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A B S T R A C T 

The Pinhal do Souto mine exploited a quartz vein containing uranium minerals, mainly autunite and 

torbernite. This vein intersects a two-mica granite containing 10 ppm U and uraninite. The mine was 

exploited underground and produced 93091 kg U3O8 between 1978 and 1989 and was then closed down. 

Two dumps were left in the mine area and these are partially covered by natural vegetation. Groundwater 

and surface water have a similar slightly acid-to-alkaline pH. The 2
2

UO is abundant and complexed 

with 2
3CO , under neutral to alkaline pH. Metals and arsenic concentrations in the water increase during the 

dry season due to the evaporation. Uranium concentration in the water increases (up to 104.42 g/l) in the 

wet season, because secondary uranium minerals are dissolved and uranium is released into the water. Soils 

tend to retain a higher concentration of several metals, including U (up to 336.79 mg/kg) than stream 

sediments (up to 35.68 mg/kg), because vermiculite from the former could adsorb it more easily than could 

kaolinite from the latter. The Fe-oxides precipitate retains the highest concentrations of several metals, 

including U and Th (up to 485.20 and 1053.12 mg/kg, respectively) and the metalloid As, because it is richer 
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in oxyhydroxides and organic matter than stream sediments and soils. The median concentrations of Fe, As, 

Cd, Pb, Sb, Th, U, W and Zn in soils from this area are higher than in European soils of the FOREGS data. 

Waters from dry and wet seasons, stream sediments and soils are contaminated and must not be used. This 

area was compared with another Portuguese abandoned uranium mine area. The former mine caused a lower 

environmental impact attributable to it having lower sulfide concentration and mineral alteration than in the 

latter. 

 

Keywords: Abandoned uranium mine; Water; Stream sediments; Soils; Contamination 

 

1. Introduction 

 The extraction of uranium ore produces tailings, large volumes of contaminated waste 

rocks and heap-leach residues accumulated in dumps at the mine site. The sulfides present 

are oxidized, causing acidification of water and the release of metals. The erosion and 

weathering of dumps cause contamination of surface water and groundwater (e.g Gómez 

et al., 2006) leading to contamination of stream sediments and soils (e.g. Lottermoser and 

Ashley, 2005, 2006; Lottermoser et al., 2005; Kipp et al., 2009). Metals and metalloids are 

fixed by inorganic phases (e.g. Mulligan et al., 2001), as well as organic matter (e.g. 

Schaller et al., 2011). In the wet season and wet climates, acid mine drainage development 

and leaching of dumps are dominant pathways of contaminants into the surrounding 

environment. Recent rehabilitated uranium mine sites located in wet climates have been 

successfully remediated (e.g. Lottermoser and Ashley, 2006 and papers therein).  

 Portugal has about 58 uranium deposits that have been exploited and later abandoned, 

most of them without any remediation processes. Rare Portuguese studies on 

environmental pollution associated with uranium mines have been reported (e.g. Pinto et 

al., 2004; Antunes et al., 2011). This paper presents the investigation of environmental 

impacts caused by the Pinhal do Souto abandoned uranium mine, located in central 
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Portugal, focusing on water, stream sediments and soils. Such information reinforces the 

evidence of environmental and human health risks associated with old abandoned mining 

areas. 

 

2. Geological setting and mineralized quartz vein 

 The Pinhal do Souto uranium mine is located at the western end of the village of 

Tragos, near Mangualde,  120 km NE of Coimbra, in central Portugal (Fig. 1a, b) and, 

geologically it belongs to the Central Iberian Zone of the Iberian Massif. This area 

consists of two granites and is represented on the Fornos de Algodres Portuguese 

geological map (Gonçalves et al., 1990), where granites dominate. A coarse-grained 

porphyritic biotite granite partially surrounds a medium-grained two-mica granite (Fig. 

1b). Both Variscan granites intruded the schist-greywacke complex. 

 The mine consists of a mineralized quartz vein trending N15-32º E, 65-77º ESE, up to 3 

m thick at the surface and 18 m thick at depth, which intersects the two-mica granite. This 

vein is white in colour, locally smoked and reddish, but the last colour is due to Fe-oxides. 

