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Abstract

Guanine rich nucleic acids can self-assemble into four-stranded guanine (G)-quadruplex 

structures that have been identified in eukaryotic telomeres, as well as in non-telomeric 

genomic regions, such as gene promoters, recombination sites and DNA tandem repeats, 

finding wide applications in areas ranging from medical chemistry to nanotechnology and 

biosensor technology. In addition to classical methodologies for studying G-quadruplex 

structures, such as circular dichroism, nuclear magnetic resonance or crystallography, the

electrochemical methods present very high sensitivity and selectivity and have been used 

for the rapid detection of the conformational changes from single-strand to G-quadruplex. 

This review is focused on the recent advances of G-quadruplexes electrochemistry and the

design of strategies for the fabrication of G-quadruplex-based biosensors with 

electrochemical detection, in particular G-quadruplex aptasensors and hemin/G-quadruplex 

peroxidase-mimicking DNAzymes biosensors.

Keywords: G-quadruplex, G-quartet, aptasensor, DNAzyme, DNA electrochemical

biosensor.
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1 Overview

Guanine (G) rich nucleic acid sequences present the ability to self-assemble into 

four-stranded helical arrangements called G-quadruplexes (Scheme 1), that are found in 

telomeric regions of chromosomes, oncogene promoter sequences and other biologically 

relevant regions of the genome [1-13]. The building blocks of G-quadruplexes are 

structures known as G-quartets (Gq) (Scheme 1B), which correspond to the association of 

four planar G bases held together by eight Hoogsteen hydrogen bonds. The G-quartets are 

stack on top of each other in a helical fashion and are stabilized by π-π hydrophobic 

interactions and by the presence of monovalent cations such as K+ and Na+. The cations are 

placed in the central helical cavity, in between the G-quadruplex plain, and establish 

interactions with the carbonyl oxygen from the G bases. 

G-quadruplexes are very polymorphic, being classified in terms of their 

molecularity (i.e. the number of associated strands, leading to the formation of monomer, 

dimer or tetramer quadruplexes, Scheme 1C), strand polarity (i.e. the relative arrangement 

of adjacent strands in parallel or antiparallel orientations), glycosidic torsion angle (anti or 

syn) and orientation of the connecting loops (lateral, diagonal or both) [1, 4, 13-15]. 

Different quadruplex topologies have been observed by nuclear magnetic resonance (NMR) 

or crystallography, either as native structures or as complexes with small-molecules.

G-quadruplex structures are relevant in areas ranging from structural biology to

medical chemistry, supra-molecular chemistry, nanotechnology and biosensor technology. 

They have emerged as a new class of cancer-specific molecular targets for anticancer drugs, 

since the quadruplex stabilisation by small organic molecules can lead to telomerase 
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inhibition and telomere dysfunction in cancer cells [8, 9, 13]. In addition, G-rich 

oligonucleotides are able to self-organize in quadruplex-based two-dimensional networks 

and long nanowires, relevant for nanotechnology applications [16-21].

Different review articles summarized the recent literature on the structure and 

stability of G-quadruplexes that are relevant for in vivo function and drug design [1, 4, 5, 

22], and assembly of G-quadruplex nanostructures and devices [23]. G-quadruplex 

structures were studied using different experimental techniques, such as molecular 

absorption, circular dichroism, molecular fluorescence, mass spectrometry, NMR, surface 

plasmon resonance, crystallography or atomic force microscopy (AFM) [24-27]. 

Electrochemical techniques present very high sensitivity and selectivity and can be 

successfully employed for the rapid detection of small perturbations in the nucleic acid 

secondary structure, and recently started to be used for the detection of G-quadruplex 

configurations [28]. Electrochemical sensing devices based on quadruplex nucleic acids 

have the advantage of being highly selective and sensitive, fast, accurate, compact, 

portable, and inexpensive. For the first time the recent advances on G-quadruplex 

electrochemistry and G-quadruplex-based electrochemical biosensors are reviewed.

