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Retrofitting of existing buildings offers significant opportunities for improving occupants’ comfort 

and well-being, reducing global energy consumption and greenhouse gas emissions. This is being 

considered as one of the main approaches to achieve sustainability in the built environment at 

relatively low cost and high uptake rates. Although a wide range of retrofit technologies is readily 

available, methods to identify the most suitable set of retrofit actions for particular projects are still 

a major technical and methodological challenge. 

This paper presents a multi-objective optimization model using genetic algorithm (GA) and artificial 

neural network (ANN) to quantitatively assess technology choices in a building retrofit project. This 

model combines the rapidity of evaluation of ANNs with the optimization power of GAs. A school 

building is used as a case study to demonstrate the practicability of the proposed approach and 

highlight potential problems that may arise. The study starts with the individual optimization of 

objective functions focusing on building’s characteristics and performance: energy consumption, 

retrofit cost, and thermal discomfort hours. Then a multi-objective optimization model is developed 

to study the interaction between these conflicting objectives and assess their trade-offs.

Keywords: Building retrofit, Multi-objective optimization, Genetic algorithm, Artificial neural 

network, Energy efficiency, Thermal comfort

Nomenclature

ANN Artificial Neural Network

DM Decision Maker

EC Energy Consumption

EPBD Energy Performance of Buildings Directive

EU European Union

EWAL External Wall insulation material 

GA Genetic Algorithm
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HVAC Heating, Ventilation, and Air-Conditioning

LHS Latin Hypercube Sampling

MCA Multi Criteria Analysis

MOGA Multi-Objective Genetic Algorithm

MOO Multi-Objective Optimization

PMV Predicted Mean Vote

QHEAT Energy consumption for space heating

QCOOL Energy consumption for space cooling

QSC Heating production by Solar Collector

QSHW Energy consumption for sanitary hot water 

ReCost Retrofit Cost

ROF Roof insulation material

SC Solar Collector

SHW Sanitary Hot Water

TPMVD total percentage of discomfort hours

WIN Window

1. Introduction

The energy sector faces significant challenges that everyday become more acute. The current energy 

trends raise great concerns about the ‘‘three Es’’: environment, energy security and economic 

prosperity, as defined by the International Energy Agency [1]. The building sector is among the 

greatest energy consumers, using large amounts of energy and releasing considerable amounts of 

Green House Gases (GHG). In the United States in 2010, buildings accounted for 41% of total primary 

energy consumption and 74% of electricity consumption [2]. About 40% of CO2 emissions, 54% of 

SO2, and 17% of NOx produced in the U.S are due to building-related energy consumption. A similar 

situation is also observed in the European Union (EU), where the building sector uses 40% of total 
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final energy consumed and releases about 40% of total CO2 emissions. In the last ten years (1999-

2009), EU-27 dependency on imported energy has grown, reaching 53.9% in 2009. This represents 

an increase of 9 percentage points from 1999 [3]. As a consequence, the cornerstone of the 

European energy policy has an explicit orientation towards the conservation and rational use of 

energy in buildings as the Energy Performance of Buildings Directive (EPBD) 2002/91/EC [4] and its 

recast [5] indicate.

Most European countries have succeeded in reducing energy consumption of new dwellings by more 

than 50% without increasing their building cost, and therefore energy efficiency has achieved great 

acceptance among building owners [6]. These buildings represent about 20% of the building stock 

but consume only 5% of the energy. However, even if all future buildings were to be built so that 

their electrical energy and heat energy demands were very low, it would still only mean that the 

increase in energy demand would be reduced. It would not reduce present demand. For many years 

to come, measures taken in existing buildings will have the most significant effect on the total 

energy demands in the building stock [7].

When designing new buildings, only relatively limited additional investments are often needed to 

make them very energy-efficient. On the other hand, it is more difficult and costly to bring about 

substantial energy savings in existing buildings, though it is nearly always possible to identify a 

number of measures that are both energy-saving and cost-effective [8]. However, both in designing 

new buildings and carrying out measures in existing buildings, it is extremely important that the 

solution applied and the measures taken are well founded and correctly chosen [9]. That is, when 

buildings are subject to retrofit, it is very important to select the optimal strategy in a timely 

manner, since if other solutions are chosen and implemented it will just be possible to change the 

building at a later occasion at a much higher cost.

The works involved in retrofit are usually of complex and heterogeneous nature that require various 

specialties to be integrated in highly variable conditions. Furthermore, a thorough building's retrofit 
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evaluation is quite difficult to undertake, because a building and its environment are complex 

systems regarding technical, technological, ecological, social, comfort, esthetical, and other aspects, 

where every sub-system influences the total efficiency performance and the interdependence 

between sub-systems plays a critical role [10].

This paper has five sections, including the introduction. Section 2 presents a brief overview of 

models and methodologies developed to support decisions regarding building retrofit. The modules 

in the proposed approach are discussed in detail in section 3. The application of the model to the 

retrofit of a school building is described in section 4. Finally, section 5 summarizes conclusions and 

discusses topics for future research.

2. Literature review

There are a number of models and methods developed to assess conditions and support decisions 

pertaining to building retrofit. These methodologies can be categorized into two main approaches: 

the models in which alternative retrofit solutions are explicitly known a priori (see e.g. [11], [12], 

[13], [14]) and the models in which alternative retrofit solutions are implicitly defined in the setting 

of an optimization model (see e.g. [7], [15], [16], [17]). 

The most common a priori approach is one in which the decision maker (DM) assigns weights to 

each criterion, the weighted sum of the criteria then forming a single design criterion. It is then 

possible to find the single design solution that optimizes the weighted sum of the criteria. Gero et al. 

[11] were among the first to propose a multi-criteria analysis (MCA) model to be used at the process 

of building design in order to explore the trade-offs between the building thermal performance and 

other criteria such as capital cost and usable area. More recently, other researchers have also 

employed MCA techniques to similar problems. Jaggs and Palmar [12], Flourentzou and Roulet [13], 

and Rey [14] proposed approaches for the evaluation of retrofitting scenarios. Kaklauskas et al. [10]

developed a multivariate design method and MCA for building retrofit, determining the significance, 
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priorities and utility degree of building retrofit alternatives and selecting the most recommended 

variant. 

