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Abstract
 

Influence of annealing temperature on structural, compositional, surface morphology, 

electrical, and optical properties of pulsed magnetron sputtered nanocrystalline Au:Ag:SnO2 

films were investigated by several analytical techniques. From the XRD results, the films were 

polycrystalline with absence of impurity phases and the films were grown preferentially in the 

(110) orientation of SnO2 with tetragonal structure. The surface smoothness and grain size of the 

films increases with annealing temperature. Photoluminescence measurements show that the as 

deposited Au:Ag:SnO2 films exhibited a broad emission peak at 536 nm (2.31 eV). The lowest 

electrical resistivity of 0.005 �cm was obtained at the films annealed at 500 oC. The optical 

studies show that the visible transmittance and band gap of the films increase with annealing 

temperature.  
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1. Introduction 

In recent decades tin oxide (SnO2) has attracted great attention in many applications such 

as solar cells, gas sensors, liquid crystal displays, optoelectronic devices, etc., because of its 

excellent electrical and optical properties, high exciton binding energy of 130 meV at room 

temperature, wide band gap (3.6 eV) and, additionally, its high chemical and thermal stability [1-

4]. Recently, it was reported that the nanosized SnO2 is a promising candidate for the sensitive 

and long-term stable detection of pollutant gases [5]. It is well know that the gas sensitivity 

depends on the electrical properties of the film and thus a precise control of the tin oxide 

microstructure is needed. The electrical resistivity of SnO2 films is readily modified by the post 

deposition annealing or addition of dopants. An improvement in the sensitivity and selectivity 

and decrease in the working temperature for maximum sensitivity of the SnO2 films was 

achieved by using suitable additives such as Ag, Pt, Pd, Cu, Ni, Au, Mn, In, etc.[6-9]. The 

nanocrystalline films and metal doped SnO2 films have been synthesized by various approaches, 

such as atmospheric pressure chemical vapor deposition [10], electron beam evaporation [11], 

pulsed laser deposition [12], sol-gel [9], sputtering [8, 13], and electrostatic spray deposition 

[14]. Among these techniques, pulsed magnetron sputtering has recently become a very popular 

method of thin film deposition, due to its versatility, high stability, controllability, repeatability 

and ability to provide uniform coatings over large areas substrate up to 4 m in width [15,16]. In 

this work, pulsed magnetron sputtering technique was used to prepare Au:Ag doped SnO2 films, 

and the effects of post annealing treatment on structural, compositional, surface morphology, 

electrical and optical properties of the films were studied in the view to achieve improved 

electrical and optical properties. 

2. Experimental 



The Au:Ag:SnO2 films were deposited on cleaned glass substrates by pulsed magnetron 

sputtering using a Sn target (15cm x 15cm x 0.7cm, 99.99% purity) incrusted with high purity 

Au and Ag strips (99.999% of purity). The deposition was carried out in a reactive atmosphere in 

the presence of a mixture of pure Ar and O2 gases, with a molar ratio Ar:O2 of 0.5. The 

deposition pressure was fixed at approximately 0.7 Pa. The substrate holder was neither biased 

nor intentionally heated and it was set to a constant rotation speed of 20 r.p.m.. The target to 

substrate distance was fixed at 6 cm. Before deposition, an ultimate vacuum pressure better than 

6×10-4 Pa was reached. The substrates surface was ion cleaned with an ion gun. The cleaning 

procedure first included an electron heating and afterwards an Ar+ bombardment, for 10 minutes 

each (ion gun settings at 20A, 40V and substrate bias progressively increased to -70V). During 

the deposition of the films, the power on the target was fixed at 900W, and the substrate was 

initially unheated. The thickness of the films, determined by profilometry, was approximately 

~340 nm. The chemical composition of the coatings was determined by an electron probe 

microanalysis (EPMA) apparatus equipped with wavelength-dispersive X-ray spectroscopy 

(WDX). The structural properties of the films were determined by X-ray diffraction (XRD). The 

surface morphology was characterized by atomic force microscopy (AFM). The 

photoluminescence (PL) spectra were measured with a LS 55 fluorescence spectrometer (Perkin 

Elmer) at room temperature. The electrical properties of the films were measured by four point 

probe technique and the optical transmittance was recorded using a UV-Vis-NIR double beam 

spectrophotometer. The samples were annealed at 300, 400, and 500 oC in a horizontal furnace 

with protective atmosphere (95% Ar + 5% H2). A heating rate of 30ºC/min and an isothermal 

period of 60 min was used. Then, the furnace was turned off and samples were let to cool down 

therein. 



