
Accepted Manuscript

Development of a mechanical maintenance training simulator in OpenSimulator

for F-16 aircraft engines

André Pinheiro, Paulo Fernandes, Ana Maia, Gonçalo Cruz, Daniela Pedrosa,

Benjamim Fonseca, Hugo Paredes, Paulo Martins, Leonel Morgado, Jorge

Rafael

PII: S1875-9521(14)00018-4

DOI: http://dx.doi.org/10.1016/j.entcom.2014.06.002

Reference: ENTCOM 117

To appear in: Entertainment Computing

Received Date: 31 May 2013

Revised Date: 2 May 2014

Accepted Date: 15 June 2014

Please cite this article as: A. Pinheiro, P. Fernandes, A. Maia, G. Cruz, D. Pedrosa, B. Fonseca, H. Paredes, P.

Martins, L. Morgado, J. Rafael, Development of a mechanical maintenance training simulator in OpenSimulator

for F-16 aircraft engines, Entertainment Computing (2014), doi: http://dx.doi.org/10.1016/j.entcom.2014.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.entcom.2014.06.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcom.2014.06.002


  

 

 

Development of a mechanical maintenance training simulator in 
OpenSimulator for F-16 aircraft engines 

 
André Pinheiroa, Paulo Fernandesa, Ana Maiaa, Gonçalo Cruza, Daniela Pedrosab, 
Benjamim Fonsecac, Hugo Paredesc, Paulo Martinsc, Leonel Morgadod*, Jorge Rafaele  
aDep. Engenharias, Escola de Ciências e Tecnologia, UTAD – University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal  
bFaculdade de Psicologia e de Ciências da Educação, UC – University of Coimbra, 3000 Coimbra, Portugal  
cINESC TEC (formerly INESC Porto), UTAD – University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal  
dINESC TEC (formerly INESC Porto), Universidade Aberta, Lisbon, Portugal  
ePortuguese Air Force – Air Base Nr. 5, Serra de Porto de Urso, 2425-022 Monte Real, Portugal  
 

 * Corresponding author. Tel.: +351 222094000; fax: +351 222094050  

E-mail address: leonel.morgado@uab.pt.  

 

 

Abstract 

Mechanical maintenance of F-16 engines is carried out as a team effort involving 3 to 4 skilled engine technicians, but the details 
of its procedures and requisites change constantly, to improve safety, optimize resources, and respond to knowledge learned from 
field outcomes. This provides a challenge for development of training simulators, since simulated actions risk becoming obsolete 
rapidly and require costly reimplementation. This paper presents the development of a 3D mechanical maintenance training 
simulator for this context, using a low-cost simulation platform and a software architecture that separates simulation control from 
simulation visualization, in view of enabling more agile adaptation of simulators. This specific simulator aims to enable 
technician training to be enhanced with cooperation and context prior to the training phase with actual physical engines. We 
provide data in support of the feasibility of this approach, describing the requirements that were identified with the Portuguese 
Air Force, the overall software architecture of the system, the current stage of the prototype, and the outcomes of the first field 
tests with users. 
 
© 2014 The Authors. Published by Elsevier B.V.  
Selection and/or peer-review under responsibility of the scientific programme committee of VS-Games 2012 
 
Keywords: virtual worlds; OpenSimulator; virtual learning; cooperation; task coordination; aircraft engine maintenance 

1. Introduction 

At the Portuguese Air Force, engine technicians go through an initial training process at the Centre for Military 
and Technical Training of the Air Force (CFMTFA, Portuguese-language acronym), and are subsequently placed at 
different air bases, each with different aircraft, and specific engines and requirements. Thus, at each of these bases, 
they receive further training, focused on the specific engines and aircraft deployed and serviced there. In the case of 
the F-16 aircraft, this takes place at Air Base Nr. 5, in Serra do Porto de Urso, near Monte Real, Leiria, Portugal. 
Since technicians may be re-deployed to other bases, training of technical procedures for maintenance of specific 
engines is a common and frequent process. The training process has an initial theory phase, based on technical 
documents known as “Technical Orders” or TOs [1] (Fig. 1). Then an on-the-job training phase ensues, with trainees 



  

 

 

acting directly on an engine, in actual maintenance circumstances. 
This final on-the-job training phase is resource-demanding, since it requires engines to be available either 

specifically for training or for longer servicing allowing for training to take place, and consequently unavailable for 
operation. Also, procedure errors, whose risk is greater during training, may in some cases produce costly 
component damage. Further, several of the technical procedures need to be executed by a team, meaning that time 
allocation of trainees, trainers, and experienced technicians needs to be managed, in order for a full team to be 
available for on-the-job training to ensue. These various resource requirements place constraints on the availability 
of on-the-job training opportunities and emphasize the need to optimize it. The development of a serious game for 
this scenario, a 3D multi-user mechanical training simulator, aims to provide trainees and trainers with more 
opportunities to conduct training, with the goal of allowing trainees to reach on-the-job training better prepared and 
thus to optimize the effectiveness of the resource-intensive training occasions with physical engines. This is a joint 
effort of the Portuguese Air Force and the University of Trás-os-Montes e Alto Douro (UTAD), which subsequently 
received the cooperation of the INESC TEC research organization. 

The development of such a serious game is a complex software engineering project, requiring technical expertise 
and a careful balance between design principles and pedagogical content, taking time, resources and teamwork. As 
serious games become more complex, so do the engineering challenges that arise during their development. A 
particularly significant challenge in this scenario is that mechanical procedures are constantly evolving: as errors are 
committed and/or insights developed, the recommended practice is changed, in order to optimize resources and 
lessen risks. At Air Base 5, this evolution effort is executed under the approach known as lean principles [19]. 

