
Accepted Manuscript

Spaces of generalized smoothness in the critical case: Optimal
embeddings, continuity envelopes and approximation numbers
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SPACES OF GENERALIZED SMOOTHNESS IN THE CRITICAL CASE: OPTIMAL
EMBEDDINGS, CONTINUITY ENVELOPES AND APPROXIMATION NUMBERS

SUSANA D. MOURA, JÚLIO S. NEVES, AND CORNELIA SCHNEIDER

Abstract. We study necessary and sufficient conditions for embeddings of Besov spaces of generalized
smoothness Bσ,Np,q (Rn) into generalized Hölder spaces Λ

µ(·)
∞,r(Rn) when s(Nτ−1) > 0 and τ−1 ∈ `q′ ,

where τ = σN−n/p. A borderline situation, corresponding to the limiting situation in the classical
case, is included and give new results. In particular, we characterize optimal embeddings for B-spaces.

As immediate applications of our results we obtain continuity envelopes and give upper and lower
estimates for approximation numbers for the related embeddings.

We also consider the analogous results for the Triebel-Lizorkin spaces of generalized smoothness
Fσ,Np,q (Rn).

1. Introduction

Spaces of generalized smoothness have been studied by several authors, including different approaches.
We follow the general Fourier-analytical approach as presented in [FL06]. There one can find more details
and some history on these spaces.

The reason for the revived interest in the study of Besov and Triebel-Lizorkin spaces of generalized
smoothness Bσ,Np,q (Rn) and Fσ,Np,q (Rn) is its connection with applications for pseudo-differential operators
(as generators of sub-Markovian semi-groups), cf. [FL06].

The aim of this paper is to complete the study of [HM08] by extending the results obtained in [MNS11]
and [MNP09] to Besov and Triebel-Lizorkin spaces of generalized smoothness Bσ,Np,q (Rn) and Fσ,Np,q (Rn),
where a borderline situation, corresponding to the limiting situation in the classical case, is considered
and gives new results. We also give examples which yield results that are not covered by the previous
references. Moreover, we obtain new estimates for approximation numbers.

In the present paper (cf. Theorem 3.2 below), we give necessary and sufficient conditions for embed-
dings of Bσ,Np,q (Rn) into generalized Hölder spaces Λµ(·)

∞,r(Rn) when s(Nτ−1) > 0 and τ−1 ∈ `q′ , where
τ = σN−n/p, i.e., we show that

Bσ,Np,q (Rn) ↪→ Λµ(·)
∞,r(Rn), (1.1)

if, and only if,

sup
M≥0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r ( ∞∑

k=M

τ−q
′

k

) 1
q′

<∞

(with the usual modification if r = ∞ and/or q′ = ∞), provided that 0 < p ≤ ∞, 0 < q ≤ r ≤ ∞,
σ = {σj}j∈N0 and N = {Nj}j∈N0 are admissible sequences, the latter satisfying N1 > 1, and µ ∈ Lr
(see Section 3 for precise definitions).
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Furthermore, (cf. Corollary 3.4), when q > 1 and r ∈ [q,∞], the embedding (1.1) with µ = λqr,

λqr(t) =
(

Λ(t−1)tn/p
) q′
r

(∫ t

0

(
Λ(s−1)sn/p

)−q′ ds
s

) 1
q′+

1
r

, t ∈ (0, N−1
0 ],

where Λ is an admissible function such that Λ(z) ∼ σj , z ∈ [Nj , Nj+1], j ∈ N0, with equiva-
lence constants independent of j, is sharp with respect to the parameter µ, that is, the target space
Λµ(·)
∞,r(Rn) in (1.1) and the space Λλqr(·)

∞,r (Rn) (i.e., the target space in (1.1) with µ = λqr) satisfy
Λλqr(·)
∞,r (Rn) ↪→ Λµ(·)

∞,r(Rn). The embedding with r = q and µ = λqr = λqq is optimal (i.e., it is the best
possible embedding among all the embeddings considered in (1.1)). The case 0 < q ≤ 1 is considered in
Remark 3.5.

We also consider the analogous results for the Triebel-Lizorkin spaces of generalized smoothness
Fσ,Np,q (Rn) (cf. Theorem 3.6, Corollary 3.8 and Remark 3.9 below).

Concerning applications, we compute continuity envelopes EC(X) =
(
EXC (t), uXC

)
(cf. Definition 4.1

below), which are closely related with sharp embeddings, where EXC (t) := sup‖f |X‖≤1
ω(f,t)
t , t > 0,

together with some fine index uXC ; here ω(f, t) stands for the modulus of continuity.
In Proposition 4.4, under the same assumptions of Theorem 3.2, we show, in particular, that

EB
σ,N
p,q

C (t) ∼ λq∞(t)
t

, t ∈ (0, ε].

where

λq∞(t) :=
(∫ t

0

(
Λ(y−1) yn/p

)−q′ dy
y

) 1
q′

, t ∈ (0, N−1
0 ], if 1 < q ≤ ∞,

and
λq∞(t) := sup

y∈(0,t)

(Λ(y−1))−1 y−n/p, t ∈ (0, N−1
0 ], if 0 < q ≤ 1.

These results generalize those previously obtained in [MNP09, Proposition 3.2]. Additionally, if
s(τ ) > 0, we recover results from [HM08] regarding continuity envelopes. In [HM08] it was proved that
in such a case the fine index of the continuity envelope is q for B-spaces, and in this case the continuity
envelope yields the optimal embedding. The new results in this paper, regarding continuity envelopes,
correspond to the situation when, additionally, s(τ ) ≤ 0.

Under some additional assumptions, we obtain in Theorem 4.5, that EC

(
Bσ,Np,q

)
=
(
λq∞(t)

t ,∞
)
,

which extends [MNP09, Theorems 3.4 (i) and 3.5 (i)].
In terms of F -spaces the results are similar, with the usual replacement of q by p.
As for approximation numbers, Theorem 4.7 provides upper and lower bounds for approximation

numbers of the embedding of the spaces Bσ,Np,q (U) and Fσ,Np,q (U), where N = (2j)j∈N0 , into C(U).
The paper is organized as follows. Section 2 contains notation, definitions, preliminary assertions and

auxiliary results. In Section 3 we state our main results, providing necessary and sufficient conditions for
the embeddings to hold, and derive optimal weights and sharp embedding assertions. Finally, Section 4
contains some interesting applications concerning continuity envelopes and estimates for approximation
numbers.

2. Preliminaries

For a real number a, let a+ := max(a, 0) and let [a] denote its integer part. For p ∈ (0,∞], the
number p′ is defined by 1/p′ := (1 − 1/p)+ with the convention that 1/∞ = 0. By c, c1, c2, etc. we
denote positive constants independent of appropriate quantities. For two non-negative expressions (i.e.
functions or functionals) A, B, the symbol A . B (or A & B) means that A ≤ cB (or cA ≥ B). If
A . B and A & B, we write A ∼ B and say that A and B are equivalent. If not otherwise indicated,
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log is always taken with respect to base 2. Given two quasi-Banach spaces X and Y , we write X ↪→ Y
if X ⊂ Y and the natural embedding is bounded. Furthermore, Lp(Rn), with 0 < p ≤ ∞, is the usual
Lebesgue space, with respect to the Lebesgue measure, endowed with the usual quasi-norm ‖· | Lp(Rn)‖.
The space of all scalar-valued (real or complex), bounded and continuous functions on Rn is denoted by
CB(Rn), which is equipped with the L∞(Rn)-norm.

With the exception of the last section, we consider here only function spaces defined on Rn; so for
convenience we shall usually omit the “Rn” from their notation.

2.1. Admissible sequences and admissible functions. In this subsection we explain the class of
sequences we shall be interested in and some related basic results.

A sequence γ = (γj)j∈N0 of positive real numbers is said to be admissible if there exist two positive
constants d0 and d1 such that

d0 γj ≤ γj+1 ≤ d1 γj , j ∈ N0. (2.1)

Clearly, for admissible sequences γ and τ , γτ := (γjτj)j∈N0
and γr := (γrj )j∈N0 , r ∈ R, are admissible,

too.
For an admissible sequence γ = (γj)j∈N0 , let

γ
j

:= inf
k≥0

γj+k
γk

and γj := sup
k≥0

γj+k
γk

, j ∈ N0. (2.2)

Then clearly γ
j
γk ≤ γj+k ≤ γkγj , for any j, k ∈ N0. In particular, γ

1
and γ1 are the best possible

constants d0 and d1 in (2.1), respectively. The lower and upper Boyd indices of the sequence γ are
defined, respectively, by

s(γ) := lim
j→∞

log γ
j

j
and s(γ) := lim

j→∞

log γj
j

. (2.3)

The above definition is well posed: the sequence (log γj)j∈N is sub-additive and hence the right-hand side
limit in (2.3) exists, it is finite (since γ is an admissible sequence) and it coincides with infj>0 log γj/j.
The corresponding assertions for the lower counterpart s(γ) can be read off observing that log γ

j
=

− log(γ−1)j . Moreover, s(γ) = −s(γ−1) and s(γ) = −s(γ−1).

Remark 2.1. The Boyd index s(γ) of an admissible sequence γ describes the asymptotic behaviour of
the γj ’s and provides more information than simply γ1 and, what is more, is stable under the equivalence
of sequences: if γ ∼ τ , then s(γ) = s(τ ) as one readily verifies. In general, we have for admissible
sequences γ, τ that

s(γr) = r s(γ), r ≥ 0, s(γτ ) ≤ s(γ) + s(τ ), (2.4)

and

s(γr) = rs(γ), r ≥ 0, s(γτ ) ≥ s(γ) + s(τ ). (2.5)

Observe that, given ε > 0, there are two positive constants c1 = c1(ε) and c2 = c2(ε) such that

c1 2(s(γ)−ε)j ≤ γ
j
≤ γj ≤ c2 2(s(γ)+ε)j , j ∈ N0. (2.6)

From (2.6) it follows that if s(γ) > 0, then γ−1 ∈ `u for arbitrary u ∈ (0,∞]. Conversely, s(γ) < 0
implies γ−1 6∈ `∞, that is, γ−1 does not belong to any `u, 0 < u ≤ ∞.
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Examples 2.2. We consider some examples of admissible sequences.
(i) The sequence γ = (γj)j∈N0 ,

γj = 2sj (1 + j)b (1 + log(1 + j))c

with arbitrary fixed real numbers s, b and c is a standard example of an admissible sequence with
s(γ) = s(γ) = s.

(ii) Let Φ : (0, 1]→ R be a slowly varying function (or equivalent to a slowly varying one) in the sense
of [BGT89]. Then, for s ∈ R the sequence γ = (2sj Φ(2−j))j∈N0 is an admissible sequence. Also here
we have s(γ) = s(γ) = s.