These lines of research have allowed addressing many problems as far as buildings retrofit is 

concerned. However, most of them consider that a list of predefined and pre-evaluated alternative 

variants of the building retrofit options is given. In case a small number of such solutions have been 

defined, there is no guarantee that the solution finally reached is the best one (from the DM’s 

perspective). On the opposite case, when a large number of solutions are defined the required 

evaluation and selection process may become extremely difficult to handle. Moreover, MCA-based 

methodologies do not provide the designer with information about how sensitive each criterion is to 

changes of the other criteria [18].

The second approach (based on multi-objective optimization, MOO) enables to consider a large set 

of building retrofit options implicitly defined by the constraints defining the search space  and grasp 

the trade-offs between the objective functions helping to reach a satisfactory compromise solution. 

However, so far, relatively little attention has been paid to tackling building retrofit decision support 

with multiple objective optimization [19]. Diakaki et al. [15] investigated the feasibility of applying 

MOO techniques to the problem of improving energy efficiency in buildings, considering a simplified 

model for building thermal simulation. Asadi et al. [16] proposed an MOO model that supports the 

definition of retrofit actions aimed at minimizing energy use in a cost effective manner. Following 

this work, they developed an MOO model combined with TRNSYS (building performance simulation 

program) and GenOpt (an optimization program). The proposed model was used for the 

optimization of retrofit cost, energy savings, and thermal comfort of a residential building, in a 

framework of an MOO model [7].

Considering all the possibilities that the DM has available for building retrofit (e.g. HVAC systems and 

renewable energy sources), as well as all the objectives that he/she may wish to optimize (CO2

emissions, social objectives, etc.) may lead to the combinatorial explosion of the decision problem, 
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thus making the solving procedure extremely difficult and time-consuming. In such case, other 

optimization techniques, namely multi-objective genetic algorithms are necessary for tackling the 

problem. Wright et al. [20] used a multi-objective GA to find the trade-offs between the energy cost 

and occupant thermal comfort for the design of a single zone HVAC system. Hamdy et al. [21]

proposed an MOO approach based on GA to tackle the problem of designing low-emission cost-

effective dwellings, minimizing the carbon dioxide emissions and the investment cost for a two-story 

house and its HVAC system.

A main drawback of GA is the high burden whenever it is necessary to make a large number of calls 

to an evaluation function involving a high computational cost. In building applications, these 

evaluations are generally estimated by an external simulation program such as Computational Fluids 

Dynamics (CFD) or other simulation packages. If accurate results are required, each evaluation can 

be time consuming, and thus the complete computational process becomes extremely unattractive 

[22]. Accordingly, building optimization studies using GA generally tend to reduce the computational 

time by using two methods. The first method consists in using very simplified models instead of 

complex simulation software [23]. However, this method presents a risk of over-simplification and 

inaccurate modelling of building phenomena. The second method commonly used is to select very 

small GA populations and/or relatively small number of generations [24]. Again, the optimization can 

be significantly affected and may lead to narrow or non-optimal solution sets [25].

One very efficient, yet widely not exploited, solution to reduce the computational time associated 

with GA is to use a Response Surface Approximation Model (RSA) to first mimic the behavior of the 

base building model, and then use this RSA inside the GA for the evaluation of individuals [22]. By 

doing so, the computational time associated with each evaluation becomes negligible, while a good 

accuracy is maintained in the results. While several RSA methods exist, there is no common 

agreement regarding which technique is the best one [26]. Recently, Magnier et al. [22] used a 
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simulation-based ANN combined with GA to optimize thermal comfort and energy consumption in 

designing a residential building.

The current study proposes a MOO method for building retrofit strategies, based on the 

combination of GA and ANN. The proposed methodology is used for the optimization of energy 

consumption, retrofit cost, and thermal discomfort hours in a school building retrofit project. A wide 

decision space is considered, including alternative materials for the external walls insulation, roof 

insulation, different window types, installation of a solar collector to the existing building, and a 

wide range of HVAC system types to meet heating and cooling requirements.

3. Description of the Optimization approach

The optimization framework is summarized in Figure 1. First, a model of the existing building is 

created in TRNSYS and validated through the comparison with utility billing data. Then, using this 

model, a representative database of simulation cases is created using Latin hypercube sampling 

(LHS) algorithm. It is then used to train and validate the ANN. Finally, a multi-objective genetic 

algorithm (MOGA) is run using the ANN to evaluate potential solutions and find the non-dominated 

solutions.

Figure 1 Optimization framework

3.1 Parametric runs

In order to create a database for ANN training, parametric runs have to be executed. In order to 

automate TRNSYS runs, GenOpt (version 3.0.3) [27] is used. GenOpt is an optimization program for 

the minimization of a cost function that is evaluated by an external simulation program. When 

associated with TRNSYS, GenOpt can automatically generate building (.bui) and deck (.dck) files 

based on the chosen templates, run TRNSYS with those files, save results and restart again.

3.2 Design of experiments

In order to reduce the size of the training database while keeping the sample representative, LHS is 

used. LHS is one of the most common methods used to generate a small and representative sample 
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of a population, for specified numbers and ranges of variables. Studies have shown that using LHS, a 

number of cases greater than twice the number of parameters is sufficient to correctly sample the 

search space [28]. In this study, LHS is computed in MATLAB, using the Model-Based Calibration 

Toolbox (version 4.1).

