Accepted Manuscript

Solution and solid state properties of Fe (III) complexes bearing N -ethyl- N -(2aminoethyl)salicylaldiminate ligands

Paulo N. Martinho, Ana I. Vicente, Sara Realista, Marta S. Saraiva, Ana I. Melato, Paula Brandão, Liliana P. Ferreira, Maria de Deus Carvalho

PII: \quad S0022-328X(13)00892-9
DOI: \quad 10.1016/j.jorganchem.2013.12.028
Reference: JOM 18414

To appear in: Journal of Organometallic Chemistry

Received Date: 12 November 2013
Revised Date: 13 December 2013
Accepted Date: 14 December 2013

Please cite this article as: P.N. Martinho, A.I. Vicente, S. Realista, M.S. Saraiva, A.I. Melato, P. Brandão, L.P. Ferreira, M. de Deus Carvalho, Solution and solid state properties of Fe(III) complexes bearing N-ethyl- N-(2-aminoethyl)salicylaldiminate ligands, Journal of Organometallic Chemistry (2014), doi: 10.1016/j.jorganchem.2013.12.028.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract - Synopsis

A series of six Fe (III) complexes have been studied in solution by UV-vis spectroscopy, their magnetic susceptibility determined by the Evans' method and the electrochemical properties investigated by cyclic voltammetry. Two newly reported complexes have also been studied in the solid state and their magnetic profiles determined by SQUID magnetometry and Mössbauer spectroscopy.

Graphical Abstract - Pictogram

Solution and solid state properties of $\mathbf{F e}($ III) complexes bearing N-ethylN -(2-aminoethyl)salicylaldiminate ligands

Paulo N. Martinho, ${ }^{* a}$ Ana I. Vicente, ${ }^{a}$ Sara Realista, ${ }^{\text {a }}$ Marta S. Saraiva, ${ }^{\text {a }}$ Ana I. Melato, ${ }^{\text {a }}$ Paula Brandão, ${ }^{\text {b }}$ Liliana P. Ferreira ${ }^{\text {c,d }}$ and Maria de Deus Carvalho ${ }^{\text {e }}$
${ }^{\text {a }}$ CQB, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
${ }^{\text {b }}$ Departamento de Química, CICECO, Universidade de Aveiro, 3810-193, Aveiro, Portugal
${ }^{c}$ CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
${ }^{\text {d }}$ Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra, Portugal
${ }^{\text {e }}$ CCMM, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Corresponding author
Dr. Paulo Nuno Martinho
DQB/FCUL, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal
Tel: +351-217500978
Fax: +351-217500088
E-mail: pnmartinho@fc.ul.pt
Dedicated to Prof. Maria José Calhorda on the occasion of her $65^{\text {th }}$ birthday

Abstract

The effect of the phenolate ring derivatisation on the magnetic properties of Fe (III) complexes bearing N-ethyl- N -(2-aminoethyl)salicylaldiminate ligands both in solid state and solution have been investigated. Two new complexes $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{ClO}_{4} . \mathrm{EtOH}$ (5) and $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{BPh}_{4}$.DMF (6) have been synthesised. SQUID magnetometry studies on these complexes showed that while complex 5 is in the low-spin (LS) state, complex 6 displays a gradual and incomplete spin crossover (SCO) transition over the temperature measured. Solution measurements on a series of six complexes $\left[\mathrm{Fe}(\text { salEen })_{2}\right] \mathrm{ClO}_{4}(\mathbf{1}),\left[\mathrm{Fe}(\text { salEen })_{2}\right] \mathrm{BPh}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (2), $\left[\mathrm{Fe}(5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{ClO}_{4}$ (3), $[\mathrm{Fe}(5-$ Br -salEen $\left.)_{2}\right] \mathrm{BPh}_{4} . \mathrm{DMF}$ (4), $\quad\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{ClO}_{4} . \mathrm{EtOH} \quad$ (5) and $\quad[\mathrm{Fe}(3,5-\mathrm{Br}-$ salEen) $)_{2}$] BPh_{4}.DMF (6) - were performed by UV-vis and NMR spectroscopies and cyclic voltammetry. Solution studies show that the presence of electron withdrawing groups (bromine atoms) affect the electronic density at the phenolate ring, thus influencing the ligand field strength and the separation between the $t_{2 g}$ and $\mathrm{e}_{\mathrm{g}} *$ energy levels. The presence of two bromide substituents at the phenolate ring has a more pronounced effect on the magnetic behaviour in solution than in the solid state, with both complexes 5 and 6 adopting preferentially the LS state. Electrochemical studies of complexes 1-6 reveal that the reduction of the metallic centres in the complexes with electron withdrawing groups is

easier, with $\mathrm{E}_{1 / 2}$ values of iron moving to more positive potentials with the number of bromide substituents at the phenolate ring.

Keywords: Spin crossover; Fe(III) complexes; Electron withdrawing groups; Evans method; Cyclic voltammetry

1. Introduction

Schiff base ligands are very versatile for coordination to transition metal ions. Complexes with Schiff base ligands have been widely studied [1] and coordination to first row transition metal ions can display interesting magnetic properties, particularly SCO or spin transition (ST) [2-4]. SCO is commonly observed for octahedral metal complexes with a metal $3 d^{4}$ to $3 d^{7}$ electron configuration which can interchange between two electronic states, high-spin (HS) and LS, by application of an external perturbation such as temperature, pressure, light or magnetic field. SCO was first reported by Cambi and coworkers after detecting unusual magnetism in Fe (III) derivatives of various dithiocarbamates [5-7]. Later, the vision of Kahn and co-workers towards the application of SCO compounds in data processing [8] resulted in a long and impressive literature on SCO. This included the discovery of several new examples of SCO compounds [3,9-11], the explanation of different types of SCO profiles $[4,12]$ and the modification of SCO compounds to increase cooperativity and to direct their application into materials science [13]. Scientists have developed SCO networks [14-16], frameworks [17-19], gels [20-22], liquid crystals [23-25], nanoparticles and nanocrystals [26-29], nanowires [30], thin films [31-33] and have also applied patterning techniques to fabricate SCO devices [34]. Among complexes displaying $\mathrm{SCO}, \quad\left[\mathrm{Fe}(\text { salEen })_{2}\right]^{+}$derivatives (salEen $=N$-ethyl- $N-(2-$ aminoethyl)salicylaldiminate) are known to undergo thermal SCO sensitive to unit cell contents and supramolecular packing in the crystal [35].
Hendrickson and co-workers reported the first examples of salEen derivatives SCO compounds and also reported the distinct abrupt SCO profile for the $[\mathrm{Fe}(3-\mathrm{OMe}-$ salEen $)_{2}$] PF_{6} system [36]. This report led to a number of new SCO compounds of the type $\left[\mathrm{Fe}(\mathrm{X} \text {-salEen })_{2}\right] \mathrm{Y}\left(\mathrm{X}=\mathrm{H}, 3-\mathrm{OMe}, 4-\mathrm{OMe}\right.$ or $5-\mathrm{OMe} ; \mathrm{Y}=\mathrm{Cl}^{-}, \mathrm{ClO}_{4}{ }^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{PF}_{6}{ }^{-}$, or $\left.\mathrm{BPh}_{4}{ }^{-}\right)$ [35,37] displaying a range of SCO profiles from incomplete and gradual to complete. Among salEen derivatives, it has been observed that Cl^{-}and $\mathrm{NO}_{3}{ }^{-}$complexes tend to stabilise the LS state, and BPh_{4} complexes adopt preferably the HS state $[35,38,39]$. In solution the SCO process becomes an individual molecular process and abrupt and hysteretic SCO is not expected unless self-assembly occurs and interaction is sensed by neighbouring molecules [40]. Additionally, the rigidity conferred by the solid state intermolecular lattices is not observed and the solvent and anion effect on the ligand field strength can be studied.

