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Abstract

We propose an alternative, simpler algorithm for FEM-based computational fracture in brittle, quasi-
brittle and ductile materials based on edge rotations. Rotation axes are the crack front edges (respectively
nodes in surface discretizations) and each rotated edge affects the position of only one or two nodes. Modified
positions of the entities minimize the difference between the predicted crack path (which depends on the
specific propagation theory in use) and the edge or face orientation. The construction of all many-to-many
relations between geometrical entities in a finite element code motivates operations on existing entities
retaining most of the relations, in contrast with remeshing (even tip remeshing) and enrichment which alter
the structure of the relations and introduce additional entities to the relation graph (in the case of XFEM,
enriched elements which can be significantly different than classical FEM elements and still pose challenges
for ductile fracture or large amplitude sliding). In this sense, the proposed solution has algorithmic and
generality advantages. The propagation algorithm is simpler than the aforementioned alternatives and the
approach is independent of the underlying element used for discretization. For history-dependent materials,
there are still some transfer of relevant quantities between meshes. However, diffusion of results is more
limited than with tip or full remeshing. To illustrate the advantages of our approach, two prototype models
are used: tip energy dissipation (LEFM) and cohesive-zone approaches. The Sutton crack path criterion is
employed. Traditional fracture benchmarks and newly proposed verification tests are solved. These were
found to be very good in terms of crack path and load/deflection accuracy.

Nomenclature

a Crack closure parameter

b? Nominal body force

d Damage variable for the cohesive law

e External forces

êI , êII , êIII Modes I, II and III opening directions (normalized)

ft Normal stress
∗Corresponding Author.
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f+
I ,f+

II ,f
+
III Internal forces of modes I, II and III

f+
0i Internal force vector at the tip

Ḟ External force power

i Internal forces

I Identity matrix

J Strain energy release rate

JR LEFM fracture energy

K Stiffness matrix

l Derivative of the constraint equation

n Normal to the plane or the shell surface

p Crack path direction

Q Load proportionality factor

q̇ Velocity proportionality factor

r Residual

s Area of Γca

sc Constraint equation

Ṡ Cohesive force power

t Time

t? Imposed surface load

tu Reactive surface vector

t Cohesive traction for the quasi-brittle case

tλ Cohesive traction for the brittle case

T Total time of analysis

Tmode Transformation matrix at the tip

ut Modes II and III equivalent displacement

uI ,uII ,uIII Displacement components of modes I, II and III

u Displacement vector field

u? Imposed displacement

[[u]] Displacement jump

[[u̇]] Virtual velocity jump

Ẇ Strain power

Wp Plastic work

x0 Tip coordinates

x1,x2 Coordinates of the two neighbor (opposing) nodes connected by external edges to the tip

β Modes II and III parameter

Γc Crack surface in the deformed configuration

Γca Active crack surface, Γca ⊂ Γc
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∆s Increment of s

ε̇ Strain rate

ε̇p Plastic strain rate

θc Crack path angle

κ Kinematical variable for the cohesive law

κ0 Initial κ

σ Normal cohesive stress

σ Cauchy stress tensor

τII ,τIII Tangential cohesive stress components for modes II and III

φ Damage loading function

Ω Body deformed configuration integration domain

1 Introduction

Discretization methods for computational fracture can be performed with meshfree (cf. [55, 54, 52, 53, 64, 65])
and finite elements (cf. [5, 27]). In the former, crack propagation algorithms have been developed in the past
two decades with varying degrees of effectiveness and generality. Existing techniques can be classified as discrete
or continuum-based (including combinations of these). A non-exhaustive list is:

• Full and localized rezoning and remeshing approaches [21, 30, 9, 14], variants of local displacement [46,
45, 38, 42] (or strain [49, 2]) enrichments, clique overlaps [37], edges repositioning or edge-based fracture
with R-adaptivity [44];

• Element erosion [61], smeared band procedures [48, 51], viscous-regularized techniques [35, 56], gradient
and non-local continua [59];

• Phase-field models based on decoupled optimization (equilibrium/crack evolution) with sensitivity analysis
[25].