2 G-quadruplex electrochemistry

Although electrochemical research on DNA is of great relevance to explain many 

biological mechanisms and the nucleic acids redox behaviour and adsorption processes

have been extensively studied over recent decades [29-35], the redox behaviour of 

G-quadruplex structures stared to be investigated only very recently [28]. 
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The first report on the electrochemical oxidation of G-quadruplex structures used

differential pulse (DP) voltammetry at a glassy carbon (GC) electrode [36]. The 

voltammetric behaviour of two sequences: thrombin-binding aptamer, TBA 

(5’-GGTTGGTGTGGTTGG-3’) and extended thrombin-binding aptamer, eTBA 

(5’-GGGTTGGGTGTGGGTTGGG-3’), (Scheme 2), was correlated with the sequence 

base composition, the presence/absence of K+ ions, and the adsorption morphology on a 

highly oriented pyrolytic graphite (HOPG) surface was investigated by AFM.

DP voltammograms obtained in Na+ ions solutions of TBA (Fig. 1A) and eTBA 

(Fig. 1D) showed only the occurrence of the oxidation of guanine (G) residues at the C8-H 

position, in a two-step mechanism involving the total loss of four electrons and four 

protons, anodic peak G [28, 36, 37]. AFM images of TBA (Fig. 1B) and eTBA (Fig. 1E) 

showed two different morphologies, a thin network film due to the adsorption of the single-

stranded molecules and spherical and rod-like shapes aggregates due to the adsorption of 

some G-quadruplex structures.

DP voltammograms obtained in K+ ions containing solutions showed a decrease of 

the guanine oxidation peak G, and, in the case of eTBA, the occurrence of a new peak at 

higher potential, due to the oxidation of G-quartets (Gq) (Figs. 1A and 1D). The oxidation 

peak Gq did not appeared in the experiments with TBA, due to the very little concentration 

of G-quartets, below DP voltammetric detection limit. The voltammetric results were 

confirmed by the AFM images, showing that in the presence of K+, TBA (Fig. 1C) and 

eTBA (Fig. 1F) adsorbed less onto HOPG, when compared to the adsorption in the 

presence of only Na+ ions, and the morphology corresponded only to the adsorption of 

single-stranded molecules. This is due to the fact that, in the presence of K+, TBA and 

eTBA form monomeric intra-molecular quadruplexes arranged in a chair-like structure and 
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consisting of two G-quartets connected by two TT loops and a single TGT loop (Scheme 2)

[38], that are very stable, compact and rigid, preventing the interaction with the 

hydrophobic HOPG surface [36].

The interaction between TBA and eTBA sequences with the serine protease 

thrombin was studied using voltammetry and AFM, and the mechanism of interaction was 

established [28, 39]. The AFM results obtained after the incubation of thrombin with 

single-stranded aptamers (Figs. 2A and 2D) showed for low incubation times the 

co-adsorption of molecules of the aptamer–thrombin, the free aptamer and the free 

thrombin. Increasing the incubation time, the height of the aggregates increased in 

agreement with the formation of an aptamer-thrombin complex. The voltammetric results 

confirmed these data and showed that thrombin oxidation peaks T1 and T2 occur at a more 

positive potential upon the aptamer-thrombin complex formation (Figs. 2C and 2F). This 

behaviour was explained considering coiling of the single-stranded aptamers around the 

thrombin structure, leading to the formation of a robust complex that maintains the

conformation of the thrombin molecules.

