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Abstract 

Diabetes is associated with an increased risk for brain disorders, namely cognitive 

impairments associated with hippocampal dysfunction underlying diabetic encephalopathy. 

However, the impact of a prediabetes state on cognitive function is unknown. Therefore, we 

now investigated whether spatial learning and memory deficits and the underlying 

hippocampal dysfunction were already present in a prediabetes animal model. Adult Wistar 

rats drinking high-sucrose (HSu) diet (35% sucrose solution during nine weeks) were 

compared to controls drinking water. HSu rats exhibited fasting normoglycemia accompanied 

by hyperinsulinemia and hypertriglyceridemia in the fed state, and insulin resistance with 

impaired glucose tolerance confirming them as a prediabetes rodent model. HSu rats 

displayed a poorer performance in hippocampal-dependent short- and long-term spatial 

memory performance, assessed with the modified Y-maze and Morris water maze tasks, 

respectively; this was accompanied by a reduction of insulin receptor-β density with normal 

levels of insulin receptor substrate-1 pSer636/639, and decreased hippocampal glucocorticoid 

receptor levels without changes of the plasma corticosterone levels. Importantly, HSu animals 

exhibited increased hippocampal levels of AMPA and NMDA receptor subunits GluA1 and 

GLUN1, respectively, whereas the levels of proteins markers related to nerve terminals 

(synaptophysin) and oxidative stress/inflammation (HNE, RAGE, TNF-α) remained 

unaltered. These findings indicate that 9 weeks of sucrose consumption resulted in a 

metabolic condition suggestive of a prediabetic state, which translated into short- and long-

term spatial memory deficits accompanied by alterations in hippocampal glutamatergic 

neurotransmission and abnormal glucocorticoid signaling. 

 

Keywords 

Diabetic encephalopathy, High-sucrose diet, Prediabetes, Hippocampus, Memory  
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Abbreviations: AUC, area under the curve; BBB, blood-brain barrier; Cont, control; GFAP, 

glialfibrillary acidic protein; GR, glucocorticoid receptor; GS, glutamine synthetase; GTT, 

glucose tolerance test; HbA1c, glycated hemoglobin; HOMA, homeostasis model assessment 

index; ITT, insulin tolerance test; HSu,  high-sucrose; HNE, hydroxynonenal; LTP, long-term 

potentiation; T2DM, type 2 diabetes mellitus; RAGE, receptor for advanced glycation end 

products, TC, serum total cholesterol; TGs,  triglycerides; TNF-α, tumor necrosis factor α.  
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1. Introduction  

 The development of type 2 diabetes mellitus (T2DM) is associated with an increased 

risk for brain disorders (Bruehl et al. 2009; Gold et al. 2007). In particular, a growing body of 

evidence indicates an increased risk of developing cognitive decline and dementia in a T2DM 

setting (Ravona-Springer et al. 2012; Roriz-Filho et al. 2009; Xu et al. 2010). T2DM triggers 

a condition of “diabetic encephalopathy” characterized by electrophysiological, structural and 

neurochemical changes leading to cognitive impairments (Biessels et al. 2002; Hernández-

Fonseca et al. 2009; Mijnhout et al. 2006; Ristow 2004; Sima 2010). Indeed, memory deficits 

seem to be the most reliable altered cognitive function in T2DM and seem to have an early 

onset (Gold et al. 2007; Strachan et al. 1997; Winocur et al. 2005).  

 These T2DM cognitive deficits have been argued to be due in large part to an impaired 

central insulin modulation in the hippocampus, which is a critical region for memory 

processing (McNay and Recknagel 2011). In fact, adults with newly diagnosed prediabetes or 

T2DM show an insulin resistance associated with reductions in regional cerebral glucose 

metabolism and subtle cognitive impairments (Baker et al. 2011). Interestingly, the insulin 

signaling overlaps with pathways that regulate both synaptic plasticity and memory processes 

(Kamal et al. 2000; McNay and Recknagel 2011; van der Heide et al. 2006). Therefore, it is 

not surprising that insulin has effects on memory storage and synaptic physiology (Costello et 

al. 2012; McNay et al. 2010; van der Heide et al. 2006).  

Accordingly, the preclinical animal studies investigating the relationship between T2DM 

and cognition have identified mild cognitive deficits (Bélanger et al. 2004; Duarte et al. 2012; 

Li et al. 2002; Winocur et al. 2005) typified by spatial learning and memory impairments in 

association with reduced hippocampal long-term potentiation, dendritic spine atrophy, 

decreased density of glutamatergic terminal markers and abnormal glutamatergic receptors 

regulation (Duarte et al. 2012; Trudeau et al. 2004). These diabetes-induced changes of 

http://www.diabetes.co.uk/type2-diabetes.html
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hippocampal-dependent memory and plasticity were proposed to result from the over-

activation of the abundant hippocampal glucocorticoid receptors (GR) (Dorey et al. 2012; 

Sousa and Almeida, 2002) by the enhanced levels of corticosterone (Stranahan et al. 2008a) 

arising from an hyper-activation of the hypothalamic–pituitary–adrenal (HPA) axis that is 

characteristic of diabetes (Hwang et al. 2011; Stranahan et al. 2008a).  

