Accepted Manuscript

Development and validation of a multi-residue and multiclass ultra-high-pressure liquid chromatography-tandem mass spectrometry screening of antibiotics in milk

Andreia Freitas, Jorge Barbosa, Fernando Ramos

PII: S0958-6946(13)00152-0

DOI: 10.1016/j.idairyj.2013.05.019

Reference: INDA 3531

To appear in: International Dairy Journal

Received Date: 17 December 2012

Revised Date: 30 May 2013

Accepted Date: 31 May 2013

Please cite this article as: Freitas, A., Barbosa, J., Ramos, F., Development and validation of a multiresidue and multiclass ultra-high-pressure liquid chromatography-tandem mass spectrometry screening of antibiotics in milk, *International Dairy Journal* (2013), doi: 10.1016/j.idairyj.2013.05.019.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Development and validation of a multi-residue and multiclass ultra-high-pressure
2	liquid chromatography-tandem mass spectrometry screening of antibiotics in milk
3	
4	
5	
6	
7	Andreia Freitas ^{a,b} , Jorge Barbosa ^{a,b} , Fernando Ramos ^b *
8	
9	
10	
11	^a INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Unidade Estratégica
12	de Investigação e Serviços de Tecnologia e Segurança Alimentar, Estrada de Benfica,
13	701, 1549-011 Lisboa, Portugal
14	
15	^b CEF – Center for Pharmaceutical Studies, Health Sciences Campus, Pharmacy
16	Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra,
17	Portugal
18	
19	
20	*Corresponding author. Tel.: + 351 239 488492
21	E-mail address: fjramos@ci.uc.pt (F. Ramos)

22	
23	
24	Abstract
25	
26	A multi-residue screening method for 33 antibiotics from five different families
27	was employed to simultaneously determine sulphonamide, tetracycline, macrolide,
28	quinolone and chloramphenicol antibiotics using ultra high pressure liquid
29	chromatography tandem mass spectrometry. A simple sample preparation method was
30	developed using protein precipitation, centrifugation and solid phase extraction and was
31	optimised to achieve the best recovery for all compounds. The methodology was
32	validated for quantitative screening methods, by evaluating the detection capability
33	$(CC\beta)$, specificity, selectivity, precision, applicability and ruggedness. Precision, in
34	terms of relative standard deviation, was under 21% for all compounds. Because $CC\beta$
35	was determined for screening purposes and, according to maximum residue limit, the
36	limit of detection of the method was calculated and ranged from 0.010 μ g kg ⁻¹ to 3.7 μ g
37	kg ⁻¹ . This validation provided evidence that the method is suitable to be applied in
38	routine analysis for the detection of antibiotics in bovine, caprine and ovine milk.
39	

40

41	1.	Introduction
42		
43		Antibiotics in dairy cattle are mainly used to treat mastitis, diarrhoea and
44	pulmo	nary diseases (McEwen & Fedorka-Cray, 2002). These treatments can result in
45	the pre	esence of antibiotic residues in milk. For consumers, the presence of such residues
46	can be	responsible for toxic effects, allergic reactions in individuals with
47	hypers	ensitivity, and can result in the development of resistant strains of bacteria
48	(Barlo	w, 2011; Knecht et al., 2004; Toldrá & Reig, 2006; Wassenaar, 2005). The
49	presen	ce of antibiotic residues can also be responsible for undesirable effects in the
50	dairy i	ndustry, especially concerning processed food by fermentation wherein the
51	quality	v of the final products can be seriously compromised (Toldrá & Reig, 2006). All
52	these c	concerns make the analysis of antibiotic residues in milk an important field of
53	food s	afety to study.
54		To protect consumers, regulatory agencies in the European Union published
55	severa	l official documents regulating the control of veterinary drugs in food products
56	from a	nimal origin. Council Directive 96/23/EC (European Commission, 1996)
57	establi	shes the veterinary residue control in food producing animals. Tolerance levels,
58	as dese	cribed by European Commission Regulation 470/2009/EC (European
59	Comm	ission, 2009), were set for compounds that can be used for therapeutic purposes.
60	Regula	ation 37/2010 (European Commission, 2010) lists pharmacologically active
61	substa	nces and their maximum residue level (MRL) in foodstuffs of animal origin, as
62	well as	s compounds for which no MRL has been set because no hazard for public health
63	has be	en observed. For some non-authorised substances a minimum required
64	perform	mance limit (MRPL) was set to harmonise the analytical performance of the

