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BACKGROUND AND PURPOSE: Both CB1 cannabinoid and A2A adenosine receptors 

(CB1Rs and A2ARs) control synaptic transmission at corticostriatal synapses, with great 

therapeutic importance for neurological and psychiatric disorders. A post-synaptic CB1R-A2AR 

interaction has already been unraveled, but the presynaptic A2AR-mediated control of presynaptic 

neuromodulation by CB1Rs remains to be defined. Since the corticostriatal terminals provide the 

major input of the basal ganglia, understanding the interactive nature of converging 

neuromodulation on them will provide us with novel powerful tools to understand the physiology 

of corticostriatal synaptic transmission and interpret changes associated with pathological 

conditions. 

EXPERIMENTAL APPROACH: Here we employ selective presynaptic tools to study the 

putative presynaptic interaction between the two neuromodulator systems. Pharmacological 

manipulation of CB1R and A2AR was carried out in isolated nerve terminals used for flow 

synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release 

measurement, as well as in whole-cell patch-clamp recordings in horizontal corticostriatal slices. 

RESULTS: Flow synaptometry showed that A2AR are extensively co-localized with CB1R-

immunopositive corticostriatal terminals, and A2AR co-immunoprecipitated CB1R in these 

purified terminals. A2AR activation decreased CB1R radioligand binding and decreased the CB1R-

mediated inhibition of high-K
+
-evoked glutamate release in corticostriatal terminals. Accordingly, A
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A2AR activation prevented CB1R-mediated paired-pulse facilitation and attenuated the CB1R-

mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices.  

CONCLUSIONS AND IMPLICATIONS: These results show that presynaptic A2AR 

dampens CB1R-mediated inhibition of corticostriatal terminals. This constitutes a thus far 

unrecognized mechanism to shut-down the potent CB1R-mediated presynaptic inhibition, 

enabling a frequency-dependent enhancement of synaptic efficacy at corticostriatal synapses. 

 

Abbreviations 

3Rs, Replacement, Refinement and Reduction of Animals in Research; A1R(s), A1 adenosine 

receptors; A2AR(s), A2A adenosine receptor(s); ADA, adenosine deaminase; ARRIVE, Animals in 

Research: Reporting In Vivo Experiments; ATP, adenosine triphosphate; BDNF, brain-derived 

neurotrophic factor; CB1R(s), CB1 cannabinoid receptor(s); CCD, charge-coupled device; 

DMSO, dimethylsulfoxide; EDTA, ethylenediaminetetraacetic acid; EPSC(s), excitatory post-

synaptic potential(s); FACS, fluorescence-activated cell sorting; FELASA, Federation for 

Laboratory Animal Science Associations; FGF, fibroblast growth factor; FR%, fractional release 

percent; [
3
H]GABA, tritiated γ-aminobutiric acid; GDNF, glial cell-derived neurotrophic factor; 

GTP, guanosine triphosphate; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 

IgG2A, immunoglobulin G2A; L-DOPA, L-3,4-dihydroxyphenylalanine; MSN(s), medium spiny 

neuron(s); OFA, Oncins France Strain A; PBS, phosphate-buffered saline; PPR, paired-pulse 

ratio; SDS, sodium dodecyl-sulphate; SDS-PAGE, sodium dodecyl sulfate/polyacrylamide gel 

electrophoresis; Tris, tris(hydroxymethyl)aminomethane; Triton-X 100, polyethylene glycol p-

(1,1,3,3-tetramethylbutyl)-phenyl ether; vGlut1, vesicular glutamate transporter 1; A
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INTRODUCTION 

The corticostriatal pathway is a massive projection linking virtually the entire neocortex 

with the striatum – the latter being considered as the major input station of the basal ganglia 

(Goldman-Rakic and Selemon, 1986; Bolam et al., 2000). The principal neurons of the striatum – 

medium spiny neurons (MSNs) – integrate synaptic information from functionally diverse 

cortical regions, to process signals controlling goal-directed behaviors and habits (Graybiel et al., 

1995; Yin and Knowlton, 2006). As a gateway to trigger the recruitment of striatal circuits, 

alterations in the strength of the synaptic connections between the cortex and striatum play a 

critical role in these adaptive behavioral changes (Di Filippo et al., 2009).  

G protein-coupled receptors such as the CB1 cannabinoid receptor (CB1R) are key 

determinants of synaptic efficacy changes in cortico-striatal synapses (Lovinger, 2010). 

Accordingly, the manipulation of the endocannabinoid system has a profound impact on striatal-

dependent behavioral responses (El Manira and Kyriakatos, 2010; Katona and Freund 2012). 

Another major controller of striatal function is the A2A adenosine receptor (A2AR) (Schiffmann et 

al., 2007). These A2ARs are abundantly located in the dendritic spines of MSNs (Svenningsson et 

al., 1999) and are also present presynaptically, controlling glutamate release (Ciruela et al., 2006; 

Quiroz et al., 2009) and cortico-striatal plasticity (D’Alcantara et al., 2001; Flajolet et al., 2008). 