 Diabetes is an evolving clinical situation, which is recognized to develop from a 

situation of metabolic impairment often named as prediabetic state (Tabák et al. 2012). The 

diagnostic criteria for prediabetes include one or more of the following: impaired fasting 

glucose [IFG, plasma glucose of 100 to 125 mg/dL (5.6 to 6.9 mmol/L)], impaired glucose 

tolerance [IGT, plasma glucose of 140 to 199 mg/dL (7.8 to 11.0 mmol/L) 2 hours after an 

oral load of 75 g dextrose] or hemoglobin A1c 5.7% to 6.4% (Tabák et al. 2012). 

Additionally, insulin resistance is already present in the pre-diabetic stage. 

However, in contrast to T2DM, it is currently unknown if this condition of mild 

metabolic dysfunction is already associated with cognitive impairment. Therefore, the present 

study aimed at developing a model of metabolic dysfunction, based on the consumption of a 

high-sucrose (35% sucrose solution) diet during 9 weeks, to test if pre-diabetic rats displayed 

learning and memory deficits and an underlying hippocampal dysfunction. We found that 

metabolic changes suggestive of a pre-diabetic state translated into short- and long-term 

spatial memory deficits observed, respectively, in the Y-maze and Morris water maze tasks, 

and alterations on hippocampal glutamate receptors and GR levels. 

 

2. Experimental Procedures 

2.1. Animals and experimental procedures 

Male Wistar rats (4 months-old) were obtained from Charles River Laboratories (Barcelona, 
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Spain). The animals were housed two per cage, under controlled environmental conditions [12 

h light/dark cycle schedule under temperature (22±1 ºC) and humidity control]. After an 

adaptation period of 1 week, rats were randomly divided into two groups (n=8 animals per 

group), for a 9-weeks protocol: 1) control rats continued to drink tap water; 2) high-sucrose 

treated (HSu) rats received 35% sucrose (S0389; Sigma-Aldrich) in the drinking water. All 

animals were fed standard rat chow, containing 16.1% of protein, 3.1% of lipids, 3.9% of 

fibers and 5.1% of minerals (AO4 Panlab, Barcelona, Spain) ad libitum (with exception in the 

fasting periods). Food and beverage consumption was monitored for both groups throughout 

the experiment. The body weight of each animal was recorded weekly during the 

experimental period. All experiments were approved by the Institutional Animal Care and 

Use Committee from Faculty of Medicine, Coimbra University, and were performed 

following the European Community directive (2010/63/EU). All the animals were used for 

metabolic characterization (see Table 1) and behavioral assays, and within each group, 5 rats 

were used for neurochemical analysis. 

2.2. Behavioral tasks 

After 9 weeks, the short- and long-term spatial memories of control and HSu rats were 

assessed with a modified Y-maze and a Morris water maze, respectively. After habituation for 

at least 1 h before the beginning of the tests, behavior was monitored through a video camera 

positioned above the apparatuses and the images were later analyzed with the ANY Maze 

video tracking (Stoelting Co., Wood Dale, IL, USA) by an experienced investigator who was 

unaware of the experimental group being tested. 

2.2.1. Water maze task 

To evaluate the existence of long-term spatial memory deficits in HSu vs. control rats, the 
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animals were submitted to a spatial reference memory version of the water maze using a 

protocol described by Morris et al. (1982) and previously utilized in our laboratory (Castro et 

al. 2013). Tests were performed in a circular swimming pool made of black painted 

fibreglass, with 1.2 m internal diameter and 0.8 m height, and filled with water at 25°C to a 

depth of 0.6 m width. The target platform (10×10 cm) was made of transparent Plexiglas and 

was submerged 1–1.5 cm beneath the surface of the water. Starting points for the animals 

were marked on the outside of the pool as north (N), south (S), east (E) and west (W). Four 

distant visual cues (55×55 cm) were placed on the walls of the water maze room. They were 

all positioned with the lower edge 30 cm above the upper edge of the water tank, and in the 

standard setting the position of each symbol marked the midpoint of the perimeter of a 

quadrant (circle = NE quadrant, square = SE quadrant, cross = SW quadrant, and diamond = 

NW quadrant). The protocol consisted of 4 training days, four consecutive trials per day, 

during which the animals were left in the tank facing the wall, then being allowed to swim 

freely to the submerged platform placed in the centre of southwest quadrant of the tank. If the 

animal did not find the platform during a period of 60 s, it was gently guided to it. The animal 

was allowed to remain on the platform for 10 s after escaping to it and was then removed 

from the tank for 20 s before being placed at the next starting point in the tank. The apparatus 

was located in a room with indirect incandescent illumination. A monitor and a video-

recording system were installed in an adjacent room. The experiments were video-taped and 

the scores for latency of escape from the starting point to the platform and swimming speed 

were later measured using the ANY-maze® video tracking system. The test session was 

carried out 24 h later and consisted of a single probe trial where the platform was removed 

from the pool and each rat was allowed to swim for 60 s in the maze. The time spent in the 

correct quadrant (i.e., where the platform was located on the training session) and in the 

inverse quadrant, the latency to platform zone and the number of crossings in the platform 
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zone were recorded. 

2.2.2. Modified Y-maze task  

The modified Y-maze was used to assess short-term spatial memory and it is based on the 

innate preference of animals to explore areas that have not been previously explored (Cognato 

et al. 2010). The Y-maze apparatus consisted of three arms (50 x 10 x 40 cm) made of wood 

covered with impermeable formica elevated to a height of 50 cm above the floor. This task 

consisted of two trials (training and test) of 5 min separated by an inter-trial interval of 90 

min. During the training trial, one arm (“novel”) was blocked by a removable door and the rat 

was placed into the end of the one arm (“start”) facing the centre and it could chose between 

the start and the “other” arm. At the end of the training trial, the rat was removed from the 

maze and kept in an individual cage during the inter-trial interval (90 min). During the test 

trial, the “novel” arm was opened and the rat was once again placed in the start arm and 

allowed to explore the 3 arms during 5 min. The number of entries and the time spent in each 

arm were video monitored using ANY-maze TM tracking system. Entry into an arm was 

defined as placement of all 4 paws into the arm. The apparatus was cleaned with 10% ethanol 

between animals to avoid odor cues. 