It contains uranium minerals mainly autunite, Ca(UO2)2(PO4)2.10-12H2O and torbernite, 

Cu(UO2)2(PO4)2.11H2O, but also uraninite, UO2, meta-torbernite,  Cu(UO2)2(PO4)2.8H2O, 

sabugalite, HAl(UO2)4(PO4)4.16H2O, parsonite, Pb2(UO2)(PO4)2.2H2O, phosphuranylite, 

Ca(UO2)4(PO4)2(OH)4.7H2O and black uranium oxides. The quartz vein is mainly 

accompanied by an altered lamprophyre. The host granite is altered showing some 

kaolinite, secondary muscovite and silicification close to fractures. 

 The uranium mine was exploited underground and had two levels and a gallery at the 

hillside. The mine produced 93091 kg U3O8, retained in ore minerals with 0.72 % U, from 

1978 to 1989. 
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3. The mine site 

 The Pinhal do Souto uranium mine site is located in a steep, dipping N hillside with 

altitudes ranging from 650 to 550 m and a slope of about 13%, which is crossed by a NNE 

trending stream of torrential ephemeral regime. The surface drainage runs to N and W 

towards the valley of the Ludares stream, which has a very low water flux in the summer 

and belongs to the Dão river drainage basin. 

 The annual average temperature in the 1971-2000 period varied from 21.4ºC to 6.9ºC, 

reaching 40.5ºC in July-September and -7.3ºC to -5ºC in December-February. The rainfall 

dominates in the winter and the area receives about 1200-1400 mm/year. In 2009/2010 and 

2010/2011, the temperature was lower and the precipitation was 10 mm/month lower in 

February than in April and 80 mm/month higher in November than in February, although 

the temperature did not change significantly in these two months (SNIRH, 2012). 

 The mine gallery is closed and it is flooded in the rainy season. The mine has a vertical 

extraction shaft and a ventilation shaft. Some hydraulic backfill was also used with 

tailings from other uranium mines. Two mine waste heaps forming the dumps, were left, 

one with rock waste and another with low grade ore, and these are partially covered by 

natural vegetation. The stream sediments are mainly composed of weathered granite and 

quartz grains. Humic cambilsol holding low develop brown soil (Food and Agriculture 

Organization of the United Nations, 2006) occurs in the area. The area is almost covered 

by natural vegetation, consisting mostly of pines, some oaks and herbaceous species, but 

vineyards and orchards also occur in the valleys and there is also some pasture. 

 

4. Analytical methods 

 Four wells, two springs, three streams and two mine galleries, all located close to the 

Pinhal do Souto abandoned uranium mine (Fig. 1c) made a total of eleven sampling points 
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that were chosen to collect water samples four times during a year in April and July 2010 

during the dry season, and November 2010 and February 2011 during the wet season, 

obtaining a total of 44 water samples. Water from wells was collected 1-2 m below the 

water level and samples from springs, streams and mine galleries were collected   20 cm 

below the surface. Temperature, pH, Eh, dissolved oxygen, electrical conductivity and 

alkalinity were measured in situ. The samples were filtered through 0.45 m pore size 

membrane filters. They were acidified with HNO3 at pH 2 for the determinations of 

cations by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), using 

a Horiba Jovin Yvon JY2000 2 spectrometer with a monochromator. Anions were 

determined in non-acidified samples by ion chromatography with a Dionex ICS 3000 

Model. The precision was mainly better than 5%, but only better than 15% for Na and Al. 

Duplicate blanks and a laboratory water standard were analysed for quality control. Total 

dissolved solids and total solids were determined, corresponding to the weight of material 

obtained by evaporating of 100 ml of filtered and unfiltered water through 0.45 m filters, 

respectively. The analytical data show ion balance errors within   5% for most water 

samples. 

 A total of 15 samples of stream sediments were collected (Fig. 1c). They were from six 

places that receive surface drainage from the dumps and the mine gallery, five local 

streams and four places in the Ludares stream that receive some mine drainage, but at 

some distance from the mine. A sediment very rich in colloidal Fe-oxides, precipitated 

from a groundwater close to the old mine was also collected (sample 5; Fig. 1c). A total of 

47 soil samples were collected inside or close to the mine area of influence, using a 

sampling grid of 0.5x0.6 km (Fig. 1d). The stream sediment and soil samples were 

collected at a depth of 20-30 cm, transported to the laboratory in polyethylene bags, dried 
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at 40º C, disaggregated with a rubber hammer and sieved through a 2 mm nylon sieve for 

the determinations of mineralogical, physico-chemical and chemical data. The pH of the 

samples was measured  in a solid-water suspension (liquid/solid ratio of 2.5), whereas 

electrical conductivity (EC) was measured in a liquid/solid ratio of 1/5. Representative 

stream sediment (6) and soil (13) samples from the Pinhal do Souto area containing 

distinct Th and U concentrations were selected to determine organic matter (OM) and 

cation exchange capacity (CEC), while grain size and mineralogical identifications were 

also obtained in some of these representative stream sediments (4) and soil (9) samples. 