65	methods (SANCO, 2007; European Commission, 2002), meaning that MRPL is not a
66	concentration obtained from toxicological data, but is only related to the general
67	analytical performance. For antibiotics without an MRL or an MRPL, a validation level
68	(VL) was defined based on the drug characteristics of the respective class of compounds
69	(Table 1).
70	The requirements for performance and validation of analytical methods
71	employed in the official residues control for screening and confirmatory purposes are
72	described in European Decision 2002/657/EC (European Commission, 2002).
73	Microbiological and bioassay techniques are still used for antibiotic qualitative
74	screening purposes (Franek & Diblikove, 2006; Knecht et al., 2004; Lamar & Petz,
75	2007; Pastor-Navarro, Maquieira, & Puchades, 2009; Toldrá & Reig, 2006; Zhang &
76	Wang, 2009) mainly because of their low cost and simplicity; however, they lack
77	sensitivity and specificity. To ensure unequivocal identification, there is a growing need
78	for efficient screening methods that guarantee a significantly reduced number of false
79	positives and false negatives. This efficiency can be gathered in multi-detection
80	methods based on liquid chromatography (LC) coupled with tandem mass spectrometry
81	(MS/MS) (Bohm, Stachel, & Gowik, 2009; Gaugain-Juhel et al., 2009; Le Bizec, Pinel,
82	& Antignac, 2009; Stolker, Zuidema, & Nielen, 2007; Turnipseed, Andersen,
83	Karbiwnyk, Madson, & Miller, 2008). The use of ultra-high performance liquid
84	chromatography (UPLC) provides the possibility of having short run times together
85	with higher resolution and sensitivity, important attributes when running several
86	compounds at once (Aguilera-Luiz, Vidal, Romero-González, & Frenich, 2008; Junza,
87	Amatya, Barrón & Barbosa, 2011; Ortelli, Cognard, Jan & Edder, 2009; Stolker et al.,
88	2008).

89	Several methods can be found in literature for the determination of residues of
90	different antibiotic families in milk. However, for the simultaneous analysis of
91	compounds of different antibiotic classes in a multi-class residue analysis, only a
92	restricted number of methods are reported in the literature, mainly due to difficulties
93	related to differences in physico-chemical properties between families of compounds
94	(Aguilera-Luiz, et al., 2008; Balizs & Hewitt, 2003; Bohm et al., 2009; Gaugain-Juhel
95	et al., 2009; Junza et al., 2011; Kaufmann, 2009; Ortelli et al., 2009; Stolker et al.,
96	2008). The present work describes the development and validation of a simple and
97	effective quantitative screening method by UPLC-MS/MS for the simultaneous
98	detection of 33 antibiotic compounds from sulphonamides, tetracyclines, macrolides,
99	quinolones and chloramphenicol in bovine, caprine and ovine milk samples for
100	application in routine analyses.
101	
101 102	2. Materials and methods
	2. Materials and methods
102	 Materials and methods <i>Reagents, solvents and standard solutions</i>
102 103	
102 103 104	
102 103 104 105	2.1. Reagents, solvents and standard solutions
102 103 104 105 106	2.1. Reagents, solvents and standard solutionsAll reagents and solvents used were of analytical grade with the exception of
102 103 104 105 106 107	2.1. Reagents, solvents and standard solutions All reagents and solvents used were of analytical grade with the exception of chemicals used for the mobile phase, which were of HPLC grade. Methanol, acetonitrile
102 103 104 105 106 107 108	2.1. Reagents, solvents and standard solutions All reagents and solvents used were of analytical grade with the exception of chemicals used for the mobile phase, which were of HPLC grade. Methanol, acetonitrile and formic acid were supplied by Merck (Darmstadt, Germany). All standards of
102 103 104 105 106 107 108 109	2.1. Reagents, solvents and standard solutions All reagents and solvents used were of analytical grade with the exception of chemicals used for the mobile phase, which were of HPLC grade. Methanol, acetonitrile and formic acid were supplied by Merck (Darmstadt, Germany). All standards of tetracyclines, quinolones, macrolides, sulphonamides and chloramphenicol were
102 103 104 105 106 107 108 109 110	2.1. Reagents, solvents and standard solutions All reagents and solvents used were of analytical grade with the exception of chemicals used for the mobile phase, which were of HPLC grade. Methanol, acetonitrile and formic acid were supplied by Merck (Darmstadt, Germany). All standards of tetracyclines, quinolones, macrolides, sulphonamides and chloramphenicol were supplied by Sigma-Aldrich (Madrid, Spain). The individual standards are listed in Table

standards were provided by Sigma-Aldrich. For all substances, stock solutions of 1 mg
mL⁻¹ were prepared by weighing the appropriate amount of standard, diluting in
methanol, and storing at less than 5 °C. Suitable dilutions were also prepared to have
convenient spiking solutions for both the validation process and routine analysis.
2.2. Instrumentation
The following equipment was used for sample preparation: Mettler Toledo

PC200 and AE100 balances (Greifensee, Switzerland), Heidolph Reax 2 overhead 122 123 mixer (Schwabach, Germany), Heraeus Megafuge 1.0 centrifuge (Hanau, Germany), Turbovap Zymark Evaporator (Hopkinton, MA, USA) and Whatman Mini-Uniprep 124 PVDF (polyvinylidene fluoride) 0.45 µm filters (Clifton, NJ, USA). A Xevo TQ MS – 125 Acquity UPLC system coupled to a triple quadrupole tandem mass spectrometer from 126 127 Waters (Milford, MA, USA) was used for chromatographic separation and mass spectrometry. The electrospray ion source in positive (ESI+) and negative (ESI-) mode 128 was used with data acquisition in multiple reaction monitoring (MRM) mode and 129 130 analysed using Masslynx 4.1 software (Waters). The MRM optimised conditions are presented in Table 1. 131

The UPLC system consisted of a vacuum degasser, an autosampler and a binary pump equipped with an analytical reverse-phase column Acquity HSS T3 2.1×100 mm with 1.8 μm particle size (Waters). The mobile phases used were: A, formic acid 0.1% (v/v) in water and B, formic acid 0.1% (v/v) in acetonitrile. The gradient program used, at a flow rate of 0.45 mL min⁻¹, was: 0-5 min from 97% A to 40% A; 5-9 min from 40% to 0% A; 9-10 min from 0% back to 97% A; 11-12 min 97% A. The column was maintained at 40 °C, the autosampler at 10 °C and the injection volume was 20 μL.

