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An explicit high order method for fractional advection diffusion equations

Ercı́lia Sousa

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

Abstract

We propose a high order explicit finite difference method for fractional advection diffusion equations. These
equations can be obtained from the standard advection diffusion equations by replacing the second order spatial
derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the
left and right Riemann–Liouville fractional derivatives. We study the convergence of the numerical method through
consistency and stability. The order of convergence varies between two and three and for advection dominated flows is
close to three. Although the method is conditionally stable, the restrictions allow wide stability regions. The analysis
is confirmed by numerical examples.

Keywords: higher order methods, fractional differential equations, finite differences, advection diffusion equations

1. Fractional advection diffusion equation

Fractional derivatives have been used to model anomalous dispersion or diffusion and recently the fractional
advection diffusion equation has been presented as a more suitable model for many problems that appear in different
fields, such as engineering, physics, chemistry and hydrology. The fractional advection diffusion equation involves a
parameter 1 < α < 2 representing the order of the fractional operator in space and when α = 2 we obtain the classical
advection diffusion equation. Therefore in experiments, an additional parameter α needs to be adjusted, that helps to
characterize the flow.

Some of the works that present experimental results with parameter estimation involving fractional advection
diffusion (or dispersion) problems are for instance [5, 7, 8, 11, 33]. In [7] the most frequently occurring value of α to
adjust the experimental results varies in the range of 1.4 to 2.0 as in [8]. In [11] the average estimate of the parameter
α is also around 1.7 and 1.8. However, there are some estimates in [5, 33], that concerns small parameters of α, less
than 1.5.

Similar problems to the one presented here have also been studied from different perspectives and not only from
the numerical point of view. The study of analytical approaches, namely discussions about the well-posedness of
such problems, that is, on the existence, uniqueness and regularity of the solutions are also a very active research field
[2, 6, 15].

Regarding finite difference methods for fractional advection diffusion problems, in the last years many approaches
have been appearing, mostly with convergence of first and second order, some for only pure diffusive problems
[4, 19, 20, 29, 34] and others for the advection-diffusion models [3, 12, 13, 14, 23, 26, 28]. Many of the second order
approaches rely on implicit methods which are inadequate for advection dominated flows. However, advection often
dominates the evolution of transport flows.

Our purpose is to introduce a numerical method that is also suitable for primarily advective flows, that is, with
small diffusion. We derive a numerical method which is explicit and it has the particularity that for α = 2 matches the
numerical method introduced in [16] and called QUICKEST. Although this method was introduced a long time ago
it has been very popular until today, since it has the goal of providing an accurate solution without strong oscillations
presented in some higher order methods. It has also been shown to be more efficient than other schemes for highly
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advective flows, since it makes a reasonable compromise between improved performance and computational cost
[1, 9, 10, 25, 31, 32]. The numerical method we propose keeps these properties but now for more general models,
described by the fractional operator.

The fractional advection diffusion equation can be expressed as follows

∂u
∂t
+ V
∂u
∂x
= D

(
1
2
+
β

2

)
∂αu
∂xα
+ D

(
1
2
− β

2

)
∂αu
∂(−x)α

+ S , (1)

where u represents a concentration, V is the velocity, x is the spatial coordinate, t is the time, D is the diffusion (or
dispersion) coefficient, α is the order of the fractional differentiation with 1 < α ≤ 2 and S is the source or sink term.
The parameter β is a skewness parameter with −1 ≤ β ≤ 1.

We define the fractional operator

∇αβu =
1
2

(1 + β)
∂αu
∂xα
+

1
2

(1 − β) ∂
αu

∂(−x)α
. (2)

The equation (1) can be rewritten in the simpler form

∂u
∂t
+ V
∂u
∂x
= D∇αβu + S . (3)

We consider the problem defined in x ∈ IR with an initial condition

u(x, 0) = f (x), x ∈ IR,

and boundary conditions
lim

x→−∞ u(x, t) = 0 and lim
x→∞ u(x, t) = 0.

In the analysis of the numerical method that follows, we assume our problem has a unique and sufficiently smooth
solution.

Remark 1. The type of problems we are studying includes the cases for which the solution u is non-zero in a
bounded interval [a, b], for all t, that can be seen as being zero otherwise, and by assuming the boundary conditions

u(a, t) = 0 and u(b, t) = 0.

For the particular cases, β = 1 and β = −1, we can assume respectively the more general boundary conditions

u(a, t) = 0 and u(b, t) = gb(t)

and
u(a, t) = ga(t) and u(b, t) = 0,

where ga(t) and gb(t) are given functions.

The fractional derivatives can be represented by the Riemann-Liouville formula. The left and right Riemann-
Liouville fractional derivatives of order α, for x ∈ [a, b], −∞ ≤ a < b ≤ ∞, are respectively defined by

∂αu
∂xα

(x, t) =
1

Γ(n − α)
∂n

∂xn

∫ x

a
u(ξ, t)(x − ξ)n−α−1dξ, (n − 1 < α < n) (4)

∂αu
∂(−x)α

(x, t) =
(−1)n

Γ(n − α)
∂n

∂xn

∫ b

x
u(ξ, t)(ξ − x)n−α−1dξ, (n − 1 < α < n) (5)

where Γ(·) is the Gamma function and n = [α] + 1, with [α] denoting the integer part of α.
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Remark 2. For n − 1 < α < n, sufficient conditions for the existence of the Riemann-Liouville derivatives is
that u(·, t) ∈ AC(n)([a, b]) [22]. This space represents the space of functions u for which the space derivatives are
continuous until order n − 1 and the derivative of order n − 1 is absolutely continuous.

The application of fractional calculus to scientific and engineering problems presents difficulties that arise from
the basic calculus properties, such as, the composition property with derivatives. To preserve composition the function
and some of its derivatives should be identically zero at the initial point. For the Riemann-Liouville derivatives, we
have the following properties, that can be found, for instance, in [17, 21, 22].

