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Abstract 

The use of protective coatings in biomedical field is an ongoing scientific challenge. 

Among different materials, carbon-based coatings are considered a potential surface 

treatment for orthopaedic implants. In this study, the effect of Zr incorporation in 

amorphous carbon coatings on the wear behaviour under protein containing lubrication 

was investigated. The coatings were deposited by dc unbalanced magnetron sputtering 

in Ar (non-hydrogenated) and Ar+CH4 (hydrogenated) discharges onto Ti based 

biomedical substrate. To improve the adhesion between the film and substrate a 

functional gradient Ti based layer was deposited (~550nm). The surface wettability was 

evaluated to assess the effect of the Zr and hydrogen content. The films with Zr were 

found to be hydrophobic enhancing the protein adsorption onto the surface; no 

significant differences were found when H was incorporated in the films. The 

adsorption layer characterized by X-ray photoelectron spectroscopy showed a well 

define nitrogen peak originating from the organic layer. The tribological properties of 

the film were evaluated by unidirectional pin-on-disc testing with diluted bovine serum 

lubrication and physiological solution at 37±3 C°. The friction and the wear of the 

coatings were very low compared to uncoated substrates in both lubrication conditions. 

The ability of the surfaces to adsorb proteins was considered as the driving force for 

wear resistance acting as a protecting layer. In addition, the incorporation of Zr 

decreased the wear of the counterbody (Ti alloy) due to higher albumin adsorption. 
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1. Introduction: 

 

Fatigue fracture and wear have been identified as the major problems associated with 

implant loosening, stress-shielding and ultimate implant failure. Demanding contact 

conditions coupled with the aggressive body environment lead to fatigue failure of 

almost all implant materials. The fatigue wear process causes the generation of the wear 

debris which, by acute host-tissue reactions, tend to aggravate and speed up the failure 

of the biomaterial. Wear is a critical issue for prostheses, implants and other medical 

devices and its reduction is still an ongoing scientific and technological challenge. 

Diamond-like carbon (DLC) coatings have been widely studied to enhance implant 

performance due to its inertness, wear and corrosion resistance, hardness and excellent 

bio- and hemo-compatibility (Hauert 2003, 2004; Dearnaley and Arp 2005, Love et al. 

2013). In fact, DLC was already implanted as an artificial joint (Taeger et al. 2003; 

Joyce 2007; Hauert et al. 2012), surviving just 2-10 years due to delamination problems 

in-vivo. It is well known that DLC exhibits high internal stress which significantly 

limits the adhesion of the coating to metallic substrates. Thus, in order to overcome this 

problem, a metallic interlayer (Cr, Ti, Zr, Si, etc.) and/or functionally graded layers 

(Me/MeN/MeNC or Me/MeC, Me corresponds to the metallic element) have been 

deposited between the metallic substrate and the DLC coatings avoiding abrupt changes 

in composition and diminishing the stress concentration (Choy and Felix 2000; 

Thorwarth et al. 2010). The use of transition metal (Zr, Ti, Cr, etc.) co-sputtered 

amorphous carbon (a-C) films has also been widely studied as one possible solution to 

improve DLC performance (Chang et al. 2002; Corbella et al. 2005; Adelhelm et al. 

2011) . Moreover, the incorporation of hydrogen can further enhance structural changes 

by stabilizing the covalent bonding network (sp
3
) and playing a key role in the 

mechanical and tribological behaviour of the coating (Robertson 2002) . Even thought, 

under the highly corrosive human body environment the degeneration problem still 

persists promoting the failure of the coating (Hauert et al. 2012b) . Actually, Hauert et 

al. (2012a)  found that the main problem of DLC coatings is that, after some time in the 

body environment, the interface between substrate and functional coating can suffer a 

corrosion process by the penetration of body liquid through defects such as pinholes.  

The exact interaction between biomaterials and natural fluids is still under extensive 

studies (Bauer et al. 2013). Immediately after implantation, water and ions from the 

body fluid are adsorbed and then a protein layer is formed onto the surface. Protein 

adsorption is indeed the first event which signalizes the overall biological response of 

the body to the implanted material (Andrade and Hlady 1986; Hlady and Buijs 1996; 

Roach et al. 2005; Rabe et al. 2011) . A number of factors (surface chemistry, charge, 

topography, wetting behaviour, etc.) can alter protein conformation and/or orientation 

and consequently directly influence the cell response. For the joint implant point of 

view, proteins were also found to enhance lubrication through the adsorption of a 

protein layer on the joint materials surfaces (Heuberger et al. 2005; Serro et al. 2006). 