The grain size was determined by laser diffraction analysis of the < 2 mm fraction, using a 

Coulter LS 230 laser granulometer and the accuracy of the grain size analysis is up to 

10%. The mineralogical identifications were carried out by X-ray diffraction, using a 

Philips PW 3710 X-ray diffractometer, with  a Cu tube, at 40 kV and 20 nA. The 

mineralogical composition of the < 2 m fraction was obtained in oriented samples before 

and after heating up to 550ºC and with ethylene glycol treatment. These determinations 

were carried out at the Department of Earth Sciences, University of Coimbra, Portugal. 

The cation exchange capacity (CEC) was determined as the sum of extractable bases and 

extractable acidity by the ammonium acetate solution (pH7) method (Thomas, 1982) with 

a precision of 2%. The organic carbon content was determined using an elemental 

analyser. After oxidation at 1100ºC, CO2 was quantified by an NIRD (near infrared 

detector). The organic matter (OM) was calculated applying a factor of 1.724, on the 

assumption that OM contains 58% organic carbon (Nelson and Sommers, 1996), with a 

precision of 2% for stream sediment and 5% for soil. These two determinations were 

carried out at the Department of Edaphology, University of Trás-os-Montes and Alto 

Douro, Portugal. 
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 Samples < 250 m of stream sediments and soils were digested with aqua regia (3:1 

HCl-HNO3), filtered through a 2 m filter and analysed by an ICP-OES to determine 

several metals and metalloids at the Department of Earth Sciences, University of Coimbra. 

An in-house reference soil, prepared for aqua regia analysis, was validated using the 

certified sewage sludge amended soil BCR 143 R. Duplicate blanks and a laboratory 

standard were included in each batch of 30 samples. The detection limits in mg/l for 

stream sediments and soils are 0.003 for Sr, 0.001 for Zn, 0.01 for Al, Fe and Pb, 0.02 for 

Cr and Mn, 0.03 for Co and Cu, 0.04 for Cd and Ni, 0.05 for As, Sb, Th and W and 0.135 

for U. The precision for determinations in stream sediments is 4-12 %, with the highest 

value for Cu, and 1-16 % for soils with the 16% for Ni. 

 The spatial distribution of physico-chemical parameters, metals and metalloids of soils 

of the abandoned Pinhal do Souto uranium mine area is tested with a coupled 

methodology that performs geochemical distribution and geostatistical interpolation. A 

multivariate statistical analysis, using principal component analysis (PCA) is applied to 

the variables of waters and soils. In soils, a subsequent synthesis of the variables (PCA 

technique, Spearman) will reduce the outliers’ weight. The results suggest spatial 

correlations between some variables and independence of others, which are characterized 

individually. Concentrations below the detection limits are considered zero. Samples 

without determined concentrations are not included in the PCA. 

 

5.  Results 

5.1. Water samples 

 The physico-chemical parameters and chemical analyses of water samples from the 

Pinhal do Souto abandoned uranium mine area are shown in Table 1. The water sample 

from a spring (PS7) was collected upstream of the old mine area to represent the 
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background or natural levels (Fig. 1c). The PS5 water is from another spring that 

experiences some influence from the old mining activities, whereas PS9 and PS10 are 

groundwater samples from the mine gallery. The PS1, PS2, PS3 and PS8 are groundwater 

samples collected from wells and the PS4, PS6 and PS11 samples are from streams located 

inside the area of the Pinhal do Souto abandoned mine (Fig. 1c). According to the Piper 

classification, most water samples are of sodium-potassium type and chloride type or do 

not contain a dominant anion. However, those from springs and the mine gallery are of 

mixed cations, but of bicarbonate type. 

 The electrical conductivity ranges from 22 to 235 S/cm and the total dissolved solids 

are within the range 14-131 mg/l, indicating that these waters are poorly mineralized. pH 

values range from 5.1 to 8.5 and increase in February (Table 1). 