139

140 2.3. Sample preparation

142	Homogenised raw milk samples (2 g) were weighed into 20 mL glass centrifuge
143	tubes, the internal standard solution was added, then vortexed and allowed to stand in
144	the dark for at least 10 min. Proteins were precipitated and antibiotics extracted through
145	shaking for 20 min with 10 mL of acetonitrile. Following centrifugation for 15 minutes
146	at $3100 \times g$, the supernatant was transferred into a new tube and evaporated to dryness
147	under a gentle stream of nitrogen. The residue was re-dissolved with mobile phase A
148	(400 μ L), filtered through a 0.45 μ m PVDF membrane, transferred to vials and injected
149	into the UPLC-MS/MS under MRM optimised conditions for each compound.
150	
151	2.4. Validation procedure
152	
153	The method was validated as a quantitative screening method by assessing the
153 154	The method was validated as a quantitative screening method by assessing the following parameters for each compound: $CC\beta$ (detection capability), specificity,
154	following parameters for each compound: $CC\beta$ (detection capability), specificity,
154 155	following parameters for each compound: $CC\beta$ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection
154 155 156	following parameters for each compound: $CC\beta$ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection (LOD) was also estimated in accordance with the observed signal-to-noise ratio in the
154 155 156 157	following parameters for each compound: $CC\beta$ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection (LOD) was also estimated in accordance with the observed signal-to-noise ratio in the spiked samples. The selectivity and specificity were evaluated by analysing 20 blank
154 155 156 157 158	following parameters for each compound: $CC\beta$ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection (LOD) was also estimated in accordance with the observed signal-to-noise ratio in the spiked samples. The selectivity and specificity were evaluated by analysing 20 blank milk samples from each different species (bovine, ovine and caprine) and the same
154 155 156 157 158 159	following parameters for each compound: CCβ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection (LOD) was also estimated in accordance with the observed signal-to-noise ratio in the spiked samples. The selectivity and specificity were evaluated by analysing 20 blank milk samples from each different species (bovine, ovine and caprine) and the same samples were spiked with all the compounds at the MRL/MRPL/VL level. Along with
154 155 156 157 158 159 160	following parameters for each compound: CCβ (detection capability), specificity, selectivity, precision, applicability and ruggedness. In addition, the limit of detection (LOD) was also estimated in accordance with the observed signal-to-noise ratio in the spiked samples. The selectivity and specificity were evaluated by analysing 20 blank milk samples from each different species (bovine, ovine and caprine) and the same samples were spiked with all the compounds at the MRL/MRPL/VL level. Along with the species variation, the applicability and ruggedness were shown by carrying out the

164	concentration that was less than or equal to the regulatory MRL, and for that reason, 20
165	blank samples from each animal species were spiked with half the value of the MRL.
166	For drugs without MRL or MRPL recommended concentration levels, a VL was defined
167	(Table 1) and the calculation of the CC β was in accordance with the Regulation
168	2002/657/EC decision (European Commission, 2002) for unauthorised compounds. The
169	peak areas of both the analyte and the respective internal standard were measured, and
170	the analyte/internal standard ratios were used for all determinations.
171	
172	3. Results and discussion
173	
174	To fulfil the requirements of the legislated MRLs and the control of prohibited
175	substances, methods have to be specific and sensitive enough to detect low levels,
176	taking into account the complexity of obtaining good recovery of all compounds with
177	distinct physico-chemical properties. The main problem associated with milk extraction
178	for subsequent determination of antibiotics is the high protein content. In most methods
179	reported in the literature, the preparation of milk samples for residue analysis involves
180	protein precipitation followed by solid-phase extraction (SPE) through the use of
181	appropriate cartridges or dispersive SPE (Aguilera-Luiz et al., 2008; Bohm et al. 2009;
182	Junza et al. 2011; Stolker et al., 2008; Turnipseed et al., 2008). The precipitation of
183	proteins is achieved in many cases by adding a strong acid, such as trichloroacetic acid,
184	in combination with a miscible organic solvent. In the present method, acetonitrile was
185	added to milk to promote the precipitation of proteins, and was also used as the
186	extracting solvent. Protein precipitation was effective and a clean extract was obtained,
187	which was demonstrated by the results obtained: no signal suppression or enhancement
188	was observed and no interferences in the MS/MS detection that could compromise the

