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ON EXTENSIONS OF LAX MONADS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

MARIA MANUEL CLEMENTINO AND DIRK HOFMANN

Abstract. In this paper we construct extensions of Set-monads – and, more gen-
erally, of lax Rel-monads – into lax monads of the bicategory Mat(V) of generalized
V-matrices, whenever V is a well-behaved lattice equipped with a tensor product. We
add some guiding examples.

Introduction

Extensions of Set-monads into lax monads in bicategories of generalized matrices have
been used recently to study categories of lax algebras [5, 10, 9], generalizing Barr’s [1]
description of topological spaces as lax algebras for the ultrafilter monad and Lawvere’s
[16] description of metric spaces as V-categories for V the extended real half-line. The
recent interest in this area had its origin in the use of the description of topological
spaces via ultrafilter convergence to characterize special classes of continuous maps, such
as effective descent morphisms, triquotient maps, exponentiable maps, quotient maps and
local homeomorphisms [18, 15, 4, 7, 14, 6].

In this area, one of the difficulties one has to deal with is the construction of lax
extensions of Set-monads into a larger bicategory. Contrarily to the extensions studied
so far, with ad-hoc constructions, here we present a uniform construction of an extension
of a Set-monad, satisfying (BC), into a lax monad of the bicategory Mat(V) of generalized
V-matrices. This construction consists of three steps: first we apply Barr’s extension of
the monad into the category Rel of relations (in Section 1) and then we extend this into
Mat(2Vop

) and finally into Mat(V) (as described in Section 3). This construction includes,
for instance, Clementino-Tholen construction of an extension of the ultrafilter monad in
case V is a lattice (Example 6.4). The techniques used here can be used also to extend
lax monads from Rel into Mat(V). We find particularly interesting the presentation of
the Hausdorff metric on subsets of a metric space as an extension of the lax powerset
monad (Example 6.3).
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1. From Set to Rel

1.1. The 2-category Rel. We recall that Rel has as objects sets and as morphisms
r : X � Y relations r ⊆ X × Y (or equivalently r : X × Y → 2). With the hom-sets
Rel(X,Y ) partially ordered by inclusion, Rel is a 2-category.

Using its natural involution ( )◦, that assigns to each relation r : X � Y its inverse
r◦ : Y � X, and the embedding Set ↪→ Rel, it is easily seen that every relation r can be
written as g · f ◦:

X �
r �� Y

r
f

��������� g

���������
(1)

where f and g are the projections.

1.2. Barr’s extension. In order to extend a Set-monad (T, η, µ) into Rel, Barr [1]
defined first T (f ◦) := (Tf)◦ for any map f , and then made use of the factorization (1) of
the relation r : X � Y to define

Tr := Tg · Tf ◦,

that does not depend on the chosen factorization and extends naturally to 2-cells. Hence
the following diagram

Set� �

��

T �� Set� �

��
Rel

T �� Rel

is commutative.
Barr proved that T : Rel → Rel is an op-lax functor and that the natural transfor-

mations η and µ become op-lax in Rel; that is:

• T (r · s) ≤ Tr · Ts for any pair of composable relations r, s;

• for every r : X � Y , one has

X

≤

ηX ��

�r

��

TX
�

Tr
��

T 2X

≤

µX ��

�
T

2
r

��

TX
�

Tr
��

Y
ηY �� TY T 2Y

µY �� TY.

1.3. The role of the Beck-Chevalley Condition. As Barr pointed out, this
extension may fail to be a functor. The missing inequality depends on the behaviour of
the functor T : Set → Set: it holds if and only if T satisfies the Beck-Chevalley Condition
(BC), that is, if (Tf)◦ · Tg = Tk · (Th)◦ for every pullback diagram

W
k ��

h
��

X

f

��
Z

g �� Y
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in Set. (Under the Axiom of Choice, (BC) is equivalent to the preservation of weak
pullbacks.)

Theorem. For a functor T : Set → Set, the following assertions are equivalent:

i. There is a (unique) 2-functor T : Rel → Rel, preserving the involution, that extends
T ;

ii. T satisfies the Beck-Chevalley Condition.

We also have:

Proposition. Given functors S, T : Set → Set satisfying (BC) and a natural trans-
formation ϕ : S → T , the following assertions are equivalent:

i. ϕ : S → T is a natural transformation;

ii. for every map f : X → Y , the Set-diagram

SX
ϕX ��

Sf

��

TX

Tf

��
SY

ϕY �� TY

satisfies (BC), i.e. (Tf)◦ · ϕY = ϕX · (Sf)◦.

2. The extended setting: Mat(V) and lax monads

Throughout we will be concerned with the construction of lax extensions of a Set-monad
to more general 2-categories. In this section we describe the 2-categories as well as the
lax axioms for a monad we will deal with.

