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Research Highlights: 
 

 A survey on multi-robot search inspired on swarm intelligence is presented. 

 Five state-of-the-art swarm robotic algorithms are described and compared. 

 Simulated experiments of a mapping task are carried out to compare the five 
algorithms. 

 The three best performing algorithms are deeply compared using 14 e-pucks on a 
source localization problem. 

 The Robotic Darwinian Particle Swarm Optimization (RDPSO) algorithm depicts an 
improved convergence. 
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Abstract 

This paper presents a survey on multi-robot search inspired by swarm intelligence by further classifying and discussing the 

theoretical advantages and disadvantages of the existing studies. Subsequently, the most attractive techniques are evaluated 

and compared by highlighting their most relevant features. This is motivated by the gradual growth of swarm robotics solutions 

in situations where conventional search cannot find a satisfactory solution. For instance, exhaustive multi-robot search tech-

niques, such as sweeping the environment, allow for a better avoidance of local solutions but require too much time to find the 

optimal one. Moreover, such techniques tend to fail in finding targets within dynamic and unstructured environments. This 

paper presents experiments conducted to benchmark five state-of-the-art algorithms for cooperative exploration tasks. The 

simulated experimental results show the superiority of the previously presented Robotic Darwinian Particle Swarm Optimiza-

tion (RDPSO), evidencing that sociobiological inspiration is useful to meet the challenges of robotic applications that can be 

described as optimization problems (e.g., search and rescue). Moreover, the RDPSO is further compared with the best perform-

ing algorithms within a population of 14 e-pucks. It is observed that the RDPSO algorithm converges to the optimal solution 

faster and more accurately than the other approaches without significantly increasing the computational demand, memory and 

communication complexity. 

 
Keywords: swarm robotics; search tasks; benchmark; performance analysis. 

1. Introduction 

Search applications have been well studied in the past 

[1]. However, the use of multi-robot systems (MRS) to 

fulfill such missions has not yet received the proper at-

tention. Nonetheless, MRS offer several advantages 

over single solutions, or even human rescuers, within 

search applications. Besides providing a natural fault-

tolerance mechanism, the use of multiple robots is espe-

cially preferable when the area is either hazardous or in-

accessible to humans, e.g., search-and-rescue (SaR) vic-

tims in catastrophic scenarios [2]. 

Similar to optimization problems in which one can dis-

tinguish exhaustive methods from biologically-inspired 

ones, MRS within search applications face the same di-

lemma: either decide on an exhaustive technique in 

which robots sweep the entire area [3], or mimic simple 

local control rules of several biological societies (e.g., 

ants, bees, birds) to stochastically search the scenario 

[4]. This last one is a typical feature from most swarm 

robotics algorithms [5]. Swarm robotics applied in 

search tasks can offer several major benefits over the 

conventional search techniques, such as: the robustness 

of the swarm to failure of individual units or run-time 

addition of new units, the scalability of emergent behav-

iors to swarms of different sizes, the leveraging of self-

organization principles of environmental noise and in-

dividual differences, and the synergetic effect whereby 

the work of the swarm is greater than the sum of the 

work by the individual units, known as superlinearity 

[4] – a concept shared with other fields such as complex 

systems.  
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Although many different swarm robotics algorithms 

have been recently proposed in the literature, this work 

will focus on the ones that benefit from explicit over 

implicit communication, such as the work recently pro-

posed by Kernbach et al. [6]. In algorithms under ex-

plicit communication, robots need to be able to explic-

itly exchange information within a network path using 

some sort of medium (e.g., wireless communication). 

Despite such requirement, the choice of explicit com-

munication over implicit or through-the-world interac-

tions, also known as stigmergy, relies on the application 

domain of realistic search applications such as search-

and-rescue (SaR). According to the current state-of-the-

art in this field, robotic technology is used, almost ex-

clusively, to assist and not substitute human responders. 

Hence, multiple mobile robots can take advantage of 

parallelism to reduce the time required to fulfill the mis-

sion while explicitly providing important data about the 

site (e.g., contextual information), whether accessible or 

inaccessible for human agents. 

Moreover, this work will focus on distributed solutions. 

This is obvious within swarm robotics context in which 

tasks are inherently distributed in space, time, or func-

tionality. Nevertheless, it should be noted that some 

works still emphasize on centralized architectures [7], 

thus moving away from the fully distributed nature in-

herent to the principles of collective intelligence. In 

practice, centralized swarm architectures are computa-

tionally expensive and unsuitable as a large number of 

robots usually generate very dynamic behaviors that a 

centralized controller cannot handle [8]. Also, central-

ized architectures lack robustness as the failure of the 

centralized entity may compromise the performance of 

the whole MRS [9]. 

Bearing these ideas in mind, this work presents an over-

view of distributed swarm robotics techniques under ex-

plicit communication constraints, applied to search ap-

plications, thus comparing them in both simulated envi-

ronment and real experiments. 

 

2. Swarm Robotics in Search Applications 

In nature, some complex group behaviors arise in bio-

logical systems composed of swarms that are observed 

in a variety of simple social organisms (e.g., ants, bees) 

[10]. One of the most relevant topics in MRS is the mod-

eling and control of the population. Hence, the design 

of such bio-inspired swarm MRS requires the analysis 

of the social characteristics and behaviors of insects and 

animals.  

To that end, Suarez and Murphy [2] recently presented 

a brief description of more than 50 papers on animal 

foraging making the analogy to SaR applications. Most 

works presented in this survey suggested that robots 

should divide the whole environment into patches, as 

many animals do, and then search within such patches. 

Nevertheless, and even as stated by the authors, victims 

can appear anywhere. Hence, the difficulty in subdivid-

ing a search environment and defining patches within 

unknown scenarios still remains. The authors also claim 

that SaR robotics should focus on exhaustive search as 

the motivation is different from animal foraging – while 

animals attempt to maximize their net energy level to 

stay alive, robots must find victims in a search area or 

determine that there are none to be found. However, alt-

hough optimization may seem unsuitable for SaR robot-

ics at first, there are some specific applications in which 

one can foresee its use like, for instance, in urban fires. 

Urban fires are probably the most frequent catastrophic 

incidents in urban areas, requiring a prompt response 

because of life endangerment in highly populated zones 

and the high risk of fire propagation to buildings and 

parked cars in the vicinity. An urban fire in a large base-

ment garage often frequented by people and containing 

inflammable materials, like in a basement garage of a 

shopping mall with many cars, drivers and people pass-

ing by, is a particularly challenging SaR application be-

cause of the confined nature of the environment. As the 

fire evolves, the space becomes rapidly full of smoke, 

with very hard visibility and an unbreathable and toxic 

atmosphere, which is dangerous for both victims and 

first responders. Moreover, victims prone to such at-

mosphere would be unable to survive more than 10 to 

20 minutes. Therefore, the use of exhaustive search 

strategies within this context would be unfeasible.  

Actually, some works have recently been focused on 

such scenarios, as it is the example of the Cooperation 

between Human and rObotic teams in catastroPhic In-

cidents (CHOPIN) R&D Project [11]. The CHOPIN 

project aims at exploiting the human-robot symbiosis in 

the development of human rescuers’ support systems 

for SaR missions in urban catastrophic incidents. One of 

the main catastrophic scenarios being used for proof of 

concept is the occurrence of fire outbreaks in large base-

ment garages. In this case, the project focuses on using 

a fleet of cooperative ground mobile robots to coopera-

tively explore a basement garage where the fire is pro-

gressing, thus identifying the localization of fire out-

breaks and victims.  

One of the first approaches to fulfilling the objectives of 

this project was in dividing that kind of application into 

two operations: i) reconnaissance; and ii) rescuing [12]. 



 

 

 

In both phases, this kind of scenario usually poses radio 

propagation difficulties to the response teams, whose 

members usually wear a radio emitter/transmitter to 

communicate by voice. Often under these noisy scenar-

ios, the communication is only possible with teammates 

located in line-of-sight. Moreover, since a wireless 

communication computer network may be absent or 

damaged, robotic agents may have to deploy and main-

tain a mobile ad hoc wireless network (MANET) in or-

der to support the interaction between the human team 

and the robotic team. In the reconnaissance phase, the 

mission consisted of a team of robots that arrived at the 

scenario via a common entry and spread out to explore 

and map the unknown area, signalizing possible points 

of interests such as victims and fire outbreaks. After a 

certain degree of confidence in the built representation 

of the scenario, the rescuing phase consisted of having 

the team of robots inspecting the area in a coordinated 

way visiting all points of interests, looking for remain-

ing victims, possible changes in the scenario and the 

evolution of fire outbreaks. The first approach was han-

dled using a complete solution based on the well-known 

Particle Swarm Optimization (PSO) [13] to real mobile 

robots, denoted as Robotic Darwinian PSO (RDPSO), 

that was previously presented in [14] and further ex-

tended in [15] [16]. 