We have recently found that $\left[\mathrm{Fe}(5-\mathrm{Br}-\mathrm{salEen})_{2}\right]^{+}$displays different types of SCO profiles depending on the anion used and the solvation of the unit cell [41]. We also observed that the H -bonding between the ligand and the anion is crucial and a key to promote SCO at room-temperature (RT). This work reports the effect of electron withdrawing groups on the magnetic behaviour of the metal both in solid state and solution. The ligands salEen $\left(\mathrm{L}_{\mathrm{A}}\right)$,

5-Br-salEen $\left(\mathrm{L}_{\mathrm{B}}\right)$ and $3,5-\mathrm{Br}$-salEen $\left(\mathrm{L}_{\mathrm{C}}\right)$ have been chosen and their $\mathrm{ClO}_{4}{ }^{-}$and $\mathrm{BPh}_{4}{ }^{-}$ $\mathrm{Fe}(\mathrm{III})$ complexes, $\left[\mathrm{Fe}(\mathrm{X}-\text { salEen })_{2}\right] \mathrm{Y}\left(\mathrm{X}=\mathrm{H}, 5-\mathrm{Br}\right.$ or $3,5-\mathrm{Br} ; \mathrm{Y}=\mathrm{ClO}_{4}{ }^{-}$or $\mathrm{BPh}_{4}{ }^{-}$), investigated. Solid state magnetic properties of $\left[\mathrm{Fe}(3,5-\mathrm{Br}-\mathrm{salEen})_{2}\right] \mathrm{ClO}_{4} \cdot \mathrm{EtOH}(5)$ and $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{BPh}_{4}$. DMF (6) are reported as well as redox behaviour and magnetic properties in solution at RT for $\left[\mathrm{Fe}(\text { salEen })_{2}\right] \mathrm{ClO}_{4}$ (1), $\left[\mathrm{Fe}(\text { salEen })_{2}\right] \mathrm{BPh}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (2), $\left[\mathrm{Fe}(5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{ClO}_{4} \quad$ (3), $\quad\left[\mathrm{Fe}(5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{BPh}_{4} . \mathrm{DMF} \quad$ (4), $\quad[\mathrm{Fe}(3,5-\mathrm{Br}-$ salEen $\left.)_{2}\right] \mathrm{ClO}_{4} . \mathrm{EtOH}(5)$ and $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{BPh}_{4} . \mathrm{DMF}$ (6).

2. Experimental

2.1 Materials and measurements

Salicylaldehyde, 5-bromosalicylaldehyde, 3,5-dibromosalicylaldehyde, iron(III) nitrate nonahydrate, iron(II) chloride, N-ethylethylenediamine, tetrabutylammonium tetrafluoroborate and solvents were purchased and used without further purification. IR spectra (KBr pellets) were recorded on a Nicolet Nexus 6700 FTIR spectrophotometer. UV-vis spectra were recorded on a Shimadzu $50 / 60 \mathrm{~Hz}$ spectrometer in acetonitrile solutions. Microanalyses (C, H and N) were measured by elemental analysis service at the University of Vigo, Spain.

Magnetisation measurements as a function of temperature were performed using a SQUID magnetometer (Quantum Design MPMS). The curves were obtained at 1000 Oe for temperatures ranging from 10 to 370 K and the molar susceptibilities $\left(\chi_{\mathrm{m}}\right)$ values were corrected for diamagnetism.

The Mössbauer spectra were recorded in transmission mode at RT and at 78 K using a conventional constant-acceleration spectrometer and a $50 \mathrm{mCi}{ }^{57} \mathrm{Co}$ source in a Rh matrix. The low temperature measurements were performed using a liquid nitrogen flow cryostat with a temperature stability of $\pm 0.5 \mathrm{~K}$. The velocity scale was calibrated using an α-Fe foil. The spectra were fitted to Lorentzian lines using the WinNormos software program, and the isomer shifts reported are relative to metallic α-Fe at RT.

Magnetic measurements of complexes 1-6 in solution were performed at RT by ${ }^{1} \mathrm{H}$ NMR using the Evans' method [42] (Bruker Avance 400 spectrometer operating at 400.14 MHz at a constant temperature of 298.15 K). The measurements were performed in NMR tubes containing the paramagnetic samples (5 mM) dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ with an inert reference of 0.03% TMS, against a reference insert tube filled with the same solvent $(0.03 \% \mathrm{TMS}$ in $\mathrm{CD}_{3} \mathrm{CN}$). The difference between the shifts (in Hz) given by the TMS outside and inside the insert tube were measured and the mass susceptibility (C 9 g) calculated from,
$\left(1 g=\left(10+3000 \Delta v /\left(4 \pi v_{1} 0 C M\right)\right.\right.$
where C is the concentration of the sample and M is the molecular weight of the paramagnetic molecule. The molar susceptibility (Gm) of the paramagnetic species is derived from the previous expression after appropriate diamagnetic correction.

Electrochemical studies were performed using a CHI Electrochemical Analyser - 620A
controlled by software. A one-compartment glass cell was used in all experiments; a platinum wire and a platinum foil $\left(1 \mathrm{~cm}^{2}\right)$ were used as working and counter electrodes, respectively. A saturated calomel electrode (SCE, 0.244 V vs. SHE) was used as reference electrode. Before each experiment the working electrode was cleaned by flame-annealing in a butane-oxygen Bunsen burner until the slide attained dark red glowing. All solutions were deoxygenated directly in the electrochemical cell with a stream of N_{2} for 5 minutes. All experiments were performed in dry acetonitrile solutions (1 mM) and tetrabutylammonium tetrafluoroborate ($\left.\mathrm{NBu}_{4} \mathrm{BF}_{4}, 0.1 \mathrm{M}\right)$. For complexes 1-6, ferrocene ($\mathrm{E}_{1 / 2}=0.420 \mathrm{~V}$ vs. SCE) [43] was used as internal standard.

Single X-ray crystal data for 6 were collected at 150(2) K by using a Bruker SMART APEX II diffractometer equipped with a CCD area detector and monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). The frames were integrated with the SAINT-Plus software package [44], and the intensities were corrected for polarization and Lorentz effects. A multi-scan absorption correction was also applied with the SADABS [45]. The structure was solved by direct methods with SHELXS-2013 [46] and refined by full-matrix leastsquares based on F^{2} using the program SHELXL-2013 [46]. Hydrogen atoms bound to carbon and nitrogen were inserted at ideal geometric positions. ORTEP and packing diagrams were drawn with the Olex2 [47] and the Mercury software packages [48], respectively. The crystal data together with refinement details are given in Table 1. The crystal structure has been deposited with CCDC 976390.

