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Abstract

Dendritic protein synthesis plays a critical role in several forms of synaptic plasticity, including BDNF (brain-derived
neurotrophic factor)-mediated long-term synaptic potentiation (LTP). Dendritic transcripts are typically transported in a
repressed state as components of large ribonucleoprotein complexes, and then translated upon stimulation at, or in the
vicinity, of activated synapses. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a trans-acting factor
involved in dendritic mRNA trafficking, but how the distribution of the protein in dendrites is regulated has not been
characterized. Here we found that a fraction of hnRNP A2/B1 is present at the synapse under resting conditions in cultured
hippocampal neurons. Accordingly, this ribonucleoprotein was detected in free mRNP, monosomal, and polyribosomal
fractions obtained from synaptoneurosomes. Neuronal activity and BDNF treatment increased hnRNP A2/B1 protein levels
in the cell body and dendritic compartments, and induced the delivery of this protein to synaptic sites. The activity-
dependent accumulation of hnRNP A2/B1 at the synapse required, at least in part, the activation of TrkB receptors,
presumably by BDNF. This neurotrophin also upregulated the hnRNP A2/B1 mRNA in the soma but was without effect on
the abundance of neuritic hnRNP A2/B1 transcripts. These results show that the distribution of hnRNP A2/B1 is regulated by
BDNF and by neuronal activity, an effect that may have a role in BDNF-induced synaptic plasticity events.
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Introduction

Experience-dependent changes in synapse structure and func-

tion are thought to underlie learning and memory formation [1].

Some of these modifications require activity-dependent transport

and translation of dendritic-localized mRNAs, with concomitant

local alterations in the proteome [2]. These biochemical

alterations, together with structural and functional modifications,

are required for several forms of synaptic plasticity, including

BDNF-mediated LTP [3].

Dendritic mRNAs are usually packaged into large messenger

ribonucleoprotein complexes (mRNPs) in the cell body and

transported along the microtubule cytoskeleton until they reach

their destination. During this process, the transcripts are usually

kept in a dormant state and then translated upon synaptic

activation [4]. One of the best described RNA-binding proteins

involved in mRNA trafficking is the hnRNP A2/B1, which

recognizes a cis-acting element present in the myelin basic protein

(MBP) mRNA [5,6]. Because it is recognized by hnRNP A2/B1,

that element is known as hnRNP A2 response element (A2RE). In

neurons, the A2RE-dependent targeting of mRNAs is involved in

the dendritic delivery of activity-regulated cytoskeleton-associated

protein (Arc), CaMKIIa, and Neurogranin mRNAs, which appear

to cluster in the same hnRNP A2/B1-containing granules [7].

Moreover, hnRNP A2/B1 is necessary for the delivery of the

noncoding BC1 RNA and PKMf mRNA to distal dendritic

domains [8,9]. Given the nature of some of the hnRNP A2/B1-

associated transcripts, the protein may play a role in long-term

synaptic potentiation.

Several transcripts are transported to dendrites upon synaptic

activity, including mRNAs that contain A2RE-like elements in

their sequences (e.g. Arc, CaMKIIa, BDNF) [7,10–18], suggesting

that the transport of hnRNP A2/B1 in dendrites may be regulated

by neuronal activity. Here we show that hnRNP A2/B1 protein

exhibits a punctate distribution in dendrites of hippocampal

neurons and is in part present at the synapse under basal

conditions. Moreover, hnRNP A2/B1 was identified in mono-

somal- and polyribosomal-associated fractions obtained from rat

hippocampal synaptoneurosomes, a subcellular fraction containing

the pre- and postsynaptic regions. We also found that synaptic

activity and the neurotrophin BDNF increase the levels of cell

body- and dendritic-localized hnRNP A2/B1 protein and induce

its accumulation in synaptic sites. Importantly, BDNF mediates
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the synaptic accumulation of hnRNP A2/B1 induced by neuronal

activity.

Materials and Methods

Ethics Statement
Experiments were performed according to the European Union

Directive 86/609/EEC and the legislation Portaria n. 1005/92,

issued by the Portuguese Government for the protection of

animals used for experimental and other scientific purposes. Dams

were sacrificed by cervical dislocation. Embryos were then

surgically removed and sacrificed by decapitation.