Due to the successive improvements of the RDPSO and 

its positive outcome on several search tasks, now comes 

the time to benchmark it with state-of-the-art alterna-

tives. Over the past few years, some algorithms initially 

designed to solve tasks such as optimization problems 

have been adapted to embrace the principles associated 

to real robots. Within that list, and including the afore-

mentioned RDPSO, the following ones were found as 

the most promising for realistic search task applications: 

1) Robotic Darwinian Particle Swarm Optimization 

(RDPSO) [14] [15] 

2) Extended Particle Swarm Optimization (EPSO) 

[17] [18] 

3) Physically-embedded Particle Swarm Optimiza-

tion (PPSO) [19] [20] 

4) Glowworm Swarm Optimization (GSO) [21] [22] 

5) Aggregations of Foraging Swarm (AFS) [23] [24] 

 

Note that three-out-of-five algorithms get inspiration on 

the PSO, proposed for the first time by Kennedy and 

Eberhart in 1995 [13]. This socio-inspired algorithm 

takes advantage on the swarm intelligence concept de-

fining the properties of a system of unsophisticated 

agents, locally interacting with their environment, 

whose behavior creates coherent global functional pat-

terns [25]. Given its simplicity in terms of implementa-

tion, and reduced computational and memory complex-

ities, the PSO has been successfully used in many appli-

cations such as robotics [26] [27] [28] [29], computer 

vision [30], electric systems [31] and social sciences 

[32]. Although the PSO has been mainly used on opti-

mization and estimation problems, many recent studies 

have been adapting it to follow swarm robotics princi-

ples. As such, this work presents and compares three of 

the most significant studies around PSO-based swarm 

robotic algorithms.  

Next section briefly describes the RDPSO algorithm 

previously presented by the authors. Afterwards, the 

RDPSO will be systematically compared and discussed 

over the alternative swarm robotics algorithms. 

2.1. Robotic Darwinian Particle Swarm Optimiza-

tion (RDPSO) 

The RDPSO initially proposed by Couceiro, Rocha & 

Ferreira [14] [15], just like the PSO, basically consists 

of a population of robots that collectively move on the 

search space (e.g., catastrophic scenario, city) in search 

of the optimal solution (e.g., number of victims, number 

of passengers); each robot is characterized by its pose 

(i.e., position and heading) and performance. For in-

stance, if we have a group of mobile olfactory robots 

that are trying to find a gas leak in an indoor environ-

ment (c.f., [33] and [34]), each robot’s state comprises 

of its pose and the corresponding value of gas density. 

The RDPSO summarized in Algorithm 1 allows having 

multiple dynamic swarms, thus enabling a distributed 

approach because the network that might have been 

comprised of the whole swarm of robots is divided into 

multiple smaller networks (one for each group/swarm). 

This makes it possible to decrease the number of nodes 

(i.e., robots) and the information exchanged between ro-

bots of the same network. In other words, robots inter-

action with other robots through communication is con-

fined to local interactions inside the same group 

(swarm), thus making RDPSO scalable to large popula-

tions of robots. More details about this work will be 

highlighted throughout this paper for comparison pur-

poses with the other strategies. 

Although this is not the first work extending the PSO to 

MRS, a more recent work by Couceiro et al. has shown 

that the RDPSO can overcome problems related to ob-

stacle avoidance, robot dynamics, sub-optimal solutions 

and communication constraints (e.g., [35] [36] [37]).   

 



 

 

 

Algorithm 1. RDPSO algorithm for robot 𝑛. 
 

Initialize pose 〈𝑥𝑛[0], 𝜑𝑛[0]〉 and 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 based on 
EST 
Loop: 
 If 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 ≠ 0  // it is not an excluded robot 
  Evaluate the robot individual solution ℎ𝑛[𝑡] 
  If ℎ𝑛[𝑡] > ℎ𝑏𝑒𝑠𝑡   // robot has improved 
   ℎ𝑏𝑒𝑠𝑡 = ℎ𝑛[𝑡]  // individual best sensed solution  
   𝜒1[𝑡] = 𝑥𝑛[𝑡]  // individual best position  
  Exchange information with the 𝑁𝑠 teammates about 

the individual solution ℎ𝑛[𝑡] and current position 
𝑥𝑛[𝑡] 

  Build a vector 𝐻[𝑡] containing the individual solution 
of all 𝑁𝑠 robots within 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 

  If max𝐻[𝑡] > 𝐻𝑏𝑒𝑠𝑡  // swarm has improved 
   [𝐻𝑏𝑒𝑠𝑡 , 𝑗] = max𝐻[𝑡]  // 𝑗 will return the best 

robot of 𝑠𝑤𝑎𝑟𝑚𝐼𝐷 
 

   𝜒2[𝑡] = 𝑥𝑗[𝑡]  // swarm’s best position  
   If 𝑆𝐶𝑠 > 0  
    𝑆𝐶𝑠 = 𝑆𝐶𝑠 − 1  // stagnancy counter  
   If 𝑆𝐶𝑠 = 0  // the swarm can be rewarded  
    𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑜𝑓_𝑐𝑎𝑙𝑙𝑖𝑛𝑔_𝑛𝑒𝑤_𝑟𝑜𝑏𝑜𝑡() or  
    𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑜𝑓_𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔_𝑛𝑒𝑤_𝑠𝑤𝑎𝑟𝑚()   
  Else  // swarm has not improved 
   𝑆𝐶𝑠 = 𝑆𝐶𝑠 + 1  // stagnancy counter  
   If 𝑆𝐶𝑠 = 𝑆𝐶𝑚𝑎𝑥  // punish swarm  
    𝑒𝑥𝑐𝑙𝑢𝑑𝑒_𝑤𝑜𝑟𝑠𝑡_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔_𝑟𝑜𝑏𝑜𝑡()   
  If 𝑔𝑛[𝑡] ≥ 𝑔𝑏𝑒𝑠𝑡   // maximize distance to obstacles 
   𝑔𝑏𝑒𝑠𝑡 = 𝑔𝑛[𝑡]   
   𝜒3[𝑡] = 𝑥𝑛[𝑡]   
  𝜒4[𝑡] = 𝑒𝑛𝑓𝑜𝑟𝑐𝑒_𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛()  
  [𝛼, 𝜌1, 𝜌2, 𝜌3, 𝜌4] = 𝑓𝑢𝑧𝑧𝑦𝑓𝑖𝑒𝑑_𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙_𝑖𝑛𝑓𝑜()  
  𝑤𝑛[𝑡] = −∑

(−1)𝑘Γ(𝛼+1)𝑣𝑛[𝑡+1−𝑘]

Γ(𝑘+1)Γ(𝛼−𝑘+1)
𝑟
𝑘=0    

  𝑣𝑛[𝑡 + 1] = 𝑤𝑛[𝑡] + ∑ 𝜌𝑖𝑟𝑖(𝜒𝑖[𝑡] − 𝑥𝑛[𝑡])4
𝑖=1   

  𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1]  
 Else  // it is an excluded robot 
  𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚()  
  Evaluate its individual solution ℎ𝑛[𝑡] 
  Exchange information with the 𝑁𝑋 teammates about 

the individual solution ℎ𝑛[𝑡] and current position 
𝑥𝑛[𝑡] 

  Build a vector 𝐻[𝑡] containing the individual solution 
of all 𝑁𝑋 robots within the excluded swarm 
(𝑠𝑤𝑎𝑟𝑚𝐼𝐷 = 0) 

  If max𝐻[𝑡] > 𝐻𝑏𝑒𝑠𝑡 
   𝐻𝑏𝑒𝑠𝑡 = max𝐻[𝑡]   
   If ℎ𝑏𝑒𝑠𝑡 = max𝑁𝐼

𝐻[𝑡]  // this is one of the best 
𝑁𝐼 performing robot of the excluded swarm 

 

    𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑜𝑓_𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔_𝑛𝑒𝑤_𝑠𝑤𝑎𝑟𝑚()   
    If receives information about the need of a 

new robot 
 

      𝑠𝑤𝑎𝑟𝑚𝐼𝐷 = 𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  // 
include this robot in the active swarm 

 

      𝑁𝑆 = 𝑁𝑆 + 1   
      Exchange information with teammates 

about 𝑁𝑆 
 

     If receives information about the need of 
creating a new swarm  

 

      𝑠𝑤𝑎𝑟𝑚𝐼𝐷 = 𝑠𝑤𝑎𝑟𝑚𝐼𝐷_𝑛𝑒𝑤  // in-
clude this robot in a new active swarm 

 

      𝑁𝑆 = 𝑁𝐼  // reset number of robots in 
the swarm 

 

      𝑁𝑠
𝑘𝑖𝑙𝑙 = 0  // reset number of excluded 

robots 
 

      𝑆𝐶𝑠 = 0  // reset search counter  
until stopping criteria (convergence/time) 

2.2. Extended Particle Swarm Optimization 

(EPSO) 

In fact, one of the first adapted versions of the PSO to 

handle real world constraints, such as obstacles, was 

presented by Pugh & Martinoli [17] [18] (Algorithm 2). 