After incubation of thrombin with G-quadruplex aptamers (Figs. 2B and 2E), the 

AFM images showed patches of a thick layer with a bulky, knotty appearance due to the 

existence of a large number of embedded aggregates, corresponding to the adsorption of 

different types of aggregates dictated by the interaction with either one or both thrombin 

exocites. The voltammetric data (Figs. 2C and 2F) suggested that upon interaction with 

thrombin, the quadruplexes are always in contact with the electrode surface whereas the 

thrombin molecules lie above the quadruplex structure which reduces their contact with the 

electrode surface leading to the occurrence of lower thrombin oxidation peaks.
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The redox behaviour and the adsorption mechanism of 10-mer oligonucleotides that 

contain only one block of guanines, d(G)10, d(TG9) and d(TG8T), with respect to their 

ability to form parallel tetra-molecular G-quadruplexes was described [28, 40, 41]. The 

voltammetric and AFM experiments showed the oxidation of d(G)10, d(TG9) and d(TG8T) 

at the GC electrode, and spontaneous adsorption onto HOPG surface (Figs. 3 and 4), with 

the formation and stabilization of G-quadruplexes and different higher-order 

nanostructures, directly influenced by the oligonucleotides base composition [40], 

concentration [41] and pH of the solution [41].

Single-stranded sequences were obtained in Na+ containing solutions for short 

incubation times and were detected in AFM as thin polymeric structures (Fig. 3B) and in 

DP voltammetry by the occurrence of only the oxidation peak G (Fig. 3A). G-quadruplex 

secondary structures were formed very slowly in Na+ ions containing solutions (Figs. 3A

and 3C), and very fast in freshly prepared K+ ions containing solutions, by AFM the 

adsorption of higher spherical aggregates was imaged, and by DP voltammetry the decrease 

of oxidation peak G and the occurrence/increase of oxidation peak Gq, and a shift to 

positive potentials, in a K+ ions concentration and time dependent manner, was detected

(Fig. 4). The decrease of the oxidation peak G was due to a decrease of the number of free 

guanine residues in single-stranded oligonucleotides, the increase of the oxidation peak Gq

was due to an increased number of G-quartets, and the oxidation peak Gq potential shift to 

more positive potentials was due to the formation and stabilisation of rigid G-quadruplexes 

that are more difficult oxidised. 

DP voltammetry and AFM enabled the characterisation of G-rich oligonucleotides 

self-assembling into higher-order nanostructures, in the presence of high K+ ions 

concentration and/or long incubation times, very relevant for biomedical and 
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nanotechnological applications [28, 40, 41]. 

The ability to form long G-nanowires was only found in the sequence d(G)10 (Figs. 

4A and 4B), but both sequences d(G)10 and d(TG9) self-assembled into short quadruplex 

super-structures (Figs. 4A–4E), while the sequence d(TG8T) was not able to self-assemble 

into a quadruplex super-structure (Figs. 4F and 4G), due to the presence of thymine

residues at both 5’ and 3’ ends, forming only short G-quadruplexes. Depending on the 

application, each one of the structures can be useful: the perfectly aligned short and 

compact G-quadruplexes can be used for screening cancer therapeutic agents, the perfectly 

aligned G-nanowires may represent building blocks of molecular nanowires for 

nanoelectronics and the G-based super-structures and frayed G-nanowires with slipped-

strands can work as a nucleation platform for the addition of subsequent strands and the 

formation of larger structures. 

3 G-quadruplex electrochemical biosensors

DNA electrochemical biosensors are good models for simulating nucleic acid 

interactions with cell membranes, potential environmental carcinogenic compounds and 

clarifying the mechanisms of interaction with drugs [30-35, 42]. A DNA electrochemical 

biosensor is based on a transducer (the electrode) with a DNA probe immobilized on its 

surface, the changes that occur in the DNA structure during interaction with DNA-binding 

molecules being translated in electrical signal.

The majority of DNA electrochemical biosensors are label-free devices, directly 

monitoring the changes in the oxidation peaks of the DNA guanine and adenine residues 

after the interaction with the analyte [30-35]. Nevertheless, to the present date, no label-free 
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DNA electrochemical biosensors based on direct monitoring the modifications of the G and 

Gq oxidation peaks have been reported, all G-quadruplex electrochemical biosensors used

redox labels as amplification strategies. 