2.1. The category of V-matrices. We consider a complete and cocomplete lattice
V as a category, and assume that it is symmetric monoidal-closed, with tensor product
⊗ and unit kV. We denote its initial and terminal objects by ⊥V and �V, respectively.
The 2-category Mat(V) has as objects sets and as 1-cells r : X � Y V-matrices, that is,
maps r : X × Y → V; given r, r′ : X � Y , there is a (unique) 2-cell r → r′ if, for every
(x, y) ∈ X × Y , r(x, y) ≤ r′(x, y) in V. Composition of 1-cells r : X � Y and s : Y � Z
is given by matrix multiplication, i.e.

s · r(x, z) =
∨
y∈Y

r(x, y) ⊗ s(y, z),

for every x ∈ X and z ∈ Z. Further information about this category can be found in [2]
and [10].

Rel is a crucial example of a 2-category of this sort, obtained when V = 2 = {⊥,�},
with ⊗ = ∧. The monoidal map 2 ↪→ V, with ⊥ 
→ ⊥V and � 
→ kV naturally gives
rise to an embedding Rel ↪→ Mat(V) whenever ⊥V �= kV, condition assumed from now
on. By relation in Mat(V) we mean any V-matrix with entries ⊥V and kV; that is, any
image of a relation by this embedding.
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2.2. Lax monads. Here we propose a definition of lax monad different from Barr’s [1];
namely, we assume that the functor is lax (and not necessarily op-lax).

By a lax monad (T, η, µ) in Mat(V) we mean:

− a lax functor T : Mat(V) → Mat(V) (so that 1TX ≤ T1X and Ts · Tr ≤ T (s · r) for
composable V-matrices r, s), and

− op-lax natural transformations η : 1Mat(V) → T and µ : T 2 → T ,

such that µ · Tµ ≤ µ · µT , Id T ≤ µ · Tη ≤ T Id and Id T ≤ µ · ηT ≤ T Id; that is, for
every set X,

T 3X

≤

µTX ��

TµX

��

T 2X

µX

��

TX

TηX

��
ηTX

��
1TX

��

T1X

��

T 2X
µX �� TX ≤ T 2X

µX

��

≤

TX

(2)

We point out that this definition does not coincide with Bunge’s [3], although the only
differences occur in the right-hand diagram. In the final section we present an example
of a lax monad (in our sense) which is not a lax monad à la Bunge (see Example 6.3).

3. The strategy

3.1. The monoidal closed category 2Vop
. It is straightforward to check that the

formula:

f ⊗ g(v) =
∨

v′,v′′ : v′⊗v′′≥v

f(v′) ∧ g(v′′), (3)

for any f, g ∈ 2Vop
and v ∈ V, defines a tensor product in 2Vop

that preserves joins, with
unit element

k : Vop → 2

v 
→
{ � if v ≤ kV

⊥ elsewhere.

(We point out that this tensor product is a particular case of Day’s convolution [11].)
Symmetry of this tensor is also inherited from symmetry of the tensor product of 2 and
V, so that we have:

Proposition. Given a symmetric monoidal closed lattice V, formula (3) gives a
symmetric monoidal closed structure on 2Vop

.

We remark that, in case the tensor product in V is its categorical product, then
f ⊗ g = f ∧ g as well.
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3.2. 2Vop
-matrices versus Vop

-indexed relations. The embedding

E : 2 → 2Vop

w 
→
E(w) : Vop → 2

v 
→ E(w)(v) =

{
w if v ≤ kV

⊥ elsewhere

preserves the tensor product, the unit element and infima. It preserves suprema if and
only if kV = �V. Therefore, as detailed in [10], it induces a 2-functor

E : Mat(2) → Mat(2Vop

).

Denoting the set of functors from A to B by [A,B], the composition of the natural
bijections

[X × Y, [Vop,2]] ∼= [X × Y × Vop,2] ∼= [Vop × X × Y,2] ∼= [Vop, [X × Y,2]]

assigns to any 2Vop
-matrix a : X × Y → 2Vop

a Vop-indexed family of relations (av :
X × Y → 2)v∈V, defined by

av(x, y) = a(x, y)(v).

Lemma. For a, a′ : X � Y , b : Y � Z in Mat(2Vop
) and v, v′ ∈ V, one has:

a. v ≤ v′ ⇒ av ≥ av′;

b. a ≤ a′ ⇒ av ≤ a′
v;

c. bv · av′ ≤ (b · a)v⊗v′;

d. if ⊗ = ∧ in V, then bv · av = (b · a)v.

