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Abstract

The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from
Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured
and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints
on all background sources contributing to the background model. The expected background rate from the background
model for the 85.3 day WIMP search run is (2.6 ± 0.2stat ± 0.4sys) × 10−3 events keV−1

ee kg−1 day−1 in a 118 kg
�ducial volume. The observed background rate is (3.6±0.4stat)×10−3 events keV−1

ee kg−1 day−1, consistent with model
projections. The expectation for the radiogenic background in a subsequent one-year run is presented.

Keywords: LUX, dark matter, radioactive background, material screening, simulation

1. Introduction

The LUX experiment [1, 2] uses 370 kg of liquid Xe to
search for nuclear recoil (NR) signatures from WIMP dark
matter [3, 4, 5]. The LUX detector reconstructs event en-
ergy, position, and recoil type through its collection of scin-
tillation (S1) and electroluminescence (S2) signals. LUX
seeks sensitivity to rare WIMP interactions at energies on
the order of several keV. The extremely low WIMP in-
teraction rate necessitates precise control of background
event rates in the detector.

∗Corresponding Author: David_Malling@brown.edu

A particle that produces a WIMP search background
in LUX must mimic a WIMP signature in several ways.
WIMPs are expected to interact with Xe nuclei in the ac-
tive region, creating a NR event. WIMP interactions will
be single-scatter (SS) events, distributed homogeneously
in the active region. The LUX WIMP search energy win-
dow is de�ned in the range 3.4�25 keVnr, where the �nr�
subscript denotes that the energy was deposited by a nu-
clear recoil [2]. This window captures 80% of all WIMP
interactions, assuming a WIMP mass of 100 GeV and stan-
dard galactic dark matter halo parameters as described in
[2].
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The dominant background in the LUX WIMP search,
which principally constrains the experimental sensitivity
published for the 85.3 day run [2], is low-energy electron
recoil (ER) signatures in the Xe target. These events are
generated through electromagnetic interactions from pho-
tons or electrons. The energy window for ER events dif-
fers from that of NR events due to di�erences in scin-
tillation and ionization yield for each type of event. The
3.4�25 keVnr NR energy range has an S1 yield range equiv-
alent to 0.9�5.3 keVee, where the �ee� subscript denotes an
energy calibration for ER events. The ER energy range
0.9�5.3 keVee is therefore taken as the WIMP search back-
ground range for ER events.

ER events are created mainly by γ rays interacting
in the 250 kg active volume. Gamma rays are gener-
ated from the decay of radioisotope impurities in detec-
tor construction materials, with typical energies ranging
from ∼100 keV to several MeV. The dense liquid Xe tar-
get (2.9 g cm−3) attenuates γ rays of these energies at the
outer edge of the active region, with a mean free path on
the order of several cm. Gamma rays generated outside of
the detector are suppressed below signi�cance by the use
of a 300 tonne water shield and 20 tonne external steel
shield. The total water shielding thickness on all sides is
>2.5 meters thick.

ER events are also generated by radioisotope decays
within the Xe target itself. These isotopes are referred
to as �intrinsic.� Intrinsic isotopes generate β rays or X-
rays that are fully absorbed within mm of the decay site.
These isotopes are thoroughly mixed by convection and
di�usion, and are distributed homogeneously in the active
region. These energies of the β rays or X-rays can fall
within the 0.9�5.3 keVee WIMP search energy range.

A subdominant background is expected from NR sig-
natures from neutron scatters. Neutrons are generated in-
ternally in the detector through (α,n) interactions in con-
struction materials, and from spontaneous �ssion predomi-
nantly of 238U. These neutrons are generated with energies
on the scale of MeV, with a mean free path of order 10 cm
in liquid Xe. Neutrons are also generated from muon inter-
actions in the laboratory and water shield. Muon-induced
neutrons have energy at the GeV scale, with a mean free
path in liquid Xe much longer than the size of the detector.

LUX uses S1 and S2 signal characteristics for multiple
background rejection techniques. Scattering vertex posi-
tions in the detector are reconstructed with cm accuracy
in XY, and mm accuracy in Z. This was measured using
XYZ-uniform krypton and tritium calibration data. The
accuracy in Z is tied to the width of an S2 signal and the
drift speed of electrons in LUX of 1.5 µm/s This allows re-
jection of multiple scatter (MS) events, and enables the use
of an inner �ducial region in which to conduct the WIMP
search. The �ducial region excludes background events at
the detector edges and maximizes WIMP signal-to-noise.
Due to the limited γ ray mean free path, together with
the detector dimensions of 54 cm in height and 49 cm in
diameter and use of an inner �ducial volume, the num-

ber of single-scatter γ rays passing through a �ducial vol-
ume with radius 18 cm and height 40 cm is four orders
of magnitude less than the number of γ rays with shallow
penetration. The ratio of S2 to S1 also provides 99.6% dis-
crimination against ER events on average over the WIMP
search energy range, at 50% NR acceptance.

This work details modeling and measurements of the
LUX background rate from both electromagnetic and neu-
tron sources. Monte Carlo simulation studies of all back-
ground components and direct measurement of signatures
of these components in data are described in Sec. 2. The
characterization of ER background rejection using the S2/S1
ratio is described in Sec. 3. Comparison of expected and
measured low-energy background spectra is described in
Sec. 4.

2. Background Modeling

The LUX background model is comprised of multiple
contributions. Each background source has been deter-
mined by direct measurements of LUX data, or from sam-
pling of the Xe itself during the run. These measurements
are used to normalize Monte Carlo models of each back-
ground source. The Monte Carlo models are then used
to project the expected low-energy background rate in the
data. The details of the background model components,
and their constraints from data, are described in this sec-
tion.

2.1. LUX Detector Geometry

A detailed description of the LUX detector can be
found in [1]. Not all detector components are equally rele-
vant to the background model however; typically relevance
decreases with mass and distance from the active xenon
volume. For the purpose of this study, the dominant con-
tributions come from the xenon itself (intrisic sources in
the liquid), the PMTs, the PTFE covering the walls of
the active volume chamber, the copper for the PMT ar-
rays and radiation shielding, the titanium cryostat, and
the thermal insulation inside the vacuum space between
the two concentric titanium vessels. Other contributions
were also considered, as is discussed later in the text, but
those make up the vast majority of the neutron and gamma
background in the xenon.

2.2. LUXSim

LUX background modeling work was performed us-
ing the GEANT4-based LUXSim Monte Carlo simulation
package [6, 7]. The LUXSim package features a recon-
struction of the full LUX detector based on CAD designs.
The simulation geometry features all components with sig-
ni�cant mass or relevance to photon collection modeling.
The simulation also incorporates the LUX water shield,
which thus enables accurate modeling of γ ray and neu-
tron scattering and moderation within the main detector.
The high-�delity representation plays an important role in
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the modeling of low-energy ER and NR background contri-
butions from di�erent detector components, as well as the
e�ects of shielding in determining the γ ray and neutron
spectra incident at the active region. Simulation results
were checked extensively using analytic calculations of sig-
nal distributions, based on particle trajectories and mean
free paths in di�erent detector components. A rendering
of the LUXSim geometry is shown in Fig. 1.

LUXSim also faithfully reproduces detector signals from
ER and NR events. LUXSim incorporates the Noble El-
ement Simulation Technique (NEST) package [8], along
with several custom physics processes. These processes
extend the GEANT4 simulation to generate scintillation
photons and ionization electrons in the active region, and
are capable of reproducing LUX S1 and S2 waveforms. For
all radiogenic backgrounds in this work, LUXSim was used
to record only energy depositions, without the creation of
scintillation and ionization signals. NEST is used with
LUXSim to obtain the �nal low-energy S1 spectrum for
direct comparison with measured data.

Figure 1: Rendering of the LUX detector from the
LUXSim simulation package. LUXSim is used for all stud-
ies of LUX radiogenic backgrounds. All geometry compo-
nents are shown with semi-transparency. All high-mass
detector construction materials are included in the simu-
lation, as well as the external water shield. Details of all
LUX geometry components are given in [1]. Plastic panel-
ing and �eld shaping rings are cut away from the left side
of the image to more clearly show the detailed structure
of the PMT arrays. The cryostats are removed for clarity.