3.1 G-quadruplex electrochemical aptasensors 

Short aptamers that adopt G-quadruplex secondary structures received increased 

attention due to their specific binding to a variety of molecular targets, ranging from small 

ions and organic molecules to peptides, proteins, enzymes, antibodies and cell surface 

receptors [43, 44]. The majority of G-quadruplex electrochemical aptasensors are using

thrombin binding aptamers and gold electrodes as electrochemical transducers, the 

aptamers attachment being achieved using amine or thiol functionalization [45-47, 48] or

the affinity of biotin to avidin, streptavidin or neutravidin [49, 50].

The G-quadruplex electrochemical aptasensors can be categorized depending on the 

assay format, the most important being sandwich-type aptasensors (dual-site binding) and

structure switching-based aptasensors (single-site binding) [51]. Small molecules are 

generally detected using the single-site binding configuration, while protein targets can be 

detected via both single-site and dual-site binding [52, 53].

3.1.1 Sandwich-type G-quadruplex electrochemical aptasensors

Sandwich-type G-quadruplex aptasensors are generally based on the aptamer ability 

to recognize different positions on the analyte, such as the thrombin binding aptamer 

recognising the fibrinogen and heparin binding sites of thrombin (aptamer–analyte–aptamer 

sandwich, Scheme 3A). The aptasensor is composed by two aptamer layers: the first
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aptamer is immobilized on the electrode and is used for capturing the analyte, and the

second labelled aptamer is used for electrochemical detection. The labels are either redox 

molecules or enzymes with catalytic activity that transform the substrate into an 

electroactive product. 

The first reported G-quadruplex electrochemical aptasensor for thrombin had a 

sandwich-type format, with the first thrombin aptamer immobilized on gold and the second

one labelled with pyrroquinoline quinone glucose dehydrogenase [54, 55]. The increase of 

the current generated by the enzyme was observed and > 10 nM thrombin was detected 

selectively. 

Although the majority of sandwich-type G-quadruplex electrochemical aptasensors 

reported in the literature was using the immobilisation of the first aptamer via thiol [56- 60]

or amine functionalization [61], and more recently magnetic beads [62, 63], a variety of 

strategies have been employed for labelling the second aptamer, such as enzymes [54-56], 

nanocomposites [60], nanoparticles [57, 58, 64] and quantum dots [59].

Apart from the aptamer–analyte–aptamer sandwich approach, other design 

strategies were also employed, consisting in either attaching the analyte to the surface via 

an antibody combined with a labelled G-quadruplex aptamer for detection (antibody–

analyte–aptamer sandwich, Scheme 3B) [65], or attaching the analyte to the surface via a

G-quadruplex aptamer, the detection being performed with a redox labelled antibody 

(aptamer–analyte– antibody sandwich, Scheme 3C) [61].

3.1.2 Structure-switching G-quadruplex electrochemical aptasensors

The structure-switching strategy for G-quadruplex electrochemical aptasensors is 

based on single-stranded to G-quadruplex conformational change of the aptamer structure 
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upon binding the analyte (Scheme 4). This strategy generally involves the direct 

immobilization of the aptamer on the electrode surface, the aptamer being modified by a 

redox label (e.g. ferrocene or methylene blue) for signal amplification [53, 66]. 

The first structure-switching G-quadruplex electrochemical aptasensor used a 

thrombin aptamer sequence labelled with methylene blue at the 3’ terminus and attached its 

5’ terminus to a gold electrode [53, 67]. The aptasensor detection type was signal-off

(Scheme 4), i.e. the thrombin binding produced a decrease in the faradaic current of the 

methylene blue redox label, and the sensor was enough selective to detect thrombin

directly in blood serum with a thrombin detection limit of 20 nM. Similar G-quadruplex 

aptasensors for thrombin were developed in parallel, using ferrocene labels [68-70]. The 

signal-on aptasensor achieved an increase in signal of ∼300% with a saturated target and a 

detection limit of 3 nM [71]. 