3.3 Artificial neural network

ANNs are information processing systems that are non-algorithmic, non-digital, and intensely 

parallel [29]. They learn the relationship between the input and output variables by studying 

previously recorded data. An ANN resembles the biological neural system, composed by layers of 

parallel elemental units, called neurons. The neurons are connected by a large number of weighted 

links, over which signals or information can pass. Basically, a neuron receives inputs over its 

incoming connections, combines the inputs, performs generally a non-linear operation, and then 

outputs the final results. The most known, simple and used network arrangement is the feed-

forward model. In this model, the neurons are placed in several layers. The first one is the input 

layer, which receives inputs from outside. The last layer, called output layer, supplies the result 

evaluated by the network. Between these two layers, a network can have none, one or more 

intermediate layers called hidden layers. 

Figure 2 shows a three-layer feed-forward neural network with input, hidden, and output layers, 

which is the model used in this study. Each node in the input layer represents the value of one 

independent variable while the output nodes indicate the dependent variables.

Figure 2 ANN architecture

MATLAB computing environment has been chosen to generate the ANN model from the data using 

the neural network toolbox (version 7.0). It has been trained using a first sample from LHS, and 

checked for validation using a second and smaller sample.
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3.4 Multi-objective optimization

MOO models aim at capturing the multiple, conflicting and incommensurate aspects of evaluation of 

the merits of potential solutions, in order to identify their trade-offs and provide a sound technical 

basis to decision support. In general, due to the conflicting objective functions there is no unique 

solution to MOO but a set of non-dominated (Pareto optimal) solutions. In our model the 

simultaneous optimization of energy consumption, retrofit cost and thermal discomfort hours is 

sought. This MOO model is of combinatorial nature because of its structure and decisions to be 

made, and it is nonlinear due to the building performance calculations. Therefore, an MOGA has 

been selected to characterize the non-dominated front. 

Once trained and validated, the ANN is used as the evaluation function for energy consumption and 

thermal discomfort estimation within the MOGA. The GA toolbox (version 5.1) in MATLAB is used for 

optimization using the ‘gamultiobj’ function to identify the set of non-dominated solutions.

MATLAB’s ‘gamultiobj’ function uses a controlled elitist GA (a variant of NSGA-II [30]). Like any other 

GA, this is based on the evolution of a population of individuals, each of which is a solution to the 

optimization problem. In this study, an individual represents a retrofit option (embodying different 

technologies and types of intervention) to be carried out on a building. To use a genetic analogy, 

each individual is represented by a chromosome whose genes correspond to a number of the 

individual’s characteristics, as in Figure 3.

Figure 3 A solution to the retrofit optimization problem, as presented by a chromosome

3.5 Decision variables

The decision variables reflect the total set of alternative measures that are available for building 

retrofitting (e.g. windows, insulation materials, etc.). The set of retrofit actions concerns 

combinations of choices regarding external wall insulation material, roof insulation material, 

windows, installation of solar collector and different HVAC systems to the existing building. Five 

types of decision variables are defined concerning the alternative choices regarding:
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 the external wall insulation materials;

 the roof insulation materials;

 the windows type;

 the solar collectors type;

 the HVAC systems.

For simplicity, it is assumed that only one retrofit action, from each one of the five sets of actions,

may be selected for the building retrofit.

Assuming the availability of I alternative types of external wall insulation material, J alternative types 

of roof insulation material, K alternative types of windows, L alternative types of solar collector, and 

M alternative types of HVAC system, integer decision variables , , , , and 

  are defined as follows:

(1)

(2)

(3)

(4)

(5)

A list of alternative retrofit actions applied in this study is based on a CYPE rehabilitation price 

generator database (CYPEingenieros 2010 [31]) and presented in Appendix A. This list includes 24 

different external wall insulation materials, 18 roof insulation materials, 3 windows types, 4 solar 

collectors and 4 HVAC systems.

3.6 Objective functions

3.6.1 Energy consumption



Page 12 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

12

The energy consumption of the building is directly assessed by TRNSYS. The total energy 

consumption, EC, consists in the sum of energy demands for space heating (QHEAT), space cooling 

(QCOOL) and sanitary hot water (QSHW) systems. SHW production by solar collector (QSC) is 

subtracted from the total energy consumption. Moreover, energy consumption for lighting is not 

included because this is not expected to significantly change as a result of the implementation of the 

considered retrofit actions. After training the neural network model, the MOGA uses the ANN model 

to calculate energy consumption.

3.6.2 Retrofit cost

The overall investment cost for the building retrofit is ReCost(X), where (X denotes the vector of all 

decision variables defined in section 3.5) is calculated by adding individual retrofit action costs as 

follows:

(6)

Where:

– exterior wall surface area [m2];

- cost in [€/m2] for selected external wall insulation material; 

- roof surface area [m2];

- cost in [€/m2] for selected roof insulation material;

- windows surface area [m2];

– cost in [€/m2] for selected window;

- cost for selected solar collector [€];

- cost for selected HVAC system [€].

The retrofit actions (RAs) corresponding costs ( ) are extracted from 

RAs characteristics tables presented in Appendix A. A MATLAB function using expression 6 is written 

and incorporated into the MOGA to estimate the retrofit cost objective function ReCost(X).
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3.6.3 Total percentage of discomfort hours (TPMVD)

The metric used to assess thermal comfort is the predicted mean vote (PMV), based on Fanger’s 

model [32]. PMV is representative of what, in average,  a large population would think about a 

thermal environment, and is used to assess thermal comfort in standards such as ISO 7730 [33] and 

ASHRAE 55 [34]. It ranges from -3 (too cold) to +3 (too warm), and a PMV value of zero is expected 

to provide the lowest predicted percentage of dissatisfied people (PPD) among a population. In this 

study, an absolute value of 0.7 for PMV, the upper limit of category C, the less exigent comfort 

category in ISO 7730, is considered as the borderline of the comfort zone. Therefore, in order to 

maximize the thermal comfort, the total percentage of cumulative time with discomfort (|PMV| > 

0.7) over the whole year during the occupancy period, TPMVD(X), should be minimized. The total 

percentage of discomfort hours is also predicted by TRNSYS. After training the neural network 

model, the MOGA uses the ANN model to estimate TPMVD.