The natural lubrication typically minimizes the shearing damage and decreases the 



3 

 

friction energy loss. However, when using artificial joint, the synovial fluid lubrication 

ability depends on many factors, such as surface treatment and the sliding conditions 

which could provoke catastrophic failure of the implant with partial or complete loss of 

functionality The effect of the synovial proteins on friction and lubrication is still 

unclear (Karimi et al. 2011; Runa et al. 2013; Myant and Cann, 2014) , particularly 

when considering realistic surface engineering solutions. In fact, only few papers 

dealing with the influence of protein on (tribo)corrosion properties of DLC coatings 

(Hang et al. 2010; Liu et al. 2013; Wang et al. 2010)  and even less for metal-containing 

DLC coatings (Maguire et al. 2005; Escudeiro et al. 2011)  can be found in literature. In 

the present study the effects of H and Zr incorporation in the a-C-matrix were analysed 

tribologicaly using physiological lubricants (0.9% NaCl and diluted foetal bovine 

serum) in order to predict its behaviour under such adverse environments. Additionally, 

the interaction of albumin with the surfaces was also accessed using X-ray 

photoelectron spectroscopy (XPS) together with wettability tests for surface chemistry 

characterization. 
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2. Materials and methods 

2.1 Coatings deposition 

The coatings were deposited onto Ti grade 5 (Ti6Al4V) substrates and Si(111) wafers 

for the tribological testing and for coatings characterization, respectively. The Ti grade 

5 substrates were mechanically polished with SiC paper (500, 600, 800, 1200 grits), and 

then finished by using diamond suspensions (6, 3 and 1 µm) and a colloidal silica 

suspension in order to obtain a mean substrate surface roughness (Ra) lower than 50 

nm. Prior to deposition, the substrates were then cleaned in an ultrasonic bath in 

acetone, ethanol and deionised water for 15 min, and mounted on the rotating sample 

holder (18 rpm) in the deposition chamber. The coatings were deposited with a DC dual 

magnetron sputtering machine. A pure graphite target was used for the production of the 

a-C films in reactive (Ar/CH4) and non-reactive atmosphere (Ar), in order to produce 

hydrogenated and non-hydrogenated films, respectively. Zr pellets were added to the 

erosion zone of the graphite target (relative erosion area, AZr/AC, between 0 to 6%) to 

produce Zr containing films. All coatings were deposited with a constant applied bias 

voltage of -50 V and graphite target power density close to 7.5 W.cm
-2

. Moreover, a 

pure Ti target was also sputtered for the deposition of a composite gradient interlayer 

(Ti/TiN/TiCN) to improve the film adhesion on the metallic substrates. For each 

deposition conditions, the deposition time was calculated to obtain films ~1.4 µm thick. 

Further detailed deposition specification can be found elsewhere (Escudeiro et al. 2013). 

To facilitate reading, the coatings will be denominated as a-C_Zr(X) and a-C:H_Zr(X) 

for the non-hydrogenated and hydrogenated, respectively, where X is the Zr content.  

 

2.2. Coating characterization 

The chemical composition of the coatings was analysed by a full "Total Ion Beam 

Analysis (IBA)" (Jeynes et al. 2012) - Rutherford backscattering (RBS), non-Rutherford 

elastic backscattering (EBS), elastic recoil detection (ERD) and particle-induced X-ray 

emission (PIXE) self-consistently - used by the DataFurnace code (NDFv9.4f (Barradas 

and Jeynes 2008) ). This work was carried out at Surrey Ion Beam Centre, University of 

Surrey, UK. The analysis used an alpha particle beam of energies 3045 keV and 4315 

keV with normal and tilted beam geometries, two backscattered particle detectors with 

different geometries, together with a forward recoil and an X-ray detector. Evaluated 

non-Rutherford particle scattering cross-sections (Gurbich 2010)  were used for H, C, 

N, O; those for H using the R-matrix parameters of the very thorough treatment of 

Dodder et al. (1977) and those for C and N are described respectively by Gai and 

Gurbich (2013)  and Gurbich et al (2011). The He-PIXE used the LibCPIXE code of 

Pascual-Izarra et al. (2006) and the ionisation cross-sections of Taborda et al. (2011). 

SRIM2003 stopping (energy loss) cross-sections were used (Ziegler 2004) . For these 

samples all the information was in the 4315 keV data at 15° incidence angle, at which 

energy the 4263 keV 
12

C(α,α)
12

C resonance is excited giving high sensitivity at the 

surface to C in the presence of Zr. The ERD detector was at 30° scattering angle, and all 
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four spectra (backscattering at 170° and 150°, ERD and PIXE at 120°) were interpreted 

self-consistently. The ERD detector relative solid angle was calibrated using a Kapton 

sample; the range foil thickness was 34 µm Kapton. The X-ray detector had a 146 µm 

Be filter to exclude backscattered particles. The PIXE showed the presence of Hf 

(assumed to be a contaminant at 0.85at% relative to Zr), and of Ar (from the sputtering 

process: <5at% relative to C).  