2.3. Blood and tissue collection and preparation 

After the performance of the behavioral tasks, the animals were subjected to anesthesia with 

intraperitoneal (i.p.) injection of pentobarbital (50 mg/kg) (Sigma-Aldrich, Portugal) and 

blood samples were immediately collected by venipuncture from the jugular vein into 

syringes with Heparin-Lithium (Sarstedt, Monovette®) for plasma samples and into needles 

without anticoagulant for serum samples. Animals were then sacrificed by decapitation and 

the brains were immediately removed, placed in ice-cold Krebs buffer and carefully dissected. 
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Hippocampal regions were immediately frozen in liquid nitrogen and stored at -80 ºC until 

Western blot analyses. 

2.4. Metabolic measurements 

Glucose tolerance test (GTT) was performed in fasted rats (6-h) injected with glucose (2 g/kg, 

i.p.). The tail vein blood glucose levels were measured using a portable device (One Touch 

UltraEasy® glucometer, Lifescan, Johnson and Johnson, Portugal) in samples immediately 

before the bolus, 0 and 15, 30, 60, and 120 min after the bolus. Glycemia was also measured 

in fed conditions. Insulin tolerance test (ITT) was performed after a single injection of insulin 

(0.75 U/kg, i.p.) (I9278, Sigma), in 6-h fasted rats, through monitoring the blood glucose 

before, 0 and 15, 30, 45, 60 and 120 min following the insulin injection using the same 

glucometer. Fasting insulin levels were quantified by using a rat insulin ELISA kit (Mercodia, 

Uppsala, Sweden). Insulin sensitivity of individual animals was evaluated using the 

homeostasis model assessment (HOMA) index (Matthews et al. 1985). The formula used was 

as follows: [HOMA-IR] = fasting serum glucose (mg/dL) × fasting serum insulin (μU/mL) / 

22.5. The values used (insulin and glucose) were obtained after an overnight fasting period. 

Serum total cholesterol (TC) and triglycerides (TGs) were analyzed by enzymatic methods 

using an automatic analyzer (Hitachi 717, Roche Diagnostics). Total-cholesterol reagents and 

TGs kits were obtained from bioMérieux (Lyon, France). Corticosterone plasma levels were 

analyzed using an ELISA kit (ab108821, Abcam, Cambridge, UK). 

2.5. Hippocampal neurochemical measurements 

Total extracts were obtained from the left hippocampus as previously described (Simões et al. 

2007). The hippocampus was homogenized in 400 μL of RIPA lysis buffer (150 mM NaCl; 

50 mM Tris-HCl pH=8.0; 5 mM EGTA; 1% Triton X-100; 0.5% DOC; 0.1% SDS) 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

           

 

 

10 

supplemented with a protease inhibitor cocktail (1 mM phenylmethylsulfonyl fluoride, 1 mM 

dithiothreitol, 1 μg/mL chymostatin, 1 μg/mL leupeptin, 1 μg/mL antipain, 5 μg/mL pepstatin 

A, 50 mM sodium fluoride and 1 mM sodium orthovanadate (Sigma-Aldrich) and centrifuged 

(15000 g, 15 min, 4ºC), to discard insoluble material. Total protein concentration was 

determined using the bicinchonic acid protein assay kit (Thermoscientific®) (Smith et al. 

1985) and supernatants were stored at -80 ºC until further use. Equal amounts of protein (5-75 

μg) were loaded and separated by electrophoresis on sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (7.5 - 12%), transferred to a 0.45 μm polyvinylidene difluoride (PVDF) 

membranes (Immobilon, Millipore, Madrid, Spain) and blocked with 1% bovine serum 

albumin (BSA) in phosphate buffer saline with 0.1% Tween-20 (PBS-T) for 1 h at room 

temperature. Membranes were then incubated overnight at 4ºC with the following primary 

antibodies against phospho-IRS-1 (Ser636/639, 1:1000), PSD-95 (1:1000) (both from Cell 

Signaling, MA, USA), IRS-1 (1:1000), GFAP (1:5000), GS (1:500), GluA1 (1:1000), 

GLUN1 (1:1000) and synpatophysin (1:1000) (all from Millipore MA, USA), RAGE 

(1:1000), TNF-α (1:600) (from Abcam, Cambridge, UK), IR-β (1:1000), GR (1:250) (from 

Santa Cruz, CA, USA) and HNE (1:1000) (from Calbiochem, Darmstadt, Germany). The 

membranes were washed extensively in 0.1% PBS-T and then incubated for 1 h at room 

temperature with alkaline phosphatase conjugated secondary antibodies [anti-rabbit and anti-

mouse (1:5000) from GE Healthcare, Carnaxide, Portugal]. Finally, membranes were 

visualized using a Typhoon FLA 900 (GE Healthcare Bio-sciences) imaging system, using an 

enhanced chemifluorescence detection reagent (ECF, GE Healthcare). To confirm equal 

protein loading and sample transfer, membranes were re-probed with β-actin (1:10,000, from 