Interestingly, A2ARs seem to mainly act as a fine-tuning system, adapting the efficiency of 

different other modulator systems (Sebastião and Ribeiro, 2000; Ferré et al., 2011). The 

activation of striatal A2ARs results in Gs-mediated accumulation of cAMP (Golf in the MSNs), in 

contrast to the stimulation of the other abundant striatal adenosine receptor, the inhibitory Gi/o-

coupled A1 adenosine receptors (A1Rs, Dunwiddie and Masino, 2001). In physiological 

conditions, low-frequency (0.1 < Hz) neuronal activity is accompanied with a modest generation A
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of adenosine, likely from the metabolism of ATP of astrocytic origin, which exerts tonic 

inhibition of neighbouring excitatory synapses via A1Rs (Cunha, 2008). This dominant form of 

paracrine adenosinergic neuromodulation probably serves as to decrease the noise of the system 

at resting state (Cunha, 2008). In contrast, under high-frequency discharge of the nerve terminals, 

the ecto-5'-nucleotidase-mediated degradation of ATP, co-released from synaptic vesicles 

(Sperlágh and Vizi, 1996), will build up synaptic adenosine levels that are sufficient for autocrine 

A2AR activation (Cunha, 2008; Augusto et al., 2013). Pathological conditions such as ischemia 

can also increase extracellular adenosine levels via outward transport, which are enough to 

stimulate both A1Rs and A2ARs (Gomes et al., 2011).  

A2AR have been reported to tightly regulate the endocannabinoid neuromodulation system 

in the striatum, as heralded by the documented A2AR-CB1R interactions in the control of motor 

dysfunction (Ferré et al., 2010; Lerner et al., 2010; Tozzi et al., 2012) and addiction (Soria et al., 

2004; Yao et al., 2006; Rosi et al., 2010; Justinová et al., 2011). This is re-enforced by the 

reported heteromerization of A2AR with CB1R that was demonstrated in heterologous expression 

systems and in the striatum (Carriba et al., 2007). However, this A2AR-CB1R interaction is mostly 

interpreted as resulting from a postsynaptic interaction (Yao et al., 2006; Rossi et al., 2010; Cerri 

et al., 2014; Pinna et al., 2014), whereas the predominant localization of CB1R is presynaptic in 

the striatum (Köfalvi et al., 2005; Uchigashima et al., 2007). A possible presynaptic interaction 

between A2AR and CB1R has also been proposed to control the motor-depressant and addictive 

effects of cannabinoids (Ferré et al., 2010; Martire et al., 2011; Justinová et al., 2014), yet 

detailed experimental evidence is lacking. Here we set our aims to further expand our previous 

observations (Matíre et a., 2011) now with selective presynaptic techniques, combining refined 

immunological, radioligand binding and functional assays to directly investigate A2AR-CB1R 

interaction in glutamatergic nerve terminals of cortico-striatal synapses.  A
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METHODS 

Subjects 

All studies were conducted in accordance with the principles and procedures outlined as 

"3Rs" in the guidelines of EU (86/609/EEC), FELASA, and the National Centre for the 3Rs (the 

ARRIVE; Kilkenny et al., 2010), and were approved by the Animal Care Committee of the 

Center for Neuroscience and Cell Biology of Coimbra and by the Centre for Interdisciplinary 

Research in Biology in College de France.  

Animals were housed with 12 h light on/off cycles and ad libitum access to food and water. 

Forty-nine male Wistar rats (180-240 g, 8-10-week old) were purchased from Charles-River 

(Barcelona, Spain) and 6 OFA (Oncins France Strain A) rats (16-22 post-natal days) from 

Charles–River (L’Arbresle, France). Five pairs of A2AR and CB1R null-mutant (knockout) male 

mice on CD-1 background (Ledent et al., 1997, 1999) and their wild-type littermates (35-45 g, 8-

12-week old) were also used and were genotyped by tail snips.  

Synaptosomal preparations 

Experimental procedures were carried out as previously described (Ferreira et al., 2009). 

Briefly, the animals were decapitated under halothane anesthesia, and their brains were quickly 

removed into ice-cold 0.32 M sucrose solution containing 5 mM HEPES, 1 mM EDTA, and 

1/500 v/v protease inhibitor cocktail Sigma-Aldrich (Saint Louis, MO, USA), pH 7.4, 

homogenized instantly and centrifuged at 3,000 g for 5 min. The supernatant was collected and 

centrifuged at 13,000 g for 10 min to obtain the P2 crude synaptosomal fraction. For 

immunolabeling and flow cytometry analysis, the P2 fraction was further purified in A
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discontinuous Percoll gradient (3, 10 and 23%), as described in Köfalvi et al. (2005). The purified 

synaptosomes were kept at -80 ºC until use.  

Immunolabeling and flow cytometric analysis of purified nerve terminals 

Immunochemical labeling was performed according to a method for staining of 

intracellular antigens (Schmid et al., 1991; Gylys et al., 2000), with little modification. Briefly, 

purified nerve terminals were fixed in 1 mL of 0.25% paraformaldehyde in phosphate-buffered 

saline (PBS: 135 mM NaCl, 1.3 mM KCl, 3.2 mM NaH2PO4 and 0.5 mM KH2PO4) for 1 hour at 

4 ºC and then centrifuged at 3000 g for 3 min at 4 ºC. For permeabilization, the pellets were 

incubated in PBS with 0.2% Tween-20 for 15 min at 37 ºC and then centrifuged at 3000 g for 3 

min. The pellets were then resuspended in PBS for immunolabeling. Primary and secondary 

antibodies (Supporting Information Table S1) were diluted in PBS containing 2% normal goat 

serum (Vector Laboratories, CA, USA). For validation/titration of the primary antibodies see 

Supporting Information Figure S1. Incubation volume was 100 uL and incubation time was 30 

min at 4 ºC for both the primary and the secondary antibodies. Each incubation was followed by 

3 times washing in PBS with 0.2% tween-20 and centrifugation at 3000 g for 3 min. The samples 

were resuspended in filtered PBS for flow-synaptometric analysis.  