The main difference between the algorithm presented 

by those authors, denoted hereafter as Extended PSO 

(EPSO), and the classical PSO is that each robot (or par-

ticle) only takes into consideration the information of 

the robots within a fixed radius 𝑟𝑐 (omnidirectional 

communication). Hence, contrarily to the RDPSO [15], 

the EPSO algorithm does not use multi-hop connectiv-

ity and does not constrain robots’ motion so as to ensure 

some degree of communication network connectedness.  

Moreover, and also contrarily to the RDPSO [14] algo-

rithm in which obstacle avoidance behavior is inte-

grated in the main equations of robots’ motion, the au-

thors used the Braitenberg obstacle avoidance algo-

rithm [38]. Hence, if a robot is executing a step of the 

algorithm and avoids an obstacle, it will continue mov-

ing in its new direction but will not modify its internal 

velocity representation. Although such methodology 

makes it possible to decouple the high level behavior of 

robots from collision avoidance routines, such strategy 

may be unfeasible if one needs to study the stability of 

the algorithm considering obstacles influence over ro-

bots [36], or even define adaptive methodologies to sys-

tematically adjust all the algorithm parameters based on 

contextual information [16].  

 

Algorithm 2. EPSO algorithm for robot 𝑛. 
 

Initialize pose 〈𝑥𝑛[0], 𝜑𝑛[0]〉 randomly defined 

Loop: 

 Evaluate the robot individual solution ℎ𝑛[𝑡] 

 If ℎ𝑛[𝑡] > ℎ𝑏𝑒𝑠𝑡   // robot has improved 

  ℎ𝑏𝑒𝑠𝑡 = ℎ𝑛[𝑡]  

  𝜒1[𝑡] = 𝑥𝑛[𝑡]  

 Exchange information with the 𝑁𝑠 neighbors about the in-

dividual solution ℎ𝑛[𝑡] and current position 𝑥𝑛[𝑡] 

 Build a vector 𝐻[𝑡] containing the individual solution of 

all 𝑁𝑠 robots within a fixed radius 𝑟𝑐 

 If max𝐻[𝑡] > 𝐻𝑏𝑒𝑠𝑡  // swarm has improved 

  [𝐻𝑏𝑒𝑠𝑡 , 𝑗] = max𝐻[𝑡]  // 𝑗 will return the best neigh-

bor 

  𝜒2[𝑡] = 𝑥𝑗[𝑡]  

 𝑣𝑛[𝑡 + 1] = 𝑤𝑣𝑛[𝑡] + ∑ 𝜌𝑖𝑟𝑖(𝜒𝑖[𝑡] − 𝑥𝑛[𝑡])
2
𝑖=1   

 𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1]  

 𝑥𝑛[𝑡 + 1] = 𝐵𝑟𝑎𝑖𝑡𝑒𝑛𝑏𝑒𝑟𝑔_𝑜𝑏𝑠𝑡_𝑎𝑣𝑜𝑖𝑑(𝑥𝑛[𝑡 + 1])  

until stopping criteria (convergence/time) 

 

 



 

 

 

Pugh & Martinoli [17] [18] evaluated the performance 

of their learning technique for a simple task for robot 

groups of various sizes. The authors analyzed how the 

performance of the standard PSO neighborhood struc-

ture was affected by adapting it to a more realistic 

model, which considers limited communication abili-

ties. Experimental results obtained using Webots simu-

lator [39] showed that the adapted version of the PSO 

maintained good performance for groups of robots of 

various sizes when compared to other bio-inspired 

methods such as Genetic Algorithms. However, contra-

rily to the presented RDPSO algorithm [14], all bio-in-

spired methods used in this work, including the adapted 

PSO, tends to get trapped in sub-optimal solutions, i.e., 

the authors do not present any strategy to avoid sub-op-

timal solutions. 

2.3. Physically-embedded Particle Swarm Optimi-

zation (PPSO) 

Similarly, Hereford & Siebold [19] [20] presented a 

Physically-embedded PSO (PPSO) in swarm platforms 

(Algorithm 3). As in RDPSO [14], there is no central 

agent to coordinate the robots movements or actions. 

The authors constrained the movement of particles 

within a limited cone to avoid the omnidirectionality in-

herent to the common PSO. Although this strategy 

seems practical, this could be achieved by considering 

the dynamical characteristics of robots. For instance, the 

RDPSO [37] benefits from fractional calculus of order 

𝛼 to avoid drastic changes in a robot’s direction.  

 

Algorithm 3. PPSO algorithm for robot 𝑛. 
 

Initialize pose 〈𝑥𝑛[0], 𝜑𝑛[0]〉 randomly defined 

Loop: 

 Evaluate the robot individual solution ℎ𝑛[𝑡] 
 If ℎ𝑛[𝑡] > ℎ𝑏𝑒𝑠𝑡   // robot has improved 

  ℎ𝑏𝑒𝑠𝑡 = ℎ𝑛[𝑡]  
  𝜒1[𝑡] = 𝑥𝑛[𝑡]  
 Exchange information with the 𝑁𝑠 neighbors about the in-

dividual solution ℎ𝑛[𝑡] 
 Build a vector 𝐻[𝑡] containing the individual solution of 

all 𝑁𝑠 robots within a fixed radius 𝑟𝑐  
 If max𝐻[𝑡] == ℎ𝑛[𝑡]  // it is the best robot 

  Exchange information of the current position 𝑥𝑛[𝑡] if 
it is the best performing robot within a fixed radius 𝑟𝑐 

 If max𝐻[𝑡] > 𝐻𝑏𝑒𝑠𝑡  // swarm has improved 

  [𝐻𝑏𝑒𝑠𝑡 , 𝑗] = max𝐻[𝑡] // 𝑗 will return the best neighbor 

  𝜒2[𝑡] = 𝑥𝑗[𝑡]  

 𝑣𝑛[𝑡 + 1] = 𝑤𝑣𝑛[𝑡] + ∑ 𝜌𝑖𝑟𝑖(𝜒𝑖[𝑡] − 𝑥𝑛[𝑡])
2
𝑖=1   

 𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1]  
 𝑥𝑛[𝑡 + 1] = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑥𝑛[𝑡 + 1])  

 while 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛( ) == 1  

  𝑥𝑛[𝑡 + 1] = 𝑔𝑜_𝑏𝑎𝑐𝑘_𝑡𝑢𝑟𝑛_𝑟𝑖𝑔ℎ𝑡(𝑥𝑛[𝑡 + 1])  

until stopping criteria (convergence/time) 

 

The algorithm presented by Hereford & Siebold [19] 

[20] also assumed the synchronization of robots, such 

that robots would only compute a novel position after 

all other robots exchange the necessary information 

(e.g., individual solutions). Also, robots would only 

share their position if their own solution is the best so-

lution in the whole swarm. This makes it possible to re-

duce the amount of communication traffic, however, it 

also requires that robots would stop after each iteration 

in order to handle all relevant information. This is an 

interesting strategy when using broadcasting mecha-

nisms since robots can share information among them-

selves without requiring lots of communication traffic. 