2.3. Gamma Rays from Construction Materials

2.3.1. Material Screening

LUX construction materials were assayed for their ra-
dioactive content before use in detector construction. The
materials were screened by high-purity Ge detectors at
the Soudan Low-Background Counting Facility (SOLO)
[9] and Berkeley Oroville facility. These facilities in total
screened >75 material samples in the course of the detec-
tor construction phase.

Screening results from counting at these facilities are
summarized for high-mass (& kg) construction materials in
Tables 1 and 2. The materials chosen represent >95% of
the detector dry mass contained within (and including) the
cryostats. Photomultiplier tube (PMT) screening results
are described in further detail in [9]. Titanium cryostat
material screening and cosmogenic activation studies are
described in detail in [10] and summarized in Sec. 2.3.2.

Screening results are reported for 238U and 232Th chain
isotopes for all materials. For materials that commonly
feature 40K or 60Co contamination, screening measure-
ments or upper limits are also reported for these isotopes.
No other radioisotope signatures were discovered during
counting, with the exception of cosmogenic 46Sc in Ti.
Results are reported for some materials for both 238U and
226Ra, corresponding to the �rst and second halves of the
full 238U decay chain. Materials were not subject to fur-
ther searches for chain disequilibrium due to the relatively
low neutron yield from the �rst half of the 238U chain
[11]. Neutron backgrounds are further constrained by di-
rect measurement of neutron MS events in Sec. 2.7. Only
the cryostat material shows a signi�cant 238U disequilib-
rium condition. The predicted neutron background from
this is discussed in Sec. 2.7.

The 232Th activity was measured using the 511 keV and
583 keV lines from 208Tl. As this isotope is the last in the
232Th decay chain, this leaves the potential for 232Th chain
disequilibrium in detector materials. Evidence of this dis-
equilibrium condition is seen from high-energy γ ray mea-
surements in Sec. 2.3.3. The potential increase in neutron
backgrounds from the observed disequilibrium is negligi-
ble, and is constrained by the neutron MS event search in
Sec. 2.7.

2.3.2. Cosmogenic Activation of Construction Materials

The LUX detector was assembled and operated at the
Sanford Surface Laboratory over a two year period, be-
fore installation in the Davis Underground Laboratory.
The operation of the LUX detector at the Sanford Sur-
face Laboratory resulted in the cosmogenic activation of
Ti and Cu detector construction materials. The activa-
tion products of concern with respect to detector back-
grounds are 46Sc, generated in Ti, and 60Co, generated in
Cu. Both of these isotopes have non-negligible half-lives
(46Sc 84 days; 60Co 5.3 years), and decay modes that can
generate WIMP search ER backgrounds. Cosmogenic ac-
tivation was stopped by moving the detector underground
before the beginning of WIMP search running.
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The LUX cryostats were selected from extremely low-
radioactivity Ti stock. Counting results and activation
studies are reported in [10]. Titanium produces one tran-
sient radioisotope, 46Sc, from both muon capture and neu-
tron spallation channels. Scandium-46 produces two si-
multaneous γ rays with energies 889 keV and 1121 keV.

A 6.7 kg control Ti sample was used to estimate the
total concentration of 46Sc produced in the LUX cryostats.
The sample was screened at the SOLO facility after two
years underground, and then transported by ground to
the Sanford Surface Laboratory. The sample was acti-
vated over a six-month period before being transported by
ground back to SOLO for re-analysis. Counting yielded a
measurement of 4.4 ± 0.3 mBq kg−1 46Sc. The measured
decay rate was consistent with predictions based on the
ACTIVIA simulation package [12], discussed in detail in
Sec. 2.4.1.

Based on these measurements, the total 46Sc decay rate
in the cryostats immediately after bringing the detector
underground on July 12, 2012 was 1.3 Bq, conservatively
assuming that the measured 46Sc content after the six-
month exposure represented 75% of the equilibrium ac-
tivation value after the full LUX exposure. The elapsed
time between moving LUX underground and beginning the
85.3 day WIMP search run was 284 days, and the 85.3 day
WIMP search run was conducted over a period of 109 cal-
endar days. The decay rate averaged over the 85.3 day run
was 85± 8 mBq. The incident γ ray �ux from this source
at the active region is below the level of measurement due
to shielding from other internal materials, preventing a
positive measurement of the 46Sc signature in data.

The LUX detector uses 620 kg of ultra-low-activity
oxygen-free high-thermal conductivity Cu in several con-
struction components. These components include PMT
array mounts, γ ray radiation shields, thermal insulation,
and �eld shaping rings. A review of Cu activation stud-
ies in [13] is used to estimate the 60Co production levels
in LUX. A variation of a factor ×4 is found from all con-
sidered studies. From the distribution of results, the ex-
pected activation rate at sea level for 60Co in Cu is taken
to be 62±29 kg−1 day−1. The production rate is assumed
to scale by a factor ×3.4 above that at sea level, tracking
with the increase in muon-induced neutron �ux at Sanford
Surface Laboratory surface altitude [14]. The change in
neutron spectrum at Sanford Surface Laboratory altitude
relative to sea level is assumed to have a subdominant ef-
fect on the activation rate. The estimated production rate
of 60Co in LUX internals is then 210 ± 100 kg−1 day−1.
The estimated total exposure time for the Cu internals at
the Sanford Surface Laboratory is 800 days, leading to a
total decay rate of 1.0± 0.5 mBq kg−1 at the time the de-
tector was taken underground. Counting results in Table 2
for Cu components include upper limits on the presence of
60Co before the components arrived at Sanford.

2.3.3. High-Energy Measurements and Model Fitting

LUXSim γ ray energy deposition spectra were gener-
ated as described in Sec. 2.2. The simulated spectra were
compared with measured data to re�ne the estimate of
238U, 232Th, 40K, and 60Co concentration in detector in-
ternals. Energy spectra in the active region from each of
these isotopes were simulated separately in the top (top
PMT array), bottom (bottom PMT array), and lateral
(PTFE / HDPE paneling) components adjacent to the ac-
tive region. The isotope decay rate per volume was held
constant between PTFE and HDPE components for the
latter case.

The decay rate of each isotope in each region was var-
ied independently to obtain the best �t to the measured
γ ray spectrum as a function of position in the active re-
gion. The �t included all energies above 500 keVee, avoid-
ing in�uence from activated Xe spectra at peak energies of
408 keVee and below. The measured γ ray energy spectrum
in the full drift region is compared with LUXSim model
estimates in Fig. 2. A two cm volume is removed from
the top and bottom to avoid contamination of the dataset
from events in irregular �eld regions. No radial cut is used,
because the XY event position reconstruction was found to
be skewed for high-energy events due to PMT saturation.
Both the initial model based on screening data and the
best �t model are shown. The reconstructed energy reso-
lution was �t with the curve σ/µ = 0.59 · E−1/2 + 0.03.

The measured spectrum in Fig. 2 includes both SS and
MS events falling within the active region position cut. En-
ergies for SS events were reconstructed from a combined
S1+S2 energy scale, based on calibration values for pho-
ton and ionization electron collection e�ciency. Energies
for MS events were reconstructed in several steps. The
initial energy estimate for each vertex was made from the
calibrated S2 signal size, and a comparison with lookup
tables for ionization electron yield as a function of energy
derived from NEST simulations. The total observed S1
signal was then apportioned to each vertex based on the
initial estimate of the vertex energy. The event energy was
then taken to be the sum of the combined S1+S2 energies
from each vertex.

The best-�t simulation peak sizes show good agree-
ment with observed data, with the exception of a 50%
predicted excess of the 969 keV line from 228Ac (232Th
chain). Agreement with the 228Ac peak cannot be found
while preserving agreement with peaks at higher and lower
energies, unless 232Th chain equilibrium is broken and the
228Ac rate is reduced independently. Equilibrium break-
age for 228Ac alone is not a reasonable model, since 228Ac
has a 6.2 hour half-life, and would regain its equilibrium
concentration on this timescale. The de�cit of 228Ac would
suggest removal of the parent 228Ra from construction ma-
terials, e.g. during manufacturing processes. A detailed
model of the isotope concentration was not investigated,
since the presence of 50% excess 228Ac in the model does
not a�ect γ ray or neutron background predictions in the
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WIMP search energy range.
The decay rates obtained from the best �t model are

given in Table 3. The total 238U, 232Th and 40K radioiso-
tope content was found to be within one standard devia-
tion of the predicted concentration from material screen-
ing, although individual concentrations in the various ma-
terials were seen to vary by several standard deviations,
and were seen to be partially degenerate in the �t between
the di�erent simulated components. 60Co was found to
have an excess consistent with a 1.7± 1.0 mBq concentra-
tion in Cu construction materials, in agreement with the
predicted rate in Sec. 2.3.2.