For finite strain simulations, each one has particular advantages and shortcomings, most well documented.
However, numerical experimentation is the key for obtaining sound conclusions. In particular, the extended finite
element method (XFEM) by Moës, Belytschko and co-workers [47, 20, 46, 15, 63, 23, 24] was used previously
but still poses challenges for large amplitude displacements (this is particularly critical for quasi-adiabatic shear
bands). Densification of the Jacobian matrix occurs due to pile-up of degrees-of-freedom for nodes contributing
to multiple cracks. If nc cracks are present in elements in the support of a given node, this has (1 + nc)nSD

degrees of freedom where nSD is the number of original degrees-of-freedom per node; this produces a fill-in in
the sparse Jacobian contrasting with remeshing that retains sparsity along the analysis. The tradeoff is between
densification and intricacy (produced by enrichment methods) and increased number of degrees-of-freedom
(created by remeshing algorithms). However, the adaptation of classical contact and cohesive techniques to
deal with enriched elements is somehow redundant. It is worth noting that large amplitude displacements are
managed (see, e.g. [41]) by XFEM if neither contact nor cohesive forces are present. Many examples exist
for XFEM with both contact and cohesive forces ([7, 12]) but the generality of the results is limited by the
kinematic assumptions, stricter than with remeshing.

Difficulties in XFEM are often mitigated at the cost of intricate coding. As a consequence of these diffi-
culties, typically simplified examples are displayed. From the enumerated options, it is often pointed out that
local remeshing techniques lead to ill-formed elements (in particular blade and dagger-shaped triangles) which
compromise the solution accuracy. These ill-formed elements motivate, besides other aspects, the use of full
remeshing. Recently, we proposed a new methodology to attenuate this problem (cf. [9]). In the present work,
we further simplify the solution by moving edges so that they align with the predicted crack path.

The work is organized as follows: Section 2 presents the principle of virtual power for cracked bodies with
cohesive regions, Section 3 shows the virtual crack closure technique for determination of energy release rate, the
cohesive discretization and both the initiation and propagation algorithms. Section 4 presents seven examples
of fracture where comparisons with experimental results and alternative techniques are made. Finally, Section
5 shows the conclusions.
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2 Principle of virtual power for cracked bodies with cohesive regions

Brittle and quasi-brittle fracture are distinguished by the geometry of the regions where energy dissipation
occurs: in brittle fracture energy is dissipated in a crack edge or tip and in quasi-brittle fracture energy is
dissipated in a surface (typically identified as cohesive surface). We take a direct approach for dealing with
equilibrium problems with cracks (both brittle and quasi-brittle). The formulation is based on the following
approach:

• Explicitly including external loads and imposed velocities.

• Including the cohesive zone (identified as Γc) where the displacement jump is identified as [[u̇]]. Note that
part or whole of Γc may be unknown.

• Using a load parameter Q for proportional loading and a velocity parameter q̇ for proportional imposed
velocity:

ˆ

Ω

σ : ε̇dΩ =
ˆ

Ω

Qb? · u̇dΩ +
ˆ

Γt

Qt? · u̇dΓt (1)

+
ˆ

Γu

q̇tu · u?dΓu +
ˆ

Γc

t ([[u]]) · [[u̇]]dΓc

where σ is the Cauchy stress tensor, ε̇ is the strain rate, b? is the nominal body force, t? is the imposed surface
load, tu is the reactive surface traction and t is the cohesive traction. The unknown field is the displacement u.
u? is the nominal imposed displacement. Equation (1) has two interpretations: equivalence between internal
and external power and, if the time derivative of displacement is interpreted as the virtual velocity, it is a form
of the principle of virtual power with the required ∀u̇ in the space of test functions (cf. [4] for the continuum
case). The subset of Γc where [[u]] 6= 0 is denoted Γca (the active cohesive zone). For strictly closed cracks
we have [[u]] · t = 0 on Γc, implying that t is a Lagrange multiplier (we now can use the notation tλ) and the
equation (1) is adapted to read:

ˆ

Ω

σ : ε̇dΩ
︸ ︷︷ ︸

Ẇ

=
ˆ

Ω

Qb? · u̇dΩ +
ˆ

Γt

Qt? · u̇dΓt +
ˆ

Γu

q̇t · u?dΓu

︸ ︷︷ ︸
Ḟ

(2)

+
ˆ

Γc

(
tλ · [[u̇]] + ṫλ · [[u]]

)
dΓc

︸ ︷︷ ︸
Ṡ

where tλ is now an independent field at the crack faces, the Lagrange multiplier field conjugate to the constraint
[[u]] = 0. A unified treatment of brittle and quasi-brittle fracture results from establishing (1) and (2) as,
respectively, the penalized and the Lagrange-multiplier versions of a constrained problem permits . In (2) the
energy is released by the increase of size of Γca ⊂ Γc, whereas in (1) energy is released by growth of Γca . We
use s for the area of surface Γca . The strain work is calculated as:

W =
ˆ T

0

Ẇdt (3)

where T is the total time of analysis and t is the time integration variable. The integration of Ḟ and Ṡ are
analogous and produce the external work and the cohesive work, respectively:

F =
ˆ T

0

Ḟdt (4)

S =
ˆ T

0

Ṡdt (5)

A classical switch of the derivatives from time t to area s of the active part of Γc, Γca , results in the following
identity:

dS

ds
=

dW

ds
− dF

ds
(6)

4



  

Standard arguments result in the following definition for the strain energy release, J :

J = −dS

ds
=

d (F −W )
ds

(7)

For elasto-plastic materials, we must acknowledge that part of the energy released from the crack advance
was already dissipated by the plastic deformation process and therefore must be subtracted from the fracture
energy:

J = JR −Wp ⇒ crack growth (8)

where JR is the LEFM fracture energy (or critical energy release rate) for the considered material and geometry.
In (8), Wp is the plastic deformation work, given as:

Wp =
ˆ T

0

σ : ε̇pdt (9)

where ε̇p is the plastic strain rate. Finite element technology makes use of standard constant-strain triangles and
isoparametric quadrilaterals, as well as our shell elements (cf. [13, 11]). A further note is required: traditionally,
we use the MINI element (cf. [17]), see also [16], for near-incompressible problems. However, for plane-stress
problems we do not require a specialized formulation, so that displacement-based elements are used.

3 Specific techniques for modeling crack growth

3.1 Virtual crack closure

The determination of stress intensity factors can be performed by a variety of well-known methods (cf. [19]).
All of these methods calculate the same configurational derivative (cf. [26]). The most established method
is the contour J−integral. We have recently used contour integrals with success (see [62]) in the context
of configurational forces. However, there are some shortcomings of J−integrals for multiple cracks and the
support function requires a user-defined radius. An alternative is the virtual crack closure technique by Ribicki
[57] and further developed by Krueger [40]. Furthermore, since it is based on the crack tip opening displacement
(CTOD) and it is known to have high predictive capabilities for large strain plasticity [43, 60]. A short summary
of the application by Krueger is provided here. Using a local frame corresponding to the classical fracture mode
decomposition (the mode frame), we can determine the transformation matrix whose rows are three orthogonal
directions corresponding to each mode relative displacement:

Tmode =




êT
I

êT
II

êT
III


 (10)

where

êIII = n (11)

e?
II =

[
x0 −

(
x1 + x2

2

)]
(12)

eII = (I − n⊗ n) e?
II (13)

and

êI = êIII × êII (14)

The classical notation for unit vectors obtained by the Euclidian norm is adopted:

•̂ =
•

‖ • ‖2 (15)

The relative displacement for the mode frame is given by:
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[[u]] =





uI

uII

uIII



 = Tmode (u2 − u1) (16)

and the internal forces at the tip are obtained by assembling elements above the predicted crack segment:




f+
I

f+
II

f+
III



 = Tmodef

+
0i (17)

where f+
0i are the internal forces assembled from elements identified as + in Figure 1 at the tip node (node

0). Note that a partition of the regions ahead of the crack tip is necessary to obtain the correct values for the
internal forces.

IV/IV

+ +

+

− −

2

1

2

1
0

∆l = ‖x2 − x1‖2
∆s = h∆l

p

I/IV
III/IV

II/IV

Selects the best edge
for the determined direction

difference and transfers variables
so that it minimizes the angle
Rotates the edge

2

1
0+

0−

+ +

+

− −

Aligns the ahead-of-tip edge

Duplicates the tip node

2

1
0+

0−

+ +

+

− −

0

Figure 1: Edge-based crack propagation algorithm for shells.

Predicted fracture energies follow the classical derivation by Krueger (s identified in Figure 1):

JI =
1

2∆s
f+

I uI (18)

JII =
1

2∆s
f+

IIuII (19)

JIII =
1

2∆s
f+

IIIuIII (20)

The condition for crack advance in brittle cases results from the energy sum corresponding to (8):

JI + JII + JIII = JR (21)

The crack path orientation follows our previous approach ([9]). For plane problems and for shells, the crack
path has only components along êI and êII and the Ma-Sutton criterion [43, 60] is adopted to predict it:

p = ê1 sin(θc) + ê2 cos(θc) (22)

where the angle θc is obtained as:

θc =

{−36.5π
180 arctan(2.2α), |α| < αc

57.3π
180 cos(α) α

|α| |α| ≥ αc
(23)

α = arctan
(

uII

uI

)
. For the cohesive fracture modeling, it is important to note that crack path is still deter-

mined by this analysis prior to the cohesive stage. Determination of crack paths for problems with cohesive
forces present difficulties (see [50]) circumvented by this technique. Figure 2 succinctly represents the proposed
algorithm in flowchart form.
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Initiation flag?