Nevertheless, such strategy would not significantly im-

prove the algorithm performance if the team would ben-

efit from ad hoc communication with multi-hop proper-

ties.  

Despite the potentialities of the physically-embedded 

PSO presented by Hereford & Siebold [19] [20], exper-

imental results were carried out using a population of 

only three robots, performing a distributed search in a 

scenario without sub-optimal solutions. Also, although 

authors present experimental results with one and two 

obstacles, the collision avoidance behavior was not con-

sidered within the algorithm’s equation. Instead, once a 

robot got stuck or collided, it was programmed to go 

back and turn right. 

2.4. Glowworm Swarm Optimization 

A distributed biologically algorithm inspired on glow-

worm behavior was presented and applied in MRS by 

Krishnanand & Ghose [21] [22] (Algorithm 4). Simi-

larly to the RDPSO, the Glowworm Swarm Optimiza-

tion (GSO) algorithm features an adaptive decision do-

main which enables the formation of subgroups in the 

population where the goal is to partition the population 

of robots to track multiple sources concurrently. Never-

theless, and contrarily to the RDPSO that uses a set of 

fuzzy rules and performance evaluation of both robots 

and swarms of robots [14], the GSO acts more like a 

PSO with best neighborhood solution information. In 

fact, to begin a search, a robot chooses a neighbor to be 

its leader and moves toward it. The most probable 

choice for the leader is the one with the highest luciferin 

value, i.e., the luminescence quantity that represents the 

individual solution, thus corresponding to the most 

probable direction of the source. As a result of this 

leader selection, subgroups form within the population 

and begin searching for nearby solutions. In other 



 

 

 

words, as no evolutionary techniques are used, it is 

shown that all members of a single cluster will converge 

to the leader at some finite time, and members of over-

lapping clusters will converge to one of the leaders as-

ymptotically.  

Similarly to Pugh & Martinoli [17] [18] and Hereford & 

Siebold [19] [20], the authors also incorporated a low-

level obstacle avoidance model, thus allowing robots to 

turn away from detected obstacles to prevent collisions. 

Unfortunately, and despite the algorithm potentialities, 

the experiments were carried out using only four 

wheeled physical robots and a target location using a 

single sound source. 

2.5. Aggregations of Foraging Swarm 

Another interesting approach was presented by Gazi & 

Passino [23] [24] in which the swarm is modeled based 

on attractant/repellent profiles as aggregations of forag-

ing swarm (AFS) (Algorithm 5). This kind of attract-

ant/repellent profiles are consistent with biological ob-

servations [40], where the inter-individual attraction/re-

pulsion is based on an interplay between attraction and 

repulsion forces with the attraction dominating on large 

distances, and the repulsion dominating on short dis-

tances. As in the RDPSO [36], the authors presented a 

stability and convergence analysis of their algorithm. 

To that end, the authors carried out a behavioral analysis 

followed by several simulation experiments so as to de-

fine the most adequate values of the system parameters. 

 

  

Algorithm 4. GSO algorithm for robot 𝑛. 
 

Initialize pose 〈𝑥𝑛[0], 𝜑𝑛[0]〉 and luciferin level 𝑙𝑛[0] 
randomly defined 

Loop: 

 𝑙𝑛[𝑡] = (1 − 𝜌)𝑙𝑛[𝑡 − 1] + 𝛾ℎ𝑛[𝑡]  // update the luciferin 

level 

 𝑁𝑛 = {𝑗: 𝑑𝑛𝑗[𝑡] < 𝑟𝑑
𝑛[𝑡]; 𝑙𝑛[𝑡] < 𝑙𝑗[𝑡]} //determine 

neighbors of glowworm 𝑛 in the local-decision range and 

with higher luciferin levels 

 Exchange information with the 𝑁𝑛 selected neighbors 

about the individual solution 𝑙𝑛[𝑡] and current position 

𝑥𝑛[𝑡] 
 𝐿𝑛[𝑡] =

𝑙𝑗[𝑡]−𝑙𝑛[𝑡]

∑ 𝑙𝑘[𝑡]−𝑙𝑛[𝑡]𝑘∈𝑁𝑛

 // calculate probability of select-

ing neighbor 𝑗 from the 𝑁𝑠 neighbors 

 [𝐿𝑏𝑒𝑠𝑡 , 𝑗] = max𝐿[𝑡]  // 𝑗 will return the best neighbor 

glowworm 

 
𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑠 (

𝑥𝑗[𝑡]−𝑥𝑛[𝑡]

‖𝑥𝑗[𝑡]−𝑥𝑛[𝑡]‖
)  // move toward 

neighbor 𝑗 
 𝑟𝑑

𝑛[𝑡 + 1] = min{𝑟𝑐 ,max{0 , 𝑟𝑑
𝑛[𝑡] + 𝛽(𝜂𝑡 − |𝑁𝑛|)}} // 

update local-decision range based on specified number of 

neighbors 

until stopping criteria (convergence/time) 

 

This is worth mentioning since most of the works define 

the parameters using a trial-and-error mechanism. 

Hence, some sort of mathematical formalism, such as 

stability analysis, is required to enable the obtaining of 

such comparable performance. 

Despite this, the authors did not present any mechanism 

for sub-optimal solutions avoidance. Therefore, the 

convergence of the swarm cannot be proved in the gen-

eral case, thus demonstrating the difficulty of obtaining 

general guarantees for progress properties. 

In this approach, the authors consider obstacles as a part 

of the objective function of the swarm. In other words, 

if robots need to maximize a given measure (e.g., find 

the larger density of victims in a catastrophic incident), 

obstacles are considered as global minima of their ob-

jective function. This is not too different from the 

RDPSO case that benefits from another component to 

define obstacles, i.e., a monotonic and positive sensing 

function that depends on the sensing information [14]. 

Nevertheless, the approach presented by Gazi & 

Passino [23] [24] does not make it possible to adjust ro-

bots’ behavior depending on the presence or absence of 

obstacles. Put differently, the swarm behavior is limited 

to convergence in the vicinity of a solution or diver-

gence from the neighborhood of a sensed obstacle, be-

ing unable to adapt to the adequate contextual infor-

mation. 

 

 

Algorithm 5. AFS algorithm for robot 𝑛. 
 

Initialize pose 〈𝑥𝑛[0], 𝜑𝑛[0]〉 randomly defined 

Loop: 

 Evaluate the robot individual solution ℎ𝑛[𝑡] and distance 

to obstacles 𝑔𝑛[𝑡] 

 Exchange information with the 𝑁𝑇 robots from the popu-

lation about the individual solution ℎ𝑛[𝑡] and current po-

sition 𝑥𝑛[𝑡] 

 𝜎𝑛[𝑡] = 𝛾𝑔𝑛[𝑡] − 𝜌ℎ𝑛[𝑡] // build the attractant/repellent 

“𝜎-profile” of attractant substances (main mission objec-

tive) and repellent substances (obstacles) 

 
𝐽(𝑥𝑛[𝑡]) = ∑ −(𝑥𝑛[𝑡] − 𝑥𝑘[𝑡]) [𝑎 −𝑘∈𝑁𝑇

𝑏𝑒−
‖𝑥𝑛[𝑡]−𝑥𝑘[𝑡]‖

2

𝑐 ]  

 𝑣𝑛[𝑡 + 1] = −∇𝜎𝑛[𝑡] + 𝐽(𝑥𝑛[𝑡]) // compute the velocity 

of robot 𝑛 based on the information of all 𝑁𝑇 robots from 

the population and its own “𝜎-profile” 

 𝑥𝑛[𝑡 + 1] = 𝑥𝑛[𝑡] + 𝑣𝑛[𝑡 + 1]  

until stopping criteria (convergence/time) 

 



 

 

 

Although the work of Gazi & Passino [23] [24] does not 

assume any specifications about communication con-

straints, their model controls agents individually but 

each agent needs to know the positions of all other 

agents in the swarm. Therefore, we will consider that 

this approach requires multi-hop communication and 

the same principles assumed for the RDPSO will be 

considered. 

2.6. Summary 

For theoretical comparison purposes, a summary of the 

previously presented algorithms is presented in Table 1, 

thus highlighting the most pertinent features for MRS 

applications. An empty cell in the table indicates that 

the algorithm does not benefit from that feature or there 

is no pertinent information in the literature to support it. 