Proof. The only non-trivial assertion is (d). When ⊗ = ∧, for each x ∈ X and z ∈ Z,

(b · a)v(x, z) = (b · a)(x, z)(v)

=
∨
y∈Y

(a(x, y) ∧ b(y, z))(v)

=
∨
y∈Y

a(x, y)(v) ∧ b(y, z)(v)

= bv · av(x, z).
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3.3. The Yoneda embedding. We consider now the Yoneda embedding

Y : V → 2Vop

v 
→
Y(v) : Vop → 2

u 
→
{ � if u ≤ v

⊥ otherwise,

and its left adjoint
L : 2Vop → V

f 
→
∨

{v ∈ V ; f(v) = �}.
Proposition. The functors Y and L are strict monoidal functors.

Proof. The functor Y is monoidal: from Y(kV)(v) = � if and only if v ≤ kV, it follows
that Y(kV) = k; moreover,

(Y(v) ⊗ Y(v′))(u) = � ⇔
∨

r⊗s≥u

Y(v)(r) ∧ Y(v′)(s) = �

⇔ ∃r, s ∈ V : r ⊗ s ≥ u, r ≤ v and s ≤ v′

⇔ u ≤ v ⊗ v′ ⇔ Y(v ⊗ v′)(u) = �.

The functor L is monoidal, since:

L(k) =
∨

{v ∈ V ; k(v) = �} = kV, and

L(f) ⊗ L(g) =
∨

{r ∈ V ; f(r) = �} ⊗
∨

{s ∈ V ; g(s) = �}
=

∨
{r ⊗ s ; r, s ∈ V, f(r) = � = g(s)}

=
∨

{v ∈ V ; (f ⊗ g)(v) = �} = L(f ⊗ g).

These two strict monoidal functors induce a pair of lax functors

Mat(V)
Y ��

Mat(2Vop
),

L
��

L being in fact a 2-functor.

3.4. The use of the embeddings to construct the extension. The construction
of the extension of a lax monad (T, η, µ) in Rel = Mat(2) into Mat(V) we will describe
in the next two sections consists of two steps.

First we use the interpretation of a 2Vop
-matrix as a Vop-indexed family of relations

and the embedding described in 3.2, obtaining a commutative diagram

Mat(2) T ��

E
��

Mat(2)

E
��

Mat(2Vop
)

T̂ �� Mat(2Vop
).

(4)
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Secondly, we use the adjunction L � Y of Section 3.3 to transfer a lax monad (S, δ, ν)

in Mat(2Vop
) into Mat(V), defining S̃ := LSY and showing that, under some conditions

on V, the following diagram

Mat(2Vop
)

S ��

L
��

Mat(2Vop
)

L
��

Mat(V) S̃ �� Mat(V)

(5)

is commutative and (S̃, δ̃, ν̃) is a lax monad in Mat(V).
Finally, gluing these constructions, since LE is the embedding Rel ↪→ Mat(V), we

obtain a commutative diagram

Rel
T ��

��

��

� �

E
��

Rel
��

		

��

E
��

Mat(2Vop
)

T̂ ��

L
��

Mat(2Vop
)

L
��

Mat(V)
˜̂
T �� Mat(V),

and corresponding op-lax natural transformations ˜̂η and ˜̂µ.
We point out that in the construction sketched in diagram (4), and described in the

next section, one can replace, without much effort, the lattice 2 by a general symmetric
monoidal closed category. Moreover, in the construction (5) carried out in Section 5 one
can easily replace the monoidal adjunction L � Y by any other such adjunction.

4. From Mat(2) to Mat(2Vop

)

4.1. Extension of a lax endofunctor. Given a lax functor T : Mat(2) → Mat(2),
for each a : X � Y and (x, y) ∈ TX × TY , we define

T̂ a(x, y)(v) := T (av)(x, y).

Theorem. Let T : Rel → Rel be a lax functor.

a. The assignments X 
→ T̂X := TX and a 
→ T̂ a define a lax functor T̂ : Mat(2Vop
) →

Mat(2Vop
) such that

Rel
T ��

� �

E
��

Rel
��

E
��

≥

Mat(2Vop
)

T̂ �� Mat(2Vop
);

that is, the functors T̂E and ET agree on objects and, for each relation r : X � Y ,
ET (r) ≤ T̂E(r).
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b. T̂ preserves the involution whenever T does.

c. If kV = �V or T preserves the ⊥-relation, then T̂ is an extension of T , that is, the
following diagram commutes

Rel
T ��

� �

E
��

Rel
��

E
��

Mat(2Vop
)

T̂ �� Mat(2Vop
).

d. If ⊗ = ∧, then T̂ is a (strict) 2-functor if T is one.

Proof. To prove (a), we have to show that T̂ (b) · T̂ (a) ≤ T̂ (b · a), 1T̂X ≤ T̂1X and that

ET ≤ T̂E. To show the first inequality, consider a : X � Y and b : Y � Z in Mat(2Vop
),

and x ∈ TX, z ∈ TZ and v ∈ V. Then:

T̂ b · T̂ a(x, z)(v) =

( ∨
y∈TY

T̂ a(x, y) ⊗ T̂ b(y, z)

)
(v)

=
∨

y∈TY

∨
v′⊗v′′≥v

T̂ a(x, y)(v′) ⊗ T̂ b(y, z)(v′′)

=
∨

v′⊗v′′≥v

(Tbv′′ · Tav′)(x, z)

≤
∨

v′⊗v′′≥v

T (b · a)v′⊗v′′(x, z) ≤ T (b · a)v(x, z).

