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a b s t r a c t

A series of novel 1H- and 2H-indazole derivatives of the commercially available dehy-

droepiandrosterone acetate have been synthesized and tested for inhibition of human

cytochrome 17�-hydroxylase-C17,20-lyase (CYP17), androgen receptor (AR) binding affinity,

and cytotoxic potential against three prostate cancer (PC) cell lines.
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In the adult prostate, androgens act directly on epithe-
C cell lines

. Introduction

YP17 is an endoplasmic reticulum membrane-bound mul-
ifunctional enzyme that exhibits 17�-hydroxylase and

17,20-lyase activities on a single active site, both of which
re crucial for human physiology [1–5]. The hydroxylase
ctivity is involved in the conversion of pregnenolone
o 17�-hydroxypregnenolone and progesterone to 17�-
ydroxyprogesterone whereas the lyase activity is responsible

or the side-chain cleavage of these hydroxy derivatives to
fford dehydroepiandrosterone (DHEA) and androstenedione
AD), respectively. DHEA and AD are androgen precursors and
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∗∗ Corresponding author. Tel.: +1 410 706 5885; fax: +1 410 706 0032

E-mail addresses: vnjar001@umaryland.edu (V.C.O. Njar), salvador@
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can be further metabolized in steroidogenic tissues to more
potent androgens such as testosterone and dihydrotestos-
terone (DHT).

The testis and the adrenal cortex are the two sites thought
to produce most of the androgenic steroids in humans. The
testis are responsible for about 90–95% of circulating andro-
gens whereas the adrenals account for the remaining 5–10%
[6].
ci.uc.pt (J.A.R. Salvador).

lial cells to maintain structural and functional viability. The
secretory epithelial cells express the AR and require chronic
androgenic stimulation for survival and functional integrity.

mailto:vnjar001@umaryland.edu
mailto:salvador@ci.uc.pt
dx.doi.org/10.1016/j.steroids.2007.08.004


( 2 0 0 7 ) 939–948
940 s t e r o i d s 7 2

Glandular involution occurs as a result of cell apoptosis when
androgen levels drop below a threshold (as is the case in med-
ical or surgical castration) [7].

Androgen deprivation as therapy for advanced PC was
introduced by Huggins et al. in 1941 [8,9] and ever since
it has been the mainstay for advanced PC treatment. At
least 80% of the human prostate cancers show a favourable
response to androgen deprivation as evidenced by the dis-
appearance of symptoms or a decline of prostate specific
antigen (PSA) levels [10,11]. However, relapses are seen invari-
ably when tumors emerge as androgen-independent and
apoptosis-resistant [7]. Mechanisms that may mediate this
adaptation include AR amplification, AR mutation, alterations
in the balance between transcriptional coactivators and core-
pressors, and activation of signal transduction pathways that
by-pass the AR [12,13]. Gene amplification and amino acid
substitutions in the AR are detected at a high frequency in
recurrent tumors. These changes confer growth advantage to
the tumor cells due to either hypersensitivity of AR to low,
castrate-level androgens or a realignment of the receptor con-
formation, leading to altered ligand specificity that enables
antiandrogens, adrenal androgens and non-androgen steroids
to act agonistically to increase AR activity [7].

Enhanced intracellular conversion of adrenal androgens to
testosterone and DHT has also been reported as an important
mechanism for disease progression [14]. It may explain why
the available AR antagonists do not have substantial activity
against the androgen-independent tumor cells that emerge
subsequent to androgen deprivation therapy, seeing that the
AR antagonists will have a much lower affinity for the AR
than the natural substrates. Inhibition of CYP17 is therefore a
valuable approach for the treatment of androgen-dependent
diseases such as PC as a means of inhibiting androgen biosyn-
thesis both in the testis and adrenals. It should be noted
that PC is a leading cause of mortality being the second most
common cause of cancer-related death in both the USA and
Australia (behind lung cancer), and the third most common
cause of cancer-related death in the European Union (behind
lung cancer and colorectal cancer) [15–17].

Several steroidal and non-steroidal compounds have been
synthesized and evaluated as CYP17 inhibitors [18–23]. Out of
these compounds, ketoconazole 1 (Fig. 1), an imidazole fungi-
cide that has inhibitory activity towards CYP17 [24,25], has
been used clinically in high dose (400 mg, every 8 h) for the
treatment of advanced PC [26–28]. However, the fact that it
concomitantly inhibits other steroidal P450 enzymes causing
significant side effects [29] has limited its use. A recent investi-
gation of the efficacy of low dose ketoconazole (200 mg, three
times daily) found clinical benefit equal to high dose treat-
ment, with a reduction in side effects [30]. Ketoconazole is
still currently used alone or in combination with glucocorti-
coids as secondary hormonal therapy for hormone-refractory
PC (HRPC) [31].