4. Model application on a school building

This section is aimed at illustrating how the approach described in section 3 can be used to provide 

decision support for selecting a satisfactory compromise solution based on the proposed model. The 

building under study is a school building constructed in 1983. 

The school building is located in Coimbra, Portugal and serves some 800 students and 117 staff. The 

building consists of 6 blocks, the main block designed for administration purposes. 4 blocks (A, B, C 

and D), include classrooms and laboratories. These four blocks have similar architecture, with 

different number of stories. Blocks A and D have three stories and blocks B and C have 2 stories. The 

last block is the sport pavilion. Total occupied space floor area is 9,850 m2 and is divided between 

the 6 mentioned blocks.

In this project block A, one of the four identical blocks (Class rooms) is selected as a case study. The 

central zone in this block is a big atrium with visibility to all other sections in the building. This 

central zone uses natural lighting.
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Figure 4 illustrates the schematic plan of ground, first and second floor for Block A. Six classrooms 

(A1-A6) are located in ground floor, besides bathroom and three storage rooms. There are nine 

classrooms in the first floor of Block A, as well as one bathroom and one laboratory. In the second 

floor, there are eight more classrooms and two storage rooms.

Figure 4 Schematic plan of ground, first and second floor of the case study

4.1 Building simulation

Table 1 presents summary of the set-up for the building. Based on this table, a building model is 

developed in TRNSYS. The type-56 multi-zone building is a reproduction of the reference building. 

The building model is divided into 5 zones: North zone, East zone, South zone, West zone, and 

Atrium zone. Heating is supplied locally in each room by electric resistance radiators; the buildings 

have no cooling system. However, as some of the considered HVAC retrofit actions include cooling 

systems, therefore, an estimation of cooling needs was required. This has been taken into account 

by considering the recommended set point for cooling according to Portuguese national regulation 

RSECE [35] which is equal to 25˚C.The atrium is not heated nor cooled. In order to validate the 

TRNSYS model, simulation results have been compared with utility billing data. The TRNSYS model 

has been run using the existing building parameters described earlier, with one hour time step, using 

DOE typical meteorological year version 2 (TMY2) weather data.

Table 1 Brief description of the base building parameters for simulation

4.2 Artificial neural network training and validation

As mentioned before, the MATLAB Neural Network toolbox has been used to train and develop the 

neural network model for simulating the building energy consumption and thermal discomfort. In 

general, designing an ANN model follows three main steps:

 Design of experiments including collecting and pre-processing the data;

 Building the network, and train the ANN model;



Page 15 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

15

 Validate the model and test the model performance.

4.2.1 Parametric runs

A sample of 950 cases was used for ANN training. This sample was created by using LHS, based on 

the decision variables (retrofit actions). All the cases have been simulated with TRNSYS, using 

GenOpt capability for automatic parametric runs.

Simulations were performed with 1 hour time step. The total simulation time of the 950 cases took 

around 3 days (5.19 minutes for each simulation) using an Intel Core2 Duo CPU workstation at 2.66 

GHz speed.

4.2.2 Artificial neural network training

The ANN model adopted in this study was composed of one input layer representing the 5 decision 

variables (different retrofit action types, i.e. EWAL, ROF, WIN, SC, and HVAC), one hidden layer 

composed of 15 neurons, and one output layer composed of the three energy consumption and one 

thermal comfort variables (QHEAT, QCOOL, QSHW, and TPMVD) (Figure 2). Selection of the optimal 

number of hidden layer neurons in the ANN architecture falls in the rubric of bias-variance dilemma. 

Bias indicates the degree of agreement between the model and the training data whereas variance 

represents the complexity of the approximating model. The number of hidden neurons determines

the model complexity of an ANN. Increasing the number of hidden layer neurons compromises the 

generalization ability of the ANN at the cost of minimizing the training data set error. The number of 

neurons in the hidden layer, in this study, has been found by trial-and-error. Transfer functions used 

are hyperbolic tangent sigmoid functions in the initial and hidden layers, and linear functions in the 

output layer. The method used for the ANN training is back-propagation, associated with Levenberg-

Marquardt and Bayesian regularization algorithms. All inputs and outputs were scaled to the [-1, 1] 

range prior to training to enable a better efficiency as recommended in MATLAB [36].

The ANN was trained with 950 cases. The training is considered to have reached convergence if the 

root mean square errors (RMSE) stabilizes over a certain number of iterations. The ANN training 
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reached this goal after 150 epochs, with a final RMSE of 0.0240. Regression correlation coefficients 

between the network outputs and the corresponding TRNSYS simulation outputs were found very 

close to 1 for the four outputs studied, thus demonstrating a very good correlation between outputs 

and target values.

4.2.3 Artificial neural network validation

A sample of 95 cases, different from the previous ones, has been used for ANN validation. The 

distribution of the relative errors for the four outputs is summarized in Table 2. The average relative 

errors regarding energy consumption outputs are good, with 1.4% for heating, 0.5% for cooling and 

0.4% for sanitary hot water. Regarding the thermal discomfort output TPMVD, the average error is a 

bit higher but still acceptable, with 2.5% for TPMVD.

Table 2 Statistical repartition of relative errors in ANN validation

4.3 Multi-objective optimization

The final goal of the optimization problem in this phase is the simultaneous optimization of energy 

consumption, retrofit cost, and total percentage of discomfort hours. An MOGA is used to tackle this 

MOO problem and identify the set of non-dominated solutions. A modified version of MATLAB 

‘gamultiobj’ function is used. The MOO problem can be summarized as follows, using integer 

decision variables stated in (1) – (5):

(7)
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EC and TPMVD are calculated by the neural network, whereas ReCost is calculated by a MATLAB 

function written using expression (6). Moreover, a MATLAB function using an ANN model as the 

input was written for creating a fitness function for the MOGA. The five decision variables encode 

the type of retrofit action for each category. 