Propagation flag?

Time increment policy

Shifts parameter
Yes

No

MPC-based Newton-Raphson

until convergence

Start

Figure 2: Initiation and propagation flowchart.

3.2 Cohesive discretization

The representation of the finite-displacement cohesive element makes use of a simple node/node arrangement as
depicted in Figure 3. This approach is simpler than the node/edge method and it is sufficient for our purposes
where only moderate displacements are present. In addition, the surface Patch test is satisfied. We consider all
external edges (i.e. with only one underlying solid element) as candidates.

3.3 Consistent mixed-mode traction separation law

To introduce the decohesion process, an elastic damage traction-separation law is adopted. It depends on four
constitutive properties: ft, JR, β and tol which are the tensile strength, the fracture energy, modes II and III
parameter and the kinematical tolerance, respectively. It is a variation of the law proposed by Alfaiate et al.
[1], able to deal with unloadings/reloadings with negative uI . It is characterized by the closure effect, mixed
mode damaging effect and purely elastic unloading. For the interested reader, a thorough discussion of cohesive
representations is provided in the paper by Elices et al. [33]. The damage variable is denoted as d; normal
stresses and tangential stresses are denoted as σ, τII and τIII , respectively, and are grouped in the following
traction vector t:

t =





σ
τII

τIII



 = (1− d) exp(1)

ft

κ0





auI + κ0

βuII

βuIII



 (24)

where uI , uII and uIII are now extended to the discontinuity region and a is the crack closure parameter. The
damage parameter depends on a kinematical variable, κ, according to the following law:

d = 1−R−1 (1 + αR− α) eα(1−R)−1 (25)

with

R =
κ + κ0

κ0
(26)
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êI

Loading path

êII

wn

σ

ft

ll

lr

Fracture energy: JR

Unloading/reloading path

Figure 3: Node/node cohesive element for finite displacements.

and

α =
2ftκ0

JR
(27)

where κ0, the kinematical shift, is introduced to avoid the initial infinite slope. The kinematical variable κ
can be viewed as the “equivalent opening,” a quantity to be defined by complementarity conditions. We use a
non-dimensional kinematic tolerance, tol, to define κ0:

κ0 = 2tol
JR

ft
(28)

The crack closure parameter is a function of the opening sign:

a =
{

1, uI ≥ 0
1

1−d , uI < 0 (29)

this allows a fixed slope for contact and keeps the tangential stress unaltered when penetration occurs. The
evolution of κ is implicitly defined by the following complementarity conditions:

ḋ ≥ 0
ḋφ = 0 (30)
φ ≤ 0

with the fracture surface being given as the following difference:

φ =< uI > +βut − κ (31)

with ut =
√

u2
II + u2

III . This simple mixed-mode law and the related kinematical shift were found to be
appropriate for the examples under study, although complete solutions to this class of problems resort to the
concept of set-valued forces [36, 12]. A representation of this law is given for several values of uI and uII in
Figure 4. In all examples we use tol = 1× 10−3.
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0.2

0.4

0.6
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1.0

tol = 1× 10
−2

β = 0.5

ft = 1

JR = 0.2

uI = 0

uI = 0.2

uI = 0.3

ut = 0

uII

uI = 0.1

τII

ut = 0.1

ut = 0.2

ut = 0.3

uI

σ

ut = 0.5

Figure 4: Mixed-mode cohesive law in loading. Unloading occurs to the origin.
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3.4 Constraint-based solution control

The determination of the load (or displacement) factor Q either the energy release rate or the stress is con-
strained. A complete discussion of the solution constraint is given in Moës and Belytschko [45] and an extended
procedure was introduced by Areias et al. [9]. If a load factor Q is included as an unknown, the system must
be enlarged by appending the control constraint sc(u) = 0:

r(Q, u) = 0 (32)
sc(u) = 0 (33)

where r(Q, u) is the discrete equilibrium residual and sc(u) is the crack constraint. For proportional loading
and we can write r(Q, u) as:

r(Q, u) = Qe− i(u) (34)

with, following classical notation, e is the total load vector and i is the internal force vector. Generalizations of
(34) are straightforward but for the present applications appear unnecessary. The solution by Newton-Raphson
iteration results in:

[
K(Q, u) −e(Q, u)

l(u) 0

] {
uv

Q

}
= −

{
i(u)
sc(u)

}
(35)

where uv is the iterative correction to the displacement u and the load factor. In (35), the quantities l and K
are the following derivatives:

l(u) =
dsc

du
(36)

K(Q, u) =
∂i(Q, u)

∂u
(37)

Defining ui = K−1i and ue = K−1e , and subsequently si = l · ui, se = l · ue we finally obtain:

Q =
si − sc

se
(38)

uv = Que − ui (39)

which provides the overall solution process for the constrained equilibrium. Of course, this procedure corresponds
to an exact linearization if l is calculated in closed-form.