A common approach to the synthesis of potent steroidal
inhibitors of CYP17 has been the design of substrate-like
molecules bearing a heterocycle at the C17 position with priv-

ileged heteroatoms (N, S, O) which can interact as the sixth
ligand with the heme iron of the enzyme. One of such com-
pounds, abiraterone acetate 2 (Fig. 1), reported to be a very
potent inhibitor of the enzyme [32], has successfully under-
Fig. 1 – CYP17 inhibitors.

gone Phase I clinical trials for PC treatment [33,34] and the
first set of results of an open-label Phase II clinical trial have
just been reported. Thus, 11 out of 18 patients have had PSA
declines ≥50% at 3 months with 5 patients having a PSA
decline ≥90% when 1000 mg of the drug were administered
orally once daily to chemotherapy-naive castration-resistant
PC (CRPC) patients, resistant to luteinizing hormone-releasing
hormone (LHRH) analogues, antiandrogens, and frequently
diethylstilbestrol (DES) and steroids [35].

Another class of interesting steroidal inhibitors has been
reported in which the azole group is attached to the C17
of the steroid nucleus through a nitrogen atom [36–38].
Both compound 3 (code named VN/85-1) (Fig. 1) and com-
pound 4 (VN/124-1) potently inhibit CYP17. VN/124-1 has also
been shown to have antiandrogenic properties against the
androgen-dependent LAPC4 human prostate tumor xenograft,
being actually more effective than castration in suppressing
its growth [38].

Herein we report the synthesis and biological evaluation of
novel 17-indazole androstene derivatives designed as CYP17
inhibitors. Other than their CYP17 inhibitory potential, their
ability to bind to the AR, and cytotoxicity against three PC cell
lines has also been evaluated.

2. Experimental

2.1. Chemistry

2.1.1. General
Dehydroepiandrosterone acetate, indazole, bis(triphenyl-
phosphine)rhodium(I)carbonyl chloride, 1,3-bis(diphenyl-
phosphino)propane, aluminum isopropoxide, and N-
methylpiperidone were obtained from Sigma–Aldrich Co.
All solvents used were previously dried and purified accord-

ing to standard procedures. For TLC analysis, Kieselgel
60HF254/Kieselgel 60G was used. Melting points were deter-
mined using a BUCHI Melting Point B-540 apparatus and
are uncorrected. IR spectra were obtained using a JASCO



2 0 0

F
u
V
i
P
w
A
E
E

2
2
c
o
[

2
3
5
i
d
6
s
a
o
t
w
a
p
c
(
h
(
(
(
a
m
(
7
a
1
3
3
a
H
(
2
C
N

2
(
c
b
d
w
2
N
p
(

s t e r o i d s 7 2 (

T/IR-420 spectrophotometer. NMR spectra were obtained
sing a Brucker Digital NMR-Avance 300 apparatus or a
arian Inova 500 apparatus, in CDCl3 with MeSi4 as the

nternal standard. Mass spectra were recorded on a Finnigan
olaris Q GC/MS Benchtop Ion Trap mass spectrometer. HRMS
ere determined on a Bruker 12T APEX-Qe FTICR-MS with an
pollo II ion source and an Advion Triversa Nanomate system.
lemental analysis was carried out on a Fisons Instruments
A 1108 CHNS-O elemental analyzer.

.1.2. Synthesis of 17-(indazole) androstene derivatives

.1.2.1. 17-Chloroandrosta-5,16-dien-3ˇ-yl acetate (6) and 17-
hloro-16-formylandrosta-5,16-dien-3ˇ-yl acetate (7). Details
f the synthesis of these compounds were reported previously

37,39].

.1.2.2. 16-Formyl-17-(1H-indazol-1-yl)androsta-5,16-dien-
ˇ-yl acetate (8) and 16-formyl-17-(2H-indazol-2-yl)androsta-
,16-dien-3ˇ-yl acetate (9). A mixture of 7 (2 g, 5.32 mmol),
ndazole (943 mg, 7.98 mmol), and K2CO3 (2.2 g, 15.94 mmol) in
ry DMF (40 ml) was heated at 80 ◦C under N2 atmosphere for
h. The mixture was then concentrated under reduced pres-
ure. Water (60 ml) and dichloromethane (200 ml) were added
nd the mixture was left under magnetic stirring for a couple
f hours. The aqueous phase was extracted another two
imes with dichloromethane (2 × 50 ml). The organic phase
as then washed with water (60 ml), brine (60 ml), dried with

nhydrous MgSO4, filtered, and concentrated under reduced
ressure to give a yellowish oil. This oil was subjected to flash
hromatography with chloroform/petroleum ether 40–60 ◦C
7:3) and afforded compound 8 (1.27 g; 52%): m.p. (acetone/n-
exane) 185–189 ◦C; IR 1248, 163, 1661, 1721 cm−1; 1H NMR