189 determination. It can be assumed that the matrix components responsible for possible 190 interference were removed, such as proteins, fats, and carbohydrates. Although the use 191 of SPE prior to MS/MS measurement can have the advantage of decreasing the effects 192 of ion suppression caused by matrix interferences, it can also compromise the individual 193 recoveries due the fact that each of the antibiotic classes, as well as antibiotics within 194 each class, has different physico-chemical properties. All these aspects must be taken into account when selecting the appropriate SPE cartridge, especially as it can be 195 196 difficult to find one with multi-class selectivity. 197 A procedure using a polymeric sorbent SPE cartridge, composed of an OASIS® 198 (Waters) hydrophilic-lipophilic balance modified polymer, after protein precipitation 199 and liquid-liquid extraction with acetonitrile was described by Bohm et al. (2009), 200 Junza et al. (2011) and Turnipseed et al. (2008). Although this solid phase has very 201 broad selectivity for polar compounds, after comparing the results with and without this 202 step, it was considered unnecessary since better recoveries could be achieved with only 203 liquid-liquid extraction. The principal advantage of the present method, when 204 comparing with methods reported by Bohm et al. (2009), Junza et al. (2011) and 205 Turnipseed et al. (2008), is that the present extraction became easier to handle and, 206 without the use of cartridges, the costs can be significantly reduced, which is a factor 207 that must be taken into account when there are a large number of samples to be 208 routinely analysed for screening purposes. The use of acetonitrile as both the agent of 209 protein precipitation and also as the extracting solvent yields a process even more 210 simple and cost effective. The celerity in obtaining results is one of the fundamental characteristics of screening methods. The use of equipment with good performance and 211 212 high sensitivity, such a UPLC-MS/MS, enables sample preparation to be simplified without compromising the detection capability of the method. The high sensitivity of 213

the equipment enables detection of compounds that are positively ionised, and 214 chloramphenicol which is negatively ionised, in the same run. Chloramphenicol, being a 215 banned substance, has to be detected at very low concentrations below its corresponding 216 MRPL at 0.3 μ g kg⁻¹, which was successfully achieved (LOD = 0.06 μ g kg⁻¹; Table 2). 217 To achieve maximum sensitivity for all compounds, MS/MS conditions (such as 218 219 ion spray voltage, de-solvation temperature, and gas flow and collision conditions) were optimised by direct infusion into the detector of standard solutions and the principal ion 220 221 transition was selected for each analyte. Table 1 presents the m/z ion transition monitored for screening and the associated collision energy. The use of an acidic mobile 222 223 phase adjusted with 0.1% of formic acid promoted positive ionisation, which improved the detection of most compounds since only chloramphenicol is negatively ionised. 224 In terms of chromatographic optimisation, several gradient profiles were 225 226 studied to improve peak separation and minimise the run time. Acetonitrile was shown 227 to be better that methanol because of maximised sensitivity and resolution, especially when acidified with formic acid. The gradient described above allows the determination 228 of all compounds in 10 min. One of the advantages of working with UPLC columns 229 230 consisting of a smaller particle size is the possibility of having high efficiency in peak 231 separation, sharp peaks, and also a reduction in run time when compared with common 232 HPLC columns, in terms of particle size. Chromatograms obtained for a spiked sample 233 with all compounds at the validation levels (VL) are shown in Fig. 1. Each peak is 234 characteristic of the respective antibiotic, demonstrating the good performance of the method in terms of detection, as well as for optimal chromatographic separation. 235 236 The main requisite for a reliable screening method is to detect unauthorised 237 substances below the regulatory limits (MRL/MRPL) or at a level as low as possible, minimising false negative results. Therefore a method has to be fully validated in 238

239	accordance with the legislation (European Commission, 2002; European Commission,
240	2010). At the expected retention time for all the target compounds, no interfering peaks
241	were observed in any of the analysed samples from the three different species.
242	Additionally the identification of all compounds were effective in all samples from the
243	different species, according the criteria of Regulation 2002/657/EC decision (European
244	Commission, 2002), in all the 20 spiked samples at the VL. No false-negative results
245	were observed since all analytes were detected at the expected retention time. The
246	ruggedness of the method was assessed when carrying out analysis of both the blank
247	and the spiked samples of milk from different animal species, using different
248	technicians and with inter-day analysis. No significant variation was observed.
249	The results for precision, quantified as RSD% (Table 2), showed the precision of
250	the method. No results were obtained above 21%, which represents a significantly lower
251	value when compared with the criteria value accepted by the Horwitz equation
252	(European Commission, 2002).
253	Although it is stated in Decision 2002/657/EC (European Commission, 2002)
254	that $CC\beta$ is the smallest content of the substance that may be detected, identified and/or
255	quantified in a sample with an error probability of β =5%, it is considered to be the
256	concentration above which the sample should be re-analysed by a confirmatory method
257	for screening purposes. It is also stated that $CC\beta$ must be less than or equal to the
258	regulatory limit (MRL/MRPL) for screening methods. For this reason, and for
259	antibiotics with MRL legislated, $\frac{1}{2}$ MRL was adopted as the CC β value. For those
260	without MRL, the calculation was carried out by a matrix-matched calibration curve
261	according to Decision 2002/657/EC for unauthorised substances as described by
262	Kaufmann (2009). The LOD was also evaluated to establish the sensitivity of this
263	method and was defined as the lowest concentration of the analyte, calculated by