Proposition 1. Let α > 0, if the left Riemann-Liouville derivative (4) of order α and α + m exist, for m = 1, 2, . . ., we
have

∂m

∂xm

(
∂αu
∂xα

(x, t)

)
=
∂α+mu
∂xα+m

(x, t), (6)

∂α

∂xα

(
∂mu
∂xm

(x, t)

)
=
∂α+mu
∂xα+m

(x, t) −
m−1∑
j=0

∂ ju
∂x j

(a, t)
(x − a) j−α−m

Γ(1 + j − α − m)
. (7)

Proposition 2. Let α > 0, if the right Riemann-Liouville derivative (5) of order α and α + m exist, for m = 1, 2, . . .,
we have

∂m

∂xm

(
∂αu
∂(−x)α

(x, t)

)
= (−1)m ∂α+mu

∂(−x)α+m
(x, t), (8)

∂α

∂(−x)α

(
∂mu
∂xm

(x, t)

)
= (−1)m ∂α+mu

∂(−x)α+m
(x, t)

−
m−1∑
j=0

∂ ju
∂x j

(b, t)
(−1) j+m(b − x) j−α−m

Γ(1 + j − α − m)
. (9)

From the previous properties, we infer that the interchange of the Riemann-Liouville differentiation operators is
allowed under certain conditions. Note that, since we are considering homogeneous boundary conditions, similar
results to Proposition 1 and Proposition 2, for the real line case, becomes

∂

∂x

(
∂αu
∂xα

(x, t)

)
=
∂α

∂xα

(
∂u
∂x

(x, t)

)
=
∂α+1u
∂xα+1

(x, t) (10)

and

∂

∂x

(
∂αu
∂(−x)α

(x, t)

)
=
∂α

∂(−x)α

(
∂u
∂x

(x, t)

)
= (−1)m ∂α+1u

∂(−x)α+1
(x, t). (11)

2. Finite difference approximations

In this section we derive the numerical method that determines the approximate solution for the fractional ad-
vection diffusion equation. We start to describe how we discretize in time to get an explicit method and then how
to discretize the classical spatial derivatives. The last section discusses how we approximate the fractional operators
involved.

2.1. Time discretisation

We start to derive the finite difference scheme using Taylor expansions, that is, we expand u about time level n,
that is, tn = nΔt and where Δt denotes the time step, to obtain

u(x, tn+1) − u(x, tn) = Δt
∂u
∂t

(x, tn) +
Δt2

2
∂2u
∂t2

(x, tn) +
Δt3

6
∂3u
∂t3

(x, tn)

+O(Δt4). (12)
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Then, from (3), we can write

∂2u
∂t2

= −V
∂2u
∂t∂x

+ D
∂

∂t

(
∇αβu

)
+
∂S
∂t
, (13)

∂2u
∂x∂t

= −V
∂2u
∂x2
+ D
∂

∂x

(
∇αβu

)
+
∂S
∂x
, (14)

∇αβ
(
∂u
∂t

)
= −V∇αβ

(
∂u
∂x

)
+ D∇αβ (∇αβu) + ∇αβS . (15)

Let us assume that
∂

∂t

(
∇αβu

)
= ∇αβ

(
∂u
∂t

)
.

It can be noted that this equality holds, if we assume ∂
∂t u(·, t) ∈ AC(2)(IR) (see Remark 2). Therefore, from (13)–(15),

we get

∂2u
∂t2

= V2 ∂
2u
∂x2
− VD

∂

∂x

(
∇αβu

)
− V
∂S
∂x
− VD∇αβ

(
∂u
∂x

)
+ D2∇αβ (∇αβu)

+D∇αβS +
∂S
∂t
. (16)

From Proposition 1 and Proposition 2 and since we assume homogeneous boundary conditions, we obtain

∇αβ
(
∂u
∂x

(x, t)

)
= ∇α+1

β u(x, t), (17)

∂

∂x

(
∇αβu(x, t)

)
= ∇α+1

β u(x, t), (18)

where

∇α+1
β u =

1
2

(1 + β)
∂α+1u
∂xα+1

− 1
2

(1 − β) ∂
α+1u

∂(−x)α+1
, (19)

and hence from (16)–(19) we obtain

∂2u
∂t2
= V2 ∂

2u
∂x2
− 2VD∇α+1

β u + D2∇αβ (∇αβu) + D∇αβS +
∂S
∂t
− V
∂S
∂x
. (20)

From (20), we have

∂3u
∂t3

= V2 ∂

∂t

(
∂2u
∂x2

)
− 2VD

∂

∂t

(
∇α+1
β u

)
+ D2 ∂

∂t

(
∇αβ (∇αβu)

)

+D∇αβ
(
∂S
∂t

)
+
∂2S
∂t2
− V
∂2S
∂t∂x
. (21)

Note that, from (3), we can write

∂

∂t

(
∂2u
∂x2

)
= −V

∂3u
∂x3
+ D∇αβ

(
∂2u
∂x2

)
+
∂2S
∂x2
. (22)

Henceforth, inserting (22) in (21) we obtain

∂3u
∂t3

= −V3 ∂
3u
∂x3
+ V2D∇αβ

(
∂2u
∂x2

)
+ V2 ∂

2S
∂x2
− 2VD

∂

∂t

(
∇α+1
β u

)
+ D2 ∂

∂t

(
∇αβ (∇αβu)

)

+D∇αβ
(
∂S
∂t

)
+
∂2S
∂t2
− V
∂2S
∂t∂x
. (23)
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Next, we derive the finite-difference approximations, by dropping higher-spatial-derivative terms from (20) and (23),
that is,

∂2u
∂t2

≈ V2 ∂
2u
∂x2
− 2VD∇α+1

β u + D∇αβS +
∂S
∂t
− V
∂S
∂x
, (24)

∂3u
∂t3

≈ −V3 ∂
3u
∂x3
+ D∇αβ

(
∂S
∂t

)
+
∂2S
∂t2
− V
∂2S
∂t∂x

+ V2 ∂
2S
∂x2
, (25)

Inserting (3), (24) and (25) into (12) gives,

u(x, tn+1) ≈ u(x, tn) + Δt

(
−V
∂u
∂x
+ D∇αβu

)
(x, tn) +

1
2
Δt2

(
V2 ∂

2u
∂x2
− 2VD∇α+1

β u

)
(x, tn)

+
1
6
Δt3

(
−V3 ∂

3u
∂x3

)
(x, tn) + ΔtS (x, tn) +

Δt2

2

(
D∇αβS +

∂S
∂t
− V
∂S
∂x

)
(x, tn)

+
Δt3

6

(
D∇αβ

(
∂S
∂t

)
+
∂2S
∂t2
− V
∂2S
∂t∂x

+ V2 ∂
2S
∂x2

)
(x, tn). (26)

2.2. Spatial discretisation

To derive a finite difference scheme we suppose there are approximations Un := {Un
j } to the values u(x j, tn) at the

mesh points
x j = jΔx, j ∈ ZZ and tn = nΔt, n ≥ 0,

where Δx denotes the uniform space step and Δt the uniform time step. Let

ν =
VΔt
Δx

and μα =
DΔt
Δxα
.