The structure of the coatings was analyzed by X-ray diffraction (XRD) (Philips, X’Pert 

diffractometer, Co K� radiation) whereas X-ray photoelectron spectroscopy (XPS) 

(ESCAprobe P, Omicron Ltd., Al K�, binding energy calibrated with Au 4f (84,1eV)) 

was used to identify chemical bonding. The hardness was measured by depth-sensing 

indentation (Micromaterials Nanotest) using a Berkovich indenter. The normal stylus 

load was 5 mN (indentation depth approx. 150 nm); 32 independent indentations from 

two distinct areas on the sample were used to analyze the hardness data. Additional 

information is given in (Escudeiro et al. 2013).  

 

2.3 Contact angle and surface free energy 

The contact angle measurements were performed through the sessile drop method. 

Drops were generated with a Krüs GmbH G-23 goniometer at ~20 °C and room 

humidity (50%). A minimum of 5 drops were deposited on the surface and a sequence 

of images were acquired for the contact angle calculation. The surface energy was 

calculated by measuring the contact angle of various liquid solutions: water, glycerine (

3 8 2C H O ), formamide ( 3CH NO ) and diiodomethane 3 2( )CH I   

The surface free energy (SFE) was calculated using the Owens equation (�enkiewicz 

2007). Wetting behaviour is governed by the Young equation: 

cos
LV S SL

γ θ γ γ= −  (1), 

where � is the measured solid-liquid contact angle and S
γ  and SL

γ  are the solid-liquid 

and liquid  SFE. The surface energy ( S
γ ) can be expressed into polar (

pγ ) and 

dispersive (
dγ ) components. The dispersive component is related to London interaction, 

arising from electron dipole fluctuation. Thus, 

2 2d d p p

SL SV LV s l s l
γ γ γ γ γ γ γ= − − −  .(2) 

Combining equation (1) with (2) we obtain 

(cos 1) 2 2d d p p

LV s l s l
γ θ γ γ γ γ+ = + . (3) 

Thus, the polar and dispersive component of the film surface energy can be calculated 

and, as a result, the total surface energy ( S
γ ) is obtained.  
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2.3 Protein Adsorption 

The interaction with bovine serum albumin (BSA) was studied by immersion of the 

samples in a 2 ml BSA containing solution (4mg.ml
-1

) diluted with a basic solution 

(NaCl: 9 (g/l); EDTA: 0.2 (g/l); Tris: 27 (g/l); sodium azide: 0.3%, pH 7.6) for 24 h at 4 

ºC. The incubation time was chosen in order to take into account the Vroman effect and 

the tendency of the proteins to adjust its conformation with the surface (Andrade and 

Hlady 1986). The amount of total immobilized protein was calculated using the 

Bradford reagent against a standard BSA calibration curve. This technique is a powerful 

technique to study protein-to-protein variability. However, it is influenced by the 

presence of interfering substances such as detergent and different ionic compounds 

(such as metallic ions) which prevents the precise quantification of proteins. Thus, a 

reliable qualitative result can be obtained by comparison between samples as soon as 

the experimental uncertainties are considered constant. After immersion, all the samples 

were washed with water Mili-Q for eventual detachment of non-chemisorbed proteins. 

The detached proteins were also taken into account for the protein quantification using 

the same method described above. The samples were then air-dried for 24h before the 

XPS spectra were recorded. The XPS analysis was performed using a Kratos AXIS 

Ultra with VISION software for data acquisition and CASAXPS software for data 

analysis. The analysis was carried out with a monochromatic Al Kα X-ray source 

(1486.7 eV), operating at 15kV (90 W), in FAT mode (Fixed Analyser Transmission), 

with a pass energy of 40 eV for regions ROI and 80 eV for survey. Data acquisition was 

performed with a pressure lower than 10
-6

 Pa, and a charge neutralisation system was 

used. To take into account shifts caused by charging of the sample surface, all spectra 

were adjusted taking the C1s peak at 285.0 eV as a reference for the carbon 

contamination. The binding energy scale was charge referenced to the C 1s at 285 eV. 