264	multiplying the mean value of the signal-to-noise ratio of 20 blank samples by three. All
265	the LOD values for the measured compounds were found to be significantly lower than
266	the MRL/MRPL/VL values. The validation values are presented in Table 2.
267	
268	4. Conclusions
269	
270	A rapid and reliable multi-residue and multi-class method for simultaneous
271	detection of 33 antibiotics, from five different families was developed and validated for
272	quantitative screening of milk samples. The validation results showed the applicability
273	for routine analysis of bovine, caprine and ovine milk in accordance with the
274	requirements established in Decision 2002/657/EC (European Commission, 2002). The
275	optimised extraction procedure is a simple and efficient method without the need for an
276	SPE step, thus reducing the handling time and associated costs, and allowing a larger
277	number of samples analysed in one day.
278	
279	References
280	
281	Aguilera-Luiz, M. M., Vidal, J. L. M., Romero-González, R., & Frenich, A. G. (2008).
282	Multi-residue determination of veterinary drugs in milk by ultra-high-pressure
283	liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,
284	1205, 10-16.
285	Balizs, G., & Hewitt, A. (2003). Determination of veterinary drug residues by liquid
286	chromatography and tandem mass spectrometry. Analytica Chimica Acta, 492,
287	105-131.

288	Barlow, J. (2011). Antimicrobial resistance and the use of antibiotics in the dairy
289	industry: facing consumer perceptions and producer realities. WCDS Advances in
290	Dairy Technology, 23, 47-58.
291	Bohm, D. A., Stachel, C. S., & Gowik, P. (2009). Multi-method for the determination of
292	antibiotics of different substance groups in milk and validation in accordance with
293	Commission Decision 2002/657/EC. Journal of Chromatography A, 1216, 8217-
294	8223.
295	European Commission (1996). Council Directive 96/23/EC of 29 April 1996 on
296	measures to monitor certain substances and residues thereof in live animals and
297	animal products and repealingDirectives85/358/EEC and 86/469/EEC and
298	Decision 89/187/EEC and 91/664/EEC. Official Journal of the European
299	<i>Communities</i> , <i>L125</i> , 10-32.
300	European Commission (2002). Decision (2002/657/EC) of 12 August 2002
301	implementing Council Directive 96/23/EC concerning the performance of
302	analytical methods and interpretation of results. Official Journal of the European
303	Communities, L221, 8-36.
304	European Commission (2009). Regulation (EC) No. 470/2009 of the European
305	Parliament and of the Council of 6 May 2009: laying down Community
306	procedures for the establishment of residue limits of pharmacologically active
307	substances in foodstuffs of animal origin, repealing Council Regulation (EEC)
308	No. 2377/90 and amending Directive 2001/82/EC of the European Parliament and
309	of the Council and Regulation (EC) No. 726/2004 of the European Parliament and
310	of the Council. Official Journal of the European Union, L152, 11-22.
311	European Commission (2010). Commission Regulation (EU) No. 37/2010 of 22
312	December 2009: on pharmacologically active substances and their classification

313	regarding maximum residue limits in foodstuffs of animal origin. Official Journal
314	of the European Union, L15, 1-72.
315	Franek, M., & Diblikove, I. (2006). Broad-specificity immunoassays for sulfonamide
316	detection: immunochemical strategy for generic antibodies and competitors.
317	Analytical Chemistry, 78, 1559-1567.
318	Gaugain-Juhel, M., Delépine, B., Gautier, S., Fourmond, M. P., Gaidin, V., Hurtaud-
319	Pessel, D., et al. (2009). Validation of a liquid chromatography-tandem mass
320	spectrometry screening method to monitor 58 antibiotics in milk: a qualitative
321	approach. Food Additives and Contaminants, 26, 1459-1471.
322	Junza, A., Amatya, R., Barrón, D., & Barbosa, J. (2011). Comparative study of the LC-
323	MS/MS and UPLC-MS/MS for the multi-residue analysis of quinolones,
324	penicillins and cephalosporins in cow milk, and validation according to the
325	regulation 2002/657/EC. Journal of Chromatography B, 879, 2601-2610.
326	Kaufmann, A. (2009). Validation of multiresidue methods for veterinary drug residues;
327	related problems and possible solutions. Analytica Chimica Acta, 637, 144-155.
328	Knecht, B. G., Strasser, A., Dietrich, R., Märtlbauer, E., Niessner, R., & Weller, M. G.
329	(2004). Automated microarray system for the simultaneous detection of
330	antibiotics in milk. Analytical Chemistry, 76, 646-654.
331	Lamar, J., & Petz, M. (2007). Development of a receptor-based microplate assay for the
332	detection of beta-lactam antibiotics in different food matrices. Analytica Chimica
333	Acta, 586, 296-303.
334	Le Bizec, B., Pinel, G., & Antignac, J.P. (2009). Options for veterinary drug analysis
335	using mass spectrometry. Journal of Chromatography A, 1216, 8016-8034.
336	McEwen, S. A., & Fedorka-Cray, P. J. (2002). Antimicrobial use and resistance in
337	animals. Clinical Infectious Diseases, 34, S93–106.

