature astrocytes. This result was also confirmed with RT-PCR analysis 

in mature astrocytes using specific primers of HAP1 (data not shown).  

 

 
 

Figure 3.8. HAP1 protein levels are altered in glial cells exposed to OGD.  

(A) Cultured of glial cells were exposed to OGD for 90 min and further incubated in DMEM 

supplemented with 15% of FBS for 0 h, 4 h, 8 h, 12 h, 24 h or 48 h (post-incubation). HAP1 total 

protein levels were analyzed with western blot and the results were normalized with the loading 

control tubulin. The results are the mean ± SEM of 3 independent experiments performed in distinct 

preparations, and are expressed as percentage of the control. Statistical analysis was performed by 

one-way ANOVA, followed by Bonferroni’s test. *p<0.05, **p<0.01 - significantly different when 

compared to the respective control condition. (B) Western blot analysis of cultured mature 

astrocytes showing the presence of HAP1 protein.  
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3.6. OGD-INDUCED HAP1 mRNA ALTERATION IN GLIAL CELLS 

The expression of proteins in the cells is regulated by transcription, translation, 

biosynthesis and degradation mechanisms. To determine whether the observed OGD-

induced upregulation of HAP1 protein levels in glial cells (Figure 3.8) was due to changes 

in transcription activity we measured the changes in HAP1-mRNA under the same 

conditions. The levels of HAP1 mRNA were analyzed through PCR analysis using the total 

RNA extracted from glial cells after 90 min of OGD followed by 12 h of post-incubation. 

The GenEx software was used to choose the reference genes. Two methods of statistical 

analysis were used to identify the most suitable reference genes: 1) geNorm that compares 

the variations in all expression ratios for every candidate gene and recommends to use the 

last pair as optimum reference genes (with lower variation); 2) Normifinder that calculates 

both the variation of every gene within the group (intragroup variation) and the variation of 

every gene between the groups (intergroup variation), recommending the optimum pair of 

reference genes (Santos and Duarte 2008). Using this statistical methods the actin and 

tubulin mRNAs were chosen as reference genes to normalize the expression of HAP1 

mRNA. The results (Figure 3.9) show a small but not significant decrease of mRNA 

expression following the in vitro ischemic insult, suggesting that the alteration of HAP1 

protein levels observed in the same condition is not related to the changes in mRNA. 

However, the alterations in mRNA are normally faster and precede the changes in protein 

expression. Therefore the downregulation in HAP1 mRNA observed 12 h after OGD may 

account for the reduction in HAP1 protein levels observed 48 h after OGD (Figure 3.8). 

Thus, additional studies should be performed to determine whether the expression of HAP1 

gene is increased at early time points after the OGD insult.  
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Figure 3.9. OGD-induced alteration of HAP1 mRNA levels in glial cells. 
Cultured glial cells were exposed to OGD for 90 min and the mRNA was extracted for qPCR 

analysis 12 h after the stimulus (post-incubation). Results were normalized with the reference genes 

(tubulin and actin) and the mean ± SEM of at least 3 different experiments performed in 

independent preparations was calculated. The results are expressed as percentage of control (Sham). 

The differences obtained were not statistically significant, as determined by Student’s t-test. 

 

3.7. OVEREXPRESSION OF HAP1 PROTEIN ABROGATES THE OGD-

INDUCED REDUCTION OF GABAAR β3 SUBUNIT RECYLING RATIO 

Privious results from our laboratory showed a decreased GABAAR β3 subunit recycling rate and a 

reduction of GABAAR/HAP1 interaction in hippocampal neurons exsposed to OGD. Considering 

the role of HAP1 in the trafficking of GABAAR (Kittler et al. 2004), we investigated the effect of 

HAP1 overexpession on GABAAR surface expression and recycling. Cultured hippocampal neurons 

(13 DIV) were transfected with myc-tagged huGABAAR β3, GFP-tagged HAP1-A or GFP-tagged 

HAP1-B, and GABAAR β3 surface expression and recycling ratio were analyzed 2 days after 

transfection, following 90 min of OGD. The surface receptors were detected by 

immunocytochemistry under non-permeabilizing conditions, with an antibody against the 

extracellular myc-tag. The rate of receptor recycling was determined after labeling of the surface 

receptors immediately after OGD, and an additional incubation of 30 min after the stimulus was 

performed to allow the receptor recycling (this incubation period allows the detection of the OGD-

induced decrease in the recycling). Immunocytochemistry analysis showed that HAP1-A and 

HAP1-B overexpression prevents the OGD-induced reduction of GABAAR β3 subunit surface 

levels (Figure 3.10 A), as well as the reduction in GABAAR β3 recycling under the same conditions 

(Figure 3.10 B). These results indicate that HAP1 overexpression is capable of rescuing the levels 

of surface GABAAR β3 subunit during OGD, possibly by improving its recycling 
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Figure 3.10. Overexpression of HAP1 protein abrogates the effect of OGD on GABAAR β3 

subunit recycling. 

