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Abstract 

Over the recent years, neurosciences’ field has been focused in understanding the 

complexity of the human brain, through the application of a myriad of techniques, which 

act as "windows" in the exploration of the more complex and less known human organ. 

Exploring the strong advantage of the electroencephalogram and its powerful 

temporal resolution, the aim of this thesis is to expand knowledge and build methods of 

analyzing brain oscillations, including the study of their features in time and frequency.  

Presently, numerous references are made to the current relationship between 

oscillations and perception, attention, memory, learning, information integration 

among others, providing a growing enthusiasm in the application of oscillations to 

unravel the physiological mechanisms involved in these processes.  

However, the classification of oscillations in humans involves quite complex 

approaches and is a controversial topic in neuroscience. This complexity is caused, in 

one hand, by the difficulty in relating the mechanisms at the basis of formation of such 

oscillations, where the origin is not clear: biological sources and mechanisms which 

contribute to their formation. On the other hand, dissimilar hints of the information that 

apparently relates to this issue like genetics or inter-individual variability. Nevertheless, 

a principle seems certain: the stability of the oscillations at the individual level.  

In this thesis, respecting an automated and independent analysis will be treated 

and implemented methods of pre-processing and analysis "data-driven" to the 

identification of bands in any kind of "time-frequency" spectra. With application of 

created algorithms, will be searched any relation between bands of oscillations (power 

and phase synchrony analysis) between groups (control and individuals with 

neurofibromatosis type-1) and between BOLD signals and the GABA levels. 
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Resumo 

Ao longo dos últimos anos, o estudo na área das neurociências tem vindo a focar-

se na compreensão da complexidade do cérebro humano; utilizando as mais variadas 

técnicas que, evoluindo ao longo do tempo, se transformam em potenciais “janelas” na 

exploração do mais complexo e menos conhecido órgão humano. 

Explorando a forte vantagem do electroencefalograma e a sua poderosa resolução 

temporal, o objectivo desta tese é aprofundar conhecimentos e construir métodos de 

análise das oscilações cerebrais, nomeadamente, o estudo das suas características em 

tempo e frequência. 

Actualmente são realizadas inúmeras referências à relação entre as oscilações e 

percepção, atenção, memória, aprendizagem, integração de informação, entre outras. 

A compreensão destes mecanismos pode ser inferida através das oscilações, pelo que 

existe uma crescente vontade em fazer uso da interpretação das mesmas para 

conhecimento dos diversos mecanismos cognitivos inerentes. 

No entanto, a classificação das oscilações em humanos é um tema complexo, e 

que carece de consenso no seio da comunidade científica. Por um lado, surge a 

dificuldade de relacionar os mecanismos na base da formação de tais oscilações, não 

sendo claras as fontes biológicas que contribuem para a sua formação. Por outro, temos 

as nuances na informação que, aparentemente, se relacionam com esta questão (sejam 

características genéticas ou até variabilidade inter-individual). No entanto, um princípio 

parece certo: a estabilidade das oscilações a nível individual. 

Nesta tese, valorizando uma análise automatizada e independente, serão 

abordados e implementados métodos de pré-processamento e análise “data-driven” 

para identificação de bandas em qualquer tipo de imagem “time-frequency”. Aplicando 

os algoritmos criados, será procurada relação entre bandas de oscilações entre grupos 

(controlo e indivíduos com neurofibromatose tipo-1) e entre sinais hemodinâmicos de 

BOLD e níveis de GABA. 

 

 

(Este documento não se encontra ao abrigo do novo acordo ortográfico) 
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 CNS – Central Nervous system 
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 EEG – Electroencephalogram 

 EPSP – Excitatory Postsynaptic Potential 

 ERD – Event Related Desynchronization 

 ERPCOH – Event Related Phase cross-Coherence 

 ERP – Event Related Potential 

 ERPCOH – Event Related Phase cross-Coherence 

 ERS – Event Related Synchronization 

 ERSP - Event Related Spectral Power/Perturbation 

 FFT – Fast Fourier Transform 

 fMRI – functional Magnetic Resonance Imaging 

 GABA – Gamma Aminobutyric acid 

 Glx – Glutamate 

 ICA – Independent Component Analysis 

 IPSP – Inhibitory Postsynaptic Potential 

 MEG – Magnetoencephalography 

 NF-1 – Neurofibromatosis type-1 
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 PFC – Prefrontal Cortex 

 



 

 

  



Introduction | XIX 

 

List of Figures 

Figure 1 – Relative density of pyramidal cells and vascular network ----------------- 2 

Figure 2 – Summation of EPSP triggering --------------------------------------------------- 3 

Figure 3 – Distributed neural networks. ----------------------------------------------------- 4 

Figure 4 – Gestalt principles of perceptual grouping ------------------------------------- 6 

Figure 5 – Scheme of the brain resistivities. ------------------------------------------------ 8 

Figure 6 – Example ERP experiment -------------------------------------------------------- 11 

Figure 7 – Information depicted in different perspectives ---------------------------- 12 

Figure 8 –Filters applied to data. ------------------------------------------------------------ 18 

Figure 9 – EEGLAB channel scroll window after epoching. ---------------------------- 18 

Figure 10 – Visual task diagram ------------------------------------------------------------- 19 

Figure 11 – Diagram showing used data storage model ------------------------------- 21 

Figure 12 – Cross-coherence main structure --------------------------------------------- 21 

Figure 13 – ERSP with divisible baseline and ERSP without baseline --------------- 22 

Figure 14 – ERSP calculated with FFT and wavelets ------------------------------------ 23 

Figure 15 – Schematic representation of first method of data evaluation. ------- 24 

Figure 16 – Event related spectral power image for each group -------------------- 25 

Figure 17 – Identified bands, simply averaging times along all frequencies. ----- 26 

Figure 18 – Comparison between cluster bands. ---------------------------------------- 27 

Figure 19 – Second methodological approach scheme. ------------------------------- 28 

Figure 20 – Comparison between ERSP images before and after thresholding. - 29 

Figure 21 – Step sequence for band identification. ------------------------------------- 30 

Figure 22 – Groups of channels forming clusters. --------------------------------------- 32 

Figure 23 – Examples of ERSP grand average -------------------------------------------- 36 

Figure 24 – ERSP image and correspondent power mean  ---------------------------- 37 

Figure 25 – Control group relation between frequency peaks and GABA levels - 38 

Figure 26 – The “scanning window” algorithm ------------------------------------------ 39 

Figure 27 – Bold and Glx/tCr relations with gamma peaks of control group ------ 40 

Figure 28 – Distribution of channels according to 10-20 International system--- 41 



 

 

Figure 29 – Comparison between phase-coherence between Occipital cluster and 

left Occipital Parietal cluster, respectively. ------------------------------------------------------- 42 

Figure 30 – Time-Frequency images showing grand average on Occiptal Temporal 

cluster ----------------------------------------------------------------------------------------------------- 42 

 

  



Introduction | XXI 

 

Summary 

This thesis is divided in four main parts: 

Chapter one describes the state of the art. Here, I will briefly introduce some 

theoretical aspects of biological processes and its relations with 

electroencephalography. 

Chapter two, summarizes the methodology employed, including all scripting 

processes and algorithm creation process. Considerations about pre-processing, the 

time-frequency image calculation and the exploratory data analysis. 

Chapter three will focus on results about all previous created scripts and routines 

for the evaluation of electroencephalographic oscillatory signatures and the relations 

between hemodynamic functional brain signals and inhibitory neurotransmission.  

Chapter four contains the conclusions of the work performed and final 

considerations about all explored matter.  
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1.1 Theory about oscillations 

1.1.1 Neural cells 

The human central nervous system (CNS) is by far the most complex of all systems 

that constitute the human body. It is responsible for a centralized control of behavior as 

well as control of different organs either through electrical activity or hormone 

secretion. 