Now, for a relation r : X � Y ,

T̂E(r) =

{
Tr if v ≤ kV

T⊥ otherwise
while ET (r) =

{
Tr if v ≤ kV

⊥ otherwise,

hence T̂E ≥ ET follows. This inequality implies that 1T̂X ≤ T̂1X , since

T̂1X = T̂E1X ≥ ET1X ≥ E1TX = 1TX .

The proofs of (b) and (c) are now straightforward. One concludes (d) using Lemma

3.2(d) in the calculation of T̂ b · T̂ a presented in the proof of (a).

Now we prove some auxiliary results.

Lemma. For a : X � Y in Mat(2Vop
), r : Y � Z, s : W � X in Rel, and v ∈ V:

a. (T̂ a)v = Tav;

b. (Er · a)v = r · av and (a · Es)v = av · s.
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Proof. (a) is straightforward.
(b): For x ∈ X and z ∈ Z,

(Er · a)v(x, z) = (Er · a)(x, z)(v) =
∨
y∈Y

(a(x, y) ⊗ Er(y, z))(v)

=
∨

v′⊗v′′≥v

∨
y∈Y

(a(x, y)(v′) ⊗ Er(y, z)(v′′)).

In this join it is enough to consider:

• v′′ ≤ kV, since elsewhere Er(y, z)(v′′) = ⊥ and the tensor product is ⊥ as well, and

• v′ = v, due to monotonicity of a(x, y); hence,

(Er · a)v(x, z) =
∨
y∈Y

a(x, y)(v) ⊗ r(y, z) = (r · av)(x, z).

The other equality is proved analogously.

Proposition. If T : Rel → Rel preserves composition on the left (right) with r :

Y × Z → 2, then T̂ preserves composition with Er.

Proof. For any a : X � Y in Mat(2Vop
) and v ∈ V,

T̂ (Er · a)v = T ((Er · a)v) = T (r · av) = Tr · Tav = Tr · (T̂ a)v.

The stability under composition on the right has an analogous proof.

4.2. Extension of a lax monad. Given a natural transformation α : S → T between
lax functors S, T : Rel → Rel, we define α̂ : Ŝ → T̂ by α̂X := EαX for every set X; that
is

α̂X : SX × TX → 2Vop

(x, x′) 
→
α̂X(x, x′) : Vop → 2

v 
→
{

αX(x, x′) if v ≤ kV

⊥ elsewhere.

Proposition. Let S, T : Rel → Rel be lax functors. Then:

a. Îd = Id.

b. Ŝ · T̂ = Ŝ · T .

c. If α : S → T is a (lax, op-lax) natural transformation, so is α̂ : Ŝ → T̂ .

Proof. Straightforward.
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Theorem. Let (T, η, µ) be a lax monad in Rel. If kV = �V or T preserves the

⊥-matrix, then (T̂ , η̂, µ̂) is a lax monad that extends the former one.

Proof. We only have to check diagrams (2) for (T̂ , η̂, µ̂), which follow directly from the
corresponding diagrams for (T, η, µ) once one observes that the former ones are obtained
from the latter applying the 2-functor E.

5. From Mat(2Vop

) into Mat(V)

5.1. Transfer of a lax endofunctor. Using the monoidal adjunction of 3.3, for
a lax endofunctor S in Mat(2Vop

), we define

Mat(V) S̃ �� Mat(V) := (Mat(V) Y �� Mat(2Vop
)

S �� Mat(2Vop
)

L �� Mat(V)).

Proposition. Let S : Mat(2Vop
) → Mat(2Vop

) be a lax functor. Then S̃ = LSY is
such that

Mat(2Vop
)

S ��

L
��

Mat(2Vop
)

L
��

≥

Mat(V) S̃ �� Mat(V).

The inequality in the diagram becomes an equality whenever SYL ≤ YLS.

Proof. By the adjointness property, LS ≤ LSYL, the required inequality. In addition,
if SYL ≤ YLS, then LSYL ≤ LYLS ≤ LS, and the equality follows.

Analogously to the previous construction, we can easily check that:

Lemma. For S : Mat(2Vop
) → Mat(2Vop

), if S preserves composition on the left (right)

with a matrix a : X � Y , then so does S̃, with a replaced by La.