Analysis was performed using a FACSCalibur flow cytometer (Becton, Dickinson and 

Company, USA – equipped with a 488 nm argon-ion laser). Sample flow was set at 350 events 

per second; 50,000 ungated events were collected for analysis. A threshold was set on forward 

light scatter to exclude debris. To correct for spectral overlap during multicolor flow cytometry 

experiments, color compensation was performed. Offline data analysis was performed using BD 

Cell Quest Pro software (Becton, Dickinson and Company, USA). For detailed description see 

Supporting Information Figure S1. A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved. 8 

Receptor binding 

Synaptosomal membranes were prepared as previously described (Rebola et al., 2005) upon 

resuspensions of P2 synaptosomes in 2 mL of ice-cold assay solution [50 mM Tris/HCl, 3 mM 

MgCl2, 1 µM CaCl2, 2 mM EDTA and protease inhibitor cocktail (Sigma), pH 7.4]. Single point 

CB1R binding experiment with 3.82±0.29 nM (n=7) of the CB1R antagonist/inverse agonist, 

[
3
H]SR141716A was carried out as before (Ferreira et al., 2012), with 30 min preincubation in 

the presence of adenosine deaminase (ADA, 2 U/mL) and of the diacylglycerol lipase inhibitor, 

OMDM188 (300 nM, a kind gift of Dr. Vincenzo Di Marzo). Non-specific binding was 

determined by using the CB1R antagonist/inverse agonist, AM251 (1 µM). Each of the 7 

independent assays were carried out on synaptic membranes derived from 2 rats, altogether 14 

rats, and assayed in quadruplicate (28 filters/ condition). The tritium content of each sample was 

counted using a Tricarb 2900TR β-counter (PerkinElmer). The specific binding was expressed as 

amount of ligand specifically bound per milligram of protein. 

Immunoprecipitation 

Immunoprecipitation assays were carried out in both crude and Percoll-purified rat striatal 

synaptosomal fractions (pooled from 3 rats to obtain enough material), as previously described 

(Marques et al., 2013). Briefly, protein extracts were incubated with 50% protein G-sepharose 

bead slurry (GE Healthacare, UK) for 3 hours at 4 ºC to eliminate non-specific binding. After 

incubation, the precleared supernatants containing 1 mg protein were incubated overnight with 

rotation at 4 °C with a mouse anti-A2AR antiserum (Millipore) pre-coupled covalently to protein 

G-sepharose (GE Healthacare), in the presence of 1% bovine serum albumin (Sigma) and 

protease inhibitors (Roche Diagnostics). The beads were washed 3 times with isolation buffer 

containing 150 mM KCl, 20 mM 3-(N-morpholino)propanesulfonic acid and 1% Triton X-100 A
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(pH 7.4) and resuspended in 6× diluted SDS-PAGE sample buffer (0.35 M Tris, 30% glycerol, 

10% SDS, 0.6 M dithiothreitol, 0.012% bromophenol blue [pH 6.8]). Bound proteins eluted from 

the immune complexes were denaturated by heating to 95ºC for 5 min and then separated by 

electrophoresis on SDS-PAGE gels. Proteins were then electrotransferred onto nitrocellulose 

membranes (Amersham) and probed with rabbit anti-CB1R (Table S1) and mouse anti-A2AR 

(Table S1) diluted in Tris-buffered saline supplemented with Tween 20 (0.1% v/v) and bovine 

serumalbumine (5% m/v). Immunoreactivity was visualized using horseradish peroxidase-

conjugated goat anti-rabbit or anti-mouse secondary antibodies (Pierce) with a subsequent 

incubation with SuperSignal West Pico Chemiluminescent Substrate (Pierce), and the images 

were acquired using Versadoc3000 apparatus and analysed with ImageLab software (BioRad). A 

negative control containing the same amount of mouse IgG2A instead of the mouse anti-A2AR 

antibody was run in parallel for each experiment. 

 [
14

C]glutamate release  

Experiments were carried out with slight modifications to previous publications (Köfalvi et 

al., 2005), which are: the synaptosomes were loaded with [
14

C]-U-glutamate (20 µM) for 10 min, 

and the superfused synaptosomes, trapped in the 16-microvolume chamber release system, were 

stimulated with 30 mM KCl twice fir 1 min (S1, S2), with a 10-min interval. All Krebs-HEPES 

solutions used for this assay contained the habitual glutamate decarboxylase inhibitor aminooxy 

acetic acid (100 µM) to prevent [
14

C]glutamate degradation. For detailed discription, see Köfalvi 

et al. (2005) and Ferreira et al. (2009). The validation of the A1R, A2AR as well as CB1R-

mediated neuromodulation in Wistar rat and CD-1 mouse striatal synaptosomes is summarized in 

Table S2.   
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ATP release assay from striatal synaptosomes 

ATP quantification was carried out in 96-well plates, by the help of a Perkin Elmer Victor
3
 

multilabel plate reader in luminometer mode. The ATP assay mix (Sigma-Aldrich) used by us 

allows quantitative bioluminescent determination of very low ATP levels ranging from 2 × 10
-12

 

to 8 × 10
-5

 M, according to Navizet et al. (2011). Solutions used: i) Basal saline medium (in mM): 

115 NaCl, 3 KCl, 1.2 KH2PO4, 25 HEPES, 10 glucose, 1.2 MgSO4, 1 CaCl2, pH = 7.4; and ii) 

potassium saline medium (in mM): 118 KCl, 1.2 KH2PO4, 25 HEPES, 10 glucose, 1.2 MgSO4, 1 