The CNS is composed of neurons and supporting cells. The first type of cells, 

neurons, are characterized by the ability to respond to a stimuli with an electrical 

discharge called nerve impulse or action potential. The glial cells are in charge, among 

other functions, of support functions, isolating neural processes, controlling the 

environment around and taking part in repairing methods1, in short, ensuring the 

homeostasis of the brain. 

Neurons are composed of axon, dendrites and cell bodies. Cell bodies contain 

most of the nerve cells’ organelles. Axons are long cylindrical cellular extensions, which 

transmit electrical impulses, sometimes through long distances (e.g. over 1m). Dendrites 

are responsible for the connection to either the axons or dendrites of other nerves or 

relay the signals to other nerves. Each neuron is connected with thousands of nerves 

due to dendritic connections, creating dense networks of signals2,3, each one carrying 

information previously integrated, converting brain into a complex electrical signal 

networking1,2. Pyramidal neurons (Figure 1, specific type of neurons localized in the 

cortex) have especial role on production of macro electrical signals, since their activity 

cause the main source of electroencephalogram (EEG) activity4.  
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Figure 1 – Relative density of pyramidal cells and vascular network5. Pyramidal cells are 
responsible for the creation of a dipole on the brain cortex, a great generator of EEG signals6. 
Shaded square represents an fMRI voxel and, in white, space occupied by vessels. 

1.1.2 Neural activity 

Activity in CNS is related to the existence of currents transferred between 

functional junctions between dendrites and axons or dendrites and dendrites, a 

phenomenon called synaptic signaling. Normally, in nerve cells there are a resting 

voltage around 60-70 mV with negative polarity in nerve cells. This potential may change 

with synaptic activity. If the action potential travels along the fiber, which ends in an 

excitatory synapse, an excitatory postsynaptic potential (EPSP) occurs in the following 

neuron, called the post-synaptic potential. If multiple EPSP’s end in the same neuron, 

there will be a summation of signals, producing an action potential in the following 

neuron, if the threshold is reached. If the action potential culminates in an inhibitory 

synapse hyperpolarization will occur, creating an inhibitory postsynaptic potential (IPSP) 

(Figure 2). 
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Figure 2 – On the left, summation of EPSP triggering an AP. On the right, hyperpolarization of 
the neuron. The probably of cell to fire an AP is diminished. 1 

The information transmitted by a nerve cell is called the action potential (AP). APs 

are caused by an exchange of ions across the neuron membrane and an AP is a 

temporary change in the membrane potential that is transmitted along the axon. The 

membrane potential depolarizes, producing a spike. After the peak of the spike, the 

membrane repolarizes. The potential becomes more negative than the resting potential 

and then returns to normal. The action potentials of most nerves last between 5 and 10 

milliseconds.  

Different types of stimuli induces membrane depolarization, which can lead to AP 

initiation. Sensory nerves respond to many types of stimuli, such as chemical, light, 

electricity, pressure, touch, and stretching. On the other hand, the nerves within the 

CNS (brain and spinal cord) are mostly stimulated by chemical activity at synapses. Very 

weak stimuli cause a small local electrical disturbance, but are not sufficient to 

depolarize the neuron up to the point of producing an AP. As soon as the stimulus 

strength goes above the threshold, an action potential is started and travels down the 

nerve, ending the synapse7. 

Normally, a neuron integrates information arriving from many other neurons1, 

which ends up eliciting or not a response in terms of depolarization (Figure 3), depending 

on the sum of the synaptic input it receives. Total synaptic input means the sum of both 

excitatory and inhibitory synaptic influences received by the neuron7. A great example 

of synaptic integration is the sensation of pain: spinal cord mediates information about 

a painful stimuli. While a strong input is received from the sensory neurons reacting to 

the painful stimuli, high level integration factors concerning, for example, the state of 
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mind and other contextual variables are also taken into account. All the integrated 

information results in different degrees of perceived pain.1  

 

Figure 3 – Distributed neural networks. Communication between distant neural networks is 
depicted. An example of this type of long range communication is the sensation of pain 

At birth, the human brain has approximately 1011 functional neurons, which 

corresponds to a density of 104 neurons per cubic mm. This massive density allow a 

measurable quantity of synapses generating recordable macro signals.  

Although neurons are the central unit in the nervous system, they are only 

relevant in the network where belong. In truth, a neuron can only be understood in 

conjunction with the thousands of neurons that communicate to it through synapses1,2,8. 

However, this huge number of interconnections is not enough to explain the complexity 

of processing achieved by the human brain. Thus, other mechanisms of neuronal 

computation and large-scale integration are hypothesized, such as, for example, 

integration through oscillatory activity. 

1.1.3 Brain oscillations 

Despite the large number of brain oscillations documented, there are still no 

classifications unanimously accepted. A useful taxonomy of brain oscillations would 

require that each individual oscillatory classes represent physiological entities 

generated by distinct mechanisms. The same mechanism giving rise to different 

frequency bands in different species or the same species ought to be referred by the 

same name, even though the dynamics underlying the rhythms may be different9 (Table 

1). Unfortunately, the exact mechanisms of most brain oscillations remain unknown. 

Slow oscillations of Up and Down states (<1 Hz) are the overriding EEG pattern 

during non-REM sleep. During this time, all the cortex cell types are switching between 
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depolarization and hyperpolarization. Recent works link these phenomena to memory 

consolidation processes10. 

Delta oscillations (1-3Hz) are present during normal sleep. They are characterized 

by the high amplitude waves. There is a link between some cognitive functions and delta 

waves, as seen by the increase of amplitude of delta waves in oddball experiments, for 

example11–13. 

Theta oscillations (4-7Hz) are prominent coherent oscillations observed in the 

hippocampus and its surrounding limbic structures during exploratory movements. In 

humans, the theta rhythm was found to be enhanced in a variety of neocortical sites 

during working memory, for example when a subject was required to remember a list 

of items across a delay of a few seconds. The theta rhythm appears to be particularly 

prominent in the frontal midline (including the anterior cingulate cortex), a sub region 

of the prefrontal cortex (PFC) implicated in behavioral monitoring, evaluation of 

response outcomes and other aspects of cognitive function. It is functionally connected 

with attention and memory processes2,11–15. 

Alpha oscillations (8-12Hz) are involved in attention, awareness and inhibition. The 

alpha rhythm remains a model to analyze clinical EEG. Oscillations can be visualized 

when eyes are closed, whereby alpha desynchronizations, i.e. decreased alpha activity, 

in occipital areas are related to an increase of the visual processing11,12,16–21. 

Beta oscillations (13-30Hz) along with gamma rhythms have been recorded in 

association with attention, perception and cognition. Normally they increase with 

mental activation, but can also appear during drowsiness or light sleep. The power of 

beta waves decrease at the onset of movement execution suggesting their relation to 

an idle state of the control of the motor system2,21,22. 

Gamma oscillations (30–200 Hz) are found in different regions in brain like 

prefrontal areas, hippocampus, neocortex, primary visual cortex and are associated with 

many cognitive functions. 
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Table 1 – Known sources of oscillations and respective functions. 3 

 

1.1.4 Gamma waves and binding problem 

The last advances with gamma waves suggests that gamma waves are related to 

processes of synchronization2,23–26 and integration of sensory information27,8. Gamma 

oscillations started to attract major interest when they were shown to correlate with 

perceptual binding. In the cat visual cortex, it has been demonstrated that synchronous 

firing of neurons at frequencies in the gamma range is associated with feature binding. 

When two neurons are driven by one visual stimulus which extends across both their 

receptive fields they tend to fire in synchrony. If, however, the two neurons are 

activated by different objects they tend to fire asynchronously (Figure 4)23,24,28.  