(iii) In view of Proposition 1.9.7 of [Bri02], the case γ = (2sj Ψ(2−j))j∈N0 , where now Ψ is an
admissible function in the sense of [ET98] (i.e., a positive monotone function defined on (0, 1] such that
Ψ(2−2j) ∼ Ψ(2−j), j ∈ N0), can be regarded as a special case of (ii).

(iv) Take s1 > 0. Consider the following recursively defined sequence:

j0 = 0, j1 = 1, j2` = 2j2`−1 − j2`−2 and j2`+1 = 2j2` , ` ∈ N.

The sequence γ = (γj)j∈N0 , defined by

γj =





2
s1
2 j2` if j2` ≤ j < j2`+1,

` ∈ N0,

2s1(j−j2`+1)2
s1
2 j2` if j2`+1 ≤ j < j2`+2,

is an example of an admissible sequence with s(γ) = 0, s(γ) = s1
2 . Moreover, sequence oscillates between

(j
s1
2 )j∈N0 and (2j

s1
2 )j∈N0 , i.e.,

j
s1
2 . γj . 2j

s1
2 , j ∈ N,

and there exist infinitely many j′ and j′′ such that γj′ = j′
s1
2 and γj′′ = 2j

′′ s1
2 . The case s1 = 2 has

been treated in [FL06,Leo98].
(v) Take s0 ≥ 0 and s1 > 0. Consider the sequence (jk)k∈N0 from the previous example. The sequence

γ = (γj)j∈N0 ,

γj := exp

(∫ 2j

1

ξ(u)
du
u

)
, j ≥ 0,

where

ξ(u) :=





s0 if 2j2` ≤ u < 2j2`+1 ,
` ∈ N0,

s0 + s1 if 2j2`+1 ≤ u < 2j2`+2 ,

is an example of an admissible sequence with s(γ) = s0 and s(γ) = s0 + 1
2s1 (we refer to [KLSS06,

Example 4.13]). The case s0 = 0 and s1 = 2 has been treated in [FL06,Leo98].

Remark 2.3. The Examples 2.2 (i)-(iii), above, have in common the fact that their upper and lower
Boyd indices coincide. However, this is not in general the case. Example 2.2 (iv), due to [KLSS06],
shows that an admissible sequence has not necessarily a fixed main order and their upper and lower
Boyd indices do not coincide. Moreover, one can easily see that there is an admissible sequence γ with
s(γ) = a and s(γ) = b, for any −∞ < a ≤ b <∞, that is, with prescribed upper and lower Boyd indices.

The following Lemma provides a substitute of [MNS11, Lemma 2.8].
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Lemma 2.4. Let γ = (γj)j∈N0 be an admissible sequence and let 0 < u ≤ ∞.
(i) If s(γ) > 0, then




k∑

j=0

γuj




1
u

∼ γk, k ∈ N0 (2.7)

(with the usual modification if u =∞).
(ii) If s(γ) < 0, then



∞∑

j=k

γuj




1
u

∼ γk, k ∈ N0 (2.8)

(with the usual modification if u =∞).

Proof. We present the proof for u ∈ (0,∞), since the case u =∞ follows by obvious modifications.
(i) Let k ∈ N0. For 0 ≤ j ≤ k, we have

γ
k−j ≤

γk
γj
.

This and (2.6), together with the fact that s(γ) > 0, yield



k∑

j=0

γuj




1
u

. γk




k∑

j=0

2−(s(γ)−ε)(k−j)u




1
u

. γk, k ∈ N0,

by choosing ε ∈ (0, s(γ)). The rest is clear.
(ii) Let k ∈ N0. For j ≥ k,

γj−k ≥
γj
γk
.

This and (2.6), together with the fact that s(γ) < 0, yield


∞∑

j=k

γuj




1
u

. γk



∞∑

j=k

2(s(γ)+ε)(j−k)u




1
u

. γk, k ∈ N0,

by choosing ε ∈ (0,−s(γ)). The reverse estimate is clear. �

The functions we are going to introduce now will be central for the estimates which will be presented
later. In this context we also refer to [CF06, Section 2.2].

Definition 2.5. A function Λ : (0,∞) → (0,∞) will be called admissible if it is continuous and if for
any b > 0 it satisfies

Λ(bz) ∼ Λ(z) for any z > 0.

Example 2.6. Let (Nj)j∈N0 be a sequence of positive numbers such that N1 > 1. Let (σj)j∈N0 be an
admissible sequence. Then the function Λ : (0,∞)→ (0,∞) defined by

Λ(z) =

{
σj+1−σj
Nj+1−Nj z + σj − (σj+1−σj)Nj

Nj+1−Nj , if z ∈ [Nj , Nj+1), j ∈ N0

σ0, if z ∈ (0, N0)

is admissible and satisfies Λ(Nj) = σj for any j ∈ N0. Moreover, Λ(z) ∼ σj for z ∈ [Nj , Nj+1], j ∈ N0,
with equivalence constants independent of j.

The next proposition provides a very useful discretization method, which coincides partially with
[MNS11, Proposition 2.7] and generalizes [MNP09, Proposition 2.5].
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Proposition 2.7. Let 0 < u ≤ ∞, σ and N be admissible sequences, the latter satisfying N1 > 1.
Furthermore, let Λ be an admissible function such that Λ(z) ∼ Λ(Nj) = σj for z ∈ [Nj , Nj+1], j ∈ N0.
Put τ = σN−n/p and assume τ−1 ∈ `u. Then for k ∈ N0, we have

(∫ t

0

(
Λ(y−1)yn/p

)−u dy
y

) 1
u

∼



∞∑

j=k

τ−uj




1
u

, if t ∈ [N−1
k+1, N

−1
k ],

with equivalence constants independent of k ∈ N0. In the case u = ∞ the usual modification with
supremum is required.

Proof. Let u ∈ (0,∞). For k ∈ N0 and t ∈ [N−1
k+1, N

−1
k ], taking advantage of the hypotheses on σ, N ,

and Λ, we obtain

∞∑

j=k

τ−uj =
∞∑

j=k

(
σjN

−n/p
j

)−u
.

∞∑

j=k+1

(
σjN

−n/p
j

)−u

∼
∞∑

j=k+1

∫ N−1
j

N−1
j+1

(
Λ(y−1)yn/p

)−u dy
y

=
∫ N−1

k+1

0

(
Λ(y−1)yn/p

)−u dy
y

.
∫ t

0

(
Λ(y−1)yn/p

)−u dy
y

.
∫ N−1

k

0

(
Λ(y−1)yn/p

)−u dy
y

=
∞∑

j=k

∫ N−1
j

N−1
j+1

(
Λ(y−1)yn/p

)−u dy
y

∼
∞∑

j=k

(
σjN

−n/p
j

)−u
=
∞∑

j=k

τ−uj .

When u =∞, the proof is analogous to the previous case. �

2.2. Function spaces of generalized smoothness. Let N = (Nj)j∈N0 be an admissible sequence
with N1 > 1 (recall (2.2)). In particular N is a so-called strongly increasing sequence (cf. [FL06, Def.
2.2.1]) which guarantees the existence of a number l0 ∈ N0 such that

Nk ≥ 2Nj for any k, j such that k ≥ j + l0. (2.9)

It should be noted that the sequence N = (Nj)j∈N0 plays the same role as the sequence (2j)j∈N0 in
the classical construction of the spaces Bspq and F spq. This will be clear from the following considerations.

For a fixed sequence N as above we define the associated covering ΩN = (ΩNj )j∈N0 of Rn by

ΩNj = {ξ ∈ Rn : |ξ| ≤ Nj+l0}, j = 0, · · · , l0 − 1,

and
ΩNj = {ξ ∈ Rn : Nj−l0 ≤ |ξ| ≤ Nj+l0}, j ≥ l0,

with l0 according to (2.9).

Definition 2.8. For a fixed admissible sequence N with N1 > 1, and for the associated covering
ΩN = (ΩNj )j∈N0 of Rn, a system ϕN = (ϕNj )j∈N0 will be called a (generalized) partition of unity
subordinate to ΩN if:
(i) ϕNj ∈ C∞0 and ϕNj (ξ) ≥ 0 if ξ ∈ Rn for any j ∈ N0;
(ii) supp ϕNj ⊂ ΩNj for any j ∈ N0;
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(iii) for any α ∈ Nn0 there exists a constant cα > 0 such that for any j ∈ N0

|DαϕNj (ξ)| ≤ cα (1 + |ξ|2)−|α|/2 for any ξ ∈ Rn;

(iv) there exists a constant cϕ > 0 such that

0 <
∞∑

j=0

ϕNj (ξ) = cϕ <∞ for any ξ ∈ Rn.

Before turning to the definition of the spaces of generalized smoothness let us recall that S denotes
the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on Rn
equipped with the usual topology and by S ′ we denote its topological dual, the space of all tempered
distributions on Rn. For ϕ ∈ S and f ∈ S ′ we will use the notation ϕ(D)f = F−1(ϕFf), where F and
F−1 stand, respectively, for the Fourier and inverse Fourier transform. Furthermore, if 0 < p ≤ ∞ and
0 < q ≤ ∞, then Lp and `q have the standard meaning and, if (fj)j∈N0 is a sequence of complex-valued
Lebesgue measurable functions on Rn, then

‖(fj)j∈N0 | `q(Lp)‖ :=
( ∞∑

j=0

‖fj | Lp‖q
)1/q

and

‖(fj)j∈N0 | Lp(`q)‖ :=
∥∥∥
( ∞∑

j=0

|fj(·)|q
)1/q

| Lp
∥∥∥

with the appropriate modification if q =∞.

Definition 2.9. Let N = (Nj)j∈N0 be an admissible sequence with N1 > 1 and ϕN be a system of
functions as in Definition 2.8. Let 0 < q ≤ ∞ and σ = (σj)j∈N0 be an admissible sequence.
(i) Let 0 < p ≤ ∞. The Besov space of generalized smoothness Bσ,Np,q is the set of all tempered

distributions f such that the quasi-norm

‖f | Bσ,Np,q ‖ := ‖(σj ϕNj (D)f)j∈N0 | `q(Lp)‖
is finite.

(ii) Let 0 < p < ∞. The Triebel-Lizorkin space of generalized smoothness Fσ,Np,q is the set of all
tempered distributions f such that the quasi-norm

‖f | Fσ,Np,q ‖ := ‖(σj ϕNj (D)f(·))j∈N0 | Lp(`q)‖
is finite.

Remark 2.10. We refer to [FL06] for some historical references on the subject and a systematic study of
these spaces, including a characterization by local means and atomic decomposition. If σ = (2sj)j∈N0 ,
with s a real number, and N = (2j)j∈N0 , then the spaces Bσ,Np,q and Fσ,Np,q coincide with the usual
Besov or Triebel-Lizorkin spaces Bsp,q and F sp,q, respectively. If we let σ = (2sjΨ(2−j))j∈N0 , where Ψ
is an admissible function in the sense of [ET98,ET99] (see Example 2.2(iii)), the corresponding Besov
space coincides with the space B(s,Ψ)

p,q introduced by Edmunds and Triebel in [ET98,ET99] and also
considered by Moura in [Mou01a,Mou01b]. Similarly for the F -counterpart.

