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T.C.P. Dinis, P.C. Ghedini, V.S. Somerset, E.S. Gil, Voltammetric and spectrometric
determination of antioxidant capacity of selected wines, Electrochimica Acta (2013),
http://dx.doi.org/10.1016/j.electacta.2013.08.109

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.electacta.2013.08.109
http://dx.doi.org/10.1016/j.electacta.2013.08.109


Page 1 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

1

Voltammetric and spectrometric determination of antioxidant capacity of selected wines

F.M.A. Linoa, L.Z. de Sáa, I.M.S. Torresa, M.L. Rochaa, T.C.P. Dinisb, P.C.Ghedinia, 

V.S. Somersetc,1, *E.S. Gila,1

aFaculdade de Farmácia, Universidade Federal de Goiás, Campus Colemar Natal e Silva, Praça 

Universitária, CEP: 74605-220, Goiânia, Goiás, Brasil.

bFaculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal.

cNatural Resources and the Environment, CSIR, Stellenbosch, South Africa

*To whom correspondence should be addressed

Tel/FAX: +5562-3209-6042

e-mail: ericsgil@farmacia.ufg.br; ericsgil@gmail.com

Departamento de Controle de Qualidade,

Faculdade de Farmácia, Universidade Federal de Goias,

Av Universitaria s/n, Setor Universitário 

74605-220 Goiânia, Brasil

1ISE menbers



Page 2 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

2

Abstract: Considering the presence of phenolics in grapes and wines, as well as their importance 

for health promoting properties, the DPPH (1,1-diphenyl-2-picrylhidrazine) assay and a novel 

electroanalytical approach (Differential Pulse Voltammetry – DPV) for analysis have been 

performed in order to compare the antioxidant activity of different grape beverages. A total of 

fifty-two wine samples from different regions around the world were analyzed. The antioxidant 

activity of the different wines analyzed was expresses as the amount of wine required to produce 

50% of decolorization of DPPH relative to the blank control (EC50) and as an Electrochemical 

index (EI), obtained by summing the ratios between peak current and peak potential values. Red 

wines presented higher antioxidant capacity than rose and white ones or red juices, evidencing 

the influence of the overall process of fabrication in phenolic extraction from the skin of grapes. 

A negative Pearson´s correlation was found (-0.9110) and this result is consistent with what was 

expected due to the different principles inherent to these methods.

Key Words: Total phenolics, wine, grape beverages, radical scavenging assays, electrochemical 

index.
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1. Introduction

The consumption of wine has long been associated with health benefits. Many studies have 

observed a lower incidence of cardiovascular diseases in the French population when compared 

to other countries such as USA and England. Though the diet in France is also rich in saturated 

fat, owing to the daily wine ingestion, the occurrence of arteriosclerosis is lower than the 

expected [1].

The health promoting properties of wines are due to vast quantities of phenolic compounds, 

claimed to be the most important natural antioxidants [2]. Antioxidants are molecules that can 

inhibit or stop oxidation reactions promoted by free radicals, which are related to DNA 

degradation, membrane peroxidation and protein denaturation. The reactions promoted by the 

free radicals lead to the aging process and are also responsible for the occurrence of many 

diseases such as cancer, diabetes, neurological problems, as well as cardiovascular problems

[3,4]. 

Wines represent better sources of antioxidants when compared to other dietary sources due to the 

fact that, in this beverage, phenols are already solubilized, facilitating the absorption process. It 

is interesting to highlight that wine´s phenolic profile is different from grapes, a fact that can be 

attributed to the extraction process, which increases the content, and also to the fermentation 

process, that modifies substances [6,7,8]. Thus, owing to the health properties of wines, in which 

the phenolic antioxidants play a crucial role, it is indispensable to have methods capable of 

measuring wine´s antioxidant activity [9,10].

Many different methods can be used to measure the antioxidant activity, with the DPPH (1,1-

diphenyl-2-picrylhydrazine) approach as one of the most popular. DPPH. is a commercial radical 



Page 4 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

4

that can be reduced by antioxidant molecules, changing its colour from purple to yellow after the 

reaction, causing a decrease in the absorbance at the wavelength of 517 nm [11-14].

The DPPH. method presents some advantages when compared to other spectrophotometric 

methods such as ABTS (2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), in which it is 

necessary for the generation of the radical, while the DPPH. does not require this procedure. 