338 Ortelli, D., Cognard, E., Jan, P., & Edder, P. (2009). Comprehensive fast mul

- 339 screening of 150 veterinary drugs in milk by ultra-performance liquid
- 340 chromatography coupled to time of flight mass spectrometry. *Journal of*
- 341 *Chromatography B*, 877, 2363-2374.
- 342 Pastor-Navarro, N., Maquieira, A., & Puchades, R. (2009). Review on
- 343 immunoanalytical determination of tetracycline and sulfonamide residues in
- edible products. *Analytical and Bioanalytical Chemistry*, 395, 907-920.
- 345 SANCO (2007). CRLs view on state of the art analytical methods for national residue
- 346 control plans. *CRL Guidance Paper (7 December 2007)*, 1-8.
- 347 <u>http://www.bvl.bund.de/SharedDocs/Downloads/09_Untersuchungen/EURL_Em</u>
- 348 pfehlungen_Konzentrationsauswahl_Methodenvalierungen.pdf?__blob=publicatio
 349 nFile
- 350 Stolker, A. A. M., Rutgers, P., Oosterink, E., Lasaroms, J. J. P., Peters, R. J. B., Van
- 351 Rhijn, J. A., et al. (2008). Comprehensive screening and quantification of
- 352 veterinary drugs in milk using UPLC-ToF-MS, Analytical and Bioanalytical
- 353 *Chemistry*, *391*, 2309-2322.
- 354 Stolker, A. A. M., Zuidema, T., & Nielen, M. W. F. (2007). Residue analysis of
- veterinary drugs and growth-promoting agents. *Trends in Analytical Chemistry*,
 26, 967-979.
- Toldrá, F., & Reig, M. (2006). Methods for rapid detection of chemical and veterinary
 drug residues in animal foods. *Trends in Food Science and Technology*, *17*, 482–
 489.
- 360 Turnipseed, S. B., Andersen, W. C., Karbiwnyk, C. M., Madson, M. R., & Miller, K. E.
- 361 (2008). Multi-class, multi-residue liquid chromatography/tandem mass

- 362 spectrometry screening and confirmation methods for drug residues in milk,
- 363 *Rapid Communications in Mass Spectrometry*, 22, 1467-1480.
- 364 Wassenaar, T. M. (2005). Use of antimicrobial agents in veterinary medicine and
- implications for human health. *Critical Reviews in Microbiology*, *31*, 155–169.
- 366 Zhang, H., & Wang, S. (2009). Review on enzyme-linked immunosorbent assays for
- 367 sulfonamide residues in edible animal products. *Journal of Immunological*
- 368 *Methods*, *350*, 1-13.

Figure legends

Fig. 1. Liquid chromatography multiple reaction monitoring chromatograms of the antibiotics detected in a milk sample spiked at the corresponding validation level (precursor ion > product ion referred in Table 1; numbers in brackets correspond to the vertical axis scale of the respective chromatogram).

Table 1

Maximum residue levels set by the European Union for milk, and validation level values and multiple reaction monitoring acquisition conditions for each antibiotic and the internal standards.^a