In what follows we present some embedding results for spaces of generalized smoothness. The following
proposition may be found in [CF06, Theorem 3.7]:

Proposition 2.11. Let 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞, and σ, τ be admissible sequences,
N = (Nj)j∈N0 admissible with N1 > 1. Let q∗ be given by

1
q∗

:=
(

1
q2
− 1
q1

)

+

. (2.10)
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If

σ−1τNn( 1
p1
− 1
p2

) ∈ `q∗ , (2.11)

then
Bσ,Np1,q1 ↪→ Bτ ,Np2,q2 . (2.12)

We refer to [CL06, Lemma 1] for the following generalization of the Franke-Jawerth-embedding (see
[Fra86,Jaw77] for the classical situation):

Proposition 2.12. Let 0 < p1 < p < p2 ≤ ∞, 0 < q ≤ ∞, σ and N be admissible sequences, the latter
satisfying N1 > 1. Let σ′ and σ′′ be the (clearly admissible) sequences defined, respectively, by

σ′ := Nn( 1
p1
− 1
p )σ and σ′′ := Nn( 1

p2
− 1
p )σ.

Then
Bσ

′,N
p1,u ↪→ Fσ,Np,q ↪→ Bσ

′′,N
p2,v

if, and only if, 0 < u ≤ p ≤ v ≤ ∞.

For each f ∈ CB , ω(f, ·) stands for the modulus of continuity of f and it is defined by

ω(f, t) := sup
|h|≤t

sup
x∈Rn

|∆hf(x)| = sup
|h|≤t

‖∆hf |L∞(Rn)‖, t > 0,

with ∆hf(x) := f(x+ h)− f(x), x, h ∈ Rn.
Regarding the embeddings into CB , we have the following result.

Proposition 2.13. Let 0 < p, q ≤ ∞, σ and N be admissible sequences, the latter satisfying N1 > 1.
(i) Then

Bσ,Np,q ↪→ CB if, and only if, σ−1Nn/p ∈ `q′ .
(ii) If p <∞, then

Fσ,Np,q ↪→ CB if, and only if, σ−1Nn/p ∈ `p′ .

We refer to [CF06, Corollary 3.10 & Remark 3.11] and to [CL06, Proposition 4.4] concerning part (i)
and part (ii), respectively, of the proposition above.

Let r ∈ (0,∞] and let Lr be the class of all continuous functions λ : (0, 1]→ (0,∞) such that
(∫ 1

0

1
(λ(t))r

dt
t

) 1
r

=∞ (2.13)

and
(∫ 1

0

tr

(λ(t))r
dt
t

) 1
r

<∞ (2.14)

(with the usual modification if r =∞).

Definition 2.14. Let 0 < r ≤ ∞, µ ∈ Lr. The generalized Hölder space Λµ(·)
∞,r consists of all functions

f ∈ CB for which the quasi-norm

||f |Λµ(·)
∞,r|| := ‖f |L∞‖+

(∫ 1

0

(
ω(f, t)
µ(t)

)r dt
t

) 1
r

(2.15)

is finite (with the usual modification if r =∞).
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One can replace the integral
∫ 1

0
in (2.15) by

∫ ε
0

for ε > 0 and obtain an equivalent quasi-norm.
Standard arguments show that the space Λµ(·)

∞,r is complete, cf. [Nev01b, Theorem 3.1.4]. Conditions
(2.13) and (2.14) are natural. In fact, if (2.13) does not hold, then Λµ(·)

∞,r coincides with CB . If (2.14)
does not hold, then the space Λµ(·)

∞,r contains only constant functions. If r =∞, we can assume without
loss of generality in the definition of Λµ(·)

∞,r that all the elements µ of Lr are continuous increasing functions
on the interval (0, 1] such that lim

t→0+
µ(t) = 0 (cf. [GNO10]).

The space Λµ(·)
∞,∞, cf. [Nev01a, Proposition 3.5], coincides with the space C0,µ(·) defined by

‖f |C0,µ(·)‖ := sup
x∈Rn

|f(x)|+ sup
x,y∈Rn, 0<|x−y|≤1

|f(x)− f(y)|
µ(|x− y|) <∞.

If µ(t) = t, t ∈ (0, 1], then Λµ(·)
∞,∞ coincides with the space of the Lipschitz functions, which is denoted by

Lip1. If µ(t) = tα, α ∈ (0, 1], then the space Λµ(·)
∞,r coincides with the space C0,α,r introduced in [AF03].

Furthermore, if µ(t) = t| log t|β , β > 1
r (with β ≥ 0 if r = ∞), the space Λµ(·)

∞,r coincides with the space
Lip(1,−β)
∞,r of generalized Lipschitz functions presented and studied in [EH99], [EH00], and [Har00].

2.3. Hardy inequalities. In the sequel, discrete weighted Hardy inequalities will be indispensable for
our proofs. There is a vast amount of literature concerning this topic. We merely rely on results as
can be found in [Gol98, pp. 17-20], adapted to our situation. In this context we refer as well to [Ben91,
Theorem 1.5] and [OK90].

Let 0 < q, r ≤ ∞ and (bn)n∈N0 , (dn)n∈N0 be non-negative sequences. Consider the inequalities


∞∑

j=0

(
j∑

k=0

akdk

)r
brj




1
r

.
( ∞∑

n=0

aqn

) 1
q

for all non-negative sequences (an)n∈N0 (2.16)

and


∞∑

j=0



∞∑

k=j

akdk



r

brj




1
r

.
( ∞∑

n=0

aqn

) 1
q

for all non-negative sequences (an)n∈N0 (2.17)

(with the usual modification if r =∞ or q =∞).

Theorem 2.15. (i) Let 0 < q ≤ r ≤ ∞. Then, (2.16) is satisfied if, and only if,

sup
N≥0



∞∑

j=N

brj




1
r ( N∑

k=0

d q
′

k

) 1
q′

<∞ (2.18)

and, furthermore, (2.17) is satisfied if, and only if,

sup
N≥0




N∑

j=0

brj




1
r ( ∞∑

k=N

d q
′

k

) 1
q′

<∞ (2.19)

(with the usual modification if r =∞ or q =∞ or q′ =∞).
(ii) Let 0 < r < q ≤ ∞. Then, (2.16) is satisfied if, and only if,





∞∑

N=0



∞∑

j=N

brj




u
q

brN

(
N∑

k=0

d q
′

k

) u
q′




1
u

<∞ (2.20)
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and, furthermore, (2.17) is satisfied if, and only if,




∞∑

N=0




N∑

j=0

brj




u
q

brN

( ∞∑

k=N

d q
′

k

) u
q′





1
u

<∞ (2.21)

(with the usual modification if q′ =∞), where 1
u := 1

r − 1
q .

3. Main results

The following Proposition generalizes [MNS11, Proposition 3.1] and will play a key role for proving
necessity in the main theorem below. For related assertions, but different, see [Tri01, pp. 220-221],
and [CH05, Proposition 2.4].

Proposition 3.1. Let 0 < p, q ≤ ∞ and let σ and N be admissible sequences, the latter satisfying
N1 > 1. Consider

h(y) := e−1/(1−y2) if |y| < 1 and h(y) := 0 if |y| ≥ 1.

Let L+ 1 ∈ N0. Given L ∈ N0 and δ ∈ (0, 1], define

hδ,L(y) := h(y)−
L∑

l=0

ρδ,l h
(l)
(
δ−1(y − 1− δ)

)
,

where the coefficients ρδ,l are uniquely determined by imposing that hδ,L shall obey the following set of
conditions: ∫

R
yk hδ,L(y) dy = 0, k = 0, · · · , L. (3.1)

Given L = −1 complement (3.1) by hδ,−1 = h (then (3.1) is empty). Let now

φδ,L(x) := hδ,L(x1)
n∏

m=2

h(xm), x = (xj)nj=1 ∈ Rn. (3.2)

For a fixed L+ 1 ∈ N0 with

L > −1 + n

(
logN1

logN1

1
min(1, p)

− 1
)
− log σ1

logN1

,

and b = (bj)j∈N0 a sequence of non-negative numbers in `q, let fb be given by

fb(x) :=
∞∑

j=0

bj σ
−1
j N

n/p
j φδ,L(Njx), x ∈ Rn. (3.3)

(i) Then fb ∈ Bσ,Np,q and

‖fb |Bσ,Np,q ‖ ≤ c1 ‖b |`q‖ (3.4)

for some c1 > 0 independent of b.
(ii) Moreover, it holds

ω(fb, N−1
k )

N−1
k

≥ c2 Nk
∞∑

j=k

bjσ
−1
j N

n/p
j , k ∈ N0, (3.5)

and

ω(fb, N−1
k )

N−1
k

≥ c3
k∑

j=0

bjσ
−1
j N

n/p+1
j , k ∈ N0, (3.6)
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for some c2, c3 > 0 depending only on the function φδ,L.

Proof. We use the atomic decomposition theorem for Bσ,Np,q as stated in [FL06, Theorem 4.4.3]. Since
the functions

aj(x) := σ−1
j N

n/p
j φδ,L(Njx), x ∈ Rn, j ∈ N0,

are (up to constants, independently of j) (σ, p)M,L−N -atoms, for some fixed M ∈ N with M > log σ1
logN1

,
the atomic decomposition theorem, cf. [FL06, Theorem 4.4.3]), yields that fb ∈ Bσ,Np,q and

‖fb | Bσ,Np,q ‖ ≤ c ‖b | `q‖, (3.7)

for some positive constant c (independent of b).
Let us now prove (ii). Let k ∈ N0 and let η ∈ (0, 1) be fixed. Then, putting temporarily c1 =∏n
i=2 h(0), we obtain

fb(0, 0, · · · , 0)−fb(−η N−1
k , 0, · · · , 0) =

= c1

∞∑

j=0

bj σ
−1
j N

n/p
j

(
hδ,L(0)− hδ,L(−ηNjN−1

k )
)

= c1

∞∑

j=0

bj σ
−1
j N

n/p
j

(
h(0)− h(−ηNjN−1

k )
)

≥c1
∞∑

j=k

bj σ
−1
j N

n/p
j

(
h(0)− h(−ηNjN−1

k )
)

≥ c1
∞∑

j=k

bj σ
−1
j N

n/p
j (h(0)− h(−η))

≥ c2
∞∑

j=k

bj σ
−1
j N

n/p
j ,

where the third step above holds true, since h(0) − h(−ηNjN−1
k ) ≥ 0 for all j, k ∈ N0. The two last

inequalities above follow from the fact that h(0)− h(−ηNjN−1
k ) ≥ h(0)− h(−η) ≥ c > 0 for all j ≥ k.

Therefore,

ω(fb, N−1
k )

N−1
k

& Nk
∞∑

j=k

bj σ
−1
j N

n/p
j , k ∈ N0.