The ER background in the WIMP search energy range
0.9�5.3 keVee is shown as a function of position from the
γ ray energy deposition spectra in Fig. 3. The decay rates
are normalized to the best-�t results listed in Table 3. The
γ ray low-energy continuum is �at, and the background
rates in units of DRUee are independent of the exact en-
ergy window for the WIMP search.
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Figure 2: Measured γ ray spectrum in the LUX drift re-
gion (black), with peak identi�cation labels. A 225 kg
�ducial volume is used for the analysis, removing the top
and bottom 2 cm of the drift region, and using no radial
cut. Data includes both SS and MS events. Event ener-
gies are reconstructed from the combination of S1 and S2
signals, as described in the text. Horizontal error bars are
shown, representing systematic uncertainties in energy re-
construction for high-energy events. Two simulation spec-
tra are shown for comparison. A spectrum based on pos-
itive counting measurements alone is shown in gray solid.
The spectrum with best-�t scaling for 238U, 232Th, 40K,
and 60Co decays, with independent rates in top, bottom,
and side regions of the detector, is shown as gray dashed
(red, in color). Fitting was performed for energies above
500 keVee. Energies below 500 keVee are shown to illus-
trate the continued agreement between γ ray spectra and
measured data below the �tting threshold. The spectrum
shown has a lower bound at 200 keVee. Best-�t decay rates
are listed in Table 3.

Figure 3: LUX γ ray ER background density in the range
0.9�5.3 keVee as a function of position, extrapolated from
high-energy measurements based on Monte Carlo spectra.
Rates are in units of log10 (DRUee). The 118 kg �ducial
volume used in the 85.3 day WIMP search run is overlaid
as the black dashed contour.

Region Isotope
Screening Best

Estimate [Bq] Fit [Bq]

Bottom

238U 0.58± 0.04 0.62± 0.16
232Th 0.16± 0.02 0.23± 0.06
40K 4.0± 0.4 2.7± 0.7
60Co 0.16± 0.01 0.22± 0.06

Top

238U 0.58± 0.04 0.87± 0.22
232Th 0.16± 0.02 0.25± 0.06
40K 4.0± 0.4 3.8± 1.0
60Co 0.16± 0.01 0.30± 0.08

Side

238U 0.94± 0.14 0.22± 0.06
232Th 0.36± 0.07 1.5± 0.38
40K 1.4± 0.1 2.4± 0.6
60Co � 0.36± 0.09

Table 3: Screening estimate and best-�t activity values
for radioisotopes modeled in high-energy γ ray analysis.
Screening estimate values are taken from SOLO screening
results for the PMTs and grids (corresponding to top and
bottom regions), and superinsulation and plastic thermal
insulation (side region). Materials with upper limits are
not incorporated into the initial estimate. Errors on the
best �t values are estimated to be 25%.
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2.4. Cosmogenic Xenon Radioisotopes

2.4.1. Production Models

The rate of production of noble element radioisotopes
in Xe due to cosmic ray exposure was assessed using the
ACTIVIA simulation package [12]. The ACTIVIA code
modeled isotope production in natural Xe after a 150 day
exposure at sea level. Only noble elements were consid-
ered, as the LUX puri�cation system is presumed to sup-
press the concentration of non-noble radioisotopes below
signi�cance [15, 16].

The short-term exposure history of the LUX Xe is well
known. From April 2012 to December 2012, the Xe was lo-
cated at Case Western Reserve University (altitude 200 m)
in a basement laboratory, where it was processed for Kr
removal as discussed in Sec. 2.6. The Xe was shipped by
ground to Sanford in separate batches and stored above
ground (altitude 1.6 km), before being brought under-
ground on January 30, 2013. This adds up to roughly half
the total Xe load in LUX having spent 49 days at Sanford
Aboveground Laboratory altitude, and the other half hav-
ing spent 7 days at that altitude. Reference [14] provides
some guidance for how to scale the cosmic-induced neutron
�ux and spectrum with altitude, which can be input into
activation simulations. However, the e�ect of immediate
surroundings in the lab can introduce an important sys-
tematic error in particular on the �ux of thermal neutrons
incident on the Xe. LUX does not have measurements
of the thermal neutron �ux at the various relevant loca-
tions. In the calculations below, the sea-level activation
results from ACTIVIA were used as a starting point. Sep-
arate simulation results from 49 days and seven days ex-
posure at Lead, SD altitude for the appropriate Xe masses
were added using the neutron �ux correction factor of ×3.4
from [14]. The uncertainty on the neutron �ux and spec-
trum was then treated as a systematic. Because thermal
neutron capture is the dominant process for the creation
of several of the relevant isotopes, this results in a factor
×10 to ×100 uncertainty on the activities. ACTIVIA itself
provides a factor ×2 uncertainty due to activation model
parameters variations.

The �nal activity estimates are listed in Table 4, for
isotopes with concentrations >10−5 after 90 days under-
ground. All the predicted isotopes in the table are iden-
ti�ed in initial low-background LUX data, and are dis-
cussed in Sec. 2.4.2. A reasonable agreement for all iso-
topes (within a factor ×2) is found when applying an em-
pirical corrective factor of ×8 to all estimates. This may
represent an increased thermal neutron �ux incident on
the Xe due to the presence of moderating materials in
close proximity to the active region, e.g. the 1 m thick
water shield used during the run of the LUX detector at
the Sanford Aboveground Laboratory [17]. The numbers
reported in Table 4 are the ACTIVIA ×8 values.

2.4.2. Measurement in LUX Data

Signatures of 129mXe and 131mXe isotopes were origi-
nally identi�ed in LUX surface run data [17]. After the

Isotope
Half-life Decay Rate [µBq kg−1]
[Days] Predicted Observed

127Xe 36 420 490± 95
129mXe 8.9 4.1 3.2± 0.6
131mXe 12 25 22± 5
133Xe 5.3 0.014 0.025± 0.005

Table 4: Predicted Xe radioisotope activities in units of
decay rate per kg detector target mass, produced from
a combination of 150 day exposure at sea level and ap-
propriate exposures at 1.6 km altitude (details in the
text). Predicted and observed decay rates are listed after
90 days underground, where activation has ceased. Iso-
topes are shown which have a non-negligible concentration
after 90 days underground. Activation rates are calculated
using ACTIVIA. An overall factor ×8 is applied to all esti-
mates in order to match the measurements, and is thought
to represent the error on the thermal neutron �ux. Errors
on observations are based on uncertainty from peak �tting
(Sec. 2.4.2).

start of underground operations, the 129mXe and 131mXe
isotope concentration estimates were re�ned. Two addi-
tional activation isotopes, 127Xe and 133Xe, were also iden-
ti�ed in pre-WIMP run LUX data. The energy spectrum
of these isotopes, taken from zero-�eld data 12 days af-
ter the Xe was moved underground and 70 days before
the start of the WIMP search run, is shown in Fig. 4.
A �tted simulation spectrum is overlaid with contribu-
tions from the four Xe cosmogenic isotopes plus an ex-
ponential contribution from γ ray Compton background.
The best-�t decay rates for these spectra correspond to
2.7±0.5 mBq kg−1 (127Xe), 3.6±0.7 mBq kg−1 (129mXe),
4.4 ± 0.9 mBq kg−1 (131mXe), and 3.6 ± 0.7 mBq kg−1

(133Xe) after 13 days underground.
The decay rates of 127Xe and 131mXe were measured

by the decay of the 375 keVee and 164 keVee peaks, re-
spectively, over the course of the 118 day WIMP search
run. The measured peak rates and best-�t models are
shown in Fig. 5. The decay �ts yield concentrations of
115± 20 µBq kg−1 127Xe and 7.3± 1.5 µBq kg−1 131mXe,
averaged over the second half of the 85.3 day WIMP search
run. The concentrations calculated from the peak decays
agree with initial projections from early zero-�eld data es-
timates.