Table 1. Crystal data parameters and selected refinement details of $\mathbf{6}$.

Empirical Formula	$\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{BBr}_{4} \mathrm{FeN}_{5} \mathrm{O}_{3}$
M_{w}	1146.26
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
a / \AA	$15.1177(4)$
b / \AA	$15.6799(4)$
c / \AA	$20.7440(5)$
V / \AA^{3}	$4906.3(2)$
Z	4
$\rho_{\text {calc }} / \mathrm{mg} \mathrm{mm}^{-3}$	1.52
μ / mm^{-1}	0.500
$F(000)$	2308
2θ range for data collection/	
Index ranges	
Crystal size/ mm	$-19 \leq h \leq 16,-20 \leq k \leq 20,-27 \leq l \leq 27$
Reflections collected	$0.5 \times 0.12 \times 0.03$
${\text { Unique reflections, }\left[\mathrm{R}_{\text {int }}\right]}^{\text {Final } R_{\text {indices }}}$	65747
$\mathrm{R}_{1}, \mathrm{wR}_{2}[I>2 \sigma]$	$11722[0.0453]$
$\mathrm{R}_{1}, \mathrm{wR}_{2}$ (all data)	

2.2 Synthesis of compounds 1-4

Compounds $\mathbf{1}$ and $\mathbf{2}$ were obtained as described in the literature [39,49]. Compounds $\mathbf{3}$ and 4 were synthesised as previously described by our group [41].

To a solution of N-ethylethylenediamine ($0.105 \mathrm{~mL}, 1 \mathrm{mmol}$) in methanol (20 mL) 3,5dibromosalicylaldehyde ($279 \mathrm{mg}, 1 \mathrm{mmol}$) was added and left stirring for 15 minutes to give a yellow solution. A solution of iron(II) chloride ($64 \mathrm{mg}, 0.5 \mathrm{mmol}$) and sodium perchlorate monohydrate ($70 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol was added to the mixture and left stirring for 1 h . The purple solution was filtered and a dark solid was obtained after slow evaporation of the solvent. The crude solid was recrystallised from an ethanol/methanol mixture (50:50) yielding a microcrystalline solid after slow evaporation of the solvent (108 $\mathrm{mg}, 13 \%)$. IR: $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3210\left(\mathrm{v}_{\mathrm{NH}}, \mathrm{m}\right), 3051\left(\mathrm{v}_{\mathrm{CH}}, \mathrm{w}\right), 1635\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}, \mathrm{s}\right), 1578\left(\delta_{\mathrm{C}=\mathrm{C}}, \mathrm{m}\right), 1083$ $\left(v_{\mathrm{ClO}_{4}}, \mathrm{~s}\right), 626\left(\mathrm{v}_{\mathrm{ClO}_{4}}, \mathrm{~s}\right)$. Anal. found (calcd) for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Br}_{4} \mathrm{ClFeN}_{4} \mathrm{O}_{7}$: C 32.15 (32.05); H 3.24 (3.59); N 6.80 (6.23).

2.4 Synthesis of compound $\mathbf{6}$ - $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{BPh}_{4} . \mathrm{DMF}$

To a solution of N-ethylethylenediamine ($0.105 \mathrm{~mL}, 1 \mathrm{mmol}$) in methanol (20 mL) 3,5dibromosalicylaldehyde ($279 \mathrm{mg}, 1 \mathrm{mmol}$) was added and the yellow solution left stirring for 15 minutes. A solution of iron(II) chloride ($64 \mathrm{mg}, 0.5 \mathrm{mmol}$) and sodium tetraphenylborate ($170 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol was added to the mixture and left stirring for 1 h . Filtration of the reaction mixture allowed to recover a dark microcrystalline solid. Recrystallisation from methanol/toluene/dimethylformamide (40:20:40) produced needle shaped crystals suitable for single crystal X-ray diffraction ($250 \mathrm{mg}, 23 \%$). IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3210\left(v_{\mathrm{NH}}, \mathrm{m}\right), 3051\left(v_{\mathrm{CH}}, \mathrm{w}\right), 1633\left(v_{\mathrm{C}=\mathrm{N}}, \mathrm{s}\right), 1590\left(\delta_{\mathrm{C}=\mathrm{C}}, \mathrm{m}\right), 744\left(\mathrm{v}_{\mathrm{BPh}}^{4}, \mathrm{~s}\right), 708$ ($v_{\mathrm{BPh}_{4}}, \mathrm{~s}$). Anal. found (calcd) for $\mathrm{C}_{49} \mathrm{H}_{53} \mathrm{BBr}_{4} \mathrm{FeN}_{5} \mathrm{O}_{3}$: C 51.34 (51.34); H 4.78 (4.66); N 6.14 (6.11).

3. Results and discussion

3.1 Synthesis of complexes 1-6

Complexes 1-6 were prepared as described in scheme 1. The new complexes, $\mathbf{5}$ and $\mathbf{6}$ were obtained as solvated forms: $\left[\mathrm{Fe}\left(\mathrm{L}_{\mathrm{C}}\right)_{2}\right] \mathrm{ClO}_{4} . \mathrm{EtOH}(5)$ and $\left[\mathrm{Fe}\left(\mathrm{L}_{\mathrm{C}}\right)_{2}\right] \mathrm{BPh}_{4}$. DMF (6). In the solid state, crystalline samples of both complexes were characterised by elemental analysis, IR, ${ }^{57}$ Mössbauer spectroscopy and SQUID magnetometry and the structure of complex $\mathbf{6}$ determined by single crystal X-ray diffraction. Solution properties of complexes 1-6 were determined at RT by UV-vis and NMR spectroscopies and their redox behaviour studied by cyclic voltammetry.

Scheme 1. General method used in the synthesis of complexes 1-6 (*for complexes 1-4).

The IR spectrum of $\mathbf{5}$ presented a characteristic $\mathrm{C}=\mathrm{N}$ stretching band at $1633 \mathrm{~cm}^{-1}$ and two ClO_{4}^{-}stretching bands at 1083 and $626 \mathrm{~cm}^{-1}$ confirming that formation of the imine was achieved and the exchange of the anion occurred. For complex 6 the IR spectrum also confirmed the success of the synthesis with stretching bands at 744 and $708 \mathrm{~cm}^{-1}$ attributed to $\mathrm{BPh}_{4}{ }^{-}$and $1633 \mathrm{~cm}^{-1}$ corresponding to the $\mathrm{C}=\mathrm{N}$ group.

3.2 Crystal structure of compound $\mathbf{6}$

The crystal structure of compound 6 is built up from an asymmetric unit composed of one cation $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right]^{+}$, one $\mathrm{BPh}_{4}{ }^{-}$anion and one DMF solvent molecule. The complex cation and DMF molecule are associated by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with $\mathrm{N} \cdots \mathrm{O}$ distances of $2.962(3)$ and $2.928(3) \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angles of 170 and 172°, respectively. The ORTEP view of this association is presented in Figure 1. The metal complex has a distorted octahedral geometry with three nitrogen atoms adopting a spatial disposition consistent with a fac-isomer. Selected bond distances and angles in the metal coordination sphere are listed in Table 2. The Fe-N (1.9279(2) to 2.0315(2) \AA) and $\mathrm{Fe}-\mathrm{O}$ (1.8679(2) and $1.8765(2) \AA$) distances are consistent with the existence of a $\mathrm{Fe}(\mathrm{III})$ center in the LS state and are equivalent to those observed for the analogous $[\mathrm{Fe}(5-\mathrm{Br}-$ salEen) $)_{2}$] BPh_{4}.DMF [41].