The consequence for software development is that any mechanical procedures implemented in a simulator are 
likely to become obsolete rather quickly. Any development costs and resources are further increased by the need to 
update the simulated procedures. This is now somewhat lessened by employing game engines or development 
platforms rather than developing from scratch, rendering the early-stage selection of the engine or platform for 
development critical [2]. Following this software engineering perspective, there is a goal of lessening the resource 
requirements of both simulation development and updating. Thus we present an approach that focus on tuning and 
perfecting the simulated operations and behaviors, rather than the visuals. For this purpose, we employed a readily 
available virtual world platform (OpenSimulator) rather than a game engine; and in order to allow the knowledge 
embedded in behaviors and operations to be independent from this platform, we implemented control code and 
decision-making logic as an external system, accessed as a Web Service. The rationale for this architectural choice 
was to enable the visual and interaction platform to change subsequently, if necessary, but keeping the fast-
prototyping benefits of a virtual world platform such as OpenSimulator [3]. In this paper, we present this approach 
and test its feasibility by submitting the prototype to user tests at the air base, with mechanical maintenance trainers. 

 



  

 

 

 

Fig. 1 – Sample instructions from a Technical Order for the Pratt & Whitney F100-PW-220/220E engine 

2. Background 

F-16 aircraft of the Portuguese Air Force are at the so-called mid-life update version (known as MLU), and 
employ Pratt & Whitney F100-PW-220/220E engines, with large number of mechanical maintenance procedures – 
the manufacturer recommends periodical inspections depending on the number of flight hours. Inspection 
procedures are conducted before and after each flight, and there is also programmed maintenance that takes place 
every 300 flight hours, with the overwhelming majority of these procedures taking place at air base Nr. 5. We held 
meetings with the training team and mechanical experts at air base Nr. 5, to ascertain the most relevant procedures 
for technicians that are initiating their training with this specific engine. In the course of those meetings, the 
procedures for installation of the engine inside the F-16 aircraft fuselage were selected as the first simulation target. 
This involves a series of steps for properly installing and connecting the engine, which need to be done not only 
effectively but also safely. We have collected data on this process by combining several sources: we reviewed the 
TOs [1] and taped and photographed the actual current installation process for the engine from various perspectives. 
We then decoded this data, describing it in terms of a natural-language script, and created UML diagrams of the 
various procedures, keeping in regular contact with Air Force trainers to clear out doubts and get further details. 
Briefly, these steps involve preparing the engine for transportation towards the aircraft fuselage, transporting it and 
preparing it for insertion, raising it and inserting it into the aircraft fuselage, establishing the engine connections to 
the fuselage, and testing the installation (the full list is provided in Table 1). The level of detail required for 
simulation of each task was also determined in cooperation with the trainers at Air Base Nr. 5. 

Table 1 – Procedures involved in the installation of the engine into the aircraft 



  

 

 

Nr. Task description 

1 Installation of the engine mount to raise the engine 

2 Engine raise 

3 Couple engine to the aircraft 

4 Perfect alignment of the upper engine mount with the fuselage rail 

5 Fasten and break of the trailer to the fuselage 

6 Adjustment of the trailer to transfer engine weight 

7 Support the engine on the fuselage rail 

8 Enter the engine in perfect alignment with the fuselage 

9 Align with the trust pin connections 

10 Enter the trust pins using the connection doors 

11 Finish the back 

12 Check perfect alignment of the trust pin with the clamp half 

13 Tighten up the clamp half with a ring (nut) to finish baking 

14 Finish installing the trust pin with an inspection 

15 Check the SEAL, from the air entrance 

16 Remove the trailer 

17 Remove the back engine adapter 

18 Lighten/download support fuselage 

19 Completely remove the trailer 

 

For creating the simulation, given that this project was developed with minimal funding, it was be necessary that 
development could be incremental, in small steps over time, likely involving different people in each academic year. 
In the meetings with the training team at the air base, context-specific requirements were established. First, the main 
usage focus is for trainees in a training room at the air base, but with flexibility for later use from their homes, or 
with the participation of trainees at other military locations. Further, as mentioned earlier, the actual mechanical 
procedures might change, requiring regular simulation updating. This led us to consider virtual worlds as a 
development platform, to lessen the development requirements of the underlying simulation environment, benefiting 
from pre-existing networking and multiuser features of these platforms. The rationale was that virtual world 
platforms provide a set of basic features such as content rendering, user login and interaction, user messaging, and 
object physics, among other aspects. This enabled development to focus on the behavioral elements of simulation 
development: the core knowledge of the simulation. In order to leverage the scenario for this purpose, we set to plan 
the prototype development using OpenSimulator, a virtual world platform with the ability to enable communication 
with external systems via scripts, thus without requiring changes to the underlying code of the virtual world 
platform. OpenSimulator employs the client-server protocol of Second Life and therefore we could also benefit from 
the full set of coding resources and script-developing communities that exist for both platforms. OpenSimulator 
specifically is used by many different groups and for different purposes, and as with many virtual worlds it supports 
collaboration, including awareness of the presence of other users and communication, immersive interaction, and a 
credible 3D representation. The role of OpenSimulator in the simulation community has been defended for various 
scenarios, excluding pure science and target user groups of simulation experts [12]. We have also been exploiting 
the development of this scenario to create and further a simulation control architecture which attempts to have more 
concern independence between the simulation’s behavior logic and its human interaction and visual aspects [3]. 