Many different procedures have been used to improve the sensitivity of the 

G-quadruplex electrochemical aptasensors using amplification strategies based on redox 

labels, such as ferrocene [72-80] or methylene blue [81-83], Ru(NH3)6]
3+ [84], 

electrochemical active-inactive switch between monomer/dimer forms of carminic acid

[85] or catalysts such as horseradish peroxidase [86]. Nanoparticle-based materials were 

also used as signal amplification strategies for ultrasensitive electrochemical aptasensing, 

including gold, platinum [57] and Fe3O4 nanoparticles [87] and quantum dot-coated silica 

nanospheres [88]. Apart from gold electrodes, only recently other electrochemical 
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transducers have been employed, such as modified platinum [89] or carbon electrodes [64, 

76, 89-92]. 

Based on the aptamer conformational change in the presence of K+, different 

electrochemical aptasensors has been developed for selective potassium recognition. 

The formation of a G-quadruplex structure in the presence of K+ ions was detected by 

monitoring the changes on the electron transfer between a redox label and the electrode 

surface [93- 95], or by detecting the changes on the interfacial electron transfer resistance 

[96]. The same strategy was used for specific recognition of other metal ions, such as Tb3+

[97].

Taking advantage of the ability of thrombin to catalyze the hydrolysis of the peptide 

(-Ala-Gly-Arg-p-nitroaniline) to p-nitroaniline, bound thrombin was also electrochemically 

detected, by quantifying the p-nitroaniline reaction product [56]. 

Another strategy for G-quadruplex electrochemical aptasensors used a non-specific

immobilization of the protein on the electrode surface and electrochemical detection with a 

labelled G-quadruplex aptamer. In this approach, thrombin was detected with using

horseradish peroxidase label, allowing a detection limit of 3.5 nM, sufficient for clinical 

diagnosis of metastatic lung cancer, where the concentration of thrombin level achieved is 

5.4 nM [56]. 

3.2 Hemin/G-quadruplex DNAzymes electrochemical biosensors

Hemin/G-quadruplex peroxidase-mimicking DNAzymes, which consist in 

G-quadruplex sequences with intercalated hemin molecules, have recently attract great 

interest in biosensor [98, 99] and biofuel cell technologies [100]. Hemin is an iron-
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containing porphyrin whose peroxidase activity increases in the presence of DNA, 

facilitating the redox reaction between a target molecule (the substrate, e.g. 3,3′,5,5′-

tetramethylbenzidine, hydroquinone or ferrocene methyl alcohol) and H2O2, which results 

in the appearance of an oxidized target molecule (the product), that is electrochemically 

detected (Scheme 5).

Hemin/G-quadruplex DNAzymes electrochemical biosensors can be used to follow 

the activity of glucose oxidase [101, 102], the simplest methodology consisting on 

attaching glucose oxidase to the electrode surface through a nucleic acid sequence able to 

form a 

G-quadruplex structures in the presence of hemin. The glucose oxidase mediates the 

glucose oxidation to gluconic acid and H2O2 and the resulting H2O2 is analysed through its 

electrocatalysed reduction by the DNAzyme.  

Hemin/G-quadruplex DNAzymes electrochemical biosensors can also be 

successfully used for the detection of proteins [103-105] or low-molecular-weight 

molecules, such as adenosine monophosphate (AMP) [101, 106], anticancer drugs [107], 

gaseous ligands [108], toxins [109, 110], pollutant agents [111] or metal ions [112, 113]). 

The most common strategy consists on modification of the gold electrode by a hairpin 

nucleic acid oligonucleotide that contains both a sequence capable to form G-quadruplex 

and an aptamer able to specifically bind the analyte. In the presence of the analyte and 

hemin, the hairpin structures are opened, the analyte binds to the aptamer part, and 

hemin/G-quadruplex structures are formed on the electrode surface.  