 

Figure 4 – On the left, gestalt principles of perceptual grouping: The diagram on top seems to 
be a collection of unrelated objects. Below, removing subset of the lines, a clear relation 
between objects and the Neckar cube is revealed.29. On the right, a scheme of the classical 
hypothesis about the binding problem, where neurons responding to features of the same 
object would tend to synchronize 30 
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Gamma activity band (above than 30 Hz) has been associated with many stimulus-

induced cognitive functions namely memory11,12, perceptual binding30, attention and 

object recognition31. It can also represent an attractive solution for the binding problem 

due to the time scale characteristics (
1

30
 seconds of minimum time resolution for 

encoding mechanisms). 

Due to the gamma band being a broadband, different sub-bands were identified 

and reported in a variety of studies32,33,34, including studies of 

electrocorticography(ECoG), where frequencies reaching 500Hz are found35. 

The last forty years of research have shown that the binding problem cannot be 

solved easily. It arises from a fundamental problem: how the brain puts together 

information about a single object that is processed in distinct brain regions. Binding by 

synchrony theory states that separated assemblies of cortical and subcortical neurons, 

coding different characteristics of a same object (like shape, color or position) fire 

synchronously, combining information and interacting through long distances.  

However, this wide range of frequencies rises a classification boundary problem 

when an independent data-driven validation approach is carried out. This information 

will be analyzed in the next chapters.  

 

1.2 Technical considerations on Electroencephalography 

The investigation of oscillations in neurosciences in humans began when Hans 

Berger (1873-1941) assigned the observed large-amplitude rhythm to waves with a 

named frequency of 10 Hz (alpha waves because they were the first to be observed), 

induced by closed eyes, during visual rest. He named the faster, smaller amplitude 

waves, present when the eyes were open, the beta waves9. 

Studies of electroencephalography (EEG) in humans began in 1924 with Hans 

Berger’s works. In that period galvanometers were used to record currents, in a non-

invasive manner36. 

EEG is a powerful neurophysiology technique and based on Hans Berger’s seminal 

work about the brain, there is the possibility to investigate patterns of activity in the 

normal and diseased brain 
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When one is concerned to investigate phenomena with fast dynamics, EEG is a 

great choice, due to high time resolution. It has advantages like the size and price of 

equipment, tolerance to movements and low auditory noise production, which is 

important when demanding tasks are required. However, it has low spatial resolution, 

poor signal-to-noise ratio it is difficult to measure data from deep areas of the brain, 

unlike other neuroimaging techniques like functional magnetic resonance imaging 

(fMRI) or positron emission tomography (PET). On the other hand, these techniques 

have poor temporal resolution. Best results can be achieved using multimodal 

techniques like EEG/fMRI, EEG/MEG (magnetoencephalography) or EEG/PET. 

As described before, cortical neurons and their synaptic activity are the main 

source off EEG signal. The Pyramidal cells are all arranged in the same orientation 

allowing the production of an electromagnetic field. Primary transmembranous currents 

in axons generate secondary ionic currents along the cell membranes in the intra- and 

extracellular spaces36. The portion of these currents that flows through the extracellular 

space is directly responsible for the generation of field potentials. So, scalp EEG signals 

are produced by partial synchronization of neuronal scale field potentials. The flow of 

the electrical potentials over the scalp is also known as volume conduction.  

The field potentials are recorded by EEG in the scalp after crossing the main layers 

with considerable resistivity (Figure 5) of the electric signal, being the skull the most 

relevant resistivity (approximately 177 Ωm) compared with the brain and even the scalp.  

 

Figure 5 – Scheme of the brain resistivities7. 
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A crucial point when acquiring data is their placement and resistivity. Different 

types of electrodes can be used, namely saline-based electrodes, disposable electrodes 

or headbands with electrode caps. To enable a satisfactory recording the electrode 

impedances should read less than 5 kΩ and be balanced to within 1 kΩ of each other. 

For more accurate measurement the impedances should be checked after each trial7. 

1.2.1 Acquisition 

EEG signaling sampling should in general not be below 500Hz. By the Nyquist 

criterion, for this value, sampling bandwidth will be, ate least, the half of that value 

(250Hz). 

The most used electrode setting is the so called 10-20 system (Figure 6) 

recommended by The International Federation of Societies for Electroencephalography 

and Clinical Neurophysiology7. Some specific configurations can be adapted based at 

this convention (namely for BCI applications). 

Filtering process can be applied before or after acquisition, and processes include 

filtering and artifact rejection algorithms in order to extract artifacts such as line noise 

at 50Hz, eye movements and blinks. 
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Figure 6 – 10-20 International electrode placement system 

1.2.2 Analysis 

Oscillations, in general, can be described as evoked, induced or spontaneous 

activity31. The last one is not relevant for studies focusing on task related brain activity 

and will not be considered here. Evoked oscillations are time-locked and phase locked 

to an event. Induced oscillations are time-locked, but it are not phase locked to an 

event26,37–39. 

There are some different approaches to the matter and some analysis techniques 

can be used depending on the purpose to reach. 

The Event Related Potential technique (ERP) 

Early uses of of ERP (Figure 7) in cognitive neuroscience focused on the speed and 

accuracy of motor responses and sensory “bottom-up” responses40. ERP is able to record 

“evoked” and spontaneous activity deriving from mixed cortex sources, due to the poor 

spatial resolution. Reverse is also true: one source can contribute to generate various 
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peaks in the ERP waveform. In short, these scalp signals represent EEG signal locked or 

not to an event and averaged across trials. 

 

Figure 7 – Example ERP experiment40 – A) Subjects viewed sequences consisting 80% of X’s and 
20% of O’s. EEG signals shown. B) For each segment, ERP is associated to a letter to proceed 
to the average of trials and get the final ERP. 

Time-Frequency analysis 

In modeling event-related activity in the ongoing EEG, amplitude and phase effects may 

be considered separately or in combination.38 The event related spectral perturbation 

(ERSP)38 reveals aspects of event-related brain dynamics not contained in the ERP 

average of the same response epochs. The ERSP measures average dynamic changes in 

amplitude of the broad band EEG frequency spectrum as a function of time relative to 

an experimental event. That is, the ERSP measures the average time course of relative 

changes in the spontaneous EEG amplitude spectrum induced by a set of similar 

experimental events.  

Phenomena like event-related desynchronizations (ERD) and synchronizations 

(ERS) can be depicted at 2 dimensional images (frequencies (Hz) along time (ms)). The 

software used along this work was EEGLab, that computes each pixel value as being the 

A)

) 

B)

) 
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power( in dB) at a given frequency and latency relative to the time locking event (Figure 

8)41.  

Back to the basics of EEG and its multichannel recordings all over the scalp, it will 

be intuitive but not trivial to analyze the consistency between pairs of electrodes in an 

attempt to address the brain’s regional connectivity and interregional interaction42. 

Cross coherence analyze provides the relation on phase between pairs of electrodes 

averaged by trials to determine the degree of synchronization between two activity 

measures43 

 

Figure 8 –A) Information depicted in different perspectives: averaged trials in the time 
component, ERP from the averaged trials, ERSP and Inter trial Coherence (ITC) along the time 
courses. B) Event-related brain dynamic state space: ERSP image (Power (ΔdB) vs Frequency 
(Hz)), containing synchronizations (ERS) and desynchronizations (ERD), with partial phase 
resetting (PPR). ERP representing evoked activity with strong phase locking and power increase 
(“?”Representing opposite of ERP). 

Independent component analysis 

Independent component analysis (ICA) is a statistical linear decomposition of data. 

When data is acquired, there are volume conduction problems, causing redundant 

information over proximal acquisition areas. ICA algorithm maximizes the independent 

component of a set of sources31. An important application of ICA is in blind source 

A)

) 

B)

) 
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separation (BSS), an approach to estimate and recover the independent source signals 

using only the information of their mixtures observed at the recording channels7. 