After setting up the optimization variables and parameters, the results of the optimization process 

are illustrated in Figure 5 to Figure 10. Three sets of optimizations were carried out. The first set 

focused on single-objective optimization, i.e. individually minimizing energy consumption, retrofit 

cost, and thermal discomfort objective functions, in order to have an overview of the range of their 

values over the non-dominated solution set. The second set involved the MOO of pairs of objective 

functions, with the aim of understanding the specific trade-offs between them, and how much each 

could affect the building’s characteristics and performance. The third set involved the MOO of all 

three objectives. The aim is to further exploit the trade-offs at stake and find out how the results 

varies between the first two sets of optimizations and the last one as more evaluation aspects are 

considered. The visualization of results is intended to offer the decision makers an interactive tool 

suited for their analysis.

4.4 First set of optimization (single-objective)

In this first optimization set, the three objective functions (energy consumption, retrofit cost, and 

total percentage of discomfort hours) have been individually minimized. 

4.4.1 Single-objective minimization of Energy Consumption

The goal is to minimize energy consumption for heating, cooling and SHW purposes. The results are 

given in Table 3.
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In the EC optimized building, the insulation level is high with thick layers of insulating material with 

lowest U-values for external wall and roof. In addition, window type 3, which has the lowest thermal 

transmittance, is selected. Regarding the HVAC system, an oil-based boiler without cooling option is 

recommended. Furthermore, the flat solar collector with highest area among all the systems 

considered is recommended. However, this set of retrofit actions resulted in a significant increase of 

the retrofit cost with respect to the ReCost optimized building.

Table 3 Results of single-objective optimization (Refer to Appendix A for RAs characteristics)

 4.4.2 Single-objective minimization of retrofit cost

The results of this optimization are given in Table 3. Minimizing retrofit cost results in low insulation 

level and single glazed window. Besides, the cheapest HVAC system (oil-based boiler without cooling 

system) and the cheapest solar collector are recommended. However, this results in a significant 

increase of the energy consumption and thermal discomfort hours compared to the EC and TPMVD 

optimized buildings.

4.4.3 Single-objective minimization of total percentage of discomfort hours

The aim is to minimize the total percentage of thermal discomfort hours in the building. There is no 

cooling system in the existing building, either active or passive. The results are given in Table 3.

Minimizing TPMVD results in high insulation level and double glazed windows, similarly to 

minimization of energy consumption. Regarding HVAC system, HVAC type 2 with natural gas boiler 

for heating and chiller for cooling is selected that leads to significantly better indoor comfort 

compared to the existing building. 

As can be seen from Table 3, the results for minimization of retrofit cost diverged significantly from 

the others. The solutions that minimizes energy consumption and thermal discomfort are 

comparable, which is due to the nature of retrofit actions considered and objective functions. This 

table can be used to shape the expectation of the DMs and help them to elicit appropriate 
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constraints to objective function values for further considerations, namely contribution to focus the 

search for new solutions in restricted regions of the search space.

4.5 Second set of optimization (two-objective)

In each of these multi-objective optimizations, two objectives were chosen from among energy 

consumption, retrofit cost, and total percentage of discomfort hours. 

4.5.1 Multi-objective optimization of energy consumption and total percentage of discomfort hours

The aim is to simultaneously minimize EC and TMPVD. The results are given in Figure 5. Each point 

on the Pareto front is a solution associated with a set of decision variables representing retrofit 

actions. 

The optimization process generates three solutions, which form the Pareto front. The single-

objective optimization results for EC and TPMVD are similar, with one major difference which was 

the HVAC system. The external wall insulation material and window type are the same. The roof 

insulation material characteristic is also similar. In the multi-objective optimization, there was a 

minimization of the energy consumption by changing HVAC system type from the system with 

cooling (HVAC = 2) to the system without cooling option (HVAC = 1).

It is worthwhile also to mention that the small number of non-dominated solutions is due to the fact 

that the lower EC values are mainly achieved with the HVAC system type 1 without cooling option 

(HVAC = 1) that leads to high TPMVD values. Therefore, a large number of potential solutions are 

dominated by the EC optimal solution. Moreover, Air Source Heat Pump (HVAC = 3) has been 

replaced by oil-based boiler with no cooling option, a significant decrease in energy consumption 

resulted, which explains the large step at EC equal 28.52 [kWh/m2year] in the Pareto front as 

exhibited in Figure 5.

Figure 5 Multi-objective solutions for the building retrofit strategies (EC – TPMVD) (Refer to Appendix A for RAs 

characteristics)
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4.5.2 Multi-objective optimization of energy consumption and retrofit cost

The single-objective optimization suggests that these objectives are strongly opposed. The results 

are given in Figure 6. There is a larger number of non-dominated solutions than in the case of EC and 

TPMVD. 

Regarding the HVAC system the solutions are all similar, consisting of oil-based boiler without 

cooling option. None of the HVAC systems with cooling option is selected since this requires 

additional investment cost and energy consumption compared to the other non-dominated 

solutions already computed. This can be explained since there is no constraint on summer 

overheating (or TPMVD), and therefore there is no reason for additional investment in a cooling 

option.

Wall and roof insulation material as well as windows and solar collector systems vary in different 

non-dominated solutions. Also, it is worthwhile to mention that the obtained solutions on the Pareto 

front are found to be grouped according to the window types. This reveals that the window type has 

a stronger influence on the low EC cost-effective solutions than the other decision variables. 

To obtain minimum solutions of ReCost, single glazed window (WIN=1), the lowest price window, 

and the cheapest solar collector (SC=3), is found to be optimal with incrementally additional 

insulation compared to the existing building to lower the energy consumption. However, since the 

thickest insulation with lowest U-values for external wall and roof (EWAL= 16, ROF = 18) as well as 

the largest solar collector (SC=2) are selected, the optimization leads to double-glazed window 

(WIN=2). This leads to a significant reduction in the EC, explaining the discontinuity (EC step) in the 

Pareto front at 34.24 kWh/m2year of EC as illustrated in Figure 6. The same phenomenon happens at 

the second step in the EC (EC = 24.38) in the Pareto front, where the optimization leads to window 

type 3 with lowest U-value resulting to a significant reduction in the EC.