Antibiotic		MRL (µg kg ⁻¹)	VL (μg kg ⁻¹)	ESI	Precursor ion (m/z)	Product ion (m/z)	Cone voltage (eV) ^b	Collision energy (eV) ^b
Tetracyclines	chlortetracycline	100	100	+	479.3	444.2	25	oltage $eV)^b$ energy $(eV)^b$ 520520520520518517517517119020025032017014321426518023122535545530535015015015515016015015515016015028
2	oxytetracycline		100	+	461.5	426.3	25	20
	tetracycline		100	+	445.5	410.3	25	20
	doxycycline	-	50	+	445.5	428.2	25	18
	demethyltetracycline	Internal standard		+	465.2	448.3	25	17
Quinolones	ciprofloxacin	100	100	+	332.2	288.2	35	17
	enrofloxacin	100		+	360.3	ionionvoltage (eV) ^b energy (eV) ^b (m/z) (m/z) $(eV)^b$ $(eV)^b$ 479.3 444.2 2520 445.5 426.3 2520 445.5 428.2 2518 465.2 448.3 2517 332.2 288.2 3517 360.3 316.3 3119 363.3 72.1 3020 262.2 202.1 3032 262.2 202.1 3032 320.3 276.2 2017 233.2 215.1 4014 358.3 96.1 3321 362.1 261.3 34 26 321.2 303.2 35 18 263.2 217.1 30 23 352.2 265.3 31 22 917.1 174.3 35 35 869.3 174.2 35 45 734.5 158.2 25 30 843.5 174.0 35 35 87.7 679.5 30 30 251.2 156.2 30 15 256.4 156.3 25 15 311.4 156.4 30 18 271.0 156.2 25 15 250.3 156.2 30 15 258.3 156.2 30 15 258.3 156.2 30 15 258.3 156.2 30 <t< td=""></t<>		
	marbofloxacin	75	75	+	363.3		30	20
	oxolinic acid	-	25	+	262.2			25
	flumequine	50	50	+	262.2	202.1	30	32
	norfloxacin	-	25	+	320.3	276.2	20	17
	nalidixic acid	-	25	+	233.2	215.1		
	danofloxacin	30	30	+	358.3	96.1	33	21
	ofloxacin	-	25	g kg ⁻¹) ion (m/z) ion <td< td=""><td>362.1</td><td>261.3</td><td>34</td><td>26</td></td<>	362.1	261.3	34	26
	enoxacin	-	25	+	321.2	303.2	35	18
	cinoxacin	-	25	+	263.2	217.1	30	23
	lomefloxacin	Internal sta	andard	+	352.2	265.3	31	22
Macrolides	tylosin	50	50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35		
	tilmicosin			+	869.3			
	erythromycin	40	40	+	734.5	158.2		30
	spiramycin	200	200	+	843.5		35	35
	roxithromycin	Internal sta	andard	+	837.7	679.5	30	30
Sulphonamides	sulfadiazine	100	100	+		156.2		
	sulfamethoxazole	100	100	+				
	sulfadimethoxine			+		156.2		
	sulfametazine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+		156.3			
	sulfathiazole			+	(m/z) (m/z) +479.3444.2+461.5426.3+445.5410.3+445.5428.2+465.2448.3+332.2288.2+360.3316.3+363.372.1+262.2202.1+262.2202.1+320.3276.2+233.2215.1+362.1261.3+362.1261.3+352.2265.3+917.1174.3+869.3174.2+734.5158.2+843.5174.0+837.7679.5+251.2156.2+254.4156.4+311.4156.2+250.3156.3+250.3156.3+250.3156.2+250.3156.3+251.2156.2+250.3156.3+250.3156.3+268.3156.2+279.4186.3+281.2156.2+281.392.2+281.392.2+281.392.2+281.392.2+281.392.2			
Macrolides	sulfadoxine		100	+		156.4		
	sulfamethizole			+				
	sulfapyridine			+				
	sulfisoxazole			+				
	sulfisomidine		100	+		186.3		
	sulfamethoxypyridazine			+	281.2	156.2		15
	sulfachloropyridazine			+				
	sulfaquinoxaline	100	100	+	301.3		30	30
	sulfameter	Internal sta	andard	+	281.3	92.2	25	30
Amphenicol	chloramphenicol ^c			-			30	25
	chloramphenicol-d5 ^d	Internal sta	andard	-	326.0	157.0	voltage (eV) ^b energy (eV) ^b 2520252025202518251735173119302030253032201740143321342635183023312235353545253035353020301530153015301530152515301530153015301530153015301530153016302830302530	

^a Abbreviations are: MRL, maximum residue level; VL, validation level; ESI, electrospray ion source.

^b All values in electron volts (eV) must be multiplied by 1.6×10^{-9} to convert to Joules.

^c Compound (a banned substance) without an MRL but with minimum required performance limit

(MRPL) set to harmonise the analytical performance of the methods.

^d Fifth-deuterated form of chloramphenicol.

Table 2

The principal parameters of validation.^a

Antibiotic	LOD (µg kg ⁻¹)	$CC\beta (\mu g kg^{-1})$	RSD (%)
chlortetracycline	0.20	50.0	11
oxytetracycline	0.20	50.0	9
tetracycline	0.10	50.0	8
doxycycline	0.30	1.5	14
ciprofloxacin	0.20	50.0	21
enrofloxacin	0.02	50.0	8
marbofloxacin	0.10	35.0	19
oxolinic acid	0.20	0.4	9
flumequine	0.04	25.0	4
norfloxacin	0.20	4.7	15
nalidixic acid	0.30	0.4	9
danofloxacin	0.05	15.0	14
ofloxacin	3.70	4.1	17
enoxacin	3.00	3.2	16
cinoxacin	0.80	1.0	8
tylosin	0.01	25.0	11
tilmicosin	0.10	25.0	23
erythromycin	0.10	20.0	4
spiramycin	0.10	100.0	17
sulfadiazine	2.00	50.0	15
sulfamethoxazole	0.10	50.0	7
sulfadimethoxine	0.20	50.0	13
sulfametazine	0.10	50.0	5
sulfathiazole	1.00	50.0	10
sulfadoxine	0.20	50.0	5
sulfamethizole	0.20	50.0	12
sulfapyridine	1.00	50.0	12
sulfisoxazole	0.10	50.0	7
sulfisomidine	0.60	50.0	13
sulfamethoxypyridazine	0.10	50.0	17
sulfachloropyridazine	0.10	50.0	9
sulfaquinoxaline	0.10	50.0	5
chloramphenicol	0.06	0.1	15

 $^{\rm a}$ Abbreviations are: LOD, limit of detection; CC β , detection capability; RSD, relative standard deviation