CDCl3, 300 MHz): ı 1.08 (s, 3H, 18-H3), 1.27 (s, 3H, 19-H3), 2.04
s, 3H, 3�-OAc), 4.61 (m, 1H, 3�-H), 5.43 (m, 1H, 6-H), 7.25
m, 1H, aromatic-H), 7.45 (m, 2H, aromatic-H), 7.78 (m, 1H,
romatic-H), 8.24 (m, 1H, aromatic-H), 9.72 (s, 1H, CHO); EI-MS
/z (%): 458 (12) M+, 398 (26), 225 (25), 185 (39), 157 (100), 143

16), 91 (22), 77 (14); Anal. calcd. for C29H34N2O3: C 75.95, H
.47, N 6.11, found: C 75.89, H 7.29, N 5.90. A second fraction
fforded compound 9 (539 mg; 22%): m.p. (acetone/n-hexane)
90–192 ◦C; IR 1245, 1629, 1661, 1731 cm−1; 1H NMR (CDCl3,
00 MHz): ı 1.09 (s, 3H, 18-H3), 1.28 (s, 3H, 19-H3), 2.04 (s, 3H,
�-OAc), 4.62 (m, 1H, 3�-H), 5.43 (m, 1H, 6-H), 7.13 (m, 1H,
romatic-H), 7.34 (m, 1H, aromatic-H), 7.68 (m, 1H, aromatic-
), 7.72 (m, 1H, aromatic-H), 8.19 (m, 1H, aromatic-H), 10.15

s, 1H, CHO); EI-MS m/z (%): 458 (32) M+, 398 (74), 383 (48),
93 (24), 225 (56), 185 (54), 157 (100), 130 (20); Anal. calcd. for

29H34N2O3: C 75.95, H 7.47, N 6.11, found: C 76.02, H 7.53,
5.88.

.1.2.3. 17-(1H-Indazol-1-yl)androsta-5,16-dien-3ˇ-yl acetate
10). A mixture of bis(triphenylphosphine)rhodium(I)
arbonyl chloride (325.4 mg, 0.47 mmol) and 1,3-
is(diphenylphosphino)propane (420.7 mg, 1.02 mmol) in
ry xylenes (95 ml) was stirred at 80 ◦C under N2 for 15 min
hen a fine yellow precipitate formed. Compound 8 (1.2 g,
.62 mmol) was added, and the mixture was refluxed under

2 for 10 days, then cooled, and concentrated under reduced
ressure. The resulting oil was dissolved in dichloromethane

600 ml) and treated with charcoal. The organic phase was
7 ) 939–948 941

washed with water (60 ml), dried with anhydrous MgSO4,
filtered, and concentrated under reduced pressure to give a
yellowish oil. This oil was subjected to flash chromatography
with chloroform/petroleum ether 40–60 ◦C (7:3) to give com-
pound 10 (700 mg; 62%): m.p. (acetonitrile/THF) 154–156 ◦C;
IR 1241, 1620, 1728 cm−1; 1H NMR (CDCl3, 300 MHz): ı 1.09 (s,
3H, 18-H3), 1.18 (s, 3H, 19-H3), 2.04 (s, 3H, 3�-OAc), 4.61 (m,
1H, 3�-H), 5.43 (m, 1H, 6-H), 5.86 (m, 1H, 16-H), 7.18 (m, 1H,
aromatic-H), 7.39 (m, 1H, aromatic-H), 7.64 (m, 1H, aromatic-
H), 7.74 (m, 1H; aromatic-H), 8.07 (m, 1H, aromatic-H); 13C
NMR (CDCl3, 75 MHz): ı 124.3 (C3a), 139.9 (C7a), 140.1 (C5),
150.6 (C17), 170.5 (CH3CO); EI-MS m/z (%): 430 (20) M+, 370
(100), 355 (40), 195 (26), 157 (85), 144 (32), 119 (28), 91 (38); Anal.
calcd. for C28H34N2O2: C 78.1, H 7.96, N 6.51, found: C 78.40, H
7.60, N 6.36.