The deconvolution of the spectra was performed using the CasaXPS program, in which 

an adjustment of the peaks was performed using peak fitting with Gaussian-Lorentzian 

peak shape and Shirley type background subtraction. The spin-orbital splitting in Zr 3d 

was assumed to be the same for all phases and equal to 2.4 and the integrated intensity 

of the Zr 3d5/2 peak relative to that of the Zr 3d3/2 was considered equal to the spin-

orbital multiplicity of 2/3 (Wagner et al. 1979, Matsuoka et al. 2008) 

 

2.4 Tribological tests 

The tribological tests were carried out using a pin-on-disc CSM tribometer in two 

different lubrication conditions: physiological solution (PS; 0.9% NaCl water solution), 

and foetal bovine serum (FBS), prepared according to the ASTM F732-00 (2006) 

standard test method . The temperature was maintained constant at 37±3 °C. A Ti6Al4V 

ball of 8 mm diameter was used as counterbody. An applied normal force of 1 N, linear 

speed of 20 cm.s
-1

, and 10 000 cycles were employed. Tests on non-coated substrates 

were also performed under the same testing conditions for comparison purposes. The 



7 

 

tribological behaviour was examined with respect to the friction coefficient and the 

wear rate; the latter was evaluated on the basis of 3D profile measurements on the wear 

track, whereas the wear rates of the balls were calculated from measurements of the 

spherical wear cap using optical microscopy. 
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3. Results and discussion 

3.1 Coatings Characterization: 

Table 2 shows the chemical composition obtained by IBA. The use of reactive 

(Ar+CH4) and non-reactive (Ar) sputtering led to the production of hydrogenated and 

non-hydrogenated coatings, respectively. The use of the reactive atmosphere promoted 

the incorporation of hydrogen in the coating in a range from 23 to 38 at.% and almost 

doubled the deposition rate compared to non-hydrogenated coatings. The increase of the 

number of Zr pellets led to an increase of the Zr content and higher deposition rate, 

particularly for the non-hydrogenated coatings. The H content diminished with the 

increase of the Zr content. The density of the coatings was determined by IBA in 

µg/cm
2
; using the thickness of the coating measured by optical profilometer, it was 

possible to calculate the density of the coatings in g/cm
3
. The density varied from 2.6 to 

3.9 for the non-hydrogenated coatings and from 1.9 to 3.1 for the hydrogenated 

coatings. The density is strongly related to the coordination defect content, H content, 

sp
3
 bonding and lattice disorder, and, obviously, zirconium content (Charitidis 2010). In 

general, the incorporation of H into the C-matrix led to the decrease of density 

compared to the non-hydrogenated films. Moreover, Zr co-sputtered films were harder 

and denser than pure films. Zr is a transition metal which present electrons at the outer 

shell loosely bound to their nuclei. Thus, the substitution of carbon atoms by Zr metal 

dopant in the rigid C–C and C-H network may distort the electron density distribution 

(Corbella et al. 2005) and, thus, decreasing the coordination defect and increasing the 

density. However, for Zr contents higher than 5 at.% the density decreased. XRD 

diffractograms presented a weak and very broad peak close to ZrC (111) phase which 

indicates a nanocrystalline material with a grain size in the order of a few nanometers. 

Moreover, a nc-ZrC phase was also identified by XPS where the C1s spectra showed a 

peak located at higher biding energy (~283.2 eV) compared to the typical Zr-C (281.8-

282.3 eV) which is typical coatings with nanometric grain size. We can summarize here 

that, the increase of Zr content led to the formation of nanostructure with ZrC 

nanocrystals embedded in the C-matrix. A detail study of the structural characterization 

of the Zr co-sputtered a-C films by XPS can be found in Escudeiro et al. (2013). The 

coordination number of C network can be then reduced by binding C atoms into carbide 

and, in accordance with thermodynamical models of DLC formation, resulting in the 

decrease of the local atom density in DLC film (Li et al. 2004; Wang et al. 2007). 

 

3.2 Contact angle and Surface free energy. 

The interaction of the films with water is very important from the biomedical point of 

view. Numerous physiological events at subcellular and cellular levels, such as cell 

adhesion and protein adsorption, are greatly affected by such property. The surface 

energy has been related to the adsorption ratio of diverse proteins and, consequently, 
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cell spreading. Albumin is considered as a multifunctional transporter protein and the 

most abundant protein found in the plasma (approx. 50 mg.ml
-1

) (Roach et al. 2005; 

Fanali et al. 2012). Moreover, its adsorption has been found to be related to the 

inhibition of the coagulation cascade and, consequently, platelet adsorption (Vogler 

1998; Lackner and Waldhauser 2010). Albumin has three homologous domains 

(comparable amino acid sequences) assembled in a heart-shape structure which are 

sustained by mainly hydrophobic interactions, hydrogen bonds and disulfide bridges 

(Fanali et al. 2012). Thus, surface-protein interaction should be strongly related to 

surface chemistry. Table 3 shows the wettability characteristics assessed by contact 

angle measurements for selected coated samples. The wetting character of a surface can 

be obtained using water. Thus, high contact angle values imply a less wettable surface 