Proof. Indeed,

S̃(b · La) = LSY(b · La) ≤ LSY(LYb · La)

= LSYL(Yb · a) ≤ LS(Yb · a)

= LSYb · LSa ≤ LSYb · LSYLa

= S̃b · S̃(La).
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5.2. Transfer of a lax monad. First we analyse the behaviour of the construction
with respect to the composition of functors and natural transformations. For any (lax,
op-lax) natural transformation α : R → S between lax functors R,S : Mat(2Vop

) →
Mat(2Vop

), we define α̃ : R̃ → S̃ by α̃X := LαYX , for every set X; that is,

α̃X : R̃X � S̃X, (x, x′) 
→
∨

{v ∈ V ; αX(x, x′)(v) = �}.

Lemma. Let R,S : Mat(2Vop
) → Mat(2Vop

) be lax functors. Then:

a. Ĩd = Id.

b. R̃S ≤ R̃S̃, with equality in case RYL ≤ YLR.

c. If α : R → S is a (lax, op-lax) natural transformations, so is α̃ : R̃ → S̃.

Proof. It is straightforward.

Theorem. For each lax monad (S, δ, ν) in Mat(2Vop
), (S̃, δ̃, ν̃) is a lax monad in

Mat(V) provided that SYL ≤ YLS.

Proof. We already know that S̃ = LSY is a lax functor, δ̃ = Lδ : LY = Id → S̃ and
ν̃ = Lν : S̃S = S̃S̃ → S̃ are op-lax natural transformations. It remains to be shown that
they fulfil the conditions of diagram (2): for each set X,

ν̃X · S̃ν̃X = LνX · LSYLνX ≤ LνX · LYLSνX = L(νX · SνX)

≤ L(νX · νSX) = LνX · LνSX = ν̃X · ν̃S̃X ;

ν̃X · S̃δ̃X = LνX · LSYLδX ≥ LνX · LSδX = L(νX · SδX)

≥ L1SX ≥ 1S̃X ;

ν̃X · S̃δ̃X = LνX · LSYLδX ≤ LνX · LYLSδX = L(νX · SδX)

≤ LS1X ≤ S̃L1X = S̃1X ;

ν̃X · δ̃S̃X = L(νX · δSX) ≤ L1SX = 1S̃X .

5.3. An extra condition on V. In order to guarantee that SYL ≤ YLS we will
impose an extra condition on V which we analyse in the sequel. It was used in [10] under
the designation V is �-atomic, and it was formulated there as: for all u, v, w ∈ V,

a. u � v ≤ w ⇒ u � w,

b. v =
∨

At(v),
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where At(v) = {u ∈ V ; u � v & ∀S ⊆ V u �
∨

S ⇒ ∃s ∈ S : u ≤ s} is the set of
�-atoms of v.

It was pointed out to us by Dexue Zhang that this condition is equivalent to V
being a completely distributive lattice, i.e. the functor

∨
: DV → V, where DV is the

lattice of downsets of V, has a left adjoint. (For the connection between this constructive
formulation of complete distributivity and the classical one see [19].) In order to show
this, we first observe that the lattice 2Vop

is isomorphic to the lattice DV and that the
following diagram commutes:

DV
∼= ��∨

����
��

��
��

�
2Vop

L

��
��

��
���

V.
↓−

����������

Y
����������

Proposition. The following conditions are equivalent:

i. V is �-atomic for a transitive relation � in V;

ii. V is �-atomic for a relation � in V;

iii. V is completely distributive;

iv. there exists a family (A(v))v∈V of subsets of V such that, for each f ∈ 2Vop
and

v ∈ V,

YL(f)(v) =
∧

u∈A(v)

f(u).

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii): Given a relation � such that V is �-atomic, we define the left adjoint

A : V → DV of the functor
∨

: DV → V by

A(v) := At(v) = {u ∈ V ; u � v & ∀S ⊆ V u �
∨

S ⇒ ∃s ∈ S : u ≤ s}.

By definition of �-atomic, this is a monotone map such that
∨ ·A = IdV. Moreover, it is

obvious that, for any S ∈ DV, A ·∨(S) ⊆ S.
(iii) ⇒ (iv): Given A � ∨, the family of images (A(v))v∈V satisfies the condition

stated in (iv). Indeed, the adjunction gives

∀v ∈ V ∀S ∈ DV v ≤
∨

S ⇔ A(v) ⊆ S.

Hence, one has

YL(f)(v) = � ⇔ v ≤ ∨{w ∈ V ; f(w) = �}
⇔ A(v) ⊆ {w ∈ V ; f(w) = �}
⇔ ∀u ∈ A(v) f(u) = �.
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(iv) ⇒ (i): Let � be defined by

u � v :⇔ ∃w ∈ V : u ∈ A(w) and w ≤ v.

Then it clearly satisfies condition (a) of the definition of �-atomic. Moreover, for any
u ∈ A(v), u � v.