The use of virtual world platforms as the environment for developing and deploying training simulators is 
frequent, in fields as diverse as emergency response [4], business management [5], medical and health scenarios [6], 
and security forces [7]. Military training scenarios have also employed virtual worlds as their development platform, 



  

 

 

such as the OLIVE platform [8], and this use follows in the stead of a long history of gaming and gaming 
technologies in military training [9]. Training is critical for the success of military operations, including background 
technical operations such as aircraft maintenance, not just for tactical operations and combat. In this sense, virtual 
world environments with multi-user abilities allow personnel to interact in a simulated face-to-face environment. 
There are several examples of serious games used by multiple users for training combat and tactical activities 
[10][11], but the field of multi-user technical training simulations is still in the beginning. Some examples exist, 
such as the work done at the University of Pennsylvania [14], the main differences for this work being that we focus 
on multiple coordinating individuals rather than a single user.  

The field of serious games, of which this work is part of, has been receiving increasing public interest and 
awareness, emerging as a sort of accepted terminology. Many well-surveyed publications in the emerging serious 
games literature highlight the often conflicting interpretations of serious games in an attempt to pin-down what the 
term actually encapsulates [16]. It challenges our understanding of characteristics such as, challenge, play and fun, 
which are fully associated with video games. However, they may not be appropriate for all serious games. For some 
serious games, it's more fitting to talk about experience rather than fun or entertainment, like the training simulator 
presented in this paper. Characteristics such as being thought-provoking, informative, awareness-raising or 
stimulating are as important, if not more so, than being fun or entertaining. In this sense, we adopted Marsh's 
definition [16], which considers serious games along a continuum that can be framed between games with a specific 
purpose at one end, and environments for experiencing, with little or no gaming features at the other end. 

We consider this continuum to classify our simulator as a serious game with reduced gaming characteristics and 
serious experiential and cultural purposes. Other examples in this area of the continuum are the many purpose-
enabled simulations created in the Second Life virtual world, because of their reduced gaming characteristics, 
mechanics and gameplay: their purpose is to provide potentials or opportunities for experience and emotion through 
encounters to provide meaning. It also includes the class of training simulators.  

According to Narayanasamy et al. [17], training simulators present specific characteristics, some of which are 
similar to games and/or simulation games (1 & 2 of the following), but others are unique (all the others): 1- presence 
of a virtual environment; 2 - interactive user engagement in a form of simulation; 3- restricted to providing 
recreations of real-world environments; 4- no intention of entertaining, amusing, or engaging; 5- user may happen to 
find the application entertaining, fun, or engaging; 6- the primary purpose is the development of user skills; 7- 
accurate depiction of challenges regarding the real-world scenario; 8 – focus on standard operational procedures, 
instead of gameplay patterns or gestalt; 9 – stable procedures; 10 – activities are not goal-oriented; and 11 – the end-
state is not obvious. 

The reevaluation of simulator approaches to incorporate game and game-like elements places an increasing 
demand for serious game developers to deliver high-fidelity solutions. Some authors [2] proposed a game engine 
selection framework for serious applications development that includes elements as fidelity, heterogeneity, 
composability, consistency, accessibility and networking: regarding fidelity, they point out some factors such as 
narrative, depth of visual/auditory content, interaction medium and character/object behavior; for heterogeneity, 
they refer to the diversity of platforms on which the engine be deployed, including hardware requirements and 
scalability; for composability, they point to the features allowing game engine content to be reused, both that created 
within the game engine, and that imported from other sources; for consistency, they point out several technical 
features, including whether game areas need to be loaded, if the engine is for standalone games or Web-based 
games, and more; for accessibility, they point out support for non-standard interfaces and devices and the extent of 
as support for standard interfaces, but also to the engine’s support of both expert and novice developers; finally, for 
networking, they point to the issue of multiuser support. This last one is particularly relevant in training, since 
human instructors have a significant role in the outcome and learning impact of simulator-based learning [20]. 

3. System architecture 

As mentioned earlier, a key concern in this system is that its operations may need to be changed regularly: while 
the TOs are the basic reference for maintenance procedures, their actual execution is tuned to improve efficiency or 



  

 

 

diminish risks, following a perspective of continuous improvement and lean principles [19]. Further, in order to 
include gaming approaches to training, different pathways, error possibilities, and varying degrees of difficulty may 
need to be implemented and subsequently redesigned in response to changes in the established procedures. 
Therefore, we strived to maintain independence between the visual elements of the simulator and its state control 
and decision-making. For this purpose, we took advantage of the fact that OpenSimulator virtual worlds can execute 
scripts concurrently, with each script able to communicate with external software servers, and developed the 
architecture presented in Fig. 2. 

 

 

Fig. 2 – System architecture (adapted and clarified from [2]). 

Therefore, whenever a technician interacts with the system he/she controls an avatar inside the virtual world (as 
shown in Fig. 2). The actions of these avatars upon virtual world objects generate events, which are detected by the 
objects’ scripts normally. Instead of having the simulator actions hard-coded into these scripts, the scripts only 
report any events to an external decision server system for overall state control and decision-making (this is done 
using OpenSimulator’s HTTP request services). This control and decision-making includes checking for cooperation 
and synchronization requirements (i.e., tasks that need to be performed in concert by several technicians). The 
decision server then responds to the originating script with a list of actions to be performed by the virtual world 
objects. Upon receiving this response, the script reacts, causing the visual appearance of the simulation to change. 
This is done by each object’s own script: the script receiving the response from the decision server acts upon its host 
object directly and relays to scripts in other objects actions meant for them, using the internal messaging services of 
the virtual world. This process provides the technicians (via their avatars) a new state for their intervention. 

