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THE EIGENPAIRS OF A SYLVESTER-KAC TYPE MATRIX
ASSOCIATED WITH A SIMPLE MODEL FOR ONE-DIMENSIONAL

DEPOSITION AND EVAPORATION

C.M. DA FONSECA, DAN A. MAZILU, IRINA MAZILU, AND H. THOMAS WILLIAMS

Abstract. A straightforward model for deposition and evaporation on discrete cells of
a finite array of any dimension leads to a matrix equation involving a Sylvester-Kac type
matrix. The eigenvalues and eigenvectors of the general matrix are determined for an
arbitrary number of cells. A variety of models to which this solution may be applied are
discussed.

1. Introduction: the physical model

Consider a set of n cells, arranged on a D-dimensional lattice. Each cell of the lattice
has two states, empty or filled: empty cells are filled at a rate α; filled cells are emptied
at a rate β. Let Qk represent the time-dependent ensemble average probability that k
cells of the lattice are filled. This satisfies a rate equation:

(1.1)
d

dt
Qk = −((n− k)α + kβ)Qk + (n− k + 1)αQk−1 + (k + 1)βQk+1.

This random sequential model is quite general and versatile, and can be customized to
describe a variety of two-state physical systems that exhibit adsorption and evaporation
processes. One-dimensional sequential adsorption models have been studied thoroughly in
different physics contexts [17, 34]. Adsorption in two dimensions is not as well understood,
however. There are quite a few computational papers [17] on the topic, but few analytical
solutions exist for the general two-dimensional case. The adsorption of particles is exactly
solvable in higher dimensions only for tree-like lattices. Recently, analytical results have
been reported for the random sequential process [8] and reaction-diffusion processes on
Cayley trees and Bethe lattices [2, 19, 29]. The standard method used to study these
systems is the empty-interval method [27]. This mathematical method fails when evap-
oration is considered. We here demonstrate that a matrix theory approach can lead to
exact results for a variety of physical systems.

Two specific experimental topics motivate our paper. One is the self-assembly mech-
anism of charged nanoparticles on a glass substrate [24]. Known in literature as ionic
self-assembled monolayers (ISAM), this technique has been used successfully in making
antireflective coatings [14, 40]. Physical properties of these coatings depend upon the
surface coverage of the substrate. The deposition process is stochastic, with particles
attaching to and detaching from the substrate, so a random sequential adsorption model
with evaporation is appropriate.

The second motivating experimental setting involves properties of synthetic polymers
called dendrimers, which have potential use as a drug delivery mechanism via drug encap-
sulation [26]. Dendrimers are physical analogs of Cayley tree structures. They are highly
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branched, spherical polymers that consist of hydrocarbon chains with various functional
groups attached to a central core molecule. The precise control that can be exerted over
their size, molecular architecture, and chemical properties give dendrimers great potential
in the pharmaceutical industry as effective carriers for drug molecules. The attachment
and release of the drug molecules is a stochastic process, and so also can be modeled by
a general random sequential model as discussed herein.

The random sequential model can also address other kinds of problems as diverse as
voting behavior and the spread of epidemics [9]. Epidemic-type models abound in the
literature [13, 32], from simple ones that capture only the basic rules of the infection
mechanism, to complex models that account for spatial spread, age structure and the
possibility of immunization. Epidemic models have been applied successfully in other
fields including the social sciences (voter models, rumor spreading models) and computer
science (computer virus propagation in a network) [28, 33].

2. Mathematical model

The rate equation (1.1) easily transforms into an equation for the n + 1 dimensional
vector Q with components Q0, Q1, . . . , Qn as

dQ

dt
= MQ,

in which M is the tridiagonal square matrix

(2.1) M =




−nα β
nα −(n− 1)α− β 2β

(n− 1)α −(n− 2)α− 2β 3β

(n− 2)α
. . . . . .
. . . . . . nβ

α −nβ



.

The general time-dependent solution for Q is a linear combination of terms of the form
uk exp(λkt) where uk is the k-th eigenvector or M and λk is the corresponding eigenvalue.

There is a long history of interest in and work on the eigenvalue problem for matrices
similar to M . The (n + 1) × (n + 1) Sylvester-Kac matrix is a tridiagonal matrix with
zero main diagonal, superdiagonal (1, 2, . . . , n), and subdiagonal (n, . . . , 2, 1), i.e.,




0 1
n 0 2

n− 1
. . . . . .
. . . . . . n− 1

2 0 n
1 0



.

