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Abstract

This paper presents novel contributions on image-based control of a mobile robot
using a general catadioptric camera model. A catadioptric camera is usually made
up by a combination of a conventional camera and a curved mirror resulting on
an omnidirectional sensor capable of providing 360o panoramic views of a scene.
Modeling such cameras has been subject of significant research interest in the
computer vision community leading to a deeper understanding of the image prop-
erties and also to different models for different types of configurations. Visual
servoing applications using catadioptric cameras have essentially been using cen-
tral cameras and the corresponding unified projection model. So far only in a few
cases more general models have been used. In this paper we address the problem
of visual servoing using so-called radial model. The radial model can be applied to
many camera configurations and in particular to non-central catadioptric systems
with mirrors that are symmetric around an axis coinciding with the optical axis. In
this case, we show that the radial model can be used with a non-central catadiop-
tric camera to allow effective image-based visual servoing (IBVS) of a mobile
robot. Using this model, which is valid for a large set of catadioptric cameras
(central or non-central), new visual features are proposed to control the degrees
of freedom of a mobile robot moving on a plane. In addition to several simulation
results, a set of experiments was carried out on Robot Operating System (ROS)-
based platform which validates the applicability, effectiveness and robustness of
the proposed method for imaged-based control of a non-holonomic robot.
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1. Introduction

Vision-based servoing approaches are versatile and effective methods to con-
trol robot motion by using camera observations. In practice, when a conventional
camera is used there is no guarantee that the features remain in the camera’s field
of view (FOV). In order to overcome the problem of keeping the features in the
camera’s FOV, several methods have been developed namely: based on path plan-
ning [1], zoom adjustment [2], switching control [3]. Simpler and differing ap-
proaches use omnidirectional vision sensors to increase the FOV using mirrors.
Wide-angle cameras include catadioptric systems that combine mirrors and con-
ventional cameras to create omnidirectional images providing 360o panoramic
views of a scene, or dioptric fish-eye lenses [4, 5]. Lately they have been subject
of an increasing interest from robotics researchers [6], [7], [8], [9], [10].

Having a single viewpoint in omnidirectional imaging systems is very prac-
tical [4], [11]. Such systems have a single center of projection, in such way
that every image point measures the irradiance of the light passing through the
same viewpoint. One can model a central imaging system as two consecutive
projections: spherical and perspective. Geyer and Daniilidis in [12] derived the
geometric model of these systems, and called it the unified model. In this model
perspective projection corresponds to a special configuration. This formulation
has been used by many research works in the area of visual servoing. Tahri et
al. in [9] proposed an image-based visual servoing(IBVS) method to control the
translational degrees of freedom (DOFs) which is invariant to rotational motion.
In [7] an IBVS is proposed. This method is based on the auto-epipolar condi-
tion, which occurs when the current and desired catadioptric views undergo a
pure translation. The method has been applied to control a holonomic mobile
robot. Adaptation of the classical image-based visual servoing to a generalised
imaging model was proposed in [13], by modeling the cameras as sets of 3D
viewing rays. In [6], the projection of 3-D straight lines in the image plane on
a central catadioptric system is used to control a 6DOFs holonomic robot and a
non-holonomic mobile robot. Although the existing methods are effective for sin-
gle viewpoint catadioptric systems, in practice just a few realistic configurations
lead to a single-viewpoint catadioptric system, as mentioned in [4].

The problem of modeling the general case of a non-central catadioptric cam-
era is a hard problem and still has only been tackled partially in computer vision.
For this reason, iterative approaches are usually applied by some researchers to
determine the reflection point on the mirror. Recently, a forward projection model
has been proposed for the case of non-central catadioptric cameras consisting on a
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perspective camera and a rotationally symmetric conic reflector [14]. In the latter
work, the optical path from a given 3D point to the given viewpoint is obtained by
solving a 6th degree polynomial equation for general conic mirrors. For a spher-
ical mirror, the forward projection equation reduces to a 4th degree polynomial,
resulting in a closed form solution. In [15], an analytical forward projection equa-
tion for the projection of a 3D point reflected by a quadric mirror into the image
plane of a perspective camera, with no restrictions on the camera placement is
derived. They show that the equation is a 8th degree polynomial in a single un-
known. In absence of an analytical and simple forward model, the determination
of some elements like the interaction matrix required for image-based servoing
becomes difficult.

Becerra et al. in [16] proposed a method for image-based control of a mobile
robot, employing only the angular (bearing) information provided by an omnidi-
rectional camera, where a 1D radial camera model was used. In their work, the 1D
trifocal tensor model was computed using the angles of visual features as a tool
for the control. In [17] the authors proposed a method to control a mobile robot
by exploiting panoramic vision. In this work, the corresponding features between
omnidirectional images are employed to define a control strategy which moves a
ground robot along a sequence of desired positions. It is assumed that the robot
tracks visual features in panoramic views of the environment that it acquires as it
moves.