CaCl2, pH = 7.4. A 150 µL aliquot of basal saline medium (+treatment/vehicle), 15 µL of ATP 

assay mix and 35 µL synaptosomal suspension (~1 mg/mL) provided the 200 µL final reaction 

volume. This mixture was incubated at 25 ºC during 3 min in an Eppendorf tube to ensure 

functional recovery of the sample, then was transferred into a well of the plate at 25 ºC, inside the 

reader. Afterwards, a kinetic protocol was initiated with the duration 140 sec. During first 60 sec, 

a stable baseline was recorded corresponding to the basal extrasynaptic ATP level. Subsequently, 

synaptosomes were stimulated with KCl (30 mM) or were challenged only with the same amount 

of NaCl serving as osmotic control. Average readings in the presence of high NaCl were 

subtracted from KCl-stimulated average readings.  

 

Electrophysiology 

Whole-cell patch-clamp recordings from medium spiny neurons were performed in 

horizontal brain slices from OFA rats (Figure 5A) (postnatal days 15–22), as previously described 

(Fino et al. 2005). Briefly, the artificial cerebrospinal fluid (containing in (mM): 125 NaCl, 2.5 

KCl, 25 glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 10 μM pyruvic acid 

bubbled with 95% O2 and 5% CO2); the borosilicate glass pipettes (6-8 MΩ) contained (in mM): A
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105 potassium gluconate, 30 KCl, 10 HEPES, 10 phosphocreatine, 4 ATP-Mg, 0.3 GTP-Na, 0.3 

EGTA (adjusted to pH 7.35 with KOH). All the experiments were carried in the presence of 50 

µM picrotoxin (Sigma-Aldrich). Electrical stimulation was performed with a bipolar electrode 

(Phymep, Paris, France), placed at the layer 5 of the somatosensory cerebral cortex, by applying a 

monophasic and constant current (duration: 100–150 μs) (ISO-Flex stimulator controlled by a 

Master-8, A.M.P.I., Jerusalem, Israel). All recordings were performed at 32 ºC using a 

temperature control system (Bath-controller V, Luigs & Neumann, Ratingen, Germany). 

Individual neurons were identified using infrared differential interference contrast microscopy 

with CCD camera (Hamamatsu C2400-07; Hamamatsu, Japan). Signals were amplified using an 

EPC9-2 amplifier (HEKA Elektronik, Lambrecht, Germany). The range of access resistance was 

80–200 MΩ. The liquid junction potential was calculated and corrected. Voltage-clamp 

recordings were filtered at 5 kHz and sampled at 10 kHz using he program Pulse-8.53 (HEKA 

Elektronik). The series resistance was compensated at 75-80 % and variation of series resistance 

above 20% led to the rejection of the experiment. Off-line analysis was performed using Igor-Pro 

6.0.3 (Wavemetrics, Lake Oswego, OR, USA).  

Data treatment 

Raw effect data from [
14

C]glutamate and ATP release assays and from electrophysiology 

were normalized to the appropriate control of the same experiment. These normalized data were 

tested for normality by the Kolmogorov-Smirnov normality test. Statistical significance was 

calculated by one-sample t-test against the hypothetical value of 100 (as 100%, i.e. vehicle 

control). Pairs of treatment or condition groups were compared with Student’s paired t-test, while 

the antibody titration curves were compared with Two-way ANOVA between the WT and the KO 

mice. A P < 0.05 was accepted as significant difference.  A
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Chemicals  

 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-

carboxamide (AM251), (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-

de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN55212-2) and (6aR,10aR)-6a,7,10,10a-

tetrahydro-3-[5-(1H-imidazol-1-yl)-1,1-dimethylpentyl]-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-

ol (O-2545) were purchased from Abcam Biochemicals, UK; 3-[4-[2-[[6-amino-9-

[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]-

propanoic acid (CGS21680) was purchased from Tocris Bioscience, UK; dimethylsulfoxide 

(DMSO), 3-(N-morpholino)propanesulfonic acid (MOPS), aminooxyacetic acid, halothane, 

HEPES, Percoll, adenosine deaminase (ADA), bovine serumalbumine, and sucrose were 

purchased from Sigma (Saint Louis, MO, USA). [
3
H]SR141716A and [

14
C]-U-glutamate were 

purchased from American Radiolabeled Chemicals (Saint Louis, MO, USA). All other reagents 

were purchased from MerckBiosciences (Darmstadt, Germany).  

 

RESULTS 

A2AR and CB1R colocalize in corticostriatal glutamatergic nerve terminals  

A basic first evidence to probe the functional cross-talk between CB1R and A2AR in 

corticostriatal glutamatergic terminals is to demonstrate their simultaneous co-localization at 

these sites. Thus, we analyzed striatal synaptosomes via flow synaptometry (Figure 1A): we 

double-labeled them for synaptophysin and vesicular glutamate transporter type 1 (vGluT1) 

(Figure 1B), or triple-labeled for vGluT1, CB1R and A2AR (Figure 1C-E). Concerning the double 

labeling, 85.2±2.5% (n=3) of the analyzed particles were positive for synaptophysin. Of these 

particles, 58.5±3.5% were positive for vGluT1 (Figure 1B). Triple labeling allowed to precisely A
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quantify that 49.4±3.3% of the vGluT1-positive terminals were endowed with CB1R (n=3) 

(Figure 1C) and 30.9±1.7% beared A2AR (n=3) (Figure 1D). Additionally, 47.1±2.7% of the 

CB1R-positive terminals were also positive for A2AR (n=3) (Figure 1E). In other words, as 

supported by Figure 1E, 75.1±3.6% (n=3) of A2AR+ terminals are also positive for CB1R in 

vGlut1+ nerve terminals.  

