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Abstract
The solutions of the London equations for the magnetic field expulsion from superconductors are presented in this paper

for the cylindrical symmetry. The result is analyzed in detail and represented numerically for the case of a uniform external
magnetic field in the transverse plane. In particular, several contour plots of the magnetic energy density are depicted for the
regions inside and around the superconducting area for a wide range of penetration lengths, showing how the expulsion and
penetration of the magnetic field evolve with the ratio between the penetration length and the cylinder radius.

INTRODUCTION

The first phenomenological description of the magnetic
field expulsion from superconductors appeared soon af-
ter the discovery of the Meissner-Ochsenfeld effect [1],
by the London brothers in 1935 [2]. Ever since, several
discussions have been presented along the years on the
nature of the magnetic field expulsion configuration in
the scientific literature [3–17]. These studies comprise
both static and time-dependent analyses, several differ-
ent geometries, and even the case of non-homogenous su-
perconductors. However, while the spherical case is stud-
ied in [17–19], and the cylinder case in a parallel magnetic
field is presented in [19], to the best of our knowledge
the detailed solution of a superconducting cylinder in a
transversal magnetic field cannot be easily found in the
academic literature. This very same case has been pre-
viously addressed by Zhilichev [7] by proposing a macro-
scopic shell model, but without providing an explicit so-
lution for the London condition. To fill this gap, we de-
rive the solution of the London equations in this paper,
for the magnetic field expulsion from an infinite homo-
geneous superconducting cylinder in a constant external
magnetic field in the transverse plane. The dependence of
the strength and configuration of the expelled magnetic
field with the London penetration depth is examined in
detail.

The London equations for the magnetic field flux ex-
pulsion out of a superconductor can be expressed, in
terms of the magnetic vector potential A, in a single
equation:

j = − 1
λ2

A , (1)

where j represents the electric current and λ the London
penetration depth. After applying the Maxwell’s equa-
tion for the static case, and by taking the Coulomb gauge
(∇ ·A = 0), one obtains:

∇2A− 1
λ2

A = 0 , (2)

or, in terms of the magnetic field,

∇2B− 1
λ2

B = 0 . (3)

This equation is perhaps the most common form of the
London equation for the magnetic field expulsion inside
the superconducting region, and, in the cartesian coordi-
nate system, corresponds to the well-known Helmholtz’s
equation for a complex wavenumber, for each of the vec-
tor components. The magnetic field is, therefore, sup-
pressed in the interior region through negative exponen-
tial dependencies, or, in the cylindrical and spherical
symmetries, through modified Bessel functions of the first
kind [20].

CYLINDRICAL SYMMETRY

Consider a cylindrical superconductor with radius R
in an external constant perpendicular magnetic field, in
such a way the external magnetic field points in the y-
direction and the cylinder axis coincides with the z-axis.
In order to obtain the final static vector potential configu-
ration resulting from the magnetic flux expulsion, and as-
suming the Coulomb gauge, one must solve the Maxwell
equation for the outer region:

∇×B = ∇× (∇×A) = ∇2A = 0 , (4)

and the London equation (2) for the inner region. Due
to the symmetry of the system, the magnetic field has no
component in the z-axis direction,

B =
1
ρ

∂Az

∂φ
ρ̂− ∂Az

∂ρ
φ̂ , (5)

and, therefore, the axial component of the vector poten-
tial Az is the only relevant component needed to compute
the magnetic field. For the outer region, this component
can be determined from equation (4):(

1
ρ2

∂2Az

∂φ2
+

∂2Az

∂ρ2
+

1
ρ

∂Az

∂ρ

)
ẑ = 0 , (6)
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which is simply the Laplace equation for Az. The most
general solution in the outer region is, therefore,

Az =
∑+∞

n=0 [An cos (nφ) + Bn sin (nφ)]
×

[
Cnρn + Dnρ−n

]
. (7)

Assuming the magnetic field takes the form of the exter-
nal field in the limit ρ → +∞,

B0 = B0ŷ = B0

(
φ̂ cos φ + ρ̂ sinφ

)
, (8)

and in order to respect this boundary condition, the vec-
tor potential becomes,

Az = const. + A1

(
C1ρ + D1ρ

−1
)
cos φ , (9)

where A1C1 = −B0. The remaining parameters must be
determined by the boundary conditions at the surface of
the superconductor.

The general solution of the London equation in the
interior region, for the axial component of the vector po-
tential, is somewhat more complicated:

Az =
∑+∞

n=0 [En cos (nφ) + Fn sin (nφ)]
× [GnIn(ρ/λ) + HnKn(ρ/λ)] , (10)

where In(ρ/λ) and Kn(ρ/λ) are the cylindrical modified
Bessel functions of the first and second kind, respectively.
As the modified Bessel functions of the second kind di-
verge at ρ = 0, we can exclude them a priori.