Figure 1

100 %	Sulfisomicine 314	7	(1.26e7)		100 *	Sufaquinoxaline	4,76	(8.02e6)	1	100	3.70 Marbofloxaoin	(7.73e6)	
4	100 2.00 3.00 -	100 0.00 0.00 7.	00 8.00 9.00	Time	đ	1.00 2.00 3.00 4.0	0 5.00 0.00 7.0	00.8 00.8 00	Time	d l	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 6.00 Time	
100 %	2.4		(1 26 - 6)		100 *	Sulfadimethoxine	480	(2.63e7)		100 *	Enoxacin	(9.70∈5)	
ő	1.00 2.00 3.03	4.00 5.00 6.00 7.	00 8.00 9.00	Time	0	1.03 2.00 3.00 4.0	5.00 6.00 7.	00.8.00 9.00	Tirre	ď	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 9.00 Tine	
100 3*	3 Sulfathiazole	.70	(3.24e6)		10 0 2	3,81 Oxitetraciclina		(2.37e6)	ł	100	3,73 Norlloxacin	(8.67e5)	
Ő	1.00 2.00 3.00	4.00 6.00 6.00 7.	00 8.00 0.00	Time	ď	1.00 2.00 3.00 4.00	500 600 7 0	0 8.00 9.00 Tir	me	ď	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 9.00 Tine	
100 ¥	3 Sulfapyridine	79	(3.75∈6)		100	3,91 Tetracycline		(4.25e5)	1	100 ×	Ofloxacin 375	(5.36e3)	
ď	100 2.00 3.00	4.00 5.00 6.00 7.	00 000 0.00	Time	1	1.00 2.00 3.00 4.0	5 6.00 8.00 7.0	0 8.00 0.00 T	ime	J	1.00 2.00 2.00 4.00 5	00 6.00 7.00 9.00 0.00 Time	
100 ¥	Sulfamethizole	108	(2.17e6)		100	4.1	1	(* 3*e6)		100 %	Ciproflexacin 3,80	(5.77 - 6)	
d	1.00 2.00 3.00 (400 5.00 6.00 7.0	00 8.00 9.00 T	line	ő	1.00 2.00 3.00 4.0	0 5 00 6 00 7	00 8 00 9 00 T	Time	ď	1.00 2.00 3.00 400 5	có được 7 trở si có si có Time	
100 *	Sulfametazine	4,11	(3.01e6)		100 ×	4 Doxycycline	.30	(4.25e6)	1	100 3	3,82 Danofioxacin	[2.58e6)	
ď	1.00 2.00 3.00	4.00 5.00 8.00 7.	.00 9.00 9.00	Time	0	1.02 2.00 3:00 4.0	0 5.00 6.00 7.	00 8 00 9 00 T	lime	Ļ	100 200 200 400 5	00 0.00 7.00 8.00 8.00 Time	
100 %	Sulfamethoxypyric	4,13	(1.42e7)		100 %	4.0 Spramyein		(1.38eE)		100 %	Enroflaxacin	(2 36e6)	
6	1.00 2.00 3.00	4.00 5.00 0.00 7.	00 8.00 9.00	Time	0 ¹	1.00 2.00 3.00 4.00	5.00 0.00 7.0	T 00.000.8	lime	0 ¹	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 0.00 Time	
100 ೫	Sulfachloropyricaz	435	`3.66e6)		100 *	Tilmicosin	32	(5 75e5)	1	100 *	Cinoxacin 4.53	(6.59ef)	
6	100 2.00 3.00	4.00 5.00 6.00 7.	00 8 00 9 00	Time	ď	1.00 2.00 3.00 4.00	5.00 6.00 7.0	T 00.0 00.8 0	îme	۳.		00 6.00 7.00 8.00 6.00 Tine	
100 %	Sulfadoxine	4.40	(7.97e6)		10 0 %	Erythromycin	462	(1.2467)	1	100	4,5 Oxolinic acid	8 (3.15c9)	
đ	1.00 2.00 3.00	4.00 5.00 6.00 7.	.00 8.00 9.00	Time	ď	1.00 2.00 3.00 4.00	5.00 6.00 7.0	0 8.00 9.00 T	lime	0 th	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 9.00 Time	
105 \$2	Sulfamethexazole	4,50	(2.32e6)		100	Tylosin		(4.20e6)	1	100 %	5 Nalidixic acid	,13 (2.12e7) 	
ď	100 2.00 3.00	4.00 5.00 6.00 7.	00.00 00.8 00.	Time	1	1.00 2.00 3.00 4.0	0 5.00 6.00 7.	00.8.00 9.00	Time	ď	1.00 2.00 3.00 4.00 5	00 6.00 7.00 8.00 9.00 Time	
100 *	Sulfisoxazole	4.60	(9.65e6)		100 %-	43 Chloramienicol	:5	(8.33e4)	,	100 %	flumequine	5 19 (1.41e7)	
đ	100 2.00 3.00 4	1.00 6.00 6.00 7.0	T 00.0 00.8 00	ine	1	1.00 2.00 3.00 4.00	5006.00 7.0	0 0.00 9.00 Ti	ine	1	1.00 2.00 3.00 4.00 5	00 6.00 7.00 3.00 9.00 Time	
			$\mathbf{\nabla}$										
			Ĵ										
	X												