 In general, As, Ba, B, Cd, Co, Cr, Cu, Li, Ni, Pb, Sr, Th and Zn show higher 

concentrations in April and July than in November and February due to the evaporation 

effect (Table 1, Fig. 2a,b, c). Uranium with concentrations ranging from 29.59 g/l to 

104.42 g/l has a distinct behaviour as its concentration increases during rainfall periods 

(Fig. 2f). Furthermore, Na, Ca, Mg, 
3HCO  and 

2NO show the highest concentrations in 

most water samples in July and November (Table 1, Fig. 2d) and in some groundwater 

samples (PS5, PS9 and PS10). These cations and anions are probably related to the 

weathering of the country two-mica granite (Fig. 1c), because they have higher 

concentrations in the spring water sample (PS5) and mine gallery water samples (PS9 and 

PS10) than in water samples from wells and streams, as those water samples show the 

highest electrical conductivity values (Table 1). The highest 
2NO  concentrations of these 

water samples are probably due to the fact that they have the lowest redox potential values 

(Eh). In general, surface water and groundwater have higher electrical conductivity in July 
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and November than in April and February, which is attributed to the higher concentrations 

of Na, Ca, Mg and 
3HCO and 

2NO in July and November. No significant distinction 

occurs in the physico-chemical parameters and chemical composition (e.g. Ba, Cd, Cr, Cu, 

Ni, Pb, Zn, Th and U concentrations) of groundwaters and surface waters (Table 1).  

 Samples PS1, PS3 and PS8 are from wells and PS4 and PS11 are from streams (Table 

1) affected by fertilizers and therefore show the highest 2
4SO (Fig. 2e) and 


3NO concentrations.  

 Principal component analysis (PCA) was applied to 28 determinations (measured 

physico-chemical parameters and analysed anions and cations) in 44 water samples from 

the Pinhal do Souto uranium mine area (Table 2). The three first component axes (PC1, 

PC2 and PC3) explain most of the data variability (75% of the total variance). The first 

principal component axis PC1 shows the association of B, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb, 

Sr, Zn, As and Th with its positive loading, whereas U is associated with negative loading 

in the PC1, supporting that finding the U has a distinct behaviour from the others, as its 

concentration increases in the wet season and the other concentrations increase in the dry 

season. 
2NO , 

3HCO , Na, Ca, Mg and Mn show a high loading in PC2 (Table 2), as they 

present the highest concentrations in most water samples in July and November (Table 1). 

The association of Cl

, 

3NO , 2
4

SO and K with the negative loading of PC3 (Table 2) is 

attributed to the water samples being affected by fertilizers, which have the highest 

2
4

SO concentration. 
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5.2. Stream sediments 

 The textural characteristics, physico-chemical parameters and concentrations of metals 

and metalloids of stream sediments from the Pinhal do Souto abandoned uranium mine 

area are given in Table 3. They are dominated by sand (46.3-85.5 %) and have 12.8-47.5 

% silt and 1.7-6.2 % clay. They consist of quartz, K-feldspar, plagioclase, muscovite, 

chlorite, kaolinite, illite and smectite. Of the clay minerals, kaolinite dominates (up to 46 

%). The Fe-oxides precipitate (PS-SED5) has 19.8 % silt and 3.9 % of the < 2 m fraction, 

which is amorphous. It has the highest organic matter content, cation exchange capacity 

and electrical conductivity (Table 3). 

 Organic matter in soils and recent sediments has a much higher CEC (up to 500 

cmol/kg) than clay minerals or Al-Fe-oxides (up to 150 cmol/kg) (Mirsal, 2004). The 

sediment from the Ludares stream has the lowest organic matter content and cation 

exchange capacity (Table 3). The mine drainage stream sediment PS-SED20 with the 

highest silt (47.5 %) and clay (6.2 %) contents has the highest cation exchange capacity 

(4.53 cmol/kg), as shown in Table 3, but no correlation was found between these two 

parameters, because kaolinite is the most abundant clay mineral in stream sediments and 

has a low adsorption capacity. 

 There is no significant distinction between the average pH values of stream sediments 

that received the direct uranium mine drainage (4.8) and the local stream sediments (4.7), 

but a slightly higher value (5.2) appears in the Ludares stream sediments. 