Hippocampal cultures
Low-density hippocampal cultures were prepared as previously

described [19,20]. Briefly, hippocampi were dissected from E18

rat embryos and the cells were dissociated using trypsin (0.25%).

Neurons were plated at a final density of 1–56104 cells/dish on

poly-D-lysine-coated glass coverslips in neuronal plating medium

(MEM supplemented with 10% horse serum, 0.6% glucose and

1 mM pyruvic acid). After 2–4 h, coverslips were flipped over an

astroglial feeder layer in Neurobasal medium (GIBCO - Life

Technologies) supplemented with SM1 supplement (1:50 dilution,

STEMCELL Technologies), 25 mM glutamate, 0.5 mM gluta-

mine and 0.12 mg/ml gentamycin (GIBCO - Life Technologies).

The neurons grew face down over the feeder layer but were kept

separate from the glia by wax dots on the neuronal side of the

coverslips. To prevent overgrowth of glial cells, neuron cultures

were treated with 5 mM cytosine arabinoside (Sigma-Aldrich) after

3 DIV. Cultures were maintained in a humidified incubator with

5% CO2/95% air, at 37uC, for up to 2 weeks, feeding the cells

once per week. At DIV 14–15 neurons were stimulated for 30 min

with 100 ng/ml BDNF (Peprotech) or with 50 mM bicuculline

(Tocris), 2.5 mM 4-aminopyridine (4-AP) (Tocris) and 10 mM

glycine (Sigma-Aldrich) to increase synaptic activity. Where

indicated, cells were pre-treated for 30 min with the Trk receptor

inhibitor SHN722 (1 mM) [21,22] or with the scavenger of

extracellular TrkB receptor ligands TrkB-Fc (1 mg/ml) (R&D

Systems) before stimulation with 100 ng/ml BDNF (Peprotech) or

with the cocktail solution containing bicuculline (50 mM bicucul-

line, 2.5 mM 4-AP and 10 mM glycine), respectively.

High-density hippocampal cultures were prepared from the

hippocampi of E18-E19 Wistar rat embryos as described

previously [23] and the cells plated (80 000 cells/cm2) in 3 mm

pore 24 mm polyethylene terephthalate (PET) membrane filter

inserts (Corning) coated with poly-D-lysine (0.1 mg/ml) [24,25].

The cultures were maintained in a humidified incubator of 5%

CO2/95% air, at 37uC, for 14–15 days and then stimulated with

100 ng/ml BDNF (Peprotech) for the indicated periods of time.

Immunocytochemistry
Hippocampal neurons (low density) were fixed in 4% sucrose/

paraformaldehyde (in PBS) for 15 min at room temperature and

permeabilized with 0.3% Triton X-100 in PBS. The neurons were

then incubated with 10% BSA in PBS for 30 min at 37uC to block

non-specific staining, and incubated overnight at 4uC with the

primary antibodies diluted in 3% BSA in PBS. The following

primary antibodies and dilutions were used: anti-hnRNP A2/B1

(sc-53531, 1:200; Santa Cruz Biotechnology), anti-MAP2 (ab5392,

1:10.000; Abcam), anti-PSD95 (D27E11, 1:200; Cell Signaling).

The cells were washed 6 times with PBS for 2 min and incubated

with Alexa Fluor 568 (1:500, Invitrogen), Alexa Fluor 488 (1:500;

Invitrogen) and AMCA (1:200; Jackson ImmunoResearch) conju-

gated secondary antibodies, for 45 min at 37uC. After washing the

cells 6 times with PBS for 2 min, the coverslips were mounted with

a fluorescence mounting medium (DAKO).

Microscopy and quantitative fluorescence analysis
Imaging was performed on a Zeiss Observer Z.1 microscope

using a 6361.4 NA oil objective. Images were quantified using the

ImageJ image analysis software as previously described [20,26].

Briefly, for quantitation, sets of cells were cultured and stained

simultaneously, and imaged using identical settings. The protein

signals were analysed after thresholds were set, such that

recognizable clusters were included in the analysis. After

subtracting the background, the number, area and the integrated

intensity of hnRNP A2/B1 particles in dendrites was determined,

and represented per dendritic area (defined by MAP2 staining

area). For colocalization analysis, regions around thresholded

puncta were overlaid as a mask in the PSD95 channel, and the

integrated intensity, area and number of colocalized particles

determined. All analyses were done as blind to the experimental

condition. For the analysis of hnRNP A2/B1 protein in the

neuronal soma, the intensity of hnRNP A2/B1 staining was

measured in similar regions of interest in the cell body, outside of

the nucleus, using ImageJ image analysis software.