3. Results and Discussion 

EPMA results show that the Au:Ag:SnO2 films contain tin and oxygen, with a Sn/O ratio 

close to the stoichiometric compound SnO2 (Table 1). The gold and silver incorporation in the 

films is approximately 0.6 and 0.3 at.%, respectively.  After annealing the samples at 500ºC the 

oxygen content slightly diminished as a result of the annealing procedure. Due to the usage of 

protective atmosphere, desorption of oxygen is expected, especially in the grain boundaries and 

at the sub-surface of the grains. 

     Sample             Sn           O           Au           Ag                        
                              (%)        (%)          (%)          (%)       Sn/O   
 As deposited       32.3        66.8          0.6           0.3          0.48     
      500oC             33.7       65.4           0.6           0.3          0.52     

Table 1: Chemical composition of pulsed dc magnetron sputtered Au:Ag:SnO
2

 films. 

3.1. Structural and surface morphology 

Figure 1 shows the XRD patterns of Au:Ag:SnO2 films as function of annealing 

temperature. The films were polycrystalline with absence of impurity phases. It can be clearly 

observed that they all grew preferentially with the (110) orientation of SnO2 with tetragonal 

structure (JCPDS Card No. 88-0287). The X-ray diffraction measurements did not reveal the 

presence of any Au or Ag phase, or their oxide phases, most probably Au and Ag atoms 

segregate to the noncrystalline region in the grain boundaries or are substitutionally incorporated 

into the tin oxide lattice. Considering the former case, the concentration of noble metal may have 

been too low to allow the formation of metal clusters with dimensions higher than the XRD limit 

of detection(>2-3 nm), even after annealing at 500ºC. The formation of metallic clusters with 

detectable sizes is expected at higher annealing temperatures. For example, Cabot et al. [17] 

observed the impregnation of SnO2 crystals with Au, Pd and Pt and found that the formation of 

metallic clusters only occurred for samples annealed above 600ºC. 



After post-deposition annealing, the width of the diffraction peaks decreased and the 

intensity of the (110), (101), (211) peaks increased. The improvement in the crystallinity of the 

Au:Ag:SnO2 films with annealing temperature is a result of grains growth, which should be 

accompanied with a reduction of the microstructural defects and the consequent improvement in 

the structural homogeneity of the films. A shift in the diffraction angles towards higher values 

was also detected arising from the progressive contraction of the lattice parameters with the 

temperature increase. The lattice parameters a and c were calculated from the (110) peak and 

(211)/(110) peaks, respectively, and they are listed in Table2. A lattice distortion is observed 

when a and c values of the as deposited sample are compared with the equilibrium ones (#88-

0287) or with literature concerning pure SnO2 thin films [18], which reinforces the suggestion of 

Au and/or Ag being integrated in the SnO2 lattice. The as deposited films may thus exhibit a 

large number of defects and local lattice disorder. Both lattice parameters decreased gradually 

with increasing annealing temperature; however, c parameter is always higher than the 

equilibrium value of SnO2, whereas the a parameter is lower after 400ºC annealing. This results 

in an increased c/a ratio, irrespectively of the annealing temperature, when compared to 

equilibrium values. The changes in the lattice parameters with annealing temperature was due to 

the progressive removing of the lattice defects and to the structural re-arrangement of 

Ag:Au:SnO2. The arising of compressive stresses during cooling down after thermal annealing 

should also contribute to the observed results. 

Cetinorgu et al.[19] reported that the lattice parameters (a and c) increased with 

increasing annealing temperature from 400 to 600 oC, in filtered vacuum arc deposition SnO2 

films. However, Lee et al.[20] reported that the lattice parameters (a and c) decreased as the 

amount of manganese contents increases in Mn:SnO2 ceramics. 



The average crystallite sizes were calculated from the XRD spectrum by using Scherrer 

formula [21], and are listed in Table 2. As expected, the grain size of the films increases with the 

increase of the annealing temperature. Bazargan et al.[22] observed the increasing of the grain 

size with increase of annealing temperature in spin coated tin oxide films, and the crystallinity of 

the films started at 350 oC. 

Sample Annealing 
temperature (ºC) 

Grain 
size (nm)

Lattice Parameters (Å) 
c/a 

Unit Cell 
Volume 

(Å3)a c 

Au:Ag:SnO2 

As deposited 5.4 4.757 3.232 0.679 73.14 
300 5.7 4.738 3.226 0.681 72.42 
400 7.3 4.719 3.207 0.680 71.42 
500 8.5 4.718 3.197 0.678 71.16 

SnO2 (#88-0287) - - 4.737 3.186 0.673 71.51 
Table 2:Structural properties of the Au:Ag:SnO

2
 sample at different temperatures 

 
Figure 2 shows the surface morphology of as deposited and annealed Au:Ag:SnO2 films.  