 

1.3 BOLD 

In response to variations of activity on neural tissues, different quantities of 

oxygen or glucose have to reach active areas. The hemodynamic response is related to 

the influx of oxygen, and the respective changes in oxyhemoglobin vs. 

desoxyhemoglobin levels lead to changes in the T2* magnetic ressonance signal, the so 

called BOLD signal. Blood Oxygen Level-dependent Hemodynamic (BOLD) fMRI imaging 

is a method to observe areas with higher oxygen perfusion, which can be linked with 

brain activity. What is still incognito is how that neuronal activity is influenced by the 

amplitude of the hemodynamic responses, and vice-versa. In Particular, investigations 

have been performed in a way to verify the existence of a relation between neural 

oscillations and hemodynamic responses. 

1.4 Magnetic resonance spectroscopy 

MRS can collect information about metabolic state of the tissues and it’s largely 

used in the study of brain tumors, stroke or Alzheimer’s disease. Spectroscopy is too the 

only in vivo tool capable of non-invasively measure brain metabolites44 
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1.5 Project motivations and objectives 

Actually, the study of neural has been actively developing in the fields of clinical 

neuroscience, including diseases such as diseases like schizophrenia2,42,45, epilepsy and 

neurofibromatosis 16, impaired brain states (like alertness21, coma or brain death13) and 

neuroengineering areas such as brain computer interfaces20,46,47 (BCI). 

A very active topic of discussion today is the classification of oscillations. What is 

the cutoff frequency of beta waves? Will there be any genetic fingerprint in the 

frequency characteristic bands? Are there many subtypes of gamma bands? How can 

one define band boundaries? 

These are some questions that current neuroscience is trying to answer. It is 

essential to know what biological processes trigger different frequency bands and which 

information can be transmitted by those bands and if they converge with the binding 

theory9,27,11,12. 

This thesis will explore an important area where seems to be some controversy, 

divergent analyses and approaches. Discussed topics with different answers are 

appearing, like the undefined limits and functional interpretation of gamma band 

patterns or else the existence or absence of relation between gamma frequencies and 

GABA concentrations, which are thought to regulate their frequencies. This is a very 

difficult task, due to the large variability of oscillation sources and the difficulty to know 

what sources produces what oscillations and the way genetic background different 

marked sub-bands. 

One another goal to achieve is to use acquired data and create automated 

exploration and data-driven algorithms, allowing to segment gamma sub-bands and 

trying to find correlations between gamma peaks obtained by our approach and GABA 

concentrations, attempting to confirm one of the parts. 

The thesis also aims to test a clinical neuroscience question using time and phase 

synchrony methods among control group and neurofibromatosis type-1 group, where it 

is important to exploit differences in synchrony, as observed in other genetic 

neurodevelopmental syndromes such as Williams syndrome.



 
 

 

2 Methods 

This methods chapter is composed by a description of all processing steps as well 

as of all created algorithms and scripts that were used to process entire set of data. 

For all data processing were used functions from EEGLab (v12.0.2.5b) running in 

Matlab® R2012b. 
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2.1 Preprocessing 

Preprocessing of data is a crucial step for a successful and appropriate analysis. 

EEG signals are contaminated by environmental and in particular line noise, as well as 

movement and blink artifacts. The main approach in the preprocessing stage are the 

noise and artifact removal steps, but is also decisive to apply adequate processing of the 

raw data, concerning the type of stimulus, the frequency of acquisition and the type of 

design to be followed. 

A great goal to achieve would be the standardization of a preprocessing model 

that allows faster and automatic preprocessing of EEG data with a reliable precision. 

2.1.1 Down Sampling 

Most of times, the acquired data has more resolution than needed and, when 

working with large quantity of data, there’s a need to reduce the processing time. In this 

work, evaluation of frequency components does not exceed 100Hz so, by the Nyquist 

criterion, where 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2𝑓, being 𝑓 the highest frequency considered in the 

analysis (100Hz), a sampling frequency of 200Hz is enough, but 250Hz is normally 

recommended. In this work, we used down sampling to 400Hz. EEGLab® uses the 

resample() Matlab® function that applies an anti-aliasing (lowpass) FIR (finite impulse 

response) filter to the original raw data during the resampling process. The integrity of 

data is conserved and the saving time is significant. 

2.1.2 Band pass filter and notch filter 

The purpose of this work is to evaluate neural oscillations at the scalp level in a 

range between 5 and 100Hz while removing the line noise at 50Hz with a notch filter 

between 47.5Hz and 52.5Hz (Figure 9). This point is not critical to the data evaluation, 

so the properties of filter are not further analyzed.  
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Figure 9 – A) Band pass filter applied to data. Filter order/transition band width is estimated 
with the following heuristic in default mode: transition band width is 25% of the lower pass 
band edge. B) Notch filter around 50Hz. 

2.1.3 Epochs  

Due to EEG technical features, it is important to record a large number of trials 

and proceed to the average of the same, excluding noise and relevant artifacts. 

According to the experimental protocol, volunteers repeat a specific task 𝑛 times (in this 

work, 𝑛 =100). Epoching triggers are chosen according to experimental protocol in order 

to get 𝑛 times the same neural response from volunteer. In this work there are two 

triggers with special importance. The trigger “10” (marked below in red) manifests the 

start of stimulus, while trigger “20” marks the end of the stimulus (Figure 10). Other 

triggers like the response of the subject are not relevant for the analysis of the problem, 

because we will analyze brain variations to sensory visual stimulus presentation.  

All channel data was referenced for CPZ channel. 

 

Figure 10 – EEGLAB channel scroll window after epoching. Time periods were locked to trigger 
“10”, indicating the beginning of grating stimuli. Trigger “20” indicates the end of grating 
stimuli in the periphery of visual field.  

A) 

B) 
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Visual stimulus and task 

Visual stimuli (Figure 11) consisted of a circular moving grating (80% contrast, 

spatial frequency 2 cycles/degree, 4° diameter, velocity 1 degree/second), with equal 

luminance to the background. Stimuli were presented in the lower left visual field, 

subtended 4° horizontally and vertically, with the centre of the stimulus located 3.3° 

from a central fixation point. Stimulus duration had random interval time (between 1.5–

2 s) followed by 2 s of fixation point only. Participants were instructed to maintain 

fixation on the central point for the entire experiment and to press a button, in the 

shortest reaction time, when the grating disappeared 

 

Figure 11 –Visual task diagram (courtesy of Maria Ribeiro) 

2.1.4 Artifact rejection 

A common way to reject artifacts is by visual inspection. The main processing 

principle of this thesis was to automate the processes of analysis, particularly in the 

preprocessing stage. In order to perform the inspection automatically, some simple 

methods were applied. Based on channels information, namely VEO and HEO channels, 

there is a possibility to recognize blinks through voltage peaks. Blinks have a known 

pattern in EEG, reaching potentials of more than absolute 100 microvolt. An EEGLab 

built-in algorithm identifies epochs where there are blinks and it is also possible to 

remove them. This artifact rejection proved to be viable method on major artifacts 

removal. After these steps, more than 80% of data were ready to use to analysis. 

  

Fixation point only Visual Stimuli End of visual stimuli 

1.5-2 s 2 s 

Fixation point only Visual Stimuli End of visual stimuli
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2.2 Time-Frequency image calculation 

Time frequency calculations will approach essentially two components: ERSP 

images and channel cross-coherence. 