To ensure continuity at the superconducting surface,
the Az function must take the following form on the inner
region,

Az = E0G0I0(ρ/λ) + E1G1I1(ρ/λ) cos φ , (11)

where,

E1G1I1(R/λ) = −B0R + A1D1/R . (12)

Since the electric current is distributed in volume,
j = − 1

λ2 A, there are no pure surface currents at the cylin-
drical surface, allowing some penetration of the magnetic
field. Therefore, the following relation can be used as a
boundary condition:

k = n̂×
(
B+ −B−)

= 0 , (13)

where k is the surface current, n̂ is the unitary vector
normal to the surface and, B+ and B− are the magnetic
field at the cylinder surface in the outer and inner limits,
respectively. As a result, one can establish the following
condition:

∂Az

∂ρ+
=

∂Az

∂ρ−
, (14)

which, with the use of the relation,

∂Iν(x)
∂x

= Iν−1(x)− ν

x
Iν(x) (15)

in the differentiation process, leads to,

Bρ>R = B0

(
1− R2

ρ2
+ 2λ

R

ρ2

I1(R/λ)
I0(R/λ)

)
sinφ ρ̂

+ B0

(
1 +

R2

ρ2
− 2λ

R

ρ2

I1(R/λ)
I0(R/λ)

)
cos φ φ̂ ,

Bρ<R = 2B0
λ

ρ

I1(ρ/λ)
I0(R/λ)

sinφ ρ̂

+ 2B0

(
I0(ρ/λ)
I0(R/λ)

− λ

ρ

I1(ρ/λ)
I0(R/λ)

)
cos φ φ̂ . (16)

In summary, the magnetic field vector was easily deter-
mined by imposing that the axial component of the vec-
tor potential must a differentiable function in any point
of space, in particular, at the superconductor surface. A
detailed analysis of these solutions is presented in the
next section.

DISCUSSION OF RESULTS

Several plots of magnetic field energy density are
shown in Figure 1, for different values of the London pen-
etration depth. Each of the pictures represents a cross
section of the cylinder in the x-y plane ranging from mi-
nus 3 to 3 in steps of 0.01 radius units for both x and y
directions. The magnetic energy density was computed
from equations (16) in units of B2

0 , i.e. the magnetic en-
ergy density at an infinite distance. It is clearly visible
that the purple circle, corresponding to field expulsion,
shrinks to an ellipsoid as the London depth increases and
the magnetic field penetrates more and more. The mag-
netic field energy density reaches its maximum value at
the cylinder’s border in the horizontal axis due to the
concentration of field lines in this region, and the mini-
mal region is located at the top and bottom of the cylin-
der. As the penetration depth increases, the maximal
regions tend to fade while entering the cylinder to form
the ellipsoidal shaped region.

Furthermore, one can see that no dramatic changes
are perceptible until the penetration depth becomes one
order of magnitude lower than the radius of the cylin-
der, when the ellipsoid starts to form. It is also worth
noting that when the London depth equals the radius of
the cylinder the magnetic field expulsion is almost imper-
ceptible, or in other words, the superconductor becomes
transparent to the magnetic field. This is also visible in
Figure 2, where the dependence of the magnetic energy
density along the x-axis is shown at y = 0 for different
penetration depths. In particular, a single jump on the
order of magnitude, from λ = 0.1 R to λ = R, is enough
to have a significant phenomenological impact, i.e. the
difference between an almost fully expelled field and a
considerable field penetration.

Finally, it is also worth discussing the range of ap-
plicability of these solutions in both type-I and type-II
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superconductors. In type-I superconductors, the London
penetration length is of the same order of magnitude or
smaller than the coherence length [21, 22]. Therefore,
the most accurate description is not given by the London
equations alone, but by the Pippard’s model instead [23].
However, in type-II superconductors, the London condi-
tion indeed provides a very good description of the elec-
tromagnetic field inside the superconductor in the Meiss-
ner state, i.e. below the lower critical field. Above the
lower critical field, the superconductor enters a mixed
state, where the magnetic field is allowed to penetrate the
superconducting region through quantized vortices [24],
and the London solutions are no longer an accurate de-
scription.

FIG. 1: Contour plots of the magnetic energy density for
λ = 0 (top left), λ = 0.03 R (top right), λ = 0.1 R (center
left), λ = 0.2 R (center right), λ = 0.4 R (bottom left), and
λ = R (bottom right).

CONCLUSIONS

We presented a detailed solution of the London equa-
tion for the magnetic field expulsion from an infinite
cylindrical superconductor, which can be easily obtained
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FIG. 2: Dependence of the magnetic energy density with the
x-coordinate at y = 0 for different penetration lengths.

by using physical and differentiability arguments at the
boundary conditions. The field expulsion is analyzed
with the use of contour plots of the magnetic energy den-
sity to show how it evolves with the value of the penetra-
tion length. In this case, the magnetic field penetrates
through the formation of an elliptic region which becomes
more pronounced as the penetration depth increases.
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