However, a major limitation of this method, especially when analyzing wines, is the interference 

of substances that absorb in the same wavelength as the DPPH., leading to difficulties with the 

precision and accuracy of the results [11,12].

Therefore, complementary methods that specifically present a different analytical principle for 

the same type of analysis are often recommended. In this context, the development of novel 

techniques to evaluate the antioxidant activity of wines is an area of interest of many research

groups. Electroanalytical methods, mostly voltammetric techniques, represent one of these novel 

tools, presenting many advantages such as speed, low cost, simplicity and low consumption of 

reagents when compared to other methods [9,13]. Another great advantage is the fact that they 

do not rely on the use of oxidizable compounds to measure the antioxidant capacity of the 

sample, but instead depend only on the inherent electrochemical properties of antioxidants in the 

sample [14].

The need of an electrochemical index for natural antioxidants has already been proposed [15]. 

However, the proposed index has only a qualitative approach, classifying antioxidants as ones of 

“high antioxidant power” or “low antioxidant power” accordingly to the potential in which the 

redox reaction occurs. The total polyphenol index of wines was also determined by using an

electronic tongue and multivariate calibration, but the relationship between polyphenol content 

and antioxidant capacity was not discussed in this approach [16]. Furthermore, most papers have 
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focused on a low number of samples, mostly red and white wines, from a single geographical 

area [6,11,14,16,17]. Thus, the aim of this work was to evaluate the antioxidant activity of a 

range of wines from geographically distinct locations, different quality levels and varied 

production techniques.

 A traditional method (DPPH.) and a novel electroanalytical approach (differential pulse 

voltammetry – DPV) was performed and an electrochemical quantitative index was proposed in 

order to compare the antioxidant activity of different wines.

2. Experimental

2.1 Reagents and Standards

1,1-diphenyl-2-picrylhydrazyl (DPPH.) reagent was purchased from Sigma Chemical Co. (St. 

Louis, MO, USA). ABTS(2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid), Gallic acid (GA), 

Trolox and Folin-Ciocalteu phenol reagent were purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). All supporting solutions were prepared using analytical grade reagents and purified 

water from a Millipore Milli-Q system (conductivity ≤ 0.1 µScm-1) (Millipore S. A., Molsheim, 

France), in accordance with well-established procedures.

The electrochemical analyses were carried out in 0.1 M phosphate buffer solutions (pH 5.0). All 

electrolyte solutions were of the highest analytical grade and were prepared using double-

distilled Milli-Q water.
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2.2 Samples

A total of fifty-two wine samples, obtained from different regions worldwide, five commercial 

grape juices and a wine brandy sample were analyzed.

All of them were purchased from local markets (Goiânia – GO, Brazil). Prices of the selected 

wines listed in Table 1, 2 and 3 varied from US$ 4.00 to $ 120.00 dollars, the pH from 3.3 to 3.7, 

whereas the alcohol content varied from 7 to 21 % v/v.

2.3 Sample Preparation

Spectrophotometric  assays: The wines and juices were diluted in alcohol of analytical grade in 

order to reach 10% v/v. The analytical samples were prepared by leaving the former solution in 

resting for two hours and then taking aliquots from 10 to 500 L of its supernatant, followed by 

further dilution in ethanol in order to reach 0.5 mL.

Electroanalytical assays: Both the wine and juice samples were diluted in pH 5.0 0.1M 

Phosphate buffer solution in order to reach the proportion 2:3 mL. The resulting pH of the 

samples was 4.5. All samples were stored at 4°C until analysis.

2.4 Spectrophotometric Assays

2.4.1 Apparatus

The absorbance measurements were recorded with a spectrometer Q798U2VS (Quimis

Aparelhos Científicos, São Paulo, Brazil). All samples were analyzed in a glassy cell of a 1 cm at 

room temperature (21 ± 1 ºC).
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2.4.2 DPPH Radical Scavenging Assay

Radical scavenging activity of different fractions of wines was measured based on the 

conversion (decolorization) of stable 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical in DPPH by 

wine´s antioxidants. The ability of samples to scavenge DPPH·radicals was determined by the 

method of Blois (1958) [10,19,20]. Briefly, to 2.5 mL of DPPH· ethanolic solution (0.1 mM) an 

aliquot of 0.5 mL of ethanol (blank) was added to reach a final volume of 3.0 mL that was 

repeated for all analytical samples. The reaction solution was incubated for 30 min in the dark at 

room temperature and measured at 517 nm, against the blank (A ~ 0.7), whereas ethanol, the 

solvent used to prepare all solutions, was used in order to adjust the baseline (A = 0.000). 