4 Computational fracture examples

Five classical quasi-brittle problems are tested. Assessment makes use of comparisons with experiments found
in the literature and with alternative formulations. Specifically, the phase field approach to brittle fracture is
also used for comparison in one of the examples (cf. Van Goethem and co-workers [3]). In addition, the XFEM
implementation by Dias-da-Costa et al. [31] is used as a comparison.

4.1 Brittle fracture of a thin aluminum plate

With the purpose of inspecting the mesh size effect on both crack path and load/deflection results, we con-
template an Aluminum plate with a pre-existing crack (created with a metal saw and with its tip sharpened
by a razor blade). Relevant data for this problem is shown in Figure 5. The experimental setup and final
result are also shown in the same Figure. The experiment shows considerable plastification at the resistant
region of the plate. However, for this example we do include this ingredient and it was found to be of little
effect in the crack trajectory for the planified plate. Crack paths for three meshes of triangular shell elements
are presented in Figure 6 along with the planified experimental crack path. It can be observed that there is a
reasonable agreement with the experimentally verified path. A comparison of required forces for three meshes
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X

Y

Z

0.
2
m

0.
48

m
{Fx, Fy}

0.25 m

0.04 m

0.04 m

E=7× 10+10 N.m−2

ν=3.3× 10−01

JR = 2200 N/m

H=8× 10−04 m
Properties:

(a) Geometry, properties and crack path representation on the plate.

Razor-sharpened tip

(b) Experimental setup and final result.

Figure 5: Thin aluminum plate: geometry, dimensions and relevant material properties. The experimental
figures are also shown.

5622 nodes

Experimental
(planified)

3961 nodes2216 nodes

Figure 6: Thin aluminum plate: numerical crack paths for three triangular meshes and the experimental result.
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t
io
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[N
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y-displacement [m]

x-2216 nodes
x-3961 nodes
x-5622 nodes
y-2216 nodes

y-5622 nodes

0

Figure 7: Thin aluminum plate: reactions vs. imposed displacement components for the three triangular meshes.

with triangular shell elements is shown in Figure 7. Irregularities in the force/displacement results appear due
to the effect of brittle decohesion and are attenuated with mesh refinement.

For comparison, crack paths using the phase-field technique (which is an interesting competing method for
brittle fracture) are shown in Figure 8. The fundamental reference for this method is provided by Allaire, Jouve
and Van Goethem [3]. Two worth noting points must be stated:

• Finer meshes are required for a reasonable resolution when the phase-field model is used.

• There is a tendency for phase-field models to follow the mesh orientation.

Another aspect deserving inspection is the suitability of the present approach for the use with quadrilateral
elements. Recent finite strain elements show improved performance for distorted quadrilateral elements and
it is interesting to inspect the differences between triangles and quadrilaterals with non-structured meshes.
Figure 9 shows this comparison (both the crack paths and the load/deflection results). Two conclusions worth
mentioning are:

• Quadrilateral meshes show stronger mesh distortion at strained regions near the crack tip. Frequently
three nodes become collinear.

• Quadrilateral meshes produce slightly less stiff results.

Note that, in contrast with triangular meshes, severely distorted quadrilateral meshes often fail to comply with
the predicted crack path.

0.000e+00

2.500e-01

5.000e-01

7.500e-01

1.000e+00

DAMAGE

0.000e+00

2.500e-01

5.000e-01

7.500e-01

1.000e+00

DAMAGE

0.000e+00

2.500e-01

5.000e-01

7.500e-01

1.000e+00

DAMAGE

0.000e+00

2.500e-01

5.000e-01

7.500e-01

1.000e+00

DAMAGE 22216 nodes2216 nodes 3961 nodes 5622 nodes

Figure 8: Thin aluminum plate: crack paths resulting from an alternative technique: the phase-field approach
(see the implementation by Allaire, Jouve and Van Goethem [3]).