Robot dynamics consists of constraining agents’ dy-

namics to fulfill the requirements inherent to the limited 

mobility of robots. From the previously presented 

works, only two considers this feature. The PPSO pre-

sented a simple rule to constrain robots’ movements 

within a limited cone, while the RDPSO uses fractional 

calculus to include memory properties within the kine-

matical equation.  

All the presented works handle obstacles avoidance 

with basically two strategies: i) low-level control 

(EPSO, PPSO and GSO); and ii) artificial repulsion 

mechanisms (RDPSO and AFS). Despite using different 

algorithms within such strategies, the main idea remains 

the same. Low-level control strategies trigger routines 

whenever robots sense obstacles, thus allowing decou-

pling the high level behavior of robots from collision 

avoidance routines. Nevertheless, contrarily to the arti-

ficial repulsion mechanisms, low-level control routines 

do not support the integration of collision avoidance 

susceptibility within the algorithm behavior.  

One of the common approaches in the initial deploy-

ment of mobile robots is using a random distribution 

along the scenario (EPSO, PPSO, GSO and AFS). This 

methodology is the simplest way of deploying robots as, 

in most situations, the distribution of the points of inter-

est is usually random. However, in real situations, it is 

necessary to ensure several constraints of the system 

(e.g., MANET connectivity), hence increasing the com-

plexity of the random distribution. In addition, random 

deployment may cause unbalanced deployment and 

therefore increase the hardware cost. Alternatively, the 

authors in [41] presented an Extended Spiral of Theodo-

rus (EST) applied to the RDPSO algorithm. This meth-

odology secures that the robots from the same swarm 

(i.e., cluster) are initially and autonomously deployed in 

an unknown environment, while avoiding areas of no 

interest (i.e., obstacles) and maintaining MANET multi-

ple connectivity. 

Most of the works consider broadcast communication, 

with purely local interactions over some specified 

range, in which robots only cooperate with their neigh-

bors (EPSO, PPSO and GSO). Although this is the clas-

sical approach, recently many works suggested some 

kind of global communication without any pre-existent 

infrastructure, denoted as multi-hop ad hoc communi-

cation (RDPSO and AFS). This makes it possible for ro-

bots to communicate with other robots outside their di-

rect (i.e., one-hop) range. It is noteworthy that such 

strategy increases the communication overhead of the 

system. Nevertheless, if combined with partitioning 

strategies, it becomes possible to reduce the number of 

robots within each team, the advantages inherent to it 

are countless when compared to broadcast communica-

tion. 

As one might expect, ensuring MANETs connectivity 

and robustness is much more demanding than infra-

structured networks. As a result, to prolong the MANET 

lifetime and prevent loss of connectivity, fault-toler-

ance strategies are needed. A simple but efficient strat-

egy is the one presented in Couceiro et al. [42], wherein 

robots’ movements within the RDPSO are controlled to 

allow significant node redundancy guaranteeing a 

multi-connectivity strategy. This means that, in the 

worst case, a multi-connected MANET requires the fail-

ure of multiple robots to become disconnected. All re-

maining algorithms do not present any fault-tolerance 

strategy. 

Algorithms’ parameterization enables the calculation 

of values, or range of values, that would result in an im-

proved performance. Most of the works in optimization 

or swarm applications present trial-and-error methodol-

ogies, not benefiting from a formal mathematical anal-

ysis. Among the previously presented algorithms, only 

the works of Couceiro et al. (cf., [36] and [43]) 

(RDPSO) and Gazi & Passino [23] [24] (AFS) present a 

formal analysis of their algorithms, thus restricting the 

parameters’ definition to a range of values.

 

 

 

 

 

 



 

 

 

Table 1. Summary of swarm algorithms for search tasks. 

 
RDPSO 

[14] [15] 

EPSO 

[17] [18] 

PPSO 

[19] [20] 

GSO 

[21] [22] 

AFS 

[23] [24] 

robot dynamics fractional calculus  
constrained move-

ments 
  

obstacle avoidance artificial repulsion low-level control low-level control low-level control artificial repulsion 

initial deployment EST approach  random random random random 

communication ad hoc multi-hop broadcast broadcast broadcast ad hoc multi-hop 

fault-tolerance multi-connectivity     

parameterization stability analysis     stability analysis 

avoid sub-optima 
punish-reward mechanism 

based on natural selection 
    

multiple and dy-

namic sources 

dynamic partitioning & 

fuzzy adaptive behavior 
  partitioning  

computational com-

plexity 
𝒪(2𝑁𝑆) 𝒪(𝑁𝑆) 𝒪(𝑁𝑆) 𝒪(𝑁𝑆) 𝒪(𝑁𝑇) 

memory complexity 𝒪(𝑟𝛼) 𝒪(1) 𝒪(1) 𝒪(1) 𝒪(1) 

communication 

complexity 
𝒪(𝑁𝑆) 𝒪(𝑁𝑆) ≤ 𝒪(𝑁𝑆) 𝒪(𝑁𝑆) 𝒪(𝑁𝑇) 

 

Bio-inspired algorithms usually benefit from evolution-

ary techniques to avoid sup-optimal solutions. The 

RDPSO presented by Couceiro et al. [14] handles such 

problem perfectly by mimicking natural selection emu-

lated using the principles of social exclusion and inclu-

sion (i.e., adding and removing robots to swarms). In 

brief, socially active robots from the same swarm coop-

erate in the search task toward maximizing a given ob-

jective function (e.g., gas leak, fire outbreak, number of 

victims, among others). However, socially excluded ro-

bots randomly wander in the scenario instead of search-

ing for the objective function’s optimal solution like the 

other robots in the active swarms. However, socially ex-

cluded robots are always aware of their individual solu-

tion and the global solution of the socially excluded 

group. This approach improves the algorithm, making it 

less susceptible to becoming trapped in sub-optimum 

solutions. The other algorithms do not consider any spe-

cific technique to avoid sub-optimal solutions. 

Similarly, only the works of Couceiro et al. (cf., [14] 

and [16]) (RDPSO) and Krishnanand & Ghose [21] [22] 

(GSO) are fitted to handle multiple and dynamic 

sources. They both use partitioning techniques for that 

end. Moreover, the RDPSO also uses an adaptive con-

trol system to systematically adjust its parameters based 

on contextual information [16]. This kind of adaptive 

mechanism is used, for instance, to control the swarm 

activity balancing the exploitation and exploration lev-

els of the group or each individual agent [44, 45]. The 

first one is related to the convergence of the algorithm, 

thus allowing a good short-term performance. However, 

if the exploitation level is too high, then the algorithm 

may be stuck on sub-optimal solutions. The second one 

is related to the diversification of the algorithm, which 

makes it possible to explore new solutions, thus improv-

ing the long-term performance. However, if the explo-

ration level is too high, then the algorithm may take a 

long time to find the optimal solution. 

The computational complexity refers to the system re-

quirements for algorithm computation. The total num-

ber of robots, i.e., population, is represented by 𝑁𝑇. If 

an algorithm benefits from partitioning features or local 

interactions, then the number of robots within a sub-

group or the broadcast signal is represented by 𝑁𝑆, 

wherein 𝑁𝑆 ≤ 𝑁𝑇. All the previously mentioned algo-

rithms, except the AFS, are endowed with partitioning 

techniques. Nevertheless, the RDPSO [14] [46] presents 

twice the computational complexity of the other algo-

rithms that are endowed with partitioning techniques. 

This is due to the fault-tolerance characteristics that re-

quire the computation of a sorting algorithm (e.g., [47]). 

The memory complexity refers to the system require-

ments in terms of data storage. Contrarily to the other 

algorithms that only require information about the pre-

vious iteration, i.e., 𝒪(1), the RDPSO exhibits a 

memory complexity that depends on the truncation of 

the fractional order series 𝑟𝛼 (cf., [37] for a more de-

tailed description). Nevertheless, this is a difference that 

may be neglected since 𝑟𝛼 is usually small and depends 

on the requirements of the application and the features 



 

 

 

of the robots. For instance, for the eSwarBot (educative 

Swarm Robot) platforms previously presented in [48], a 

𝑟𝛼 = 4 leads to results of the same type as for a 𝑟𝛼 > 4. 

Although one could consider the processing power as 

the main reason to use a limited number of terms, the 

kinematical features of the platform and mission re-

quirements also need to be considered. Hence, for 

eSwarBot platforms, the memory complexity of the 

RDPSO algorithm would be 𝒪(4). 
The communication complexity refers to the local and/or 

global communication overhead. The algorithms that 

benefit from partitioning or communication broadcast 

strategies present a communication complexity smaller 

than the ones that are not endowed with such features. 