Antioxidant activity was expressed as EC50, representing the amount of wine to produce 50% of 

decolorization of DPPH· relative to the blank control. 

2.4.3 ABTS Radical Scavenging Assay

The antioxidant capacity of the samples was evaluated by the ABTS radical cation decolorization 

assay as described [11,18-20]. Briefly, ABTS radical cation (ABTS•+) was generated by reacting 

7 mM ABTS with 2.45 mM potassium persulfate (final concentration) for 16 h in the dark at 

room temperature. The ABTS•+ solution was then diluted with ethanol to reach an absorbance of 

0.70 (± 0.02) at 734 nm. The antioxidant capacity of the samples were calculated as Trolox 

equivalent (TE) based on the percentage of inhibition of the blank absorbance by samples at 

7 min and expressed as μmole of Trolox per mL of wine.
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2.4.4 Determination of Total Phenols

The total phenolic content was estimated using the Folin-Ciocalteau reaction as described in the

literature [19,20]. Briefly, 2.5 ml of 10% Folin-Ciocalteau reagent was added to small volume of

sample (usually between 25 and 100 μL) and then treated with sodium carbonate solution. The 

absorbance was measured at 760 nm and the total phenolic content was calculated as gallic acid 

equivalent based on a standard curve of gallic acid. All the experiments were performed in 

triplicate. Results are expressed as the milligram gallic acid equivalent (GAE)/mL of fermented 

beverage [19,20].

2.5 Electroanalytical Methods

2.5.1 Apparatus

Voltammetric experiments were performed in a potentiostat/galvanostat µAutolab III® integrated 

to the GPES 4.9® software, Eco-Chemie, Utrecht, The Netherlands. Measurements were 

performed in a 5.0 mL one-compartment electrochemical cell, with a three-electrode system 

consisting of a carbon paste electrode (prepared as a piston-driven holder containing 70% of 

graphite powder and 30% of Nujol®, Ø = 2 mm), a Pt wire and the Ag/AgCl/KClsat (both 

purchased from Analyser, São Paulo), representing the working electrode, the counter electrode 

and the reference electrode respectively. The surface of the carbon paste electrode (CPE) was

mechanically renewed before the start of a new set of experiments by extruding approximately

0.5 mm of carbon paste out of the electrode holder and smoothing it with filter paper. This 

procedure ensured very reproducible experimental results. The experimental conditions for 

differential pulse voltammetry (DPV) were: pulse amplitude 50 mV, pulse width 0.4 s and scan 

rate 5 mV s-1. All experiments were done at room temperature (21 ± 1 ºC) in triplicate (n = 3).
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2.5.2 Acquisition and Presentation of Voltammetric Data

In order to improve the visualization and the identification of peaks over the baseline, all the 

voltammograms presented were background-subtracted and baseline-corrected using the moving 

average application with a step window of 2 mV included in GPES version 4.0 software. This 

Mathematical treatment does not introduce any artifact; however, the peak intensity is in some 

cases reduced (< 10%) in relation to the untreated curve. Nevertheless, this mathematical 

treatment was used in the presentation of all experimental voltammograms after subtraction of 

the baseline.

The replicates (n = 3) of each wine sample were analyzed and treated with the software Origin 

8®. Furthermore, such treated DPV voltammograms were compiled accordingly to the wine 

category in order to get the average of the readings and to obtain more reliable results about the 

electrochemical profile of each class.

2.5.3 Electrochemical Index Determination

An Electrochemical Index (EI) was proposed taking into account the main voltammetric 

parameters, peak potential ( ) and peak current ( ). Thus, since the lower the potential

(thermodynamic parameter) is, the higher is the electron donor ability, as well as the higher is the 

peak current (kinetic parameter), the higher is the amount of electroactive species, the EI was 

calculated by using the equation [10]:
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In which  and  correspond to current and potential value for each major anodic peak 

observed in the DPV voltammograms.

2.6 Statistical Analysis

Statistical analysis was performed using GraphPad Prism® version 5.0 (GraphPad Software, San 

Diego, CA, USA). Comparisons among groups were made using ANOVA. Post hoc comparisons 

were performed using Newman-Keels’ comparison test. The significance level considered was 

0.05.