Preparation of synaptoneurosomes and sucrose
gradients

Synaptoneurosomes were prepared from adult rats (12–13

weeks) as described previously [27], with minor alterations.

Synaptoneurosomes were lysed in 900 ml of lysis buffer [15 mM

Tris-HCl pH 8, 5 mM MgCl2, 0.3 M NaCl, 0.5 mM DTT,

0.1 mg/ml Cycloheximide and 1% Triton X-100] supplemented

with a cocktail of protease inhibitors (0.1 mM PMSF; CLAP:

1 mg/ml chymostatin, 1 mg/ml leupeptin, 1 mg/ml antipain, 1 mg/

ml pepstatin; Sigma-Aldrich) and 100 U/ml of RNase inhibitor

(SUPERaseIn, Ambion Applied Biosystems). Membranous struc-

tures were removed by spinning at 12,0006 g for 10 min. The

resulting supernatant was loaded on a 10–50% linear sucrose

gradient [prepared in 20 mM Tris-HCl pH 8, 140 mM KCl,

5 mM MgCl2, 0.5 mM DTT, 0.1 mg/ml Cycloheximide and

10 U/ml of RNase inhibitor (SUPERaseIn, Ambion Applied

Biosystems)] and spun at 35,000 rpm for 190 min (4uC) using a

SW41 rotor (Beckman Coulter). Each gradient was separated into

11 fractions, with approximately 1.0 ml each.

Western blotting
Equal volumes (30 ml) of each fraction isolated from the 10–

50% linear sucrose gradient were denatured and protein samples

were separated by SDS-PAGE, transferred to PVDF membranes

(Millipore), and immunoblotted as described previously [23]. The

following primary antibodies were used: anti-hnRNP A2/B1 (sc-

53531, 1:500; Santa Cruz Biotechnology), anti-Staufen1 (AB5781,

1:500; Millipore), anti-eEF2 (ab40812, 1:12.500; Abcam) and anti-

rpS6 (2217, 1:1000; Cell Signaling Technology).

RNA extraction, cDNA synthesis and quantitative RT-PCR
Total RNA was extracted from hippocampal neurons cultured

in 3 mm pore 24 mm PET membrane filter inserts using TRIzol

Reagent (Invitrogen) as described previously [24]. RNA quality

and integrity was assessed using the Experion automated gel-

electrophoresis system (Bio-Rad) and the RNA concentration

determined using NanoDrop (Thermo Scientific).

For mRNA measurements, 500–1000 ng of total RNA was

reverse transcribed using the iScript cDNA Synthesis Kit (170–

8891; Bio-Rad) following manufacturer’s guidelines. Quantitative
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RT-PCR was performed using SsoFast EvaGreen Supermix (172–

5201; Bio-Rad) and the iQ5 Multicolor Real-Time PCR

Detection System (Bio-Rad). 2 ml of 1:10 diluted cDNA was used

and the final concentration of each primer was 250 nM. Rat Ppia
(Peptidylprolyl isomerase A) was chosen as normalization control

since it shows a stable expression in hippocampal neurons

stimulated with BDNF [24,28]. Primers for qRT-PCR are listed

as follows: hnRNP A2 forward: 59-GCTACGGAGGTGGT-

TATG-39, reverse: 59-AGTTAGAAGGTTGCTGGTTAT-39;

Ppia forward: 59-TTTGGGAAGGTGAAAGAAGGC-39, re-

verse: 59-ACAGAAGGAATGGTTTGATGGG-39. The compar-

ative Ct method was used to quantitate the relative gene

expression across the experimental conditions. Data analysis of

the log-transformed expression data was performed using GenEx

(MultiD Analysis) software for Real-time PCR expression profil-

ing.