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of 6 .

Bond lengths			
$\mathrm{Fe}-\mathrm{O}(1)$	$1.8679(2)$	$\mathrm{Fe}-\mathrm{N}(12)$	$2.0283(2)$
$\mathrm{Fe}-\mathrm{O}(15)$	$1.8765(2)$	$\mathrm{Fe}-\mathrm{N}(23)$	$1.9222(2)$
$\mathrm{Fe}-\mathrm{N}(9)$	$1.9279(2)$	$\mathrm{Fe}-\mathrm{N}(26)$	$2.0315(2)$
Bond angles			
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{O}(15)$	$94.25(8)$	$\mathrm{O}(15)-\mathrm{Fe}-\mathrm{N}(26)$	$176.45(9)$
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(9)$	$93.38(8)$	$\mathrm{N}(9)-\mathrm{Fe}-\mathrm{N}(12)$	$84.48(9)$
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(12)$	$177.27(9)$	$\mathrm{N}(9)-\mathrm{Fe}-\mathrm{N}(23)$	$178.17(9)$
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(23)$	$86.85(8)$	$\mathrm{N}(9)-\mathrm{Fe}-\mathrm{N}(26)$	$97.67(9)$
$\mathrm{O}(1)-\mathrm{Fe}-\mathrm{N}(26)$	$86.81(9)$	$\mathrm{N}(12)-\mathrm{Fe}-\mathrm{N}(23)$	$95.35(9)$
$\mathrm{O}(15)-\mathrm{Fe}-\mathrm{N}(9)$	$85.65(9)$	$\mathrm{N}(12)-\mathrm{Fe}-\mathrm{N}(26)$	$91.78(9)$
$\mathrm{O}(15)-\mathrm{Fe}-\mathrm{N}(12)$	$87.29(9)$	$\mathrm{N}(23)-\mathrm{Fe}-\mathrm{N}(26)$	$84.15(9)$
$\mathrm{O}(15)-\mathrm{Fe}-\mathrm{N}(23)$	$92.52(8)$		

Figure 1. ORTEP view of the association between $\left[\mathrm{Fe}(3,5-\mathrm{Br}-\mathrm{salEen})_{2}\right]^{+}$and DMF with two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds drawn as red dashed lines and thermal ellipsoids drawn at the 50% probability level.

The crystal packing of $\mathbf{6}$ is view along the b crystallographic axis, shown in Figure 2, and reveals that the $\mathrm{BPh}_{4}{ }^{-}$anions are arranged in the crystal in open channels, which accommodates the complex cations. The DMF crystallization solvent molecules are positioned between $\mathrm{BPh}_{4}{ }^{-}$anions. The shortest intermolecular Fe ...Fe distance is $8.991 \AA$ indicating the absence of the electronic communication between the iron centers in the crystalline state.

Figure 2. Crystal packing diagram view along the b crystallographic axis showing the assembly of $\mathrm{BPh}_{4}{ }^{-}$ anions in open channels, which are occupied by cations $\left[\mathrm{Fe}(3,5-\mathrm{Br}-\mathrm{salEen})_{2}\right]^{+}$. For clarity in each channel only one molecule of the complex is shown in ball-stick fashion. The $\mathrm{BPh}_{4}{ }^{-}$anions are represented in space filling mode.

3.3 Solid state characterisation of 5 and $\mathbf{6}$

Figure 3. Temperature dependence of $\chi_{\mathrm{m}} \mathrm{T}$ for compounds 5 and $\mathbf{6}$, obtained under 1000 Oe , on cooling (solid symbols) and warming (open symbols).

The magnetic profile of complexes $\mathbf{1}$ and $\mathbf{2}$ has been previously described [39,49]. While complex $\mathbf{1}$ showed thermal magnetic dependence exhibiting SCO behaviour, complex $\mathbf{2}$ is stabilised in the HS state over the measured temperature range. The thermal magnetic behaviour of crystalline samples 3-6 was measured by SQUID magnetometry on cooling and warming modes. Results obtained for complexes 3 and 4 are reported elsewhere [41], and indicated that although differently, both complexes exhibited incomplete SCO. Complex 3 showed a gradual SCO on cooling and an abrupt ST on warming with an asymmetric 70 K hysteresis loop. Compound 4 displayed a gradual SCO, and its magnetic behaviour showed to be sensitive to the applied magnetic field and sample thermal history.

Figure 3 displays the results obtained for samples 5 and 6. At low temperature both compounds are in the LS state with $\chi_{\mathrm{m}} \mathrm{T}$ values of 0.59 and $0.37 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, respectively. Complex 6 remains in the LS state up to 150 K , where $\chi_{\mathrm{m}} \mathrm{T}$ starts to increase slowly, displaying an incomplete thermal SCO, as indicated by the small value of $\chi_{\mathrm{m}} \mathrm{T}, 2.4 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} \mathrm{~K}$, obtained at the highest measured temperature, 370 K . In the case of complex 5 $\chi_{\mathrm{m}} \mathrm{T}$ values are almost constant (varying between 0.59 and $0.86 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$), suggesting that the population of the LS state is essentially maintained up to 300 K .

Figure 4. ${ }^{57} \mathrm{Fe}$ Mössbauer spectra of complexes 5 (at 78 and 290 K) and $\mathbf{6}$ (at 78 K).
Figure 4 shows the Mössbauer spectra of complexes 5 (78 K and 290 K) and $\mathbf{6}$ (78 K), and the hyperfine parameters obtained from the fitting procedures are presented in Table 3. Mössbauer studies of compounds $\mathbf{3}$ and $\mathbf{4}$ are reported elsewhere [41].

The Mössbauer spectra collected at 78 K can be resolved using a single, but asymmetric, quadrupole doublet with isomer shifts (δ) around $0.2 \mathrm{~mm} / \mathrm{s}$ and quadrupole splittings $\left(\Delta \mathrm{E}_{\mathrm{Q}}\right)$ near $2.8 \mathrm{~mm} / \mathrm{s}$, which are consistent with $\mathrm{Fe}(\mathrm{III})$ ions in a LS state. The assignment of this doublet to LS Fe (III) is also supported by the low temperature magnetisation results of both samples, with $\chi_{\mathrm{m}} \mathrm{T}$ values close to those expected for spin only $\mathrm{S}=1 / 2,0.38 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, particularly visible for compound 6 .

Table 3. Estimated parameters from the Mössbauer spectra of 5 and $\mathbf{6}$.
$\mathrm{Tv} \Theta \mathrm{T} \alpha \beta \lambda \varepsilon 3 \delta$ - isomer shift; $\Delta \mathrm{E}_{\mathrm{Q}}$ - quadrupole splitting; Γ - FWHM line width; W_{21} - relative line width.