3. Results and Discussion
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Tables 1 to 3 presents the EC50 and EI values obtained for some selected wines and other grape 

beverages. In order to investigate some factors that can influence the antioxidant power and 

related health benefits of different wines, the sampling was carefully performed to include wines 

from different types, i.e. grape varietal, quality level, production techniques and geographical 

locations.

TABLE 1

TABLE 2

The first observation that can be taken from Tables 1 and 2 is that red wines present higher 

antioxidant capacity than white ones, which is in agreement with the expected results

[16,21,22,23]. For instance, the average EC50 for red and white dry wines were 20.1 µL (n = 27) 

and 98.4 µL (n = 6), respectively. In fact, the worst (higher) EC50 value among dry red wines, 

26.9 µL was even lower than 56.4 µL, the best value obtained among the white wines evaluated 

in this study. Indeed, with respect to the DPPH radical scavenging activity, it could be implied 

that red wines are around five times stronger than white wines.

In turn, no statistically relevant difference was found for different grape varieties used in wine 

production, as well as among different wine regions. On the other hand, the processing features 

of some specific types of wines showed to exert major influence on the phenolic content and as 

consequence on the final antioxidant power. This is similar to the results found in a study by

[20,23,24].

For instance, fortified wines, i.e. Porto (Portugal), Madeira (Portugal), Jerez (Spain), Vermouth

(Italy), Commandaria (Greece) and Marsala (Italy) type wines, as well as sparkling wines, i.e. 

espumante (Brazil), Champagne (France), Vinho verde (Portugal) and frizzant (Italy) may also 

present higher EC50 values. Thus, the addition of brandy and sugar, exert a dilution effect and 
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perhaps also, the natural oxidation that occurs during the aging process may explain the lower 

scavenging activity obtained for the eight fortified wines, Porto (Portugal), Madeira (Portugal), 

Jerez (Spain), Marsala (Italy) and Vermouth (Italy), evaluated in this study. Yet, in the case of 

sparkling wines, the higher EC50 values when compared to their white and rose analogues may 

be also related to the inherent dilution effect of bubbles. For example, the average values 

obtained for white and rose wines were 98.4 µL (n = 6) and 80.6 µL (n = 3) respectively, which

are lower than the overall average of 134.9 µL (n = 5) obtained for the sparkling wines

(Table 3).

Though the table wines presented lower average value than the analogues of higher commercial 

value, the quality level was better evidenced when dry red wines were compared to sweet ones. 

For instance, the sweet red wines presented an average value of 45.9 µL (n = 3), which is more 

than two-fold the value observed for dry red wines.

In turn, it was also observed that red wines present higher antioxidant activity than juices 

(Tables 1 and 3), demonstrating that the overall process of fabrication of such wines may really 

promote higher phenolic extraction from the skin of grapes, as it was already demonstrated in 

previous studies [23-25].

TABLE 3

Furthermore, as it would be expected, the whole grape juice presented higher antioxidant activity 

than grape juice nectar, both commonly found in supermarkets. In fact, the whole natural juices 

have higher pulp content than grape juice nectars. Though sugars are generally recognized as 

weak reducing agents, such a property is hidden by the stronger electron donor characteristic of 

phenolic compounds. Therefore, the higher amount of sugar in nectar juice or in sweet wine may 

not have great influence on their radical scavenger activity. In fact, even in honey, in which the 
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sugar content reaches more than 80%, the antioxidant activity is mostly driven by polyphenol 

composition [26].

3.1 Electrochemical Index

Antioxidants are electroactive compounds; hence electroanalysis emerges as a useful tool for 

their evaluation. In fact, good electron donor agents may oxidize reversibly at lower peak 

potentials ( < 0.5 mV, pH = 7). Following this idea, the concept of an Electrochemical Index 

(EI) was previously proposed to qualify pure compounds [15]. Besides the direct information 

that peak potentials can provide about the reduction potential, another electrochemical 

parameter, the peak current, , can also be very useful. According to the Faraday Law, in 

which the amount of electroactive species can be stoichiometrically correlated to the quantities 

of transferred electrons, the peak current indicates the concentration of antioxidants in the 

analytical sample [10,13].

Nevertheless, the electrochemical oxidation of phenolic compounds is often followed by a strong 

adsorption process. Such uncontrolled behavior leads to blockade of the electrode and, as result 

to the lack of repeatability of quantitative analysis.