Figure 1. hnRNP A2/B1 is present in synaptic polyribosomal fractions and colocalizes with PSD95 in dendrites of hippocampal
neurons. (A) Cultured hippocampal neurons immunostained for MAP2 (blue), hnRNP A2/B1 (red) and PSD95 (green) show that hnRNP A2/B1 is
present in synaptic sites as indicated by the colocalization with the postsynaptic marker PSD95 (white arrows). Scale bars = 25 mm and 4 mm for low
and high magnification images, respectively. The images are representative of six different experiments performed in independent preparations, with
a total of 71 cells analysed. (A9) The percentage of dendritic hnRNP A2/B1 signal that colocalizes with PSD95 was analysed using ImageJ software
(mean 6 SEM.). (B) Co-sedimentation of synaptoneurosomal proteins using a 10–50% linear sucrose gradient. The polyribosomes, monosomes and
mRNPs (non-polysomal fractions) were detected by UV absorbance at 254 nm and the gradient was collected in 11 fractions. Equal volumes from
each fraction were analysed by SDS-PAGE and Western blot using antibodies that recognize hnRNP A2/B1, Staufen1, eEF2 and ribosomal protein S6.
The results are representative of two different experiments performed in independent synaptoneurosomal preparations.
doi:10.1371/journal.pone.0108175.g001
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Statistical analysis
Statistical analysis was performed using one way ANOVA

followed by the Dunnett’s or Bonferroni’s test as indicated in the

figure captions.

Results

hnRNP A2/B1 is required for the dendritic localization of

mRNAs encoding proteins that are relevant for synaptic plasticity,

such as CaMKIIa and Arc [7]. Dendritic-localized mRNAs are

typically transported in a dormant state until the translational

block is relieved upon activity at synaptic domains [4]. To test if

hnRNP A2/B1 is present at the synapse, we analysed the

colocalization with the postsynaptic marker PSD95, in cultured

hippocampal neurons (Fig. 1A; 1A9). A considerable fraction of

dendritic hnRNP A2/B1 (11.260.9%) localizes at PSD95-positive

clusters (Fig. 1A-white arrows; 1A9). Similarly, a significant

percentage of total PSD95-positive synapses contain hnRNP

A2/B1 (7.760.5%; n = 48 cells) (data not shown). In addition, we

detected hnRNP A2/B1 and Staufen1, another RNA-binding

protein present in neuronal RNA granules [29,30], in free

mRNPs-, monosomal-, and polyribosomal- associated fractions

obtained from rat hippocampal synaptoneurosomes (Fig. 1B).

hnRNP A2/B1 was particularly enriched in monosome fractions

(Fig. 1B). Altogether, these findings suggest that hnRNP A2/B1

can localize in synaptic domains under resting conditions.

Several transcripts are transported to dendrites and dendritic

spines upon neuronal activation, including the mRNAs for Arc

[10–13], b-actin [31], CaMKIIa [14–16], TrkB and BDNF [17].

The mRNAs encoding for Arc, CaMKIIa and BDNF have A2RE

sequences in their sequence [7,18], and the Arc and CaMKIIa

Figure 2. Synaptic activity and the neurotrophin BDNF increase the abundance of hnRNP A2/B1 protein in the soma of
hippocampal neurons, outside the nucleus. (A) Cultured hippocampal neurons were stimulated or not with bicuculline (50 mM), 4-AP (2.5 mM)
and glycine (10 mM) for 30 min and then the cells immunostained for MAP2 (blue), hnRNP A2/B1 (red). Scale bar = 20 mm and 4 mm for low and high
magnification images, respectively. (B) Cultured hippocampal neurons were stimulated or not with BDNF (100 mg/ml), for 30 min and then the cells
immunostained for MAP2 (blue), hnRNP A2/B1 (red). Scale bar = 20 mm and 4 mm for low and high magnification images, respectively (C) The
intensity of hnRNP A2/B1 protein in the cell body was analysed in similar regions of interest within the soma, away from the nucleus, using ImageJ
software. Results are normalized to control and are averaged of 4–7 different experiments performed in independent preparations. The following
number of cells was used in the analysis of the somatic-localized hnRNP A2/B1 Ctr (n = 71 cells), Bic (n = 40 cells), BDNF (n = 61 cells). Error bars, mean
6 SEM. Statistical analysis was performed by one-way ANOVA, followed by Dunnet’s test.* P,0.05; *** P,0.001.
doi:10.1371/journal.pone.0108175.g002
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transcripts appear to be transported along dendrites in an hnRNP

A2/B1-dependent manner [7]. However, it remains to be

determined whether the hnRNP A2/B1-dependent mRNA

transport is a constitutive or regulated process. Therefore, we

investigated whether synaptic activity changes the cytoplasmic

levels of hnRNP A2/B1 and regulates the delivery of this protein

into synapses. For that purpose, cultured hippocampal neurons

were stimulated for 30 min with a cocktail solution with

bicuculline to increase the excitatory activity of the neuronal

network [32]. Bicuculline treatment significantly increased the

intensity of hnRNP A2/B1 in the soma compartment (Fig. 2A,C).