The quantity ν is called the Courant (or CFL) number and μα is associated with the diffusion coefficient.
Spatial discretization about a grid point j can be accomplished by first fitting a quadratic across grid points j − 1,

j and j + 1, and then integrating to obtain the average value of u within the jth mesh cell. This average value is
determined at time levels n and n + 1, thus yielding un and un+1. The difference (un+1 − un) becomes

u(x, tn+1) − u(x, tn) ≈ Un+1
j − Un

j +
1

24
[(Un+1

j+1 − 2Un+1
j + Un+1

j−1 )

−(Un
j+1 − 2Un

j + Un
j−1)]. (27)

The last two terms of (27) can be interpreted as

1
24
ΔtΔx2 ∂

2

∂x2

(
∂u
∂t

)
≈ − 1

24
VΔtΔx2 ∂

3u
∂x3

(28)

from (3). Hence, taking in consideration (28) we use (27) to approximate the term u(x, tn+1) − u(x, tn) appearing in
(26).

We now describe how we approximate the spatial derivatives appearing in (26) and (28) to finally obtain the
numerical method. Let us define the difference operators

Δ0Un
j =

1
2

(Un
j+1 − Un

j−1), δ2Un
j = Un

j+1 − 2Un
j + Un

j−1,

δ2Δ−Un
j = Un

j+1 − 3Un
j + 3Un

j−1 − Un
j−2. (29)

A common alternative used to avoid the shortcomings of discretizing the spatial first derivative with upwinding
differencing and central differencing is the use of the discretization presented in [16] involved in the derivation of the
QUICKEST scheme. The interpolation formula for positive velocity is

∂u
∂x
≈
Δ0Un

j

Δx
− 1

8

δ2Δ−Un
j

Δx
. (30)
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Hence, we discretize the spatial first order derivative in (26) in this manner.
We denote the fractional difference operators by δαβu(x j, tn) and δα+1

β u(x j, tn) and such that,

Δαβu(x j, tn) ≈
δαβu(x j, tn)

Δxα
Δα+1
β u(x j, tn) ≈

δα+1
β u(x j, tn)

Δxα+1
.

These operators will be defined in detail in the next section.
If in (26) we discretize the spatial first order derivative as (30), the second order derivative with second order

difference operator and the third-order derivative with third-order difference operator, both defined in (29), and the
fractional derivatives with the respective fractional difference operators, to be discussed in the next section, we have
the numerical method

Un+1
j = Un

j − νΔ0Un
j + μαδ

α
βU

n
j +

1
2
ν2δ2Un

j − νμαδα+1
β Un

j

+
1
6

(ν − ν3)δ2Δ−Un
j + ΔtS̃ n

j (x j, tn), (31)

where S̃ n
j = S̃ (x j, tn) and S̃ is given by

S̃ = S +
Δt
2

(
D∇αβS +

∂S
∂t
− V
∂S
∂x

)
+
Δt2

6

(
D∇αβ

(
∂S
∂t

)
+
∂2S
∂t2
− V
∂2S
∂t∂x

+ V2 ∂
2S
∂x2

)
.

2.3. Derivation of the fractional difference operators

In this section we describe how to approximate the fractional operators Δαβu and Δα+1
β u defined by (2) and (19)

respectively. These approximations have been already denoted by δαβu/Δxα and δα+1
β u/Δxα+1 respectively, in the

previous section, to write the numerical method (31).
We begin by deriving the approximation for the operator Δαβu, defined by (2), (4) and (5), which uses the approxi-

mations for the left and right fractional derivatives derived in [27, 28]. It consists of approximating the function inside
the integral by a linear spline in order to obtain a second order approximation for the fractional operator. More details
on this discretization can be seen in [27, 28] and they will be also given in the next section during the discussion on
the truncation error of our numerical method (31). Afterwards, we derive the approximation for the operator Δα+1

β u.
Set

am =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m + 1)3−α − 2m3−α + (m − 1)3−α, m ≥ 1

1, m = 0
(32)

and

qm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
am−1 − 2am + am+1, m ≥ 1
−2a0 + a1, m = 0
a0, m = −1.

(33)

The approximation of the left and right fractional derivatives, defined in (4) and (5) are respectively given by

δαl u(x j, t)

Δxα
,

δαr u(x j, t)

Δxα
,

where the discrete operators are defined by

δαl u(x j, t) =
1

Γ(4 − α)

∞∑
m=−1

qmu(x j−m, t), (34)

δαr u(x j, t) =
1

Γ(4 − α)

∞∑
m=−1

qmu(x j+m, t). (35)
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Hence, we define the discrete operator δαβu, that approximates Δαβu as

δαβu(x j, t) =
1
2

(1 + β)δαl u(x j, t) +
1
2

(1 − β)δαr u(x j, t). (36)

We now turn to the operator ∇α+1
β u, that is, we describe how we approximate this operator. First, note that

∇α+1
β u(x, t) =

∂

∂x

[
∇αβu(x, t)

]
.

Therefore an approximation to the operator ∇α+1
β u(x j, t) can be given by

δα+1
β u(x j, t)

Δxα+1
=

1
Δx

⎛⎜⎜⎜⎜⎝δ
α
βu

n
j

Δxα
−
δαβu

n
j−1

Δxα

⎞⎟⎟⎟⎟⎠ .
Next, we define

δα+1
l un

j = δ
α
l un

j − δαl un
j−1, δα+1

r un
j = δ

α
r un

j − δαr un
j−1,

in order to rewrite the discrete operator as

δα+1
β un

j

Δxα+1
=

1
Δxα+1

[
1
2

(1 + β)δα+1
l un

j +
1
2

(1 − β)δα+1
r un

j

]
.

Note that the discrete operators δα+1
l un

j and δα+1
r un

j are respectively defined by

δα+1
l un

j = δ
α
l un

j − δαl un
j−1 =

1
Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣q−1un
j+1 +

∞∑
m=0

(qm − qm−1)un
j−m

⎤⎥⎥⎥⎥⎥⎦ (37)

and

δα+1
r un

j = δ
α
r un

j − δαr un
j−1 = −

1
Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣q−1un
j−2 +

∞∑
m=0

(qm − qm−1)un
j−1+m

⎤⎥⎥⎥⎥⎥⎦ . (38)

Moreover, the numerical method (31), with α = 2 and without the source term, is the well known QUICKEST scheme
presented in [16].

3. Global error

In this section we discuss theoretically the global error of the numerical method (31). The method can be written
in the form

Un+1
j = PUn

j , (39)

with P an operator defined by P =
∞∑

k=−∞
ckSk, where the coefficients ck depend on ν and μα and S represents the

forward and backward shift operators, that is, SkUn
j = Un

j+k.
For the exact solution, and denoting u( jΔx, nΔt) by un

j , we have

un+1
j = Pun

j + ΔtT n
j , (40)

where T n
j is the local truncation error.