Figure 6 Multi-objective solutions for the building retrofit strategies (EC - ReCost) (Refer to Appendix A for RAs 

characteristics
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4.5.3 Multi-objective optimization of total percentage of discomfort hours and retrofit cost 

The results of this optimization are given in Figure 7. The different non-dominated solution all fall 

between two single-objective optima.

Regarding the solar collector, all the recommended solutions are equal: the cheapest solar collector 

is recommended. All the other retrofit actions vary in different non-dominated solutions. The 

optimization solver tries to minimize TPMVD using optimal combinations between the building 

envelope parameters (including external wall and roof insulation materials, and window type) and 

the HVAC system type.

Double glazed window with lowest thermal transmittance, thick layer of insulation with low U-values 

for external wall insulation and roof, and the HVAC system type 2 with cooling option are selected 

giving the lowest TPMVD value. A cheaper HVAC system (HVAC = 3) is utilized to obtain a set of 

solutions which produce smaller amounts of ReCost without sacrificing thermal comfort too much. 

For more reduction in ReCost, HVAC system type 1 is used. Moreover, window type 2 then type 1 is 

selected to reduce the ReCost. There is a large discontinuity in the Pareto front at 38.62% of TPMVD. 

This can be explained by changing the HVAC type 3 to 1 with no cooling option. As can be seen, a 

relatively small amount of reduction in ReCost leads to a large reduction in thermal comfort. 

Therefore, in the current case, the DM could be convinced to slightly increase the amount of 

investment from 42 k€ to 50 k€ to improve the thermal comfort in the building by 20 percentage 

points.

Figure 7 Multi-objective solutions for the building retrofit strategies (TPMVD - ReCost) (Refer to Appendix A for RAs 

characteristics)

The three sets of optimization presented above results in the following conclusions:

 The number of non-dominated solutions for objectives with not much in conflict 

characteristics is lower than for those with dissimilar characteristics.
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 The analysis of the results shows the physical characteristics of solutions and helps to 

understand the simultaneous influence of the decision variables on the EC, ReCost, and 

TPMVD.

 Without considering a constraint on summer overheating, the influence of the window type 

on the results is more significant than the influence of the other decision variables.

 There are often discontinuities in the Pareto front where it is possible to gain a lot in one 

objective by sacrificing only a little in the other objective.

4.6 Third set of optimization (three-objectives)

The three objectives dealt with in this set of optimization are energy consumption, retrofit cost, and 

total percentage of discomfort hours. They are treated simultaneously, and the Pareto optimal 

surface is displayed in three dimensions. The results are given in 3D in Figure 8, and in 2D projections 

in Figure 9 and Figure 10. 

Figure 8 Results of multi-objective optimization - 3D visualization

Figure 9 illustrates a 2D projection for energy consumption and retrofit cost, including the 

corresponding TPMVD color map. Figure 10 presents a 2D projection for energy consumption and 

TPMVD, including the corresponding ReCost color map. This color map is not a surface and is used as 

a visual aid to help determining the values of the third objective function (not in the horizontal and 

vertical axes). It is worthwhile to mention that the obtained non-dominated solutions on the Pareto 

front are found to be mainly classified according to the window type and HVAC or solar collector 

type in each set.

From Figure 9 and Figure 10, it can be seen that achieving EC values lower than 20 [kWh/m2year] is 

possible with thick wall and roof insulation material and double glazed window type 3. Besides, an 

HVAC system with no cooling option should necessarily be selected to obtain the lowest EC values. 

This set of non-dominated solutions leads to TPMVD values not greater than 30%. Except this sub-
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set of non-dominated solutions, the other solutions with the HVAC type 1 results in high thermal 

discomfort hours (more than 45%).

The HVAC system and window type play a major role in changing the TPMVD values of the set of 

non-dominated solutions. For example, to attain TPMVD values lower than 20%, the HVAC type 2 or 

4 with cooling option and window type 3 with lowest thermal transmittance value are selected to 

minimize the thermal discomfort hours in the building, as depicted in Figure 9.

To obtain non-dominated solutions of minimum ReCost, the HVAC system type 1 with no cooling 

option, and the window type 1 single glazed window, both with lowest price among the set of HVAC 

and window retrofit actions, is found to be optimal. However, this set of non-dominated solutions 

results in the highest number of thermal discomfort hours in the building.  Therefore, the 

optimization leads to HVAC option 2 and 3, with the same window type, to achieve better thermal 

comfort in the building (Figure 9). Nevertheless, this set of non-dominated solutions results in higher 

energy consumption (EC more than 42 [kWh/m2year]).

Figure 9 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection (EC – ReCost) (Refer to Appendix A 

for RAs characteristics)

Figure 10 shows that at the value of EC 28 [kWh/m2year], reaching TPMVD values less than 25% or 

more than 45% is possible. This can be shown by points (A) and (B). Point (A) has TPMVD of 51.92%,

which is higher than that for point (B), which is 18.19%. For the latter, a double glazed window with 

lowest thermal transmittance (WIN = 3) among all the windows considered, and HVAC system type 4 

with cooling option are selected to lower summer overheating and consequently decrease the 

TPMVD value. To keep the same level of EC, the optimization solver selects HVAC system type 1 

without cooling option and window type 2, which has lower cost. This leads to sacrificing thermal 

comfort (TPMVD value reached to 51.92% from 18.19%). However, moving from point (A) to point 

(B), requires an additional investment of 60 k€.
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Figure 10 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection (EC – TPMVD) (Refer to Appendix 

A for RAs characteristics)

The most important conclusions from the optimization presented above are:

 Regarding the characteristics of the envelope, the simultaneous optimization of three 

objectives gives a larger diversity of retrofit solutions to be presented to the DM. 

 The obtained non-dominated solutions are found to be classified mainly according to the 

window type and HVAC or solar collector type in each set. The influence of the window type 

and HVAC system on the results is more significant than the influence of the other decision 

variables.