4.2 Bittencourt’s drilled plate

We use the example by Bittencourt et al. [21] who performed experimental and numerical studies of curvilinear
crack propagation. Specimens are built of Polymethylmethacrylate (PMMA) and use of finite strains are
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Figure 9: Thin aluminum plate: comparison between triangular and quadrilateral elements.

required (cf. [9]). Geometry, relevant material properties and boundary conditions are shown in Figure 10
for two specimens differing in the linear dimensions a and b. Figure 11 shows the results for Specimen 1 and
a comparison with experimental crack paths. In the paper by Bittencourt [21], the Erdogan-Sih [34] fracture
criterion was used, with stress intensity factors calculated with the domain-integral (see also [45] for a detailed
discussion of this approach) and quarter-point elements. In that paper, the recursive spatial decomposition
method was introduced to perform the mesh subdivision. We here avoid subdivision and test regular meshes of
both triangles and quadrilaterals. Only specimen #1 required smaller elements in the turning region (for the
coarser mesh, which was also a conclusion of Bittencourt et al.) in the crack turning region near the second
hole. The presence of the three holes perturbs the stress fields making the crack trajectory very sensitive to
the position and size of the existent notch. Despite previous well known accuracy difficulties (documented in
[21] and observed in [44]), good agreement was observed between predicted and experimental crack paths (see
Figure 11). The crack mouth opening displacement (CMOD) is used to control the solution and capture the
snap-backs. Note that snap-backs are common for low values of JR, as shown by Carpinteri [28] and further
discussed by Moës and Belytschko [45]. Load-CMOD results are shown in Figure 13 for both specimens and
load-deflection results are shown in Figure 14, showing the well-known snap-backs. Very smooth results are
obtained and we reach small fracture energies without convergence problems. For two values of the fracture
energy, JR = 1 N/mm and JR = 10 N/mm, the cohesive stresses are shown in Figure 15. These are perfectly
smooth and hence, contrary to the purely brittle analyses, result in smooth behavior. A comparison between
triangles and quadrilaterals is presented in Figure 12. If the quadrilateral mesh is sufficiently regular, results
are similar to those with the triangular mesh.

A note is required concerning the mesh with 101541 elements: it is only used for comparison and its crack
path is not more precise than the ones produced by coarser meshes.
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Figure 10: Relevant data for Bittencourt’s drilled plate. geometry, boundary conditions and material properties.
Geometry parameters a and b vary according to the specimen.
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(a) Specimen #1 deformed mesh (triangles and quadrilaterals) with local refinement.
Coarse triangular mesh contains 9126 nodes and 17812 elements and the coarse quadri-
lateral mesh contains 9062 nodes and 8841 elements. The uniform triangular mesh is
also shown (51299 nodes and 101541 elements).

Present model

Experimental results (Bittencourt 1996)

Specimen #1 Specimen #2

Present model

(b) Crack path comparisons with experimental results (cf. [21]).

Figure 11: Bittencourt’s drilled plate: Results shown for specimen #1.

Figure 12: Bittencourt’s drilled plate. Results shown for specimen #2 with a quadrilateral mesh containing
12565 elements and 12850 nodes.
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Figure 13: CMOD/Load results for the two specimens.

15



  

Jr=30 N/mm2

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

L
o
a
d
[N

]

Vertical displacement [mm]

Jr=1 N/mm2
Jr=5 N/mm2
Jr=10 N/mm2

0

(a) Specimen #1

Jr=30 N/mm2

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

L
o
a
d
[N

]

Vertical displacement [mm]

Jr=1 N/mm2
Jr=5 N/mm2
Jr=10 N/mm2

0

(b) Specimen #2

Figure 14: Displacement under the point Load/Load results for the two specimens.
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Figure 15: Specimen #1: cohesive tails for JR = 1 N/mm and JR = 10 N/mm. Similar tails are obtained for
specimen #2.
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4.3 Single edge notched beam

The single edge notched (SEN) beam introduced by Schlangen (cf. [58]) is now explored. A description of this
problem, with material properties and boundary conditions is presented in Figure 16. Three uniform triangular
meshes with different number of nodes are tested, containing 2939, 5185 and 11514 nodes. The arc-length
method (see subsection 3.4) is used, with monotonically increasing CMSD (crack mouth sliding displacement).
The crack path reproduces closely the experimental envelope, as can be observed in Figure 17; even near the
support the experimental observations are accurately reproduced. A comparison with the experimental results
and the DSDA method [1, 8], along with a study of mesh and step size influence is effected. As can be observed
in Figure 18, after the peak load is reached, the numerical results are more brittle than the experimental results.
According to [2], this is due to the fact that an isotropic mode-I traction-jump law is used. The results are
immune to the step-size up to very large CMSD increments.

h=100 mm

180 180

517.5 17.5

1

11
Q

20
80

10

11
Q

(Dimensions are in mm)

CMSD

E=35000 N/mm2

ν=0.15
ft=3.0 N/mm2

JR=0.1 N/mm
β=0.6

Figure 16: Schlangen’s SEN test: geometry, boundary conditions and material properties.