 In general, stream sediments that received direct drainage from the abandoned uranium 

mine have the highest Fe, Mn, Cd, As, Zn, Pb, Cr and Th concentrations (Fig. 3). 

However, some of these sediment samples have similar As and Th contents to those of 

local stream sediments (Table 3, Fig. 3). Cobalt and Ni were only detected in some stream 

sediments that received the mine drainage and in the Fe-oxides precipitate. Uranium was 
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only detected in one sample from Ludares stream and in the Fe-oxides precipitate (Table 

3). The Fe-oxides precipitate is the richest in organic matter (7.26%), electrical 

conductivity (200 S/cm), As (3.71 g/kg), Cd (1.24 g/kg), Co (1.34 g/kg), Fe (278.9 g/kg), 

Th (1.05 g/kg),  U (485 mg/kg),  W (108 mg/kg)  concentrations (Table 3). A correlation 

matrix was calculated for the data of the stream sediment samples (Table 4), but the Fe-

oxides precipitate sample was not included in this calculation, because it has a different 

origin and higher concentrations of metals and metalloids when compared with the other 

samples. There are significant positive correlations (r > 0.7 at 95% level), between Fe 

concentration and As, Cd, Cr, Pb and Th concentrations. These correlations in stream 

sediments reflect the capacity of Fe-oxyhydroxides to adsorb metals and metalloids in the 

surface environment (e.g. Abdelouas, 2006; Grosbois et al., 2007; Root et al., 2007; 

Cabral Pinto et al., 2008; Carvalho et al., 2012) and indicate the influence of mine dumps, 

because the stream sediments receiving the direct drainage from these mine dumps have 

the highest concentrations of Fe, As, Cd, Cr, Pb and Th (Table 3). 

 

5.3. Soils 

 The textural characteristics, physico-chemical parameters and concentrations of metals 

and metalloids of soils from the Pinhal do Souto uranium mine area are presented in 

Appendix A. Although the number of soil samples with determined textural characteristics 

is limited, they are dominated by sand (79.9-97.4 %) and the clay content is very low (0.3-

1.8 %). The soil samples consist of quartz, K-feldspar, plagioclase, muscovite, kaolinite, 

illite, smectite and vermiculite. Of the clay minerals, kaolinite is generally the most 

abundant (up to 50 %), but vermiculite dominates (up to 46 %) in a few samples and 

smectite is only very rarely important (up to 55 %). The organic matter concentrations are 

very low ranging from 0.72 to 4.95 % (Appendix A). The cation exchange capacity is also 
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low 0.12-5.13 cmol/kg. The electrical conductivity values range from 10 to 103 S/cm, 

suggesting low contamination. The pH values are acidic, as they range from 3.2 to 5.4, 

which is attributed to the influence of the granite background and in some soil samples is 

also due to mine tailings. The concentrations of metals and metalloids have a great range 

and most of them have two or more values below the detection limit, except for Fe and Zn 

(Appendix A). 

 Significant positive correlations (r > 0.7 at 95% level) occur between the concentrations 

of As and Al, Cu, Fe, Mn, Pb, Sb, Sr and W (Table 5). Tungsten is also positively 

correlated with Al and Sb, Ni with Co, and Sr with Pb. These correlations can be 

associated with the occurrence of these metals and metalloids in the U-mine and their 

similar geochemical behaviours. 

 Principal component analysis (PCA) was applied to these physico-chemical parameters 

and 14 metals and 2 metalloids determined in 47 soil samples collected from the Pinhal do 

Souto uranium mine area (Table 6). Most of the data variability is represented by the 

principal components (PCs), which can explain the behaviours of metals and metalloids 

and their absorption and retention according to soil properties. The first three factors (PC1, 

PC2 and PC3) explain most of the data variability (70% of the total variance). Most metals 

and metalloids, such as Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sr, Th, W and Zn are 

correlated, as confirmed by PC1 and space association (Table 6). The mobility of metals 

decreases as the pH approaches neutrality, which is correlated with EC, and confirmed by 

PC2 space association (Table 6). The independence of U is confirmed by PC3 factor 

(Table 6) and suggests a distinct behaviour relatively to other metals as it is probably 

mainly associated with the two-mica granite from Pinhal do Souto. 