Therefore, the global error defined by En
j = un

j − Un
j is given by

En+1
j = PEn

j + ΔtT n
j . (41)

Hence, a global bound for the error depends on the truncation error and the boundedness of the operator P, which will
be discussed in the next subsections. We begin by analyzing the truncation error and then discuss the boundedness of
the operator, which is related to the stability analysis.
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3.1. Leading terms of the truncation error
To derive the truncation error, we consider without loss of generality, the source term zero and use techniques

similar to the modified equation [30]. To obtain the results in this section, we assume u is a function with sufficiently
many continuous derivatives in time and space. Since our domain is the real line, it is enough to assume the function u
and its spatial derivatives vanish at infinity in an appropriate manner, to allow the interchange of differential operators,
fractional and integer. We start to present results regarding the leading terms of the truncation error of the fractional
difference operators.

Lemma 3. Suppose u is a function with sufficiently many continuous spatial derivatives that vanish at infinity in an
appropriate manner. Then un

j = u(x j, tn) satisfies

δαβu
n
j

Δxα
= ∇αβun

j + ε
α(x j) and

δα+1
β un

j

Δxα+1
= ∇α+1

β un
j + ε

α+1(x j), (42)

where εα(x j) and εα+1(x j) are local truncation errors approximately given by

εα(x j) ≈
(
Δx2

12
+C2Δx2

)
∇α+2
β un

j +C3Δx3∇α+3
β un

j + O(Δx4) (43)

εα+1(x j) ≈ −Δx
2
∇α+2
β un

j +

(
Δx2

6
−C2Δx2

)
∇α+3
β un

j + O(Δx3), (44)

for Ci, i = 2, 3 constants.

Proof. During this proof we omit the variable t, for the sake of clarity, and for an arbitrary and fixed tn we denote
u(x j) := u(x j, tn). We derive only the truncation error to the left fractional derivative since for the right derivative it
can be obtained in a similar manner. The left derivative can be written as

∂αu
∂xα

(x j) =
∂2

∂x2
I2−αu(x j),

where

I2−αu(x j) =
1

Γ(2 − α)

∫ x j

−∞
u(ξ)(x j − ξ)1−αdξ.

The approximation under consideration was obtained first by doing a central approximation of the second order
derivative, assuming I2−αu is sufficiently smooth. Therefore, we have

∂αu
∂xα

(x j) =
1
Δx2

[
I2−αu(x j+1) − 2I2−αu(x j) + I2−αu(x j−1)

]
+ εa(x j),

where

εa(x j) = −Δx2

12
∂4

∂x4
I2−αu(x j) + O(Δx4).

Then, I2−αu(x j) is approximated by Ĩ2−αu(x j), obtained by doing a linear spline approximation of u(ξ) (see [27] for
more details). We get

∂αu
∂xα

(x j) =
1
Δx2

[
Ĩ2−αu(x j+1) − 2Ĩ2−αu(x j) + Ĩ2−αu(x j−1) + εs(x j)

]
+ εa(x j), (45)

where εs(x j) is the error associated with the spline approximation. We have

εs(x j) =
1

Γ(2 − α)

⎧⎪⎪⎨⎪⎪⎩
j−1∑

k=−∞

∫ xk

xk−1

(u(ξ) − s j−1(ξ))(x j−1 − ξ)1−αdξ

−2
j∑

k=−∞

∫ xk

xk−1

(u(ξ) − s j(ξ))(x j − ξ)1−αdξ

+

j+1∑
k=−∞

∫ xk

xk−1

(u(ξ) − s j+1(ξ))(x j+1 − ξ)1−αdξ

⎫⎪⎪⎬⎪⎪⎭
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where s j(ξ) denotes the spline that interpolates xk = kΔx, k ≤ j. For xk−1 ≤ x ≤ xk

u(ξ) − s(ξ) = −1
2

u′′(ξ)lk,2(ξ) − 1
6

u′′′(ξ)lk,3(ξ) − . . . ,
where

lk,r(ξ) =
xk − ξ
Δx

(xk − ξ − Δx)r − ξ − xk−1

Δx
(xk − ξ)r.

We obtain

εs(x j) = −
3∑

r=2

1
r!
εr(x j) + . . . , (46)

with

εr(x j) =
1

Γ(2 − α)

⎧⎪⎪⎨⎪⎪⎩
j−1∑

k=−∞

∫ xk

xk−1

lk,r(ξ)u
(r)(ξ)(x j−1 − ξ)1−α

−2
j∑

k=−∞

∫ xk

xk−1

lk,r(ξ)u
(r)(ξ)(x j − ξ)1−αdξ

+

j+1∑
k=−∞

∫ xk

xk−1

lk,r(ξ)u
(r)(ξ)(x j+1 − ξ)1−α

⎫⎪⎪⎬⎪⎪⎭ .
By changing variables, for r = 2, 3, we get

εr(x j) =
1

Γ(2 − α)

j∑
k=−∞

∫ xk

xk−1

lk,r(ξ)
[
u(r)(ξ + Δx) − 2u(r)(ξ) + u(r)(ξ − Δx)

]
(x j − ξ)1−αdξ.

Now, since lk,r(ξ) = O(Δxr), for xk−1 ≤ ξ ≤ xk, and by Taylor expansions we have

u(r)(ξ + Δx) − 2u(r)(ξ) + u(r)(ξ − Δx) = Δx2u(r+2)(ξ) +
Δx4

12
u(r+3)(ξ) + O(Δx6),

we can obtain an estimation for the error given by, for r = 2, 3,

εr(x j) ≈ CrΔxr 1
Γ(2 − α)

j∑
k=−∞

∫ xk

xk−1

Δx2u(r+2)(ξ)(x j − ξ)1−αdξ + . . .

= CrΔxr+2 1
Γ(2 − α)

∫ x j

−∞
u(r+2)(ξ)(x j − ξ)1−αdξ + . . .

= CrΔxr+2I2−α ∂r+2u
∂xr+2

+ . . . . (47)

Note that because we are assuming u has sufficiently many continuous derivatives and that they vanish in an appropri-
ate manner at infinity, we have [21]

∂α+ru
∂xα+r

(x j) = I2−α ∂r+2

∂xr+2
(x j) =

∂r+2

∂xr+2
I2−αu(x j), r = 2, 3.