(hydrophobic surface) and, on the contrary, low contact angles values indicate a more 

wettable surface (hydrophilic surface). Pure non-hydrogenated and hydrogenated carbon 

films were characterized as hydrophilic coatings (� < 65º), which was in good 

agreement with the proposed contact angles found in literature (Robertson 2002; Zhou 

et al. 2006). When zirconium was added into the C-matrix in increasing contents, the 

water contact angle increased suggesting hydrophobic surfaces. The exact water-

interaction mechanism of alloyed DLC coatings is still not clear and further 

investigation is needed. However, albumin is known to have a higher binding affinity to 

hydrophobic surfaces due to hydrophobic interactions between the protein and the 

surface (Roach et al. 2005). Hence, Zr containing samples are expected to bond more 

proteins compared to pure films.  

As expected, pure hydrogenated and non-hydrogenated coatings presented higher 

surface energy than the respective co-sputtered films. The incorporation of Zr led to a 

decrease of the surface energy due mainly to the reduction of the polar component. The 

metallic element can decrease the presence of unsaturated bonds and consequently 

decrease the dipolar interaction with water (Chen et al. 2001). Additionally, the 

presence of non-polar C-H bonds on the surface of hydrogenated coatings further 

decreased the interaction of the surface with polar molecules such as water and thus, for 

the same Zr content, the SFE was found to be lower compared to non-hydrogenated 

films. This fact is highlighted by the low polar component found in the Zr co-sputtered 

films, which strongly contributes to the hydrophilic functional chemical groups on the 

surface (Table 3). Each protein has a hydrophobic peptide backbone where the basis of 

polarity of R group emphasizes the possibility of functional role. The protein interfacial 

tension, �BSA, was calculated by the following equation (Paul and Sharma 1981): 

( ) ( )
2 2

BSA s
�

d d p p

BSA BSA s BSA s
γ γ γ γ γ= − + − + ,   (4) 

where the value BSA s�  describes the interdiffusion of ionic-covalent interactions which 

can be considered negligible. Further, if the interfacial tension approaches zero the 

interactions protein-surface are supposed to be lower. Albumin interfacial energy 

parameters are 
d

BSAγ = 31.4 mJ.m
-2 

and 
p

BSAγ =33.6 mJ.m
-2

 (Paul and Sharma 1981). Table 
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2 shows the calculated values for the coated surfaces. Low polar component and low 

polar/dispersive ratio presented higher interfacial tensions. In fact, many authors related 

a low ratio of polar to dispersive components with plasma protein adsorption (Baszkin 

and Lyman 1980; Birdi 1981). Additionally, Vogler (1998) found that the water 

adhesion tension, �0, was the key parameter for biological reactivity of a biomaterial. 

The wettability is then measured by �0 and calculated as a product of water tension by 

the cosine of the measured water contact angle. Hydrophobic and hydrophilic surfaces 

are separated by the Berg’s limit (�0 = 30 mJ.m
-2

) which also limits the protein 

attraction/repulsion characteristic, respectively. Actually, the adsorption on hydrophilic 

surfaces was found to be thermodynamically unfavourable, i.e., the competition 

between water and proteins adsorption is an endothermic process (Paul and Sharma 

1981; Vogler 1998). Once the adsorption is initiated, proteins tend maximize the surface 

interaction by exposure either hydrophobic domain (typically hidden toward the 

interior) or hydrophilic domains trough the surface. Therefore, the exclusion of water 

from the hydrophobic surface potentiates protein-surface interaction and, consequently, 

the hydrophobic interactions (except for the case when the protein in question has 

hydrophobic regions on its surface). Thus, the incorporation of Zr content led to lower 

�0. Besides, the films with higher Zr content were found to have �0 < 30 mJ.m
-2

 further 

highlighting the ability to adsorb protein. On the other hand, the adsorbed molecules 

through hydrophobic interaction can undergo reversible/irreversible conformational 

changes which may lead to unfavourable cell response if the proper binding domain is 

disrupted.  

 

3.3 Protein adsorption 

In order to confirm the wettability results, the protein adsorption phenomenon was 

evaluated for the non-hydrogenated samples. Coated and un-coated samples were 

immersed for 24h hours in a BSA containing solution and rinsed several times with 

ultra pure water in order to leave only the irreversibly bound proteins on top of the 

surfaces. The amount of protein absorbed was estimated using the Bradford protein 

assay and is shown in Figure 1. As expected, pure amorphous coatings showed lower 

protein affinity compared to co-sputtered and uncoated surfaces. Although, Ti6Al4V 

presented the highest affinity to protein adsorption, the incorporation of Zr co-sputtered 

films significantly improved protein affinity when compared to “inert” a-C surface. 