For scene reconstruction or control purposes, a complete knowledge of the
projection model is not always required. In [18], a technique to linearly estimate
the radial distortion of a wide-angle lens given three views of a real-world plane
has been proposed using the radial projection model. Based on [18], linear meth-
ods for the estimation of multi-view geometry of 1D radial cameras have been
studied in [10] and [19].

In this paper, it will be shown that the simple radial projection model can be
sufficient for mobile robot control using a large family of catadioptric cameras.
More precisely, the contributions of this paper are:

• An image-based visual servoing method for mobile robots moving on a
plane, valid for a large set of catadioptric cameras (including radially sym-
metric non-central cameras) is proposed.

• Using the radial model, new visual features with decoupling properties are
derived.

• An efficient image-based visual servoing approach based on the desired
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value of the interaction matrix is proposed. Unlike the existing visual ser-
voing methods, we incorporate the depth of the features (scene points) in
the the control task.

• The feasibility and effectiveness of the proposed method have been demon-
strated with real experiments using a real robot.

The rest of this paper is organized as follows:

• The proposed radial camera model and its usage for visual servoing are
introduced in Section 2.

• The issues related to the selection of adequate visual features from images
are discussed in Section 3. A control law which uses the proposed features
is introduced in the same section.

• In Section 4 we present our experimental setup and achieved results using
ROS platform and real robot.

• Conclusions and future works are presented and discussed in Section 5.

1.1. Notation and symbols

Throughout this article we use the following notations:

• Scalars are typeset in regular lower-case.

• Vectors are denoted by lower-case boldface.

• Matrices are typeset in capital boldface.

• Variables with the * (star) as exponent denote they are computed using the
information corresponding to the robot’s goal positions.

2. Radial camera model for visual servoing

2.1. Radial camera model

A catadioptric system made up by the combination of a conventional pinhole
camera and a rotationally symmetric mirror, shown in Figure 1, is considered.
The camera is positioned in such a way as to have its optical axis aligned with the
mirror axis. Using the radial projection model, 3D point p = (X , Y, Z) is reflected
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first on a point on the mirror pr = [Xr Yr, Zr] before being projected onto the image
plane as x̃m (expressed in metric homogeneous coordinates):

x̃m = (xm, ym, 1) =
pr

Zr
(1)

Point x̃m is projected into the camera’s image plane at x̃d = (xd, yd, 1), expressed
in pixels and can be obtained from x̃m using:

x̃d = Kx̃m (2)

where K is the matrix of the camera intrinsic parameters, fx and fy being the focal
lengths, µx and µy are the principle point coordinates (and zero skew) as follows:

K =




fx 0 µx

0 fy µy

0 0 1


 (3)

From the laws of reflection, we have: (a) vector n, the center of the projection
c, the 3D points p and pr belonging to the same plane π as shown in Fig. 1, (b) the
angle between the incident ray and n is equal to the angle between the reflected
ray and n. In [19] and [10], the intersection of the planes π defined by the image
points from multiple views has been used to recover linearly the structure of the
scene.

The mirror is rotationally symmetric, and therefore the optical axis also be-
longs to π . Further, for symmetry reasons, the center of distortion (in our case
the center of the image) (crad) and the principal point coincide. In this paper, the
normalized coordinates of xm are used as follows:

xn =
xm

‖ xm ‖
(4)

so that they belong to the unit circle. Later, xn will be used in the derivation of the
new features and image servoing algorithm.

Note that the computation of xn from the image points expressed in pixel only
requires the knowledge of the principal point coordinates (which coincides with
the distortion center) and the ratio of the focal length parameters. One can prove
it as follows: from (4):
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xn =
xm√

x2
m + y2

m

yn =
ym√

x2
m + y2

m

(5)

On the other hand, using (2), xm and ym can be expressed as follows:




xm =
xd−µx

fx

ym =
yd−µy

fy

(6)

In (5) xm and xy can be substituted by their expressions from (6) yielding:




xn =
xd−µx√

(xd−µx)2 +ρ2
f (yd−µy)2

yn =
yd−µy√

ρ−2
f (xd−µx)2 +(yd−µy)2

(7)

where

ρ f =
fx

fy
(8)

Equation (7) implies that further than the coordinates of the distortion’s center,
only the ratio between the two focal lengths needs to be known in order to obtain
xn. Note that the center of the image (center of distortion) can be approximated
by estimating the center of the mirror border (assumed to be a circle or an ellipse)
[20].