A central aspect to this architecture in OpenSimulator is that for some actions a single script may not be able to 
originate the entire change of state required in the visual simulation. For instance, since scripts are linked to specific 
objects, any decision that involves two or more objects needs to involve an identical number of scripts, not just the 
originating script. For this reason, when the decision server needs to impact several scripts, the associated 



  

 

 

commands are included in a list which is sent as the response to the script that originally reported a technician’s 
action. That script is in charge of relaying the commands in that list to the other scripts in the simulation, achieving 
the intended multi-object result. 

The adopted solution was to create messaging protocols for transmission of command from the decision server to 
the reporting script (Web Service–OpenSim protocol, see Table 2) and for relaying of commands between the 
reporting script and the other scripts in the simulator (OpenSim–OpenSim protocol, see Table 3). 

Since all scripts behave identically (detecting avatar actions, reporting them, receiving lists of commands, 
relaying command, and executing them), this architecture in effect assumes that all concurrent scripts are in effect 
copies of a single piece of code, and each script employs the identifier of its hosting object as its own. This means 
that all simulation-specific and game-specific implementation details are externally-hosted components, and thus 
any changes in mechanical procedures will impact the external components, but not the visual game code or virtual 
world scripts themselves. Even creation of new objects within a game or simulator is simplified, since those objects 
simply get their own identifiers and a copy of the same piece of scripting code. Further, debugging and updating 
processes are streamlined: since the same code is used in all scripts, it simply is updated everywhere, rather than 
having to identify and implement changes separately for different game or simulation elements. 

We emphasize that the 3D environment does not conduct any decision-making: it is only responsible for 
reporting to the back-office web service at the decision server the events triggered by the technician’s avatars or 
other objects and then waiting for the commands to be issued by the Web Service, in response to these reports. In 
this sense, it is an embryonic implementation of the Model-View-Controller architectural style [13] for virtual 
worlds. This holds the potential to render decision-making independent from the 3D environment, not just for this 
system but as a generic approach. 

Table 2 – Protocol packet format used between the Web Service and OpenSimulator scripts 

Packet structure <number of commands><endline><command 1><endline><command 2><endline>…<command n> 

Element Type Description 

Number of commands Integer number Number of commands included in the list 

Command List <task>,<nr.parameters>,<param. 1>,<param. 2>,…,<param. n> 

Where: 

task = integer number, identifies the task: move, rotate, create object, etc. 

nr.parameters = integer number, indicates how many parameters are provided in this task 

param = comma-separated strings, each containing the data for a parameter. 

 

Table 3 – Protocol packet format used between scripts in OpenSimulator objects to relay commands 

Packet structure <channel>,<key>,<task>,<nr.parameters>,<param. 1>,<param. 2>,…,<param. n> 

Element Type Description 

Channel Integer number Communication channel being used 

Key String Identifier of the script to which the task is destined 

Nr. parameters Integer number Indicates how many parameters are provided in this task 

Param 1, 2… n Strings Each of these contains the data for a parameter 

 

4. Prototype aspects 



  

 

 

To develop the system prototype, we expedited the 3D environment modeling using the built-in end-user tools of 
OpenSimulator/Second Life client viewers, and employed QAvimator to recreate in 3D the movements of the 
technicians. The goal in this prototype stage was not one of photorealistic visuals, but simply to be credible for 
testing and development. Following the overall goal of separation of concerns between simulation rendering and 
software control/decision-making specified in the architecture, we implemented control and decision-making as an 
autonomous system, available to the OpenSimulator platform as a Web Service. The decision-making was 
implemented in the form of a hierarchical state machine. 

In order to separate the control system from the specificities of OpenSimulator client-server communication, we 
implemented the protocols specified in the architecture using plain text comma-separated values (for performance 
reasons), and a single piece of code to be used in all scripts within OpenSimulator. This piece of code was 
developed in LSL (Linden Scripting Language, commonly used for scripting in Second Life and OpenSimulator 
worlds). 

Albeit this prototype is still in an early form, we were able to confirm that already it fulfils the intended 
architectural goal of separation of visuals and control. We can replace the decision-making algorithm entirely, 
without having to change a single line of code in the 3D environment: in a parallel effort, we have used the same 3D 
models and scenario to implement the Partial-Order-Planning algorithm as a reasoning model to replace some of the 
human-controlled avatars by an intelligent software agent [18], and the approach we used enables us to now 
combine these decision-making approaches without having to change the 3D scripts. 

Currently, the 3D script is the one aspect which still binds the system to a specific virtual world technology. It is 
reporting OpenSimulator/Second Life events and its copies are meant to be running concurrently. But the script is 
detached from the decision-making process. Thus, we have the ambition of making this approach evolve in order to 
render it viable for other virtual world platforms and game engines. Ideally, by developing a new event-reporting 
module and a new translation mechanism of decision-making commands into the specific requirements of the each 
technological platform, one would like to be able to benefit from updating the visual technology and platforms of 
existing simulations with much lessened development efforts and resources. 

The current decision-making system, while not the focus of our development concerns, is presented herein for 
clarity. It works as follows: when it receives an event from OpenSimulator, it first queries a data store with all 
current data on simulation state. Then, based on this information and the date of the OpenSimulator-originating 
event, a hierarchical state machine algorithm determines the adequate response. For example, if a technician is in a 
“Free Hands” state, this state can transition to the state named “HoldingScrewdriverInHand” upon receiving a 
“ClickedOnScrewdriver” event. Finally, the transition is translated into virtual-world specific commands, which are 
provided to the originating script for execution. 