Even though proteins often adsorbed as monolayers on metallic substrates (side-on 

and/or end-on), multilayer adsorption is not uncommon, particularly for high 

concentration solutions (Sousa et al. 2004, Serro et al. 2006). Taking into account the 

albumin size and molecular weight (Puska et al. 2004), a close pack monolayer can be 

formed by approximately 4 mg/m
-2 

(Soderquist and Walton 1980, Sousa et al. 2004). 

Thus, it is expected that in the case of Zr-containing samples albumin adsorbed as a 

multilayer coverage. This result corroborates the observation shown above: 

hydrophobic surfaces tend to bind more protein through “hydrophobic interactions” 

(Figure 1). In general, the driving force for protein adsorption is the entropy gain 
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resulting from dehydration of parts of the sorbent and the protein surface. a-C coating 

presented the highest surface energy together with the highest dispersive component; 

then, it should be expected to bond less protein compared to Zr co-sputtered films 

(hydrophobic surfaces). Moreover, the amount of protein desorbed after washing (i.e. 

not chemically adsorbed on surface) was around 46% compared to 4% found for 

uncoated samples. It shows that the proteins are less tightly bound to the hydrophilic 

surface (Rabe et al. 2011). 

XPS analysis was performed in order to prove the presence of the adsorbed albumin 

layer. Figure 2 shows the XPS survey spectra for uncoated samples and non-

hydrogenated coatings after immersion in BSA. . In order to take into account the 

typical contamination layer, a-C_Zr(7) XPS spectrum before immersion is also shown 

as a representative of all the samples in as-deposited conditions. In fact, after removing 

such contamination layer by argon sputtering (spectrum not shown here) the only 

visible changes were an increase in carbide bonds (for the Zr-containing samples) and a 

decrease in O-containing bonds, confirming the presence of a thin contamination oxide 

layer. The spectra show the peaks corresponding to oxygen (O 1s 532 eV), nitrogen (N 

1s 400 eV), carbon (C 1s 285 eV) and sulphur (S 2p 164 eV, see Figure 2 inset). The 

appearance of the well defined N 1s peak for all samples after immersion is usually 

attributed to the amino acids of the protein (Vanea and Simon 2011; Gruian et al. 2012). 

However, it can be also related to the basic solution used for dilution. On the other 

hand, the presence of the S weak band can only belong to S-containing amino acids, i.e., 

methionine (Met) and cysteine (Cys). Indeed such amino acids correspond to around 7% 

of the total 538 amino acids residues that compose BSA (Hirayama et al. 1990). For Zr-

containing films another important feature was observed; the decrease in the intensity of 

the Zr 3d core level peak due to the presence of the organic adherent layer on the top of 

the sample (compare Figure 2 (d) and (e)). Sodium and phosphorus were also detected 

and considered as contamination from the basic solution used to dilute BSA.  

The deconvolution of the peaks in C 1s, O 1s and Zr 3d core level spectra of the films, 

before and after BSA immersion, is shown in Figure 3. Before immersion, all C 1s 

spectra were fitted using the alkyl type carbon (C-C, C-H) at 285 eV as charge 

reference; a second peak at 286.5 eV was added with the same FWHM as the main 

peak, indicating the alcohol (C-OH) and/or ester (C-O-C) functionality. Two other 

components can also be detected corresponding to the C=O and O-C=O at 2.8-3.0 eV 

and 3.6-4.3 eV, respectively (Kaufmann et al. 1988). When Zr was incorporated in the 

matrix an extra peak was also observed close to 283.4±0.2 eV attributed to C-Zr*, i.e. 

Zr-C bond in nanocrystal as referred to above (Escudeiro et al. 2013; Meng et al. 2013). 

After immersion in BSA an additional peak appeared at 288.3±0.1 eV attributed to the 

O=C-N groups from the peptide backbone (Serro et al 2006; Gispert et al. 2006; 

Premathilaka 2007; Vanea and Simon 2011; Gruian et al. 2012). O 1s band also 

revealed an extra peak at 532.6 eV after protein adsorption confirming the presence of 

such bond together with two other peaks revealing oxygen contamination (531.7 eV) 

and carboxyl groups (533.1 eV) on the film surface (Premathilaka 2007). Again, for Zr-
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containing films a shoulder around 532.1 eV is observed and identified as Zr-O bond. 

The Zr 3d spectra show the presence of both Zr-C (181.2 eV) and Zr-O (183 eV) bonds 

typically found for Zr-conatining DLC films (Escudeiro 2013, Meng et al. 2013). After 

immersion in BSA, a decrease in intensity of the Zr-C bonding component is well 

visible indirectly supporting existence of protein layer.  