This matrix and its characteristic polynomial were first presented by Sylvester in a short
communication in 1854 [37]. It was conjectured that its spectrum is 2k − n, for k =
0, 1, . . . , n. The first proof of Sylvester’s determinant formula is attributed by Muir to
Francesco Mazza in 1866 [30, p.442]. Note that there is a typographical error in this
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discussion, however. The correct version of the formula that appears on page 442 is

∣∣∣∣∣∣∣∣∣∣∣

λ a1

an λ a2

an−1
. . . . . .
. . . . . . an

a1 λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
λ an

an λ

∣∣∣∣

∣∣∣∣∣∣∣∣∣

λ a1

an−2
. . . . . .
. . . . . . an−2

a1 λ

∣∣∣∣∣∣∣∣∣
,

where “a1, a2, . . . , an are elements increasing by the common difference a1”. In [30, pp.432-
434] Muir discusses another similar matrix, also of interest.

Only many decades after, these matrices and their eigenvalues were subject of study
in a foundational paper of Schrödinger [36], but without a proof (see [6, 38]). It appears
that Mark Kac [25] in 1947 was in fact the first to prove the formula, using the method
of generating functions, and to provide a polynomial characterization of the eigenvectors.
Results on the spectrum of this matrix were independently rediscovered and extended by
Rózsa [35], Clement [12], Vincze [39], Taussky and Todd [38], and Edelman and Kostlan
[16] based on different approaches.

Applications of this simply-structured tridiagonal matrix range from linear algebra,
orthogonal polynomials, numerical analysis, graph theory, statistics, to physical models
and biogeography [1, 3, 5, 7, 10, 15, 16, 18, 20, 22, 23, 31, 35].

One of the most important non-trivial and interesting extensions of the Sylvester-Kac
matrices is the tridiagonal matrix for Krawtchouk polynomials, defined by
(2.2)

K(p, n) =




−pn pn
1− p −pn− (1− 2p) p(n− 1)

2(1− p) −pn− 2(1− 2p) p(n− 2)

3(1− p)
. . . . . .
. . . . . . p

n(1− p) −(1− p)n




.

In 2005, using distinct techniques, Richard Askey [3] and Olga Holtz [21] obtained
simultaneously the eigenvalues for K(p, n) and, later, Chu and Wang [11] described the
associated eigenvectors.

Theorem 2.1 ([3, 11, 21]). The characteristic polynomial of K(p, n) defined in (2.2) is

det(K(p, n)− xIn+1) =
n∏

k=0

(x+ k)

and, for k = 0, 1, . . . , n the eigenvector uk = (uk,0, uk,1, . . . , uk,n) associated with eigenvalue
−k, has elements

uk,` =

min{`,k}∑

j=0

(−1)`−j

(
`

j

)(
n− j
k − j

)
p−j ,

for ` = 0, 1, . . . , n.

The matrix M that we study in this note contains, as a particular case, the matrix
K(p, n) by transposition.
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3. Eigenpairs for M

The equilibrium (long-time) behavior of the probabilities Qk are components of the
eigenvector of M corresponding to eigenvalue zero. These static values of Qk can easily
be extracted directly from the rate equation (1.1) by setting dQk/dt = 0. This yields
a three-term recursion relation for Qk that begins at k = 1 as a two-term expression.
Setting Q0 = 1 (arbitrary, and possible as long as α 6= 0) allows us to evaluate each
successive Qk:

Qk = η−k n!

k!(n− k)!
,

where η := β/α.
The relative probabilities Qk, when divided by the sum

n∑

k=0

Qk =
n∑

k=0

η−k n!

k!(n− k)!
=

(
1 + η

η

)n

,

produce absolute probabilities

Q′k =
ηn−k

(1 + η)n

n!

k!(n− k)!
.

From these we can also calculate the average coverage:
n∑

k=0

k Q′k =
n∑

n=0

ηn−k

(1 + η)n

n!

(k − 1)!(n− k)!
= n

1

1 + η
= n

α

α + β
,

confirming a result easily derived as well from mean-field analysis.
More generally, the full spectrum of eigenvalues and corresponding eigenvectors for the

Sylvester-Kac matrix defined in (2.1) is as follows:

Theorem 3.1. The eigenvalues of the matrix M of order n+ 1 defined in (2.1) are

λk = −k(α + β) ,

for k = 0, 1, . . . , n; and uk = (uk,0, uk,1, . . . , uk,n) is the eigenvector associated with λk,
with

(3.1) uk,` =
n−k∑

j=`−k

(−)k+`+jηn−k−j

(
k

`− j

)(
n− k
j

)
,

for ` = 0, 1, . . . , n, where η ≡ β/α.