Then

εr(x j) ≈ CrΔxr+2 ∂
α+ru
∂xα+r

(x j) + O(Δx4+r). (48)

Therefore, from (46) and (48) we get, for the error εs(x j)/Δx2 appearing in (45),

1
Δx2
εs(x j) ≈ −1

2
C2
Δx4

Δx2

∂α+2u
∂xα+2

(x j) − 1
6

C3
Δx5

Δx2

∂α+3u
∂xα+3

(x j) + . . .

= −1
2

C2Δx2 ∂
α+2u
∂xα+2

(x j) − 1
6

C3Δx3 ∂
α+3u
∂xα+3

(x j) + O(Δx4).
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Now let us turn to the fractional operator of order α + 1. The operator ∇α+1
β u is first given by

∇α+1
β u(x j) =

1
Δx

[
∇αβu(x j) − ∇αβu(x j−1)

]
+ εb(x j),

where

εb(x j) =
Δx
2
∂2

∂x2
∇αβu(x j) − Δx2

6
∂3

∂x3
∇αβu(x j) + O(Δx3).

By Proposition 1 and Proposition 2 and under the lemma assumptions, we can write

εb(x j) =
Δx
2
∇α+2
β u(x j) − Δx2

6
∇α+3
β u(x j) + O(Δx3), (49)

where

∇α+2
β u(x j) =

1
2

(1 + β)
∂α+2u
∂xα+2

(x j) +
1
2

(1 − β) ∂
α+2u

∂(−x)α+2
(x j) (50)

∇α+3
β u(x j) =

1
2

(1 + β)
∂α+3u
∂xα+3

(x j) − 1
2

(1 − β) ∂
α+3u

∂(−x)α+3
(x j). (51)

Secondly, the operator ∇αβu is approximated as previously and therefore

∇α+1
β u(x j) =

1
Δx

[
δαβu(x j) + ε

α(x j) − δαβu(x j−1) − εα(x j−1)
]
+ εb(x j)

= δα+1
β u(x j) +

1
Δx

[
εα(x j) − εα(x j−1)

]
+ εb(x j).

Then, it follows

1
Δx

[
εα(x j) − εα(x j−1)

]
=

1
Δx

[(
Δx2

12
+C2Δx2

)
∇α+2
β u(x j) +C3Δx3∇α+3

β u(x j)

−
(
Δx2

12
+C2Δx2

)
∇α+2
β u(x j−1) −C3Δx3∇α+3

β u(x j−1)

]

=

(
Δx2

12
+C2Δx2

)
∂

∂x
∇α+2
β u(x j) + O(Δx3)

=

(
Δx2

12
+C2Δx2

)
∇α+3
β u(x j) + O(Δx3).

From this equality and (49) we finally obtain (44). �
In the next result, we present the truncation error for the numerical method (31) obtained through the modified

equation, which consists of substituting the exact solution in the numerical method and then after Taylor expansions
and some additional calculations we get the local truncation error.

Theorem 4. For the numerical method (31), the local truncation error at un(x j) = u(x j, tn), appearing in the global
error (41), is given by

ΔtT n
j =

Δxα+2

12

(
−μα − 12C2μα − 6νμα + 6ν2μα

)
∇α+2
β un(x j)

+
Δx4

24

(
2ν − 2ν3 − ν2 + ν4

) ∂4un

∂x4
(x j) +

Δx2α

2
μ2
α∇αβ (∇αβun)(x j)

+
Δxα+3

6

(
−6C3μα − 12C2νμα − 3ν2μα + 2ν3μα

)
∇α+3
β un(x j) + . . . , (52)

for μα = DΔt/Δxα and ν = VΔt/Δx.
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Proof. Substituting the exact solution in the numerical method, we obtain

un+1
j − un

j

Δt
+

VΔt
2Δx

(un
j+1 − un

j−1) − 1
2

V2 Δt
Δx2

(un
j+1 − 2un

j + un
j−1) − D

δαβu
n
j

Δxα

+VDΔt
δα+1
β un

j

Δxα+1
− 1

6

(
V
Δx
− V3 Δt2

Δx3

)
(un

j+1 − 3un
j + 3un

j−1 − un
j−2) = 0.

After Taylor expansions, the application of the results of Lemma 3 and some additional small simplifications, we can
write

∂un
j

∂t
+
Δt
2

∂2un
j

∂t2
+
Δt2

6

∂3un
j

∂t3
+
Δt3

24

∂4un
j

∂t4
+ O(Δt4)

+
V

2Δx

⎛⎜⎜⎜⎜⎜⎝2Δx
∂un

j

∂x
+

1
3
Δx3
∂3un

j

∂x3

⎞⎟⎟⎟⎟⎟⎠ + O(Δx4)

−V2Δt
2Δx2

⎛⎜⎜⎜⎜⎜⎝Δx2
∂2un

j

∂x2
+
Δx4

12

∂4un
j

∂x4

⎞⎟⎟⎟⎟⎟⎠ + O(Δx4Δt)

−D∇αβun
j − D

(
Δx2

12
+C2Δx2

)
∇α+2
β un

j − DC3Δx3∇α+3
β un

j + O(Δx4)

+VDΔt∇α+1
β un

j − VDΔt
Δx
2
∇α+2
β un

j + VDΔt

(
Δx2

6
−C2Δx2

)
∇α+3
β un

j + O(ΔtΔx3)

−1
6

(
V
Δx
− V3 Δt2

Δx3

) ⎛⎜⎜⎜⎜⎜⎝Δx3
∂3un

j

∂x3
− Δx4

2

∂4un
j

∂x4

⎞⎟⎟⎟⎟⎟⎠ + O(Δt2Δx2) + O(Δx4) = 0.

Therefore, the modified equation is given by

∂un
j

∂t
+ V
∂un

j

∂x
− D∇αβun

j +
Δt
2

∂2un
j

∂t2
− V2Δt

2

∂2un
j

∂x2
+ VDΔt∇α+1

β un
j

+
Δt2

6

∂3un
j

∂t3
+

1
6

V3Δt2
∂3un

j

∂x3
− D

(
Δx2

12
+C2Δx2 + VΔt

Δx
2

)
∇α+2
β un

j

+
Δt3

24

∂4un
j

∂t4
+

(
VΔx3

12
− V3Δt2Δx

12
− V2ΔtΔx2

24

)
∂4un

j

∂x4

−DC3Δx3∇α+3
β un

j + VDΔt

(
Δx2

6
−C2Δx2

)
∇α+3
β un

j +
∑

p+q=4

O(ΔxpΔtq) = 0.