 For achieving the best indoor thermal comfort (lowest TPMVD values), investing in high price 

HVAC system could be a better solution than investing in additional insulation and other 

low-energy measures.

 TPMVD values in the range of 20 to 30% are achievable even with a HVAC type without 

cooling option. In case this range of TPMVD value is acceptable by the DM, the set of non-

dominated solutions with HVAC system type 1, window type 3 and thick layer of external 

wall and roof insulation would be the cheapest means to attain low EC and ReCost values. 

However, if the DM is slightly more ambitious at the investment stage (retrofit cost), 

coupling HVAC system type 2 would provide very low TPMVD values.

 The large number of solutions might be considered either as an advantage or a 

disadvantage: on the one hand, there is a large variety of interesting retrofit actions 

recommendation; on the other hand, it may be difficult to choose between them.

This set of optimizations highlights the major advantage of a multi-objective formulation, which is to 

provide a thorough understanding of the trade-offs between the competitive objectives, and bring 

the potential of each investment into focus.
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5 Conclusions and future works

A multi-objective optimization model using GA and ANN was applied to a school building case study. 

Although it required a significant amount of training data, the ANN was able to accurately 

approximate the existing building simulation software results. Using the ANN, each multi-objective 

optimization was undertaken with a computational time as low as 9 minutes. The total 

computational time associated with the whole optimization (i.e. including ANN training and 

validation) is approximately 3 days. In case an exhaustive-computation search method is 

implemented, then 24×18×3×4×4=20,736 simulation runs are needed to obtain all possible 

candidate solutions. The execution time of one simulation run is about 5.19 min. This means that 75 

days would be required to get the exhaustive search results for the predefined problem. In other 

words, this optimization would have never been practical without using the proposed approach.

Regarding the optimization results, the single-objective optimization provided an understanding of 

the impact of each set of retrofit actions and objective function on the building’s overall 

performance after retrofit. Following that, the proposed multi-objective algorithm produced a wide 

range of non-dominated solutions. The model assessed their overall performance, while at the same 

time quantifying the impact of their individual components. Furthermore, 2D and 3D graphical 

representation of non-dominated frontier unveils the trade-offs between the competitive objectives. 

Moreover, using the graphs, one can ascertain the impact on thermal comfort and retrofit cost of 

any reduction or increase in the energy consumption. The final decision can therefore be based on a 

real understanding of the situation, and of the impact of energy consumption on thermal comfort 

and retrofit cost. The search space, and therefore the set of non-dominated solutions, depends on 

the alternative retrofit actions considered and the constraints that may be imposed to allow their 

combination.

The proposed approach shows a great potential for the solution of multi-objective building retrofit 

problems, and can be used as an aid to decision-making in the context of a retrofit project. Knowing 
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what can be feasibly achieved and what trade-offs are at stake, the DMs can progress towards the 

choice of the best compromise solutions by inserting constraints of the levels of the objective 

functions, for instance, or look for the solution that is closer to their aspiration levels.

The further consideration of a larger range of possible choices for renewable energy should be 

included in the future work, for example allowing for solar collector sizes that range from those 

equal to or exceeding the total roof area at the upper level to no collectors at the lower. Also, other 

choices such as natural ventilation could be explored within a wider group of possible design 

choices. 

Furthermore, it would be necessary as a future work to combine the proposed model with 

mechanism to incorporate the DM’s preferences into the decision aid process. Besides, since a 

building retrofit is subject to many uncertainty factors, such as in savings estimation, weather 

forecast, retrofit actions cost data, therefore uncertainty assessment is essential to provide the DMs 

with a sufficient level of confidence to select and determine the best retrofit solutions.
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Appendix A List of retrofit actions 

In this appendix the alternative retrofit actions (RAs) considered are presented. Alternative RAs 

related to different external wall and roof insulation materials are displayed in Tables A.1 and A.2. 
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Different alternative choices regarding windows are displayed in Table A.3. Finally different solutions 

for solar collectors and HVAC systems are presented in Tables A.4 and A.5. 

Table A.1 Characteristics of alternative external wall insulation materials

Table A.3 Characteristics of alternative windows

Table A.4 Characteristics of alternative HVAC systems

Table A.5 Characteristics of alternative solar collector systems
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Figures Captions

Figure 1Optimization framework 

Figure 11 ANN architecture

Figure 3 A solution to the retrofit optimization problem, as presented by a chromosome

Figure 12 Schematic plan of ground, first and second floor of the case study

Figure 5 Multi-objective solutions for the building retrofit strategies (EC – TPMVD) (Refer to 

Appendix A for RAs characteristics)

Figure 6 Multi-objective solutions for the building retrofit strategies (EC - ReCost) (Refer to 

Appendix A for RAs characteristics

Figure 7 Multi-objective solutions for the building retrofit strategies (TPMVD - ReCost) 

(Refer to Appendix A for RAs characteristics)

Figure 8 Results of multi-objective optimization - 3D visualization

Figure 9 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection 

(EC – ReCost) (Refer to Appendix A for RAs characteristics)

Figure 10 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection 

(EC – TPMVD) (Refer to Appendix A for RAs characteristics)
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Figure 13 Optimization framework 
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Figure 2 ANN architecture



Page 32 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

32

251658240

Figure 3 A solution to the retrofit optimization problem, as presented by a chromosome
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ground floor

First floor

Second floor

Figure 4 Schematic plan of ground, first and second floor of the case study



Page 34 of 46

Acc
ep

te
d 

M
an

us
cr

ip
t

34

251658240

Figure 5 Multi-objective solutions for the building retrofit strategies (EC – TPMVD) (Refer to Appendix A for RAs 

characteristics)
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Figure 6 Multi-objective solutions for the building retrofit strategies (EC - ReCost) (Refer to Appendix A for RAs 

characteristics
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Figure 7 Multi-objective solutions for the building retrofit strategies (TPMVD - ReCost) (Refer to Appendix A for RAs 

characteristics)
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Figure 814 Results of multi-objective optimization - 3D visualization
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Figure 9 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection (EC – ReCost) (Refer to Appendix A 

for RAs characteristics)
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Figure 10 Results of multi-objective optimization of EC, ReCost and TPMVD - 2D projection (EC – TPMVD) (Refer to Appendix 

A for RAs characteristics)
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Highlights

An optimization model using Genetic Algorithm and Neural Network is developed.