Similarly, synaptic activity increased the integrated intensity, as

well as the number and area of hnRNP A2/B1 puncta in dendrites

(Fig. 3A–D) and in synaptic sites (Fig. 3A-white arrows, E–G).

Since the increase in synaptic levels of hnRNP A2/B1 could be a

result of the general increase observed in dendrites, we also

analysed the percentage of dendritic hnRNP A2/B1 signal that

overlaps with the synaptic marker PSD95. Synaptic activity also

increased the percentage of dendritic hnRNP A2/B1 that

colocalizes with PSD95 (Fig. 3H), suggesting that there is a

preferential increase in the delivery of hnRNP A2/B1 into

synaptic sites, which is not only due to the overall change that

occurs in dendrites.

The neurotrophin BDNF plays a key role in several forms of

synaptic plasticity [33]. Some of the actions of BDNF in the CNS

rely, in part, on the ability of this neurotrophin to change the

synaptic proteome through the regulation of the delivery of

dendritic-localized transcripts and by regulating local protein

synthesis at the synapse [3,34]. Several activity-inducing para-

digms were shown to promote the release of endogenous BDNF

[35,36]. Thus, we investigated whether the endogenous released

BDNF was involved in the bicuculline-induced regulation of

hnRNP A2/B1. For that purpose we used the TrkB-Fc chimera,

an effective scavenger of TrkB ligands which has been widely used

to access the endogenous functions of BDNF in the CNS. TrkB-Fc

did not prevent bicuculline-induced increase in dendritic hnRNP

A2/B1 puncta intensity and area (Fig. 3A–C) but partially

prevented the increase on synaptic hnRNP A2/B1 observed upon

bicuculline treatment (Fig. 3A, E–G). Further analysis of the data

demonstrated that bicuculline-induced increase in hnRNP A2/B1

puncta number at the synapse is significantly reduced (P,0.05) in

the presence of the scavenger TrkB-Fc, as determined by

comparing the D between Bic/Ctr and Bic+TrkB-Fc/TrkB-Fc

experimental conditions (data not shown). A similar approach

allowed showing that the bicuculline-induced increase in hnRNP

A2/B1 in dendrites is of less magnitude when TrkB-Fc is present

(data not shown).

Altogether, our data indicate that the activity-dependent

delivery of hnRNP A2/B1 into synaptic sites likely depends on

the release of BDNF and extracellular activation of TrkB

receptors. In contrast, the accumulation of hnRNP A2/B1 in

dendrites upon synaptic activity still occurred when the extracel-

lular BDNF was quelated suggesting that it may have a component

that does not require the actions of endogenous released BDNF.

However, the magnitude of the abovementioned increase seems to

be affected by the presence of the scavenger (data not shown) thus,

one cannot exclude the possibility of BDNF-TrkB signaling being

involved, in part, in the activity-dependent accumulation of

hnRNP A2/B1 in dendrites.

We next questioned whether exogenous BDNF alters the

cytoplasmic distribution of hnRNP A2/B1 in hippocampal

neurons. Stimulation of cultured hippocampal neurons with

BDNF (100 ng/ml) for 30 min resulted in a significant increase

in hnRNP A2/B1 levels in the neuronal soma (Fig. 2B,C). To

investigate if BDNF alters the dendritic and synaptic distribution

of hnRNP A2/B1 cultured hippocampal neurons were stimulated

with BDNF (100 ng/ml) for 30 min, in the presence or in the

absence of the Trk receptor inhibitor SHN722 (1 mM) [21,22].

BDNF treatment resulted in a significant increase of hnRNP A2/

B1 integrated intensity, area and puncta number in dendrites

(Fig. 4A–D) and in synaptic sites (Fig. 4A-white arrows, E–G).