Let x̃u = (xu, yu, 1) = p
Z be the point coordinates (homogeneous) in metric

units of the projection of p using pinhole model as shown in Fig. 1. Let xu =
[xu,yu] be the non-homogeneous coordinates corresponding to x̃u. Since the center
of the pin-hole camera and p belong to plane π , the point xu also belongs to the
intersection of this plane with the image plane. Therefore, crad, xu and xm belong
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Figure 1: Axial catadioptric system

to the same line. We have then xn = xu
‖xu‖ , which leads to:

xn =
[

xn

yn

]
=

1√
X2 +Y 2

[
X
Y

]
(9)

Note that xn is not defined only if the 3D point belongs to the camera optical axis
(which does not happen in the case of the catadioptric camera). In the following
xn will be used to define new visual features to control the motion of a mobile
robot moving on a plane.

2.2. Visual servoing

In visual servoing the time variation ṡ of the visual features s can be linearly
expressed with respect to the relative camera-object kinematics screw:

ṡ = Lsτ, (10)

where Ls is the interaction matrix related to s. Usually, the control scheme is
designed to reach an exponential decoupled decrease of differences on the visual
features to their goal value s∗. If we consider an eye-in-hand system observing a
static object, the corresponding control law is:

τc =−λ L̂s
+
(s− s∗), (11)
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where L̂s is a model or an approximation of Ls, L̂s
+

the pseudo-inverse of L̂s, λ a
positive gain tuning the time to convergence, and τc = (υc,ωc) the camera veloc-
ity sent to the low-level robot controller. In practice the matrix L̂s could be chosen
as the current value of the interaction matrix Ls. This choice (except in the case
of a singularity) ensures an exponential decrease of the error on features in image.
Unfortunately, further to the problem of local minima and singularities, comput-
ing the exact current value of the interaction matrix requires the knowledge of the
depth information. Determining this information can be time consuming, but also
subject to instabilities. In order to avoid these problems, using the depth infor-
mation of the goal values in Ls can be an alternative (i.e Ls(Z∗) ). Unfortunately,
in that case, the exponential decrease of the features errors in the image will no
longer be ensured. Furthermore, if the value of L̂s changes, its pseudo-inverse
should also be computed at each iteration, which also can be time consuming if
the size of the features vector increases significantly.

In order to avoid computing the depth information and inverting L̂s at each
time that the velocities have to be computed, a straightforward choice is to use
the constant matrix Ls∗ computed for the goal pose. Using Ls∗ also permits to
avoid the problem of the singularities (except if the desired position corresponds
to a singular value of Ls∗). Despite the mentioned advantages above, in practice
using Ls∗ ensures a local and limited domain of convergence around the desired
position as compared to the case where Ls is used. Furthermore, the behavior of
the feature errors in the image as well as in 3D space is neither always predictable
nor always satisfactory. Combining Ls∗ and Ls in a single control law has been
studied in [21] and [22] to improve the stability and 3D behavior. Unfortunately,
once again, and as far as Ls is involved in the control law, the depth informa-
tion has to be determined and L̂s to be inverted. Actually, the limited domain of
convergence and the unpredictable behavior obtained using Ls∗ results, in large
part, from the problem of the tensor frame change. Indeed, Ls∗ expresses the
variations of features as a function of the camera velocities expressed in the goal
frame. Therefore, if the current and the goal frames have different orientations,
the tensor change of frame has to be taken into account since the velocities are
to be applied in the current camera frame. This problem has been highlighted in
[23] for instance. More precisely, instead of using the average L̂s = Ls∗+Ls

2 , as

proposed in [21], [23] proposed to use L̂s = Ls+Ls∗ T−1

2 after integrating the spatial
motion transform T. In this paper we only use the goal value of the interaction
matrix in the control law. More precisely, the velocity computed using L̂s = Ls∗ in
the control law (11) has to be multiplied by a spatial transformation T. A method
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to effectively approximate the tensor change of frame in the case of a mobile robot
(to avoid reconstructing depth data and inverting L̂s at each iteration of the control
loop) will be described next.

3. Visual features selection and control law

In the next paragraph, new visual features are proposed and their correspond-
ing interaction matrices derived. A control law using the goal values of the inter-
action matrices is also proposed and derived.