To show that � is transitive, it is enough to notice that, since YLY = Y, we have

� = Y(v)(v) = YLY(v)(v) ⇒
∧

u∈A(v)

Y(v)(u) = � ⇒ ∀u ∈ A(v) : u ≤ v.

To show equality (b) we first observe that v =
∨

A(v), as stated above. We then show
that A(v) ⊆ At(v). Let u ∈ A(v) and u �

∨
S for some subset S of V. By definition of

�, there exists v′ ∈ V such that u ∈ A(v′) and v′ ≤ ∨S. Let

f : Vop → 2

w 
→
{ � if ∃s ∈ S : w ≤ s

⊥ elsewhere.

Then YL(f)(v′) = �, since v′ ≤ L(f) =
∨

S, and therefore f(u) = �, that is, there exists
s ∈ S such that u ≤ s as claimed.

Lemma. If V is completely distributive, one has, for each 2Vop
-matrix a : X � Y and

each element v of V,

(YLa)v =
∧

u∈A(v)

au.

Proof. For each x ∈ X and y ∈ Y , using the proposition above, we have

(YLa)v(x, y) = YL(a(x, y))(v) =
∧

u∈A(v)

a(x, y)(u) =
∧

u∈A(v)

au(x, y).

5.4. The extension. Next we will show that
˜̂
( ) extends each lax monad in Rel into

Mat(V). We start outlining this construction.

Let (T, η, µ) be a lax monad in Rel. Then
˜̂
T : Mat(V) → Mat(V) agrees with T on

objects. To define
˜̂
T (a) for a morphism a : X � Y in Mat(V), we consider the relation

Yav : X × Y → 2

(x, y) 
→
{ � if v ≤ a(x, y)

⊥ elsewhere;

it is straightforward that˜̂
T (a) : TX × TY → V

(x, y) 
→ ∨{v ∈ V ; T (Yav)(x, y) = �}.
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In the op-lax natural transformations η : Id → T and µ : T 2 → T ,
˜̂
( ) acts as

X × TX
ηX→ 2 
→ X × TX

˜̂ηX→ V

(x, x) 
→
{

kV if ηX(x, x) = �
⊥ elsewhere,

T 2X × TX
µX→ 2 
→ T 2X × TX

˜̂µX→ V

(X, x) 
→
{

kV if µX(X, x) = �
⊥ elsewhere.

Theorem. Let (T, η, µ) be a lax monad in Rel. If V is completely distributive, kV = �V

or T preserves the ⊥-matrix, then (
˜̂
T , ˜̂η, ˜̂µ) is a lax monad in Mat(V), that extends the

former one.

Proof. Using Theorems 4.1, 4.2, and Proposition 5.1 and Theorem 5.2, it is enough
to show that T̂YL ≤ YLT̂ , whenever V is completely distributive. For a : X � Y ∈
Mat(2Vop

), v ∈ V, x ∈ TX, y ∈ TY :

(T̂YL(a))(x, y)(v) = T (YL(a))v(x, y) = T (
∧

u∈A(v)

au)(x, y)

≤
∧

u∈A(v)

Tau(x, y) = YLTa(x, y)(v).

Corollary. Let (T, η, µ) be a monad in Set. If T satisfies (BC), V is completely

distributive, and kV = �V or � preserves the ⊥-matrix, then (
˜̂
T , ˜̂η, ˜̂µ) is a lax monad

in Mat(V), that extends the given one. Moreover, if the tensor product ⊗ in V is its

categorical product, then
˜̂
T is in fact a functor.

Proof. The first assertion follows from Theorem 1.3 together with the theorem above.

To show that
˜̂
T is a functor in case ⊗ = ∧, we first show that, for each a : X � Y and

b : Y � Z in Mat(V) and each u, v ∈ V with u ∈ A(v), Y(b · a)v ≤ Ybu ·Yau. Indeed, for
every x ∈ X and z ∈ Z,

Y(b · a)(x, z)(v) = � ⇔ v ≤ (b · a)(x, z)

⇒ u � (b · a)(x, z) =
∨
y∈Y

a(x, y) ∧ b(y, z)

⇒ ∃y ∈ Y : u ≤ a(x, y) ∧ b(y, z)

⇔ ∃y ∈ Y : Ya(x, y)(u) = � = Yb(y, z)(u)

⇔ (Yb · Ya)(x, z)(u) = �.
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Finally, to check that
˜̂
T (b · a) ≤ ˜̂

Tb · ˜̂Ta, we consider x ∈ TX, z ∈ TZ and v ∈ A(
˜̂
T (b ·

a)(x, z)). Hence � = T (Y(b · a)v)(x, z). Then, for any u ∈ A(v), � = (TYbu · TYau)(x, z).
But then there exists y ∈ TY such that TYbu(x, y) = � = TYau(y, z). Therefore u ≤˜̂
T (b) · ˜̂T (a)(x, z) and then

˜̂
T (b · a) ≤ ˜̂

Tb · ˜̂Ta as claimed.