The modified equation presents an expression for the truncation error. However this is not the desired form since we
do not want the truncation error in terms of the derivatives in time. Therefore, similarly to what is done in [30], we use
the modified equation itself to eliminate the time derivatives. After some extensive and direct calculations we obtain

∂un
j

∂t
+ V
∂un

j

∂x
− D∇αβun

j + T n
j = 0, (53)

where the modification T n
j satisfies

T n
j =

1
12

(
−DΔx2 − 12C2DΔx2 − 6VDΔtΔx + 6V2DΔt2Δx

)
∇α+2
β un

j

+
1

24

(
2VΔx3 − 2V3ΔxΔt2 − V2ΔtΔx2 + V4Δt3

) ∂4u
∂x4

un
j +

1
2

D2Δt∇αβ (∇αβun
j )

+
1
6

(
−6DC3Δx3 − 12C2VDΔtΔx2 − 3V2DΔt2Δx + 2V3DΔt3

)
∇α+3
β un

j

+ . . . (54)
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From the previous equality we can write the expression for ΔtT n
j in terms of μα and ν,

ΔtT n
j =

Δxα+2

12

(
−μα − 12C2μα − 6νμα + 6ν2μα

)
∇α+2
β un

j

+
Δx4

24

(
2ν − 2ν3 − ν2 + ν4

) ∂4u
∂x4

un
j +
Δx2α

2
μ2
α∇αβ (∇αβun

j )

+
Δxα+3

6

(
−6C3μα − 12C2νμα − 3ν2μα + 2ν3μα

)
∇α+3
β un

j + . . . . (55)

�
Note that, the leading terms of the truncation error are given by

ΔtT n
j =

1
12
Δxα+2(6ν2μα − 6νμα − μα − 12C2μα)∇α+2

β un(x j)

+
1
24
Δx4ν(2 − ν)(1 − ν2)

∂4un

∂x4
(x j) +

1
2
Δx2αμ2

α∇αβ (∇αβun)(x j) + . . . . (56)

Observing the truncation error, over a finite interval of time, these estimates tell us that the order of the truncation
error are sensitive to the values of ν and μα considered. The values of ν and μα vary depending on how we choose Δt
depending on Δx. Additionally, for explicit schemes, the time step and the space step need to be related to each other
as we refine the mesh, not only for accuracy purposes but also in order to have convergence of the numerical method,
since we need to be inside the stability region. In general, we expect the numerical method to behave between O(Δx2)
and O(Δx3). For advection-dominated problems we expect to be closer to O(Δx3). This follows from observing that
as D goes to zero, μα goes to zero. Therefore, the truncation error is dominated by the second term on the right hand
side of (56). From this term and for Δt = O(Δx) we can easily see that we get a behavior closer to O(Δx3).

We also note that for α = 2, C2 = 0 and the truncation error (56) matches the one reported for the classical
QUICKEST in works such as [18, 25] and given by

ΔtT n
j =

1
24
Δx4(12μ2 − 2μ − 12μν(1 − ν) + ν(2 − ν)(1 − ν2))

∂4un

∂x4
(x j) + . . . , (57)

for μ = DΔt/Δx2.

3.2. Stability analysis

For a set of discrete values, the global error (41) can be written in the matricial form

En+1 = PEn + ΔtT n, (58)

where P is the matrix containing the coefficients of the difference formulas and T n the truncation error. By applying
this equality recursively, we obtain

En+1 = Pn+1E0 + Δt
n∑

k=0

PkT n−k. (59)

Then a global error bound, for any chosen norm || · ||, is given by

||En+1|| ≤ ||Pn+1||||E0|| + Δt
n∑

k=0

||Pk ||||T n−k ||, (60)

that is,
||En+1|| ≤ ||Pn+1||||E0|| + (n + 1)Δt max

0≤k≤n
||Pk ||||T n−k ||. (61)

If ||P|| is a matrix such that ||Pn|| ≤ K, for 0 < nΔt < T0, then we have practical stability and the error bound is given
by

||En|| ≤ K||E0|| + nΔtK max
0≤k≤n−1

||T n−k ||. (62)
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In order to derive stability conditions for the finite difference schemes, we apply the von Neumann analysis or
Fourier analysis. Note that the numerical method is von Neumann stable if and only if the operator P is bounded in
the l2 norm [24]. Of course one of the conditions for which the method becomes unstable is if the spectrum of P is
larger than one. For the special cases when P is a normal matrix, both conditions are equivalent.

Fourier analysis assumes that we have a solution defined in the whole real line. If un
j is the exact solution u(x j, tn),

let Un
j be a perturbation of un

j . The perturbation error

en
j = Un

j − un
j (63)

will be propagated forward in time according to the equation

en+1
j = en

j − νΔ0en
j + μαδ

α
βe

n
j +

1
2
ν2δ2en

j − νμαδα+1
β en

j +
1
6

(ν − ν3)δ2Δ−en
j . (64)

The von Neumann analysis assumes the error en
j will be decomposed into a Fourier series with terms given by

κnpeiξp( jΔx), where κnp is the amplitude of the p-th harmonic. The parameter θ = ξpΔx is called the phase angle and
covers the domain [−π, π].

Considering a single mode κnei jθ, its time evolution is determined by the same numerical scheme as the error en
j .

Hence inserting a representation of this form into a numerical scheme we obtain stability conditions. The stability
conditions will be satisfied if the amplification factor κ does not grow in time, that is, if we have |κ(θ)| ≤ 1, for all θ.

Theorem 5. A necessary condition for stability of the numerical method (31) is given by

0 ≤ ν2 + 2
3
ν(1 − ν2) + sα(1 − 2ν) ≤ 1. (65)

for

sα = − μα
2Γ(4 − α)

∞∑
m=−1

(−1)mqm.

Proof. We denote by κβ(θ; ν, μα) the amplification factor since it will depend on μα and β. If we insert κnβe
i jθ in

(64) we obtain the equality for the amplification factor

κβ(θ; ν, μα) = 1 − ν
2

(eiθ − e−iθ)

+
μα

Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣1
2

(1 + β)
∞∑

m=−1

qme−imθ +
1
2

(1 − β)
∞∑

m=−1

qmeimθ

⎤⎥⎥⎥⎥⎥⎦
+

1
2
ν2(eiθ − 2 + e−iθ) +

1
6

(ν − ν3)(eiθ − 3 + 3e−iθ − e−i2θ)

− νμα
Γ(4 − α)

⎧⎪⎪⎨⎪⎪⎩
1
2

(1 + β)