Sigma-Aldrich) or GAPDH (1:5000, from Abcam) antibodies. Densitometric analyses were 

performed using the Image Quant 5.0 software. Results were normalized against β-actin or 

GAPDH, and then expressed as percentage of control. 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

           

 

 

11 

2.6. Statistical analysis 

All values are expressed as means ± S.E.M. (n equals the number of rats). The comparisons of 

peripheral biochemical and hippocampal neurochemical changes and data of the Y-maze and 

probe test of the water maze were performed using an unpaired Student’s t-test. The statistical 

analysis of the data of the metabolic (GTT, ITT) and water maze training was carried out 

using one- or two-way analysis of variance (ANOVA) followed by post-hoc Newman-Keuls 

multiple comparison test. Further statistical analyses were performed by one-sample t-test 

comparing for each group the % of time and % of entries in each arm during the training and 

test trials of the modified Y-maze and the % of time spent in the correct and the opposite 

quadrants during the probe test session of the Morris water maze with the respective chance 

level. The accepted level of significance for the tests was P < 0.05. All tests were performed 

using the GraphPad Prism 5.0 software for Windows. 

 

3. Results 

3.1. Characterization of the prediabetic state triggered by high-sucrose diet in rats 

 High-sucrose consumption (HSu) during 9 weeks did not influence the body weight of 

treated rats (Table 1). It is noteworthy that although HSu rats consumed more liquid (P < 

0.001) compared to the control group (normal water), they ingested less chow (P < 0.001) 

(Table 1). However, HSu consumption induced an elevation on postprandial glycemia (P < 

0.05) while leaving fasting glycemia unaltered compared to the control group (Table 1). 

Insulin levels were also influenced by sucrose consumption as demonstrated by a significant 

increase (P < 0.001) in serum insulin in the HSu group (Table 1). When focusing on glucose 

tolerance, AUC-GTT from HSu rats was significantly higher (P < 0.05) compared to the 

control group (Table 1). Corroborating these observations, 120 min after insulin 
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administration, HSu rats displayed significantly higher blood glucose levels in the ITT (P < 

0.001) and HOMA-IR (P < 0.01) than control rats, thus confirming the insulin resistance 

(Table 1). Furthermore, glycated hemoglobin (HbA1c) from HSu rats was higher (P < 0.05) 

compared to controls (Table 1). HSu rats also showed elevated plasma triglycerides (P < 

0.05) but normal plasma total cholesterol (P > 0.05) levels when compared to the control 

group (Table 1). Additionally, plasma corticosterone levels were also normal (Table 1). 

3.2.The prediabetes state disrupted short- and long-term spatial memory 

 Two-way ANOVA (treatment vs. repeated measures) revealed no significant 

differences [F(1, 13)=0.25, P=0.62] between control and HSu rats to acquire the spatial 

information in the water maze, as indicated by similar escape latencies to find the platform 

during the training sessions (Fig. 1A). Moreover, one-sample t-test indicated that control rats 

spent more time in the correct quadrant (Fig. 1B) and less time in the opposite quadrant (Fig. 

1C) in comparison to chance performance (25%) during the probe test of the water maze 

(without platform), indicating that control rats were able to remember the platform location 

during the probe test session in the next day. On the other hand, a Student’s t-test indicated 

that during the probe test, HSu rats spent less time in the correct quadrant (Fig. 1B), more 

time in the opposite quadrant (Fig. 1C), had a higher latency to reach the platform zone (Fig. 

1D) and a reduced number of crossings in the platform zone (Fig. 1E) when compared to 

control rats. Altogether, these results indicate a selective deficit of long-term spatial memory, 

but not in spatial learning, after 9 weeks of high sucrose diet in rats.  

Since the performance in the modified Y-maze task is dependent of the exploratory 

behavior of the animals, we first evaluated the locomotor activity in the training trial. No 

significant differences were observed between control and HSu rats in the number of entries 

and the time spent in the two arms (“start” and “other”) (P > 0.05; Fig. 2A, B, C). One-sample 
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t-test analysis revealed that only control rats were able to recognize the “novel” arm as the 

unvisited arm in the previous trial, as indicated by the significant increase in the percentage of 

entries (Fig. 2E) and time (Fig. 2F) in the “novel” arm in comparison to chance performance 

(33.3%). More importantly, a Student’s t-test revealed short-term spatial memory deficits in 

HSu-treated rats as indicated by a significant reduction of the percentage of entries and time 

in the “novel” arm in comparison to control group (P < 0.05; Fig. 2E, F). 

3.3. Characterization of hippocampal alterations triggered by the high-sucrose diet  

3.3.1. The pre-diabetes state decreased the density of insulin receptors (IR-β) in the 

hippocampus  

 The suggested link between cognitive deficits and central insulin signaling led us to 

evaluate insulin markers in the hippocampus. High-sucrose consumption during 9 weeks 

induced a significant decrease in hippocampal IR-β levels (80.05.1%, n=5; P < 0.05) 

compared to controls (Fig. 3A). However, the immunoreactivity of both IRS-1 and IRS-1-

pSer636/639 in the hippocampus was not significantly altered (P > 0.05) in the HSu group 

(Fig. 3B,C). 