Although XPS does not provide quantitative information about the total amount of 

adsorbed protein, it is commonly monitored by the intensity of N peak before and after 

protein adsorption (Serro et al. 2006). The presence of N was imperceptible before the 

immersion in BSA. Figure 4 shows the N 1s core-level spectra for all measured samples 

after 24h immersion in BSA. As expected, the intensity of the N 1s peak varies in a 

similar way as protein adsorption. The deconvolution of the peaks (not shown) revealed 

one component close to 400.2 eV characteristic of O=C-N groups from the peptide 

bonds (Serro et al 2006; Gispert et al. 2006; Premathilaka 2007; Vanea and Simon 

2011; Gruian et al. 2012) and an additional peak near to 401.8 eV which can be 

attributed to a protonate amine group (-NH
+
) of the terminal amino groups (Auditore et 

al. 2002; Ahmed et al. 2013; Lubambo et al. 2013). This may indicate that the BSA will 

bind through carboxyl acid group rather than amino group (Ueda et al. 2976). 

 

3.4 Friction and wear 

To identify a promising coating composition for the articulating joints, forensic 

tribological screening tests (unidirectional pin-on-disc tests) were performed using a 

corrosive lubricants (0.9% NaCl, physiological solution - PS) and a protein containing 

lubricant (Fetal Bovine Serum – FBS). The use of physiological solution was chosen in 

order to create a synergistic effect between the wear and the corrosion due to the 

presence of water and ions that may accelerate material degradation
 
(Wang et al. 2005; 

Kim et al. 2008). On the other hand, FBS was used in order to approach the 

physiological conditions. 

Figure 5 presents the friction data from the tribological tests in PS and FBS. 

Surprisingly, the friction coefficient of coated samples tested in PS was found to be 

similar to that of dry sliding (Escudeiro et al. 2013) and lower than that measured in 

FBS. Moreover, the incorporation of Zr did not lead to any statistically significant 

difference in friction among the coatings. In all cases, the worn surface did not show 

any signs of film failure (Figure 6). In general, all coatings present very low wear rate 

(~0.5x10
-6

 mm
3
/Nm) compared to the uncoated surface under both lubrication 

conditions (7.2 x10
-4

 mm
3
/Nm and 5.7 x10

-4
 mm

3
/Nm for PS and FBS, respectively, see 

Figure 7). The incorporation of Zr did not significantly improve the wear compared to 

pure carbon coatings. Nevertheless, the wear of the counterbody was strongly reduced 

when testing against doped films (Figure 5).  

When tested in highly corrosive medium (PS), it is expected that the production of the 

wear products and their accumulation in the wear track precipitate abrasion wear and 
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delay the repassivation (Kim et al. 2008). The co-sputtered Zr films are known to 

present good wear-corrosion behaviour. Kumar et al. (2013) showed similar or better 

corrosion properties of Zr-doped DLC coatings tested in Hank’s Solution compared to 

the Ti alloy substrate. Also, Wang et al. (2005) reported an excellent crevice and pitting 

corrosion resistance of Zr-DLC films. It is thus expected that the incorporation of Zr 

enhances the corrosion resistance compared to unalloyed films due to its ability to form 

an oxide layer as observed for Ti and Cr by Wang et al. (2013). The decrease of both 

wear debris amount and accumulation of corrosion products between the mating 

materials can consequently decrease the wear of the counterpart. On the other hand, 

when testing under FBS, the presence of proteins can play two roles in the sliding 

systems: (i) they act as a lubricant and (ii) they decrease the degradation process by 

forming a complex adsorbed film (Wimmer et al. 2010). Moreover, protein also can 

interact with the metallic debris/ions forming metalloprotein complexes that may be 

processed or eliminated in vivo (Hallab et al. 2001). Protein-rich lubricants are known to 

improve the stability of the passive film on metallic substrates (SS 316L, Ti6Al4V alloy 

and CoCrMo alloy) acting as a corrosion barrier layer and minimizing the surface 

degradation (Karimi et al. 2011; Runa et al. 2013). The presence of adsorbed proteins 

protected not only the coated surface, decreasing significantly its wear rate (negligible 

worn volume, see Figure 9), but also the counterbody (Figure 5), particularly when 

rubbing against Zr-containg coatings. Adding a metallic element to the C-matrix led to 

higher protein adsorption compared to a-C pure films (see Section 3.3), which could 

increase (tribo)corrosion resistance of coating-substrate system (Karimi et al. 2011, 

Runa et al. 2013).  