The grain growth with the annealing temperature is clearly evidenced by the AFM results. The as 

deposited films exhibited a rough surface with an average RMS roughness of 3.2nm. When 

increasing the annealing temperature from 300 to 500 oC the surface of the films changed 

significantly and the grains became bigger. The RMS roughness of the films is found to decrease 

with increasing of the post annealing temperature. The surface roughness decreases as a result of 

the grains growth. From the AFM histograms, we obtained the grain size of the as deposited and 

annealed Au:Ag:SnO2 films, listed in Table 3. With the increase in the annealing temperature 

bigger grains were observed, as a result of the increased crystallinity (Fig.1). The grain sizes 

obtained from the AFM histograms are slightly higher than those measured from XRD data, 

which might suggest the formation of surface aggregates, originated by the lateral growth of the 

grains, contributing to the improvement in the smoothness of the films. 

 



 

Sample RMS roughness 
(nm) 

Grain Size 
(nm) 

As deposited 3.2 8 
300oC 2.9  10 
400oC 2.4 11 
500oC 2.1 13 

    Table 3 surface roughness and grain size values from AFM analysis 

3.2. Photoluminescence properties 

Photoluminescence (PL) studies provide information regarding the quality of the film. 

The annealing temperature strongly affected the emission properties of the Au:Ag:SnO2 films. 

Fig.3 shows the room temperature PL spectra of the Au:Ag:SnO2 films. The films did not exhibit 

luminescence peaks in the UV region (not shown in Fig.3). The as deposited Au:Ag:SnO2 films 

exhibited a broad emission peak at 536 nm (2.31 eV). After annealing, a main emission peak in 

the same position and with growing intensity with temperature was observed, and an additional 

shoulder peak appeared after 400ºC at 602 nm (2.06 eV). In poly- and nano-crystalline oxides, 

oxygen vacancies are the most common defects and usually act as radiative centers in 

luminescence processes [23]. Considering the results of the chemical composition, higher 

amounts of oxygen vacancies are expected for the annealed samples, despite the films 

crystallinity increase, which can justify the PL emissions increase. The very low cooling rates 

used after the annealing process can affect the distribution of space charges in the nanoparticles 

with a vacancy migration from the bulk to the surface of the grains [24]. In this way, despite the 

bigger and more ordered grains (with less “bulk” defects), more oxygen vacancy defects in the 

near-surface region are expected. The presence of noble metal dopants can also influence the PL 

performance of semiconductor nanomaterials. Although the noble metal cannot result in new PL 

phenomena, it can make the excitonic PL intensity decrease due to the capture of noble metal 

ions (resulting in increased separation rates of photo-induced charge carriers) [25]. Although a 



very high density of defects is expected in the as deposited film due to the tin oxide doping by 

Au and Ag, the very low PL signal indicates a very low concentration of oxygen vacancies but 

can also indicate the presence of noble metals in the ionic form (i.e. Au and/or Ag integrated in 

the oxide Sn lattice). At the lower annealing temperature of 300ºC the intensity of the PL peak 

increases very slightly, maintaining the same broad shape of the as deposited sample. Although 

the amount of energy was probably not sufficient to induce significantly the structural re-

arrangement of the Au:Ag:SnO2 films, an increase in the surface oxygen vacancies would be 

expected due to the annealing procedure. Once again, the presence of noble metal ions could be 

responsible for the very low PL intensity increase due to the efficient separation of 

photoelectrons and holes. The very broad PL peaks in both the as deposited and 300ºC annealed 

samples also indicates the presence of defects with slightly different energy levels, which might 

be connected with the presence of different ionic noble metal species. With further increase in 

the annealing temperature the main PL emission peak is sharply increased in intensity due to an 

increase in the surface oxygen vacancies concentration, and this also indicates that the noble 

metal atoms should be less in their ionic form. Their precipitation near the grain boundaries can 

in fact contribute to higher PL signals by the creation of recombination centers. 

Ni et al. [26] observed the decreasing of the peaks intensity at too low and too high 

annealing temperatures in rf magnetron sputtered Sb doped SnO2 thin films. Zhang et al. [27] 

observed a decrease of the green-yellow emission and an increase of the UV emission with 

increase of silver content in Ag/ZnO composites. 