Later on, more complicated strategies have been proposed to improve the sensitivity 

of hemin/G-quadruplex DNAzymes electrochemical biosensors, such as dual-amplification 

[114], background noise reduction [115] or autocatalytic target recycling strategies [116]. 
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A different design for hemin/G-quadruplex DNAzymes electrochemical biosensors

take advantage of the hemin/G-quadruplex acting both as a NADH oxidase, assisting the 

oxidation of NADH to NAD+ together with the generation of H2O2 in the presence of 

dissolved O2, as well as a hemin/G-quadruplex DNAzyme to bioelectrocatalyse the 

reduction of the produced H2O2 [117-119].

4 Conclusion

This review is focused on key features of the G-quadruplex nucleic acid 

electrochemistry and their application in G-quadruplex-based electrochemical biosensor 

devices, such as G-quadruplex aptasensors and hemin/G-quadruplex peroxidase-mimicking 

DNAzymes biosensors. So far no label-free DNA electrochemical biosensors, based on 

direct monitoring the modifications of the G and Gq oxidation peaks, have been reported, 

and all G-quadruplex electrochemical biosensors are using redox labels as amplification 

strategies.

The detailed knowledge of G-quadruplex formation mechanism is extremely 

important for the design and fabrication of quadruplex-based therapeutic agents in medicine 

or nanostructures in nanotechnology. Voltammetric techniques were successfully employed 

to study the transformation of single-strand sequences into G-quadruplexes or G-based 

nanostructures, in freshly prepared solutions, for concentrations 10 times lower than usually 

detected by other techniques, such as UV absorbance, circular dichroism or electrospray 

mass spectroscopy. The voltammetric results demonstrated that the appropriate choice of 

the oligonucleotide sequence base composition, monovalent cation concentration and 

incubation time, can lead to the formation of different G-based nanostructures, extremely 
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important for the design and fabrication of future non-mediated (label free) nanostructured 

DNA electrochemical biosensor devices.
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Figures

Scheme 1 (A) Chemical structure of guanine (G) base. (B) G-quartet (Gq) showing the 

hydrogen bonding between four planar G bases. (C) Schematic representation of 

tetramer, dimer and monomer G-quadruplexes composed by three staked 

G-quartets; the cations that stabilise the G-quadruplexes are shown as black balls. 

Scheme 2 Schematic representation of unimolecular antiparallel G-quadruplex structures 

formed by the thrombin binding aptamers: (A) 5’-GGTTGGTGTGGTTGG-3’ 

(TBA) and (B) 5’-GGGTTGGGTGTGGGTTGGG-3’ (eTBA).

Scheme 3 Sandwich-type quadruplex aptasensors. (A) Aptamer–analyte–aptamer 

sandwich: the first aptamer is used for binding the analyte to the surface and the 

second labelled aptamer is used for detection. (B) Antibody–analyte–aptamer 

sandwich: the analyte is bound to the surface via an antibody and a labelled aptamer 

is used for detection; (C) Aptamer–analyte–antibody sandwich: the analyte is bound 

to the surface via an aptamer and a labelled antibody is used for detection.

Scheme 4 Structure-switching quadruplex aptasensors; the analyte binding causes the 

aptamer conformational modifications and increases the distance from the redox 

label to the electrode.
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Scheme 5 Hemin/G-quadruplex peroxidase-mimicking DNAzymes electrochemical 

biosensor.