4.4 Gravity dam scale model

This problem is one of the scale model dam problems solved (and tested) by Barpi and Valente (cf. [18]). We use
a 150 mm pre-crack in a model dam with the scale 1 : 40 as described in that reference (note that there is also a
specimen with a 300 mm pre-crack). A hydrostatic load is applied to the left face of the dam and self-weight is
considered (this is replaced by a set of forces in the original work). Figure 19 presents the geometry, dimensions,
loading and properties defining this problem. Also shown is a comparison with both experimental and numerical
crack trajectories reported by Barpi and Valente. Two meshes are used (composed solely of triangles) containing
3904 nodes and 8707 nodes. The latter has a better agreement with the experimental crack path, as can be
observed in Figure 19. We also show the CMOD/load results compared with the ones reported by Barpi and
Valente and the GFEM results by Dias-da-Costa et al. [31] in Figure 20. Note that, in that work, the mesh is
refined near the crack tip. Cohesive tails and principal normal stresses are shown for the two meshes in Figure
21.

4.5 Cohesive crack growth in a four-point bending concrete beam

The four-point bending concrete beam problem consists of a bi-notched concrete beam subjected to two point
loads. It was initially presented by Bocca et al. [22] and numerically tested by a multitude of authors. The
effect of size is apparent since two specimens with different dimensions are tested. In the original work [22], an
experimental setting is described in detail. From the set of specimens studied by Bocca et al. we only retain the
specimens with c/b = 0.8, b = 50 and b = 200 mm, since only these have useful experimental data. In addition
to these results, we are also concerned with the crack paths that were reported in [22]. Using the well-known
cracking particle method, Rabczuk and Belytschko [54] obtained excellent results for the crack path prediction,
although the load in the load-displacement diagram was higher than the experimental one. In addition, with
the particle methods, there is the problem of selecting the support dimension in the crack region. We use a
single uniform mesh, with 11599 nodes and 22656 triangular elements. All relevant data is shown in Figure 22.
For anti-symmetry reasons, we force the same mouth horizontal displacement at the edge of notches A and B:
∆uB = ∆uA. It has been debated if quasi-static simulations allow propagation of more than one crack (see the
excellent thesis by Chaves e.g. [29]) . We obtain an excellent agreement with the experimental crack paths,
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(a) 2939 nodes and 5616 elements (100× magnified). Normal cohesive stress is
represented.

(b) 5185 nodes and 10014 elements (100× magnified). Normal cohesive stress is
represented.

(c) 11514 nodes and 22498 elements (100× magnified). Normal cohesive stress
is represented.

DSDA

Experimental envelope (Schlangen 1993)

Present model

(d) Crack path comparison

Figure 17: Schlangen’s SEN test: Deformed meshes for the 3 cases are shown, with 5616, 10014 and 22498
elements. Crack path (10014 elements) compared with DSDA [32] (yellow) and the experimental results by
Schlangen [58].
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Figure 18: Schlangen’s SEN test: load-CMSD results: comparison with the experimental results by Schlangen
[58] and the DSDA technique [32].
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Figure 19: Gravity dam geometry and relevant data. Crack path comparison with the results from Barpi and
Valente [18].
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and Dias-da-Costa et al. [31] is shown.
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as shown in Figure 23. The relatively wide spread of experimental crack paths is typical and results from the
use of 6 specimens of reference [22]. Experimentally, some residual crack evolution in the opposite direction of
the final path was observed and we also obtained that effect. Load-displacement results are shown in Figure 24
where a comparison with the measurements of Bocca et al. [22] and the cracking particle method of Rabczuk
and Belytschko [54] is made. For the smaller specimen there is a somehow longer and lower curve than the
observed one.
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A∆uB = ∆uA

0.1666F

b
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CMSD
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control 0.8333F

E = 27000 N/mm2
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JR = 0.1 N/mm

B
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l = 4b

a = 0.2b

Figure 22: Four-point bending of a concrete beam: geometry, boundary conditions, multipoint constraints
(∆uB = ∆uA) and material properties. Also shown is the final deformed mesh 50× magnified with the attached
cohesive stress vectors.

b = 200 mm

c/b = 0.8

Experimental envelope (Bocca et al. 1991)

Present model

Figure 23: Four-point bending of a concrete beam: crack paths compared with the envelope of experimental
results by Bocca, Carpintieri and Valente [22].