3.3. Electrical properties 

In transparent conducting oxides, native defects, such as O vacancies and cation 

interstitials, have been frequently invoked as possible sources of n-type conductivity. The 

conductivity of the SnO2 films results mainly from stoichiometric deviation, such as excess metal 



ions and/or oxygen vacancies. It can be seen that the electrical resistivity of the films was 

significantly changed by the annealing temperature (Table 4). The as deposited film exhibited the 

higher value of resistivity. This should be related to the excess of oxygen chemisorbed at grain 

boundaries and also to the presence of structural defects inside the grains other than oxygen 

vacancies. The resistivity of the films was sharply decreased after thermal treatments. This was 

an expected result mainly due to the increase of grain size and of structural homogeneity and to 

the reduction of scattering of carriers at the grain boundaries with annealing temperature but can 

also be connected to the decrease of excess oxygen and/or to the increase of oxygen vacancies 

(which in turn leads to an increase of the carrier concentration) [28,29]. Additionally, the dopants 

depletion from the SnO2 lattice and subsequent clusterization at the grain boundaries can also 

contribute for decreasing the resistivity of the film since the ionic metals can act as trapping 

centers. 

Sample                  Resistivity    Transmittance     Band gap         
                                (�cm)       (%) at �=575        (eV)                 

as deposited            15.8             84                       3.11 
300 oC                     1.3               85                       3.12 
400 oC                     0.06             87                       3.14 
500 oC                     0.005           89                       3.19 

                                      Table 4 Electrical and optical properties of Au:Ag:SnO
2

 films 

3.4. Optical properties  

The optical transmittance of the films was strongly influenced by the annealing 

temperature. The transmittance of the films gradually increased in the visible region (at �=575 

nm) and decreased in the near infrared region with the annealing temperature from as deposited 

to 500 oC. The enhancement of transmittance in the visible region with annealing temperature 

may be due to a decrease in optical scattering caused by the densification of grains followed by 

the grain growth and the reduction of the grain boundary density [30]. The optical properties of 



thin films was also found to be influenced by the surface morphology, the smoother surface 

morphology and less grain boundary the film has, the higher the transmittance [31]. The 

absorption edge of the Au:Ag:SnO2 films is shifted to shorter wavelengths with the increase in 

the annealing temperature, ascribed to increasing the optical band gap. The optical band gap of 

the films increases from 3.11 eV to 3.19 eV with the increase in the annealing temperature 

(Table 4). The results in the literature vary depending on the deposition and posterior annealing 

treatment. A similar behavior was reported by Huanga et al. [32] for rf reactive magnetron 

sputtered antimony tin oxide films. The absorption edge shifted towards shorter wavelengths 

with the increase in the annealing temperature due to an improvement in the crystallinity of the 

films and higher concentration of carriers. Cetinorgu et al. [19] observed an increase of optical 

band gap from 3.90 to 4.35 eV with an increase of the annealing temperature from as deposited 

to 600 oC in vacuum arc deposited SnO2 films. 

Conclusion

Nanocrystalline Au:Ag:SnO2 thin films were prepared on glass substrates by using pulsed 

d.c. magnetron sputtering and further annealed in order to improve their opto-electrical 

properties. The studies show remarkable changes in the properties of the films with respect to the 

annealing temperature. XRD and AFM results show that the crystallinity, homogeneity, and 

smoothness of the films improved with annealing temperatures. In the PL spectra, a broad 

emission peak located at 536 nm (2.31 eV) was detected, and after annealing its intensity was 

sharply increased and an additional shoulder peak appeared at 602 nm (2.06 eV). The resistivity 

of as deposited films was greatly decreased after annealing at higher temperatures. With the 

increase in the annealing temperature the optical transmittance increased from 84% to 89% and 

the absorption edge was moved to shorter wavelength direction. 
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Figure captions

 

 

Figure 1. XRD patterns of Au:Ag:SnO2 films as function of annealing temperature 

Figure 2. AFM images of Au:Ag:SnO2 films (a) as deposited, (b) 300 oC, (b) 400 oC, (b) 500 oC. 

Figure 3. Room temperature PL spectra of Au:Ag:SnO2 films 

Figure 4. Optical transmittance spectra of Au:Ag:SnO2 films as function of annealing 

temperature.  
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� The nanocrystalline Au:Ag:SnO2 films were prepared by pulsed direct current magnetron 

sputtering 

� After annealing, the homogeneity and smoothness of the films was improved.  

� The low electrical resistivity of 0.005 �cm with optical transmittance of 89% were  

obtained at annealing temperature of 500 oC 
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