Interestingly, the selectivity analysis of the CB1R (Figure 2A) and the A2AR (Figure 2B) 

antibodies in the CB1R and A2AR KO mice and their wild-type littermates (Supporting 

Information Figure S1) suggested that CB1Rs help the targeting of A2AR to the presynapse: in 

fact, the titration (saturation binding) curve of the anti-A2AR antibody revealed a decrease of the 

number of binding sites in vGluT1-positive terminals of CB1R KO compared to WT mice (n=5; 

P<0.05; Figure 2C), which was not accompanied by any change in antibody affinities to its 

respective receptor (Figure 2D). 

A2AR co-immunoprecipitates the CB1R in striatal nerve terminals 

The extensive co-localization of CB1R-A2AR in nerve terminals hints at a possible physical 

interaction of A2AR and CB1R, as reported in culture cells and striatal homogenates (Carriba et 

al., 2007). To test this hypothesis, we performed immunoprecipitation with an anti-A2AR antibody 

in both crude (the so-called P2 fraction) and in Percoll-purified striatal nerve terminals. 

Subsequent immunoblot analyses of the composition of the immunoprecipitates allowed 

detecting CB1R at the expected ~51 kDa molecular weight, with particular enrichment in the 

A2AR-immunoprecipitated fractions when compared to the initial (non-immunoprecipitated) 

homogenate (Figure 3).  

The strong co-localization and co-immunoprecipitation data prompted us to test if A2AR 

activation affected CB1R binding. Experiments were carried out under the minimization of A
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endogenous adenosine and 2-arachidonoyl-glycerol levels with ADA and OMDM188 (see 

Materials and Methods). A single point receptor binding assay showed that CGS21680 (30 nM) 

decreased the binding of the radiolabeled CB1R-selective ligand, [
3
H]SR141716A to 

synaptosomal membranes from 3.23±0.17 to 2.68±0.18 pmol/mg of protein (n=7 in 

quadruplicates, P<0.05) (figure not shown).  

A2AR activation decreases the potency of CB1R agonists in striatal 

glutamatergic terminals 

Repetitive (S1 and S2) stimulation with high K
+
 (30 mM for 1 min) triggered the release of 

similar amounts of [
14

C]glutamate (Figure 4A) in a Ca
2+

-dependent manner: the first stimulation-

evoked release (S1) was 54.1±5.8% smaller in Ca
2+

-free condition (10 mM MgCl2 combined with 

100 nM CaCl2; n=6, P<0.001) when compared to that under normal condition. The CB1R 

agonists, WIN55212-2 (0.1 - 3 µM; n≥6) or O-2545 (300 nM; n=5), added 4 min before the 

second stimulus (S2), decreased the S2/S1 ratio (i.e. the second stimulus-evoked release) between 

10.8±3.8% to 45.4±4.5%, depending on the concentration used (P<0.05) (Figure 4A and 4B). The 

effect of WIN55212-2 was prevented by the selective CB1R antagonist/inverse agonist AM251 (1 

µM; n=6) present since the preperfusion period (Figure 4B). In contrast, neither the A2AR agonist, 

CGS21680 (30 nM) (Figure 4B) nor two A2AR antagonists had significant effect on the release of 

[
14

C]glutamate evoked by either 15 or 30 mM K
+
, and either in the rat or the CD-1 mouse striatal 

synaptosomes (see Table S2). This indicates that a possible occlusion of CGS21680 effect by 

either a too strong K
+
 stimulus or by endogenous activation of A2ARs was not the case.  

However, CGS21680 when co-applied with WIN55212-2 (n≥6) or O-2545 (n=5), 

prevented the inhibition of the 30 mM K
+
-evoked release of [

14
C]glutamate by nanomolar 

concentrations of these CB1R agonists (Figure 4B) (P>0.05 for CGS21680+WIN55212-2 [0.1 A
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and 0.3 µM] vs. DMSO control). CGS21680 also significantly attenuated the inhibition by 

WIN55212-2 at 3 µM (n=6) (Figure 4B) (P<0.05 for CGS21680+WIN55212-2 [3 µM] vs. 

WIN55212-2 [3 µM] alone).  

CB1R activation attenuates ATP release in nerve terminals of the rat 

striatum 

Although ATP is not only the source of adenosine, the endogenous agonist of the A2ARs, it 

is a co-transmitter to glutamate (Burnstock, 2013). In line with the above data on [
14

C]glutamate 

release, we expected CB1R activation to also suppress the release of ATP from striatal nerve 

terminals. Indeed, we observed that WIN55212-2 (1 µM) inhibited the high K
+
-evoked release of 

ATP by 24.45 ± 6.7% (n = 6, P < 0.05) (Figure 4C and 4D), which was again prevented by the 

CB1R antagonist, AM251 (1 µM), which per se did not alter the evoked release of ATP (P > 0.05) 

(Figure 4D). 

A2AR activation inhibits CB1R-mediated depression of glutamatergic 

transmission in the dorsolateral striatum 

It is well known that CB1R depress corticostriatal glutamatergic transmission (Gerdeman 

and Lovinger, 2001). Accordingly, the CB1R agonist WIN55212-2 (500 nM) reduced the 

amplitude of evoked monosynaptic EPSCs by 17.5±5.0% after 5 min and by 37.9±12.5% after 16 

min (n=8, P<0.05) (Figure 5B-D). The CB1R antagonist AM251 (500 nM) prevented this 

WIN55212-2-induced depression of synaptic transmission while having no effect alone (n=5) 

(Figure 5D).  