Fig. 1 (A, D) DP voltammograms baseline corrected, in 0.1 M NaH2PO4/Na2HPO4 buffer 

solution pH = 7.0, with 1 µg mL-1 (A) TBA and (D) eTBA, (▬) in the absence and 

in the presence of 100 mM K+, (▬) 0 h and (•••) 24 h incubation. (B, C, E, F) AFM 

images of (B, C) TBA and (E, F) eTBA spontaneously adsorbed during 3 min, from 

solutions of 1 µg mL-1 TBA or eTBA in 0.1 M NaH2PO4/Na2HPO4 buffer solution 

pH = 7.0, (B, E) in the absence and (C, F) in the presence of 100 mM K+, 24 h 

incubation. [Adapted from reference [28] with permission]. 

Fig. 2 (A, B, D, E) AFM images of complex (A, B) TBA–thrombin and (D, E) eTBA–

thrombin, spontaneously adsorbed during 5 min from incubated solutions, in 0.1 M 

NaH2PO4/Na2HPO4 buffer solution pH = 7.0, of 1 µg mL-1 TBA or eTBA with 

10 µg mL-1 thrombin, (A, D) in the absence and (B, E) in the presence of 100 mM 

K+, 24 h of incubation. (C, F) DP voltammograms baseline corrected, in 0.1 M 

NaH2PO4/Na2HPO4 buffer solution pH = 7.0, with 1 µg mL-1 thrombin incubated 

with 1 µg mL-1 (C) TBA and (F) eTBA, in the absence of K+, (▬) 0 h and (•••) 48 h 

incubation, and in the presence of 100 mM K+, (▬) 0 h and (•••) 48 h incubation. 

[Adapted from reference [28] with permission].

Fig. 3 (A) DP voltammograms baseline corrected in 3.0 µM d(G)10, in 0.1 M 

NaH2PO4/Na2HPO4 buffer solution pH = 7.0, in the absence of K+, (▪●▪) 0 h, 
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() 24 h, (▪▪▪) 48 h and (▬) 14 days incubation, and in the presence of 1 mM K+

(▪▪▪) 0 h and (▬) 24 h incubation. (B, C) AFM images of d(G)10 spontaneous 

adsorbed from 0.3 µM d(G)10, in 0.1 M NaH2PO4/Na2HPO4 buffer solution 

pH = 7.0, (B) 0 h and (C) 14 days incubation. [Adapted from reference [40] with 

permission].

Fig. 4 (A, D, F) DP voltammograms baseline corrected, in 0.1 M NaH2PO4/Na2HPO4

buffer solution pH = 7.0, with 3.0 µM (A) d(G)10, (D) d(TG9) and (F) d(TG8T),

 (▪▪▪) in the absence and in the presence of (▬) 5 mM, () 50 mM, (▪●▪) 100 mM, 

(▪▪▪) 200 mM and (▬) 1 M K+, after 0 h incubation. (B, C, E, G) AFM images of 

(B, C) d(G)10, (E) d(TG9) and (G) d(TG8T) spontaneous adsorbed from 0.3 µM 

d(G)10, d(TG9) or d(TG8T), in 0.1 M NaH2PO4/Na2HPO4 buffer solution pH = 7.0, 

in the presence of 200 mM K+ ions, 24 h incubation. [Adapted from reference [40] 

with permission].
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Scheme 1 (A) Chemical structure of guanine (G) base. (B) G-quartet (Gq) showing the 

hydrogen bonding between four planar G bases. (C) Schematic representation of tetramer, 

dimer and monomer G-quadruplexes composed by three staked G-quartets; the cations that 

stabilise the G-quadruplexes are shown as black balls.
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Scheme 2 Schematic representation of unimolecular antiparallel G-quadruplex structures 

formed by the thrombin binding aptamers: (A) 5’-GGTTGGTGTGGTTGG-3’ (TBA) and 

(B) 5’-GGGTTGGGTGTGGGTTGGG-3’ (eTBA).
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Scheme 3 Sandwich-type quadruplex aptasensors. (A) Aptamer–analyte–aptamer 

sandwich: the first aptamer is used for binding the analyte to the surface and the second 

labelled aptamer is used for detection. (B) Antibody–analyte–aptamer sandwich: the

analyte is bound to the surface via an antibody and a labelled aptamer is used for detection; 