5. Sample simulator tasks 

The installation process of a Pratt & Whitney F100 engine in an F-16 aircraft is quite extensive and complex, 
requiring three technicians to do the various procedures. Plus, a specific role in the process is that of process 
checker, which may be played by one of the three operating technicians, by may also lead to a fourth person being 
involved, should none of the three required technicians have the credentials to perform this role. All necessary 
procedures are specified in a document known as the Job Guide, which refers to all the Technical Orders containing 
the necessary information. Installation of the engine inside the aircraft fuselage, the first procedure being 
implemented in the prototype, is a single process, but it is typically subdivided into four jobs, known as PT1, PT2, 
PT3, and PT4. Currently the prototype is implemented to support simulation throughout the PT1 job, comprising 
tasks 1-8 of Table 1. This job is a precondition for executing jobs PT2, PT3, and PT4, which comprising the 
remaining tasks in Table 1. But more importantly, this prototype enabled testing of the cooperation situations of the 
process, because this PT1 job requires the involvement of all technicians, as it entails several tasks that cannot be 
performed by a single individual. 

One such task is the raising of the engine to align it with the empty hull of the aircraft fuselage, which requires all 
3 technicians: two on the left side, another on the right side, as shown in Fig. 3. When the process checker issues the 



  

 

 

command (i.e., either one of the three technicians or the fourth element in the team), the three technicians will 
operate screw-driving machines in concert to lift the motor simultaneously and coordinately, using speech as a 
means of synchronization, to avoid tilting the engine excessively while raising it. 

 

Fig. 3 - Mechanics raising the engine at Air Base Nr. 5 

The multi-user virtual world platform OpenSimulator enables three or four trainees to practice the 
synchronization in this task in a similar way, as long as voice chatting is available (this can either be enabled as a 
free OpenSimulator module or as a parallel voice chatting application). In the current prototype, since the main 
focus is in support of training with all trainees in the same physical room, we have not yet installed voice chatting 
features. The users in the simulation proceed with the operations, and once all preconditions are adequate (such as 
having steadied the bearing cart and having adequate tools in hand and fitting for the tools in place), the engine 
lifting can take place. Once it is initiated, we elected to implement it in the following way: the simulator will take 
control of the arrow keys on the keyboard and change their function (usually, they move the avatar). During the 
lifting process, up and down arrow keys will respond as if operating the direction of screw driving machines or the 
turning of lifting wrenches (Fig. 4a). 

  

Fig. 4 – Simulator aspects: (a) Arrow in virtual space and “Largar” (drop) button to drop the screw-driving machine; (b) Mechanics lifting the 
engine in the virtual space 

The three technicians need to press their keys in the correct direction at roughly the same time (using voice 
chatting to synchronize their actions) in order to lift or lower the engine. We defined "roughly" as a 2-second 
interval, but could make it stricter. Currently, this is a precondition for lifting/lowering to occur, but in the future we 
intend to expand the simulator behavior to cover error conditions and accidents caused by wrong operations. Fig. 4b 
shows the avatars of trainees during the lifting of the engine in the virtual space. 



  

 

 

6. User testing 

6.1. Settings, preparation, context and testing 

In order to evaluate the feasibility of the simulator prototype, to ascertain whether we could pursue this 
architectural approach and inform its subsequent development, two field tests with prospective users were planned 
and conducted. Test 1 took place during a 2-day stay at Air Base Nr. 5. An early version of the prototype had been 
demonstrated earlier to the air base command, but no actual user tests had been conducted then. With this 2-day 
stay, the team aimed to make the prototype available to technicians that are also trainers, in order to identify their 
satisfaction as users, and their expectations regarding subsequent development – particularly in areas such as 
technical details and pedagogical affordances, user interface choices, and interaction methods. We also wanted to 
ascertain whether the technological context at the air base (computer hardware and network) supported the 
execution requirements of the prototype. 

 

Fig. 5 - Room arrangement during Test 1 

Since the air base is located 260 km away from UTAD, where most of the development team was located, and 
funding was minimal, the preparation for Test 1 was done remotely, via e-mail exchanges. Two test sessions were 
planned, which included 3 trainers each, chosen on the basis of being potential future users of the simulator in the 
context of training sessions. These trainers were the people in charge of training new technicians as they are 
assigned to the air base, for operation on F-16 aircraft engines. I.e., they were the air base most qualified technicians 
regarding the mechanical maintenance procedures for F-16 engines. The 2 sessions were similar. Both took place in 
a side room of the main engine maintenance hangar (Fig. 5). This room had 2 group tables with chairs, a projector 
and a white board. 4 laptop computers were used for tests, 3 for the users and 1 operating as an OpenSimulator 
server. The test preparation consisted in gathering and assembling all necessary supporting materials (computers, 
networking, cameras and microphones for test recording, software installation, and distribution of consent forms for 
data collection, questionnaires for characterization of user profiles, and paper guide). 

The first day of our stay was employed in room preparation and installation of the software on the air base 
computers. The actual training sessions took place on day 2, each lasting about 1 hour 15 minutes. 

The sessions consisted of a brief introduction with a project presentation, an explanation of the motive for the 
team being present, and a presentation of the work plan for the session. All trainers read and signed consent forms 
regarding data collection for this test, and filled in a characterization questionnaire. During the simulation session 
proper, the whole dynamic was being projected onto a screen, from the perspective of the computer whose user (a 
development team member) played the role of supervisor for the engine installation simulation. The session began 
with an activity for acquainting users with the platform, aimed at the acquisition of basic skills for moving in the 
virtual world and interacting with objects. 