3.1. Visual features suitable to control camera translational velocities

In this paragraph, we introduce new visual features which are suitable for the
control of the translation component of the camera movement. To do so, we use
the inner product between the coordinates of two points xni and xn j in the image:

ci j = x>n i xn j (12)

Note that at most Np(Np−1)/2 of ci j can be defined, Np being the number of the
feature points. By taking the derivative of (12), we obtain:

ċi j = x>nj ẋni +x>ni ẋnj (13)

The interaction matrix corresponding to xn can be obtained by taking the deriva-
tive of (9):

Lxn =
[

Lxnυ Lxnω
]

(14)

with:

Lxnυ =

[
− (1−x2

n)
d

xnyn
d 0

xnyn
d − (1−y2

n)
d 0

]
(15)

and

Lxnω =
[
−xnynzn −(1− x2

n)zn yn

(1− y2
n)zn xnynzn −xn

]
(16)

where d =
√

X2 +Y 2 and zn = Z/d. By combining (14) and (13), the interaction
matrix Lci j = [Lci jυ Lci jω ] corresponding to ci j can be then obtained by:

Lci jυ =
[

(−1
d j

+ ci j
di

)x>n i +(−1
di

+ ci j
d j

)x>n j 0
]

(17)

and
Lci jω =

[
yn jzi j + yniz ji −xn jzi j− xniz ji 0

]
(18)
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where zi j = zni− ci jzn j and z ji = zn j− ci jzni. From (17) and (18), it can be seen
that ci j is invariant to the motion around the optical axis (which corresponds to
the normal of the plane of motion). We assume that the camera is mounted on the
mobile robot so that the translational motion takes place on the plane defined by
the vectors x and y of the camera frame. Therefore, only the first two entries of
the matrix Lci jυ are useful for the control of the translational motion with respect
to the x-axis and the y-axis. In the next paragraph, we explain how to select an
adequate feature to control the remaining DOF, namely the rotation around the
optical axis.

3.2. Visual features suitable to control camera rotation

In this paragraph, we introduce visual features which are suitable for the con-
trol of the rotational component of robot motion. We consider α as a natural
feature in the image that can be obtained from points xn to control the rotation of
the robot on a plane as:

α = atan2(yn,xn) (19)

The time variation of α can then be obtained by:

α̇ =
xn ẏn− yn ẋn

x2
n + y2

n
= xn ẏn− yn ẋn (20)

By combining (20) and (14), the interaction matrix corresponding to α can be
obtained by:

Lα =
[ yn

d
−xn

d 0 xn zn yn zn −1
]

(21)

From (21), we can notice the direct link between α and the rotation around the z-
axis. For the sake of robustness, all projected points xn have to be used. A simple
way to do it is by stacking all the angles αi in a feature vector. A better choice
can be combining all the points in a single and unique feature to control the rota-
tion around the z-axis. A straightforward and simple way to use all the rotation
angles could be using their average αa = 1

N ∑N
i=1 atan2(yni,xni). Such feature is

directly related to ωz. However, the arithmetic average of rotations does not cor-
respond to the real average of rotations, especially when the difference between
the rotations considered is large. For instance, for a rotation angle close to π , and
due to the effect of noise or due to translational motion, the computed rotation
angles can have opposite signs. Therefore, the rotation angle corresponding to
their arithmetic mean would have a value close to 0 instead of π or−π generating
some discontinuities in the estimation of αa. In this paper, we propose to define a
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rotation angle αm for a virtual point whose coordinates are computed as a linear
combination of the projections of points on the circle. Let p1 be the point defined
by:

p1 =
N

∑
i=1

aixni (22)

From p1, we define a new point v1 belonging to the unit circle by:

v1 =
p1

‖ p1 ‖
(23)

By taking the derivative of (23), the interaction matrix corresponding to v1 can be
obtained by:

Lv1 =
I2−v1 v>1
‖ p1 ‖

N

∑
i=1

aiLxni (24)

Let αm be the angle defined by:

αm = atan2(v1y,v1x) (25)

By taking the derivative of (25), it can be obtained:

α̇m = v1xv̇1y− v1yv̇1x (26)

By combining (26) with (24), Lαmωz = −1 is obtained. As a result one can con-
clude that αm varies linearly with respect to the velocity ωz.

The parameters ai have to be determined before defining point v1 on the unit
circle. More precisely, we have to define a virtual point p∗1 and next represent it
as a linear combination of the desired projected points on the circle x∗ni. For the

sake of simplicity, p∗1 is chosen to be unitary (‖ p∗1 ‖= 1 then v∗1 = p∗1
‖p∗1‖

= p∗1). Let

p∗2 be also a unit vector perpendicular to p∗1. As a result p∗1 and p∗2 form a direct
orthogonal frame basis V∗ = [p∗1; p∗2]. It is possible to represent any given frame
basis V∗ as a linear combination of the coordinates of a set of points. For instance,
V∗ could be set as the desired frame of the camera. In any given frame basis V∗,
each projected point onto the circle can be expressed as:

x∗ni = b1iv∗n1 +b2iv∗n2 (27)

Let B be the 2×N matrix that defines the coordinates of all the projected points
on the new frame basis. We have:
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X∗nt = V∗ B (28)

where X∗nt = [x∗n1 x∗n2 . . .x∗nN ], and B = V∗>X∗nt . From (28), V∗ can be represented
as a linear combination of X∗nt by:

V∗ = X∗nt B+ (29)

B+ is a N×2 matrix corresponding to the pseudo-inverse of B. Therefore, the ai

can be chosen as the first columns of B+.