In order to solve this problem, carbon paste electrodes were employed in all DPV 

determinations. Figure 1 show six DP voltammograms obtained from the same red wine sample, 

for which each assay a different carbon paste electrode was employed.

FIGURE 1

With the ease of renewing the surface of the CPE as described earlier in the study, the 

repeatability obtained (CV < 5%; n = 5) was rather satisfactory.
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The voltammetric profile of the different wine varieties showed some typical features. It was 

observed in our experiments that red wines presented a shoulder peak labeled 1a,s at  0.3 

V (vs. Ag/AgCl), followed by three well defined anodic peaks labeled 1a, 2a and 3a, at 0.37, 

0.57 and 0.80 V (vs. Ag/AgCl), respectively. In turn, the white wines presented two very well 

defined peaks (Figure 2, dashed line), labeled 1a and 3a, at  0.37 V (vs. Ag/AgCl) and 

 0.83 V (vs. Ag/AgCl). In the case of the rose wine (Figure 3, dashed line), the DPV 

results presented three distinct peaks, labeled 1a, 2a and 3a, at 0.38, 0.58 and 0.80 V (vs.

Ag/AgCl), with a less defined peak 2a. In Figure 2 the dashed line (- - -) for the white wine and

the continuous line (  ) for the red wine, shows the average simulated voltammogram

calculated by Origin 8® software for all red and white wines characterized in this study. These 

results are very close to those ones obtained in previous assays for red and white wines, in pH 3 

model wine solutions characterized at a glassy carbon electrode [21]. In this study it was 

observed that peaks 1a (Figure 1) are related to orto-diphenolic compounds, i.e. quercetin, rutin, 

caffeic acid, as well as gallic acid, while the peaks 2a and 3a (Figure 1), may be associated to the 

presence of resorcinol and mono-phenol-pattern, such as the major compounds ferullic acid, 

resveratrol, malvidin, coumaric acid [21,24].

FIGURE 2

In fact, despite some small variations of resolution, such as the appearance of shoulders and 

outliers, the pattern of two or three major peaks for white and red wines respectively is like a 

fingerprint of those wines. Some of the most distinct DPV voltammograms profiles are shown is 

Figures 2 and 3.

FIGURE 3
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The appearance of shoulder peaks (Figure 3) is related to the inherent complexity of these 

samples, but can be also influenced by experimental conditions. Hence, natural phenolic and 

non-phenolic compounds and also some wine additives present native electroactivity, which 

could lead to the observed voltammetric profile. For instance, it was observed that sulfur dioxide 

may cause some distortions on cyclic voltammograms obtained for wine or phenolic compounds 

in model wine solutions [6,23,24]. However, such distortions might be corrected and minimized 

in differential pulse voltammetry. Though sugar and ethanol, when present at higher 

concentrations leads to an ohmic drop, they do not show any great effect on the redox behavior 

of phenolic compounds and wines at the assay conditions [6,24,27]. However, it is possible to 

standardize the electrolyte and sample´s dilution in order to reproduce some results and to avoid 

comparative errors. An important limitation when using voltammetric methods is the fact that 

this standardization is not possible for the electrode´s surface, as it can be modified during 

electro-oxidation by adsorption processes, even for diluted samples [24]. Therefore, taking into 

account that shoulders and minor peaks are more difficult to reproduce they were not considered 

in the EI calculations.

The average EI values of 30.6 µA/mV (n = 27) and 16.5 µA/mV (n = 6), ranging respectively 

from 24.3 to 43.5 µA/mV for dry red wine and from 8.5 to 20.2 µA/mV in the case of the white 

ones, follow an negative correlation with DPPH assays. The same tendency was observed for the 

other wine categories analyzed in this study. The resulting Pearson´s correlation was -0.9110 and 

is illustrated in Figure 4.

FIGURE 4

Finally, any deviation on the correlation between spectrometric and electroanalytical approaches 

is consistent with the different principles of methods. Moreover, small correlations have been 
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found even between similar methodologies [4,13,18]. Such fact reinforces the use of 

electroanalytical approach, which is less expensive and simple, thus it showed to be at least two

times faster. 

Although the production of wines follows some basic concepts, the varieties of grapes and some 

processing technologies differ widely, leading to a great diversity of wines available. Since the 

main biological actions of wines are related to their antioxidant capacity, such property has been 

extensively studied. Nevertheless, to the best of our knowledge no study involving a wide and 

diverse variety of wines has been conducted. Thus, other researchers have shown that red wines 

has far greater antioxidant capacity than white wines, but the ageing of the grape variety may 

have no expressive influence [6,11,14,16,17,24]. 