Inhibition of Trk receptor activity with SHN722 induced a modest

increase in hnRNP A2/B1 puncta area and integrated intensity in

dendrites (Fig. 4A–C). Nevertheless, further stimulation with

BDNF had no significant effect in every parameter evaluated in

both dendritic and synaptic hnRNP A2/B1 particles, showing that

the effects of BDNF were mediated by Trk receptors. Accordingly,

further analysis of the data allowed demonstrating that the BDNF-

induced increase in dendritic and synaptic hnRNP A2/B1 is

reduced, significantly in the former case, in the presence of the

inhibitor SHN722 (comparing the D between BDNF/Ctr and

BDNF+SHN722/SHN722 experimental conditions) (data not

shown). Taken together, our findings indicate that BDNF increases

the levels of hnRNP A2/B1 in the cell body and induces a robust

accumulation of hnRNP A2/B1 in dendrites and at the synapse in

hippocampal neurons. The latter effects are mediated by the

activation of Trk (presumably TrkB) receptors.

The dendritic transcriptome is not yet fully characterized but a

recent study using deep RNA sequencing in microdissected

synaptic neuropil (stratum radiatum and lacunosum moleculare)

segments from the CA1 region of the adult rat hippocampus

allowed the identification of approximately 2550 mRNAs in

dendrites and/or axons [37], including the hnRNP A2/B1 mRNA

[37]. Using a neuronal culture system that allows the mechanical

separation of neurites from cell bodies [24,25] we investigated the

effect of BDNF on the levels of hnRNP A2/B1 transcripts in the

two compartments. qRT-PCR experiments showed that BDNF

treatment for 2 h significantly increased the hnRNP A2/B1

mRNA in the soma but had no effect on the abundance of the

transcript in the neurite compartment (Fig. 5).

Figure 3. Synaptic activity increases hnRNP A2/B1 in dendrites and induces the delivery of hnRNP A2/B1 to the synapse by a BDNF-
dependent mechanism. Cultured hippocampal neurons were stimulated or not with bicuculline (50 mM), 4-AP (2.5 mM) and glycine (10 mM), for
30 min. Where indicated, neurons were treated with TrkB-Fc (1 mg/ml) for 30 min and then stimulated or not with bicuculline in the presence of the
BDNF scavenger. The cells were immunostained for hnRNP A2/B1 (red), MAP2 (blue), and PSD95 (green) (A). White arrows indicate PSD95-positive
clusters that also contain hnRNP A2/B1 (A). The integrated fluorescence intensity, area and number of hnRNP A2/B1 puncta in dendrites (B, C, and D)
and at the synapse (as defined by the signal of hnRNP A2/B1 that overlaps with PSD95) (E, F, and G) was analysed using ImageJ software and
represented per dendritic area. The percentage of dendritic hnRNP A2/B1 signal that colocalizes with PSD95 was also analysed (H). Results are
normalized to control and are averaged of 3–7 different experiments performed in independent preparations. The following number of cells was
used in the analysis of the dendritic-localized hnRNP A2/B1 puncta: Ctr (n = 87 cells), Bic (n = 64 cells), TrkB-Fc (n = 47 cells), TrkB-Fc+Bic (n = 48 cells).
For the analysis of synaptic-localized hnRNP A2/B1 puncta the following number of cells was analysed: Ctr (n = 76 cells), Bic (n = 54 cells), TrkB-Fc
(n = 35 cells), TrkB-Fc+Bic (n = 35 cells). Error bars, mean 6 SEM. Statistical analysis was performed by one-way ANOVA, followed by Bonferroni’s test.
n.s. Not significant, * P,0.05; ** P,0.01; *** P,0.001. Scale bar = 4 mm.
doi:10.1371/journal.pone.0108175.g003
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Discussion

In this work we show that hnRNP A2/B1 is commonly detected

in dendrites and in synaptic sites of cultured hippocampal neurons

under resting conditions. Furthermore, we found that hnRNP A2/

B1 protein levels are rapidly increased in the cell body, dendrites

and synapses of hippocampal neurons upon neuronal activation or

BDNF stimulation. Together, these results point to a tight

regulation of the cytoplasmic distribution of hnRNP A2/B1, and

do not favor a model of constitutive delivery of the protein into

dendrites. This is particularly relevant since hnRNP A2/B1 is a

trans-acting factor involved in the transport of several mRNAs

along dendrites [7–9,38].