The measured decay rates of all identi�ed Xe radioiso-
topes are listed in Table 4. The measured decay rates are
within a factor ×2 of predictions, if one also applies a cor-
rective factor ×8 to all predicted values. This is thought to
be related to the uncertainty on the thermal neutron �ux,
as well as uncertainties inherent to the simulation model.
Further studies and measurement are planned in order to
try and control these uncertainties.

Useful energy calibration points were found from 127Xe,
131mXe and 129mXe. The 5.2 day half-life of 133Xe ren-
dered this isotope unmeasurable by the start of WIMP

8



  

search running. The only activated Xe isotope capable of
generating a signi�cant WIMP search background is 127Xe.
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Figure 4: Early zero-�eld LUX data taken 12 days after
bringing the Xe underground, featuring peaks from cosmo-
genically activated Xe isotopes. The measured spectrum
is shown as the black histogram. The best-�t spectrum
for cosmogenic Xe isotopes plus exponential background
is shown as the dashed curve (gray in print, red online).
The simulation spectrum is comprised of 127Xe, 129mXe,
131mXe, and 133Xe components, with decay rates of 2.7,
3.6, 4.4, and 3.6 mBq kg−1 respectively. The exponen-
tial background falls with a e−1 slope of 550 keVee, and
is a factor ×2 below the 127Xe 35 keVee peak and sub-
dominant to all other activated Xe peaks. Simulated peak
resolution is measured from the 129mXe and 131mXe peaks
and extrapolated as

√
E.

2.4.3. 127Xe Backgrounds

Decays of 127Xe generate a low-energy ER background
in the LUX 85.3 day WIMP search data. Xenon-127 de-
cays via electron capture, resulting in an orbital vacancy.
The vacancy is �lled by electron transitions from higher
orbitals, resulting in an X-ray or Auger electron cascade.
In the case of 127Xe, the capture electron comes from the
K shell with 85% probability [18], resulting in a cascade
with total energy 33 keV. A further 12% of captures come
from the L shell, with a cascade of total energy 5.2 keV.
The remainder of the decays come from the higher shells,
with energy ≤1.2 keV. The L shell decay energy is at the
upper edge of the WIMP search window, with ∼50% of all
decays falling inside the window. The lower-energy decays
occur at the low end of the WIMP search range, and are
conservatively estimated to fall inside the search window
with 100% e�ciency.

The daughter 127I nucleus is left in the 203 or 375 keV
excited states, with 53% or 47% respective probability.
There is a 17% probability of decay from the 375 keV state
to ground by γ ray emission. This γ ray has a mean free
path of 2.6 cm in liquid Xe, and can potentially escape
from the active region.
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Figure 5: Activated Xe peak rates as a function of time,
measured over part of the 85.3 day WIMP search run,
beginning May 1, 2013. Peaks are measured for (a) 127Xe,
at 375 and 410 keVee, and (b) 131mXe, at 164 keVee. Best-
�t exponential functions are shown with dashed lines (red,
in color). The exponential slope of each function is �xed
to the corresponding literature half-life listed in Table 4,
and is not varied with the �t. Error bars are statistical.
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A low-energy EM signature arises when the low-energy
X-ray deposition occurs in coincidence with the escape of
the 375 keV γ ray. The 127Xe background rate is depen-
dent on the escape probability of the γ ray. Therefore,
although the 127Xe concentration in the active region is
homogeneous, the background from 127Xe is seen to fall
exponentially with distance from the active region edges.
The estimated 127Xe background in the 118 kg �ducial vol-
ume, estimated from LUXSim studies, is 0.5± 0.02stat ±
0.1sys mDRUee, averaged over the 85.3 day WIMP search
run. This background decreases with a 36 day half-life,
and will not be present for the one-year run beginning in
2014.

2.5. Radon

2.5.1. Identi�cation of Radon Daughters in LUX Data

The decay of 222Rn and 220Rn daughters generates a
low-energy ER background in LUX data. Radon isotopes
decay through several short-lived daughter stages. 222Rn
generates 214Pb and 214Bi. 220Rn generates 212Pb, which
decays with a scheme similar to 214Pb. These isotopes
undergo �naked� or �semi-naked� β decay. Naked β de-
cay refers to β ray emission without accompanying EM
emission that could veto the event. Semi-naked β decay
refers to β ray emission accompanied by emission of a high-
energy γ ray, which can potentially escape the active re-
gion. If the γ ray escapes the active region, the β ray is
not tagged as a background event.

Radon daughters were identi�ed in LUX data through
α decay signatures. Alpha particles are clearly distin-
guished in LUX data by their large S1 signal sizes, ranging
from 4× 104 � 9× 104 photoelectrons (phe). The S1 pulse
sizes from α particle events are much larger than S1 pulses
from γ ray events, which reach up to 1.5× 104 phe. Alpha
particles produce a clear signature in LUX data, which can
be used to characterize the 222Rn and 220Rn chain decay
rates and distributions in the active region. These isotopes
are the only sources of α decays in LUX.

Identi�ed α particle peaks are shown in Fig. 6. The six
α particle peaks are �t to a sum of �ve Gaussians and one
Crystal Ball distribution [19], which is a Gaussian with
a power law tail and is characteristic of lossy processes.
The Crystal Ball distribution is used for the 210Po peak,
to characterize partial α particle energy loss from transit
through materials in contact with the active region. The
peak means are scaled for a best �t to literature values of
α particle energies from 222Rn and 220Rn daughters. The
total measured daughter rates were taken from the best-�t
peak areas. The radon daughter isotopes, α particle ener-
gies, half-lives, and measured decay rates are summarized
in Table 5.

The reconstruction e�ciency for short-lived isotopes
is limited due to overlap with the parent event. The ef-
�ciency for 214Po event reconstruction was estimated at
52%, based on the e�ciency of S2 pulse separation be-
tween the 214Po and the parent 214Bi α particle events.

Poor reconstruction e�ciency was found for overlapping
212Bi / 212Po events, which comprise virtually all 212Po
decay events due to its 0.3 µs half-life. No 212Po measure-
ment is reported for this reason.

The reconstructed energies of all α particle decays are
taken to be the total Q-values of the decays, accounting
for both the α particle and the recoiling daughter nucleus.
The exception is 210Po, which decays on detector surfaces;
this is because the parent 210Pb is sourced dominantly
from the PTFE surfaces, and has negligible concentration
in the active region due to removal by the puri�cation
system. For 210Po, it is assumed that the reconstructed
energy is the α particle energy only. If the 210Po α par-
ticle is detected in the active region, then the recoiling
206Pb nucleus becomes further embedded in the material
surface and does not produce a visible signal. If the 206Pb
nucleus recoils into the active region, then the α particle
will be emitted into the PTFE and will not contribute to
the observed 5.3 MeV peak.
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Figure 6: Signatures of α particle decays in LUX WIMP
search data in the active region. Energy is reconstructed
from S1 measurements, calibrated on the observed loca-
tion of the 222Rn peak. Counts are collected over 6 live-
days, spaced periodically over the course of the 85.3 day
WIMP search run. Measured data (black) are �tted with
Gaussian curves, with the exception of the 210Po peak
which is �t with a Crystal Ball distribution (see text for
discussion). Fitted curves are shown in gray dashed (peaks
shown in color online). Fitted curve peak values are �xed
at the Q-values of the α decays for all isotopes, with the
exception of 210Po where the peak value is the mean α par-
ticle energy.