This proves (3.5). The proof of (3.6) is similar. We estimate

fb(0, 0, · · · , 0)−fb(−η N−1
k , 0, · · · , 0) =

= c1

∞∑

j=0

bj σ
−1
j N

n/p
j

(
h(0)− h(−ηNjN−1

k )
)

= c2

∞∑

j=0

bj σ
−1
j N

n/p+1
j N−1

k h′(zj,k)

≥ c2
k∑

j=0

bj σ
−1
j N

n/p+1
j N−1

k h′(zj,k),
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for some zj,k ∈ (−ηNjN−1
k , 0). For j ≤ k, zj,k ∈ [−η, 0), and hence h′(zj,k) ≥ c > 0 for some c which is

independent of j and k, leading to

fb(0, 0, · · · , 0)− fb(−η N−1
k , 0, · · · , 0) ≥ c

k∑

j=0

bj σ
−1
j N

n/p+1
j N−1

k .

Therefore,

ω(fb, N−1
k )

N−1
k

≥ c
k∑

j=0

bj σ
−1
j N

n/p+1
j , k ∈ N0.

�

The following theorem characterizes optimal embeddings of Besov spaces with generalized smoothness
Bσ,Np,q into generalized Hölder spaces when s(Nτ−1) > 0 and τ−1 ∈ `q′ , where τ = σN−n/p. In
particular, our results generalize those previously obtained in [MNS11, Theorem 3.2] and, if additionally
s(τ ) > 0, we recover results from [HM08] regarding continuity envelopes, as we shall see in the next
section.

In this context we also refer to [GNO07, Theorem 4] and [GNO10, Theorem 1.6, Corollary 1.7], where
the authors obtained similar embedding results for Bessel-potential-type spaces in the limiting case.
There, the technics were completely different from the ones considered here.

Theorem 3.2. Let 0 < p ≤ ∞, 0 < q, r ≤ ∞, µ ∈ Lr. Furthermore, let σ and N be admissible
sequences, the latter satisfying N1 > 1. Put τ = σN−n/p. Assume that

s(Nτ−1) > 0 (3.8)

and

τ−1 ∈ `q′ . (3.9)

(i) If 0 < q ≤ r ≤ ∞, then

Bσ,Np,q ↪→ Λµ(·)
∞,r, (3.10)

if, and only if,

sup
M≥0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r ( ∞∑

k=M

τ−q
′

k

) 1
q′

<∞ (3.11)

(with the usual modification if r =∞ and/or q′ =∞).
(ii) If 0 < r < q ≤ ∞, then

Bσ,Np,q ↪→ Λµ(·)
∞,r, (3.12)

if, and only if,





∞∑

M=0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
q

·
(∫ N−1

M

N−1
M+1

(µ(t))−r
dt
t

)
·
( ∞∑

k=M

τ−q
′

k

) u
q′





1
u

<∞ (3.13)
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and




∞∑

M=0



∞∑

j=M

N−rj

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
q

·N−rM

(∫ N−1
M

N−1
M+1

(µ(t))−r
dt
t

)

·
(

M∑

k=0

(
N−1
k τk

)−q′
) u
q′




1
u

<∞ (3.14)

(with the usual modification if q′ =∞), where 1
u := 1

r − 1
q .

Proof. In the sequel we shall always assume that q and r are finite, since the limiting situations (q =∞
and/or r =∞) are proven in the same way with the obvious modifications.

Step 1: In order to prove sufficiency in (i), assume that (3.11) holds. Let f ∈ Bτ ,N∞,q . Then, by
Proposition 2.13(i), Bτ ,N∞,q ⊂ CB and we can thus make use of the following estimate which can be
found in [Mou07, formulas (4.4), (4.5), pp. 1196, 1197], stating that for some fixed a > 0 and for
|h| ≤ N−1

j ,

‖∆hf |L∞‖ ≤ c
j∑

k=0

NkN
−1
j ‖(ϕN∗k f)a|L∞‖+

∞∑

k=j+1

‖(ϕN∗k f)a|L∞‖ (3.15)

(the constant involved is independent of f). Using the fact that ω(f, ·) is monotonically increasing,
together with (3.15), leads to
(∫ N−1

0

0

(
ω(f, t)
µ(t)

)r dt
t

) 1
r

=



∞∑

j=0

∫ N−1
j

N−1
j+1

(ω(f, t))r(µ(t))−r
dt
t




1
r

.




∞∑

j=0

(ω(f,N−1
j ))r

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t

︸ ︷︷ ︸
=:mj




1
r

.



∞∑

j=0

mj

(
j∑

k=0

NkN
−1
j ‖(ϕN∗k f)a|L∞‖+

∞∑

k=j+1

‖(ϕN∗k f)a|L∞‖
)r


1
r

.



∞∑

j=0

N−rj mj

(
j∑

k=0

Nk‖(ϕN∗k f)a|L∞‖
)r


1
r

︸ ︷︷ ︸
=(I)

+



∞∑

j=0

mj

( ∞∑

k=j

‖(ϕN∗k f)a|L∞‖
)r


1
r

︸ ︷︷ ︸
=(II)

.

(3.16)

Setting
bj := N−1

j mj
1
r , ak := τk‖(ϕN∗k f)a|L∞‖, and dk := Nkτ

−1
k , (3.17)

an application of Theorem 2.15(i), to the first term of (3.16), and the equivalent characterization of our
function spaces via maximal function from [FL06, Theorem 4.3.4] yield

(I) .
( ∞∑

l=0

τ ql ‖(ϕN∗l f)a|L∞‖q
) 1
q

∼ ‖f |Bτ ,N∞,q ‖ for all f ∈ Bτ ,N∞,q . (3.18)
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The first inequality above can be justified as follows. Condition (3.11) gives

∫ N−1
M

N−1
M+1

(µ(t))−r
dt
t
. τ rM for all M. (3.19)

Since s(Nτ−1) > 0, Lemma 2.4 (i) and Lemma 2.4 (ii), yield

sup
M≥0



∞∑

j=M

N−rj mj




1
r ( M∑

k=0

Nq′

k τ
−q′
k

) 1
q′

∼ sup
M≥0



∞∑

j=M

N−rj mj




1
r

NMτ
−1
M

. sup
M≥0



∞∑

j=M

N−rj τ rj




1
r

NMτ
−1
M

. N−1
M τMNMτ

−1
M . 1 <∞ (3.20)

and thus (2.18) is satisfied. For the second term of (3.16), we put

bj := m
1
r
j , ak := τk‖(ϕN∗k f)a|L∞‖, and dk := τ−1

k . (3.21)

An application of Theorem 2.15(i) and the equivalent characterization of our function spaces via maximal
functions from [FL06, Theorem 4.3.4] give

(II) .
( ∞∑

l=0

τ ql ‖(ϕN∗l f)a|L∞‖q
) 1
q

∼ ‖f |Bτ ,N∞,q ‖ for all f ∈ Bτ ,N∞,q , (3.22)

since, by (3.11),

sup
M≥0




M∑

j=0

mj




1
r ( ∞∑

k=M

τ−q
′

k

) 1
q′

= sup
M≥0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r ( ∞∑

k=M

τ−q
′

k

) 1
q′

<∞ (3.23)

and (2.19) is satisfied. Now, (3.16), together with (3.18), (3.22) and Proposition 2.13(i), yields

Bτ ,N∞,q ↪→ Λµ(·)
∞,r.

Since, by Proposition 2.11,

Bσ,Np,q ↪→ Bτ ,N∞,q ,

we have the desired embedding

Bσ,Np,q ↪→ Λµ(·)
∞,r.
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Step 2: Concerning sufficiency in (ii) again we have (3.16). Let 1
u := 1

r − 1
q . Applying (2.20), using

(3.17) we obtain for the first integral (I) the estimate (3.18), since





∞∑

M=0



∞∑

j=M

N−rj

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
q

N−rM

(∫ N−1
M

N−1
M+1

(µ(t))−r
dt
t

)(
M∑

k=0

Nq′

k τ
−q′
k

) u
q′




1
u

is bounded by (3.14). For the second integral (II) in (3.16), an application of (2.21) yields (3.22), since
inserting (3.21) we obtain

{ ∞∑

M=0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
q (∫ NM

N−1
M

(µ(t))−r
dt
t

)( ∞∑

k=M

τ−q
′

k

) u
q′





1
u

,

which is bounded by (3.13).
Step 3: Concerning necessity in (i) and (ii), assume we have the embedding

Bσ,Np,q ↪→ Λµ(·)
∞,r, 0 < q, r ≤ ∞,

which means that
(∫ N−1

0

0

(
ω(f, t)
µ(t)

)r dt
t

) 1
r

. ‖f |Bσ,Np,q ‖ for all f ∈ Bσ,Np,q .

In particular, for each non-negative sequence (an)n∈N0 , using the function fa constructed in Proposition
3.1, we have

‖a|`q‖ &
(∫ N−1

0

0

(
ω(fa, t)
µ(t)

)r dt
t

) 1
r

=

( ∞∑

k=0

∫ N−1
k

N−1
k+1

(
ω(fa, t)

t

)r
tr−1

(µ(t))r
dt

) 1
r

&
( ∞∑

k=0

(
ω(fa, N−1

k )
N−1
k

)r ∫ N−1
k

N−1
k+1

(µ(t))−rtr−1 dt

) 1
r

(3.24)

&



∞∑

k=0


Nk

∞∑

j=k

ajτ
−1
j



r ∫ N−1

k

N−1
k+1

(µ(t))−rtr−1 dt




1
r

∼



∞∑

k=0



∞∑

j=k

ajτ
−1
j



r ∫ N−1

k

N−1
k+1

(µ(t))−r
dt
t




1
r

, (3.25)

where we used the fact that ω(f,t)
t is equivalent to a monotonically decreasing function and the estimate

(3.5). Putting

dj = τ−1
j and bk =

(∫ N−1
k

N−1
k+1

(µ(t))−r
dt
t

) 1
r

, (3.26)
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from (3.25) we obtain

‖a|`q‖ &



∞∑

k=0



∞∑

j=k

ajdj



r

brk




1
r

for all non-negative sequences (an)n∈N0 , (3.27)

which is the Hardy-type inequality (2.17). Now the necessary conditions (3.11) and (3.13) follow from
Theorem 2.15. If we apply the estimate (3.6) instead of (3.5) in (3.24), we obtain

‖a|`q‖ &



∞∑

k=0




k∑

j=0

ajτ
−1
j Nj



r

N−rk

∫ N−1
k

N−1
k+1

(µ(t))−r
dt
t




1
r

(3.28)

for all non-negative sequences (an)n∈N0 . Now setting

dj = τ−1
j Nj and bk = N−1

k

(∫ N−1
k

N−1
k+1

(µ(t))−r
dt
t

) 1
r

, (3.29)

we obtain

‖a|`q‖ &



∞∑

k=0




k∑

j=0

ajdj



r

brk




1
r

for all non-negative sequences (an)n∈N0 , (3.30)

which is the Hardy-type inequality (2.16). Theorem 2.15 now yields (3.14). This finally completes the
proof. �

Remark 3.3. (i) Note that if s(τ ) < 0, then τ−1 /∈ `u for any u ∈ (0,∞] (cf. Remark 2.1). Therefore,
only the case s(τ ) ≥ 0 is allowed in the previous theorem. Moreover, by (2.5), if s(τ ) < s(N), then
(3.8) is satisfied.