This acquaintance activity had 4 steps. The group of avatars started by meeting in a location away from the 
virtual hangar. At each step there was a virtual poster with a task for users to accomplish. The first was to enter 
avatar flight mode and move near the aircraft parked outside the hangar (Fig. 6a). Then they had to walk into the 
hangar, up to a table with objects on it (Fig. 6b). At this table they had to pick the objects, saving them to their 



  

 

 

avatars’ inventories. Next, we asked them to carry the objects to another table, near the first one (Fig. 7). Here they 
had to place the objects on this second table, i.e., taking them from the inventory. Finally, the acquaintance activity 
was completed by asking them to return to the aircraft parking location, and from there to the engine, to initiate the 
simulation of engine installation. 

During the engine maintenance simulation, trainers were asked to employ the think aloud protocol throughout the 
process, communicating their thoughts and feelings. After completing the simulation process, a final group 
interview took place, recorded for later analysis. The interview attempted to measure users' satisfaction towards the 
system, and collect suggestions and recommendations for improvement. 

  

Fig. 6 - Setting activity: (a) first station; (b) second station 

 

 

 

 

Fig. 7 - Setting activity: third and fourth stations 

 

6.2. Questionnaire results: Trainers’ Profile 

By analyzing the questionnaires, we ascertained the following: all trainers taking part in this test were male, with 
an average age of 42. They reported being regular computer users, using computers more than once per day. Their 
main uses of computing technology are searching for information (100%), work completion (83%), and socialization 
(83%). Regarding the use of virtual worlds, none of the trainers had used them before, nor were they aware of them. 

6.3. Problems and limitations found 

6.3.1. With the local hardware 
The air base had assigned for this test: four laptops, a network switch, and network cables. We found out that this 

equipment was not entirely suitable: to run this prototype, we needed a network gateway, a service that was not 
provided by the provided network switch. So we proceeded with testing by employing a small router we had brought 
along as an alternative for such a case. The laptops had adequate memory and processing powers, but some 
limitations in terms of graphic cards, which were able to run the client software (Second Life viewer) but not in the 
best conditions. One was replaced by a developer’s laptop so that the test could take place. 

The computer being used as server also revealed itself as providing insufficient performance, and this exposed 
some deficiencies in data consistency between the Web Service and the 3D environment. 

6.3.2. With the simulator prototype 



  

 

 

From analysis of interviews, respondents (trainers) mentioned some aspects for improvement and correction. For 
instance, avatar positioning had not been identified as a requirement earlier, but upon observation by experts it was 
noticed that technicians were not always placing their virtual bodies correctly during procedures. This is an 
important component of training, since inadequate positioning may expose a technician to unnecessary danger or 
inability to perform adequately, and will therefore have to be considered for future prototypes. 

Regarding the usefulness of the simulator, respondents found it useful, an asset in support of practice. But they 
expressed the need to take into consideration not only the actual procedures, but also the prior safety inspection 
checklist. For instance, they used expressions such as: “In terms of safety of the airplane stability, this is why I told 
you of the amount of fuel that...” (a plane without enough fuel weight will not remain stable on the hangar floor if 
the engine is removed); “That part is always important (...) to safeguard his safety of the rest of the team’s work”; 
“While typically the aircraft will have all these elements, sometimes (...) a seat may not be there (..,) which needs to 
be corrected...” (Respondent 2, March 2nd, 2012). 

6.3.3. Other aspects mentioned in the interviews 
From a user perspective, respondents of both groups classified the level of knowledge and preparation required to 

deploy the 3D virtual world as acceptable, although depending on actual computer and software capabilities. 
Regarding the acquaintance activity with the virtual world, respondents felt it facilitated the contact, with 

expressions such as “Ah ... Yes, yes”, “[Contributes] to knowing the steps…”, “It is an introduction” (Respondent 1, 
March 2nd, 2012). They found the time for the acquaintance activity to be “enough” and “appropriate” (Respondent 
1, id.). 

Regarding the use of the actual simulator, the usefulness of having an introduction was reported, as was the 
importance of a checklist with common errors and required tasks to accomplish in the simulator. Trainers considered 
that support by training staff and colleagues will be important at an early phase, but will eventually cease to be 
required. E.g., using statements such as “the second time I think I got it…” (Respondent 1, id.). 

As for the pedagogical content of the simulator, trainers considered that it did allow training of necessary skills 
for installation of F-16 engines, but noted that it is necessary to increase the level of detail. E.g., with statements 
such as literally “more details” or “Instead of placing things on the ground, to check materials, you could watch 
them here...” (Respondent 1, id.). On the collaboration aspects of simulator use, they considered that it achieved the 
desired goals, since it allowed the practice of these aspects. 

Overall, they found that that the simulator could benefit the training of the installation of F-16 engines, reporting 
aspects such as “the advantage of the person being able to correct mistakes” (Respondent 2, id.), and “when new 
staff arrives, they learn, they do stuff, but until a team gets automated it takes time” (Respondent 2, id.). 

On the subject of virtual worlds, they considered them an alternative to the physical training of tasks, and an 
appealing one, able to “create more enthusiasm” (Respondent 2, id.). 

Regarding the graphical interface, trainers pointed out that some engine parts have to be more realistic, to the 
point of being able to identify the part when seen “really close” (Respondent 2, id.). They did not find it difficult to 
identify the objects, but corrections are needed, since some aspects simply do not occur in reality (e.g., “the engine 
cannot leave the front, that’s impossible” – Respondent 2, id.). 