2.5.2. Radon Daughter Backgrounds

Radon daughters that generate low-energy ER back-
grounds are not directly countable in LUX data. However,
their decay rates can be bounded based on measurements
of parent and daughter α decays. The decay rates of 214Bi
and 214Pb are bounded by the measured 218Po and 214Po
rates, yielding a range of 3.5�14 mBq in the LUX active
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Decay
Isotope

Energy Measured
Half-life Event Rate [mHz]

Chain [MeV] Energy [MeV]

238U

222Rn 5.59 5.59± 0.08 3.8 d 17.9± 0.2
218Po 6.16 6.12± 0.10 3.1 min 14.4± 0.2∗
214Po 7.84 7.80± 0.2 160 µs 3.5± 0.1
210Po 5.30 5.22± 0.09 140 d

14.3± 0.2 (on walls)
7.2± 0.2 (on cathode)

232Th

220Rn 6.41 6.47± 0.09 56 s 2.6± 0.1
216Po 6.91 6.95± 0.1 0.15 s 2.8± 0.1
212Bi 6.21 6.12± 0.10 61 min 14.4± 0.2∗
212Po 8.83 � 0.30 µs �

∗Rates due to the sum of 218Po and 212Bi activities.

Table 5: Radon chain daughter isotopes measured in the LUX active volume during the 85.3 day WIMP search run.
Measurements are collected over 6 livedays, spaced periodically over the course of the 85.3 day WIMP search run. The
known energies are the decay Q-values, except in the case of 210Po, where the listed known energy is the α particle
emission energy. 218Po and 212Bi are too close in energy to be resolved as separate peaks. The summed activity values
are listed in the table, and no attempt is made to apportion the activities since neither isotope contributes to LUX
backgrounds. Errors are statistical, and are reported at ±34%.

region. The 212Pb rate has an upper bound of <2.8 mBq
from 216Po, and is assumed to be further removed from
the active region due to its 11 hour half-life. 214Bi is also
removed from consideration as an ER background source
due to the 160 µs half-life of the daughter 214Po, which cre-
ates a 90% probability of overlap with the 214Po α decay
within the LUX 1 ms event window. The remaining 10% of
events are accounted for in the background model, but do
not have a signi�cant contribution. The primary isotope
of concern with respect to ER backgrounds is 214Pb.

An additional constraint is placed on the 214Pb rate
from direct measurement of the ER spectrum. The mea-
surement is performed in a low-background 30 kg �ducial
volume, where the external γ ray depositions are heavily
suppressed. The measurement is performed in the range
300�350 keVee, between the peaks from 127Xe. The mea-
sured spectrum, along with models of 214Pb and 127Xe
spectra, are shown in Fig. 7. For the purposes of setting
a limit on the 214Pb decay rate, it is conservatively as-
sumed that there is no γ ray background in this range and
that all activity is due to 214Pb decay. The 214Pb decay
spectrum is compared with data in this range, using the
nearby 127Xe peaks to calibrate cut e�ciencies and esti-
mate energy resolution. The upper limit on 214Pb activity
from this exercise is <32 µBq kg−1 at 90% CL, or <8 mBq
integrated over the entire active region. This exercise pro-
vides a much stronger upper limit on the 214Pb activity
than interpolation from α decay rates alone.

The low-energy ER background contribution for 214Pb
is taken from the fraction of its β spectrum that falls in-
side the WIMP search range. This accounts for the ER
background generated from naked β decay. 214Pb can
also potentially generate a position-dependent background
from a semi-naked β decay, where the 352 keV γ ray es-

capes from the active region. For the 118 kg �ducial, the
naked β ray background component comprises >95% of
the total background signal. The semi-naked component
negligible and is ignored. The total contribution, with
a lower bound from the measured 214Po decay rate and
an upper bound from the high-energy ER spectrum, is
0.10 − 0.22 mDRUee. Background models assume a con-
centration of 0.2 mDRUee

214Pb, calculated assuming that
the 222Rn chain rates progress as a geometric series, with
endpoints constrained by the measured decay rates of the
visible 222Rn daughters.
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Figure 7: Constraint on 214Pb in a 30 kg �ducial volume.
Spectra are shown for measured data (black), simulation of
127Xe peaks (gray dashed, green in color), and simulation
of 214Pb (gray solid, red in color). The 214Pb activity
shown is 32 µBq kg−1, measured to be the 90% upper
limit from data in the range 300�350 keVee.
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2.6. 85Kr Removal, Monitoring and Backgrounds

The research-grade Xe procured for LUX contained an
average 130 ppb g/g natKr / Xe upon acquisition. Nat-
ural Kr contains the unstable isotope 85Kr in estimated
concentrations of 2× 10−11 (g/g) [20]. 85Kr decays with a
half-life of 10.8 years via emission of a β with 687 keV end-
point. The β emission creates low-energy ER backgrounds
at the level of 5 DRUee, at 130 ppb natKr / Xe.

Krypton is not removed by the LUX getter, as the get-
ter removes only non-noble impurities. An independent
Kr removal system for LUX Xe was built and operated at
Case Western Reserve University. The Kr removal system
was established with a goal of reducing 85Kr background
levels to <0.2 mDRUee. This level was chosen so that the
85Kr background would be ×0.25 that of the external γ ray
background projected for a 100 kg �ducial volume. The
corresponding natKr concentration in Xe is <5 ppt.

The Kr removal system uses a column of activated char-
coal to chromatographically separate Kr from Xe [21]. De-
tails of the system will be released in a separate upcoming
LUX publication [22]. From August 2012 to January 2013,
a total of 400 kg of Xe was puri�ed with the charcoal sys-
tem for the �rst LUX WIMP search run. Krypton was
reduced by an average factor 3 × 104 for each Xe batch.
No other impurities were introduced in signi�cant quan-
tities during the puri�cation process. Loss of Xe during
the process was negligible. The �nal measured Kr con-
centration in LUX Xe immediately after puri�cation was
4± 1 ppt g/g.

The puri�ed Xe was sampled weekly over the course
of the WIMP search run to detect any new Kr signatures.
Krypton detection at the ppt level was accomplished using
a liquid nitrogen cold trap and mass spectrometry analysis,
based on the design presented in [23]. Average Kr levels in
LUX Xe during the WIMP search run were measured to be
3.5±1.0 ppt g/g. The corresponding ER background rate,
calculated directly from the 85Kr beta spectrum, is 0.17±
0.10 mDRUee. The error on the background estimate is
due to uncertainty in the total Kr concentration in the Xe,
as well as uncertainty in the ratio of 85Kr / natKr, which
is taken to be a factor ×2.

2.7. Neutrons from Construction Materials

2.7.1. Predicted Yields and LUXSim Modeling

The dominant source of neutrons in LUX is the 238U
and 232Th content in the R8778 PMTs [1, 9]. The 238U
and 232Th content of the remaining major internal com-
ponents add up to less than half that of the PMTs, and
their contribution to the total neutron rate is subdom-
inant. The (α,n) neutron spectrum generated from the
PMTs was calculated using the Neutron Yield Tool de-
veloped by LUX collaborators at the University of South
Dakota [24, 25]. The tool was used to predict the total
neutron yield based on the exact chemical makeup of the
PMT components, obtained via con�dential communica-
tion with Hamamatsu Photonics K.K. The total neutron

generation rate from (α,n) processes and spontaneous �s-
sion in the PMTs is 1.2 n PMT−1 yr−1.

An additional contribution to the (α,n) neutron back-
ground results from 210Pb that has plated onto detector
materials yields. The dominant component of this addi-
tional contribution comes from α particle interactions in
PTFE, as �uorine generates 1�3 orders of magnitude more
neutrons through (α,n) reactions than other typical con-
struction materials [11]. The observed 210Po 5.3 MeV α de-
cay rate on the PTFE walls of the active region is 14 mHz.
The corresponding neutron emission rate, multiplied by
×2 to account for PTFE surfaces not visible to the active
region, is 8.8 yr−1. This emission rate is only 6% of the
total PMT neutron emission rate. Polonium-210 neutrons
are not incorporated into the NR background model.

LUXSim was used to simulate the emission of neu-
trons isotropically from the top and bottom PMT arrays,
using the energy spectrum calculated with the Neutron
Yield Tool. MS and SS cuts were implemented in post-
processing of LUXSim data, mimicking the cuts used in
WIMP search data. Neutron events were selected in the
range 3.4�25 keVnr. The total number of SS neutron
events predicted in theWIMP search energy range in 85.3 days
× 118 kg �ducial volume is 0.06.