(ii) By (3.8) and (3.9), we always have

Bσ,Np,q 6↪→ Lip1. (3.31)

In fact, by the previous theorem,
Bσ,Np,q ↪→ Lip1

if, and only if,

sup
M≥0

NM

( ∞∑

k=M

τ−q
′

k

) 1
q′

<∞. (3.32)

But (3.8) implies thatN−1τ ∈ `u for any u ∈ (0,∞] (cf. Remark 2.1). Hence, NMτ−1
M →∞ asM →∞.

Therefore, (3.32) is not satisfied.
(iii) Regarding Examples 2.2 (ii), (iv), it is possible to consider examples that verify the conditions

of the previous theorem.
(iv) Let Λ be any admissible function such that Λ(z) ∼ σj , z ∈ [Nj , Nj+1], j ∈ N0, with equivalence

constants independent of j. Note that, by Proposition 2.7, condition (3.11) is equivalent to the following
integral version,

sup
κ∈(0,N−1

0 )

(∫ N−1
0

κ
(µ(t))−r

dt
t

) 1
r (∫ κ

0

(
Λ(s−1)sn/p

)−q′ ds
s

) 1
q′

<∞ (3.33)

(with the usual modification if r =∞ and/or q′ =∞).
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(v) When 0 < q ≤ 1, on exchanging suprema, we can rewrite (3.11) as

sup
k≥0




k∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r

τ−1
k <∞ (3.34)

and we can rewrite (3.33) as

sup
s∈(0,N−1

0 )

(∫ N−1
0

s

(µ(t))−r
dt
t

) 1
r (

Λ(s−1)sn/p
)−1

<∞. (3.35)

In terms of optimal weights we have the following result when 1 < q ≤ ∞. For the case 0 < q ≤ 1,
see Remark 3.5 below.

Corollary 3.4. Let 1 < q ≤ ∞, 0 < p, r ≤ ∞, µ ∈ Lr. Let σ and N be admissible sequences, the latter
satisfying N1 > 1. Put τ = σN−n/p and assume that

s(Nτ−1) > 0 (3.36)

and
τ−1 ∈ `q′ .

Furthermore, let λqr ∈ Lr be defined by

λqr(t) :=
(

Λ(t−1)tn/p
) q′
r

(∫ t

0

(
Λ(s−1)sn/p

)−q′ ds
s

) 1
q′+

1
r

, t ∈ (0, N−1
0 ], (3.37)

where Λ is an admissible function such that Λ(z) ∼ Λ(Nj) = σj for z ∈ [Nj , Nj+1], j ∈ N0. We consider
the embedding

Bσ,Np,q ↪→ Λµ(·)
∞,r. (3.38)

(i) If 1 < q ≤ r ≤ ∞, then (3.38) holds if, and only if,

sup
M≥0

(∑M
j=0

∫ N−1
j

N−1
j+1

(µ(t))−r dt
t

) 1
r

(∑M
j=0

∫ N−1
j

N−1
j+1

(λqr(t))
−r dt

t

) 1
r

<∞ (3.39)

(with the usual modification if r =∞).
(ii) If 0 < r < q ≤ ∞ and q > 1, then (3.38) holds if, and only if,





∞∑

M=0

(∑M
j=0

∫ N−1
j

N−1
j+1

(µ(t))−r dt
t

)u/q

(∑M
j=0

∫ N−1
j

N−1
j+1

(λqr(t))
−r dt

t

)u/r
∫ N−1

M

N−1
M+1

(µ(s))−r
ds
s





1
u

<∞ (3.40)

(with the usual modification if q =∞), where 1
u := 1

r − 1
q .

(iii) Let r ∈ [q,∞]. Among the embeddings in (3.38), that one with µ = λqr is sharp with respect to the
parameter µ.

(iv) Among the embeddings in (3.38), that one with µ = λqq and r = q, i.e.,

Bσ,Np,q ↪→ Λλqq(·)∞,q , (3.41)

is optimal.
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Proof. Concerning (i), Theorem 3.2 shows that (3.38) holds if, and only if,

sup
M≥0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r ( ∞∑

k=M

τ−q
′

k

) 1
q′

<∞,

which is equivalent to

sup
κ∈(0,N−1

0 )

(∫ N−1
0

κ
(µ(t))−r

dt
t

) 1
r (∫ κ

0

(
Λ(s−1)sn/p

)−q′ ds
s

) 1
q′

<∞. (3.42)

Since
(∫ N−1

0

κ
(λqr(t))−r

dt
t

)− 1
r

=

(∫ N−1
0

κ

(
Λ(t−1)tn/p

)−q′ (∫ t

0

(
Λ(s−1)sn/p

)−q′ ds
s

)− r
q′−1

dt
t

)− 1
r

∼
(∫ κ

0

(
Λ(t−1)tn/p

)−q′ dt
t

) 1
q′

for all κ ∈
(
0, N−1

1

]
, (3.43)

and as singularities of functions in question are only at 0, this means that (3.42) is equivalent to (3.39).
Turning towards (ii) the same argument used above shows that (3.13) is equivalent to (3.40). Now,

necessity follows from Theorem 3.2(ii). Let 1
u := 1

r − 1
q . As for sufficiency, we observe that

A1 : =





∫ N−1
1

0

(∫ N−1
0

κ

(µ(t))−r

t
dt

)u
q

· (µ(κ))−r

κ
·
(∫ N−1

0

κ

(λqq(t))
−q

t
dt

)−uq
dκ





1
u

.





∫ N−1
0

0

(∫ N−1
0

κ

(µ(t))−r

t
dt

)u
q

· (µ(κ))−r

κ
·
(∫ κ

0

(
Λ(t−1)tn/p

)−q′ dt
t

) u
q′

dκ





1
u

.




∞∑

M=0

(∫ N−1
0

N−1
M+1

(µ(t))−r
dt
t

)u
q
(∫ N−1

M

0

(
Λ(t−1)tn/p

)−q′ dt
t

) u
q′ ∫ N−1

M

N−1
M+1

(µ(κ))−r
dκ
κ





1
u

(3.44)

is bounded by (3.13). But now, since ω(f, ·) is increasing, [HS93, Proposition 2.1(ii)] implies

Λλqq(·)∞,q ↪→ Λµ(·)
∞,r.

This and (3.38) (with µ = λqq and r = q, which follows from part (i)), yield

Bσ,Np,q ↪→ Λλqq(·)∞,q ↪→ Λµ(·)
∞,r, 0 < r < q ≤ ∞, q > 1. (3.45)

This completes the proof of (ii).
Let us now prove (iii). We need to show that the target space Λµ(·)

∞,r in (3.38) and the space Λλqr(·)
∞,r

(that is, the target space in (3.38) with µ = λqr) satisfy

Λλqr(·)
∞,r ↪→ Λµ(·)

∞,r. (3.46)

Indeed, since ω(f, ·) is increasing, this last embedding holds if

sup
κ∈(0,N−1

1 )

(∫ N−1
0

κ (µ(t))−r dt
t

) 1
r

(∫ N−1
0

κ (λqr(t))−r dt
t

) 1
r

<∞ (3.47)



SPACES OF GENERALIZED SMOOTHNESS IN THE CRITICAL CASE 19

(cf. [HS93, Proposition 2.1(i)], see also [GNO10, Theorem 3.6(i)]), which is equivalent to (3.39) and
completes the proof of (iii).

Turning our attention towards (iv), we need to show that the target space Λµ(·)
∞,r in (3.38) and the

space Λλqq(·)∞,q (that is, the target space in (3.38) with µ = λqq and r = q) satisfy

Λλqq(·)∞,q ↪→ Λµ(·)
∞,r. (3.48)

Since ω(f, ·) is increasing, this last embedding holds, for q ≤ r, if

sup
κ∈(0,N−1

1 )

(∫ N−1
0

κ (µ(t))−r dt
t

) 1
r

(∫ N−1
0

κ (λqq(t))
−q dt

t

) 1
q

∼ sup
κ∈(0,N−1

1 )

(∫ N−1
0

κ (µ(t))−r dt
t

) 1
r

(∫ N−1
0

κ (λqr(t))−r dt
t

) 1
r

<∞ (3.49)

(cf. [HS93, Proposition 2.1(i)], see also [GNO10, Theorem 3.6(i)]), which is equivalent to (3.39). In the
case r < q we obtained (3.45) when proving (ii), which gives the desired embedding. �

Remark 3.5. Let 0 < q ≤ 1, 0 < p, r ≤ ∞, µ ∈ Lr. Let σ and N be admissible sequences, the latter
satisfying N1 > 1. Put τ = σN−n/p and assume that s(Nτ−1) > 0 and τ−1

j → 0 as j →∞.
Let Λ be an admissible function such that Λ(z) ∼ Λ(Nj) = σj for z ∈ [Nj , Nj+1], j ∈ N0. Let H(t) :=

inf
s∈(0,t)

Λ(s−1)sn/p, t ∈ (0, N−1
0 ), and suppose that H is differentiable with H ′(t) 6= 0, t ∈ (0, N−1

0 ).

Furthermore, let λqr ∈ Lr be defined by

λqr(t) := λr(t) := t−
1
r

(
inf

s∈(0,t)
Λ(s−1)sn/p

) 1
r−1(

− d

dt
inf

s∈(0,t)
Λ(s−1)sn/p

)− 1
r

, t ∈ (0, N−1
0 ]. (3.50)

Then, (3.43) holds, with the usual modification since q′ = ∞. Now, proceeding as in the proof
of Corollary 3.4, conditions (3.39), (3.40) remain the same and the sharp embeddings with respect to
parameter µ, when 0 < q ≤ 1, are obtained by taking r ≥ q and µ := λqr(t) = λr. Moreover, we obtain
the optimal embedding by putting r = q and µ := λqq = λq.

In terms of the Triebel-Lizorkin spaces our results read as follows.

