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ABSTRACT
Cerebral edema and excitoxicity are well known phenomena and are reported in multiple pathological 
contexts. Despite that, regarding traumatic brain injury, significant events in incidence and potential 
clinical consequences, little is known about the actual promoting and modulating processes of cerebral 
damage, namely in relation to glutamate, the main excitatory endogenous neurotransmitter of the central 
nervous system. Based on current concepts on neuropathology and cerebral regulation, a thorough 
review is made on the glutamatergic regulation system, its role and mechanisms of action in a secondary 
response to TBI, namely in cortex and hippocampus, sensible areas to acute and delayed damage. 
Current and past clinical trials are also mentioned as attempts to modulate these events, with no clinical 
significance so far. A better knowledge of the glutamatergic deregulation and related excitoxicity should 
play a key role in the understanding of TBI and provide a basis for possible therapeutic targets in a 
close future.
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RESUMO 
Glutamato e excitotoxicidade cerebral pós-traumática como possíveis alvos terapêuticos – 
Revisão da literatura
O edema cerebral e a excitotoxicidade são fenômenos bem conhecidos e foram descritos em múltiplos 
contextos patológicos. Apesar disso, em relação ao traumatismo cranioencefálico (TCE), acontecimento 
significativo em termos de incidência e consequências clínicas, pouco se sabe acerca dos reais processos 
de promoção e modulação do dano cerebral, nomeadamente em relação ao glutamato, o principal 
neurotransmissor excitatório endógeno do sistema nervoso central. Baseando-se em conceitos atuais 
de Neuropatologia e regulação cerebral, é feita uma revisão do sistema de regulação glutamatérgico, 
o seu papel e mecanismos de ação na resposta secundária ao TCE, nomeadamente no córtex e 
hipocampo, áreas propensas ao dano imediato e tardio. São referidos os diferentes ensaios clínicos 
até a data, como tentativas de modulação desses eventos, sem significância clínica até ao momento. 
Um melhor conhecimento da desregulação glutamatérgica e concomitante excitotoxicidade deverá 
desempenhar papel crucial na compreensão do TCE e funcionar como ponto de partida para eventuais 
alvos terapêuticos no futuro.
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Introduction

Traumatic brain injury (TBI) is a common clinical 
condition, one of the most frequent traumatic situations 
in the pediatric and adult ages, necessarily unforeseen 
and sudden in progress, with multiple causes (traffic 
accidents, falls, gunshot wounds) and possibly devasta
ting consequences for the victim and a huge burden for 
the society, implying huge costs in public health care. 
Previous reports on humans1,2 and animal models3,4 

have shown, along with major neurological deficits/
symptoms (motor deficits, epilepsy), the persistence of 
unspecific complaints (namely headaches) and minor 
cognitive deficits – affected spatial orientation and 
memory, diminished learning abilities and work per-
formance – directly related to neuronal hippocampal 
loss.3,5,6 These symptoms, obvious after 48h, can persist 
over two weeks (postconcussion syndrome) and even 
become permanent.7 It has also been associated with 
an increased risk for Depression8 or neurodegenerative 
diseases.9 Emotional processing disturbances can also 
be attributed to hippocampal damage, according to 
recent theories on cognitive/mnesic mechanisms and 
complex emotional states.10 TBI is the cause of death in 
30%-50% of all deaths related to traumatic events,11,12 
with a mortality rate of 18,1/100.000 inhabitants (period 
1995-2001), according to CDC (Centers for Disease 
Control, TBI Surveillance System)13 (official sources). 
Even in low-energy trauma, representing 70% to 90% of 
all TBI’s,13 the risk for complications or progression of 
initial injury or cerebral edema poses a significant chal-
lenge for the neurosurgeon/neurointensivist. Despite 
the technology and medical care nowadays increasingly 
available, it is constantly reminded the need for further 
tools, capable of guiding the decision process and moni-
toring, and new therapeutic strategies, effective against 
self-sustained pathological processes. 