2.7.2. Multiple Scatter Identi�cation in LUX Data

Radiogenic neutron SS events mimic a WIMP signa-
ture in both NR energy spectrum and ER/NR discrimina-
tion, as described in Sec. 1. For this reason, and because
the neutron SS rate is expected to be very low in LUX, a
direct search for neutron SS events cannot be used to place
meaningful constraints on the neutron background. The
47 cm LUX diameter creates an environment in which the
number of neutron MS events are much greater than the
number of neutron SS events, due to the .10 cm mean
free path of typical radiogenic neutrons. Constraints on
neutron MS event rates were used to place an upper limit
on the neutron SS event rates.

Simulated neutron background studies were used to
calculate the ratio of the number of NR MS events within
an enlarged 180 kg �ducial volume to the number of SS
events within a smaller WIMP search �ducial volume. For
MS events, it was required that the energy-weighted aver-
age of all scatter vertices fall within the 180 kg volume.
The 180 kg �ducial is chosen as the maximum volume
where low-energy MS events are reliably reconstructed.
WIMP search �ducial volumes with masses 118 kg and
100 kg are explored, where the 118 kg volume corresponds
to the �ducial volume used for the 85.3 day WIMP search
run, and the 100 kg volume is a nominal LUX one-year
WIMP search run �ducial chosen for consistency with pre-
vious background studies. LUXSim simulations estimate
a ratio of 13 MS events in the 180 kg �ducial per one SS
event in the 118 kg �ducial volume.

The MS NR and ER S2/S1 discrimination bands were
constructed using NEST and measured LUX e�ciencies
for S1 and S2 detection [2]. The bands were used to
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characterize the observed MS events as ER-like or NR-
like. The S1 and S2 signals for MS events were de�ned
as the summed, position-corrected S1 and S2 signals from
all scattering vertices, as described in Sec. 2.3.3. Con-
struction of the ER MS band used the assumption of a
�at-energy, two-scatter population, corresponding to the
expected MS background from γ ray sources. Construc-
tion of the NR MS band used the MS energy depositions
from LUXSim neutron background studies. Models of the
underlying energy spectra are necessary for reconstruction
of the expected bands due to the changing average S1 and
S2 yields as a function of energy for both ER and NR
events.

MS selection cuts mirror the cuts used to select single-
scatter NR events in WIMP search data, but requiring
events with >1 S2 pulse, each with >200 phe, and within
a S1 range of 0�120 phe. The cuts are estimated to have
a 95% e�ciency in catching all NR MS from the predicted
neutron energy spectrum. Candidate MS events are shown
along with the ±1.28σ ER and NR bands in Fig. 8. The
NR MS search region was de�ned below the NR band cen-
troid, giving an overall search e�ciency of 48%. No NR-
like MS events were observed in the 180 kg search region
in 85.3 days, corresponding to an upper-limit of 2.3 MS
events at 90% CL. A population of events well above both
the ER and NR bands are found, which are comprised of
events in the gas Xe region, and other events with wave-
form topologies generally inconsistent with MS events in
the 180 kg search region.

Given the ratio of 13 MS to SS events, and the search
e�ciency of 48%, an upper-limit of 2.3 NR MS events sets
a NR SS event upper limit for the run of <0.37 events
in the 118 kg �ducial volume. The expectation based on
Monte Carlo results is 0.06 events. For a one-year run
using a 100 kg �ducial, the upper limit is <0.72 events,
with an expectation of 0.28.

2.8. External Backgrounds

2.8.1. Water Shield Design and Radiogenic Cavern Back-

grounds

The LUX detector is placed inside a 300 tonne water
shield designed to render all external backgrounds sub-
dominant to internal backgrounds. The design of the wa-
ter shield was assisted by Monte Carlo simulations of both
γ ray and neutron external backgrounds. The primary fac-
tor driving the size and con�guration of the water shield
was the reduction of the high-energy muon-induced neu-
tron background to the level of 0.1 WIMP-like events in
100 kg × one-year [1]. The cylindrical water shield is 7.6 m
in diameter and 6.1 m in height, providing a minimum wa-
ter thickness of 2.75 m at the top, 3.5 m on the sides, and
1.2 m on the bottom. It is built on top of 20 tonnes of low-
radioactivity steel plates arranged in an inverse pyramid
con�guration, with a maximum thickness of 31 cm. The
shape of the inverse steel pyramid is optimized to reduce
the γ ray �ux originating from the rock below, reducing
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Figure 8: Low-energy MS events in LUX during the
85.3 day WIMP search run, within a 180 kg �ducial vol-
ume. Events are plotted in ER/NR discrimination space.
The subscript "b" in S2b denotes S2 signals from the bot-
tom PMT array only, chosen to avoid irregularities in S2
signals due to deactivated PMTs in the top array. The MS
events are used to place an upper limit on the NR SS rate
for the 85.3 day and one-year WIMP search runs. Overlaid
are the projected bands for ER (black, blue in color) and
NR (gray, red in color) MS events, shown with centroids
(solid) and ±1.28σ bounds (dashed). Events well above
the ER band are found to be inconsistent with MS events
in the search volume.

the total external γ ray rate in the detector by a factor of
40 based on GEANT4 Monte Carlo simulations [26].

The external γ ray background is dominated by decays
of 40K and the 238U and 232Th chains in the cavern rock.
Radiometric surveys of the Homestake mine indicate that
most rock in the 4850 ft level are of the type labeled HST-
06, consisting of 0.160 ppm 238U, 0.200 ppm 232Th and
1540 ppm 40K [27]. Geological surveys also show rhyolite
intrusions in the rock with much higher radioactivities,
with average contamination levels of 8.6 ppm 238U, 10.8
ppm 232Th, and 29000 ppm 40K. The percentage of rhy-
olite intrusions on the cavern surface is unknown, and in
order to set a conservative estimate of the γ ray event
rate in the detector, background estimates assume a cav-
ern completely composed of rhyolite, resulting in a �ux
of 9 γ cm−2 s−1 at the water shield outer surface. Ra-
dioactive screening of typical concrete mixes indicate that
the radioactive contamination levels in concrete are in the
range of 1�2 ppm and are well below the conservative as-
sumption for the surrounding rock [28, 29].

Monte Carlo simulations of the water shield use a �stan-
dard rock� γ ray energy spectrum obtained from measure-
ments at the Boulby Mine [30] and scaled to match the
radioactivity levels assumed for the Davis cavern. The
simulations show that γ ray �ux is reduced by a factor of
2× 10−10 by the water shield and steel pyramid. The re-
sulting γ ray �ux incident on the LUX detector generates
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a low-energy ER event rate of 27 nDRUee in the active
region.

The external neutron �ux is dominated by the environ-
mental fast neutron background (E > 1 MeV) due to ra-
dioactive processes in the surrounding rock and concrete.
The neutrons are mainly produced by 238U spontaneous
�ssion and (α,n) neutrons generated in the rock and con-
crete from the 238U and 232Th chain decays. Although
there are no published measurements of the neutron �ux
in the Davis laboratory, the environmental neutron back-
ground can be estimated by scaling the combined spectra
of �ssion and (α,n) neutrons and the �ux measured in
the Gran Sasso laboratory [28] to match the contamina-
tion levels found in the Homestake rock. Using the con-
servative limit that the Davis cavern is completely lined
by rhyolite rock, the estimated incident neutron �ux is
16.2× 10−9 n cm−2 s−1. There is no signi�cant expected
variation in the neutron yield from concrete, which was
selected for its low radioactivity, and did not have signif-
icant thickness [31]. The fast neutron �ux is e�ciently
moderated by the water shield, and the total integrated
�ux reduction due to water plus geometry is 6× 10−22 for
E > 1 keV. This corresponds to 10−16 n yr−1 incident on
the detector.

2.8.2. Muon-Induced Neutron Backgrounds

Cosmic ray muons contribute to the NR background
through the generation of neutrons both in the shield and
surrounding rock. The resulting neutron �ux has a signif-
icant high-energy component (E > 10 MeV), reduced by
only ∼3 orders of magnitude in the water shield [1]. The
choice of a deep site is essential in controlling this neutron
background.