⎡⎢⎢⎢⎢⎢⎣q−1eiθ +

∞∑
m=0

(qm − qm−1)e−imθ

⎤⎥⎥⎥⎥⎥⎦

−1
2

(1 − β)
⎡⎢⎢⎢⎢⎢⎣q−1e−i2θ +

∞∑
m=0

(qm − qm−1)ei(m−1)θ

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (66)

that is,

κβ(θ; ν, μα) = 1 − iν sin θ +
μα

Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=−1

qm cos(mθ) − iβ
∞∑

m=−1

qm sin(mθ)

⎤⎥⎥⎥⎥⎥⎦
+ν2(cos θ − 1) +

1
6

(ν − ν3)(4 cos θ − 3 − 2i sin(θ) − cos(2θ) + i sin(2θ))

−1
2
νμα
Γ(4 − α)

⎧⎪⎪⎨⎪⎪⎩q−1(eiθ − e−i2θ) +
∞∑

m=0

(qm − qm−1)(e−imθ − e−i(m−1)θ)

+β

⎛⎜⎜⎜⎜⎜⎝q−1(eiθ + e−i2θ) +
∞∑

m=0

(qm − qm−1)(e−imθ + e−i(m−1)θ)

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .
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The amplification factor will not depend on β for θ = π. For θ = π we have

κβ(π; ν, μα) = 1 +
μα

Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=−1

qm(−1)m

⎤⎥⎥⎥⎥⎥⎦ − 2ν2 − 4
3

(ν − ν3)

− νμα
Γ(4 − α)

⎧⎪⎪⎨⎪⎪⎩−q−1 +

∞∑
m=0

(qm − qm−1)(−1)m

⎫⎪⎪⎬⎪⎪⎭ .
We can write,

κβ(π; ν, μα) = 1 +
μα

Γ(4 − α)

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=−1

(−1)mqm

⎤⎥⎥⎥⎥⎥⎦ − 2ν2 − 4
3

(ν − ν3)

−2
νμα
Γ(4 − α)

∞∑
m=−1

(−1)mqm.

Set

sα = − μα
2Γ(4 − α)

∞∑
m=−1

(−1)mqm.

Note that sα ≥ 0. Hence,

κβ(π; ν, μα) = 1 − 2sα(1 − 2ν) − 2ν2 − 4
3
ν(1 − ν2).

For κβ(π; ν, μα)| ≤ 1 we have

−1 ≤ 1 − 2sα(1 − 2ν) − 2ν2 − 4
3
ν(1 − ν2) ≤ 1

that is,

0 ≤ ν2 + 2
3
ν(1 − ν2) + sα(1 − 2ν) ≤ 1

and we have (65). After direct calculations we can also rewrite the previous inequalities as

− 2ν
3 − 2ν

≤ ν2 + 3sα
1 − 2ν
3 − 2ν

≤ 1. �

We have obtained analytical necessary stability conditions, for all β and α. To obtain necessary and sufficient
stability conditions, for all values of β and α, we determine computationally the values ν and μα, for which the
amplification factor verifies ∣∣∣κβ(θ; ν, μα)∣∣∣ ≤ 1 for all θ ∈ [−π, π]. (67)

We show the results for different values of β and α.
We start to plot in Figure 1, for some values of α, the analytical necessary stability condition (65) proved in The-

orem 5. Note that this condition is necessary for all values of β. In Figure 2 we show the necessary and sufficient
stability conditions for β = 0 and different values of α by computing numerically condition (67), where the amplifica-
tion factor κβ(θ; ν, μα) is given by (66). Note that for this case, the analytical necessary stability condition (65) plotted
in Figure 1 is very sharp when compared with the necessary and sufficient conditions displayed in Figure 2.

Similarly in Figure 3, we present the necessary and sufficient conditions determined numerically for the case when
β = 1, which is the other case that appears very frequently in many applications, where the model only considers the
left fractional derivative.

In Figure 4 we present the case for β = −1. Comparing with the case β = 1 we see the two regions, represented in
Figure 3 and Figure 4 respectively, have some kind of antisymmetry.

We end this section by showing what happens in two more cases, β = 0.5 and β = −0.5 presented in Figure 5 and
6 respectively. We also observe the two stability regions have the same type of asymmetric relation that we have seen
between the cases β = 1 and β = −1.
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Figure 1: Theoretical stability condition (65); (a) Contour plots for α = 1.1, 1.2, 1.3, 1.4. (b) Contour plots for α = 1.5, 1.6, 1.7, 1.8, 1.9.
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The results in Figures 2–6 show that the regions for α larger than 1.4 are similar in shape and the region increases
as α decreases. For smaller values of α the stability regions have more irregular shapes. We see the stability regions
are quite wide in general for all values of β and α. A region for which the numerical method is in general stable for
all values of β and α is the squared region for which 0 ≤ ν ≤ 1 and 0 ≤ μα ≤ 1/2.

4. Numerical results

In this section we present some numerical tests to show the convergence order of the numerical method by con-
sidering the l2 error, for an instant of time t = nΔt, given by

||u − U ||2 =
⎛⎜⎜⎜⎜⎜⎜⎝Δx

∑
j

∣∣∣u(x j, t) − Un
j

∣∣∣2
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

. (68)

We also present the l∞ error given by
||u − U ||∞ = max

j

∣∣∣u(x j, t) − Un
j

∣∣∣ . (69)

A large number of applications consider the model problem for β = 0 and β = 1 and therefore we give special attention
to these cases. We will present examples dominated by advection.

For the first example we assume β = 1 in equation (1), that is, we have the equation

∂u
∂t
+ V
∂u
∂x
= D
∂αu
∂xα
+ S (x, t),

in the domain 0 ≤ x ≤ 1. We assume the problem has initial condition u(x, 0) = x4 and boundary conditions u(0, t) = 0,
u(1, t) = e−t. Let

S (x, t) = e−t x3

(
4V − x − 24D

Γ(5 − α)
x1−α

)
.

The exact solution is given by u(x, t) = e−t x4.
For this problem, since we only include the left fractional derivative, the numerical method (31) can be written as

Un+1
j = Un

j − νΔ0Un
j + μαδ

α
l Un

j +
1
2
ν2δ2Un

j − νμαδα+1
l Un

j

+
1
6

(ν − ν3)δ2Δ−Un
j + ΔtS̃ n

j , (70)

with the operator δαl and δα+1
l defined respectively by (34) and (37).

Δx α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
l2 0.05 5.4701e-5 5.4215e-5 5.3737e-5 5.3480e-5 5.4051e-5

0.005 3.8768e-8 3.3831e-8 2.8445e-8 2.4457e-8 3.3899e-8
Rate 3.14 3.20 3.27 3.33 3.20

l∞ 0.05 1.2712e-4 1.2583e-4 1.2438e-4 1.2295e-4 1.2231e-4
0.005 2.1012e-7 1.9520e-7 1.7163e-7 1.2442e-7 5.9744e-8
Rate 2.78 2.80 2.86 2.99 3.31

Table 1: l2 error (68) and l∞ error (69) at t = 1, for ν = 0.001 and V = 5 and D = 0.01.