(A-A’) Cultured hippocampal neurons were transfected with myc-tagged GABAAR β3 subunit, 

together with GFP-tagged HAP1A, GFP-tagged HAP1B or EGFP, and subjected to OGD (90 min). 
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The effect of OGD on the surface expression of the myc-tagged GABAAR β3 subunits was 

evaluated in the neuritic compartments by immunocytochemistry, with an anti-myc antibody, under 

non-permeabilizing conditions. (B-B’) Receptor recycling was assessed using an antibody-feeding 

assay and analyzed by fluorescence microscopy in cells labelled with anti-myc (N-terminus). After 

quantification of the immunoreactivity in the neuritic compartments, the results were expressed as a 

ratio of reclycled receptors/total receptor immunoreactivity and as percentage of control. The results 

were normalized and presented as percentage of the control. The results are the mean ± SEM of 3 

independent experiments, performed in different preparations. Statistical analysis was performed by 

one-way ANOVA, followed by Dunett and Bonferroni’s test. *p<0.05 - significantly different when 

compared to the respective control condition. Non-significant (ns) differences were observed for the 

indicated comparisons. 
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DISCUSSION AND CONLUSIONS 

Huntingtin-associated protein 1 (HAP1), originally identified as a neuronal protein that 

interacts with the Huntington disease (HD) protein, huntingtin (htt), plays a critical role in 

the trafficking of intracellular organelles and membrane proteins by interacting with a 

number of proteins (Li et al. 1998b; Li et al. 1995; Martin et al. 1999; Engelender et al. 

1997). Among these, HAP1 binds the GABAAR β subunit regulating its trafficking (Kittler 

et al. 2004). GABAAR regulate neuronal excitability depending of their cell surface 

availability and stability. During GABAAR cell trafficking, HAP1 inhibits the receptor 

lysosomal degradation and facilitates its recycling back to the plasma membrane (Kittler et 

al. 2004). Accordingly, overexpression of HAP1 increases GABAAR cell surface number 

and decrease neuronal excitability (Kittler et al. 2004). Disruption of GABAAR trafficking 

alters the balance between excitatory and inhibitory neurotransmission in the brain, 

contributing to pathological processing in conditions such as epilepsy and ischemia, which 

are characterized by an acute receptor surface downmodulation and loss of synaptic 

GABAAR. HAP1 is emerging as an important regulator of GABAAR membrane expression 

and as a possible target for future therapeutic strategies in cerebral ischemia treatment. 

Considering the results previously obtained in our laboratory showing a reduction in 

GABAAR recycling rate, as well as a decrease in GABAAR/HAP1 interaction, in 

hippocampal neurons subjected to OGD, in the present work we aimed at investigating the 

effect of cerebral ischemia on HAP1 receptor expression and its contribution to the 

alteration of GABAAR trafficking observed in OGD. Our results show a downregulation of 

HAP1 in hippocampal and cortical neurons subjected to OGD, and the provide evidence for 

the role of the protein in the regulation of GABAAR surface expression and intracellular 

traffic under ischemic conditions. 

Exposure of hippocampal neurons to 90 min of OGD, an experimental condition that 

induces the death of about ~35% of the neurons (Mele et al. 2014), reduced the expression 

of HAP1 protein when tested 2 h after the stimulus, and this effect was maintained during 

the re-oxygenation period for up to 8 h. Since the downregulation of the protein was only 

observed at 2 h after OGD it is unlikely to account for the decrease in the interaction 

between GABAAR β3 and HAP1 observed in hippocampal neurons immediately after the 
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ischemic insult (Mele et al. 2014). Therefore, these results suggest that the downmodulation 

of HAP1 is not the initial cause of GABAAR β3 recycling impairment but is rather a factor 

that can exacerbate the reduction of surface GABAAR expression. Accordingly, we 

observed a protective effect of HAP1 overexpression on the OGD-induced reduction of 

membrane GABAAR β3 subunits, as shown by live staining of GABAAR β3 subunits in 

hippocampal neurons subjected to OGD (90 min). Moreover using the antibody feeding 

assay we demonstrate that HAP1 overexpression also rescued hippocampal neurons from 

the impairment of GABAAR recycling.  