Calculating an ERSP (Figure 12) requires computing the power spectrum over a 

sliding latency window then averaging across data trials. For a certain number of trials 

n, being 𝐹𝑘(𝑓, 𝑡) the spectral estimate of trial k at frequency f and time t: 

𝐸𝑅𝑆𝑃(𝑓, 𝑡) =  
1

𝑛
∑ |𝐹𝑘(𝑓, 𝑡)|2

𝑛

𝑘=1

 

EEGLAB function crossf() computes event related coherence (ERCOH) between 

two channel or component activities in sets of trials to determine the degree of 

synchronization between the two activity measures. Here, only phase cross coherence 

(ERPCOH) will be used. It estimates the extend of complex linear relationship between 

the two signals. For 𝑏 and 𝑑, different EEG channels, being 𝐹𝑘(𝑓, 𝑡) the spectral estimate 

of trial k at frequency f and time t: 

𝐸𝑅𝑃𝐶𝑂𝐻𝑏,𝑑(𝑓, 𝑡) =  ∑
∑ 𝐹𝑘

𝑏(𝑓, 𝑡)𝐹𝑘
𝑑(𝑓, 𝑡)∗𝑛

𝑘=1

|𝐹𝑘
𝑏(𝑓, 𝑡)𝐹𝑘

𝑑(𝑓, 𝑡)|

𝑛

𝑘=1

 

2.2.1 Storage model constraints 

The algorithm for time frequency requires computational power, especially when 

computing ERPCOH, when output final matrices reached 5 GB of data (Figure 13)(for the 

current work) and the number of different images, 𝑛𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠.
𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

2

2
 (165292 images 

if computed cross coherence between all channels), forcing a somewhat intricate 

structural organization of the data.  
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Figure 12 - Diagram showing used data storage model for time-frequency spectra. Main 
structure groups all information, divided by groups. Each group structure concenters all time-
frequency matrixes. 
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Figure 13 - Cross-coherence main structure 
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2.2.2 Normalizations, statistics and other techniques 

To visualize the event-related power changes in a meaningful way, a normalization 

with respect to a baseline interval must be performed. EEGLab allows some methods of 

image normalization. For example, one way is division from baseline, for each frequency 

corresponding to the average power in a baseline interval from all other power values. This 

gives, for each frequency, the absolute change in power with respect to the baseline interval 

(in terms of ΔdB). There are some other normalizations approaches like standard deviation 

from baseline or z-score from baseline. 

In this analysis, we used division from baseline (the default EEGLab baseline 

normalization). 

There are also combinations of scale and unity representations that we must take in 

account when processing data. In terms of data visualization it can be useful use logarithmic 

scales but, when computing threshold images, this fact must be taken in account  

 

Figure 14 – Above: Normalized ERSP with divisible baseline. Alterations of power comparing to 
baseline. Below: There is no normalization relative to the baseline and significant changes 
along the time axis are not seen. Both power scales are in a logarithmic scale. As we talk about 

energy spectral density, we have unities like 
µ𝑉2

𝐻𝑧
  or power unities(dB). 

In order to obtain more significant information, an important statistical tool can 

be used in the ERPS or ERPCOH signals: bootstrapping. Bootstrapping uses permutation 

statistics to attribute significance to an image part. In general, an algorithm randomizes 

the image and compares the image with other randomized images, filtering less 
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significant parts of the image. Despite the computational power required, bootstrapping 

may be one of the most adequate methods to use. 

Discrete Fourier Transform and Wavelets 

Time-frequency calculation images have crucial relations with Fourier transforms 

and wavelets. When used, pure Fast Fourier transforms (FFT’s) create results with severe 

loss of time resolution (potentially misleading when we’re using EEG). On the other 

hand, pure wavelets decrease resolution in frequency and their use is not possible, 

especially when working with a large bandwidth (in this case, 5Hz-100Hz), given that the 

poor resolution at high frequencies implies loss of information (Figure 15). EEGLab uses 

a wavelet transform that increases the number of cycles reaching a percentage of cycles 

that would be used with FFT. Default values for wavelets are 3 cycles at starting 

frequency and increasing cycles up to 0.5 of total cycles for the same frequency if FFT 

were used. In this way, is possible to maintain relative integrity of data on time and 

frequency domains. 

 

Figure 15 - Above, ERSP calculated with FFT has strong loss of time domain integrity. Below 
ERSP calculated with Morlet wavelet with no increasing cycles. Morlet wavelet shows good 
integrity of frequency domain only on frequencies below 10Hz. 
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2.3 Exploratory data Analysis 

One of the most important objectives of the thesis is to analyze data in a data 

driven unbiased way. In the challenge to study data in a “blind manner”, such a data 

driven method will be used.  

2.3.1 First methodological approach 

The first methodological approach (Figure 16)brings a general view of the analysis 

problems and starts to point the strategy to get information from preprocessed data. 

Below, the general scheme from this method exposes the critical points on the process. 

It starts with Initial matrix Data from both analysis groups and culminating with images 

from different bands for the two groups and some information relative to statistical 

differences. 

The precise objective of this method is to achieve definition of the four band peaks 

on all frequency spectrum and compare results from different channels or clusters 

between groups. Some scripts used include standard Matlab® functions. 

Initial matrix Data
(Groups 1 and 2)

findpeaks()
Group 

analysis 
matrix

Peaks_allchan()
AllPts 

structure

Meantest
matrix

Stddv
matrix

Statistical
Significance 

values

Frequency 
reshaped 

peaks

 PointStats()

AllMedias()

Calculate_cluster_bands()
AllBands
By group

Individual
AllBands Calculate_cluster_bands()

Clusters_and_Groups()

Group media
Difference

- Channel Stats()
- Channel Stats3D()

Plot_media()

 

Figure 16 – Schematic representation of first method of data evaluation. This image is also 
available in the annexes. 
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Computation of time frequency power peaks 

ERSP spectra (Figure 17) of each trial are composed by a frequency by time axis, 

where each frequency has a timeline locked to an event. The first objective was to get 

simple statistics such as the average from subjects by group and by channel, verifying 

the existence or not of a marked and common oscillatory pattern for all subjects.  

 

Figure 17 - Event related spectral power image for each group in channel 59. 

Group analysis matrix and its generation 

The script to obtain the four main peaks of a time-frequency image is a key issue 

in all algorithms. The function only needs the main matrix to work. For each image in 

Initial matrix data(i,j) (being i the number of channels and j the number of subjects) the 

function will find the four main peaks and put them into another storage matrix, analysis 

matrix.  

Constructing a matrix with this information allows to access anytime to the 

information of all peaks of all channels, as a comparison method or just like for the 

simple visualization of data. Starting with analysis matrix, there is a chance to explore 

all peaks by channel in one scatter map. The scatter map (Figure 18) plotted using 

ChannelStats() uses all the data from each channel to plot the information of the peaks 

by channel for each subject. ChannelStats() is one of the three main outputs the overall 

first methodological approach. 
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1  

 

Figure 18 – Above, identified bands, simply averaging times along all frequencies. Below, four 
found peaks of each participant along all frequencies. 

AllPts structure and bands output  

The next step is to look across the average of the peaks per subject and per 

channel, in order to investigate if there is any meaningful difference between groups. 

Some functions are used to fill the data in the allpts matrix, namely Peaks_allchan() and 

PointStats() functions. In this step, just a reorganization is done to all data and statistical 

tests are applied. Grand average by frequency peak is calculated along all subjects and 

final band of the matrix of average by group is displayed (Figure 19). 
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Figure 19 – Comparison between cluster bands. 

Pros and cons of first methodological approach 

As a first approach into data evaluation, work done allows to determine that some 

directions must be taken instead of others. As described before, each subject tends to 

have characteristic frequency gamma bands. This factor helps to understand that the 

average into group might not, in the most of cases, show any significant result. 

The process of finding peaks for each subject is not a data-driven method: we 

defined beforehand the number of bands to find across all frequency spectrum. 

Furthermore, the findpeaks() Matlab® function does not allow to choose parameters 

that may have special importance when bands are selected. 

Using the average at each time point to calculate peaks will probably fail as well 

because of oscillatory characteristics of the waves: in certain times, is possible that the 

power decreases, which will not culminate in a peak when the average is calculated.  

Due to all inconsistencies, this model will not be used to find frequency bands to 

correlate with GABA level however, it will be used for comparison between means of 

eventual existent sub-bands. 

Despite all negative points, it was a decisive step within the scope of this project. 

It was a starting point for the next methodological approach, which will recycle some 

functions used in this model. It shows that oscillations classification problem is neither 

minor nor trivial. 
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2.3.2 Second methodological approach 

One of the problems in defining of gamma bands automatically is that the spectral 

profile of the bands is empirically and arbitrarily described. There are no fixed 

parameters that can describe precisely what a gamma band is. Due these facts, the 

second method introduces criteria that can be adjusted for a better performance. As 

described about the ERSP images, is known that low frequency oscillations have more 

power, which requires a normalization of the data with a baseline.  