Discussion

In TBI, one can distinguish the initial primary events 
of cellular damage and consequent neurological deficit, 
including intra-cranial bleeding or cerebral contusions 
as major primary lesions, and secondary mechanisms 
of loco-regional, cellular and biochemical deregulation 
– increased vascular permeability, vascular dilatation, 
ionic exchanges deregulation – leading to cerebral 
edema and cellular death (Figure 1). These secondary 
pathological events, multifactorial in their nature, prog-
ress for days after the initial traumatic event and are 
theoretically subject to pharmacological intervention. It 
should be mentioned that, although most reports focus 

on neuronal damage, the concept of astrocyte and glial 
cell damage is gaining importance, as shown in recent 
reports,14-17 with parallel mechanisms of aggression.18-20

Clinical and animal-model studies with microdi-
alysis21-25 and spectroscopy27 (regarding pediatric ages) 
have shown a significant post-traumatic increase in 
extracellular levels of glutamate (Figure 2), the main 
excitatory endogenous neurotransmitter of central 
nervous system, as well as of lactate (from anaerobic 
glicolysis)27 and aspartate.28 This was also shown in 
studies of cerebral spinal fluid from TBI victims.29,30 It 
should be mentioned that this increase is notorious as 
early as 6 hours after the trauma27 but only reaches its 
peak only around 48h,24 proving this is not a merely 
acute event. This increase, described in many hypoxic-
ischemic situations in relation to apoptosis/necrosis31 
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Figure 1 – Acute post-traumatic response and cerebral edema.

Figure 2 – Glutamatergic response in post-traumatic damage. 
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is attenuated or abolished by induction of barbituric 
coma,28 which could explain the relative therapeutic 
role of this last-resort procedure. The levels of extracel-
lular glutamate are regulated by astrocytic transporters 
GLAST (EAAT1) e GLT-1 (EAAT2),32-34 downregulating 
the excitoxic status.35,36 This pathological process leads to 
damage and cellular death, upon activation of ionotropic 
receptors NMDA or AMPA – type. More specifically, 
the activation of these receptors induces disruption of 
the homeostatic ionic balance, increasing intra-cellular 
levels of calcium ion (Ca2+), in relation, among other 
mechanisms, with the high sodium ion (Na+) concen-
tration – revision by Floyd et al.15 and others37,38 and 
inversion of the Na+-Ca2+ exchange system (sodium-
calcium exchanger, NCX).39 In this way, innumerous 
enzymatic complexes are activated (phospholipases, 
endonucleases, proteases), leading to cytoskeleton dam-
age. Other studies, using glutamate-sensitive astrocytic 
cell cultures40 subject to mechanical trauma, have shown 
diminished intracellular Na+ levels and improved cel-
lular survival upon glutamate transport inhibition by 
TBOA (DL-treo-beta-benziloxiaspartate).15 This upset 
in Ca2+ metabolism, although acute, can last in time, 
as shown in studies proving delayed changes in Ca2+ 
homeostasis (30 days after the initial trauma), with 
rather unknown underlying mechanisms, in possible re-
lation to clinical findings like post-traumatic seizures.38 
Adding to this, following initial cell injury, one can also 
observe mitochondrial damage and release of oxygen re-
active species (ROS), promoting apoptosis, documented 
in TBI animal models from 2h to two weeks after the 
initial trauma.41 The increase in ROS release in an 
ischemic event, as a starting point for oxidative stress, 
is apparently the result of high extracellular glutamate 
levels.35,42,43 ROS are responsible for abnormal protein 
turnover, upsetting its normal function and interfering 
with cellular cycles, damaging DNA (breaks in chain 
or changes in the nucleotides components) (Figure 2). 
Different studies addressing the use of antioxidant 
agents in ischemic events failed to show encouraging 
results.43 Cell´s structural damage eventually will imply 
inversion of the normal function of glutamate receptors, 
on a neuronal and astrocytic level, in part due to ATP 
depletion as a result of iNOS-mediated (inducible nitric 
oxide synthase)44,45 nitric oxide release, with additional 
glutamate release to the extracellular compartment.46,47 
Cellular damage, diminished glutamate uptake by 
sodium-dependent carriers,39 augmented extracel-
lular/synaptic levels of glutamate, they all contribute 
to increased cell injury or death, which will then result 
in reduced glutamate uptake and its increased spill-
ing, promoting a self-sustained process of neuronal/
astrocytic aggression (Figure 2) (vicious circle)18,48,49, 
documented in several clinical contexts: TBI, med-
ullary lesions, ischemic events, neurodegenerative 

diseases.24,50-52 These increasingly disseminated events, 
promoting secondary damage, are in part responsible 
for the pathological changes in structures topographi-
cally distant from the initial trauma (e.g. contra-lateral 
hippocampus), being a potential therapeutic target in 
an attempt to stop or attenuate the phenomena leading 
to secondary, possibly permanent, damage (Figure 3). 
The pre-synaptic deregulation might itself be related to 
circuit alterations,49 leading to behavioral changes and 
stimulus hypersensitivity, shown in animal models and 
humans victims of TBI. 