The model is used to provide the non-dominated solutions for a case study.

Strengths and limitations of the proposed approach are reviewed and discussed.
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Table 1 Brief description of the base building parameters for simulation

Location Coimbra, Portugal

Building type School building

utility floor area 1,886 [m2]Floor areas

conditioned floor area 1,622 [m2]

Average floor height 3.02 [m]

Window height 2.7 [m]

Dimension and Heights

Window-to-wall ratio 65% , except South façade 59%

External walls 2cm plaster + 11 cm Brick + 4cm air space + 

11 cm brick + 2 cm plaster (U-value = 1.737 

W/m2K)

Roof 2cm plaster + 22cm concrete + 1cm 

bitumen + 4 cm cement (U-value = 2.654 

W/m2K)

Construction of building 

envelope

Windows Single-pane simple glass (U-value = 5.68 

W/m2K, g-value = 0.855)

Monday to Friday 8:00 – 20:00 Operating hours

Weekend Closed

Total number of 

persons

200

Lighting + Equipment Lighting 10 W/m2, Equipment 12 W/m2

Infiltration rate 0.9 ACH

Cooling system None

Heating System electric resistance radiators

HVAC parameters

Thermal set points 20˚C – No max.
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Table 2 Statistical repartition of relative errors in ANN validation

Relative error <1% <2.5% <5% <10% <25% Average 

relative 

Error (%)

QHEAT 47% 70% 89% 99% 100% 1.4

QCOOL 92% 100% 100% 100% 100% 0.5

QSHW 93% 100% 100% 100% 100% 0.4

Percentage of 

cases when 

error falls into 

the range TPMVD 33% 60% 89% 98% 100% 2.5

Table 3 Results of single-objective optimization (Refer to Appendix A for RAs characteristics)

Type of 

solution

EC 

[kWh/m2year]

ReCost 

[k€]

TPMVD 

[%]

EWAL ROF WIN HVAC SC

[min] EC 14.58 100.840 27.61 16 18 3 1 2

[min] ReCost 37.82 36.859 60.24 1 7 1 1 3

[min] TPMVD 32.37 108.69 16.70 16 11 3 2 3
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Table A.1 Characteristics of alternative external wall insulation materials

No. Insulation 

type

Name t             

Thickness (m)

U-value     

(W/m2K)

c                    

Cost (€/m2)

1-8 Cork OUTWALL_CORKHIGH3 to 

OUTWALL_CORKHIGH 10

0.03-0.1 (with 

0.01 step)

1.408 - 0.508 5.55-17.95

9-16 EPS OUTWALL_EPSLOW3 to 

OUTWALL_EPSLOW10

0.03-0.1 (with 

0.01 step)

0.8 - 0.265 7.64 - 13.68

17-24 XPS OUTWALL_XPSLOW3 to 

OUTWALL_XPSLOW10

0.03-0.1 (with 

0.01 step)

0.8- 0.265 9.65 - 26.78

Table A.2 Characteristics of alternative roof insulation materials

No. Insulation 

types

Name t                  

Thickness (m)

U-value     

(W/m2K)

c                         

Cost (€/m2)

1 - 6 XPS ROOF_XPS3 to 

ROOF_XPS8 

0.03 - 0.08 (with 

0.01 step)

0.8 - 0.328 9.65 - 22.78

7 - 12 EPS ROOF_EPS3 to 

ROOF_EPS8

0.03 - 0.08 (with 

0.01 step)

0.8 - 0.328 4.32 - 10.7

13 - 18 Polyurethane ROOF_PU3 to 

ROOF_PU8

0.03 - 0.08 (with 

0.01 step)

0.658 - 0.265 8.34 - 20.18
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Table A.3 Characteristics of alternative windows

No. Name Thermal 

transmittance 

(W/m2°C)

Effective solar energy 

transmittance (%)

Cost (€/m2)

1 Single glazing 

Typical glazing

5.16 68.20 34.08

2 2bl glazing 

Luxguard 

SunGuard clear 

Argon 6/16/4

2.54 58.90 100.05

3 2bl glazing 

window Argon-

filled 4/16/4

1.4 44.00 145.53

Table A.4 Characteristics of alternative HVAC systems

N Type Name Brand Generation efficiency 

(%) or 

COP(summer/Winter)

Cost(€)

1 Heating 

System 

only

Oil-based Boiler CR Remeha P320/4 

90KW

88 6911.52

2 Heating 

and 

Cooling 

systems

Natural Gas boiler 

(16368.37€) + 

Chiller(7821.47€)

CR Remeha P320/4 

90KW + York 

YCSA-80TP 80kW

88/3 24189.84
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3 Air Source Heat 

Pump(6506.05€)

MITSUISHI 

FDC250 VS/25 kW 

(3 units) 

2.5/3 19518.15

4

systems

Ground Source 

Heat Pump

Kensa Compact 

Plantroom 80kW

4.6/15 39000

Table A.5 Characteristics of alternative solar collector systems

N Type Name Brand Module # Collector 

area (m2)

E_Solar 

(MWh)

Total 

Cost(€)

1 FSD10 Saunier 

Duval

10 20.1 8.640 12918

2

Flat collector

FSD15 Saunier 

Duval

15 30.1 10.260 19377

3 AS10 Ao Sol 10 19.9 8.640 9950

4

CPC 

(Compound 

Parabolic 

Concentrating) 

Collector

AS15 Ao Sol 15 29.85 9.990 14925

Note- E_Solar (MWh) that is the energy production from solar collector has been calculated by SOLTERM software which is 

developed by the Portuguese National Laboratory for Energy and Geology (LNEG).