Theorem 3.6. Let 0 < p < ∞, 0 < q, r ≤ ∞, µ ∈ Lr. Furthermore, let σ and N be admissible
sequences, the latter satisfying N1 > 1. Put τ = σN−n/p and assume that

s(Nτ−1) > 0 (3.51)

and
τ−1 ∈ `p′ . (3.52)

(i) If 0 < p ≤ r <∞ and p < r if r =∞, then

Fσ,Np,q ↪→ Λµ(·)
∞,r, (3.53)

if, and only if,

sup
M≥0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




1
r ( ∞∑

k=M

τ−p
′

k

) 1
p′

<∞. (3.54)

(with the usual modification if r =∞ and/or p′ =∞).
(ii) If 0 < r < p ≤ ∞, then

Fσ,Np,q ↪→ Λµ(·)
∞,r, (3.55)



20 SUSANA D. MOURA, JÚLIO S. NEVES, AND CORNELIA SCHNEIDER

if, and only if,




∞∑

M=0




M∑

j=0

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
p

·
(∫ N−1

M

N−1
M+1

(µ(t))−r
dt
t

)
·
( ∞∑

k=M

τ−p
′

k

) u
p′





1
u

< ∞ (3.56)

and




∞∑

M=0



∞∑

j=M

N−rj

∫ N−1
j

N−1
j+1

(µ(t))−r
dt
t




u
p

·N−rM

(∫ N−1
M

N−1
M+1

(µ(t))−r
dt
t

)

·
(

M∑

k=0

(
N−1
k τk

)−p′
) u
p′




1
u

<∞ (3.57)

(with the usual modification if p′ =∞), where 1
u := 1

r − 1
p .

Proof. The proof is a consequence of Proposition 2.12 and Theorem 3.2. �

Remark 3.7. (i) In particular, it turns out that for the F -spaces our results are independent of the
parameter q.

(ii) By (3.51) and (3.52), we always have

Fσ,Np,q 6↪→ Lip1. (3.58)

(iii) Regarding condition (3.54), similar observations as the ones in Remark 3.3 (iv)-(v) can be made
with q replaced by p.

The counterpart of Corollary 3.4 in terms of the Triebel-Lizorkin spaces is as follows.

Corollary 3.8. Let 1 < p ≤ ∞, 0 < q, r ≤ ∞, µ ∈ Lr. Let σ and N be admissible sequences, the latter
satisfying N1 > 1. Put τ = σN−n/p and assume that

s(Nτ−1) > 0 (3.59)

and
τ−1 ∈ `p′ .

Furthermore, let λpr ∈ Lr be defined by

λpr(t) :=
(

Λ(t−1)tn/p
) p′
r

(∫ t

0

(
Λ(s−1)sn/p

)−p′ ds
s

) 1
p′+

1
r

, t ∈ (0, N−1
0 ], (3.60)

where Λ is an admissible function such that Λ(z) ∼ Λ(Nj) = σj for z ∈ [Nj , Nj+1], j ∈ N0. We consider
the embedding

Fσ,Np,q ↪→ Λµ(·)
∞,r. (3.61)

(i) If 1 < p ≤ r <∞ and 1 < p < r if r =∞, then (3.61) holds if, and only if,

sup
M≥0

(∑M
j=0

∫ N−1
j

N−1
j+1

(µ(t))−r dt
t

) 1
r

(∑M
j=0

∫ N−1
j

N−1
j+1

(λpr(t))−r dt
t

) 1
r

<∞ (3.62)

(with the usual modification if r =∞).
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(ii) If 0 < r < p <∞ and p > 1, then (3.61) holds if, and only if,




∞∑

M=0

(∑M
j=0

∫ N−1
j

N−1
j+1

(µ(t))−r dt
t

)u/p

(∑M
j=0

∫ N−1
j

N−1
j+1

(λpr(t))−r dt
t

)u/r
∫ N−1

M

N−1
M+1

(µ(s))−r
ds
s





1
u

<∞, (3.63)

where 1
u := 1

r − 1
p .

(iii) Let r ∈ [p,∞]. Among the embeddings in (3.61), that one with µ = λpr, is sharp with respect to
the parameter µ.

(iv) Among the embeddings in (3.61), that one with µ = λpp and r = p, i.e.,

Fσ,Np,q ↪→ Λλpp(·)
∞,p , (3.64)

is optimal.

Remark 3.9. Let 0 < p ≤ 1, 0 < q, r ≤ ∞, µ ∈ Lr. Let σ and N be admissible sequences, the latter
satisfying N1 > 1. Put τ = σN−n/p and assume that s(Nτ−1) > 0 and τ−1

j → 0 as j →∞.
Let Λ be an admissible function such that Λ(z) ∼ Λ(Nj) = σj for z ∈ [Nj , Nj+1], j ∈ N0. Let H(t) :=

inf
s∈(0,t)

Λ(s−1)sn/p, t ∈ (0, N−1
0 ), and suppose that H is differentiable with H ′(t) 6= 0, t ∈ (0, N−1

0 ).

Furthermore, let λpr ∈ Lr be defined by

λpr(t) := t−
1
r

(
inf

s∈(0,t)
Λ(s−1)sn/p

) 1
r−1(

− d

dt
inf

s∈(0,t)
Λ(s−1)sn/p

)− 1
r

, t ∈ (0, N−1
0 ]. (3.65)

Then, conditions (3.62), (3.63) remain the same and the sharp embeddings with respect to parameter
µ, when 0 < p ≤ 1, are obtained by taking r ≥ p and µ := λpr(t). Moreover, we obtain the optimal
embedding by putting r = p and µ := λpp.

4. Applications

4.1. Continuity envelopes for Aσ,Np,q . The concept of continuity envelopes has been introduced by
Haroske in [Har02] and Triebel in [Tri01]. Here we quote the basic definitions and results concerning
continuity envelopes. We refer to [Har07,Tri01] for heuristics, motivations and details on this subject.

Definition 4.1. Let X ↪→ CB be some function space on Rn.
(i) Let EXC : (0,∞)→ [0,∞) be defined by

EXC (t) := sup
‖f |X‖≤1

ω(f, t)
t

, t > 0. (4.1)

The continuity envelope function of X is the class [EXC ] of functions f : (0, ε] → [0,∞), for
some ε > 0, such that f(·) ∼ EXC (·) in (0, ε]. For convenience, we do not distinguish between
representative and equivalence class. Therefore, any representative function of the class will be
called as well continuity envelope function and sometimes we also denote a particular representative
by EXC (·).

(ii) Assume X 6↪→ Lip1. Let ε ∈ (0, 1), H(t) := − log EXC (t), t ∈ (0, ε], and let µH be the associated
Borel measure. The number u

X
, 0 < u

X
≤ ∞, is defined as the infimum of all numbers v,

0 < v ≤ ∞, such that
( ε∫

0

( ω(f, t)
t EXC (t)

)v
µH(dt)

)1/v

≤ c ‖f |X‖ (4.2)
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(with the usual modification if v =∞) holds for some c > 0 and all f ∈ X. The couple

EC(X) =
(
EXC (·), u

X

)

is called continuity envelope for the function space X.

Remark 4.2. (i) Note that the function EXC , defined by (4.1), is equivalent to some monotonically de-
creasing function; for a proof and further properties we refer to [Har07]. Concerning Definition 4.1(ii) we
shall assume that we can choose a continuous representative in the equivalence class [EXC ], for convenience
denoted again by EXC .

(ii) Note that H(t) = − log EXC (t) is a (finite) real increasing function on (0, ε], which tends to −∞
when t goes to 0. There is only a Borel measure (i.e., a measure defined on the Borel sets) µH in
(0, ε] such that µH([a, b]) = H(b) −H(a), for all [a, b] ⊂ (0, ε]. Its restriction to each such [a, b] is the
Stieltjes-Borel measure associated with H

∣∣
[a,b]

.
In the important case when H happens to be continuously differentiable in (0, ε], we have µH(dt) =

H ′dt, and for the functions we want to integrate we can calculate the integrals as improper Riemann
integrals.

(iii) Furthermore, (4.2) holds with v =∞ in any case, but – depending upon the underlying function
space X – there might be some smaller v0 such that (4.2) is still satisfied (and therefore also for all
v ∈ [v0,∞]), cf. [Har07, Remark 6.2].

As it will be useful in the sequel, we recall some properties of the continuity envelopes.

Proposition 4.3. (i) Let Xi ↪→ CB, i = 1, 2, be some function spaces on Rn. Then X1 ↪→ X2 implies
that there is some positive constant c such that for all t > 0,

EX1
C (t) ≤ c EX2

C (t).

(ii) We have X ↪→ Lip1 if, and only if, EXC is bounded.
(iii) Let Xi ↪→ CB, i = 1, 2, be some function spaces on Rn with X1 ↪→ X2. Assume for their continuity

envelope functions
EX1

C (t) ∼ EX2
C (t), t ∈ (0, ε),

for some ε > 0. Then we get for the corresponding indices u
Xi

, i = 1, 2, that

u
X1
≤ u

X2
.

Let A ∈ {B,F}. Regarding the study of continuity envelopes in the context of the spaces of generalized
smoothness Aσ,Np,q , of interest are those spaces with

Aσ,Np,q ↪→ CB but Aσ,Np,q 6↪→ Lip1.

Taking into consideration Proposition 2.13, and Remarks 3.3 (ii) and 3.7 (ii), we shall be concerned with
the investigation of the continuity envelopes of the spaces Aσ,Np,q with

s(Nτ−1) > 0 and τ−1 ∈ `u′ , (4.3)

where τ = σN−n/p, setting u = q if A = B and u = p if A = F , respectively.
In particular, our results generalize those previously obtained in [MNP09, Proposition 3.2] and, if

additionally s(τ ) > 0, we recover results from [HM08] regarding continuity envelopes. The new results
in this paper, regarding continuity envelopes, correspond to consider the situation when (4.3) is satisfied
and s(τ ) ≤ 0.

Proposition 4.4. Let 0 < p ≤ ∞ (p <∞ in the F-case), 0 < q ≤ ∞, σ and N be admissible sequences,
the latter satisfying N1 > 1. Assume further that (4.3) holds. Let Λ be any admissible function such that
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Λ(z) ∼ σj, z ∈ [Nj , Nj+1], j ∈ N0, with equivalence constants independent of j, and let λu∞ defined in
(0, N−1

0 ] be the optimal weights from Corollary 3.4 with r =∞, i.e.,

λu∞(t) :=
(∫ t

0

(
Λ(y−1) yn/p

)−u′ dy
y

) 1
u′

if 1 < u ≤ ∞, (4.4)

and
λu∞(t) := sup

y∈(0,t)

(Λ(y−1))−1 y−n/p if 0 < u ≤ 1. (4.5)

Then, there exists ε > 0 such that

EA
σ,N
p,q

C (t) ∼ λu∞(t)
t

, t ∈ (0, ε], (4.6)

where u = q if A = B and u = p if A = F , respectively.

Proof. Using Proposition 2.7 we observe that

λu∞(t) ∼



∞∑

j=k

τ−u
′

j




1
u′

, t ∈ [N−1
k+1, N

−1
k ], k ∈ N0. (4.7)

By Theorems 3.2(i) and 3.6(i), we have Aσ,Np,q ↪→ Λλu∞(·)
∞,∞ , which implies for ε < min(N−1

0 , 1),

sup
0<t≤ε

ω(f, t)
λu∞(t)

. ‖f |Aσ,Np,q ‖,

leading to
ω(f, t)
t
. λu∞(t)

t
‖f |Aσ,Np,q ‖ for all t ∈ (0, ε].