We develop the algorithm (Figure 20) disposing of a z-score baseline correction 

but, by default, EEGLab uses the difference between baseline and the values of the 

data(“To visualize power changes across the frequency range, we subtract the mean 

baseline log power spectrum from each spectral estimate, producing the baseline-

normalized ERSP.”43), which explains why this feature can be optional. 

In general, in this method we will use a novel image based segmentation approach, 

taking advantage of the oscillatory properties of waves. 

Initial Matrix Data
Optional 

normalization
Image threshold 

and filtering

Blob segmentationCentroid calculation

Filtering by criteria

Image with 
identified bands

 

Figure 20 –Second methodological approach scheme. 

Thresholding and filtering data 

The basis of the algorithm lies on correct identification of blobs, regions of the 

image above of certain threshold (Figure 21), that demonstrate (in the case of ERSP 

images) higher power relatively to baseline, considered an important parameter to 

classify the bands. 

The right threshold must be identified, and thereby this parameter still requires 

attention.  
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Figure 21 – Comparison between ERSP images before and after thresholding. 

Blob segmentation script 

Part of this method seats in a particular strategy to select regions of interest by 

using blob segmentation. Implementation consists in taking the images at a certain 

threshold and to segment existing blobs, filtering the values of the image above a certain 

threshold. They will be considered the significant part of the image, which contributes 

to find gamma bands. At this point, some considerations are taken: 

 A blob is a region from image containing a borderline with values all 

different of zero, and bounded by zero values. 

 There’s a minimum area to identify the blob; 

 Blobs with considerable extension in frequency axes will not be 

considered. 

In fact, in addiction, other filtering features could be implemented. 

The main Matlab® functions for the script were bwboundaries() and regionprops(). 

These functions give a large number of options to characterize each ROI, allowing for 

the needed precise evaluation like area, perimeter, centroid, extreme points. 
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Centroid calculation script 

Like described before, the combination of the previous Matlab® functions give a 

powerful tool to analyze thresholded images. A great indicator of the center of the blob 

is the centroid. This parameter will be used to obtain the mass center of the binary bi-

dimensional object. All centroid information combined is useful to proceed to blob 

clustering. Clusters following criteria described below will mark a frequency band 

(calculated by the average of each cluster blob centroids). 

Criteria 

A set of criteria was made for the grouping of blobs by frequency or elimination if 

they didn’t match to the specifications. Each blob has a centroid at frequency f and a 

time t. The most basic criterion is the proximity between centroids. To belong to the 

same band, the blob cannot be distanced by more than 3 Hz, which means that absolute 

difference between the values of 𝑓𝑏𝑙𝑜𝑏 can’t be more than 3 Hz. The minimum number 

of blobs that are neighbors is two. Special case is taken when 1 blob alone has extension 

of more than 500 milliseconds. In that case, a single blob can form a band. When two or 

more blob centroids are in the same group, a rectangle is plotted with 7Hz height 

centered in the average of all 𝑓𝑏𝑙𝑜𝑏 (Figure 22). 

 

Figure 22 -Step sequence for band identification. 
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Method validation 

For the validation of the model for bands identification two experienced and 

independent researchers were asked to identify all the gamma bands presents in 20 

random time-frequency ERSP images from left occipital channel, in a blind mode. Bands 

had to be identified on the peaks of frequencies in a window of ± 3Hz (Table 2Table 2 – 

Method validation. Number of bands identified by the algorithm with ± 5Hz window.). 

This value is arbitrary. Some practical studies in future may be important to define the 

precise values for the window of grouping peaks. For grouping, clustering methods could 

have been applied (like k-means), but we opted to make the own algorithm.  

Table 2 – Method validation. Number of bands identified by the algorithm with ± 5Hz window. 

  Researcher A Researcher B 

Identified 36 22 

Not identified 28 12 

 56,25% 64,71% 

 

Pros and cons of the routine 

The obtained routine designed for band identification had good results and was 

more conservative when compared with the bias of experienced researchers. There is a 

reasonable difference between the quantities of identified bands among researchers, 

which is normal when visual inspection is used. However, with the implementation of 

standardized definition of band, these differences may be reduced. 

Despite the low sensitivity at this step, the algorithm can be considered a good 

estimate of programmed calculated regions of interest, evaluating them in an unbiased 

manner. More than that, is one of the first steps looking for a parameterization of time-

frequency bands. A data-driven model capable of find bands not only in EEG images, but 

might also be used in other modalities like MEG images. 
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2.3.3 Cross-coherence computation method 

For the computation of cross coherence, the analysis method required a 

significant increase of processing time. For each of 86 datasets, we computed the 

relation between pairs of electrodes. At this time, I opted to process only half of scalp 

area (Figure 23), processing channels starting at channel number 30 (focusing on the 

visually responsive regions in the Occipital Parietal cortex). For each subject an inferior 

triangular matrix (21×21) was obtained.  

To increase statistical power, clusters of channels were used (based on Inês 

Bernardino et al.48), averaging groups of channels by subject by group and obtaining 

clusters of data for each group. 

 

Figure 23 - Groups of channels forming clusters. Center channels were not chosen to allow for 
comparisons between cerebral hemispheres (eventually between the same areas in each 
hemisphere). 



 
 

 

3 Results 
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3.1 Participants 

The visual tasks were performed by 43 subjects divided in a control group (n=27; 

age=13 ± 3 (9-18) years old; F/M 17/10) and NF-1 group (n=16; age = 13 ± 3 (10-18) years 

old; F/M 13/4). Each participant performed the test twice (stimulus described 

previously), responding with the right hand for one run and the left hand for the other. 

Each run was composed of 100 trials. 

3.2 ERSP results 

Average group ERSP’s do not show significant differences 

For the first general characterization, the grand average was calculated each 

group. Mean images show the subjects trends. Ideally, in the case of subjects 

manifesting activity in the same frequency ranges during an evoked or an induced 

response, a much more defined bands will be displayed in the ERSP mean images, while 

noise unrelated to the task will fade. In this experimental work, grand average images 

(Figure 24) show there are from the visual point of view no apparently significant 

differences between groups. In both the control and the NF-1 group, decreasing power 

in the alpha band is evident after the onset of the stimulus. However, there is no 

indication of common gamma bands across participants of each group. Whether this 

absence of gamma is the result of no activity related to the stimulus in this frequency 

band or as a result of an attenuation after averaging due to distinct narrow bands in 

different subjects, it remains to be explored. 

In order to confirm the absence of striking differences observed by visual 

inspection of the averaged spectrograms, Wilkcoxon rank-sum tests (p<0.05) for each 

point of each spectrogram (Hz vs milliseconds) were performed. Bootstrapping statistics 

(n=200 permutations (default EEGLab number of permutations) and p<0.05) were 

already applied to each subject ERSP image, highlighting statistical significant data 

compared to baseline. No significant results were found, such as already suggested by 

visual inspection (Figure 24). 
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Figure 24 – Examples of ERSP grand average across representative subjects of control (group 
1) and NF-1 (group 2). 

Frequency peaks do not show significant differences between groups 

After concluding that the grand average of ERSP images does not evidence marked 

gamma band differences, the peaks of power for each participant were determined 

using the first methodological approach (2.3.1) with some corrections (i.e. the algorithm 

computes all the significant peaks above a minimum mean power, defined by the 

researcher). These alterations are applied together with bootstrapping threshold 

correction of images. The four most prominent peaks (in case they are identified by the 

algorithm) are plotted. 

Using this analysis, it was found that the means of most prominent peaks for each 

dataset organized by weight and frequency averaged across participants are not 

ERSP(dB) | Control Group 

ERSP(dB) | NF-1 Group 

ERSP(dB) | Control Group 

ERSP(dB) | NF-1 Group 
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significantly different between both groups (Figure 25) (Wilkcoxon rank sum test, 

p<0.05). 