A2AR activation by CGS21680 (30 nM) also prevented the WIN55212-2-induced synaptic 

depression in the first 5 min (n=6, P > 0.05) but not at the later time-point, although the CB1R-A
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mediated inhibition was smaller in the absence (-37.9±12.5%) than in the presence of CGS21680 

(-29.7±6.1%, P<0.05) (Figure 5D). Of note, CGS21680 per se did not alter basal synaptic 

transmission (P > 0.05) (Figure 5D). 

A2AR activation inhibits CB1R-mediated increase in paired-pulse ratio 

While changes in synaptic transmission can be a result of both pre- and post-synaptic 

events, an increase in the paired-pulse ratio (PPR) reflects presynaptic mechanisms (Schulz et al. 

1994; Gerdeman and Lovinger, 2001). Thus, we analyzed the monosynaptic EPSC ratios of 

paired stimuli, delivered with a 25 ms interval (Figure 5A-C,E). The drug-naïve PPR mean value 

was 0.76±0.03 (n=22 cells from 6 rats) (Figure 5B and 5E). As shown in Figure 5C and E, 16 min 

application of WIN55212-2 (500 nM) led to a significant increase in PPR (by 34.6±17.9%, n=9, 

P<0.05), while a 5 min superfusion period with WIN55212-2 was still not enough to cause a 

significant PPR increase (by 6.4±4.7%, n=9, P>0.05). The CB1R antagonist AM251 (500 nM) 

prevented the WIN55212-2-induced increase in PPR while having no effect alone (n=5) (Figure 

5E).  

In accordance with the previous findings, CGS21680 (30 nM, added 10 min before 

WIN55212-2) prevented WIN55212-2 from increasing the PPR (n≥6), while per se did not alter 

basal synaptic transmission (P > 0.05) (Figure 5E).  

 

DISCUSSION 

The present study provides direct evidence for the physical and functional interaction of 

A2AR and CB1R in corticostriatal terminals. Indeed, we now provide for the first time direct 

evidence for the co-localization of both A2AR and CB1R in the same, individually identified 

corticostriatal glutamatergic nerve terminal. It is important to note that the selectivity of A
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antibodies raises increasing concern in the scientific community (e.g. Grimsey et al., 2008). Here 

we carefully titrated our primary antibodies, and validated them in the knockout mice and their 

wild-type littermates whenever possible. This allowed us to avoid common mistakes, such as 

false co-localizations or misestimation of the frequency of labeling.  

Furthermore, we showed that these A2A and CB1 receptors form presynaptic heteromers in 

purified striatal nerve terminals, which is a novel information, since this heterodimer was first 

identified in heterologous expression systems, and was reported to be also present in total striatal 

extracts (Carriba et al., 2007). Heterodimers can interact either at the level of intracellular 

signaling, or by modulating G protein availability, or simply by physically altering the 

conformation of the partner receptor (Franco et al., 2006; 2008). Our findings do not directly 

indicate the molecular nature of interaction, yet, we speculate from the binding data and the fact 

that the two receptors on their own utilize different pools of G proteins that the interaction 

involves physical modulation of conformation, rather that occurring at the level of G proteins.  

This physical association of A2AR and CB1R is suggestive of a tight functional interplay in 

the control of glutamatergic nerve terminals in the striatum.The functional consequences of this 

finding were revealed now with a combination of direct presynaptic tools of increasing 

complexity (radioligand binding in nerve terminal membranes, glutamate release assay in acutely 

isolated nerve terminals and paired-pulse ratio measurements in isolated monosynaptic contacts 

in corticostriatal slices), all of which showed that A2AR activation significantly attenuates CB1R 

function. In particular, we documented the ability of A2AR to dampen the robust presynaptic 

CB1R-mediated inhibition of corticostriatal glutamate release (Gerdeman and Lovinger, 2001; 

Köfalvi et al., 2005). This observation per se does not directly argue for a presynaptic location of 

the underlying A2ARs. However, as the CB1Rs mediating the increase in the paired-pulse ratio are A
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presynaptic, we can indirectly infer that those A2ARs co-localize presynaptically with these 

CB1Rs, as also strongly suggested by the neurochemical data. 

The physiological role of this presynaptic A2AR-CB1R complex is likely associated with the 

well-known high-pass filter phenomenon for corticostriatal activity (Bamford et al., 2004). In 

fact, it is well established that increased synaptic activity is directly coupled to an increased 

release of two of the most potent substances acting as presynaptic inhibitory feedback signals, 

namely the release of adenosine acting through inhibitory A1Rs (Fredholm et al., 2005) and 

endocannabinoids acting through presynaptic CB1Rs (Lovinger, 2010). The efficiency of these 

two presynaptic inhibitory system is best heralded by the observations that A1Rs and CB1Rs are 

highly abundant G protein-coupled receptors in the brain. During high-frequency discharge it is 

necessary to overcome these efficient presynaptic inhibitory systems to allow the passage of 

salient information. Therefore, high-pass filters become essencial to implement long-term 

increases of corticostriatal activity with relevant stimuli. The present results add a critical piece of 

evidence to suggest that A2AR participate in this high-pass filtering in response to phasic changes 

in synaptic adenosine levels (Cunha, 2008). Indeed, we and others have previously shown that 

ATP is co-released with glutamate (Pankratov et al., 2006) in a frequency-dependent manner 