The Davis laboratory is located in the 4850 ft level
of the Homestake mine, with an e�ective depth of 4.3 ±
0.2 km.w.e. This depth corresponds to a muon �ux of
(4.4± 0.1) × 10−9 cm−2 s−1 [32] and an average muon
energy of 320 GeV [33]. The muon-induced high-energy
neutron �ux from the rock at underground sites can be
deduced from the measurements of the muon-induced neu-
tron yield in liquid scintillators at several underground
sites, combined with simulations of neutron production
and propagation in various materials. The estimated total
�ux and energy distribution can be �tted with empirical
depth-dependent functions [32]. The neutron �ux from
the rock at Homestake is calculated to be (0.54± 0.01)×
10−9 n cm−2 s−1, where the quoted error re�ects simula-
tion statistics only and does not re�ect the full uncertainty
due to local variations in rock content. The energy distrib-
ution is estimated by using the function �t parameters for
the Gran Sasso laboratory, which is the closest possible
site in depth to the Homestake 4850 ft level for which neu-
tron �ux from rock has been measured. The water shield
reduces the integrated �ux of high-energy rock neutrons at
the cryostat to 1 × 10−7 n s−1, resulting in a SS NR rate
of 60 nDRUnr in the 3.4 − 25 keVnr range, for a 100 kg
�ducial volume.

The muon-induced neutron production in the water
shield can be estimated from the neutron yield in dif-
ferent materials calculated using FLUKA [32], and the
event rate is determined by Monte Carlo simulations using
GEANT4. For a water tank of 7.6 m diameter and 6.1 m
height, the total neutron �ux at the LUX outer cryostat is
6.3×10−7 n s−1. The resulting NR event rate in the 100 kg
�ducial region is 120 nDRUnr in the energy range of 3.4�
25 keVnr. The rate is only ×2 larger than that from rock
neutrons because water neutrons have less water shield
to travel through to reach the detector, and thus have a
lower average energy and make a smaller contribution to
the neutron rate.

The total nuclear recoil background due to muon-induced
high-energy neutrons, including the components from the
cavern rock and generated in the water itself, is 0.1 WIMP-
like NR events in the energy range of 3.4�25 keVnr, in
100 kg × one-year. The projected rate meets the exter-
nal neutron background goal. External backgrounds are
not considered for the 85.3 day WIMP search run, and are
listed in the summary for the one-year run in Table 7.

3. ER/NR Discrimination

LUX relies on di�erences in the ionization to scintilla-
tion ratio between ER and NR events to provide rejection
of low-energy ER events falling inside the WIMP search
�ducial volume. The discrimination power is mapped through
a combination of LUXSim/NEST Monte Carlo studies and
direct calibration measurements.

The position and width of the ER S2/S1 band was
mapped in the WIMP search range using 104 3H decays [2].
The 3H was delivered into the active region by injection
of tritiated methane, using a system developed by LUX
collaborators [15]. The system will be described in detail
in a future LUX publication [34]. Tritium o�ers a unique
ability to map detector ER response in the WIMP search
range, decaying by a naked β with endpoint 18.6 keV. 45%
of 3H decays fall within the 0.9�5.3 keVee LUX WIMP
search energy range. The measured ER band ±1.28σ as a
function of S1 photoelectrons is shown in Fig. 9a.

The NR band (also shown on the same �gure) shape
was generated using LUXSim NR events, convolved with
both measured LUX S1 and S2 detection e�ciencies and
NEST photon and electron distributions. Direct NR cali-
bration through AmBe and 252Cf sources was used to ver-
ify the simulated NR band mean and width. These sources
did not provide su�cient statistics for detailed NR band
mapping, due to the large detector volume and the low
fraction of SS NR events achievable with external calibra-
tion sources; however the results of the calibration showed
statistical consistency with the model expectation. The
NR calibration program will be described in detail in a
future LUX publication [35].

It is worth noting that the very small amounts of methane
introduced into the detector (ppt level or below) for this
calibration fall well below the level at which one would
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worry about impacting light or charge yields. This was
measured with concentrations of order percent, to be a
factor 2 e�ect [36]. LUX further checked this by injecting
ppm level of natural methane into the detector and mon-
itoring the stability of the response to 83mKr calibration
lines.

The measured ER leakage fraction is shown in Fig. 9b.
The ER leakage fraction is de�ned as the fraction of ER
events falling below the NR band centroid in a given S1
bin. Note that this ER discrimination de�nition corre-
sponds to a "cut-and-count" WIMP search analysis, analo-
gous to that performed for previous Xe dark matter exper-
iments [37, 38]. LUX dark matter search results from the
85.3 day run used a pro�le likelihood ratio (PLR) analysis
that extended the dark matter event search above the NR
band centroid [2]. The ER leakage fraction is used as a
conservative expectation of the ER background rejection
power for the detector.

The leakage fraction is calculated both from direct mea-
surement in 3H calibration, and from a Gaussian �t to
the ER band. The average leakage fraction in the WIMP
search energy range 2�30 phe, for both direct measurement
and Gaussian �ts, is 0.04. This corresponds to 99.6% ER
discrimination.

4. Comparison with Measured Low-Energy Data

The predicted WIMP search ER background from the
sources listed in Sec. 2 is compared with measured LUX
background data from the 85.3 dayWIMP search run. The
WIMP search �ducial volume is used, de�ned as a cylinder
with a radius of 18 cm and a height of 40 cm. The �ducial
volume is centered both radially and vertically in the de-
tector, with 7 cm Xe (1.4 cm in the drift region) below and
7 cm (6.5 cm in the drift region) above. Backgrounds are
evaluated over the WIMP search energy range, 2�30 phe
(0.9�5.3 keVee), in order to encompass the 127Xe spectral
shape. All other background spectra are �at in energy, and
do not change the di�erential background measurement.

The radial, height and S1 distributions in the WIMP
search �ducial volume for simulation and measured data
are shown in Fig. 10. The S1 spectrum is constructed
based on LUXSim background studies, NEST photon and
electron yields, and measured LUX S1 and S2 detection
e�ciencies, using the same technique performed for con-
struction of the NR band in Sec. 3. The measured and
simulated background rates as a function of position in
the detector are shown in Fig. 11.

Use of Kolmogorov-Smirnov (K-S) tests for the height
and S1 distribution shapes yields p values of 26% and 94%
respectively when testing the measured data against the
simulated distributions. The radial distribution is mea-
sured to be systematically �atter than simulation predic-
tions, with a K-S test p value of 0.004%. The background
expectation averaged over the entire �ducial volume and
WIMP search run is given in Table 6.
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Figure 9: (a) ER S2/S1 band in LUX, as measured by 3H
calibration. The 3H run yielded 4400 decays in the 118 kg
�ducial volume, and are used to map the band mean and
width. The measured band centroid is overlaid (solid),
with ±1.28σ contours (dashed). The NR band, calculated
using NEST and veri�ed by neutron calibration, is shown
in gray (red in color). (b) Measurement of ER band leak-
age below the NR band centroid for the LUX 85.3 day
WIMP search run. Points are shown corresponding to the
measured leakage fraction in each S1 bin (black), and the
projected leakage fraction based on a Gaussian �t to the
ER band in each bin (gray, red in color). Data is volume-
averaged over the entire 118 kg �ducial volume. Measured
points are taken from 3H calibration. Errors shown are
±34.1%.
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Source Background Rate [mDRUee]

γ rays 1.8± 0.2stat ± 0.3sys
127Xe 0.5± 0.02stat ± 0.1sys
214Pb 0.11− 0.22 (0.20 assumed)
85Kr 0.17± 0.10sys

Total predicted 2.6± 0.2stat ± 0.4sys
Total observed 3.6± 0.3stat

Table 6: Predicted and measured low-energy background
rates in the LUX 118 kg WIMP search �ducial during the
85.3 day run. Rates are averaged over the energy range
0.9�5.3 keVee.

WIMP search ER backgrounds in the range 0.9�5.3 keVee

in the �ducial volume are shown after the June 14 mid-
point of the WIMP search run in Fig. 12. The �ducial
ER background rate in the �rst half of the run is 4.4 ±
0.4stat mDRUee, while the background rate in the second
half is 2.8 ± 0.4stat mDRUee. The rate drop is a factor
×2.7 higher than that predicted due to the decay of cos-
mogenic 127Xe alone. However, the background rate in
the second half of the run is consistent with the predicted
2.2±0.3 mDRUee due to time-independent sources (214Pb,
85Kr, and γ rays from construction materials), with an
additional 0.28 ± 0.06 mDRUee from 127Xe. A K-S test
yields a p value of 87% from comparison of the measured
and simulated population distribution shapes.