Considering only functions f ∈ Aσ,Np,q with ‖f |Aσ,Np,q ‖ ≤ 1, taking the supremum yields

EA
σ,N
p,q

C (t) . λu∞(t)
t

for all t ∈ (0, ε],

giving the desired upper bound.
On the other hand, it is obvious that (4.2) holds for v =∞ and any X. This together with that fact

that we only consider spaces Aσ,Np,q ↪→ CB yields for Φ(t) = tEA
σ,N
p,q

C (t),

Aσ,Np,q ↪→ ΛΦ(·)
∞,∞,

which according to Theorem 3.2(i) and Theorem 3.6(i) holds only if

sup
M≥0

sup
t∈[N−1

M+1,N
−1
0 ]

(
tEA

σ,N
p,q

C (t)
)−1

( ∞∑

k=M

τ−u
′

k

) 1
u′

<∞.

Since Φ(t) is monotonically increasing in t, using (4.7), we obtain
(
N−1
M+1E

Aσ,Np,q
C (N−1

M+1)
)−1

≤ c (λu∞(N−1
M+1))−1 for all M ≥ 0.

A monotonicity argument finally gives the lower bound

EA
σ,N
p,q

C (t) & λq∞(t)
t

, t ∈ (0, ε].

This completes the proof. �
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Under the conditions of the previous theorem, if we additionally require s(τ ) > 0, then one can easily
verify that (4.6) is equivalent to [HM08, eqs. (26), (27)]. Hence, in the previous theorem we recover
partially the results from [HM08, Proposition 4.1] regarding continuity envelopes. In [HM08] it was
proved that in such a case the fine index of the continuity envelope is q for B-spaces and p for F -spaces,
where the continuity envelope yields the optimal embedding.

Provided condition (4.8) (below) is satisfied, we have an instance of the phenomenon where the
continuity envelope does not yield the optimal embedding given by Theorem 3.2 and Corollary 3.4.
Similar observations were already made for Besov spaces of type B(s,Ψ)

p,q (which are covered by our
studies), we refer to [MNS11, Remark 3.4(iii)] for more details. A similar situation occurs as well for
Bessel-potential-type spaces in the limiting case, cf. [GNO07, Theorem 4, Remark 5] and [GNO10,
Theorem 1.6, Corollary 1.7].

Theorem 4.5. Let 0 < p ≤ ∞ ( p <∞ in the F-case), 0 < q ≤ ∞, σ and N be admissible sequences,
the latter satisfying N1 > 1. Let u = q for B-spaces and u = p for F -spaces, respectively. Assume that
(4.3) holds. Additionally, suppose that either

lim
M→∞

∑∞
j=M τ−u

′

j

τ−u
′

M

=∞, if u > 1, (4.8)

or τ = {τj}j∈N0 is monotonically non-decreasing and satisfies

lim
M→∞

τ−1
M




M∑

j=0

τvj




1
v

=∞, for v ∈ [u,∞), if 0 < u ≤ 1. (4.9)

Then

EC

(
Aσ,Np,q

)
=
(
λu∞(t)

t
,∞
)
,

where λu∞ is defined by (4.4) or by (4.5).

Proof. By virtue of Proposition 4.4, it only remains to prove that uBσ,Npq
= ∞ and uFσ,Npq

= ∞. Fur-
thermore, taking into account Propositions 2.12, 4.4 and Proposition 4.3, it is sufficient to prove that
assertion for the Besov space case.

Step 1: Let 1 < q <∞. By Proposition 4.4, take EB
σ,N
p,q

C (t) := λq∞(t)
t , t ∈ (0, ε], for some small ε > 0.

Assume that for some v ∈ [q,∞) there is a positive constant c(v) such that



∫ ε

0


 ω(f, t)

t EB
σ,N
p,q

C (t)



v

µq′(dt)




1
v

≤ c(v) ‖f | Bσ,Np,q ‖ (4.10)

holds for all f ∈ Bσ,Np,q , where µq′ is the Borel measure associated with − log EB
σ,N
p,q

C in (0, ε]. Since

EB
σ,N
p,q

C (·) is continuously differentiable in (0, ε] (see [CF06, Lemma 2.5] for a similar assertion), the
integral on the left hand side of (4.10) can be calculated as the improper Riemann integral

∫ ε

0


 ω(f, t)

t EB
σ,N
p,q

C (t)



v

(
−EB

σ,N
p,q

C

)′
(t)

EB
σ,N
p,q

C (t)
dt. (4.11)
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By the definition of λq∞(t), we have

−

(
EB

σ,N
p,q

C

)′
(t)

EB
σ,N
p,q

C (t)
=

1
t


1− 1

q′

(
Λ(t−1)tn/p

)−q′
∫ t

0

(
Λ(s−1)sn/p

)−q′ ds
s


 , for t ∈ (0, ε)

and from (4.8) it follows that there is δ > 0 such that

−

(
EB

σ,N
p,q

C

)′
(t)

EB
σ,N
p,q

C (t)
∼ 1
t
, 0 < t < δ. (4.12)

Since
∫ 1

0
in (2.15) can be replaced by

∫ ε
0
and Bσ,Np,q ↪→ CB , we see that (4.10) is equivalent to

Bσ,Np,q ↪→ Λλq∞(·)
∞,v , (4.13)

for v ∈ [q,∞). Theorem 3.2 provides necessary conditions for this embedding. But (4.8) implies that

sup
M≥0

∑M
k=0

(∑∞
j=k τ

−q′
j

)−v/q′

(∑∞
j=M τ−q

′
j

)−v/q′ =∞ (4.14)

because, using l’Hôpital’s rule (since the numerator and the denominator tend to ∞),

lim
x→0+

∫ N−1
0

x

(∫ t
0

(
Λ(s−1)sn/p

)−q′ ds
s

)−v/q′
dt
t

(∫ x
0

(
Λ(s−1)sn/p

)−q′ ds
s

)−v/q′ ∼ lim
x→0+

∫ x
0

(
Λ(s−1)sn/p

)−q′ ds
s(

Λ(x−1)xn/p
)−q′ =∞,

which contradicts (3.11). Therefore, we have no embedding (4.13) and there is no v ∈ [q,∞) such that
(4.10) holds. Hence, uBσ,Npq

=∞.
If q =∞, we assume that there is v ∈ (0,∞) such that (4.10) holds for all f ∈ Bσ,Np,q . Proceeding as

before, (4.14) would contradict (3.13). Thus, we also have in this situation that uBσ,Npq
=∞.

Step 2: Let 0 < q ≤ 1. Recall that, by Propositions 4.4 and 2.4 and the monotonicity of τ , we have

EB
σ,N
p,q

C (t) =
λq∞(t)
t

=
1
t

sup
s∈(0,t)

(Λ(s−1))−1s−n/p ∼ Nk sup
j≥k

τ−1
j = Nkτ

−1
k , (4.15)

for t ∈ [N−1
k+1, N

−1
k ], k ∈ N0. We remark that, due to the hypothesis (4.3),

s(τ−1N) > 0,

implies the existence of a natural number k0 and a positive constant c1 such that

log

(
τ−1
j+kNj+k

τ−1
j Nj

)
≥ c1k, j ∈ N0, k ≥ k0. (4.16)

As in Step 1, let us assume that for some v ∈ [q,∞) there is a positive constant c(v) such that


∫ ε

0


 ω(f, t)

t EB
σ,N
p,q

C (t)



v

µ∞(dt)




1
v

≤ c(v) ‖f | Bσ,Np,q ‖ (4.17)
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holds for all f ∈ Bσ,Np,q (Rn). Let d ∈ N such that N−1
dk0
≤ ε be fixed. Let b = (bj)j∈N ∈ `q be a sequence

of non-negative numbers and let fb be the corresponding function according to (3.3). Using (4.17), (3.4),
(3.5), (4.15), and (4.16), as well as the admissibility of N and τ , we obtain

‖b |`q‖ &



∫ N−1

dk0

0


 ω(f b, t)

t EB
σ,N
p,q

C (t)



v

µ∞(dt)




1
v

=



∞∑

j=d

∫ N−1
jk0

N−1
(j+1)k0


 ω(f b, t)

t EB
σ,N
p,q

C (t)



v

µ∞(dt)




1
v

&



∞∑

j=d


ω(f b, N−1

jk0
)

N−1
jk0

1

EB
σ,N
p,q

C (N−1
(j+1)k0

)



v

µ∞[N−1
(j+1)k0

, N−1
jk0

]




1
v

&



∞∑

j=d


Njk0

∞∑

`=jk0

b` τ
−1
`



v

N−v(j+1)k0
τv(j+1)k0

log

(
N(j+1)k0τ

−1
(j+1)k0

Njk0τ
−1
jk0

)


1
v

&



∞∑

j=d

τvjk0



∞∑

`=jk0

b` τ
−1
`



v


1
v

. (4.18)

For fixed m ∈ N with m > d, we get from (4.18),

‖b |`q‖ &




m∑

j=d

τvjk0



∞∑

`=jk0

b` τ
−1
`



v


1
v

&




m∑

j=d

τvjk0

( ∞∑

`=mk0

b` τ
−1
`

)v


1
v

∼
( ∞∑

`=mk0

b` τ
−1
`

)


m∑

j=d

τvjk0




1
v

.

Then, choosing

b` :=

{
1, for ` = mk0,

0, for ` 6= mk0

we arrive at

1 & τ−1
mk0




m∑

j=d

τvjk0




1
v

, for any m > d. (4.19)

Note that, since τ is an admissible sequence, it holds

τ` . τdk0 for all ` ∈ {0, · · · , dk0}, (4.20)

and
τsk0+` . τsk0 for all s ∈ N0, ` ∈ {0, · · · , dk0}, (4.21)
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with equivalence constants being independent of s and ` (depend only on τ , d and k0). By (4.20) and
(4.21), we have

k0m∑

j=0

τvj =
dk0−1∑

j=0

τvj +
m−1∑

`=d

k0(`+1)∑

t=k0`

τvt .
m∑

`=d

τvk0`, for all m ∈ N with m > d. (4.22)

The hypothesis (4.9) implies, in particular, that

lim
m→∞

τ−1
k0m



k0m∑

j=0

τvj




1
v

=∞,

which, due to (4.22), yields

lim
m→∞

τ−1
k0m

(
m∑

`=d

τvk0`

) 1
v

=∞,

but this contradicts (4.19). Therefore, there is no v ∈ [q,∞) such that (4.17) holds and hence uBσ,Npq (Rn) =
∞. �

4.2. Approximation numbers for Aσ,Np,q . As an immediate consequence of our results for continuity
envelopes, we obtain an upper estimate for approximation numbers.

The following result can be found in [CH03].