They pointed out that interaction with the system is adequate and sufficient, yet that there is the need to get used 
to the conditions that the system offers. 

Finally, some suggestions were provided regarding technical training, including on the issue of safety awareness, 
and details such as ensuring the use of a toolbox in certain circumstances, or identification of occasional errors in the 
installation sequence of tasks. Interface cueing requests such as displaying an object description or name upon it on 
mouse over, were also recorded. 

7. Refinement testing 



  

 

 

7.1. Settings and conducting testing 

After improving the simulator, based on the results of Test 1, we conducted a new field test with prospective 
users, on July 2nd. The setup, preparation, and physical context was identical to the first test, but this time with the 
simpler goal of confirming whether new procedures and modified procedures were being provided correctly. Again 
two sessions took place, involving six trainers, divided into 3-element groups (since 3 technicians is the minimal 
number for conducting the engine-insertion procedure). The members of each group were on tables this time placed 
in a square configuration, in order for them to be unable to see each other’s screens (Fig. 8). 

This test was initiated with a brief project presentation, and subsequently the virtual world introduction activity 
previously mentioned, since not all participants had been part of the original test. Afterwards, the full mechanical 
maintenance process was simulated. A subsequent semi-structured interview aimed to gather new data on trainers' 
satisfaction and collect improvement suggestions. 

 

 

Fig. 8 - Setting activity: third and fourth stations 

7.2. Results 

During this second test, further changes required to the sequence of operations were detected and noted for later 
correction. Some were misunderstandings of the development team, others had changed during the development 
process. As explained earlier, the procedures registered in the TOs are changed regularly as part of constant 
improvement and lean maintenance principles. Sample feedback about this: “Now it’s like this...does this allow the 
engine to be totally inserted in this step? There is a procedure missing... yes, extremities need to be pulled back”; 
“The seventh one needs to be pulled back...someone needs to deviate it while it goes in”; “we need to lower the 
entire support that the cart provides to the front (…) when it is fit we lower the cart support”. 

Computer skills to use the simulator were once more considered accessible, without major demands from 
expected end users – engine technicians. Sample sentences attesting this: “...it’s a matter of simple touches: we want 
a tool, and just click it. It has some parts in English, but they’re basic, like «fly»”; “it’s just a matter of pressing and 
it’s done.” 

The graphics of some parts of the simulation were pointed out as a possible deterrent from action, and in the final 
environment more realism is needed: “...that red dot, for first-timers, isn’t clear... it doesn’t tell whether if it is meant 
to lift or remove the cart.” 

The simulator was again seen as useful for training, in particular for new technicians that may join the team: 
“Yes, for those arriving into this section, initiating, it’s cool”; “...one gets a notion, then completes it...instead of 
being in the field and then saying «now reach me that part» and then one cannot see what’s taking place at the front, 
or one is unable to see what the ones at the plane sides are doing. One doesn't get a clear notion that everything must 
be done at the same time...”; “they would have a different perspective regarding their place.” 



  

 

 

More operational requirements were set forth. E.g.: “if this had some variation to match slope, it would be more 
noticeable... in here we can witness all the steps, while in the field we can’t...” 

8. Conclusions and future work 

The tests confirmed that the selection of a virtual world platform technology (OpenSimulator) and the use of a 
Web service for control of the simulation is a feasible approach for the development of training simulators for this 
scenario, considering the use by the actual trainers involved in technician training at the air base. The nature of most 
omissions in terms of simulation aspects revealed that the procedure analysis needs to be fine-tuned, taking into 
account tactical know-how and systemic aspects (such as the security component of certain avatar positions or the 
importance of using specific accessories such as the toolbox for better team coordination), but did not stem from 
platform or architectural shortcomings. One possible bottleneck is that while the overall graphics quality is 
adequate, specific parts need higher quality for better association between them and their intended purpose. 
OpenSimulator enables much better visuals than the ones we used, but the level of control of the user experience 
(e.g., automated camera control and automated user avatar control) is lesser and chunkier than that available in game 
engine platforms, so further exploration of this risk is needed. Expanding the simulator to support mixed teams of 
human-controlled avatars and artificial intelligence agents, to support training even if only some of the human 
trainees are available, is another promising line of work, which other teams have pursued [15], and which we have 
also started to explore [18]. 

A promising aspect was the relevance of the adopted strategy of separating implementation from visuals: even in 
the relatively short time involved with the development of this prototype, some procedures changed; due to 
independence from the rendering platform, such changes have a higher likelihood of requiring less development 
resources than if they implied both control and visual edits. 

The prototype is being further developed and the architectural goals of independence between virtual world 
platform and decision-making/control logic have shown their feasibility. We hope not only to complete the 
simulator, but to be able to pursue further the development of this software engineering approach, in view of faster 
and less resource-consuming serious game development. 

 

Acknowledgements 

This work is financed by the ERDF – European Regional Development Fund through the COMPETE Programme 
(operational programme for competitiveness) and by National Funds through the FCT – Fundação para a Ciência e a 
Tecnologia (Portuguese Foundation for Science and Technology) within project «FCOMP - 01-0124-FEDER-
022701». This project has been partially funded with support from the European Commission. This article reflects 
the views only of the author, and the Commission cannot be held responsible for any use which may be made of the 
information contained therein. 