3.3. Control law
Let sc be the feature vector obtained by stacking the features ci j and s∗c their

goal values. Let Lsc be the interaction matrix obtained by stacking the two first
entries vx and vy of the interaction matrix corresponding to each feature ci j. Only
the two first entries are taken into account because we are only concerned with a
planar motion and ci j is invariant to the rotation around z-axis. Let us consider that
the goal is to move the desired camera position towards the initial one. Therefore,
the velocities that have to be applied to the goal position of the camera using its
corresponding interaction matrix are obtained from:





[
υ∗x
υ∗y

]
=−λL+

sc∗(s
∗
c− sc)

ω∗z = λ (α∗m−αm)−Lαmυx∗ υ∗x −Lαmυy∗ υ∗y
(30)

where Lαmυx∗ and Lαmυy∗ represent the variation of αm with respect to the veloc-
ities υx and υy respectively (Notice that υx, υy and ωz are the only non-zero com-
ponents of the camera motion). Let us consider the three frames shown in Figure
2-b. Let Fc and Fc∗ represent respectively the current and the goal camera frames
and Fci an intermediate frame that has the same position of the center as Fc∗ but
the orientation of Fc. As it can be seen from Figure 2-b, the translational velocity
to be applied to the frame Fc to move it towards its desired position is equal to
the negative of the velocities that move Fci towards Fc. Therefore, to control the
translational motion of the current camera position, it is more adequate to use the
interaction matrix corresponding to sc computed for the position corresponding to
Fci: [

υx

υy

]
=−λL+

sci
(sc− sci) (31)

In the case of the projection onto the sphere, it was shown in [9] that two
interaction matrices L2

in and L1
in related to an invariant to the 3D rotation in and

12



computed respectively for two camera poses 1 and 2 separated by a rotational
motion are related by equation:

L2
in = L1

in
1R2 (32)

where 1R2 is the rotation matrix. Similarly, it can be shown for feature sci that if
only a rotation is considered between Fci and Fc∗, Lsci can be obtained from Lsc∗
by:

Lsci = Lsc∗
c∗Ri (33)

where c∗Ri is the 2-dimensional rotation matrix corresponding to the rotation an-
gle γ between Fc∗ and Fci. We continue to prove that ci j will be invariant to any
rotation around z axis. Based on (12), ci j is a function of xni and xn j:

ci j = g(xni,xn j) = x>n i xn j (34)

Now we apply an arbitrary rotation R to the inputs of the function g:

g(Rxni,Rxnj) = (Rxni)
>Rxnj = xni

>R>Rxnj = xni
> xnj (35)

Equation (35) shows that g(Rxni,Rxnj) is equal to g(xni,xn j) and as a result the
feature ci j is invariant to any rotation around z axis. Since ci j is invariant to a
z-axis rotation one obtains sci = sc∗. By combining this result and (33) in (31), we
obtain: [

υx

υy

]
=− iRc∗λL+

sc∗(sc− sc∗) (36)

By combining (36) and (30), we finally obtain:
[

υx

υy

]
=− iRc∗

[
υx∗
υy∗

]
(37)

On the other hand, since and the z-axis has the same orientation in the current and
the goal camera poses, we choose ωz =−ωz∗. In the next section, we explain how
to effectively approximate iRc∗.

4. Experiments

In this section we first present a set of simulations and afterward some results
obtained in a real scenario will be presented. For both cases, a differential drive
mobile robot is considered as non-holonomic vehicle. The uniform coordinate
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a b

Figure 2: (a) Egocentric polar coordinate system with respect to the observer (b) Camera frame
position.

system used as the robot model is shown in Fig. 2-a. The control law proposed in
[24] is used to transform the camera velocities into linear and steering velocities
to be applied to the mobile robot. More precisely, the steering velocity is defined
by:

ω =
υl

r

[
k2(δ −arctan(−k1 θ)+(1+

k1

1+(k1θ)2 )sin(δ )
]