4.6 Mixed-mode ARCAN fixture

The ARCAN fixture was used by Sutton et al. [60] in a crucial work on mixed-mode nonlinear Fracture
Mechanics. Specifically, the transition between mode I and II for Aluminum alloys and the corresponding
crack kinking angle were determined. This test is applied here to assess the crack path accuracy. We use our
recent algorithm for finite strain plasticity (cf. [10]) with a two yield surface criterion to include the progressive
contraction of the tensile yield stress in ductile fracture. The finite strain elasto-plastic model is the two yield
surface described in [10] and in [16], dependent on the void fraction f :

σeq1 =

√
I2
1 − 3I2 − fc1I1

1− f
(40)
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Figure 24: Load-displacement results, compared with the results of Bocca et al. [22] and the cracking particle
method of Rabczuk and Belytschko [54] (for the case b = 200 mm) with their 68000 particle analysis.
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σeq2
=

√
I2
1 − 3I2

1− f
(41)

where the inequalities hold:

φi ≤ 0 i = 1, 2 (42)

with φi = σeqi
− σy. σy is the yield stress, given by the hardening law. In (40) and (41) the following notation

is used:

I1 = trσ (43)

I2 =
1
2

[
I2
1 − trσ2

]
(44)

c1 = 3
(

σyc

σyt
− 1

)
(45)

f = max
history

(
ε1

εmax

)2

(46)

with σyc being the effective compressive Cauchy stress for f = 1, σyt is the tension Cauchy stress for f = 1 and
ε1 is the maximum principal Almansi strain with εmax being a constitutive property. Further details are given
in previous works [10] and [16].

Five values of the angle Φ are employed in the test: π/12, π/6, π/4, π/3 and π/2. Figure 26 shows a
comparison with the experimental results of Sutton et al [60]. Reasonable agreement can be observed for all
angles. In terms of reactions, Figure 27 shows the results for the studied angles. Higher values than those
reported in [60] were obtained. However, further details on strain softening behavior were not given in that
reference.

4.7 Pressure vessel fracture with slot

This problem was studied by R. Kitching and K. Zarrabi [39] with the main objective of evaluating the limit
pressure of a cylindrical pressure vessel including the weakening effect of a thin rectangular slot at mid-height.
The vessel is made of BS 1476 HT30WP Aluminum alloy. For this problem, both elasto-plastic and fracture
properties are unambiguously defined in that reference. Specifically, in [39] the Authors assessed 12 specimens
with distinct dimensions so that a systematic result could be obtained. We here concentrate on their specimen
#12 for comparison purposes. Remaining relevant data is shown in Figure 28. Units correspond, in the
original paper, to the British Imperial System but for uniformity we indicate them as “consistent”. Our recent
corotational shell element is adopted [11] with multiplicative plasticity (cf. [10]). In the lack of a better
information, we use J2 plasticity without damage. Initiation criterion is the critical effective plastic strain
using a fitting of the results in the original reference (εmax = 0.21) and advance criterion is obtained from the
subsequent JR value and the VCCT. A mesh containing 2965 nodes and 5873 corotational elements (cf. [11]) is
used (see the final configuration in Figure 29). A comparison with the experimental results by R. Kitching and
K. Zarrabi is presented in Figure 30. Adequate correspondence can be observed, despite the complexity of the
original problem. Examples such as the ones in the Areias and Belytschko work (cf. [6, 15, 7]) are now being
successfully solved with this technique.
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σy = 344 + 769.44εp Mpa for εp ≤ 0.18
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Figure 25: ARCAN test: relevant data. Further details are given in the original reference [60].
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Present simulations

Φ = 30◦Φ = 15◦

Experimental data (M.A. Sutton et al. 2000)

Initial fatigue crack (6.35 mm)

Figure 26: ARCAN test: crack path compared with the experimental results of Sutton et al. [60]. Also shown
is the void fraction contour plot.
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Figure 27: ARCAN test: Reactions components resulting from imposed displacement.
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Figure 28: Pressure vessel with slot, corresponding to specimen #12 of Kitching and Zarrabi (cf. [39]).
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Figure 30: Pressure vessel with slot: comparison with experimental results (cf. [39]).
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5 Conclusions

The simple algorithm of edge rotation for computational fracture provides an advantageous alternative to the tip
remeshing algorithm proposed by the Authors (cf. [9, 16, 11, 10, 14]). Crack paths are more regular, Newton-
Raphson convergence is better and less mesh distortion occurs. We found that both for brittle, quasi-brittle and
ductile fracture, classical benchmarks perform at least as well as alternative techniques. We note that, although
quadrilaterals can be used, some elements can suffer a too severe distortion and negative Jacobians. Recent
enrichment techniques also show remarkable accuracy, but are more limiting for large amplitude displacements
and the application to elasto-plastic problems is not clear. A subsequent manuscript is in preparation, applying
the present algorithm to full 3D computational fracture.
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