3.3.2. The pre-diabetes state induced an increase in the density of GluA1 and GLUN1 in the 

hippocampus 

 The spatial memory deficits observed in HSu rats warranted the study of hippocampal 

GluA1 and GLUN1 levels on account of their critical role in synaptic plasticity. The 

hippocampal levels of both GluA1 and GLUN1 were significantly increased in HSu rats 

(130.52.8%, n=5 and 152.15.3%, n=5, respectively; P < 0.05) when compared to control 

rats (Fig. 4 A,B). On the other hand, the levels of the post-synaptic glutamatergic marker 
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(PSD-95) remained unaltered (P > 0.05; Figure 4C). Moreover, the immunoreactivity of 

synaptophysin (a pre-synaptic vesicle protein) remained unchanged in the hippocampus from 

HSu compared to control rats (P > 0.05; Figure 4D). 

3.3.3. The pre-diabetes state induced a decrease in the density of GR in the hippocampus 

Since abnormal corticosterone signaling in the hippocampus has been proposed to 

underlie diabetes-associated memory impairment, we probed the density of glucocorticoid 

receptors (GR) in the hippocampus of HSu rats. It was found that the levels of GR were 

significantly decreased in the hippocampus of HSu rats when compared to control rats (60.0 ± 

5.2%, P < 0.05; Figure 4E). 

 

3.3.4. Evaluation of hippocampal oxidative stress/inflammation markers upon high-sucrose 

diet 

 Both oxidative stress and inflammation are two key players in diabetic 

encephalopathy. Therefore it was important to assess the levels of hydroxynonenal (HNE, a 

precursor for advanced lipoxidation end product-ALE), RAGE (receptor for advanced 

glycation end products), TNF-α, GFAP and GS (astrogliosis markers) in the hippocampus of 

HSu rats. However, no significant differences in any of these parameters were observed after 

9 weeks of high-sucrose exposure compared to control rats (Table 2).  

 

4. Discussion 

 Our results show for the first time that a pre-diabetes state in rats triggers short- and 

long-term spatial memory deficits observed in the modified Y-maze and Morris water maze 
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tasks, respectively, that are accompanied by a decrease of the levels of insulin receptors, 

changes in glutamatergic neurotransmission and a decrease of the levels of glucocorticoid 

receptor in the hippocampus. 

Diet is an important environmental determinant for life-style-related diseases such as 

T2DM (Steyn et al. 2004). Although numerous studies with rodents have already shown that a 

high-sucrose diet (HSu) induces insulin resistance and hypertriglyceridemia (Carvalho et al. 

2012; Conde et al. 2011; Kanazawa et al. 2003; Ribeiro et al. 2005; Sumiyoshi et al. 2011), 

the impact on brain functioning of pre-diabetic animal models, namely the HSu-treated rat, 

are scarce. The current findings indicate no significant differences on glycemia in the fasting 

state, but a marked increase in the fed glycemia (postprandial) in HSu-treated rats, together 

with impaired glucose tolerance (IGT), hyperinsulinemia and insulin resistance, all 

characteristic of a metabolic disease-like pre-diabetic condition (Tabák et al. 2012). These 

metabolic changes are in agreement with previous studies demonstrating sucrose-induced 

insulin resistance in rats with fasting normoglycemia (Thresher et al. 2000). Additionally, this 

pre-diabetic model is characterized by hypertriglyceridemia, without obesity and 

hypertension, as previously documented by other authors (Cao et al. 2007; Carvalho et al. 

2012; Kanazawa et al. 2003; Ribeiro et al. 2005; Santuré et al. 2002; Sumiyoshi et al. 2011). 

Taken together, these results confirm the current approach of high sucrose consumption 

during 9 weeks as a valuable model of pre-diabetes/insulin resistance, characterized by fasting 

normoglycemia, IGT, hyperinsulinemia, insulin resistance and hypertriglyceridemia, without 

obesity and hypertension. 

Some studies have linked insulin resistance and T2DM to deficits of hippocampal-

dependent memory function (Convit, 2005; Gold et al. 2007; Strachan et al. 1997; Winocur et 

al. 2005). Importantly, Gold et al. (2007) highlighted that memory impairments associated 

with hippocampal alterations represent some of the early brain complications in T2DM. In 
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accordance with this view, our results showed that a pre-diabetic state disrupted hippocampal-

dependent short- and long-term spatial memories in rats evaluated in the modified Y-maze 

and Morris water maze tasks, respectively, without major alterations on spatial learning and 

locomotor activity. It is noteworthy that the modified Y-maze and the spatial version of the 

Morris water maze tests reliably probe, respectively, short- and long-term spatial memory 

performance (Castro et al. 2013; Duarte et al. 2006, 2012; Prediger et al. 2006). In fact, in 

both tests, the animals need to make associations among the spatial environmental cues to 

form a cognitive map that helps them to find the platform localization (Morris et al. 1982) or 

the previously unvisited arm (Dellu et al. 1997). Importantly, this modified Y maze test is 

non-aversive since it does not require either food deprivation (as opposed to the radial maze) 

or electrical foot-shock (as opposed to inhibitory avoidance task), which could modify the 

motivational and emotional status of the animal (Bekker et al. 2006), thus confounding the 

spatial memory parameters measured.  

 Memory deficits seen herein corroborate previous observation by Chepulis et al. 

(2009) that 9 and 12 months of exposure to 7.9% sucrose induced a significant decrease in the 

proportion of rats that recognized the novel arm as the unvisited arm of the Y-maze when 

compared to controls. Interestingly, Cao et al. (2007) reported insulin resistance and 

exacerbation of memory deficits in a transgenic mouse model of Alzheimer following 25 

weeks of 10%-sucrose-sweetened water intake. Moreover, other types of diet, including high-

fructose, that induce metabolic alterations were also able to promote marked memory 

impairments (McNay et al. 2010; Mielke et al. 2005; Molteni et al. 2002; Ross et al. 2009; 

Stranahan et al. 2008b; Winocur and Greenwood, 1999; Wu et al. 2003). Other studies 

showed that high-fat diets (41-59%; HFD) inducing stronger metabolic alterations compared 

with our model were not always associated with cognitive impairments (Leboucher et al. 