3BDNF plays an important role in the protein synthesis-

dependent late phase of LTP induced by high-frequency stimulation

in the hippocampus CA1 region [39,40]. BDNF-induced synaptic

potentiation has also been reported, both in vitro [41] and in vivo
[42,43]. The observed increase in the dendritic distribution and

synaptic clustering of hnRNP A2/B1 in hippocampal neurons

stimulated with BDNF suggest that the neurotrophin may act, at

least in part, by regulating the transport of mRNAs during plasticity-

related events. In particular, the BDNF-induced clustering of

hnRNP A2/B1 at the synapse may bring the Arc and CaMKII

mRNAs (among others) that are locally translated and may

contribute to the protein synthesis-dependent late phase of LTP.

Accordingly, intrahippocampal infusion of BDNF resulted in the

accumulation of Arc transcripts in dendrites and triggered long-

term potentiation (BDNF-LTP) at medial perforant path-granule

cell synapses in vivo [43,44]. Furthermore, exogenous application of

BDNF is sufficient to induce the transport of A2RE-containing

mRNAs, such as BDNF [45] and Arc [46] transcripts, into

dendrites.

Although synaptic activity and BDNF stimulation increased

hnRNP A2/B1 protein levels and clustering in dendrites, the effect

of neuronal activity was in part insensitive to the presence of TrkB-

Fc, indicating that it might have a component that is not mediated

by the release of endogenous BDNF. This contrasts with the

synaptic delivery of the protein upon neuronal activation, which is

likely to require the activation of TrkB receptors by BDNF.

Further research is needed to clarify the differential mechanisms

induced by synaptic activity and BDNF that promote the

accumulation of hnRNP A2/B1 in dendrites.

It was shown that BDNF treatment increases the proportion of

motile DEAD box 3 helicase-carrying RNA granules in dendrites

of hippocampal neurons [47]. Since these granules are believed to

contain hnRNP A2/B1, one may speculate that the increased

motility of RNA granules in response to BDNF might contribute

to the BDNF-induced synaptic accumulation of hnRNP A2/B1.

At the synapse hnRNP A2/B1 may release the transcripts that

specifically bind to this ribonucleoprotein in response to specific

stimuli, such as stimulation of TrkB receptors by BDNF.

Accordingly, phosphorylation of hnRNP A2/B1 by the Fyn kinase

was correlated with the increased translation of a MBP mRNA

reporter in oligodendrocytes [48] and TrkB receptors were shown

to activate Fyn in the hippocampus [49].

Among the pleiotropic roles of BDNF in the mammalian brain,

is the capacity of the neurotrophin to induce the formation of new

synapses [50]. It was recently demonstrated that hippocampal

synaptogenesis requires the BDNF-mediated regulation of the

motor protein KIF1A and KIF1A-mediated cargo transport [51].

However, it remains to be determined whether KIF5, which is

responsible for the transport of RNA containing granules [52], or

myosin-Va, which facilitates the transport of mRNP complexes to

dendritic spines [53], are regulated by BDNF-induced signaling.