(38)

where k1 and k2 are two positive constants, υl is the linear velocity, r is the distance
between the current position of the robot and the goal position, θ is the orienta-
tion of the goal T with respect to the line of sight defined between the current and
desired position of the robot (T ); δ is the orientation of the vehicle heading with
respect to the line of sight. To apply the control law (38), it is necessary to repre-
sent the parameters υl , r, θ and δ as a function of the cartesian camera velocities

obtained by IBVS. First, the linear velocity can be defined as υl =
√

υ2
x +υ2

y . The

linear velocity becomes null when the translational motion is null (because of the
invariance of the feature sc). The angle δ can also be estimated as the direction
of the velocity to be applied to the current camera pose from δ = atan2(υy,υx)
(since the camera is rigidly attached to the robot). The distance from the initial

to the desired camera pose can be approximated by r =
√

υ2
x +υ2

y
λ after removing

the time unit. This is equivalent to setting υl
r = λ in (38). Finally, angle θ can be

defined as the rotation angle between the initial and goal camera pose. More pre-
cisely, we choose θ = ωz

λ −δ . Note also that θ as defined in Figure 2-a is equal to
γ as defined in Figure 2-b. The rotation matrix iR∗ is also estimated using γ = ωz

λ
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as a rotation angle.

4.1. Simulation results
In the first set of simulation results, we compare the application of the IBVS

described in this paper with the application of the exact 3D parameters θ , r and δ
in the control law (38). More precisely, four examples of robot parking are consid-
ered: all cases start from the same initial pose and have to converge towards four
different desired poses obtained after shifting the initial pose by the translational
motion defined by [4 4] meters but with different orientations corresponding re-
spectively to the angles 0, π

2 , π and 3π
2 . The images of the following set of 8 points

defined in the 3D environment were used to computed the velocities for IBVS:

Xo =




15.6 15.6 7.98 5.38 9 6.62 0 0
7.62 8.29 15.6 15.6 0 0 8.15 10.32
−0 0.86 2.52 0.32 2.07 2.14 1.30 1.79


 (39)

In these simulations, the desired depths r∗ =
√

X∗2 +Y ∗2, required to compute
the interaction matrix, are assumed to be known (they could, for example, be esti-
mated using the multiple-view scene reconstruction proposed in [15]). The simu-
lations have been performed using the ISFfMR Integrated Simulation Framework
for Mobile Robots [25]. The constants k1 = 4 and k2 = 12 were used in the con-
trol law (38) to control the robot using IBVS and the real 3D parameters. Figure
3 shows the trajectories performed by the robot using IBVS and using the real
3D data. From this figure, it can be seen that the trajectories are similar and
that IBVS has a performance similar (and as satisfactory) as using the 3D real
data. Video 1 (attachment to this paper1) shows the behavior of the robot along
the performed trajectories. The video confirms the similarities between the two
trajectories and the good convergence towards the desired robot pose. Only the
velocities of the robot along these trajectories differ: the convergence using IBVS
is slightly slower than using the 3D real data for this experiment. This due to the
fact that the amplitude of the translation estimated using IBVS is smaller than the
real one.

In the second set of simulations, a wrong scale for the position of the points
is used (r̂∗ = 1.3r∗ is used as depth instead of the real values). The same cases
of robot parking considered in the first set of simulations are considered here.
Figure 4 compares the trajectories performed by the robot using the real value of

1https://sites.google.com/site/otahri
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Figure 3: Trajectory performed by the robot using the real 3D parameters and the 3D parameters
estimated from an IBVS in the case of four different rotation angles: a) 0degrees, b) 90degrees,
c) 180degrees, d) 270degrees

εr∗ and r̂∗ to computed the desired value of the interaction matrices. From these
plots, it can be seen that the errors on the scene scale have negligible influence
on the trajectories performed, which means that the curvature defined by the ratio
between the steering velocity and the linear velocity ω

vl
is not very sensitive to the

scene scale. Videos2 2 and 3 compare the behavior of the robot motions along the
performed trajectories and the point motions in the image using the correct and
an erroneous scene scale. The two videos show that the robot converges in all
cases, but with different velocities: the convergence using r̂∗ = 1.3r∗ to computed

2https://sites.google.com/site/otahri
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Figure 4: Trajectory performed by the robot using the real 3D parameters and the 3D parameters
estimated from an IBVS in the case of four different rotation angles: a) 0degrees, b) 90degrees,
c) 180degrees, d) 270degrees

the interaction matrices is faster than when using the real depth r∗. This is due
to the fact that the scene scale used is bigger than the real one, and therefore the
amplitude of the translational motions to be performed are amplified.