2013; Pistell et al. 2010). However, it should be stressed that these studies used a different 
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species (mice), behavioral paradigms [mean acquisition errors/Stone T-maze (Pistell et al. 

2010) and escape latency/path length /Morris water maze (Leboucher et al. 2013) as spatial 

learning read-outs] and different ages. In fact, Pistell and collaborators (2010) acknowledged 

that cognitive performance is known to decrease with age and that 12 month-old “control” 

mice might have mild impairments compared to younger mice thus masking a putative effect 

of a 41% fat regimen. They further indicated the need for a systematic evaluation of how 

increasing age might modulate cognitive function. Moreover, in contrast to our study, both 

studies only assessed spatial learning whereas we evaluated both spatial learning and 

memory. Notably, in our study, HSu also failed to display learning impairment as gauged by 

similar escape latency to find the platform during the training trials of the Morris water maze 

when compared with controls. Therefore one cannot exclude that these HFD could also 

induce spatial memory deficits as demonstrated by Kosary et al. (2012) using both Y maze 

and novel object recognition tests.  

It is worth noting that the present study cannot rule out the hypothesis that the fructose moiety 

of the sucrose disaccharide crosses the blood-brain barrier (BBB) (Cha and Lane, 2009) and 

may be accountable for sucrose-induced memory impairments observed in the current study. 

Furthermore, hypertriglyceridemia seen in the HSu group that could have been triggered by 

fructose may also contribute to the memory dysfunction observed herein. In support of this 

idea, direct injection of triglycerides into the brain has detrimental consequences for learning 

and memory (Farr et al. 2008) and insulin transport through the BBB (Banks et al. 2004; 

Banks et al. 2008; Urayama et al. 2008).  

Overall, it has been suggested that these memory deficits are probably due to a 

disruption of insulin signaling (Ristow, 2004; van der Heide et al. 2006). Considering that 

chronic peripheral hyperinsulinemia may down-regulate BBB insulin receptors thus reducing 

insulin transport into the brain (Banks 2004; Craft and Watson 2004; Wallum et al. 1987), we 
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cannot rule out the possibility of a reduction of hippocampal insulin levels in HSu animals. 

However, hippocampal insulin signaling can also be sustained by insulin synthesized by 

hippocampal pyramidal neurons (Kuwabara et al. 2011). There is no previous study 

addressing the impact of high sucrose treatment on the ability of hippocampal cells to produce 

insulin. Besides insulin levels, insulin signaling could also be affected in the hippocampus 

thus contributing to cognitive deficits exhibited by HSu rats. Indeed, we found a reduction in 

IR-β levels in HSu compared to control rats. This is consistent with IR expression being 

diminished in type-2 diabetic patients (Nisticò et al. 2012). On the other hand, Winocur and 

colleagues (2005) found no differences in the hippocampal IR-β expression on 

hyperinsulinemic ZDF rats, with 6 months of age. Moreover this decrease of IR-β levels in 

HSu rats was accompanied by a lack of alteration of IRS-1 pS636/639 levels, which is a 

known negative regulator of IRS-1 (Talbot et al. 2012). Therefore, our results suggest that, 

although there was a downregulation of the insulin receptor, hippocampal insulin response 

might not be affected. However, we cannot exclude that IRS-2 signaling could be 

compromised in HSu animals, since it was recently demonstrated that this insulin receptor 

substrate is also involved in hippocampal synaptic plasticity (Costello et al. 2012). 

 Impaired cognitive performance is also associated with disglycemia (Gao et al. 2008). 

One of the major key players that translate hyperglycemia into glucotoxicity is RAGE-

mediated inflammatory/oxidative stress pathways (Ramasay et al. 2005). Additionally, 

RAGE–mediated pathways have been implicated in memory deficits in Alzheimer’s disease 

(Arancio et al. 2004; Fang et al. 2010; Maczurek et al. 2008; Wilson, 2009). Nevertheless, 

sucrose-sweetened water did not increase fasting glycemia and, thus, glucose neurotoxicity 

ought not be held responsible for the memory deficits reported here. The RAGE levels in HSu 

rats were comparable to control rats, which is consistent with normoglycemia. Furthermore, 

we failed to observe any sign of hippocampal oxidative stress in such early pre-diabetic stage, 

http://www.sciencedirect.com/science/article/pii/S1056872712003406#bb0060
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202022/#R5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202022/#R19
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202022/#R40
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202022/#R63
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as gauged from the normal HNE found in the hippocampi of HSu rats when compared with 

control rats. The key pro-inflammatory cytokine TNF- was found to be over-expressed in 

diabetic hippocampi and was coupled with cognitive dysfunction (Liu et al. 2012). 

Additionally, RAGE up-regulation increases TNF- levels (Ramasay et al. 2005). 

Consistently with RAGE data, TNF- levels from HSu rats were not significantly different 

from control animals. The absence of an oxidative stress profile along with normal TNF- 

levels is consistent with the lack of synaptotoxicity as seen by normal synaptophysin levels in 

HSu when compared to control rats. Upon neurotoxicity, astrocytes can become reactive 

(Pekny and Wilson, 2005). Therefore, it is not surprising that we did not observe significant 

difference in the hippocampal GFAP and GS levels between HSu and control groups. 