In Table 1 and Table 2 we present the l2 error, for the instant of time t = 1, which shows the numerical method has
between second and third order convergence as predicted by the error analysis presented in Section 2.4. We can also
see that the order of convergence is sensitive to the variations of the parameters ν and μα involved in the numerical
method. The l∞ error is also shown for additional information.
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Δx α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
l2 0.05 5.2873e-5 5.0118e-5 4.7408e-5 4.6029e-5 4.9564e-5

0.005 5.8782e-8 8.4323e-7 1.1249e-7 1.3097e-7 8.6496e-8
Rate 2.95 2.77 2.62 2.54 2.75

l∞ 0.05 1.2392e-4 1.1654e-4 1.0856e-4 1.0179e-4 1.0140e-4
0.005 2.4250e-7 2.6386e-7 2.5518e-7 4.1236e-7 6.0782e-7
Rate 2.70 2.64 2.62 2.39 2.22

Table 2: l2 error (68) and l∞ error (69) at t = 1, for ν = 0.001 and V = 2 and D = 0.02.

The results shown in Table 1 and Table 2 are obtained by considering the Courant number ν = VΔt/Δx constant
and therefore, the time-step is choosen to be Δt = O(Δx). Since the stability regions are defined by the values of ν and
μα, we have choosen a value of ν for which we can run the experiments for different values of α, V and D and still be
inside the stability region.

The second example considers equation (1) for β = 0, that is, we have the equation

∂u
∂t
+ V
∂u
∂x
=

D
2

(
∂αu
∂xα
+
∂αu
∂(−x)α

)
+ S (x, t),

in the domain 0 ≤ x ≤ 2. We assume the initial condition is u(x, 0) = x4(2 − x)4 and the boundary conditions are
u(0, t) = 0, u(2, t) = 0. Let

S (x, t) = e−t
[
−x4(2 − x)4 + 8V x3(2 − x)3(1 − x)

−D
2

4∑
p=0

(−1)p24−p

(
4
p

)
Γ(p + 5)
Γ(p + 5 − α)

(xp+4−α + (2 − x)p+4−α)

⎤⎥⎥⎥⎥⎥⎥⎦ .

The exact solution is given by u(x, t) = e−t x4(2 − x)4.
For this problem the numerical method includes the left and right fractional derivatives and can be written as

Un+1
j = Un

j − νΔ0Un
j +

1
2
μα(δ

α
l Un

j + δ
α
r Un

j ) +
1
2
ν2δ2Un

j −
1
2
νμα(δ

α+1
l Un

j + δ
α+1
r Un

j )

+
1
6

(ν − ν3)δ2Δ−Un
j + ΔtS̃ n

j , (71)

where the operator δαl , δαr and δα+1
l , δα+1

r are defined respectively by (34), (35) and (37), (38).

Δx α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
l2 0.05 1.1306e-4 1.1285e-4 1.1263e-4 1.1250e-4 1.1284e-4

0.005 1.3253e-7 1.7211e-7 2.1050e-7 2.3131e-7 2.4336e-7
Rate 2.93 2.81 2.72 2.68 2.66

l∞ 0.05 1.4802e-4 1.4772e-4 1.4767e-4 1.4833e-4 1.5047e-4
0.005 1.7179e-7 2.2956e-7 2.7859e-7 3.0100e-7 2.8221e-7
Rate 2.93 2.80 2.72 2.69 2.72

Table 3: l2 error (68) and l∞ error (69) at t = 1, for ν = 0.001 and V = 2, D = 0.001.

In Table 3, Table 4 and Table 5 we present the error values for different values of V and D. In Table 3 we show
the results for V = 2 and D = 0.001 and in Table 4 for V = 0.2 and D = 0.0001, where V is smaller than the one
considered in Table 3, although we have also considered a smaller diffusion term. In Table 5 we present the results
for V = 5, D = 0.0001. In this case the advection term is even more dominant. Note also that the error for different
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Δx α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
l2 0.05 1.8897e-4 1.8850e-4 1.8785e-4 1.8719e-4 1.8705e-4

0.005 2.1113e-7 2.4432e-7 2.9395e-7 3.5927e-7 4.4004e-7
Rate 2.95 2.88 2.80 2.71 2.62

l∞ 0.05 2.0311e-4 2.0256e-4 2.0182e-4 2.0107e-4 2.0093e-4
0.005 2.5147e-7 3.0585e-7 3.6768e-7 4.3841e-7 5.2444e-7
Rate 2.90 2.82 2.73 2.66 2.58

Table 4: l2 error (68) and l∞ error (69) at t = 1, for ν = 0.001 and V = 0.2 D = 0.0001.

Δx α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2
l2 0.05 1.1100e-4 1.1099e-4 1.1098e-4 1.1097e-4 1.1097e-4

0.005 1.1208e-7 1.1276e-7 1.1366e-7 1.1477e-7 1.1614e-7
Rate 2.99 2.99 2.98 2.98 2.98

l∞ 0.05 1.2168e-4 1.2167e-4 1.2166e-4 1.2164e-4 1.2163e-4
0.005 1.2243e-7 1.2447e-7 1.2626e-7 1.2727e-7 1.2777e-7
Rate 2.99 2.99 2.98 2.98 2.97

Table 5: l2 error (68) and l∞ error (69) at t = 1, for ν = 0.001 and V = 5 D = 0.0001.

values of α is similar. This is due to the fact that, for this case the parameter D is very small and therefore the value
μα it will be very small compared with values of ν.

The results shown in Table 3, Table 4 and Table 5 are obtained by considering the Courant number ν = VΔt/Δx
constant and therefore the time-step is choosen to be Δt = O(Δx) similarly to what has been done in the previous
example.

We observe that in all the cases, the order of convergence varies between two and three as predicted by the previous
error analysis and it is closer to three when the advection term is more dominant.

5. Final remarks

We have derived an explicit numerical method whose order of convergence varies between two and three, de-
pending on the diffusion parameter μα and the Courant number ν. This result was predicted using a truncation error
analysis and was also corroborated by numerical results. In particular, for advection dominated problems the order
of convergence is expected to be more close to three. The stability region of the numerical method depends on the
values of α and β, although for all values of α and β there is a common stability region. Finally, note that this nu-
merical method, for α = 2, coincides with the popular QUICKEST scheme introduced in [16] for advection diffusion
problems.
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