2.1.2.4. 17-(1H-Indazol-1-yl)androsta-5,16-dien-3ˇ-ol (11).
Compound 10 (400 mg; 0.93 mmol) was dissolved in methanol
(7.5 ml) at room temperature under Ar. KOH (10%) in methanol
(2.5 ml) was added and the mixture was left under magnetic
stirring for 1.5 h. After this time the mixture was concen-
trated under reduced pressure. Dichloromethane (150 ml)
and water (20 ml) were added, and left to agitate for a cou-
ple more hours. The aqueous phase was extracted with
dichloromethane (2 × 100 ml). The organic phase was then
washed with water (20 ml), dried with anhydrous MgSO4,
filtered, and evaporated to dryness to give compound 11
(297.1 mg; 82%): m.p. (acetone) 189–191 ◦C; IR 1625, 3257 cm−1;
1H NMR (CDCl3, 300 MHz): ı 1.08 (s, 3H, 18-H3), 1.18 (s, 3H,
19-H3), 3.55 (m, 1H, 3�-H), 5.41 (m, 1H, 6-H), 5.86 (m, 1H,
16-H), 7.18 (m, 1H, aromatic-H), 7.39 (m, 1H, aromatic-H), 7.64
(m, 1H, aromatic-H), 7.74 (m, 1H; aromatic-H), 8.07 (m, 1H,
aromatic-H); 13C NMR (CDCl3, 75 MHz): ı 124.3 (C3a), 139.9
(C7a), 141.0 (C5), 150.6 (C17); EI-MS m/z (%): 388 (100) M+, 373
(35), 237 (29), 195 (24), 181 (14), 157 (26), 119 (22), 91 (17); Anal.
calcd. for C26H32N2O: C 80.37, H 8.3, N 7.21, found: C 80.46, H
8.07, N 7.0.

2.1.2.5. 17-(1H-Indazol-1-yl)androsta-4,16-dien-3-one (12). A
mixture of 11 (470 mg; 1.21 mmol), N-methylpiperidone
(1.7 ml), and toluene (28 ml) was distilled off ca. 10 ml. Alu-
minum isopropoxide (453 mg; 2.22 mmol) was then added,
and the mixture was refluxed under N2 for 5 h. The mixture
was then concentrated under reduced pressure. Ethyl acetate
(20 ml) and water (50 ml) were added and the mixture was left
under magnetic stirring for a couple of hours. The aqueous
phase was further extracted with ethyl acetate (2 × 100 ml).
The organic phase was washed with 5% HCl (50 ml), 10%
NaHCO3 (50 ml), and water (50 ml), dried with anhydrous
MgSO4, filtered, and evaporated to dryness to afford com-
pound 12 (390 mg; 83%): m.p. (acetone/n-hexane) 196–197 ◦C;
IR 1621, 1672 cm−1; 1H NMR (CDCl3, 300 MHz): ı 1.20 (s, 3H,
18-H3), 1.24 (s, 3H, 19-H3), 5.76 (brs, 1H, 4-H), 5.85 (m, 1H, 16-
H), 7.17 (m, 1H, aromatic-H), 7.40 (m, 1H, aromatic-H), 7.64
(m, 1H, aromatic-H), 7.74 (m, 1H, aromatic-H), 8.07 (m, 1H,
aromatic-H); 13C NMR (CDCl 75 MHz): ı 124.4 (C3a), 139.9
3,

(C7a), 150.4 (C17), 171.0 (C5), 199.5 (C3); EI-MS m/z (%): 386
(100) M+, 371 (75), 253 (22), 211 (16), 183 (21), 157 (30), 119
(18), 81 (14); HRMS calcd 387.2431 (C26H30N2OH+), found 387.
2435.
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2.1.2.6. 17-(2H-Indazol-2-yl)androsta-5,16-dien-3ˇ-yl acetate
(13). The method followed that described for compound 10
but using compound 9 (700 mg; 1.53 mmol). The resulting
oil was subjected to flash chromatography with chloro-
form/petroleum ether 40–60 ◦C (7:3) which afforded compound
13 (308 mg; 47%): m.p. (acetone) 144–146 ◦C; IR 1243, 1620,
1728 cm−1; 1H NMR (CDCl3, 300 MHz): ı 1.09 (s, 3H, 18-H3),
1.19 (s, 3H, 19-H3), 2.04 (s, 3H, 3�-OAc), 4.62 (m, 1H, 3�-H),
5.43 (m, 1H, 6-H), 6.14 (m, 1H, 16-H), 7.06 (m, 1H, aromatic-
H), 7.27 (m, 1H, aromatic-H), 7.64 (m, 1H, aromatic-H), 7.71 (m,
1H; aromatic-H), 8.11 (m, 1H, aromatic-H); 13C NMR (CDCl3,

75 MHz): ı 121.7 (C3a), 140.0 (C5), 148.9 (C7a), 151.7 (C17),
170.5 (CH3CO); EI-MS m/z (%): 430 (14) M+, 370 (100), 355
(56), 209 (18), 195 (24), 157 (57), 105 (16), 91 (13); Anal. calcd.
for C28H34N2O2: C 78.1, H 7.96, N 6.51, found: C 78.5, H 7.6,
N 6.2.