(Wieraszko et al., 1989; Cunha et al., 1996). Furthermore, Augusto et al. (2013) have shown that 

adenosine, generated from ATP by ecto-5'-nucleotidase, constitutes the particular source that 

activates striatal A2AR. In the case of a low frequency discharge, the corticostriatal terminals will 

not produce enough ATP-derived adenosine to activate presynaptic A2AR and the extracellular 

adenosine levels will be enough only to activate the inhibitory A1R, as previously shown (Ciruela 

et al., 2006). Moreover, the glutamatergic activity will also produce retrograde inhibitory 

endocannabinoid signaling (Castillo et al., 2012; Katona and Freund, 2012). By contrast, salient 

and relevant information that should be encoded as increases of synaptic plasticity are associated A
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with a higher frequency of discharge of corticostriatal afferent; under such conditions, ATP-

derived adenosine is now sufficient to activate A2AR, which will play a double role of shunting 

down both presynaptic CB1R inhibition, as now documented, as well as presynaptic A1R 

inhibition (Ciruela et al., 2006). The engagement of A2AR has the additional potential of 

bolstering the function of different neurotrophins, such as BDNF (Sebastião and Ribeiro, 2009), 

GDNF (Gomes et al., 2009) as well as FGF (Flajolet et al., 2008), which further assist the 

implementation of long-term plastic changes in cortico-striatal synapses. Notably, A2AR are 

selectively engaged to control synaptic plasticity rather than basal synaptic transmission in 

different synapses (Rebola et al., 2008; Costenla et al., 2011), namely in corticostriatal synapses 

(D’Alcantara et al., 2001; Flajolet et al., 2008). This is in agreement with that CGS21680 failed 

to alter basal synaptic transmission under whole-cell patch-clamp configuration in the 

dorsolateral (somatosensory) striatum (present study) as well as in extracellular recording in the 

dorsomedial (associative) striatum (Martíre et al., 2011). Notably, Ciruela and colleagues (2006) 

reported a significant increase upon CGS21680 administration in the high-K
+
-induced release of 

glutamate in striatal synaptosomes, which was not observed in the present study, in agreement 

with a previous study where 4-aminopyridine stimulation was used to provoke [
14

C]glutamate 

release in striatal synaptosomes (Martíre et al., 2011), and with another report showing the lack of 

CGS21680 modulation on the high-K
+
-induced release of [

3
H]glutamate in hippocampal 

synaptosomes (Lopes et al., 2002). We can point out differences in the composition of the assay 

medium and in the execution of the experiments that may lead to the modification of CGS21680 

effect in these assays.  

This central hubbing role of A2AR as a high pass filter is likely to be further assisted by 

post-synaptic A2AR, which inhibit D2 dopamine receptor-mediated endocannabinoid production 

in the MSN dendrites (Lerner et al., 2010; Tozzi et al., 2012). Hence, adenosine will exert a A
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double lock onto endocannabinoid signaling to ensure the rescue of salient corticostriatal activity. 

Indeed, Bamford and colleagues (2004) noted that post-synaptic D2R-mediated presynaptic 

inhibition of glutamate release is frequency-dependent, sparing only the most active 

corticostriatal terminals. This strongly corroborates our hypothesis.  

Since the principal input, the “drive” of the whole basal ganglia is the corticostriatal 

pathway, the modulation of these afferents by presynaptic receptors will have profound effect on 

all basal ganglia-related lower- and higher-order brain functions including motor coordination, 

psychomotor drive, emotions, memory or decision making (Nakano et al., 2000). For instance, it 

is believed that the lack of D2R-stimulated endocannabinoid synthesis in Parkinson’s disease 

hampers presynaptic CB1R-mediated control of corticostriatal afferents, leading to dyskinesias 

(Brotchie, 2003; Kreitzer and Malenka, 2007; Shen et al., 2008a). Additionally, we envisage an 

increased synaptic adenosine production and a further impairment of presynaptic CB1R activity, 

even after L-DOPA administration. This could be one reason why A2AR blocking strategies are 

interesting as a palliative strategy adjunct to L-DOPA (Gomes et al., 2011). Another involvement 

of this newly described presynaptic heterodimer may be in drug addiction. It was recently found 

by some of these authors that the presynaptic A2AR facilitate the cocaine-induced psychomotor 

drive in corticostriatal terminals (Shen et al., 2008b, 2013), which once again can be explained by 

the negative control of A2AR on the CB1R-mediated inhibition of these afferents.  

Another example for the importance of this interaction implies that CB1Rs exert 

neuroprotection both in vitro and in vivo in focal and global ichemia models (Nagayama et al., 

1999; Melis et al., 2006). Hence, one can further speculate that ischemic activation of A2ARs 

would hamper CB1R-mediated neuroprotection. Indeed, A2AR blockade has been shown to be 

neuroprotective in several models (Gomes et al., 2011).   A
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Altogether, the presynaptic A2AR-CB1R complex in corticostriatal terminals emerges as a 

novel module to optimize corticostriatal information processing. Additionally, the identification 

of this functional heteromer presynaptically, in the corticostriatal terminals, further strengthens 

the rationale of simultaneously targeting these two receptors rather than each individually, to 

achieve more efficient palliative therapies to alleviate striatal pathophysiology in motor and 

addictive diseases. 
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Figure 1 Flow-synaptometric analysis of immunolabeled Percoll-gradient purified striatal 

synaptosomes. (A) Representative flow synaptometry plot of striatal synaptosomes for size 

(forward scatter is proportional to the particle diameter), and for complexity/granularity (side 

scatter). (B) Representative plot and statistics of synaptosomes double-labeled for synaptophysin 

(a marker of synaptosomes) and vesicular glutamate transporter 1 (vGluT1; a marker of 

corticostriatal terminals). (C and D) Representative plots and statistics of synaptosomes labeled 

for vGluT1/CB1R (C) and vGluT1/A2AR (D), respectively (the two graphs are derived from the 

same triple-labelled sample). (E) Representative plot and statistics of vGluT1-positive 

synaptosomes expressing CB1R and A2AR. Note that most of the nerve terminals endowed with 

A2ARs were also endowed with CB1Rs.  