At RT, the spectra of both complexes reveal poor resonant absorption due to the small fraction of recoilless iron nuclei. In fact one doublet is clearly perceptible in the RT spectrum of 5 , figure 4 , agreeing with magnetisation data. The decrease observed in the isomer shift value compared to that obtained at 78 K can be explained by the second-order Doppler effect $[3,50]$.
The RT spectrum resolution of $\mathbf{6}$ (not shown) is poor and it was not possible to clearly define the characteristics of two iron sites in a reasonable spectrum acquisition time, justifying the broad line width ($\Gamma=0.9(2) \mathrm{mm} / \mathrm{s}$) and the mean isomer shift value ($\delta=0.20(5) \mathrm{mm} / \mathrm{s}$) obtained (table 3). This is certainly due to a spin interconversion process running at 290 K , as shown by the magnetisation data (figure 3).

The asymmetric line broadening of the LS Fe(III) doublet observed for both complexes at 78 K , is estimated by parameter W_{21} (table 3) which represents the relative line width between the higher and the lower energy absorption lines of the doublet. Both figure 4 and table 3 , clearly show that at 78 K this asymmetry is much more relevant for compound $\mathbf{6}$, and the poor resolution of the RT spectra does not allow a meaningful quantification of W_{21} at this temperature. This type of line broadening asymmetry can be attributed to fluctuating electric and magnetic fields associated with the relaxation of paramagnetic ions, as well as to changes on the environment surrounding the iron nuclei [51]. Taking into account the slow but continuous spin interconversion of sample $\mathbf{6}$ above 100 K and the almost constant value of $\chi_{\mathrm{m}} \mathrm{T}$ for compound $\mathbf{5}$ (varying between 0.59 and $0.86 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$), it is reasonable to accept that relaxation mechanisms associated with thermal SCO in compound $\mathbf{6}$ account for the high broad line asymmetry obtained.

3.4 Solution measurements

Complexes 1-6 were characterised by UV-vis spectroscopy and their redox behaviour studied by cyclic voltammetry. The magnetic susceptibility in solution of complexes 1-6 at RT was determined by the Evans' method [42] using ${ }^{1} \mathrm{H}$ NMR spectroscopy.

UV-vis spectra of compounds 1-6 were recorded at RT for solutions of each complex in acetonitrile ($7 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$) and can be seen in figure 5 .

Figure 5. RT UV-vis spectra of complexes 1-6 for $7 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ acetonitrile solutions.
The UV-vis spectra of all complexes display charge transfer and intraligand π - π^{*} transitions below 400 nm with ε varying between $\approx 4000(\mathbf{6})$ and $\approx 12000 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~cm}^{-1}(\mathbf{2})$. For all six complexes, two additional absorbance bands appear in the region 450-850 nm possibly from the ligand-to-metal charge transfer (LMCT) transitions, table 4. Electronic studies on Fe (III) complexes bearing (sal) $)_{2}$ trien (trien $=$ triethylenetetramine) ligands
showed that in the $450-850 \mathrm{~nm}$ region there is a higher energy band corresponding to the HS species and a second band at lower energy assigned to the LS species [52]. Taking this into account, we attribute the bands between $519 \mathrm{~nm}<\lambda_{\text {max }}<548 \mathrm{~nm}$ to the HS species and those between $655 \mathrm{~nm}<\lambda_{\max }<680 \mathrm{~nm}$ to the LS species.

For complexes 1-6 the band attributed to the HS species shows a pronounced difference directly related to the degree of substitution at the phenolate ring. The non-substituted compounds ($\mathbf{1}$ and $\mathbf{2}$) present the maximum absorbance at higher energy (519 nm for $\mathbf{1}$ and 520 nm for 2). This is followed by the compounds bearing ligands with one electron withdrawing group ($5-\mathrm{Br}$-salEen), $\mathbf{3}$ and $\mathbf{4}$, exhibiting the maximum absorbance at 534 nm . Finally, the introduction of a second electron withdrawing group at the phenolate ring (3,5-Br-salEen) shifted the absorption maxima to lower energies (558 nm for 5 and 548 nm for 6). It is worth noticing that the presence of either one or two electron withdrawing groups at the phenolate ring causes a red shift. Bromine, with σ-inductive electron withdrawing character, restricts the electron density available. This restriction alters the ligand field as well as the $\Delta_{\text {oct }}$ and, according to Tweedle and Wilson, such changes should be more pronounced for substituents ortho to the oxygen atom at the phenolate ring [52]. In fact the electronic spectra of complexes 1-6 at RT show this effect. The difference between the ε values of the HS and LS bands is smaller for complexes $\mathbf{5}$ and $\mathbf{6}$ when compared to those of complexes 1-4 indicating a clear effect of the phenolate substitution on the spin equilibrium.

Table 4. Electronic absorption maxima and extinction coefficients in acetonitrile and $\chi_{\mathrm{m}} \mathrm{T}$ values obtained from ${ }^{1} \mathrm{H}$ NMR results in $\mathrm{CD}_{3} \mathrm{CN}$ for 1-6 at RT.

	ClO_{4}^{-}			BPh ${ }_{4}{ }^{\text {a }}$		
	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{H} \\ & \mathrm{R}_{2}=\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{H} \\ & \mathrm{R}_{2}=\mathrm{Br} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{Br} \\ & \mathrm{R}_{2}=\mathrm{Br} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{H} \\ & \mathrm{R}_{2}=\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{H} \\ & \mathrm{R}_{2}=\mathrm{Br} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{Br} \\ & \mathrm{R}_{2}=\mathrm{Br} \end{aligned}$
	1	3	5	2	4	6
$\begin{aligned} & \lambda_{\max }(\mathrm{nm}) \\ & \varepsilon\left(\operatorname{mol~L}{ }^{-1} \mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{gathered} 519 \\ 2271 \end{gathered}$	$\begin{gathered} 534 \\ 3571 \end{gathered}$	$\begin{gathered} 558 \\ 2806 \end{gathered}$	$\begin{gathered} 520 \\ 3670 \end{gathered}$	$\begin{gathered} 534 \\ 2556 \end{gathered}$	$\begin{gathered} 548 \\ 1343 \end{gathered}$
$\begin{aligned} & \lambda_{\max }(\mathrm{nm}) \\ & \varepsilon\left(\mathrm{mol} \mathrm{~L}^{-1} \mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & 678 \\ & 569 \end{aligned}$	$\begin{gathered} 678 \\ 1547 \end{gathered}$	$\begin{gathered} 655 \\ 2227 \end{gathered}$	$\begin{aligned} & 678 \\ & 959 \end{aligned}$	$\begin{gathered} 680 \\ 1206 \end{gathered}$	$\begin{aligned} & 673 \\ & 797 \end{aligned}$
$\chi_{\mathrm{m}} \mathrm{T}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$	4.4	2.7	1.6	3.1	3.1	2.0