For all coatings the friction coefficient using FBS as lubricant was higher compared to 

PS; nevertheless, it was still significantly lower compared to that of uncoated substrates 

(~0.38). The friction coefficient increased up to ~2000 cycles and then oscillated around 

an average value (~0.16). The same tendency was observed for DLC films co-sputtered 

with Ti (Escudeiro et al. 2011) and Si (Anil et al. 2010). Figure 8 shows a schematic 

representation of the albumin-mediate lubrication on DLC-based films. Although 

albumin can undergo conformational change due to adsorption on hydrophobic surfaces, 

the adsorbed layer is more tightly bound compared to hydrophilic surfaces (Hang and 

Qi 2010). Thus the wear of the counterbody was particularly decreased by application of 

Zr co-sputtered coatings. The hydrophobic character of such films led to the adsorption 

of a robust protein layer onto the surface (high adsorption rate), which prevented the 

surfaces to rub in direct contact. However, it was also noticed from the wear scars 

inspection (Figure 9) that higher surface roughness (Table 2) can be disruptive for such 

layer resulting in accelerated wear of the counterbody. 

 

 

 

 



14 

 

 

4. Conclusions 

Zr co-sputtered amorphous films were deposited by DC magnetron sputtering under 

reactive (Ar+CH4) and non-reactive (Ar) atmosphere and tested in lubricated contact. Zr 

was added in small amounts (3-9 at.%) forming dense nanostructured coatings 

composed of ZrC nanocrystalls embedded into an amorphous C-matrix. The 

incorporation of H did not show any significant differences compared to non-

hydrogenated coatings. Zr-alloyed coatings showed higher contact angle (and therefore 

lower surface free energy) then a-C(:H) ones which enhanced protein adsorption onto 

the surface. XPS measurements further indicated that albumin adsorbs better on the 

surface of Zr-doped coatings. When tribologically tested in PS, Zr-doped films behaved 

similarly to pure carbon films. However, the wear behaviour in FBS lubrication clearly 

indicated strong dependence on the ability of the surface to adsorb proteins. Although 

the wear of all coatings was negligible, higher protein adsorption rate of hydrophobic 

surfaces led to lower counterbody wear due to the presence of a robust protein layer. 
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Liquid 
LV�  (mJ.m

-2
) d

l� (mJ.m
-2

) p

l� (mJ.m
-2

) 

Water 72.8 29.1 43.7 

Glycerin ( 3 8 2C H O ) 63.4 37.4 26.0 

Formamide ( 3CH NO ) 58.2 35.1 23.1 

Diiodomethane (

3 2 )CH I  

50.8 50.8 --- 
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Name 

Chemical Composition Dep. 

Rate 

(nm/min) 

Density 

(g/cm
3
) 

Ra 

(nm) 
H (GPa) 

E 

(GPa) C (at.%) Ar (at.%) 
Zr 

(at.%) 
H (at.%) 

a-C_Zr(9) 90.3 0.6 9.0 0.2 8.3 3.1 103 10.7±0.5 133±2 

a-C_Zr(8) 88.1 3.0 7.5 1.5 7.3 3.9 88 11.9±0.6 126±3 

a-C_Zr(4) 91.4 3.8 3.8 0.9 5.0 3.3 85 10.4±0.4 110±3 

a-C 94.0 4.4 - 1.6 4.6 2.6 55 10.7±0.5 94±1 

a-C:H_Zr(6) 67.6 1.9 5.7 24.8 12.0 2.8 76 12.2±0.5 114±3 

a-C:H_Zr(5) 71.3 1.0 4.8 22.9 10.0 2.3 55 11.4±0.4 103±1 

a-C:H_Zr(3) 64.1 1.1 3.3 31.5 8.5 3.1 51 10.0±1.6 87±3 

a-C:H 61.3 0.6 - 38.1 8.8 1.9 76 8.9±0.3 70±1 
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Samples 
�water  

(°) 

Surface Energy (mJ.m
-2

) 
�0 

(mJ.m
-2

) 

�BSA 

(mJ.m
-2

) �s
p 

�s
d 

�S
 

a-C_Zr(8) 67±1 5.0 40.5 45.5 28.0 13.3 

a-C_Zr(4) 66±3 5.1 45.8 50.9 30.1 13.8 

a-C 50±7 11.2 51.2 62.4 46.8 8.4 

a-C:H_Zr(6) 73±2 3.9 36.7 40.6 20.9 14.7 

a-C:H_Zr(3) 65±2 12.8 27.2 40.0 31.0 5.1 

a-C:H 57±2 14.2 33.9 48.1 40.2 4.2 

Ti6Al4V 73±11 8.1 31.1 39.2 21.3 8.7 
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Highlights  

 

• Zr incorporation led to lower surface energy films Hydrogen did not 

significantly influenced surface properties 

• Surface chemistry correlated with serum protein adsorption ratio. 

• Zr-containing films decreased the counterbody wear due to higher albumin 

adsorption 
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