Proposition 4.6. Let X be some Banach space of functions defined on the unit ball U in Rn with
X(U) ↪→ C(U), where C(U) is the space of bounded continuous functions defined on U . Then there is
some c > 0 such that for all k ∈ N

ak
(
id : X(U) −→ C(U)

)
≤ c k−1/n EXC (k−1/n), (4.23)

where the k-th approximation number ak of id : X(U) −→ C(U) is defined by

ak(id : X(U) −→ C(U)) := inf {‖id− L‖ : L ∈ L(X(U), C(U)), rankL < k} ,
with rankL as the dimension of the range of L.

We return to the function spaces studied above. Note that there cannot be a compact embedding
between spaces on Rn; the counterpart for spaces Aσ,Np,q (Rn) follows immediately from the well-known
fact for spaces Asp,q(Rn) and A ∈ {B,F}. Let U be the unit ball in Rn; we deal with spaces Aσ,Np,q (U)
now defined by restriction from their Rn-counterparts. One immediately verifies that Theorem 4.5 can
be transferred to spaces on domains without any difficulty, i.e., we have for the local continuity envelopes
EC

(
Aσ,Np,q (U)

)
= EC

(
Aσ,Np,q (Rn)

)
.

In the following theorem we give upper and lower bounds for approximation numbers of the embedding
of the spaces Aσ,Np,q (U), where N = (2j)j∈N0 , into C(U).

When N = (2j)j∈N0 , we denote the spaces Aσ,Np,q by Aσp,q.

Theorem 4.7. Let 2 < p ≤ ∞, 0 < q ≤ ∞, N = (2j)j∈N0 , and σ be an admissible sequence. Put
τ = σN−n/p and let u = q for B-spaces and u = p for F -spaces, respectively. Assume that

τ−1 ∈ `u′ and s(τ ) < min{1, s(τ ) + 1}. (4.24)

Then there are positive numbers c1, c2 such that, for all k ∈ N,

c1 τ
−1
l ≤ ak

(
id : Aσp,q(U) −→ C(U)

)
≤ c2



∞∑

j=l

τ−u
′

j




1
u′

(4.25)
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(with the usual modification if u′ =∞), where l ∈ N0 is such that

k−1/n ∈ [2−(l+1), 2−l]. (4.26)

Proof. Step 1: We start establishing the results for B-spaces. Note that for the upper estimate we only
need (4.3), which is verified if (4.24) is satisfied. The restrictions p ≥ 2 and s(τ ) < min{1, s(τ ) + 1} are
due to the lower estimate.

By our initial assumption (4.26) we have k−1/n ∼ 2−l. Since τ−1 ∈ `q′ , by Proposition 2.13,
Bσp,q(U) ↪→ C(U). Moreover, as s(Nτ−1) > 0, combining (4.23) with Propositions 4.4 and 2.7 im-
mediately leads to the upper estimates. The difficulty with 0 < p, q < 1, when the spaces Bσp,q(U) are
not Banach spaces and hence Proposition 4.6 cannot be applied directly, can easily be surmounted by
a continuous embedding argument, Bσp,q ↪→ Bτr,q̂, where p < 1 < r, σj = τj2jn( 1

p− 1
r ), j ∈ N0, and

q̂ = max(q, 1), cf. Proposition 2.11. The rest follows in view of the multiplicativity of approximation
numbers.

It remains to verify the lower bound. We proceed similar as in [HM04, Proposition 4.4] and make
use of the special lift property, cf. [FL06, Theorem 3.1.9], together with related results for the classical
spaces when σ = (σj)j∈N0 = (2sj)j∈N0 . Note that τ−1 ∈ `q′ implies s(τ ) ≥ 0 (cf. Remark 3.3 (i)). Let
µ ∈ (s(τ ),min{1, s(τ ) + 1}), define

µ = (µj)j∈N0 = (τ−1
j 2jµ)j∈N0 ,

and let σ0 denote the sequence with all terms equal to 1, i.e., Bσ
0

∞,∞ = B0
∞,∞. Then we have

Bσp,q(U) ↪→ C(U) ↪→ Bσ
0

∞,∞(U) ↪→ Bµ
−1

∞,∞(U). (4.27)

In order for the last embedding in (4.27) to hold we have to assume that µ−1 ∈ `∞, cf. Proposition 2.11.
But this is true since

s(µ) ≥ s(τ−1) + µ = −s(τ ) + µ > 0, (4.28)

implying µ−1 ∈ `u for any u ∈ (0,∞]. By the multiplicativity of approximation numbers,

a2k

(
id : Bσp,q(U) −→ Bµ

−1

∞,∞(U)
)
≤ ak

(
id : Bσp,q(U) −→ C(U)

)
ak

(
id : C(U) −→ Bµ

−1

∞,∞(U)
)
.

It is thus sufficient to show that

a2k

(
id : Bσp,q(U) −→ Bµ

−1

∞,∞(U)
)
≥ c1k

− µn , (4.29)

for 2 ≤ p ≤ ∞, and

ak

(
id : C(U) −→ Bµ

−1

∞,∞(U)
)
≤ c2k

− µn τl, (4.30)

in order to verify the estimate from below. In view of [FL06, Theorem 3.1.9] we can simplify (4.29) by

a2k

(
id : Bσp,q(U) −→ Bµ

−1

∞,∞(U)
)
∼ a2k

(
id : B(2

j n
p )

p,q (U) −→ B(2−jµ)
∞,∞ (U)

)

= a2k

(
id : Bn/pp,q (U) −→ B−µ∞,∞(U)

)
≥ c1k−

µ
n ,

the rest being a consequence of the well-known result [ET96, Theorem 3.3.4, p.119], see also [Har07,
p.202]. Note that [FL06, Theorem 3.1.9] works on Rn originally, but due to [Lop09, Theorem 5.3.15],
there is a linear extension operator, such that by usual extension-restriction procedures we can apply it
to our situation, too. Concerning (4.30), C(U) ↪→ Bσ

0

∞,∞(U) leads to

ak

(
id : C(U) −→ Bµ

−1

∞,∞(U)
)
≤ c ak

(
id : Bσ

0

∞,∞(U) −→ Bµ
−1

∞,∞(U)
)
.
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Another application of [FL06, Theorem 3.1.9], C(U) ↪→ Bσ
0

∞,∞(U), (4.23), Proposition 4.4 with u = ∞
(note that s(µ) > 0 by (4.28) and s(Nµ−1) > 0) provide

ak

(
id : Bσ

0

∞,∞(U) −→ Bµ
−1

∞,∞(U)
)
≤ c1 ak

(
id : Bµ∞,∞(U) −→ Bσ

0

∞,∞(U)
)

≤ c2 ak
(
id : Bµ∞,∞(U) −→ C(U)

)

≤ c3 k−
1
n EB

µ
∞,∞

C (k−
1
n )

∼
∞∑

j=l

τj2−jµ ∼ 2−lµτl

∼ k−
µ
n τl. (4.31)

This yields (4.30) and finishes the proof for B-spaces.
Step 2: Concerning the results for F -spaces, we assume τ−1 ∈ `p′ . Let 0 < p1 < p and define

σ′ =N
n
(

1
p1
− 1
p

)
σ. Then

Bσ
′

p1,p(U) ↪→ Fσp,q(U) ↪→ C(U)
and hence

ak
(
id : Bσ

′
p1,p(U) ↪→ C(U)

)
. ak

(
id : Fσp,q(U) ↪→ C(U)

)
.

Since τ ′ = σ′N−
n
p1 = N

n
(

1
p1
− 1
p

)
σN−

n
p1 = τ , using the results obtained in Step 1, we get

ak
(
id : Fσp,q(U) ↪→ C(U)

)
& τ−1

l . (4.32)

On the other hand, let p < p2 < ∞ and define σ′′ = N
n
(

1
p2
− 1
p

)
σ. Then Fσp,q(U) ↪→ Bσ

′′
p2,p(U). Since

σ−1N
n
p ∈ `p′ and (σ′′)−1N

n
p2 = N

−n
(

1
p2
− 1
p

)
σ−1N

n
p2 = σ−1N

n
p , it holds Bσ

′′
p2,q(U) ↪→ C(U). And for

the approximation numbers we get

ak
(
id : Fσp,q(U) ↪→ C(U)

)
. ak

(
id : Bσ

′′
p2,p(U) ↪→ C(U)

)
.



∞∑

j=l

(τ ′′j )−p
′




1
p′

=



∞∑

j=l

τ−p
′

j




1
p′

, (4.33)

since τ ′′ = σ′′N−
n
p2 = σN−

n
p = τ in the last step. Now (4.32) and (4.33) yield the desired lower and

upper estimates, respectively. This finally completes the proof. �
Remark 4.8. (i) The loss of sharpness of our applied tools is not very surprising, see [Har01, 6.4].
However, if 0 < u ≤ 1, thus u′ =∞, then assuming that τ = {τj}j∈N0 is monotonically non-decreasing
leads to

sup
j=l,...,∞

τ−1
j = τ−1

l ,

showing the sharpness of the estimates in (4.25).
(ii) If σ = (2j

n
p Ψ(2−j))j∈N0 , Ψ a slowly varying function, and N = (2j)j∈N0 , we recover the spaces

A
(n/p,Ψ)
p,q , where A ∈ {B,F}, studied in [MNS11]. In terms of these spaces our results now read as

follows. Let 2 < p ≤ ∞ (with p <∞ in the F -case), 0 < q ≤ ∞. Assume
(
(Ψ(2−j))−1

)
j∈N ∈ `u′ , where

u = q if A = B and u = p if A = F , respectively. Then there are positive numbers c1, c2 such that, for
all k ∈ N,

c1 (Ψ(k−1/n))
−1 ≤ ak

(
id : A(n/p,Ψ)

pq (U) −→ C(U)
)
≤ c2




∞∑

j=[ log kn ]

(Ψ(2−j))−u
′




1
u′

(4.34)

(usual modification if u′ =∞). In particular, this result improves [MNP09, Proposition 3.8].
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(iii) Note that the restriction p ≥ 2 is due to the lower estimates, similarly to [HM04, Proposition 4.4],
where it was proved that

a2k

(
id : B(s,Ψ)

p,q (U) −→ C(U)
)
∼ k− s

n+ 1
p (Ψ(k−

1
n ))−1, k ∈ N, (4.35)

assuming that 2 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R with n
p < s < n

p + 1, and Ψ a slowly varying function.

Concerning estimates of approximation numbers for spaces B(s,Ψ)
p,q (U) in the super-limiting case when

s = n
p + 1 we refer to [CH05, Proposition 4.9].

(iv) Regarding estimates for approximation numbers of embeddings of the spaces Aσ,Np,q (U) into C(U),
with general admissible sequences N , satisfying N1 > 1, one can make use of the previous theorem and
the standardization procedure [CL06, Theorem 1], that is,

Bσ,Np,q (U) = Bβp,q(U)

where for all j ∈ N0,

βj = σk(j), with k(j) = min{k ∈ N0 : 2j−1 ≤ Nk+l0},
with l0 satisfying (2.9).

(v) In view of what has been done in [HM04, Corollary 4.9] one can even expect that our results on
approximation numbers yield rough estimates for entropy numbers. But this will be done elsewhere.
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