It was also found that the varieties of grapes, as well as the geographic location of the world in 

which the wine was produced, do not have great influence on antioxidant capacity. By contrast, 

such property is greatly influenced by the category and/or quality of wine, with the dry red wines 

being the most powerful antioxidant beverages. Despite few exceptions, the quality label was 

found to have minor but important influence on the antioxidant power of wines. The use of 

distinct methodologies in order to get more accurate results about the real antioxidant power is 

thus worthwhile investigating.

In this context, the ABTS and the Folin-Ciocalteu assays, widely applied on the evaluation of 

foodstuffs and wines were applied in this study in order to establish additional comparisons. 

Owing to the time constraints generally experienced with the aforementioned techniques, such 

assays were carried out with pooled samples of each wine class as shown in Table 3. 
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The results showed good agreement, thus inferring that the use of simpler methods such as 

DPPH and/or EI are fast and suitable tools to express the antioxidant activity of wines, which 

may be also a quality criteria [11,20].

4. Conclusions

In this study an electroanalytical approach was proposed for the evaluation of antioxidant 

character of different wines. The new method presented good correlation with traditional 

methods used for the evaluation of the antioxidant activity and total phenol content. In addition, 

the results obtained by means of spectroscopy and electroanalytical techniques were all 

consistent with the expected results for different categories of wine evaluated in this study.  The 

results obtained for the order of antioxidant activity was: dry red wine > sweet and/or 

table red wine >> rose wine >> white wine >>> sparkling wine  fortified wines. Therefore, it 

can be concluded that the use of the electrochemical index (EI) approach is a fast and suitable 

tool to express the antioxidant activity of wines, which can also be applied as a quality criteria

for the evaluation of wines. 
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Table 1. The results for EC50 and EI obtained for mono and multi-varieties of red wines from 

different geographical locations evaluated in this study.

Table 2. The results for EC50 and EI obtained for rose and white wines from different 

geographical locations evaluated in this study.

Table 3. The results for EC50 and EI obtained for other grape beverages evaluated in this study.

Table 4 .Antioxidant assays obtained for pooled samples of different categories.

Figure 1. DP voltammograms obtained for 2 mL of red wine in 3 mL of 0.1 M phosphate buffer 

(pH 5.0) solution characterized at six different carbon paste electrodes (Ø = 2 mm). Other 

parameters included a pulse width of 5 mV, pulse amplitude of 50 mV, scan rate of 5 mV s-1.

Figure 2. Average DP voltammograms obtained for 2 mL of red (), n= 25 and white (- - -), 

n = 5 wines in 3 mL of 0.1 M phosphate buffer (pH 5.0 ) solution characterized at carbon paste 

electrodes (Ø = 2 mm). Other parameters included a pulse width of 5 mV, pulse amplitude of 

50 mV, scan rate of 5 mV s-1.

Figure 3. DP voltammograms obtained for 2 mL of white wine (  ), rose sparkling wine (- - -) 

and red nectar juice (--) in 3 mL of 0.1 M phosphate buffer (pH 5.0) solution characterized at 

carbon paste electrodes (Ø = 2 mm). Other parameters included a pulse width of 5 mV, pulse 

amplitude of 50 mV, scan rate of 5 mV s-1.

Figure 4. Graphic representation of EC50 (A) and EI (B) values for different classes of wines 

(R = red; r = rose; W = white; F = fortified; S = sparkling). *P<0.001 compared with R. # 

Denotes difference between the two groups (P<0.05). Note: The EC50 represents the amount of 

wine (in L) to produce 50% of decolorization of DPPH· relative to the blank control, whereas 

EI, electrochemical Index, represents the sum of the ratios, Ipa/Epa .
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Table 1. The results for EC50 and EI obtained for mono and multi-varieties of red wines from 

different geographical locations evaluated in this study.