The fractionation studies showed that hnRNP A2/B1 is present

in both monosomal- and polyribosomal-associated fractions at the

synapse. Because polyribosomes are sites of active translation

[54,55], and since the translation of dendritic-localized mRNAs is

also thought to occur via monosomes [56], these results suggest

that, besides its role in mRNA transport, hnRNP A2/B1 may also

regulate the translation of the cognate mRNAs at the synapse. In

Figure 4. BDNF induces the accumulation of hnRNP A2/B1 in dendrites and at the synapse in hippocampal neurons. Cultured
hippocampal neurons were stimulated or not with 100 ng/ml BDNF for 30 min. The role of Trk receptor activity in BDNF-induced regulation of
hnRNPA2/B1 distribution was tested using the inhibitor SHN722. Where indicated, neurons were treated 30 min with 1 mM SHN722 and then
stimulated or not with 100 ng/ml BDNF in the presence of the inhibitor. The cells were immunostained for hnRNPA2/B1 (red), MAP2 (blue), and
PSD95 (green) (A). White arrows indicate PSD95-positive clusters that also contain hnRNP A2/B1 (A). The integrated fluorescence intensity, area and
number of hnRNP A2/B1 puncta in dendrites (B, C, and D) and at the synapse (as defined by the signal of hnRNP A2/B1 that overlaps with PSD95) (E,
F, and G) was analysed using ImageJ software and represented per dendritic area. The percentage of dendritic hnRNP A2/B1 signal that colocalizes
with PSD95 was also analysed (H). Results are normalized to control and are the average of 3–6 different experiments performed in independent
preparations. The following number of cells was used in the analysis of the dendritic-localized hnRNP A2/B1 puncta: Ctr (n = 73 cells), Bic (n = 64 cells),
TrkB-Fc (n = 47 cells), TrkB-Fc+Bic (n = 48 cells). For the analysis of synaptic-localized hnRNP A2/B1 puncta, the following number of cells was analysed:
Ctr (n = 62 cells), Bic (n = 67 cells), TrkB-Fc (n = 37 cells), TrkB-Fc+Bic (n = 35 cells). Error bars, mean 6 SEM. Statistical analysis was performed by one-
way ANOVA, followed by Bonferroni’s test. n.s. Not significant, * P,0.05; ** P,0.01; *** P,0.001. Scale bar = 4 mm.
doi:10.1371/journal.pone.0108175.g004

Figure 5. BDNF upregulates hnRNP A2/B1 mRNA in the cell
body compartment of hippocampal neurons. Cultured hippo-
campal neurons were stimulated or not with 100 ng/ml BDNF, for
30 min or 2 h. The cell body mRNA was mechanically separated from
the transcripts of neurites and 500–1000 ng of RNA from each
compartment was used in the reverse transcription reaction. The
analysis of hnRNP A2/B1 mRNA levels was performed by qRT-PCR using
Ppia as internal control gene. The results are the average 6 SEM of five
(cell body compartment) or seven (neurite compartment) independent
transcription reactions, performed in distinct preparations. Statistical
analysis of logtransformed expression data was performed by one-way
ANOVA, followed by Dunnet’s test. * P,0.05.
doi:10.1371/journal.pone.0108175.g005
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agreement with these findings, hnRNP A2/B1 was shown to be

player in the regulation of localized translation of MBP mRNA in

oligodendrocytes [57]. Since dendritic mRNAs are typically

transported in a translational silent state, it will be important to

investigate whether hnRNP A2/B1 has the ability to repress the

translation of the target mRNAs during transport in neurons.

In the present study we also provide evidence for the presence of

Staufen1 in synaptic polysomal fractions (Fig. 1B). Staufen1 is

another well described trans-acting factor localized in dendritic

RNA granules [29,30] that regulates the transport of mRNA

[52,58] and was shown to play a role in protein synthesis-

dependent LTP in hippocampal pyramidal neurons [59]. Our

results suggest a role for this protein not only in the delivery but

also in the translational control of synaptic-localized mRNAs. To

our knowledge this is the first indication that Staufen1 may play a

role in the translational control at the synapse in mammalian

neurons. This is in agreement with the results showing the

presence of Staufen proteins in polysomal fractions isolated from

COS7 and HeLa cell lines [60,61], and with the role of Staufen1

in the translational control of mRNAs [62].

Using a culture system that allows a physical separation of the

soma and neurite compartment, we found that stimulation of

cultured hippocampal neurons with BDNF increased the hnRNP

A2/B1 mRNA only in the former compartment. The BDNF-

induced upregulation of hnRNP A2/B1 mRNA in cell bodies may

provide a layer to support the effect of the neurotrophin on the

hnRNP A2/B1 protein localization in the cytoplasm or even to

contribute to the wide variety of functions that hnRNP A2/B1

plays in the nucleus. The lack of effect of BDNF on the dendritic

levels of hnRNP A2/B1 mRNA contrasts with the effects observed

for transcripts encoding several translation-related proteins [24],

and indicates that the transport of the mRNAs for this

ribonucleoprotein is also tightly regulated. The differential effect

of BDNF on the dendritic levels of hnRNP A2/B1 mRNA and

protein may be due to the specificities of the transport of mRNAs

vs proteins.

Overall, our study provides strong evidence supporting the

dendritic accumulation of hnRNP A2/B1 in response to synaptic

activity and upon BDNF treatment, most likely through distinct

mechanisms. Similarly, the activity-dependent BDNF-mediated

synaptic delivery of hnRNP A2/B1 further suggests a role for

hnRNP A2/B1 in local mRNA metabolism and is likely to have a

role in BDNF-mediated synaptic plasticity events.
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