6. Examples

In this section we present examples of extensions. Our main examples are based on the
category Mat(R+), where ([0,∞],≥) is endowed with the tensor product +. We remark
that in this situation the terminal object is also the unit element 0 and that R+ is >-
atomic (see [12] for further information about this sort of lattices), hence we may apply
our results. For simplicity, we use the same notation for the given (lax) monad and its
extension.

6.1. The identity monad. Barr’s extension of the identity monad (Id, 1, 1) in Set
into Rel gives the identity monad. The same occurs in the next step: its extension into
Mat(V) as defined here is the identity monad. (We remark that this monad may have
other lax extensions, as it is shown in [8].)

6.2. The powerset monad. The powerset monad (P, η, µ) in Set is defined by:

- P is the powerset functor, assigning to each set X its powerset PX and to each map
its direct image,

- ηX(x) = {x} for every x ∈ X ∈ Set, and

- µX(A) =
⋃A for every set A of subsets of X.

It is easy to check that the functor P satisfies (BC), hence this monad can be extended
to Rel, with

A(Pr)B ⇔ ∀x ∈ A ∃y ∈ B : xry and ∀y ∈ B ∃x ∈ A : xry.

For V = R+, d : X × Y → R+, A ⊆ X and B ⊆ Y , the extension Pd(A,B) is defined by

inf{v ∈ R+ | ∀x ∈ A ∃y ∈ B : d(x, y) ≤ v and ∀y ∈ B ∃x ∈ A : d(x, y) ≤ v}.

In case d is a premetric in X, P̃ d is the usual premetric in PX.

6.3. The lax powerset monad. If we consider now H : Rel → Rel with HX := PX
the powerset of X and

A(Hr)B if for each b ∈ B there exists a ∈ A such that a r b,
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it is easy to check that 1HX ≤ H1X and Hr · Hs ≤ H(r · s), hence H is a lax functor.
We may equip H with the structure of a lax monad, considering the (strict) natural
transformations η : IdRel → H and µ : H2 → H, defined by

x(ηX)A if x ∈ A and A(µX)A if
⋃

A ⊆ A,

for x ∈ X, A ⊆ X and A ⊆ HX. It is easy to check that, for every set X, A,A′ ⊆ X and
A ⊆ HHX,

A(µX · ηHX)A′ ⇔ A(µX · HηX)A′ ⇔ A(H1X)A′ ⇔ A ⊆ A′, and

A(µX · HµX)A ⇔ A(µX · µHX)A ⇔
⋃⋃

A ⊆ A.

Hence, 1HX ≤ µX · ηHX = µX ·HηX = H1X and µX ·HµX = µX ·µHX , and then (H, η, µ)
is a lax monad in Rel. (We remark that it is not a lax monad in the sense of Bunge [3],
since µX · HηX �≤ 1HX .)

It has an interesting lax extension to Mat(R+): given d : X � Y in Mat(R+), for each
A ⊆ X and B ⊆ Y ,

Hd(A,B) = inf{v ≥ 0 |A(Hdv)B} = inf{v ≥ 0 | ∀x ∈ A ∃y ∈ B : d(x, y) ≤ v}.
For a premetric d : X � X, Hd assigns to each pair of subsets A,B of X, its Hausdorff
(non-symmetric) premetric

dH(A,B) = sup
x∈A

inf
y∈B

d(x, y).

This identification holds in the general case of a V-matrix d : X � Y , considering dH

defined as above. Indeed, for v ∈ R+,

∀x ∈ A ∃y ∈ B : d(x, y) ≤ v ⇒ ∀x ∈ A inf
y∈B

d(x, y) ≤ v ⇒ dH(A,B) ≤ v

⇒ dH(A,B) ≤ Hd(A,B).

On the other hand,

dH(A,B) < v ⇒ ∀x ∈ A inf
y∈B

d(x, y) < v ⇒ ∀x ∈ A ∃y ∈ B : d(x, y) ≤ v

⇒ Hd(A,B) ≤ v.

Hence, dH = Hd as claimed.

6.4. The ultrafilter monad. We consider now the ultrafilter monad (U, η, µ) in
Set, with:

- the functor U : Set → Set such that UX is the set of ultrafilters of X for every set
X, and Uf(x) the ultrafilter generated by f(x), for every map f : X → Y and every
ultrafilter x in X.



ON EXTENSIONS OF LAX MONADS 57

- ηX : X → UX assigns to each point x the principal ultrafilter

•
x = {A ⊆ X |x ∈ A};

- µX : U2X → UX is the Kowalsky multiplication, i.e.

µX(X) =
⋃
X∈X

⋂
x∈X

x.