Contrasting with our findings, Duarte et al., (2012) recently showed the association between 

the synaptotoxicity and astrogliosis with T2DM-induced memory impairment. However one 

should stress that these authors used a diabetic phenotype characterized by hyperglycemia 

whereas our model is normoglycemic, which suggests that astrogliosis is a feature 

characteristic of T2DM rather than of pre-diabetes. 

Other mechanisms underlying memory deficits should be considered. For example, it is now 

well established that adaptive changes in glutamatergic synapses, typified by modified 

densities of NMDAR and AMPAR, are tightly associated with synaptic plasticity and 

memory (Yashiro and Philpot, 2008; Santos et al. 2009). Although memory impairments and 

hippocampal glutamargic dysfunction have been associated with diabetic encephalopathy 

characteristic of T2DM (Trudeau et al. 2004), nothing is known about the regulation of 

GluA1 and GLUN1 subunits, that are crucial for synaptic plasticity phenomena (Lee, 2006), 

in pre-diabetic conditions. Remarkably, we now found an up-regulation of GluA1 and 

GLUN1 subunits in hippocampal total extracts of HSu compared to control rats. However, 

these alterations were not accompanied by significant changes on PSD-95, one of the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562335/#pone.0055244-Yashiro1
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fundamental glutamatergic scaffolding proteins. This suggests that HSu rats have normal 

glutamatergic synaptic density. The up-regulation of both AMPA/NMDA subunits might be a 

compensatory mechanism to circumvent their defective activity underlying memory 

impairment. Interestingly, Turringiano and colleagues showed that the inhibition of synaptic 

transmission up-regulates AMPAR transcription (Turrigiano et al., 1998), presumably as a 

means of compensation. It is noteworthy that an up-regulation of both NMDA and AMPA 

receptors in thoracic spinal cord sections was observed at early stages of a mouse model that 

closely resembles type 2 (insulin-independent) diabetes of obese-diabetic ob/ob mice (Li et 

al., 1999). It was also reported that the up-regulation of hippocampal glutamate NMDAR and 

AMPAR accompanied synaptic plasticity defects in T1DM animal models as reviewed by 

Trudeau et al. (2004). Moreover memory impairments observed in this pre-diabetes state may 

also be underlined by changes in other ionotropic glutamate receptors (eg.  GluA2, GluN2A 

and GluN2B) levels as well as in their phosphorylation status and/or subcellular localization 

as observed in T1DM and T2DM experimental models (Di Luca et al. 1999; Trudeau et al. 

2004).  

Aberrant corticosterone signaling was also implied in diabetes induced memory deficits. In 

fact, Strahan et al. (2008a) demonstrated that high levels of circulating corticosterone 

contributed to diabetes impaired hippocampal-dependent memory and synaptic plasticity in 

both insulin–deficient rats and insulin–resistant (ob/ob) mice. Moreover it was recently shown 

that a GR antagonist (mifepristone) ameliorated cognitive dysfunction in streptozotocin 

(STZ)-induced type-1 diabetic rats (Zuo et al. 2011). However there is conflicting data on GR 

levels in diabetic models. While Goto–Kakizaki rats exhibited decreased GR immunolabeling 

in the CA1 area, associated with higher corticosteronemia (Beauquis et al. 2010), ZDF rats 

exhibited an increase in hippocampal GR levels (Hwang et al. 2011). Moreover, Shin et al. 

(2013) showed recently that hippocampal GR protein expression increased significantly until 
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the 3
rd

 week, but decreased at the 4
th

 week following STZ administration. At this moment, 

there is no information regarding corticosterone circulating levels and hippocampal GR levels 

in a pre-diabetic state. Notably, we now show that consumption of high sucrose for 9 weeks 

significantly decreased GR hippocampal levels when compared to control rats. Interestingly, 

this GR down-regulation was accompanied by normal corticosterone plasmatic levels. 

Whereas it is not unexpected that glucorticoids are still normal in a pre-diabetes state, this 

decrement of GR levels might lead to failure of feedback regulation of the HPA axis thereby 

contributing to mounting glucocorticoid levels putatively seen when evolving to a diabetes 

state. This mechanism was proposed to be operative in an early phase of Alzheimer’s disease 

mouse model where GR down-regulation coincided with the onset of memory decline in the 

object recognition test and preceded the increase in plasma levels of corticosterone (Escribano 

et al. 2008). Therefore, one cannot exclude that the adaptative change of hippocampal GR 

density seen herein might have contributed to the glutamatergic dysfunction and/or memory 

impairment exhibited by HSu rats.  

In conclusion, in the present study we confirm the deleterious effect of adding sucrose to a 

normal rodent diet, resulting in a pre-diabetic state, mainly characterized by fasting 

normoglycemia, hyperinsulinemia, insulin resistance, hypertriglyceridemia and impaired 

glucose tolerance compared with the control rats. Notably, we provide evidence showing that 

this condition of pre-diabetes was already associated with short- and long-term spatial 

memory impairments, which were underlined by a compromised glutamatergic as well as 

glucocorticoid function in the hippocampi from HSu rats. These data reinforce the suggestion 

that cognitive impairment is an early feature of T2DM, since it is already observed in 

conditions mimicking metabolic disease. Furthermore, it highlights the potential role of 

dietary sugar in the early central diabetic complications and suggests that controlling the 

consumption of sugar-sweetened beverages may be an effective way to curtail the risk of 
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developing T2DM. In this context, the identification of the mechanisms by which 

glutamatergic as well as glucocorticoid signaling contribute to “diabetic encephalopathy” 

might be of paramount clinical relevance. 
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Figure 1- Evaluation of spatial learning and long-term memory performance of high-sucrose 