4.2. Results using real scenario

Here we present some experiments performed in real scenario by a real robot,
using the open-source meta-operating system, ROS [26]. A Pioneer 3-DX [27] has
been used as differential drive non-holonomic vehicle. Two different catadioptric
systems were used in our servoing experiments, both made up of a hyperboli-
cal mirror (50mm diameter) and a perspective camera (6mm focal length). The
specifications of the hyperbolic mirrors are as follows:
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Equation Parameters

Mirror A X2

a2 − Y 2

b2 =−1 a = 20.8485, b = 26.8578

Mirror B X2

a2 − Y 2

b2 =−1 a = 23.6634, b = 27.1301

a b

P1
P2

P3

P4

P5

P6

P7

P8

P9

P1

P2

P3 P4
P5

P6

P7

P8

P9

c d

Figure 5: Images of the robot and of images acquired by the robot on its position. (a) and (c): the
robot in the goal position and the corresponding image acquired by the robot, respectively. (b) and
(d) the robot on an arbitrary initial position and its corresponding image, respectively.

In the first experiment we use mirror A and later it will be substituted by mirror
B, while preserving the same configuration. Once the robot is placed on the goal
position (Fig. 5-a) in the scene, an image is grabbed as the goal image (Fig. 5-c).
As seen in the figures, some black circles (here nine circles) were fixed on the
walls and used as visual beacons. The centers of these beacons are automatically
extracted (using openCV library) and used as our goal points for the goal image.
The proposed method requires the knowledge of the depths of all the points in
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the scene, observed from the goal position, in order to compute the interaction
matrices. Therefore in our experiment, the distance (depth) between each of the
fixed beacons to the robot are measured manually, while the robot is parked in this
position. One can conclude that a coarse measurement is enough and there is no
need to have precise depth, as discussed in the simulation part.

a b

Figure 6: Diagram of errors in terms of points and features during the convergence: Fig. (a)
shows the reduction of errors between the nine goal image points and their correspondences in the
current image. Using these nine image points, 36 features were defined. The errors between the
goal features and current features are plotted in (b).

As already mentioned, one of the advantages of the method proposed in this
paper is that the camera does not need to be fully calibrated. In our experiments,
ρ f has been given the value 1 and the center of the image/distortion was computed
as the center of the mirror border image. It has as coordinates µx = 643, µy = 535
(automatically obtained through applying the Hough transform for circle detection
defining the mirror border in the image).

The robot is placed on an arbitrary position, the initial position (Fig. 5-b).
Then the robot moves, so that it can reach the goal position with the goal ori-
entation. After the extraction of features from both goal and initial images, the
proposed control law is applied to the robot. In these experiments, k1 = 1, k2 = 1
are used as constant parameters in the control law (38). As expected the robot
performs a smooth trajectory, converges and stops nearly on the goal position.
Fig. 6-a depicts the errors (distances in pixels) between the goal image points and
their corresponding points in the current as a function of servoing iterations. As
one can see, the convergence is quite smooth. There is a negligible spacial error
(less than 1cm) between the parked and goal position (the behavior of the robot is
shown in the video 3). The same behavior is shown in Fig. 6-b where the errors
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between the features (c∗i j− ci j) are plotted. Note that all 36 available ci j (from 9
tracked features points) are used in this experiment. The velocities of the camera
and robot are shown in Fig. 7-a and Fig. 7-b, respectively. Fig. 8 presents the
errors in the angle αm values during servoing.

For the sake of evaluating the robustness of the proposed approach in case of
using different mirrors, a new experiment has been carried out: mirror A (the mir-
ror used so far) has been replaced by mirror B. Fig. 9-left and -right respectively
show the images taken by mirrors A and B, once the robot is placed on the desire
position. In this position, an image is taken while mirror B is mounted. Features
are extracted from the newly taken image and kept as the desired features. Then
mirror A has been placed back on the robot. Afterwards, the previously presented
visual servoing experiment has been repeated. As one can see from the video3

4, the system’s behavior is robust despite of using a goal image taken by other
camera.

a b

Figure 7: Plots for the velocities during the iterations: (a) Depicts the camera linear velocity. (b)
shows the linear and angular components of the velocity of the robot during the convergence.

5. Conclusion

In this paper, we have used the radial camera model to propose a novel IBVS.
New features were extracted based on this model and their corresponding inter-
action matrices were derived. The method does not require a fully calibrated
camera. The only calibration parameters that are require are the ratio of the two
focal lengths (ρ f = fx

fy
) and the coordinates of the principal point (µx and µy). In

3https://sites.google.com/site/otahri/
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Figure 8: Error in the camera’s angle corresponding to αm in (25).

Figure 9: Images acquired by the robot on its goal position using two different mirrors. Left:
mirror A, right mirror B.

general, both these parameters can be estimated automatically by using the image
of the mirror border (circle or ellipse). Furthermore, only the goal value of the
interaction matrix is used to compute the velocities, which allows avoiding the
estimation of the depths of the points, as well as the inversion of the interaction
matrix, during servoing.

As a result of using a simple radial model, the proposed IBVS method can
be applied for a large class of catadioptric cameras, both central and non-central.
The proposed method has been implemented using a ROS-based robotic platform.
The results obtained show the validity and effectiveness of the proposed approach.
Our future work includes extending the method for a 6 DOFs robot and the use of
global visual features as well as multiple-view geometry in the control law.