2.1.2.7. 17-(2H-Indazol-2-yl)androsta-5,16-dien-3ˇ-ol (14).
The method followed that described for compound 11 but
using compound 13 (255.8 mg; 0.59 mmol) to afford compound
14 (216.8 mg; 94%): m.p. (acetonitrile/THF) 224–226 ◦C; IR 1629,
3352 cm−1; 1H NMR (CDCl3, 300 MHz): ı 1.08 (s, 3H, 18-H3), 1.19
(s, 3H, 19-H3), 3.55 (m, 1H, 3�-H), 5.40 (m, 1H, 6-H), 6.17 (m,
1H, 16-H), 7.07 (m, 1H, aromatic-H), 7.27 (m, 1H, aromatic-H),
7.64 (m, 1H, aromatic-H), 7.71 (m, 1H; aromatic-H), 8.11 (m,
1H, aromatic-H); 13C NMR (CDCl3, 75 MHz): ı 121.7 (C3a), 141.2
(C5), 148.9 (C7a), 151.70 (C17); EI-MS m/z (%): 388 (100) M+, 373
(68), 369 (23), 223 (22), 209 (26), 195 (32), 181 (18), 157 (86); Anal.
calcd. for C26H32N2O: C 80.37, H 8.3, N 7.21, found: C 80.2, H
8.16, N 7.15.

2.1.2.8. 17-(2H-Indazol-2-yl)androsta-4,16-dien-3-one (15).
The method followed that described for compound 12 but
using compound 14 (450 mg; 1.16 mmol) to afford com-
pound 15 (370 mg; 83%): m.p. (acetone) 169–172 ◦C; IR 1629,
1674 cm−1; 1H NMR (CDCl3, 300 MHz): ı 1.21 (s, 3H, 18-H3),
1.25 (s, 3H, 19-H3), 5.77 (brs, 1H, 4-H), 6.14 (m, 1H, 16-H),
7.07 (m, 1H, aromatic-H), 7.27 (m, 1H, aromatic-H), 7.64
(m, 1H, aromatic-H), 7.72 (m, 1H; aromatic-H), 8.11 (m, 1H,
aromatic-H); 13C NMR (CDCl3, 75 MHz): ı 121.7 (C3a), 148.9
(C7a), 151.6 (C17), 170.6 (C5), 199.4 (C3); EI-MS m/z (%): 386
(72) M+, 371 (62), 223 (39), 195 (36), 157 (100), 145 (25), 119
(35), 91 (42); HRMS calcd 387.2431 (C26H30N2OH+), found
387.2431.

2.2. Biology

2.2.1. General
The human PC cell lines LNCaP and PC-3 were obtained from
the American Type Culture Collection (Rockville, MD). 293T
cells were the gift of Dr. Yun Qiu (UMB, Maryland), and LAPC4
cells were provided by Dr. Charles L. Sawyers (UCLA School of
Medicine).

RPMI 1640 medium, Dulbecco’s Modified Eagle Medium
(DMEM), Dulbecco’s Phosphate Buffered Saline (DPBS),
trypsin/EDTA (0.25%/0.02%), and penicillin/streptomycin (P/S)

were obtained from Gibco-BRL. Fetal Bovine Serum (FBS),
charcoal-stripped serum (CSS), and trypsin/versene were
obtained from Biofluids Inc. Poly-l-lysine, triamcinolone ace-
tonide, ketoconazole, DHT, and MTT powder were obtained
0 7 ) 939–948

from Sigma–Aldrich Co. Casodex was kindly provided by
Astra-Zeneca Inc. Scintiverse BD Cocktail (Scintanalyzed)
fluid was obtained from Fisher Scientific. VN/85-1 was
prepared as previously reported [37].

The synthetic androgen methyltrinolone [3H]R1881, with a
specific activity of 72 Ci/mmol, was purchased from Perkin-
Elmer. [21-3H3]-17�-hydroxypregnenolone, with a specific
activity of 13.61 �Ci/�mol, was prepared as described by
Akhtar et al. [40].

The calcium phosphate transfection kit was purchased
from Promega (Promega Profection Mammalian Transfec-
tion System). Tox-2 kit (XTT based) was purchased from
Sigma–Aldrich Co.

293T and 293T-CYP17 cells were routinely maintained in
DMEM supplemented with 10% FBS and 1% P/S solution.
LNCaP and PC-3 cells were grown in RPMI 1640 medium sup-
plemented with 10% FBS and 1% P/S solution. LAPC4 cells were
grown in RPMI supplemented with 15% FBS, 1% P/S solution,
and 10 nM DHT.

The pCDNA3Hmod17(His)4 construct was designed as previ-
ously reported [41].