Proof. Our approach consists in checking the eigenvalue equation for every case. For the
first row of M , we require

−nαuk,0 + βuk,1 = −k(α + β)uk,0

for all k. Dividing the equation by α and moving all terms to the left gives

(−n+ k + kη)uk,0 + ηuk,1 = 0.

Utilizing the explicit expressions for the uk,`’s from (3.1) leads simply to

(−n+ k + kη)(−)kηn−k − (−)kηn−k+1k + (−)kηn−k(n− k)

which vanishes, confirming the eigenvalue equations per the top row of the matrix.
Similarly for the last row of M

αuk,n−1 − nβuk,n = −k(α + β)uk,n
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for all k, equivalent to
uk,n−1 + (k + (k − n)η)uk,n = 0 .

Again utilizing explicit expressions for the uk,`’s we get only three non-vanishing terms

η(n− k)− k + (k + (k − n)η) = 0 ,

confirming the eigenvalue equations per the bottom row.
For all the other rows (e.g. row `) of M the eigenvalue equations can be expressed as

(3.2) (n− `+ 1)uk,`−1 + (k + `− n+ (k − `)η)uk,` + (`+ 1)η uk,`+1 = 0 .

For this calculation, it is useful to change the summation variable in each expression for
uk,` in such a way that each term is a sum over q with the same power of η in each term,
i.e., ηq. This transforms the first term in (3.2) into

T1 = −(n− `+ 1)
n−`+1∑

q=0

(−)n+`+qηq

(
k

k + `+ q − 1− n

)(
n− k

n− k − q

)
;

the second term is best expressed as two sums (one without a multiplying η and the
second one with)

T2 = (k + `− n)
n−∑̀

q=0

(−)n+`+qηq

(
k

k + `+ q − n

)(
n− k

n− k − q

)

and

T3 = −(k − `)
n−`+1∑

q=1

(−)n+`+qηq

(
k

k + `+ q − 1− n

)(
n− k

n+ 1− k − q

)
;

and the final term becomes

T4 = (`+ 1)
n−`+1∑

q=0

(−)n+`+qηq

(
k

k + `+ q − n

)(
n− k

n+ 1− k − q

)
.

Because of the uneven summation limits we must look at two special cases. The coef-
ficient of η0 in the sum of these four sums has contributions only from T1 and T2:

−(n− `+ 1)(−)n+`

(
k

k + `− 1− n

)(
n− k
n− k

)
+ (k + `− n)(−)n+`

(
k

k + `− n

)(
n− k
n− k

)

= −(n− `+ 1)(−)n+` k!

(k + `− n)!(n− `)!
k + `− n

(n− `+ 1)
+ (k + `− n)(−)n+`

(
k

k + `− n

)

easily seen to vanish, as desired.
The second special case involves the coefficient of ηn−`+1, which has contributions only

from T1 and T3:

−(n− `+ 1)(−)1

(
k

k

)(
n− k

`− k − 1

)
− (k − `)(−)1

(
k

k

)(
n− k
`− k

)

= (n− `+ 1)

(
n− k

`− k − 1

)
+ (k − `) (n− k)!

(`− k − 1)!(n− `+ 1)!

n− `+ 1

`− k
which also clearly vanishes.
The confirmation concludes with examination of the coefficient of ηq (0 < q < n−`+1)

in the sum of the four Ti terms:

−(n− `+ 1)

(
k

k + `+ q − 1− n

)(
n− k

n− k − q

)
+ (k+ `− n)

(
k

k + `+ q − n

)(
n− k

n− k − q

)
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−(k− `)
(

k

k + `+ q − 1− n

)(
n− k

n+ 1− k − q

)
+ (`+ 1)

(
k

k + `+ q − n

)(
n− k

n+ 1− k − q

)

=

(
k

k + `+ q − n

)(
n− k

n− k − q

)(
−(n− `+ 1)

k + `+ q − n
n+ 1− `− q + (k + `− n)

− (k − `) k + `+ q − n
n+ 1− `− q

q

n+ 1− k − q + (`− 1)
q

n+ 1− k − q

)
.

Patient algebra can confirm that the final bracketed expression vanishes, thereby com-
pleting the proof. �

Analytic software was used to find the eigenvalues and eigenvectors for the matrix
M (2.1) for small values of n (up to ten) and from these forms a general expression for
arbitrary n were conjectured. The method shown above was used to verify the conjectures.

We believe that Theorem 3.1 will lead to new interesting relations to Krawtchouk, Hahn,
and q-Racah polynomials as in [3, 7, 11, 21]. Some problems involving distance regular
graphs can also be considered [5, 38]. Moreover, the original connection with problems in
statistical mechanics, comprehensively studied by Mark Kac [25], can be extended.
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