Magnetic susceptibilities of all complexes at RT were determined using the Evans method [42] where the $\mathrm{RT}{ }^{1} \mathrm{H}$ NMR spectra of 5 mM solutions of $\mathbf{1 - 6}$ in $\mathrm{CD}_{3} \mathrm{CN}$ with 0.03% TMS were recorded against a reference solution of $0.03 \% \mathrm{TMS}$ in $\mathrm{CD}_{3} \mathrm{CN}$, table 4. The $\chi_{\mathrm{m}} \mathrm{T}$ value of complex $\mathbf{1}\left(4.41 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ shows that this complex is essentially in the HS state at RT, while the values obtained for all the other complexes indicate a mixture of both HS and LS states. Complexes 5 and $\mathbf{6}$, for which $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Br}$, are those exhibiting the lowest $\chi_{\mathrm{m}} \mathrm{T}$ values, indicating a major fraction of LS state at RT. For complexes $\mathbf{2}, \mathbf{3}$ and $\mathbf{4}$ the $\chi_{\mathrm{m}} \mathrm{T}$ values indicate a major fraction of HS state, with values of 67,59 and 69% respectively. These results clearly show the ligand influence on the magnetic behaviour of the metal in solution, as the $\chi_{\mathrm{m}} \mathrm{T}$ value, and thus of HS fraction, decreases with the presence of bromide
substituents at the phenolate ring. This fact is observed for the three complexes containing $\mathrm{ClO}_{4}{ }^{-}$and also for the solvated complexes 4 and $6\left(\mathrm{BPh}_{4}{ }^{-}\right.$as anion). Within the same ligand, a variation of $\chi_{\mathrm{m}} \mathrm{T}$ is also observed when solvates are present and the anion changes. These observations indicate that the solvent and/or anion interact with the complex cation, affecting the $\chi_{\mathrm{m}} \mathrm{T}$ value.

These results are in good agreement with those of the UV-vis measurements confirming that the second bromide at the phenolate ring has an effect on the ligand field strength increasing the separation between the $\mathrm{t}_{2 \mathrm{~g}}$ and the $\mathrm{e}_{\mathrm{g}} *$ energy levels. Further work is now underway to investigate the solvent and temperature effect on the magnetic behaviour of these complexes.

The redox behaviour of complexes 1-6 in acetonitrile was determined at RT by cyclic voltammetry (figure 6). Well-defined anodic and cathodic peaks with $\mathrm{E}_{1 / 2}$ values between -0.441 and -0.225 V (table 5) are related to the iron centres. Additionally, complexes 2, 4 and 6 show peaks between 0.750 and 1.7 V that can be related to redox processes of both ligands and $\mathrm{BPh}_{4}{ }^{-}$. Within the same potential range complexes $\mathbf{1}, \mathbf{3}$ and 5 only display ligand related redox processes, as the $\mathrm{ClO}_{4}{ }^{-}$anion did not show a redox response in the potential range studied. Attempts to isolate the ligands in order to clarify their redox processes were unsuccessful.

The fact that the electrochemical behaviour of the complexes is affected by the number of electron withdrawing groups at the phenolate ring is noteworthy. Namely, all redox processes shift to more positive values with the increase of bromide substituents at the ring, figure 6 . This fact is clearly perceptible when the $\mathrm{E}_{1 / 2}$ values of the iron redox processes (table 5) are compared: a value of $\mathrm{E}_{1 / 2}=-0.414 \mathrm{~V}$ is observed for complex 1, and the presence of one bromide substituent at the phenolate ring (complex 3) shifts this value by 100 mV to more positive values $(-0.310 \mathrm{~V})$. Additionally an even higher shift to positive values (-0.250 V) is observed when a second bromide (complex 5) is present at the ligand. This trend is also observed for the $\mathrm{BPh}_{4}{ }^{-}$complexes $\mathbf{2}, 4$ and $\mathbf{6}$. These results demonstrate that the reduction of the iron centre is easier with the increase of bromide substituents at the ring. However, the nature of the anion $\left(\mathrm{ClO}_{4}\right.$ or $\left.\mathrm{BPh}_{4}\right)$ does not significantly affect the $\mathrm{E}_{1 / 2}$ values of the iron centres, table 5 . While complex 1 exhibits a reversible redox process $(\Delta \mathrm{Ep}=59 \mathrm{mV})$ all other complexes show a quasi-reversible behaviour $(\Delta \mathrm{Ep}>59 \mathrm{mV})$ [53].

Figure 6. Cyclic voltammograms of a Pt electrode in acetonitrile solutions with 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ as supporting electrolyte containing 1 mM of a) complexes $\mathbf{1}$ (solid line), $\mathbf{3}$ (dash dotted line) and $\mathbf{5}$ (dashed line) and b) complexes 2 (solid line), 4 (dash dotted line) and $\mathbf{6}$ (dashed line). Cyclic voltammogram of 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ in acetonitrile (dotted line). Scan rate: $200 \mathrm{mV} \mathrm{s}^{-1}$.

Table 5. Electrochemical data of complexes $\mathbf{1}$ to $\mathbf{6}$. ${ }^{\text {a }}$

Complex			$\mathbf{E}_{\mathbf{F e}(\text { III) } / \mathrm{Fe}(\text { III }} / \mathbf{V}$	$\mathbf{E}_{\text {Fe(II)/Fe(III) }} / \mathbf{V}$	$\mathbf{E}_{1 / 2} / \mathbf{V}$	$\Delta \mathrm{E}_{\mathrm{p}} / \mathrm{V}$
$\mathrm{ClO}_{4}{ }^{-}$	1	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$	-0.478	-0.360	-0.414	0.059
	$3^{[41]}$	$\mathrm{R}_{2}=\mathrm{Br}$	-0.360	-0.260	-0.310	0.100
	5	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Br}$	-0.325	-0.185	-0.250	0.070
$\mathrm{BPh}_{4}{ }^{-}$	2	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$	-0.515	-0.357	-0.441	0.079
	$4^{[41]}$	$\mathrm{R}_{2}=\mathrm{Br}$	-0.350	-0.280	-0.320	0.070
	6	$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Br}$	-0.300	-0.160	-0.225	0.070

${ }^{a}$ Acetonitrile solution, $0.1 \mathrm{M} \mathrm{NBu}_{4} \mathrm{BF}_{4}$ as supporting electrolyte: $E_{1 / 2}$ vs. SCE , Pt working electrode, $v=200$ $\mathrm{mV} \mathrm{s}^{-1} ; \quad \mathrm{Fc}^{+} / \mathrm{Fc}\left(E_{1 / 2}=+0.420 \mathrm{~V} \quad[43]\right)$ as internal standard. $E_{1 / 2}=1 / 2\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right)$, $\Delta E_{\mathrm{p}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}(\mathrm{mV})$.

The redox processes of the ligands analysed by the results obtained for $\mathrm{ClO}_{4}{ }^{-}$complexes ($\mathbf{1}$, 3 and 5, figure 6a), show a shift to more positive values with the increase of bromide substituents at the phenolate ring. This can be attributed to the presence of electron withdrawing groups at the ring, restricting the electron density available at the ligand. For the $\mathrm{BPh}_{4}{ }^{-}$complexes ($\mathbf{2}, \mathbf{4}$ and $\mathbf{6}$, figure 6 b) it has to be noted that the anion itself can also be oxidised over the same potential window as the ligand (figure S 1 of the supporting information), challenging the clear identification of the processes involving both ligand and anion.