Radioactivity measurements were performed in a Tri-carb
2100 TR liquid scintillation analyzer. Absorbance and lumines-
cence measurements were made using a Victor 1420 Multilabel
counter.

2.2.2. In vitro CYP17 assay (C17,20-lyase activity)
The in vitro C17,20-lyase inhibitory activities of the compounds
were evaluated using the acetic acid releasing assay (AARA)
[37,38,41–49] with 293T cells that were transfected with the
pCDNA3Hmod17(His)4 construct using the calcium phosphate
method (Promega Profection Mammalian Transfection Sys-
tem), to express the human enzyme.

Briefly, 100 mm plates were coated with poly-l-lysine
(0.05 mg/ml) for 30 min, rinsed twice with sterilized distilled
water, and allowed to dry for 2 h. 293T cells were then plated in
DMEM at a density sufficient for achieving approximately 60%
confluency on the following day, for transfection. Three hours
prior to transfection the DMEM was renewed on the plate. On
a small eppendorf flask, 10 �g of pCDNA3Hmod17(His)4 were
added to sterile, deionized water and vortexed briefly. A 2 M
CaCl2 solution (62 �l) was added to bring the final volume up
to 500 �l. This mixture was added drop-wise with light vortex
to 500 �l of HEPES solution and incubated at room tempera-
ture for 30 min. The solution was vortexed again and dripped
into the 100 mm plate. The medium was changed 18 h later
and enzyme activity was assayed as described below 48 h after
transfection.

293T-CYP17 cells were grown to 80% confluency and
divided evenly in 6-well plates. On the following day, cells
were washed with DPBS and incubated with clear DMEM (with
5% CSS and 1% P/S) containing a saturating concentration of
[21-3H3]17�-hydroxypregnenolone. The test compounds were
then added in the desired concentrations and the plates were
left to incubate for 18 h at 37 ◦C. The steroids were extracted
with 2 ml of chloroform at 4 ◦C. After 2 h, the aqueous phase

was collected and charcoal suspension was added to a 2.5%
final concentration. Following a 30-min incubation at 4 ◦C, an
aliquot of the aqueous supernatant was removed and radioac-
tivity measured by liquid scintillation counting.
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.2.3. Competitive AR binding assay
ompetitive binding assays with the synthetic androgen
ethyltrienolone [3H]R1881 were performed essentially as

reviously described [50,51]. LNCaP or LAPC4 cells were
ransferred to clear RPMI medium (with 5% CSS and 1% P/S) 3
ays before the start of the experiment. 24-Well plates were

oated with poly-l-lysine (0.05 mg/ml) for 30 min, rinsed with
terilized distilled water, and dried for 2 h. The cells were
hen plated (2–3 × 105 cells/well) and allowed to attach. The
ollowing day the medium was replaced by clear RPMI (with

cheme 1 – Synthesis of 17-indazole compounds. (i) POCl3-DMF,
PPh3)2RhCOCl-Ph2P(CH2)3PPh2, xylenes, N2, reflux; (iv) KOH (10%
oluene, reflux.
7 ) 939–948 943

1% P/S added) containing a saturation concentration (5 nM)
of [3H]R1881, triamcinolone acetonide (1 �M), and the desired
concentrations of the test compounds. Following a 2 h incu-
bation period at 37 ◦C, cells were washed twice with ice-cold
DPBS, and solubilized in DPBS containing 0.5% SDS and 20%
glycerol. Extracts were removed and cell associated radioac-

tivity counted in a scintillation counter. All results represent
an average of a minimum of three wells. To determine the
EC50 values of the test compounds, a minimum of eight con-
centrations of each test compound was used. EC50 values were

CH3Cl, Ar, reflux; (ii) indazole, K2CO3, DMF, N2, 80 ◦C; (iii)
) in methanol, N2, rt; (v) Al(i-PrO)3, N-methylpiperidone,
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that of the 17�-hydroxylase activity thus implying that inhi-
bition of the C17,20-lyase activity will actually characterize the
inhibition of the entire enzyme [41]. Human kidney 293T cells
were chosen for the assay because they showed rapid growth

Table 1 – C17,20-lyase inhibition and AR binding for
17-indazole compounds

Compound C17,20-lyase
IC50

a 293T
LNCaP

EC50
b (nM)

LAPC4
EC50

b (nM)

10 c d d

11 c d d

12 c d 5000
13 c d d

14 c d d

15 c d 5000
Ketoconazole 49 nM NT NT
VN/85-1 1.29 nM NT NT
Casodex NTe 971 4500

a IC50 is the concentration of inhibitor required to inhibit the
enzyme activity by 50%.

b
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determined by non-linear regression with Graphpad Prism
software.