(HSu) diet and control (Cont) rats using Morris water maze task (spatial reference memory 

version). (A) shows escape latency (s) to the platform  over four days of training; (B) shows 

time spent (%) in the correct quadrant (probe test); (C) shows time spent (%) in the opposite 

quadrant (probe test); (D) shows latency (s) to platform zone (probe  trial);  (E) shows the 

number of crossings  in  the platform zone  (probe  test). Data are presented as mean ± SEM 

of 8 animals per group. *, P < 0.05; **, P < 0.01; ***, P < 0.001, versus Cont group using an 

unpaired Student's t-test. #, P < 0.05; ##, P < 0.01, versus chance level (25% of time) using 

one-sample t-test.   

 

Figure 2 – Evaluation of short-term spatial memory performance of high-sucrose (HSu) diet 

group and control (Cont) rats using a modified Y-maze task. A training trial was performed to 

test exploratory capacity: (A) shows the total number of entries; (B) shows entries (%) in both 

Start and Other arms; (C) shows time spent (%) in both Start and Other arms. The same 

parameters were analyzed during test trial: (D) shows the total number of entries; (E) shows 

entries (%) in Start, Other and Novel arms; (F) shows time spent (%) in Start, Other and 

Novel arms. Data are presented as mean ± SEM of 8 animals per group. *, P < 0.05; **, P < 

0.01, versus Cont group using an unpaired Student's t-test.
 
#, P < 0.05, versus chance level 

(33.3% of time or entries) using one-sample t-test. 

 

Figure 3 - Hippocampal IR-β (A), IRS-1 (B) and IRS-1 pSer (636/639) (C) levels from high-

sucrose (HSu) diet and control (Cont) rats (measured by Western blot). High-sucrose 

decreased IR- levels (A) but IRS-1 (B) and IRS-1 pSer (636/639) (C) levels remained 

unchanged in the hippocampus. Data are presented as mean percentage of control ± SEM of 5 

animals per group. *, P < 0.05, **, P < 0.01, versus Cont group using an unpaired Student's t-

test. 
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Figure 4 - Hippocampal GluA1 (A), GLUN1 (B), PSD-95 (C), synaptophysin (D) and GR (E) 

levels from high-sucrose (HSu) diet and control (Cont) rats (measured by Western blot). 

High-sucrose increased both GluA1 (A) and GLUN1 (B) levels but PSD-95 (C) and 

synaptophysin (D) levels remained unchanged, whereas GR density was decreased in the 

hippocampus. Data are presented as mean percentage of control ± SEM of 5 animals per 

group. *, P < 0.05, versus Cont group using an unpaired Student's t-test. 
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Tables 

Table 1: Evaluation of biochemical peripheral parameters of high-sucrose (HSu) diet 

group and control (Cont) rats. 

Parameters Cont HSu 

Total Food Consumption (g) 1375 ± 2.9 519 ± 0.7*** 

Total Drink Consumption 

(mL) 

1833 ± 4.3 2878 ± 4.0*** 

Body weight (g) 421.0 ± 24.5 421.8 ± 20.3 

Postprandial glycemia 

(mg/dL) 

126.8 ± 13.6 162.9 ± 26.5* 

Fasting glycemia (mg/dL) 96.7 ± 4.5 102.9 ± 7.0 

Fasting Insulin levels (μg/L) 3.7 ± 1.8 10.8 ± 1.0*** 

Triglyceride levels (mg/dL) 68.1 ± 26.3 143.1 ± 65.7* 

Cholesterol levels (mg/dL) 63.7 ± 2.5 58.2 ± 9.7 

HbA1c (%) 3.7 ± 0.1
 

4.0 ± 0.2* 

HOMA-IR 2.7x10
-5

±1.5 x10
-5

 8.0 x10
-5 

± 9.0 x10
-6

** 

Glucose AUC-GTT 

(mg/dL/120 min) 

2.1 x10
4
 ± 1.0 x10

3
 2.6 x10

4
 ± 3.8 x10

3
* 

Glucose ITT 120 min (mg/dL) 37.2 ± 7.0 63.9 ± 14.8** 

Corticosterone levels (μg/mL) 0.541 ± 0.020 0.569 ± 0.041 

 

Data are expressed as mean ± SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.001 compared 

with Cont animals. 



  

Table 2: Hippocampal oxidative stress/inflammation markers from high-sucrose (HSu) diet 

and control (Cont) groups.  

Parameter Markers Cont HSu P value 

Astrogliosis 

GFAP 
100 ± 9 107± 14 0.6765 

GS 
100± 6 102± 8 0.8516 

Inflammation 

markers 

Oxidative stress 

TNF-α 
100 ± 7 107 ± 2 0.3257 

RAGE 
100 ± 11 107± 16 0.7196 

Lipid peroxidation 
HNE 

100± 8 103± 10 0.8235 

 

Data represent mean percentage of control ± SEM. 

 

 

 



  

Highlights 

- Short- and long-term spatial memory deficits are present in prediabetic rats. 

- Memory deficits are concurrent with increases of GluA1 and GLUN1 

hippocampal levels. 

- Prediabetic rats display decreased hippocampal IR-β density.  

- Memory deficits are concurrent with decreased GR hippocampal levels. 

 

 