From the previously presented algorithms, only the AFS 

is not endowed with any of those strategies, thus result-

ing in a higher communication complexity, i.e., all ro-

bots within the population need to communicate with 

each other. 

The following section presents experiments with simu-

lated platforms so as to experimentally assess and com-

pare the performance of the five algorithm in a search 

task. 

3. Computational Evaluation 

The Multi-Robot Simulator (MRSim)1 was used to eval-

uate and compare the five previously presented swarm 

techniques. MRSim is an evolution of the Autonomous 

mobile robotics toolbox SIMROBOT (SIMulated RO-

BOTs) previously developed for an obsolete version of 

MatLab [49]. The simulator was completely remodeled 

for the latest MatLab version and new features were in-

cluded such as mapping and inter-robot communication. 

Besides, MRSim also makes it possible to add a mono-

chromatic bitmap as a planar scenario and adjust its 

properties (e.g., obstacles, size, among others) by add-

ing features of each swarm robotics technique (e.g., ro-

botic population, maximum communication range, 

among others) and editing the robots’ model (e.g., max-

imum velocity, type of sensors, among others).  

This simulator was first evaluated in the context of the 

CHOPIN project [12], thus comparing decentralized 

and centralized versions of both RDPSO for exploration 

purposes. Figure 1 depicts the MRSim interface with a 

simulation trial with robots using the RDPSO algorithm 

to collectively explore the whole scenario of a large 

basement garage environment – the Institute of Systems 

and Robotics at University of Coimbra garage. This was 

the scenario used to compare the 5 swarm exploration 

algorithms previously presented as it is a large area of 

2000 𝑚2 with a large density of obstacles (e.g., pillars). 

All algorithms were evaluated while changing the num-

ber of robots within the population 𝑁𝑇 ∈  {10,20,30} 
and the maximum communication range 𝑑𝑚𝑎𝑥 ∈
{30,100} meters. The communication range was based 

on common values presented in the literature for both 

ZigBee and WiFi communication (e.g., [15]). To signif-

icantly test and compare the different algorithms, 30 tri-

als of 500 iterations for each (𝑁𝑇 , 𝑑𝑚𝑎𝑥) combination 

were conducted. Also, to perform a straightforward 

comparison between the algorithms, robots were ran-

domly deployed in the vicinities of each of the four en-

trances (see Figure 1). 

Exploring and building a map of the scenario was used 

as mission objective to evaluate the five algorithms. 

Hence, the objective function of the team of robots was 

defined as a cost function in which robots need to min-

imize the map’s entropy (cf., [50] for a more detailed 

description), i.e., the uncertainty about map. Therefore, 

each robot 𝑛 computes its best frontier cell as: 

 

𝑚𝑖
𝑠 = argmax

𝑚𝑖 ∈ 𝒩(𝑥𝑛[𝑡],𝑟𝑠)
[ψ(𝑥𝑡 ,𝑚𝑖)‖∇⃗⃗ 𝐻(𝑚𝑖)‖] , (1) 

 

wherein 𝒩(𝑥𝑛[𝑡], 𝑟𝑠) represents the set of frontier cells 

located in the neighborhood of robot 𝑛 with sensing ra-

dius 𝑟𝑠. The coefficient ψ(𝑥𝑛[𝑡],mi)  ∈  [0; 1] 
measures if the cell 𝑚𝑖 is in line-of-sight from a position 

𝑥𝑛[𝑡], which also implies that cell 𝑚𝑖 is likely to be 

empty. Moreover, the entropy of the cell 𝑚𝑖 is repre-

sented by 𝐻(𝑚𝑖) and may be calculated as: 

 

𝐻(𝑚𝑖) = −𝑝(𝑚𝑖) log[𝑝(𝑚𝑖)] − (1 −

𝑝(𝑚𝑖)) log2[1 − 𝑝(𝑚𝑖)] , 
(2) 

 

wherein 𝑝(𝑚𝑖) represents the probability that a grid cell 

is occupied. 

 

 
1http://www.mathworks.com/matlabcentral/fileexchange/38409-mrsim-
multi-robot-simulator-v1-0  



 

 

 

 
 

Figure 1. Multi-Robot Simulator (MRSim). Illustration of one trial with 10 robots performing the collective mapping 

of an unknown scenario under the influence of the RDPSO algorithm. Differently colored robots represent robots from 

different groups/swarms [12]. 

 

The performance metric used is the exploration ratio of 

the scenario over time (number of iterations). The ex-

ploration ratio may be obtained by normalizing the 

mapped scenario as it follows: 

 

𝜂𝑒𝑥𝑝[𝑡]  =  
∑𝐴𝑒𝑥𝑝 [𝑡]

∑𝐴𝑟𝑒𝑎𝑙
, (3) 

 

wherein 𝐴𝑟𝑒𝑎𝑙 is the matrix representing the scenario in 

which 0 corresponds to obstacles and 1 to free cells. 

Similarly, 𝐴𝑒𝑥𝑝[𝑡] is represented by a matrix of the 

same size as 𝐴𝑟𝑒𝑎𝑙 being the collective explored map at 

time, or iteration, 𝑡. Note that ∑  returns the sum of all 

matrix elements. At the beginning (𝑠𝑡𝑒𝑝 =  0) the col-

lective explored map is a zero matrix, i.e., 𝐴𝑒𝑥𝑝[0] = 𝟎, 

thus resulting in an explored ratio of 𝜂𝑒𝑥𝑝[0] = 0.  

As Figure 2 depicts, the median of the best solution over 

the 500 trials was taken as the final output for each 

(𝑁𝑇 , 𝑑𝑚𝑎𝑥) combination. 

As it is possible to observe, the RDPSO outperforms the 

other methods for all (𝑁𝑇 , 𝑑𝑚𝑎𝑥) configurations tested. 

Nevertheless, such difference decreases especially as 

the population of robots increases when compared to the 

AFS and the GSO. For instance, for the configuration of 
(𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (30,30𝑚), i.e., Figure 2e, the GSO pre-

sents a better performance than the RDPSO during the 

first iterations while the AFS closely follows the same 

performance as the RDPSO. 

To facilitate a straightforward comparison and since 

some of the algorithms present a similar performance, 

the area under the curve (AUC) may be used. This is a 

common measure used to analyze the accuracy of re-

ceiver operating characteristic (ROC) curves that repre-

sent the performance of classifiers. 

As the exploration ratio 𝜂𝑒𝑥𝑝[𝑡] is a discrete function 

with 𝑡 ∈  ℕ0, the AUC may be calculated by the sum of 

each value over the 500 iterations. Moreover, one can 

normalize the AUC by dividing it by 500, thus resulting 

in a representation of the probability that a team of ro-

bots under a given algorithm has to explore the whole 

scenario. Hence, the normalized AUC may be calculated 

as: 

𝐴𝑈𝐶 =  
1

500
∑ 𝜂𝑒𝑥𝑝[𝑘]500

𝑘=0 , (4) 

 

The AUC of each set of trials is represented using box-

plot charts, which is a quick way of examining the algo-

rithms’ performance graphically. The ends of the blue 

boxes and the horizontal red line in between correspond 

to the first and third quartiles and the median values, re-

spectively.
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Figure 2. Median of the exploration ratio 𝜂𝑒𝑥𝑝[𝑡] over the 500 iteration for each method. a) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (10,30𝑚); 
b) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (10,100𝑚); c) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (20,30𝑚); d) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (20,100𝑚); e) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) =
(30,30𝑚); f) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (30,100𝑚).  

 

As one may observe in Figure 3, the influence of the 

population is more significant than the communication 

range. This should be expected as swarm intelligent al-

gorithms perform well for larger population of robots, 

i.e., it is possible to observe a higher degree of emergent 

collective behaviors as the population grows (cf., [51]). 