21



Acknowledgements

This paper is an extension of work originally presented in the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS12) [28]. Hadi
AliAkbarpour, Omar Tahri and Helder Araujo are with Institute for Systems and
Robotics, Polo II 3030-290 Coimbra, Portugal. Hadi AliAkbarpour is also with
University of Missouri-Columbia, USA. The authors would like to thank the sup-
port of project Morfeu–PTDC/EEA-CRO/108348/2008 funded by the Portuguese
Science Foundation (FCT) and H. Araujo would like to thank the support of
project FCT/PTDC/EIA-EIA/122454/2010, funded also by the Portuguese Sci-
ence Foundation (FCT) by means of national funds (PIDDAC) and co-funded by
the European Fund for Regional Development (FEDER) through COMPETE Op-
erational Programme Competitive Factors (POFC).

References

[1] Y. Mezouar, F. Chaumette, Path planning for robust image-based control,
IEEE Trans. on Robotics and Automation 18 (4) (2002) 534–549.

[2] S. Benhimane, E. Malis, Vision-based control with respect to planar and
non-planar objects using a zooming camera, in: The 11th International Con-
ference on Advanced Robotics Coimbra, Portugal, Coimbra, Portugal, 2003,
pp. 863–866.

[3] G. Chesi, K. Hashimoto, D. Prattichizzo, A. Vicino, Keeping features in the
field of view in eye-in-hand visual servoing: a switching approach, IEEE
Transactions on Robotics 20 (5) (2004) 908–914.

[4] S. Baker, S. Nayar, A theory of catadioptric image formation, Int. Journal of
Computer Vision 35 (2) (1999) 175–196.

[5] J. Courbon, Y. Mezouar, L. Eck, M. Martinet, A generic fisheye camera
model for robotic applications, in: IROS, 2007, pp. 1683–1688.

[6] H. Hadj-Abdelkader, Y. Mezouar, P. Martinet, F. Chaumette, Catadioptric
visual servoing from 3d straight lines, IEEE Trans. on Robotics 24 (3) (2008)
652–665.

[7] G. L. Mariottini, D. Prattichizzo, Image-based visual servoing with central
catadioptric camera, International Journal of Robotics Research 27 (2008)
41–57.

22



[8] P. Corke, D. Strelow, S. Singh, Omnidirectional visual odometry for a plan-
etary rover, in: In IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vol. 4, Sendai, Japan, 2004, pp. 4007–4012.

[9] O. Tahri, Y. Mezouar, F. Chaumette, P. Corke, Decoupled image-based visual
servoing for cameras obeying the unified projection model, IEEE Trans. on
Robotics 26 (4) (2010) 684 – 697.

[10] C. Sagues, A. Murillo, J. Guerrero, T. Goedeme, T. Tuytelaars, L. Van Gool,
Localization with omnidirectional images using the radial trifocal tensor, in:
IEEE Int. Conf. on Robotics and Automation, Orlando, FL, 2006, pp. 551 –
556.

[11] T. Svoboda, T. Pajdla, Epipolar geometry for central catadioptric cameras,
Int. Journal on Computer Vision 49 (1) (2002) 23–37.

[12] C. Geyer, K. Daniilidis, Mirrors in motion: Epipolar geometry and motion
estimation, Int. Journal on Computer Vision 45 (3) (2003) 766–773.

[13] A. Comport, R. Mahony, F. Spindler, A visual servoing model for gener-
alised cameras: Case study of non-overlapping cameras, in: Robotics and
Automation (ICRA), 2011 IEEE International Conference on, 2011, pp.
5683 –5688. doi:10.1109/ICRA.2011.5979678.

[14] A. Agrawal, Y. Taguchi, S. Ramalingam, Analytical forward projection
for axial non-central dioptric and catadioptric cameras, in: K. Daniilidis,
P. Maragos, N. Paragios (Eds.), ECCV 2010, Vol. 6313/2010 of Lecture
Notes in Computer Science, 2010, pp. 129–143.

[15] A. Agrawal, Y. Taguchi, S. Ramalingam, Beyond alhazen’s problem: An-
alytical projection model for non-central catadioptric cameras with quadric
mirrors, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2011, pp. 2993–3000.
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HIGHLIGHTS

• An  image-based  visual  servoing  method  for  mobile  robots  is 
proposed.

• Using  the  radial  model,  new  visual  features  with  decoupling 
properties are derived.

• Efficient IBVS approach based on desired value of the interaction 
matrix is proposed.

• Real experiments using a real robot have been carried out (different 
scenarios).