4. Conclusions

Two new complexes, $\left[\mathrm{Fe}(3,5-\mathrm{Br} \text {-salEen })_{2}\right] \mathrm{ClO}_{4}$. $\mathrm{EtOH} \quad$ (5) and $[\mathrm{Fe}(3,5-\mathrm{Br}-$ salEen $\left.)_{2}\right] \mathrm{BPh}_{4}$.DMF (6) were synthesised and their magnetic properties investigated. The crystal packing diagram of complex 6 showed that the interaction between the metal centres is obstructed by the anion, affecting the SCO beahviour. SQUID magnetometry and Mössbauer spectroscopy showed that while $\mathbf{6}$ presents a gradual and incomplete SCO, 5 stabilises in the LS state up to 300 K . Comparison of the solid state magnetic profiles of newly reported complexes 5 and 6 with previously reported complexes 1-4 did not allow to draw conclusions on the influence of ligand substituent (σ-inductive electron withdrawing groups - bromine) on their magnetic behaviour. However, both spectroscopic and electrochemical studies of the complexes in solution have shown that there is a clear effect on their properties depending on the degree of substitution at the phenolate ring. Interestingly, both UV-vis measurements and Evans magnetic susceptibility determinations at concentrations separated by a factor of $\approx 100(0.07 \mathrm{mM}$ for UV-vis and 5 mM for Evans' method) confirmed the effect of the ligand substituents on their magnetic character. The results indicate that in solution complex $\mathbf{1}$ is essentially in the HS state, and both HS and LS forms are present for the other complexes. When compared to the unsubstituted complexes (1 and 2), a significant decrease on $\chi_{\mathrm{m}} \mathrm{T}$ is observed when two bromide
substituents are present at the phenolate ring, showing a clear preference for the LS state, and indicating an increased separation between the $\mathrm{t}_{2 \mathrm{~g}}$ and $\mathrm{e}_{\mathrm{g}} *$ energy levels. The bromide substituent effect has also been observed on the electrochemical behaviour of the complexes. The reduction of the metallic centres proved to be easier for ligands with increasing number of electron withdrawing groups, as the $\mathrm{E}_{1 / 2}$ values of iron shift to more positive potentials.

Acknowledgments

We thank Fundação para Ciência e Tecnologia for financial support (PEstOE/QUI/UI0612/2013, PEst-OE/QUI/UI0536/2011, PEst-OE/FIS/UI0261/2011 and PTDC/QUI-QUI/101022/2008,) and fellowships to AIM (SFRH/BPD/69526/2010), PNM (SFRH/BPD/73345/2010), MSS (SFRH/BPD/88082/2012).

References

[1] P.A. Vigato, S. Tamburini, Coord. Chem. Rev., 248 (2004) 1717-2128.
[2] H. Toftlund, J.J. McGarvey, Top. Curr. Chem., 233 (2004) 151-166.
[3] P.J. van Koningsbruggen, Y. Maeda, H. Oshio, Top. Curr. Chem., 233 (2004) 259-324.
[4] P. Gutlich, H.A. Goodwin, Top. Curr. Chem., 233 (2004) 1-47.
[5] L. Cambi, L. Szegö, Ber. Dtsch. Chem. Ges., 64 (1931) 2591-2598.
[6] L. Cambi, L. Szegö, Ber. Dtsch. Chem. Ges., 66 (1933) 656-661.
[7] L. Cambi, L. Malatesta, Ber. Dtsch. Chem. Ges., 70 (1937) 2067-2078.
[8] O. Kahn, E. Codjovi, Y. Garcia, P.J. van Koningsbruggen, R. Lapouyade, L. Sommier, ACS Sym. Ser., 644 (1996) 298-310.
[9] P. Gutlich, P.J. van Koningsbruggen, F. Renz, Struct. Bond., 107 (2004) 27-75.
[10] H.A. Goodwin, Top. Curr. Chem., 234 (2004) 23-47.
[11] Y. Garcia, P. Gutlich, Top. Curr. Chem., 234 (2004) 49-62.
[12] A. Hauser, Top. Curr. Chem., 233 (2004) 49-58.
[13] M.A. Halcrow, Spin-Crossover Materials: Properties and Applications, John Wiley \& Sons Ltd, 2013.
[14] S.B. Erenburg, N.V. Bausk, L.G. Lavrenova, V.A. Varnek, L.N. Mazalov, Solid State Ionics, 101 (1997) 571-577.
[15] Y. Garcia, P.J. van Koningsbruggen, R. Lapouyade, L. Fournes, L. Rabardel, O. Kahn, V. Ksenofontov, G. Levchenko, P. Gutlich, Chem. Mater., 10 (1998) 2426-2433.
[16] Y. Garcia, V. Niel, M.C. Munoz, J.A. Real, Top. Curr. Chem., 233 (2004) 229-257.
[17] M. Ruben, U. Ziener, J.M. Lehn, V. Ksenofontov, P. Gutlich, G.B.M. Vaughan, Chem. Eur. J., 11 (2004) 94-100.
[18] T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto, A. Miyazaki, T. Enoki, J. Mater. Chem., 6 (1996) 119-121.
[19] V. Niel, J.M. Martinez-Agudo, M.C. Munoz, A.B. Gaspar, J.A. Real, Inorg. Chem., 40 (2001) 3838.
[20] O. Roubeau, A. Colin, W. Schmitt, R. Clerac, Angew. Chem. Int. Ed., 43 (2004) 32833286.
[21] P. Grondin, O. Roubeau, M. Castro, H. Saadaoui, A. Colin, R. Clerac, Langmuir, 26 (2010) 5184-5195.
[22] T. Fujigaya, D.L. Jiang, T. Aida, Chem. Asian J., 2 (2007) 106-113.
[23] Y. Galyametdinov, V. Ksenofontov, A. Prosvirin, I. Ovchinnikov, G. Ivanova, P. Gütlich, W. Haase, Angew. Chem. Int. Ed., 40 (2001) 4269-4271.
[24] Y. Bodenthin, G. Schwarz, Z. Tomkowicz, M. Lommel, T. Geue, W. Haase, H. Mohwald, U. Pietsch, D.G. Kurth, Coord. Chem. Rev., 253 (2009) 2414-2422.
[25] A.B. Gaspar, M. Seredyuk, R. Gutlich, Coord. Chem. Rev., 253 (2009) 2399-2413.
[26] E. Coronado, J.R. Galan-Mascaros, M. Monrabal-Capilla, J. Garcia-Martinez, P. Pardo-Ibanez, Adv. Mater., 19 (2007) 1359.
[27] T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri, K. Tanaka, O. Fouche, E. Freysz, J.F. Letard, Chem. Commun., (2008) 4327-4329.
[28] F. Volatron, L. Catala, E. Riviere, A. Gloter, O. Stephan, T. Mallah, Inorg. Chem., 47 (2008) 6584-6586.
[29] I. Boldog, A.B. Gaspar, V. Martinez, P. Pardo-Ibanez, V. Ksenofontov, A. Bhattacharjee, P. Gutlich, J.A. Real, Angew. Chem. Int. Ed., 47 (2008) 6433-6437.
[30] P.N. Martinho, T. Lemma, B. Gildea, G. Picardi, H. Muller-Bunz, R.J. Forster, T.E. Keyes, G. Redmond, G.G. Morgan, Angew. Chem. Int. Ed., 51 (2012) 11995-11999.
[31] A. Ruaudelteixier, A. Barraud, P. Coronel, O. Kahn, Thin Solid Films, 160 (1988) 107-115.
[32] P. Coronel, A. Barraud, R. Claude, O. Kahn, A. Ruaudelteixier, J. Zarembowitch, J. Chem. Soc. Chem. Commun., (1989) 193-194.
[33] S. Cobo, G. Molnar, J.A. Real, A. Bousseksou, Angew. Chem. Int. Ed., 45 (2006) 5786-5789.
[34] M. Cavallini, I. Bergenti, S. Milita, G. Ruani, I. Salitros, Z.R. Qu, R. Chandrasekar, M. Ruben, Angew. Chem. Int. Ed., 47 (2008) 8596-8600.
[35] M.S. Haddad, M.W. Lynch, W.D. Federer, D.N. Hendrickson, Inorg. Chem., 20 (1981) 123-131.
[36] M.S. Haddad, W.D. Federer, M.W. Lynch, D.N. Hendrickson, J. Am. Chem. Soc., 102 (1980) 1468-1470.
[37] T.A. Ivanova, I.V. Ovchinnikov, A.N. Turanov, Phys. Solid State, 49 (2007) 21322137.
[38] M.S. Haddad, W.D. Federer, M.W. Lynch, D.N. Hendrickson, J. Am. Chem. Soc., 102 (1980) 1468-1470.
[39] M.S. Haddad, W.D. Federer, M.W. Lynch, D.N. Hendrickson, Inorg. Chem., 20 (1981) 131-139.
[40] P.N. Martinho, Y. Ortin, B. Gildea, C. Gandolfi, G. McKerr, B. O'Hagan, M. Albrecht, G.G. Morgan, Dalton Trans., 41 (2012) 7461-7463.
[41] A.I. Vicente, S. Realista, L.P. Ferreira, M.D. Carvalho, A. Melato, P. Brandão, M.J. Calhorda, P.N. Martinho, (2013) submitted.
[42] D.F. Evans, J. Chem. Soc., (1959) 2003-2005.
[43] M.A. Vorotyntsev, M. Casalta, E. Pousson, L. Roullier, G. Boni, C. Moise, Electrochim. Acta, 46 (2001) 4017-4033.
[44] Bruker SAINT-plus Bruker AXS Inc., Madison, Wisconsin, USA. 2007.
[45] G. M. Sheldrick, $S A D A B S$. University of Göttingen, Germany, 1996.
[46] G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
[47] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009. 42, 339-341.
[48] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. Appl. Cryst., 41, 466470, 2008
[49] C.F. Sheu, S.M. Chen, G.H. Lee, Y.H. Liu, Y.S. Wen, J.J. Lee, Y.C. Chuang, Y. Wang, Eur. J. Inorg. Chem., (2013) 894-901.
[50] P. Gütlich, E. Bill, A.X. Trautwein, Mössbauer spectroscopy and transition metal chemistry, Springer-Verlag, Berlin, Heidelberg, 2011.
[51] M. Blume, Phys. Rev. Lett., 14 (1965) 96-98.
[52] M.F. Tweedle, L.J. Wilson, J. Am. Chem. Soc., 98 (1976) 4824-4834.
[53] D. Pletcher, R. Greff, R. Peat, L.M. Peter, J. Robinson, Instrumental methods in electrochemistry, Ellis Horwood Ltd, 1990.