Nevertheless, it is still possible to observe that, in most 

methods, an increase in the maximum communication 

range results in a minor improvement in the exploration 

ratio accuracy and a significant one in its precision, i.e., 

smaller interquartile range. In other words, the outcome 

becomes more predictable and regular as the maximum 

communication range increases. Regarding the compar-

ison between algorithms, it is possible to observe that 

both PPSO and EPSO present a similar performance 

with a probability of successfully exploring the whole 

scenario of almost 70% for a population of 30 robots.
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Figure 3. AUC of the exploration ratio 𝜂𝑒𝑥𝑝[𝑡] over the 500 iteration for each method. a) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (10,30𝑚); 

b) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (10,100𝑚); c) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (20,30𝑚); d) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (20,100𝑚); e) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) =
(30,30𝑚); f) (𝑁𝑇 , 𝑑𝑚𝑎𝑥) = (30,100𝑚).  
 

The same may be observed for both AFS and GSO al-

gorithms, in which a superior performance of almost 

75% may be observed for such population. Finally, the 

RDPSO outperforms the other methods depicting a 

probability of successfully exploring the whole scenario 

of approximately 80% for the maximum population. 

This 5% difference may be generalized for all other 
(𝑁𝑇 , 𝑑𝑚𝑎𝑥) configurations tested. Nevertheless, such a 

difference is not linear and although the GSO presents a 

slightly better performance than the AFS for smaller 

populations, it seems that the AFS is able to overcome 

the GSO as the number of robots increases. Also, and as 

Figure 2 depicts, the AFS presents a similar perfor-

mance to the RDPSO for larger populations of robots. 

Hence, for further evaluation, next section compares the 

three best performing algorithms, namely RDPSO [14] 

[15], AFS [23] [24] and GSO [21] [22], using 14 physi-

cal robots. 
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4. Real Experiments 

In this section, the effectiveness of using the three best 

performing algorithms from the previous simulation ex-

periments on swarms of e-pucks [52], equipped with 

Gumstix Overo COM turret to benefit from inter-robot 

WiFi communication2, b is further explored. Due to the 

limitations of those turrets, all communication was cen-

tralized into a single server by means of TCP/IP sock-

ets. To that end, an e-puck network manager was cre-

ated on the server side to forward the data between the 

e-pucks and to store the necessary information to eval-

uate the RDPSO, AFS and GSO algorithms. Although 

this does not enable the comparison of the algorithms 

under different communication ranges and even para-

digms (e.g., single-hop vs multi-hop communication), 

the previous experiments already considered this varia-

ble. Moreover, by not considering the MANET con-

straints, here we will only focus on evaluating the be-

havioral aspect of the algorithms. 

With the purpose on maintaining the scope around SaR 

applications, these experiments consisted of collec-

tively finding 2 “victims” emulated by e-pucks on a 

2.0 ×  1.8 meters scenario (Figure 4a). The e-pucks are 

equipped with three omnidirectional microphones that 

acquire data at a maximum acquisition speed of 33 kHz 

(A/D frequency of 100 kHz divided by three) [52]. They 

are also equipped with a speaker on top of them con-

nected to an audio codec. Combined with the micro-

phones, the speaker can create a communication net-

work for peers’ location. Unfortunately, the lack of sen-

sitivity regarding e-pucks’ microphones makes it hard 

to use them for sound source localization purposes. For 

instance, Figure 4b depicts the intensity values 𝐹(𝑥, 𝑦), 

with a maximum amplitude of one byte, obtained by 

sweeping the whole scenario with a single e-puck using 

the standard SiSonic microphones3. As one may see, the 

e-pucks are only able to distinguish sound from noise at 

a distance to the sound source (i.e., “victims” e-pucks) 

of approximately 30 centimeters. However, such limita-

tion favors the realistic applicability of the herein eval-

uated algorithms to SaR applications. For instance, to 

the similarity as the scenario used to evaluate the algo-

rithms on simulation (Figure 1), if one would consider 

a large basement garage (e.g., parking of a shopping 

mall), the laboratorial scenario from Figure 4 could eas-

ily be on a scale of 1:100. As a consequence, robot res-

cuers would be able to “hear” victims (receiver sensitiv-

ity) at a distance of 30 meters from them. Several 

sources would confirm that a human call for help may 

achieve a level between 72 and 78 𝑑𝐵 at approximately 

1 𝑚 away from the source, i.e., from very loud voice to 

shouting voice [53]. Moreover, as a rule of thumb, for 

every doubling of the distance from the source, the 

sound pressure level is reduced by 6 𝑑𝐵. According to 

[53], one may expect average ambient sound levels be-

tween 40 and 55 𝑑𝐵 in underground structures and me-

dium density urban environment. This significantly re-

duces the ability to identify a call for help to distances 

between approximately 7 and 58 meters, depending on 

the source and the ambient noise level, thus making the 

30 meters sensitivity of robot rescuers a realistic con-

straint. 

The “victims” e-pucks were programmed to periodi-

cally play the same sound while the “rescuers” e-pucks 

were programmed with the RDPSO, AFS and GSO al-

gorithms with the main objective of collectively max-

imizing the input retrieved by the microphones.  

Contrarily to the previous experiments in which sub-op-

timality should be avoided to navigate towards the di-

rection of maximum entropy at each iteration (equation 

1), the objective here is to find both “victims”. Hence, 

as both RDPSO and GSO have the particularity of 

avoiding sub-optimality, this feature was ignored by us-

ing a simple heuristic rule to stop when retrieving a 

sound amplitude of 100, i.e., in the vicinities of the vic-

tims (Figure 4b). This also intends to emulate the rescu-

ing phase in which robots that found a victim should 

now either monitor or save it, thus being unavailable to 

search for other victims.  

Since the 3 algorithms are stochastic, they may lead to 

a different trajectory convergence whenever they are 

executed. Therefore, test groups of 10 trials of 300 sec-

onds each were considered for 14 e-pucks, i.e., 𝑁𝑇  =
14, placed in an initial configuration as presented in 

Figure 4a. 

In the case of the RDPSO, two swarms were initially 

defined dividing the whole population into two equal 

parts of 7 e-pucks each. Note that due to RDPSO prop-

erties, both the number of swarms and e-puck within 

each swarm would vary during the mission based on 

their individual and collective performance (cf., Section 

2.1). In the case of both AFS and GSO, all robots belong 

to the same swarm. However, in the GSO the local-de-

cision range varies according to the luciferin level, thus 

mimicking the same sub-division effect as the RDPSO.  

 

 
2 http://www.gctronic.com/doc/index.php/Overo_Extension  3 http://projects.gctronic.com/E-Puck/docs/Audio/SP0103NC3.pdf  



 

 

 

 

 
Figure 4. Experimental setup. a) arena of 2.0 ×  1.8 meters; b) Virtual representation of the sound distribution. 

 

All results from the 10 trials of each algorithm are sum-

marized in Figure 5. The outcome from each algorithm 

is represented by a different color and marker explained 

on the legend of the figure. Each axis corresponds to the 

required time to save each victim. Markers located at the 

borders corresponding to the 300 seconds depict the un-

saved victims. For instance, in any of the trials the res-

cuers failed at finding, at least, one victim, as there is no 

marker on position (300, 300) seconds. In other words, 

the performance of the algorithm increases as closer to 

the origin (0, 0) the markers are. 

As one may observe, the 3 algorithms fail at finding the 

2 victims at some point over the 10 trials of 300 seconds 

each in which they were evaluated in. The RDPSO is 

able to find only one victim in 2 trials, followed by the 

GSO in 4 trials and, lastly, the AFS in 7 trials. The out-

performance of both RDPSO and GSO over the AFS re-

garding the partition of the population to multiple opti-

mal solutions was expected due to their dynamic princi-

ples (cf., Table 1). Despite not being able to always find 

the 2 victims, the AFS presents a faster convergence, as 

rescuers are able to find the victim(s) in the first half of 

the mission time (≲ 150 seconds). Nevertheless, this 

early convergence may also be the reason why rescuers 

may be unable to find the second victim since the AFS 

does not provide any partitioning or adaptive mecha-

nism that could balance the already existing exploitation 

level of agents with higher exploration capabilities. 
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Figure 5. Representation of the rescue success of the RDPSO, AFS and GSO algorithms. Each marker corresponds 

to a different trial under a different algorithm. As closer the markers are from the origin (0, 0), the fastest robots 

were able to find the victims. Markers located on the border lines of the 300 seconds means that only 1 victim was 

found during that trial. 