The functor U satisfies (BC), hence it has an extension in Rel, given by

x(Ur)y ⇔ r[x] ⊆ y ⇔ r◦[y] ⊆ x,

for every relation r : X � Y , x ∈ UX and y ∈ UY . This can be equivalently described
by

x(Ur)y ⇔ ∀A ∈ x ∀B ∈ y ∃x ∈ A ∃y ∈ B : xry.

Its lax extension U to Mat(V) coincides with Clementino-Tholen lax extension [10]
(which we will denote below by U ′), as we show next.

For each d : X � Y in Mat(V),

Ud(x, y) =
∨

{v ∈ V | x(Udv)y}
=

∨
{v ∈ V | ∀A ∈ x ∀B ∈ y ∃x ∈ A ∃y ∈ B : d(x, y) ≥ v},

while

U ′d(x, y) =
∧

A∈x,B∈y

∨
x∈A,y∈B

d(x, y).

For each v ∈ V such that x(Udv)y, v ≤
∨

x∈A,y∈B

d(x, y), hence v ≤ U ′d(x, y), and therefore

Ud(x, y) ≤ U ′d(x, y).

If w is a �-atom and w � U ′d(x, y), then w �
∨

x∈A,y∈B

d(x, y) for each A ∈ x and B ∈ y.

Hence there exists x ∈ A and y ∈ B such that w ≤ d(x, y), and therefore w ≤ Ud(x, y).
Hence, U ′d(x, y) ≤ Ud(x, y) and the equality follows.

We point out that, although U : Rel → Rel is a (strict) functor, its extension U :
Mat(V) → Mat(V) is not always op-lax. It is the case when V = ([−∞, +∞],≥), with
tensor product ⊗ = + (where −∞ + (+∞) = +∞), as we show next.

Consider X = {n |n ∈ N, non-zero and even}, Z = {−m |m ∈ N, non-zero and odd}
and Y = X ∪ Z. For

d1 : X × Y → [−∞, +∞] and d2 : Y × Z → [−∞, +∞],
(x, y) 
→ xy (y, z) 
→ yz
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and free ultrafilters x ∈ UX and z ∈ UZ, we have

U(d2 · d1)(x, z)= inf{v ∈ V | ∀A ∈ x ∀C ∈ z ∃x ∈ A ∃z ∈ C : (d2 · d1)(x, z) ≥ v}
= −∞,

since (d2 · d1)(x, z) = inf
y∈Y

y(x + z) = −∞. To calculate (Ud2 · Ud1)(x, z), let y ∈ UY . If

X ∈ y, then Ud1(x, y) = +∞ since every A ∈ x is unlimited and every B ∈ y has a positive
element. If X �∈ y, then Z ∈ y; hence Ud2(y, z) = +∞ since every C ∈ z is unlimited and
every B ∈ y contains a negative element. Now

(Ud2 · Ud1)(x, z) = inf
y∈UY

Ud1(x, y) + Ud2(y, z) = +∞,

and therefore U(d2 · d1) �≤ Ud2 · Ud1; that is U is not op-lax.

6.5. The filter monad. The filter monad (F, η, µ) in Set, with FX the set of filters of
X, Ff(x) = {B ⊆ Y | f−1(B) ∈ x} for every f : X → Y and x ∈ FX, and η and µ defined
as in the example above, satisfies (BC). Hence F can be extended into an endofunctor of
Rel, that may be described by

x(Fr)y ⇔ r[x] ⊆ y and r◦[y] ⊆ x,

for every relation r : X � Y , x ∈ FX and y ∈ FY . We observe that, contrarily to the
case of the ultrafilter monad, in this situation we have to impose both conditions, r[x] ⊆ y

and r◦[y] ⊆ x, since each of them does not follow from the other. This was the reason
why Pisani in [17] had to restrict the codomain in order to get a functor extension with
the “non-symmetric” definition. Indeed, if we define G : Rel → Rel, ε : IdRel → G and
ν : GG → G by GX = FX,

x(Gr)y ⇔ r◦[y] ⊆ x,
x εX x ⇔ x ⊆ ηX(x),
X νX x ⇔ x ⊆ µX(X),

we obtain a lax monad (G, ε, ν) in Rel.

6.6. The double powerset monad. Finally we present an example that shows
that the Beck-Chevalley condition used throughout is not always satisfied. In the double
powerset monad (D, η, µ) in Set induced by the adjunction

Setop
Set(−,2) ��

Set
Set(−,2)

��

the functor D does not satisfy (BC) (see [13]). Indeed, it is easy to check that the D-image
of the following pullback

∅ ��

��

{0, 1}
g

��
{0, 1} f �� {0, 1},
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where f(0) = f(1) = 0 and g(0) = g(1) = 1, does not satisfy (BC):

Df({∅, {0, 1}}) = Dg({∅, {0, 1}}) = P ({0, 1}),

although there is no element on D(∅) mapped into {∅, {0, 1}} by the pullback projections.
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