Varietal(s) /

Country code**

EC50

(µL)

EI 

(µA/mV)

Cabernet Sauvingnon/CL 16 ± 4 33 ± 3
Cabernet Sauvingnon/FR 17 ± 3 27 ± 1
Pinotage/AU 22 ± 3 29 ± 3
Pinotage/ZA 18 ± 2 33 ± 3
Tannat/UY 16 ± 3 34 ± 2
Tannat/BR 17 ± 3 29 ± 1
Merlot/BR 22 ± 4 27 ± 3
Merlot/CL 19 ± 3 28 ± 3
Merlot/US 22 ± 2 26 ± 1
Syrah/US 21 ± 3 28 ± 2
Syrah/AU 23 ± 3 29 ± 4
Tempranilho/ES 20 ± 2 25 ± 2
Carmenere/CL 15 ± 2 36 ± 3
Pinot Noir/NZ 20 ± 4 31 ± 3
Malbec/AR 22 ± 3 33 ± 4
Barbera/IT 21 ± 3 32 ± 2
Agiorghjitiko/GR 19 ± 4 28 ± 4
Zwiegelt/AT 16 ± 4 30 ± 3
Monovarietal
Red Average(n = 18)

30.1 ± 5.5 (sd = 3.0) 19.2 ± 4.0 (sd = 2.5)

Cabernet-Merlot/CL 17 ± 3 33 ± 3
Cabernet-Merlots/BR 25 ± 3 22 ± 3
Malbec-Bonardat/AR 26 ± 5 28 ± 3
Malbec-Tempranillot/AR 22 ± 2 33 ± 4
Izabel-Tannatt/BR 21 ± 2 32 ± 2
Local vine grapests/BR 38 ± 3 19 ± 1
Syrah-Tempranillo-TN/PT 17 ± 3 28 ± 3
Trincadeira-Touriga Franca-Touriga 
Nacional-Tinta Roriz/PT

19 ± 4 25 ± 2

Trincadeira-Periquita-Touriga Nacional/PT 18 ± 3 27 ± 3
Multivarietal
Red Average (n = 9)

23 ± 10
(sd = 6.9)

27 ± 6.5 
(sd = 4.7)  

Legend: t(table wine); s(sweet wine)

**ISO 3166-1-alpha-2 code: http://www.iso.org/iso/home/standards/country_codes.htm
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Argentina (AR); Australia (AU); Austria (AT); Brazil (BR);  CL (Chile); FR (France); Germany (DE); Greece 
(GR); Italy (IT); New Zealand (NZ); Portugal (PT); South Africa (ZA); Spain (ES); United States (US); 
Uruguay (UY)
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Table 2. The results for EC50 and EI obtained for rose and white wines from different 

geographical locations evaluated in this study.

Legend: t(table wine)

**ISO 3166-1-alpha-2 code: http://www.iso.org/iso/home/standards/country_codes.htm

Varietal(s)/

Country code**

EC50

(µL)

EI 

(µA/mV)

Tempranillo-Touriga Nacional/PT 93 ± 6 18 ± 2
Syrah-Merlot/FR 68 ± 3 20 ± 3
Niagara-Isabelt/BR 81 ± 4 19 ± 2
Rose Average 81 19

Rose 
Wines 

(n = 3) (sd = 13) (sd = 1)

Chardonnay/AR 75 ± 4 18 ± 1
Chardonnay/US 64 ± 3 16 ± 3
Riesling/DE 200 ± 9 9 ± 3
Riesling/CL 55 ± 4 19 ± 2
Niagara-Lorenat/BR 56 ± 3 18 ± 3

White
Wines

Niagara- Lorenat/BR 102  ± 3 15 ± 3
White Average (n=6) 92

(sd = 56)
16 

(sd =3.6)
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Table 3. The results for EC50 and EI obtained for other grape beverages evaluated in this study.

Varietal(s) /
Country code**

Grape Beverages EC50

(µL)
EI 

(µA/mV)

Barbera-Moscatel/IT Sparklingrose 79 ± 3 16 ± 3
Moscatel-Lambrusco/IT Sparklingwhite 97 ± 2 14 ± 2
Moscatel-Pinot bianco/IT Sparklingwhite 95 ± 3 15 ± 2
Barcelo/PT Sparklinggreen 118 ± 4 16 ± 2
Local vinigrapes/BR   Sparklingwhite(ts) 290 ± 9 9 ± 2
Average(n=6) 136

(sd = 87)
14 

(sd = 2.9)
Grillo-Ct-In/IT Marsalared 104± 3 14 ± 2
Palomino-PX/ES Sherrywhite 255± 3 11 ± 2
Ct-Tb-Cb-Pe/IT Vermouthrose 304± 3 11 ± 2
TN- TF -TB /PT Port roserose 100± 3 11 ± 2
TN- TF -TR-TC-TB/PT Port tawnyred 97± 3 12 ± 2
TN- TF -TR-TC-TB/PT Port rubyred 91± 3 16 ± 2
Malvasia-TNM/PT Madeira dryred 105± 3 9 ± 2
Malvasia-TNM/ PT Madeira medium 

dryred
117± 3 8 ± 2

Average (n= 8) 146
(sd = 83)