For this conclusion, we carried an extensive analysis for all channels with visual 

event related responses, including Occipital, Occipital Parietal and Occipital Temporal 

regions (Figure 23). 

 

 

Figure 25 – A) ERSP image and correspondent power mean (dB). B) Two outstanding peaks are 
visible (above 50Hz and above 80Hz). C) Scatter showing distribution of peaks found for each 
group and mean values for each frequency band (in Hz). 

Each frequency peak was labeled with one color (corresponding to the ascending 

order (in Hz) of all peaks found) up to a maximum of 4 peaks. The average was computed 

based in the frequency peaks found for each group and by color. For example, if subject 

A of control group has only two frequency peaks (blue and cyan), only those frequencies 

will enter for the averaging of all blue and cyan frequency ranges and the other ranges 

will receive no contribution for average calculations..  

  

Channel 61 | Control Group 

Channel 61 | NF-1 Group 
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GABA levels do not correlate with gamma frequency bands 

After having established an automatic method of identifying of gamma peaks we 

attempted to replicate the findings of Muthukumaraswamy et al. (2009) 49, who found 

a relation between GABA levels and the identified gamma bands, especially a band 

ranged between 40Hz and 66Hz (stable in participants across repeated recording 

sessions). 

In the previously mentioned study, a positive correlation between GABA and 

gamma frequency bands was identified with significant correlations (R=0.68, P=0.02). 

However, recent papers have come to refute these findings 50. Here, using blob 

detection (2.3.2), we tried to correlate the identified frequency peaks with GABA levels. 

We attempted to replicate Muthukumaraswamy et al. (2009) results, by using the same 

frequency peaks range (30Hz – 80Hz) of control group subjects. We used as well an 

identical electrode location, averaging data from 4 channels (Figure 26). 

 

Figure 26 - Control group relation between frequency peaks and GABA levels. No significant 
correlation was found between GABA concentration and peak of gamma frequency. In fact, 
the correlation coefficient obtained is so low(R<<0.1, p>0.5) as to make a positive linear 
correlation extremely unlikely. 
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We extended the analysis, by applying a scanning window (Figure 27) algorithm to 

search for positive correlations among GABA levels and gamma peaks. The procedure 

started at 40Hz, with a 10Hz step (reaching 80Hz) and ±10Hz window. Gamma peaks 

found within the interval window were considered for the fitting. Missing values could 

exist, for example, when blob detection was not able to find gamma  

The objective was to run all over the window, trying to find correlations in gamma, 

eventually in particular gamma sub-bands. Instead of the previous analysis (using a large 

window, 30Hz to 80Hz), we opted to evaluate data into smaller windows (20Hz width) 

trying to find putative correlations between sub-gamma bands and GABA levels. 

However, no significant correlations were found along all frequencies. Once again, only 

control subjects were evaluated here (correlation factor, R<<0.1). However, identical 

results were found for NF-1 Group (correlation factor, R<<0.1). 

 

Figure 27 – The “scanning window” algorithm append frequency in a window range of ±10Hz 
of a moving center starting at 40Hz, step of 10Hz and ending at 80 Hz. The image shows 
relations for one channel in Parietal Occipital cluster. Significant correlation coefficients were 
not found for any scatter graphs(R<<0.1, p>0.5). 

GABA/ tCr vs Gamma | Hand 1 response | Control Group 
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Glutamate/Glutamine (Glx) levels and BOLD hemodynamic levels do not correlate with 

gamma frequency bands 

For the evaluation of Glx levels and BOLD signals, the same protocol for GABA 

evaluation was performed, using identical window range (30Hz-80Hz) and blob 

detection. 

Previously cited works49,50 found no significant correlation between Glx and 

gamma peaks. Here, evaluating the Figure 26 cluster, no correlation was found, 

corroborating published analyses. The same was found for BOLD signals, where no 

significant relations were found. Once again, we represented frequencies in a window 

starting at 30 Hz, scattering each frequency peak with respective Glx or BOLD level. 

Obtained regressions have not significant correlation with data. No significant 

correlations were found when the window was divided on sub windows (equivalent 

evaluation to the Figure 27). 

 

 

Figure 28 – Bold and Glx/tCr relations with gamma peaks of control group on channel 57 (on 
the Occipital-Temporal cluster). Regressions models did not reach significance (R<<0.1, p>0.6).  
 

 

  

BOLD (%) vs Gamma Peaks | Hand 1 Response BOLD (%) vs Gamma Peaks | Hand 2 Response 

Glx/tCr vs Gamma Peaks | Hand 1 Response Glx/tCr vs Gamma Peaks | Hand 2 Response 

BOLD(%) BOLD(%) 

Glx/tCr Glx/tCr 
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3.3 ERPCOH results 

NF-1 subjects show a distinct modulation of evoked phase coherence in the alpha band. 

The findings on ERSP analysis reveal nonexistence of significant differences 

between control and NF-1 subjects. Here, we will compare phase coherence results, in 

attempt to provide an association between known NF-1 deficits (like visuospatial or 

memory deficits51) and inter-hemispheric cluster phase coherence. 

In a way to reduce computational time, we focused on visual brain areas for this 

analysis, since we are studying a visual stimulus, the main processing areas are the 

posterior ones. Thus, channel processing was performed starting at channel 33. Phase 

cross-coherence was computed between pairs of electrodes for each subject, for both 

groups. For greater statistical power, the data was analyzed for clusters, according to 

anatomical and functional properties of the underlying brain areas (Figure 29). 

 

Figure 29 - Distribution of channels according to 10-20 International system for a 64 channel 
cap. In red, Occipital Temporal cluster. In green, Parietal cluster. In yellow and blue, Parietal 
Occipital cluster and Occipital cluster, respectively. 

As a result of grand averaging analysis over all subjects, significant differences 

were found between groups, namely in the alpha band. A substantial decrease of alpha 

wave synchronization in NF-1 subjects was found compared with control group. This 

clear band, around 10Hz frequency (alpha band), started at 250 milliseconds and 

showed pronounced synchronization beyond 1500 milliseconds after the start of the 
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stimulus (Figure 30, 31). This result is unexpected, because it was not previously 

documented in this NF-1 disorder  

  

 

 

Figure 30 - A, C) Comparison between phase-coherence between Occipital cluster and left 
Occipital Parietal cluster, respectively. In B, D) Significant data between groups (respectively 
to left image), after Wilkcoxon rank-sum tests (p<0.0001). Alpha band start at approximately 
250 milliseconds after stimulus start and remain constant beyond 1500 milliseconds. 

 

Figure 31 - A, C).ERSP averages for Occipital Parietal cluster (right and left sides) In B, D) 
Comparison between phase-coherence between Occipital cluster and left Occipital Parietal 
cluster, respectively. Significant data between groups (respectively to left image), after 
Wilkcoxon rank-sum tests (p<0.0001). The alpha band starts at approximately 250 milliseconds 
after stimulus start and remains constant beyond 1500 milliseconds.  
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Furthermore, the power alpha waves is reduced in the control group after the 

stimulus onset, when compared with NF-1 group. This provides relevant information, 

because it makes unlikely that the increased phase coherence is a result of volume 

conduction, reinforcing the statistical power of the results. 



 
 

 



 
 

 

4 Discussion 

  



 
 

 

 



Discussion | 47 

 

4.1 The methodological processes 

4.1.1 The analysis context 

In the field of EEG analysis, there are different approaches, like the way that 

information is acquired, processed and displayed or also which are the different 

processing methods and what information that can be extracted from them. It is 

imperative to know the rationale behind these techniques, their strengths and 

weaknesses. Given the nature of EEG signals, it is possible to analyze neural processes 

at a better time resolution than other brain functional acquisition techniques.  