The regulation of the GABAAR/HAP1 interaction is crucial for the alteration of GABAAR 

trafficking observed in cerebral ischemia (Mele et al. 2014). HAP1 interacts with a region 

in the intracellular domain of GABAAR β subunit through an amino acid sequence of its 

central domain (residues 220-520), but the molecular mechanisms involved in this 

interaction were not characterized. HAP1 phosphorylation may play a role in the 

modulation of GABAAR/HAP1 interaction. In fact, this post-translational modification has 

an important role in regulating HAP1 binding with some microtubule-associated proteins 

involved in retrograde and anterograde transport, such as p150Glued and kinesin light chain 

(Aniento et al. 1993; Lin et al. 2002). Our results indicate that protein phosphorylation 

(possibly HAP1 phosphorylation) is also involved in the control of total HAP1 protein 

levels in hippocampal neurons, both under control conditions and following transient OGD. 

Incubation of hippocampal neurons with the PP1 and PP2A inhibitor okadaic acid 

significantly upregulated HAP1 protein levels under control conditions, and this effect may 

account, at least in part, for the preservation of HAP1 protein levels, as compared with the 

control conditions, when hippocampal neurons were subjected to transient OGD. In 

contrast, although calcineurin inhibition slightly increased HAP1 protein levels under 

control conditions, it was without effect on the downregulation of the protein after transient 

OGD. Taken together, these results suggest that: i) PP1/PP2A and calcineurin phosphatases 

contribute to the maintenance of physiological levels of HAP1, and ii) PP1/PP2A inhibition 

prevents the OGD-induced downregulation of HAP1, possibly by stabilizing the protein in 

the cells. These results are in agreement with the observed increase of HAP1 levels 

following stimulation of hypothalamic cultured neurons with PP1/PP2A phosphatase 

inhibitor (okadaic acid) (Rong et al. 2006). On the other hand, PKA and PKC activation did 
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not alter HAP1 levels both in control and OGD condition, suggesting a specific role of 

phosphatases in this process. Alternatively, other protein kinases may be involved in the 

regulation of HAP1 protein levels. Furthermore, the decrease in ATP levels following OGD 

(Choi 1996) may also impair protein kinase activity. 

Inhibition of calpains with MDL28170 was found to prevent OGD-induced downregulation 

of HAP1, showing a role for these Ca
2+

-dependent proteases in HAP1 degradation after 

OGD. The upregulation of calpain activity under excitotoxic conditions and in brain 

ischemia is also coupled to an abnormal cleavage and/or degradation of several other 

proteins (Gomes et al. 2012; Gomes et al. 2011; Mele et al. 2014; Lobo et al. 2011). 

Surprisingly these results were not confirmed in the MCAO in vitro model of ischemia, 

where an increased HAP1 protein expression was observed in the cerebral area 

corresponding to ischemic core. We hypothesized two possible reasons for this discrepancy. 

First, the OGD in vitro model of ischemia was performed using cultured hippocampal 

neurons while the ischemic core of MCAO is located in the cerebral cortex; therefore, there 

is a difference between the cell types subjected to the insult in the two models. The second 

hypothesis is related to the presence of glial cells in the cerebral tissue (that is the case of 

MCAO samples), which are not represented in the hippocampal cultures used for OGD. 

The results showing i) an upregulation of HAP1 in cultured glial cells following OGD and 

ii) the decrease in HAP1 protein levels in cultured cortical neurons subjected to OGD, 

similarly to the results obtained in hippocampal neurons, favour the second hypothesis.  

To further investigate the effect of OGD on HAP1 protein in glial cells we analysed the 

alterations in the mRNA levels to determine the role of transcription regulation in the 

process. Quantitative PCR data from glial cells subjected to OGD showed a small but not 

significant decrease of HAP1-mRNA levels, showing that the alteration of HAP1 protein 

levels in glial cells during OGD are not correlated with modifications at transcriptional 

level. However, since the alterations in mRNA are normally faster and precede the changes 

in protein expression, the results obtained from mRNA analyses in glial cells 12 h after 

OGD may be related to the decrease of HAP1 protein observed 24 h after the ischemic 

insult and that is exacerbated at 48 h.  

The present study also showed for the first time the presence of HAP1 in glial cells. 

Previous studies suggested the absence of the protein in glial cells, as shown both with 
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western blot analysis in mature astrocytes obtained from cultured mouse neurospheres 

(Xiang et al. 2014) and with immunolabeling cerebral slices (Gutekunst et al. 1998). 

However, and in contrast with these observations we demonstrated by western blot analysis 

and with qPCR, the expression of this protein and the correspondent mRNA in glial cells as 

well as in mature astrocytes. 

 

Taken together our results indicate that ischemic condition down-modulates HAP1 protein 

by a calpain-dependent mechanism, and a role for protein phosphatases-1/-2A in the 

regulation of HAP1 protein stability was also identified. Moreover, in this work was 

uncovered a novel role for HAP1 protein in the regulation of GABAAR trafficking during 

cerebral ischemia. Considering the protective effect of GABAAR surface stabilization 

against ischemic-induced neuronal death (Smith et al. 2012; Mele et al. 2014), HAP1 may 

constitute an important therapeutic target for cerebral ischemia.  
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