11.5 
(sd = 2.6)

Local vini grapes/PT brandy > 1000 0

Red Grapes/BR Whole Juice 37 ± 1 18 ± 2
Red Grapes/BR Whole Juice 40 ± 3 16 ± 1
Green Grapes/BR Whole Juice 25 ± 3 15 ± 3
Red Grapes/BR Nectar Juice 65± 2 8 ± 3
Red Grapes/BR Nectar Juice 75 ± 3 9 ± 2
Average(n= 5) 48

(sd =21)
13

(sd = 4.2)
Legend: ts(table sweet wine); Ct (Catarrato); In (Inzolia); Tb (Trebbiano); Pq (Piquepoul); PX (Pedro     

Ximenes); TN (Touriga Nacional); TF (Touriga Franca); TB (Tinta Barroca); TR (Tinta Roriz); TC (Tinta 

Cão); TNM (Tinta Negra Mole).

**ISO 3166-1-alpha-2 code: http://www.iso.org/iso/home/standards/country_codes.htm
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Table 4. Antioxidant assays obtained for pooled samples of different categories.

Pooled Samples DPPH ABTS Folin-
Ciocalteu

EI

(mol TE/mL) (mol TE/mL) (g GAE/mL) (A/mV)

Red wines (n = 27) 5.2 ± 0.5 6.9 ± 0.5 1105 ± 57 30.6 ± 0.7

Rose wines (n = 3) 2.9 ± 0.6 4.1 ± 0.3 406 ± 13 16.5 ± 0.5

White wines (n = 5) 2.6 ± 0.7 3.8 ± 0.4 378 ± 19 15.8 ± 0.6

Sparkling wines (n = 5) 1.5 ± 0.5 2.8 ± 0.4 273 ± 15 14.1 ± 0.8

Fortified wine (n = 8) 1.4 ± 0.3 2.7 ± 0.4 273 ± 15 11.3 ± 0.9

Grape Juice (n = 3) 3.8 ± 0.7 5.2 ± 0.4 880.5 ± 48 22.5 ± 4.0

Nectar Juice (n = 2) 2.6 ± 0.7 3.9 ± 0.8 680.5 ± 48 15.5 ± 4.0

Wine brandy (n = 2) 0.7 ± 0.4 1.1 ± 0.3 19 ± 11 0



Page 26 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

26

Graphical Abstract
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E vs. (Ag/AgCl)/V 

 
 

 

Figure 1. DP voltammograms obtained for 2 mL of red wine in 3 mL of 0.1 M 

phosphate buffer (pH 5.0) solution characterized at six different carbon paste electrodes 

(Ø = 2 mm). Other parameters included a pulse width of 5 mV, pulse amplitude of 50 

mV, scan rate of 5 mV s-1. 

 
 

Figure(s)



Page 28 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

 
E vs. (Ag/AgCl)/V 

 
 
 
 

Figure 2. Average DP voltammograms obtained for 2 mL of red (), n= 25 and white 

(- - -), n = 5 wines in 3 mL of 0.1 M phosphate buffer (pH 5.0 ) solution characterized at 

carbon paste electrodes (Ø = 2 mm). Other parameters included a pulse width of 5 mV, 

pulse amplitude of 50 mV, scan rate of 5 mV s-1. 

 
 
 

Figure(s)



Page 29 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

 
 
 
 

 
E vs. (Ag/AgCl)/V 

 
 
 

Figure 3. DP voltammograms obtained for 2 mL of white wine (  ), rose sparkling 

wine (- - -) and red nectar juice (--) in 3 mL of 0.1 M phosphate buffer (pH 5.0) 

solution characterized at carbon paste electrodes (Ø = 2 mm). Other parameters 

included a pulse width of 5 mV, pulse amplitude of 50 mV, scan rate of 5 mV s-1. 

 

Figure(s)
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Highlights:

. The electrochemical index (EI) is a practical method for determination of antioxidant 
activity (AOA).

.  AOA is a quality criteria for wines and other antioxidant beverages.

. The EI is a useful and complementary approach for AOA determination.