However, even decades after the first steps in EEG, there is still no appropriately 

standardized evaluation of data in most of the cases. For this reason, the clinical use of 

EEG is still limited. The existence of biased evaluations of EEG data can result in 

situations where different conclusions, even contradicting ones, can be drawn about the 

same paradigm, mudding the conclusions taken when studying brain activity using this 

technique.  

4.1.2 The Methodological approaches 

In a way to avoid these subjective evaluations, my first purpose was to construct 

an unbiased method of analysis for time-frequency images, applied particularly to ERSP 

spectra, in this work. This method includes automated pre-processing which, by itself, is 

a helpful way to reduce time with laborious manual pre-processing and also offers a way 

of further standardizing the analysis. 

The main process of automatically finding frequency bands of interest was chosen 

in a paradigm where there is no concise premises of “what” a band is and “where” it 

should be found (i.e. which and how many frequencies it encompasses, at what time it 

starts and stops). This detail makes things particularly harder to explore. There is no 

clear way to define a band on ERSP images so the first step was to explore ways of 

narrowing the requisites a band of evoked activity should have to make its physiological 

significance likely. 

The first methodological approach, i.e. finding the four main peaks in each of the 

pre-established classical frequency bands, attempted to unravel the concept of band 

and which are the parameters in ERSP spectrum that can define it. The averaged ERSP’s 
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along frequencies (Figure 25) is a good start pointing when searching for bands. 

However, oscillatory characteristics of neural mechanisms involve ERS’s and ERD´s, most 

of times in the same frequency band, a factor that will dilute averages. The consequence 

is that Gaussian distribution peaks may not involve the existence of an identifiable band. 

Furthermore, the method is not completely data-driven, because some 

parameters have pre-defined characteristics (for example, the number of maximum 

peaks that algorithm is able to find for compute averages for the bands, Figure 18) 

The second methodological approach focuses on solving and parameterizing the 

concept of “band”. Applying the threshold value (variable according to bootstrapping 

information, in dB), regions of interest are shown, the so called blobs. These blobs are 

relevant information and, operating with the right restrictions, they can be a powerful 

tool to localize frequency bands that may potentially play a role in neurophysiology and 

in cognitive functions. 

4.1.3 Limitations of the methodological approaches. 

The best approximation to a standardized methodological process capable of 

identifying bands on time-frequency plots is the second methodological approach, not 

only because of its flexibility in terms of adding add new features to algorithm, 

increasing its strength, but also because it is an almost fully data-driven method. 

The identification of blobs, according to the previously established parameters, 

appears to be an adequate approximation of ERSs encompassing several frequency 

bands. Nevertheless, some limitations persist. In some cases, thresholds are not suited 

for the adequate isolation of blobs. For example: a too low threshold applied to ERSP 

spectra will isolate blobs extending for too many frequencies in the frequency axis (i.e. 

“thick” bands in the spectrum), occupying sometimes more than 30Hz extension, and 

automatic evaluation is not prepared to reject this type of information. In an ideal 

situation, threshold values should automatically increase, creating smaller blobs, 

allowing for their right identification. Validation is also clearly a sensitive point, due to 

the ambiguous character of bands. The bands identified by experienced researchers are 

not always the same bands, as expected, which creates a substantial problem when 

looking for a validating process. 
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At the moment, the methodological approach is suitable, but future 

improvements are still necessary to increase its robustness. 

 

4.2 Relationship between ERSPs, GABA and BOLD signal 

Recently reported findings about the correlation between gamma band 

frequencies (30Hz-80Hz) and other physiological parameters might not hold as previous 

thought. About task related signals, well defined but subject specific gamma band 

activity is difficult to determine. Moreover, the alleged relationship between 

hemodynamic signals and gamma band activity may not be as linear as expected. In fact, 

using a relatively unbiased method based on well-grounded assumptions regarding the 

expected “shape” of a gamma band with underlying activity related to a visual task, this 

purported relation was not found. However, some considerations must be taken in 

account, there is no way to definitely prove that this relation does not exist23,24,52. 

BOLD signal and GABA levels have been reported as related mechanisms that 

relate to the balance excitation-inhibition which sets the peak of gamma oscillations on 

a given neural network (composed by pyramidal cells and GABAergic inhibitory 

interneurons5,53,54). We were able to search for such correlations using data acquired 

with magnetic resonance spectroscopy (procedures and methods described in Inês R. 

Violante et al.(2014)).  

The BOLD signal is dependent on brain activity and therefore with gamma 

oscillations. GABA concentration measured with MRS indicates the bulk concentration 

in a large voxel and not the activity of the interneurons in that region. 

Effectively, GABA concentrations and BOLD values (relative percentage) accuracy 

measures can be high, however, when related with EEG signals, spatial accuracy may be 

lost. While GABA and BOLD values are measured at the level of voxels in a limited region 

of the occipital cortex, ERSP represents activity from one or several unknown sources 

recorded from the surface by electrodes which offer a much worse spatial resolution 

given the effects of volume conduction and fading of the electrical signal (mainly due to 

volume conduction of EEG signal). This point can be critical, in a way that spatial accuracy 

is compromised. 
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Relating this matter with previous considerations (4.1.2) about methodological 

approaches to identify gamma bands, possibly we are creating a model that cannot take 

into account all variables, introducing uncertainty. We might not have sufficient 

information for full characterization and classification of physiological phenomena of 

oscillatory patterning, due to the large range of related parameters, for example, the 

related sources of oscillations or associated genetics. 

To increase the viability of the processing approaches, adjustments and more 

information have to be contemplated, namely using ICA and sourcing tools. ICA, for 

example, may enable the possibility to separate different acquired sources for a 

determined channel. Sources will normally contain information from more specific 

spatial locations. 
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4.3 Phase coherence considerations 

Neurofibromatosis type-1 is a neurodevelopmental disorder, with major 

prevalence deficits on visual perception, motor, language, memory and attention 

domains51. Some advances show, for example, that NF-1 individuals have increased 

lapses of attention and visual sensitivity deficits, as a result of abnormal later stages of  

visual processing and enhanced amplitude of alpha waves16. 

Although in this work no significant amplitude differences were found, at least for 

the stimulus evoked ones, the phase synchrony results seems to be remarkable. The 

pronounced differences in phase synchrony in alpha bands between clusters (especially 

inter-hemispheric) can help to explain deficits on visual processing information and 

attention deficits. Actually, there are no previously published findings on the significant 

differences on phase synchrony on NF-1 individuals, especially on alpha band. 

Alpha band has been related as relevant to cognitive functions, such as attention, 

consciousness, visuospatial and long range synchronization2,11,55,18. These findings 

suggests the existence of a link between any NF-1 deficit individuals and any of these 

functions that alpha bands are evolved. The changes in alpha phase synchrony offer a 

promising avenue of research for the study of NF-1 related deficits. 

Furthermore, an exhaustive coherence evaluation can be performed for all scalp 

recorded channels and be related to particular NF-1 deficits, namely attention lapses.  

  



52 | Discussion 

 

4.4 Conclusion 

The theoretical component in this work allowed to enlarge my knowledge with 

especially related with EEG technique and its processing demands and helped to 

understand a way to analyze the relation of these signals with cognitive mechanisms 

with an especial relevance on visual perception 

The developed work with real clinical neuroscience data, in a controversial area 

where analyses approaches are not yet standardized was a rewarding one. In this 

context, an extensive work pipeline was carried out, in a way that some progress, 

namely in the implementation of pre-processing routines and alternative 

methodological approaches, was achieved, simplifying data processing, especially for 

large amounts of data. This represents a first step for an unbiased analysis of time-

frequency information of brain oscillations, as well as phase coherence. 

Furthermore, an important result arised from the analyzed data, allowing to 

understand patterns of changes in NF-1, particularly with regard to the analysis of the 

phase coherence, which may represent an useful biomarker. 

In sum, this thesis does not answer all technical and scientific questions, but 

hopefully provides a step forward in the process of classification of oscillatory patterns 

in a standardized and automated manner. 
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