The observed event distribution in S2/S1 is consistent
with an ER population, with total rate matching predic-
tions based on modeling work [2]. From the measured
99.6% discrimination factor, an average 0.64 events are
expected to fall below the NR band centroid. One event is
observed at the NR centroid, at 3 phe S1. The PLRWIMP
search analysis �nds agreement with the background-only
hypothesis with a p value of 35%.

5. Background Projections for the One Year Run

The background studies from the 85.3 dayWIMP search
can be used to project the expected backgrounds for the
2014 one-year LUXWIMP search run. At the beginning of
the one-year run, the 127Xe background will have decayed
below signi�cance. The one-year run is also expected to
use a more conservative 100 kg �ducial volume, further
reducing position-dependent γ ray backgrounds.

The predicted background sources within the 100 kg
�ducial for the one-year run are listed in Table 7. A to-
tal of 1.4 ± 0.2 mDRUee is expected from all ER sources,
assuming no change in 214Pb or 85Kr rates from those
observed in the 85.3 day run. The predicted total is in
agreement with observations of data in a 100 kg �ducial
during the second half of the 85.3 day run. The observed
event rate is 1.7 ± 0.3 mDRUee. The observed rate in-
cludes 0.15 ± 0.04 mDRUee of residual 127Xe, which will
not be present during the one-year run. The neutron dif-
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Figure 10: Low-energy measured distributions in (a)
squared radius, (b) height, and (c) S1, within the LUX
118 kg �ducial volume, measured over the full 85.3 day
WIMP search run. Measured data are indicated by the
black histogram with error bars. Simulation data are
shown as the gray histogram (red, in color). Simulated ra-
dial and height distributions are reconstructed from high-
energy background studies, and are not a �t to low energy
distributions. The energy spectrum predicted from γ rays
is normalized by the best-�t results in Table 3. The simu-
lated S1 distribution folds in NEST estimates of total pho-
ton yields and measured LUX light collection e�ciency.
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(a)

(b)

Figure 11: Low-energy background distributions in squared radius and height, from (a) measured data and (b) model
predictions. Rates are taken in the range 0.9�5.3 keVee (2�30 S1 phe). Rates are shown in units of log10 (DRUee). The
118 kg �ducial volume used in the 85.3 day WIMP search run is shown in dashed black. The model includes low-energy
background contributions from γ ray, 127Xe, 214Pb, and 85Kr sources. Measured rates at large radii include a signi�cant
contribution from low-energy 210Pb decays at the detector walls. These decays are not included in the background
model.
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Figure 12: Low-energy ER backgrounds in the 118 kg �du-
cial volume during the second half of the 85.3 day WIMP
search run (after June 14). Measured data are shown
in black. The model predictions, including γ ray, 127Xe,
214Pb, and 85Kr, are shown in gray (red, in color). Model
S1 predictions are based on measured LUX e�ciency fac-
tors and NEST photon and electron distributions. The
measured data totals 2.8± 0.4stat mDRUee.

ferential rate from both internal and external sources is
350 nDRUnr.

Integrating over the 0.9�5.3 keVee window for the ER
sources and the equivalent 22 keVnr window for NR sources,
and using the observed 1.7±0.3 mDRUee and subtracting
0.15± 0.04 mDRUee

127Xe, the total expected number of
background events is 250 (ER) + 0.28 (NR). After 99.6%
ER discrimination, and assuming a 50% NR acceptance,
the number of WIMP-like background events is 1.1± 0.2.
The background rate is potentially further reduced by op-
timizing the shape of the �ducial volume to follow the
background contours in the active region, and from opti-
mizing the energy range for the observed background be-
fore the beginning of the run. The optimal shape will be
determined by observed background rates before the start
of the one-year run.

6. Conclusions

ER and NR low-energy backgrounds in the LUX ex-
periment have been modeled in detail. Modeling work is
based on Monte Carlo projections constrained by γ ray
assay of construction materials, as well as in-situ mea-
surements of γ rays and intrinsic radioisotope decay rates
performed outside of the WIMP search �ducial volume
and energy range. Low-energy background predictions are
not directly �t from Monte Carlo but rather extrapolated
from high-energy measurements. The use of independent
measurements to set the model parameters and the result-
ing good agreement between low-energy projections and
observed data gives high con�dence that the low-energy
backgrounds in LUX are well understood.

Source Background Rate

γ rays
(
1.0± 0.1stat ± 0.1sys

)
mDRUee

214Pb 0.2 mDRUee
85Kr

(
0.17± 0.10sys

)
mDRUee

Int. neutrons 170 nDRUnr

Ext. neutrons 180 nDRUnr

Total predicted 1.4± 0.2 mDRUee + 350 nDRUnr

Total observed 1.7± 0.3 mDRUee (0.14± 0.03 127Xe)

Table 7: Predicted and measured low-energy background
rates in a 100 kg WIMP search �ducial expected to be
used for the one-year run. ER rates are averaged over the
energy range 0.9�5.3 keVee. NR rates are averaged over
the energy range 3.4�25 keVnr. Measured rates are taken
from the second half of the 85.3 day WIMP search run.
The 127Xe contribution to the observed background rate
is given in brackets. This component will not be present
during the one-year run.

The primary backgrounds in the LUX detector arise
from low-energy depositions from γ ray scatters in the �du-
cial region. The γ-rays are generated from radioisotope de-
cays in detector construction materials. The R8778 PMTs
are the largest source of γ ray backgrounds, with addi-
tional contributions from insulation materials. Cosmo-
genic production of 60Co in Cu contributes a γ ray rate ×3
higher than expected based on initial screening results.

Measurements of α particle energy depositions in the
detector provide a model for radon daughter decays in the
�ducial volume. Alpha decay rates, combined with high-
energy spectrum measurements, provide a constraint on
214Pb rates within a factor of ×2. 85Kr backgrounds are
calculated from direct measurements of natKr in LUX Xe.

The LUX 85.3 day WIMP search run background rate
was elevated above expectations due to the presence of
cosmogenically produced 127Xe. This isotope creates a
low-energy ER background through the coincidence of low-
energy X-ray generation and high-energy γ ray de-excitation,
where the γ ray escapes detection by leaving the active
region. This isotope decays with a 36 day half-life, and
contributes an extra 0.5 mDRUee to the 85.3 day WIMP
search run backgrounds. The backgrounds generated by
this isotope will not be present in future dark matter search
runs.

Neutron emission rates from (α,n) reactions, 238U �s-
sion, and high-energy muon interactions are predicted to
create a subdominant NR background in LUX. A search
was performed for low-energy MS events in the detector,
as such events would be a signature of neutron scatter-
ing. No NR-like MS events below the 50% NR acceptance
mean were found during the 85.3 day run, consistent with
predicted neutron emission rates. Neutron scatter rates
within the WIMP search �ducial and energy regions are
projected to be comparable between internal and external
sources.
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The ER S2/S1 band was characterized by high-statistics
3H calibration. The measured ER discrimination factor in
LUX is 99.6%, where NR events are characterized as falling
below the NR S2/S1 band centroid.

Measured low-energy background rates are within 1σ
of expectation. An additional transient background during
the �rst half of the WIMP search run was measured, in ex-
cess of expectations from 127Xe. The average background
rate during the WIMP search run was 3.6± 0.4 mDRUee.
0.64 events are projected to fall below the NR centroid in
the 85.3 dayWIMP search data set, based on measured ER
rates. One event was observed at the NR centroid, with
none falling below. The data taken during the 85.3 day
run show an overall agreement with the background-only
model, with a p value of 35%.

The projected background rate for the 2014 one-year
× 100 kg WIMP search run is 1.7 ± 0.3 mDRUee, with
a negligible NR background. The projected one-year run
background rate is reduced by 55% relative to 85.3 day rate
due to the decay of all transient backgrounds, as well as
the use of a smaller �ducial volume. Further reductions in
background are expected in particular from optimization
of the shape of the �ducial volume to minimize position-
dependent background contributions. The model predicts
a strong WIMP discovery potential for LUX for the up-
coming one-year WIMP search run.
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