Along with the frequent cortical contusion (or 
similar injury) and white matter tracts ultra-structural 
damage,53 several experimental studies on TBI show 
significant damage to the ipsi and contra-lateral hip-
pocampus,54-56 including neuronal disruption on layer 
CA3 (up to 60% in the first 48h55 and deafferentation 
in the CA1 layer. Immunohystochemical assays – 
GFAP and Fluor-Jade staining – confirm neuronal 
and astrocytic structural damage, namely in the layers 
previously mentioned – CA1 and CA3 – in the first 
24h after TBI.39 However, hippocampal damage is also 
observed in cell populations that, although not on 
necrosis/apoptosis processes, present several minor 
structural damages, including synaptic and dendritic 
degeneration, with diminished local synaptic density.57 
In animal models of repetitive minor TBI, disperse 
gliosis and minimal changes in the deeper layers were 
shown.58 In several experimental models of post-
traumatic hippocampal apoptotic phenomena, two 
distinct stages are obvious: an initial one – cellular 
damage and loss, followed by a progressive neuronal 
loss, persisting for days or even weeks59,60 (Figure 3). 
Hippocampal neuronal loss, as well as lower threshold 
for excitability, is obvious bilaterally but only really 
persisting (30 days) on the same side of the impact.61 

Pyramidal CA3-layer and dentate gyrus hippocampal 
neurons appear to be most vulnerable to this bilateral 
degeneration59 following unilateral trauma, as a result 
of systemic repercussion of an initially localized event. 
The most frequent post-TBI cognitive impairment, 
memory disturbance, as well as spatial learning, can 
therefore be explained on anatomic-pathological 
grounds, regarding structural disruption, disturbance 
of neurometabolic equilibrium (documented in 
concussion-victims athletes submitted to MRI-spec-
troscopy62 and interference with normal hippocampal 
synaptic transmission,63,64 including raised excitability 
potential65 48h after TBI. 

Hippocampal damage is amplified, as expected, 
with low doses of keinate receptor agonists, glutamate 
analogues.66 This can explain the neuroprotective ef-
fect, in animal models, of NMDA and AMPA-receptor 
antagonists67 facing an initial hypoxic-ischemic ag-
gression,48 manifested by diminished cortical and hip-
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pocampal (mostly CA1 layer) neuronal loss. However, 
as with every clinical trials with neuroprotective agents 
in trauma, tests with Selfotel (CGS-19755) or Traxo-
prodil (CP-101606), NMDA-receptors antagonists, 
failed to show any improvement in morbidity and/or 
mortality.68-70 Other therapeutic targets were tested in 
animal models, including neuropeptide Substance P, a 
modulator for Glutamate levels and NMDA receptors, 
using Neurokinin antagonists and cannabinoid recep-
tors type 2 antagonists, with promising results regarding 
functional outcome.71-75

The transition from animal experimental models to 
large prospective clinical trials has failed showing sig-
nificant efficacy for these therapeutic agents, and none is 
included in the diverse daily-practice clinical protocols. 
Many reasons have been pointed for this: insufficient 
knowledge on pathophysiology, unknown optimal dos-
ages and therapeutic timings, incorrect pharmacological 
preparation, arguable end-points, basic anatomical and 
physiological differences between human and animal 
models of disease,76 among many others.
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Figure 3 – Glutamatergic excitoxicity in post-traumatic damage.
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Conclusion

With a multidisciplinary effort and profound knowl-
edge of all the complex regulation systems involved, new 
specific therapies should be expected, capable of actively 
modulate the glutamatergic system and effectively play 
a role in diminishing morbidity and mortality in TBI.
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