References 

[1]  Lockheed-Martin-Corp., TO 1F-16AM-2-70JG-10-21 - Organizational Maintenance - Engine Removal and Installation – Model F100-PW-
220/220E – USAF/EPAF Series – F-16/B Mid-Life Update aircraft, Technical Manual Job Guide. Bethesda, MD, USA: Lockheed Martin 
Corporation (2009). 

[2]    P. Petridis, I. Dunwell, D. Panzoli, S. Arnab, A. Protopsaltis, M. Hendrix, S. Freitas, Game Engines Selection Framework for High-Fidelity 
Serious Applications, International Journal of Interactive Worlds vol. 2012, pp. 1-19 (2012). 



  

 

 

[3] B. Fonseca, H. Paredes, J. Rafael, L. Morgado, and P. Martins, Paulo, A Software Architecture for Collaborative Training in Virtual Worlds: 
F-16 airplane engine maintenance. In Adriana S. Vivacqua, Carl Gutwin and Marcos R.S. Borges (Eds.) "Collaboration and Technology: 
17th International Conference, CRIWG 2011, Paraty, Brazil, October 2-7, 2011. Proceedings", 102-109. Berlin: Springer  (2011). 

[4] Y.F.Chen, G. Rebolledo-Mendez, F. Liarokapis, S. de Freitas, E. Parker, The use of virtual world platforms for supporting an emergency 
response training exercise. In “Procedings of the 13th International Conference on Computer Games: AI, Animation,  Mobile, Interactive 
Multimedia, Educational & Serious Games”, Wolverhampton, UK, 47-55 (2008). 

[5] C. Rodrigues, D. Coelho, L. Morgado, J. Varajão, A. Haidimoschi, G. Doppler, H. Koivusalo, P. Jokinen, G. Velegrakis, C. Sancin, and V. 
Carmenini, Virtual Learning for the management of successful SMEs in Europe. In Morgado, Leonel; Zagalo, Nelson; Boa-Ventura, Ana 
(Eds.) "Proceedings of the SLACTIONS 2009 International Conference - Life, imagination, and word using metaverse platforms", pp. 165-
170, ISBN 978-972-669-924-8. Vila Real, Portugal: Universidade de Trás-os-Montes e Alto Douro (2009). 

[6] M. Boulos, L. Hetherington, and S. Wheeler, Second Life: an overview of the potential of 3-D virtual worlds in medical and health 
education, Health Information & Libraries Journal, 24 (4), 233-245 (2007). 

[7] K. Hudson, K. deGast-Kennedy, Canadian Border Simulation at Loyalist College, Journal of Virtual Worlds Research, 2 (1), 3-11 (2009). 
[8] S. de Freitas, Serious virtual worlds. A scoping study. Bristol, UK: JISC (2008). 
[9] R. Smith, The long history of gaming in military training. Simulation & Gaming, 41 (1), 6-19 (2010). 
[10] K.A. Orvis, J.C. Moore, J. Belanich, J.S. Murphy, and D.B. Horn, Are soldiers gamers? videogame usage among soldiers and implications 

for the effective use of serious videogames for military training. Military Psychology 22 (2), 143-157 (2010). 
[11] T.M. Sotomayor, Teaching tactical combat casualty care using the TC3 sim gamebased simulation: a study to measure training effectiveness. 

Studies in health technology and informatics, 154, 176–179 (2010). 
[12] P.A. Fishwick, An introduction to OpenSimulator and virtual environment agent-based M&S applications. In Winter Simulation Conference 

(WSC '09), 177-183 (2009). 
[13] G. Krasner and S. Pope, A cookbook for using the model-view controller user interface paradigm in Smalltalk-80, Journal of Object-

Oriented Programming, 1 (3), 26-49 (1988). 
[14] C. Stocker, B. Sunshine-Hill, J. Drake, I. Perera, J. Kider and N. Badler, CRAM it! A comparison of virtual, live-action and written training 

systems for preparing personnel to work in hazardous environments. In Hirose, Michitaka; Lok, Benjamin; Majumder, Aditi; and 
Schmalstieg, Dieter (Eds.), "IEEE Virtual Reality 2011 Singapore, March 19-23, 2011, Proceedings", pp. 95-102, ISBN 978-1-4577-0037-8. 
Danvers, MA: IEEE (2011). 

[15] N. Badler, C. Erignac, and Y. Liu, Virtual humans for validating maintenance procedures, Communications of the ACM, 45 (7), 56-63  
(2002). 

[16] T. Marsh, Serious games continuum: Between games for purpose and experiential environments  for purpose. Entertainment Computing, 
2(2), 61–68. (2011). 

[17] V. Narayanasamy, Wong K. W., Fung C. C., Distinguishing  Games and Simulation Games from Simulators, ACM  Computers in 
Entertainment vol. 4 (2),  9, (2006). 

[18] A. Vilela, A. Marques, H. Costa, J. Rafael, R. Prada, and L. Morgado, Aplicação de avatares autónomos para desempenhar o papel de 
membros na execução de trabalhos em equipa, in “CISTI 2012: Actas de la 7ª Conferencia Ibérica de Sistemas y Tecnologías de 
Información. 2012”, Madrid, Spain (2012). 

[19] R. Smith, B. Hawkins, Lean Maintenance. Oxford, UK: Elsevier Butterworth-Heineman (2004). 
[20] A. Holzinger, M. Kickmeier-Rust, S. Wassertheurer, and M. Hessinger, Learning performance with interactive simulations in medical 

education: Lessons learned from results of learning complex physiological models with the HAEMOdynamics SIMulator, Computers & 
Education vol. 52 (2), 292-301 (2009). 