Figure captions

Table 1. Crystal data parameters and selected refinement details of $\mathbf{6}$.
Scheme 1. General method used in the synthesis of complexes 1-6 (*for complexes 1-4).
Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of 6.
Figure 1. ORTEP view of the association between $\left[\mathrm{Fe}(3,5-\mathrm{Br}-\mathrm{salEen})_{2}\right]^{+}$and DMF with two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds drawn as red dashed lines and thermal ellipsoids drawn at the 50% probability level.

Figure 2. Crystal packing diagram view along the b crystallographic axis showing the assembly of $\mathrm{BPh}_{4}{ }^{-}$anions in open channels, which are occupied by cations $[\mathrm{Fe}(3,5-\mathrm{Br}-$ salEen $\left.)_{2}\right]^{+}$. For clarity in each channel only one molecule of the complex is shown in ballstick fashion. The BPh_{4}^{-}anions are represented in space filling mode.

Figure 3. Temperature dependence of $\chi_{\mathrm{m}} \mathrm{T}$ for compounds 5 and $\mathbf{6}$, obtained under 1000 Oe , on cooling (solid symbols) and warming (open symbols).

Figure $4 .{ }^{57} \mathrm{Fe}$ Mössbauer spectra of complexes 5 (at 78 and 290 K) and $\mathbf{6}$ (at 78 K).
Table 3. Estimated parameters from the Mössbauer spectra of $\mathbf{5}$ and $\mathbf{6}$.
Figure 5. RT UV-vis spectroscopy for $7 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ acetonitrile solutions of complexes $\mathbf{1 -}$ 6.

Table 4. Electronic absorption maxima and extinction coefficients in acetonitrile and $\chi \mathrm{mT}$ values in $\mathrm{CD}_{3} \mathrm{CN}$ for 1-6 at RT.

Figure 6. Cyclic voltammograms of a Pt electrode in acetonitrile solutions with 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ as supporting electrolyte containing 1 mM of a) complexes $\mathbf{1}$ (solid line), $\mathbf{3}$ (dash dotted line) and 5 (dashed line) and b) complexes 2 (solid line), 4 (dash dotted line) and 6 (dashed line). Cyclic voltammogram of 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ in acetonitrile (dotted line). Scan rate: $200 \mathrm{mV} \mathrm{s}^{-1}$.

Table 5. Electrochemical data of complexes $\mathbf{1}$ to $\mathbf{6}$.

Highlights

- Two new Fe (III) complexes synthesised
- Magnetic behaviour of newly synthesised Fe(III) complexes in the solid state
- Solution characterisation of six Fe(III) complexes (two new and four previously reported)
- Magnetic behaviour in solution for all $\mathrm{Fe}(\mathrm{III})$ complexes
- Electrochemical studies by cyclic voltammetry

Supporting Information

Solution and solid state properties of $\mathrm{Fe}($ III $)$ complexes bearing N-ethyl- N -(2-aminoethyl)salicylaldiminate ligands

Paulo N. Martinho, Ana I. Vicente, Sara Realista, Marta S. Saraiva, Ana I. Melato, Paula Brandão, Liliana P. Ferreira and Maria de Deus Carvalho

Figure S1. Cyclic voltammogram of a Pt electrode in an acetonitrile solution with 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ as supporting electrolyte containing 1 mM of NaBPh_{4} (red solid line). Cyclic voltammogram of 0.1 M of $\mathrm{NBu}_{4} \mathrm{BF}_{4}$ in acetonitrile (black dotted line). Scan rate: 200 mV s 1.