 

Figure 2 (A) Total binding isotherms of the anti-CB1R antibody in the corticostriatal 

terminals of the WT (squares) versus the A2AR KO mice (circles), while the CB1R KO mice 

display antibody binding of non-specific nature only (triangles). (B) Total binding isotherms of 

the anti-A2AR antibody in the corticostriatal terminals of the WT (squares) versus the CB1R KO 

mice (circles), while the A2AR KO mice display antibody binding of non-specific nature only 

(triangles). (C) Bar graphs representing the mean values of the maximum binding sites (Bmax) of 

the anti-CB1R and anti-A2AR antibodies (*P<0.05). (D) Bar graphs representing the mean 

changes of the dissociation constant (Kd) of the anti-CB1R and anti-A2AR antibodies. Bars 

represent the mean ± SEM of 5 individual experiments. 
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Figure 3 Co-immunoprecipitation of A2ARs and CB1Rs in crude (P2 fraction) and Percoll-

purified striatal synaptosomes. CB1R was readily detected and enriched in complexes 

immunoprecipitated with the anti-A2AR, but not with mouse IgG2A, either in P2 or or Percoll-

purified fractions of rat striatal synaptosomes. 

Figure 4 (A) Fractional release percent (FR%; see Methods) diagram representing the 

averaged [
14

C]glutamate release curves in rat striatal synaptosomes under treatment with 

WIN55212-2 (1 µM; circles) and the respective control (triangles). Stimuli with high-K
+
 (30 

mM; 2 × 1 min) are marked as S1 and S2. WIN55212-2 was added as indicated by the horizontal 

line. Data are mean ± SEM of n = 21 independent observations in duplicate. (B) Bar graph 

representing the effect of the A2AR activation on the CB1R-induced inhibition of high-K
+
-evoked 

release of [
14

C]glutamate. The Y axis represents the effect of the treatment on the S2/S1 ratio, 

normalized to the vehicle control. WIN55212-2 per se (open bars) significantly inhibited the 

release of [
14

C]glutamate in all concentrations (0.1, 0.3, 1 and 3 µM). The inhibitory effect of 

WIN55212-2 on the S2/S1 ratio was prevented by the CB1R antagonist AM251 (1 µM, applied 

since the preperfusion period, i.e. before S1). The selective A2AR agonist CGS216880 (30 nM, 

co-applied with WIN55212-2), which per se had no effect on the high-K
+
-evoked release of 

[
14

C]glutamate, prevented the action of WIN55212-2 at 0.1 and 0.3 µM and significantly 

attenuated the action of WIN55212-2 at 3 µM. Similarly, O-2545 (0.3 µM), another CB1R 

agonist, inhibited the release of [
14

C]glutamate (brown bar), and CGS21680 (30 nM) prevented 

that action. All bars are mean ± SEM derived from n ≥ 6 animals. *P < 0.05; **P < 0.01; ***P < 

0.001 vs. DMSO control (red dashed line), and 
#
P < 0.05 vs without CGS21680. (C) 

Representative diagram of high-K
+
 (32 mM) -evoked release of ATP from striatal nerve 

terminals. Stimulus with KCl is marked as S1. Consistent with ATP being co-released with A
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glutamate, activation of the CB1Rs by WIN55212-2 (1 µM) also inhibits the KCl-evoked release 

of ATP. (D) As represented in the bar graphs, the CB1R-mediated inhibition of ATP release (n = 

6; *P<0.05) was prevented by the CB1R antagonist, AM251 (1 µM), which per se had no effect.  

 

Figure 5 CB1R activation decreases basal synaptic transmission and increases paired-pulse 

ratio in rat corticostriatal afferents, which is attenuated / prevented by the A2AR agonist 

CGS21680 (30 nM). (A) The whole-cell patch clamp configuration in 15-22 day-old rats' 

horizontal corticostriatal slices, with stimulation in the layer V of the adjacent neocortex and 

recording in the dorsolateral striatum. (B, C) Representative paired-pulse traces (25 ms interpulse 

interval) in the presence of WIN55212-2 (500 nM), and its vehicle, DMSO. (D) Bar graphs 

representing the EPSC amplitude values normalized to the pretreatment period after 5 and 16 min 

of WIN55212-2 perfusion. WIN55212-2 decreased EPSC amplitude at both time points, in a 

fashion sensitive to AM251, which per se (open bar) had no effect. Ten min pretreatment with 

CGS21680 attenuated the CB1R-mediated inhibition of EPSC amplitudes. CGS21680 did not 

produce effect on its own (open bars). All bars are mean ± SEM derived from n ≥ 6 animals. 

*P<0.05 vs. 100% (pretreatment CTRL). (E) Bar graphs representing the normalized paired-pulse 

ratio (PPR; the second response in relation to the first response) at 5 and 16 minutes after the 

beginning of WIN55212-2 perfusion. The WIN55212-2-induced increase (*P<0.05) in the 

paired-pulse ratio was prevented both by AM251 and CGS21680, which had no effect per se 

(open bars).  
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