2.2.4. Cell culture and viability assay
To determine the effect of steroids and novel compounds on
cell proliferation on LNCaP and LAPC4 cells, each cell type was
transferred into clear RPMI medium (with 5% CSS and 1% P/S) 3
days prior to the start of the experiments. The cells were then
plated on previously coated 96-well plates (2.5 × 103 cell/well)
and after a 24 h attachment period, the medium was aspi-
rated and replaced by new medium with the novel compounds
(0.1–20 �M). The medium was changed every 3 days and the
number of viable cells was compared by XTT assay on the 7th
day. Briefly, a 20% solution of XTT in clear medium was added
to each of the wells in the plates and after a 4 h incubation
period, the plates were read at 450 nm on a Victor 1420 Multi-
label counter. All results represent the average of a minimum
of three wells.

For PC-3 cells, 1.5 × 104 cells/well were plated in 24-well
plates in RPMI medium (with 10% FBS and 1% P/S). After
a 24 h attachment period, the cells were treated with the
novel compounds (0.1–20 �M). The medium was changed
every 3 days and the number of viable cells was compared
by MTT assay on the 7th day. Briefly, 0.5 mg/ml MTT in clear
RPMI medium (with 5% CSS and 1% P/S) was added to each
well and incubated at 37 ◦C for 4 h. Following incubation,
the medium was aspirated completely with care taken not
to disturb the formazan crystals. DMSO (400 �l) was used
to solubilize these crystals. After slight shaking, the plates
were immediately read at 540 nm on a Victor 1420 Multil-
abel counter. All results represent an average of a minimum
of three wells. To determine the EC50 values of the test
compounds, PC-3 cells were incubated with a minimum of
eight concentrations of each test compound. EC50 values were
determined by non-linear regression with Graphpad Prism
software.

3. Results and discussion

3.1. Chemistry

3.1.1. Synthesis of 17-indazole androstene derivatives
The synthesis of the new 17-indazole androstene derivatives is
outlined in Scheme 1. It started with the Vilsmeier-Haack reac-
tion of the commercially available dehydroepiandrosterone
acetate 5 with phosphorous oxychloride (POCl3) and dimethyl-
formamide (DMF), as reported previously [37,39]. The major
reaction product 17-chloro-16-formylandrosta-5,16-diene-3�-
yl acetate 7 was then treated with indazole in the presence of
K2CO3 and DMF at 80 ◦C, under N2 to afford a mixture of the 1H-
8 and 2H-indazole 9 substituted compounds which were sep-
arated by flash chromatography on silica gel. The 1H-indazole
derivative 8 was found to be the major reaction product
being isolated in 52% yield (compound 9 was isolated in 22%
yield).

Each of the obtained 17-indazole compounds 8 and 9

was separately decarbonylated to afford compounds 10
and 13 in 62 and 47% yield, respectively. This decar-
bonylation was performed with in situ generated Rh(1,3-
bis(diphenylphosphino)propane)2+Cl− catalyst [Rh(dppp)2+
0 7 ) 939–948

Cl−] in refluxing xylenes [37,52], after the use of both the
Wilkinson catalyst [RhCl(PPh3)3] and 10% palladium on acti-
vated charcoal, other known methods of decarbonylation,
failed. Hydrolysis of the 3�-acetoxy group to obtain the cor-
responding 3�-hydroxy derivatives 11 and 14 was achieved
with KOH (10%) in methanol, in 82 and 94% yield. Modified
Oppenauer oxidation of substrates 11 and 14 using aluminum
isopropoxide and N-methylpiperidone afforded the final 3-
keto derivatives 12 and 15, again in good yields (83% in both
cases).

The peak pattern of the carbons seen on the 13C NMR
spectra of compounds 13–15 (2H-series) is consistent with
data reported in the literature for 2H-substituted compounds
whereas for compounds 10–12 (1H-series) the spectra cor-
related well with that of 1H-substituted derivatives [53]. In
the 2H-series, the two quaternary carbons of the indazole
ring C3a and C7a are seen at ppm values of 121–123 ppm
and 148–153 ppm, respectively. For our compounds C3a was
identified at 121 ppm and C7a at 148 ppm. The 1H-series typ-
ically has C3a at higher ppm values (123–126 ppm) whereas
C7a is seen at lower ppm values of 137–148 ppm. Thus,
in our 1H-series we identified C3a at 124 ppm and C7a at
139 ppm.