 

The performance of the RDPSO algorithm is closely fol-

lowed by the GSO algorithm. The average and standard 

deviation time necessary to find both victims for the 

RDPSO, AFS and GSO were 205 ± 64, 259 ± 63 and 

225 ± 70 seconds, respectively. Although both RDPSO 

and GSO would find all victims within a finite time due 

to their evolutionary mechanism to avoid stagnation, the 

GSO fails more often. As previously explained in Sec-

tion 2.4, the GSO benefits from a luciferin mechanism 

that, contrarily to all other algorithms, does not only de-

pends on the sensed solution (e.g., amplitude of the 

emitted sound by the victim). In fact, the luciferin value 

of a given robot decreases over time, thus avoiding its 

stagnation within a given region. We could make the 

analogy with nature by defining a limited quantity of ox-

ygen in each discrete position the glowworm is in. In 

other words, to produce light the glowworm requires ox-

ygen (or water) for the enzymatic oxidation of the lucif-

erin to occur. If the glowworm has a limited amount of 

oxygen in a certain position (represented by the sound 

amplitude in these experiments), then it needs to move 

to another position to maintain, or even increase, its 

 
4 http://www2.isr.uc.pt/~micaelcouceiro/media/RDPSO_AFS_GSO.mp4  

emitted light. This is a particularly interesting mecha-

nism applied on swarm intelligence that ensures the con-

vergence of robots to multiple solutions in an enclosed 

environment within a limited amount of time. However, 

this also plays the role of a “double-edged sword”. If the 

robot is unable to converge fast enough within the vicin-

ities of a solution to maintain or increase its current lu-

ciferin level, then it may decide upon the wrong direc-

tion. This is likely to happen under noisy and nonlinear 

measures such as sound propagation with an increased 

complexity added by the lack of sensitivity of e-pucks’ 

microphones. This phenomenon was observed in some 

occasions during the experiments in which clusters of 

robots within the GSO got close enough to listen to the 

victim but still depicted a poor convergence, when con-

verging at all. It is noteworthy that this could possibly 

be overcome by tuning parameters 𝜌 and 𝛾 from Algo-

rithm 4 though little insights are introduced in [21] [22] 

regarding those. 

A video of the experiments is provided to better under-

stand the typical behavior of the 3 algorithms under 

these experiments4. 
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5. Discussion 

The authors would like to discuss the take-home mes-

sage this paper brings forth.  

The primary motivation for this work was to find a group 

of swarm robotics algorithms with the potential of ful-

filling realistic search tasks such as SaR operations. 

From that initial theoretical survey, five algorithms were 

chosen, namely: the RDPSO (recently proposed by the 

authors) [14] [15], the EPSO [17] [18], the PPSO [19] 

[20], the GSO [21] [22] and the AFS [23] [24]. Table 1 

was the leading step towards a detailed comparison of 

the five algorithms, thus describing the most relevant 

features one should expect under such tasks. From that 

table it was possible to conclude that the RDPSO touch 

upon all desired features for a higher computational and 

memory cost. The main features outstanding the RDPSO 

from the alternatives were its ability to avoid sub-opti-

mality by benefitting from a punish-reward mechanism 

based on natural selection [14] and the fault-tolerance 

assessment using a multi-connectivity strategy [42]. 

Such outcome promotes the use of the RDPSO algo-

rithm in applications affected by multiple sub-optimal 

and dynamic solutions in which the communication may 

be susceptible to failures. However, both CPU power 

and the memory of the robotic platforms need to be well-

weighted due to the requirements of the RDPSO. 

Going deeper into the “rabbit hole”, a large number of 

simulation experiments was conducted to study the ef-

fect of the number of robots and the communication con-

straints of the five algorithms. The mission consisted of 

exploring and mapping a 2000 𝑚2 scenario in which ro-

bots needed to minimize the map’s entropy [50]. More 

than to just state the obvious phenomenon that a larger 

population of robots improves the overall performance, 

those experiments were useful to understand the influ-

ence of a more constrained communication network on 

the five swarm algorithms. Through Figure 3 it was pos-

sible to observe a lower variability of the exploration ra-

tio for a larger maximum communication distance feasi-

ble between robots, i.e., the outcome became more con-

sistent for a less constrained communication network. 

Such phenomenon was more perceptible using the 

EPSO and PPSO algorithms, thus suggesting their 

higher susceptibility over the communication con-

straints. Associating this aspect to the fact that both al-

gorithms work on a broadcast communication basis (cf., 

Table 1), the authors dissuade the use of those algo-

rithms on applications that may require a larger number 

of robots (above 20 in the experiments in Section 3) or 

too limited communication constraints (bellow an inter-

robot distance of 100 meters in the experiments in Sec-

tion 3). 

Those results paved the way to an insightful evaluation 

of the three best performing algorithms, namely, the 

RDPSO, the GSO and the AFS. This new evaluation was 

carried out using real platforms: the well-known e-puck 

robots equipped with WiFi technology for inter-robot 

communication [52]. Instead of a mapping mission that 

would be typical of a reconnaissance phase (cf., Section 

2 and Couceiro et al. work [12]), those experiments were 

consistent with the next phase of the firefighting opera-

tion: the rescuing. In brief, these experiments consisted 

of collectively finding 2 “victims” by benefiting from e-

pucks’ speakers and microphones. To complement the 

previous experiments in which the size of the population 

and the communication constraints were studied, these 

experiments were conducted to evaluate the behavioral 

aspect, and even evolutionary features, of the algo-

rithms. The results fostered even more the use of the 

RDPSO for such tasks with a 80% success of finding 

both victims over the 300 seconds. Nevertheless, the 

GSO was able to closely follow the RDPSO due to its 

evolutionary luciferin mechanism for stagnation avoid-

ance. Such a result proves to be crucial since the GSO 

presents itself as a “low cost” alternative to the RDPSO 

in terms of computational and memory requirements. 

Although, in general, the RDPSO presented better re-

sults than the GSO, it is noteworthy that the GSO would 

achieve a similar final outcome if one could benefit from 

a larger mission time. 

All that being said, one may state that it is still difficult 

at this point to find a simple answer to the question 

“which is the best swarm robotics algorithm for my ap-

plication?”. However, the authors argue that this paper 

provides a preliminary rationale on the most fitted 

swarm robotics algorithm for search applications. Such 

choice should consider some predefined assumptions, 

such as the number of available robots, the existing 

wireless communication and other mission-related fea-

tures (e.g., existence of dynamic sources, number of 

sub-optimal solutions, among others). 

6. Conclusion and Future Work 

One of the main questions regarding swarm robotics algo-

rithms is whether the full-scale deployment of these sys-

tems in real-world application environments would fit the 

necessary mission requirements. Despite the outstanding 

accomplishment of such algorithms in optimization or any 

other task unconstrained by real world features, such as 

robot dynamics, obstacles interference or communication 

failures, the reality gap still needs to be crossed for most 

of them. To address this issue, this paper outlined an initial 

benchmark regarding the outcome from five swarm robot-

ics algorithms under different configurations (e.g., number 



 

 

 

of robots) and search tasks. Such results can be used to 

apply swarm robotics concepts to real world applications 

such as search-and-rescue.  

The list of swarm robotics algorithms compared in this pa-

per is by no means exhaustive and a deeper research 

should be conducted based on the insights provided in this 

paper. It is, however, possible to make a proper selection 

of the most desired algorithm based on the requirements 

of the application and hardware limitations (e.g., wireless 

technology).  

The experimental results essentially show the advantages 

of using evolutionary algorithms over non-evolutionary 

ones, starting with simulation experiments in which robots 

need to cooperatively map an unknown environment, and 

all the way to real experiments in which a group of e-pucks 

needs to find the location of victims through sound. With 

a small increase in the computational complexity, the Ro-

botic Darwinian Particle Swarm Optimization (RDPSO) 

algorithm depicts an improved convergence which is also 

better fitted to handling multiple and dynamic sources.  

Given the advantages of the RDPSO algorithm, a deeper 

analysis and comparison should be conducted as a future 

work. Moreover, a macroscopic model of the RDPSO 

should be developed in order to predict teams’ perfor-

mance for a given task. By doing this, one may be able to 

choose the most correct configuration (e.g., number of ro-

bots within each team) without resorting to exhaustive ex-

perimentation. 
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Benchmark of state-of-the-art swarm robotic algorithms under a sound source localization task. 

Two “victims” e-pucks were programmed to periodically play the same sound while fourteen 

“rescuers” e-pucks were programmed with the RDPSO, AFS and GSO algorithms with the main 

objective of collectively maximizing the input retrieved by the microphones.  