(C) Aptamer–analyte–antibody sandwich: the analyte is bound to the surface via an aptamer 

and a labelled antibody is used for detection.
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Scheme 4 Structure-switching quadruplex aptasensors; the analyte binding causes the 

aptamer conformational modifications and increases the distance from the redox label to the 

electrode.
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Scheme 5 Hemin/G-quadruplex peroxidase-mimicking DNAzymes electrochemical 

biosensor.
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Fig. 1 (A, D) DP voltammograms baseline corrected, in 0.1 M NaH2PO4/Na2HPO4 buffer 

solution pH = 7.0, with 1 µg mL-1 (A) TBA and (D) eTBA, (▬) in the absence and in the 

presence of 100 mM K+, (▬) 0 h and (•••) 24 h incubation. (B, C, E, F) AFM images of 

(B, C) TBA and (E, F) eTBA spontaneously adsorbed during 3 min, from solutions of 

1 µg mL-1 TBA or eTBA in 0.1 M NaH2PO4/Na2HPO4 buffer solution pH = 7.0, (B, E) in 

the absence and (C, F) in the presence of 100 mM K+, 24 h incubation. [Adapted from 

reference [28] with permission].
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Fig. 2 (A, B, D, E) AFM images of complex (A, B) TBA–thrombin and (D, E) eTBA–

thrombin, spontaneously adsorbed during 5 min from incubated solutions, in 0.1 M 

NaH2PO4/Na2HPO4 buffer solution pH = 7.0, of 1 µg mL-1 TBA or eTBA with 

10 µg mL-1 thrombin, (A, D) in the absence and (B, E) in the presence of 100 mM K+, 24 h 

of incubation. (C, F) DP voltammograms baseline corrected, in 0.1 M NaH2PO4/Na2HPO4

buffer solution pH = 7.0, with 1 µg mL-1 thrombin incubated with 1 µg mL-1 (C) TBA and 

(F) eTBA, in the absence of K+, (▬) 0 h and (•••) 48 h incubation, and in the presence of 

100 mM K+, (▬) 0 h and (•••) 48 h incubation. [Adapted from reference [28] with 

permission].
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Fig. 3 (A) DP voltammograms baseline corrected in 3.0 µM d(G)10, in 0.1 M 

NaH2PO4/Na2HPO4 buffer solution pH = 7.0, in the absence of K+, (▪●▪) 0 h, 

() 24 h, (▪▪▪) 48 h and (▬) 14 days incubation, and in the presence of 1 mM K+

(▪▪▪) 0 h and (▬) 24 h incubation. (B, C) AFM images of d(G)10 spontaneous adsorbed 

from 0.3 µM d(G)10, in 0.1 M NaH2PO4/Na2HPO4 buffer solution pH = 7.0, (B) 0 h and 

(C) 14 days incubation. [Adapted from reference [40] with permission].
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Fig. 4 (A, D, F) DP voltammograms baseline corrected, in 0.1 M NaH2PO4/Na2HPO4

buffer solution pH = 7.0, with 3.0 µM (A) d(G)10, (D) d(TG9) and (F) d(TG8T), (▪▪▪) in the 

absence and in the presence of (▬) 5 mM, () 50 mM, (▪●▪) 100 mM, (▪▪▪) 200 mM and 
(▬) 1 M K+, after 0 h incubation. (B, C, E, G) AFM images of (B, C) d(G)10, (E) d(TG9) 

and (G) d(TG8T) spontaneous adsorbed from 0.3 µM d(G)10, d(TG9) or d(TG8T), in 0.1 M 
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NaH2PO4/Na2HPO4 buffer solution pH = 7.0, in the presence of 200 mM K+ ions, 
24 h incubation. [Adapted from reference [40] with permission].