3.2. Biology

3.2.1. CYP17 inhibition (C17,20-lyase)
The AARA uses [21-3H3]17�-hydroxypregnenolone as sub-
strate and C17,20-lyase activity is measured by the amount of
[3H]acetic acid released during the side-chain cleavage of the
substrate to DHEA. This assay proved comparable in terms
of accuracy and reliability to the previous HPLC procedures
[41,42]. Moreover, kinetic analysis of CYP17 in human testic-
ular microsomes showed that the C17,20-lyase activity is half
EC50 is the concentration of compound needed for a 50% displace-
ment of [3H]R1881 from the AR.

c Less than 30% effective at 10 �M.
d Less than 30% binding at 5 �M.
e NT = Not tested.
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Table 2 – Effect of the 2H-indazole series on PC-3 cell
proliferation

Compound PC-3 EC50 (�M)

13 5.4
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n culture medium and high transfection efficiency for the
uman CYP17 plasmid.

The synthesized compounds were found not to inhibit

17,20-lyase significantly when compared to both ketocona-
ole and VN/85-1. Thus, all tested compounds (10–15) were

ess than 30% effective at 10 �M whereas IC50 values of 49
nd 1.29 nM were determined for ketoconazole and VN/85-1,
espectively, under the same assay conditions (Table 1). Rea-
ons that may account for this lack of inhibitory activity are

ig. 2 – Effect of selected compounds on (a) LNCaP, (b) LAPC4, and
ontrol) of growth inhibiton after 7 days of treatment was determ
sing 0.1–20 �M of compound, as described in Section 2. One-wa
ata: *p < 0.01.
14 8.3
15 1.9

(c) PC-3 cell proliferation. The percentage (compared to
ined with the XTT (LNCaP and LAPC4) or MTT (PC-3) assay
y ANOVA with a Dunnet Post Test was used to analyze the
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the positioning of the N atoms in the heterocycle ring that may
not permit good interaction with the enzyme’s active site or
even the bulkiness of the indazole ring.

3.2.2. AR binding
Following the observation that several compounds designed
as CYP17 inhibitors have been shown to bind to the AR and
interfere with its function [37,38,45,54], we decided to deter-
mine if the synthesized indazole androstene derivatives could
bind to the AR. LAPC4 and LNCaP cells were chosen which
express the wild-type (wt-) and mutated receptor, respectively.
Competitive binding of the compounds to the AR was eval-
uated using a saturating concentration of the radiolabeled
androgen [3H]R1881 in the presence of different concentra-
tions of test compound.

Compounds 10, 11, 13 and 14 showed less than 30% binding
to both types of AR at 5 �M (Table 1). However, compounds 12
and 15, having the �4-3-ketone system in common, bound to
the wt-AR with similar affinity when compared to Casodex,
an antiandrogen currently used in PC treatment, showing an
EC50 of 5 �M (4.5 �M for Casodex).

3.2.3. PC cell toxicity
The potential of the synthesized compounds to inhibit cell
proliferation was studied on LNCaP, LAPC4 and PC-3 cell lines.
All compounds were screened at 0.1, 1, 10, and 20 �M and the
more active were chosen for EC50 calculation. The results are
depicted in Table 2 and Fig. 2.

We identified compounds 13–15 in the 2H-indazole series
that significantly inhibited the proliferation of LAPC4 and
LNCaP cells mostly at 10 and 20 �M (Fig. 2a and b), and were
concomitanly effective against PC-3 cell proliferation. Their
EC50 values for PC-3 cell proliferation were 5.4, 8.3, and 1.9 �M,
respectively (Table 2). In the 1H-indazole series, compound 10
was only active at 20 �M for all PC cell lines. Compounds 11
and 12 were exclusively cytotoxic towards PC-3 cells, showing
50% inhibition of cell proliferation at 10 and 20 �M, respec-
tively (Fig. 2c).

Thus, seeing that there is not a very high affinity of the com-
pounds towards the AR, they probably act on PC cells through
mechanisms other than the ones mediated by the AR such as
apoptosis or cell cycle arrest. This is more evident for PC-3
cells that are human PC cells derived from bone metastases
and do not express the AR at all.

In summary, the synthesized compounds were found not
to inhibit C17,20-lyase activity significantly when compared
to both ketoconazole and VN/85-1. They also did not display
affinity towards the LNCaP mutated AR at the concentrations
tested. Compounds 12 and 15, having the �4-3-ketone sys-
tem in common, bound to the wt-AR in the same extension
as Casodex. However, only moderate inhibition of LAPC4 cell
proliferation was seen with compound 15 at higher concen-
trations, suggesting that other mechanisms that are non-AR
mediated account for this effect. The 2H-indazole series
(13–15) was particularly effective against PC-3 cells whereas
compounds 11 and 12 of the 1H-indazole series were exclu-

sively toxic towards them. Because PC-3 cells lack the AR, it is
likely that mechanisms such as apoptosis or cell cycle arrest
account for inhibition of proliferation on this particular cell
line.
0 7 ) 939–948
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