 Concentrations of metals and metalloids were interpolated to the samples that are 

located in the nodes of the irregular grid used to collect soil samples in the study area, 
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using the multi-Gaussian Kriging implemented in SpaceSat v.2.2.17 (BioMedware, 2011). 

These concentrations were transformed into normal scores to attenuate the impact of 

extreme values on the computation of the variogram, and then interpolated using ordinary 

Kriging. The results (Kriging estimate and predicted variance) were back-transformed 

using the empirical procedure developed by Saito and Goovaerts (2000). Total metal and 

metalloid contents were grouped in four classes (minimum; median; median plus one 

standard deviation; median plus two standard deviations; higher values). Maps of Cr, Th 

and Zn total concentrations show patterns that define a coincident anomaly zone, inside 

the uranium mine area and close to the dumps. Chromium and Th are more widely 

dispersed and with lower values (Fig. 4). In the northern part of the area, the Zn anomaly 

(Zn > 258 mg/kg) is more widely dispersed than the U anomaly (167 mg/kg). Another U 

anomaly occurs in the southern part of the area. Both U anomalies are to close the mine 

dumps. Maps of Sb, Pb, Sr and W define coincident anomalies that are located to the west 

of the mine dumps (Fig. 4), but with different concentrations (Sb > 99 mg/kg; Pb > 404 

mg/kg; Sr > 41 mg/kg; W > 56 mg/kg). There is another Pb anomaly which is related to 

the dump located to the north of the area. Two larger W anomalies with higher 

concentrations are defined (Fig. 4). 

 

6. Discussion 

6.1. Geochemistry of waters, stream sediments and soils 

 The pH values of groundwater samples from the gallery within the Pinhal do Souto 

uranium mine, when it was operating and autunite and torbernite were actively dissolved, 

ranged from 4.49 to 6.18 (Magalhães et al., 1985). After the mine was closed in 1989, 

primary minerals altered to secondary uranium minerals due to weathering. In general, 

secondary minerals are phosphates, carbonates, sulphates, oxyhydroxides and silicates 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(Stefaniak et al., 2009). From April 2010 to February 2011 the pH values of groundwater 

range from 5.1 to 8.5 (Table 1) and are similar to those of surface water (5.1-8.3); they 

ranged from slightly acid to alkaline because sulphide oxidation is not enough to produce 

an acid pH and the formation of secondary minerals that retained the acidity, metals and 

metalloids until rainfall was favoured (Bigham and Nordstrom, 2000; Jambor et al., 2000; 

Jerz and Rimstidt, 2003). This neutral to alkaline pH is typical of waters close to uranium 

mines (e.g. Lottermoser et al., 2005; Gómez et al., 2006). 

 The water chemistry is mainly controlled by pH, Eh and the type of complexing agents 

present (Langmuir, 1997). Most samples collected in February 2011 do not contain Cd, 

Co, Cr, Cu, Fe, Li, Ni, Zn and Pb (Table 1), because they generally have the highest pH 

values (6.84-8.48, Table 1), which favours the formation of secondary minerals such as 

hydroxides and oxyhydroxides (Jambor, 1994). But in general, As, Ba, Cd, Co, Cr, Cu, Li, 

Ni, Pb, Sr, Th and Zn exhibit higher concentrations in summer than in winter (Table 1, 

Fig. 2a, b, c) due to the higher temperature, which causes water evaporation. In general, 

stream sediments that receive the direct mine drainage due to erosion and leaching of mine 

dumps have the highest concentrations of Fe, Mn, Cd, As, Zn, Pb, Cr and Th (Fig. 3, Table 

3), which are adsorbed in organic matter and oxyhydroxides. In the stream sediments, Fe-

oxides precipitate (PS-SED5) is the main carrier of Fe, As, Cd, Co, Sr, Th, U and W (Table 

3), because it immobilizes metals and metalloids adsorbed onto the surfaces of Fe-

oxyhydroxides (e.g. Frau and Ardau, 2004; Pinto et al., 2004; Grosbois et al., 2007; Cabral 

Pinto et al., 2008; Carvalho et al., 2012) and some is retained in organic matter. Variations 

in pH and Eh or a flood event can cause dissolution of these Fe-oxyhydroxides and thus 

release high amounts of toxic metals and metalloids into the environment (Siegel, 2002; 

Carvalho et al., 2012). The Fe-oxides precipitate (PS-SED5) is also the richest in organic 

matter (Table 3) which also retains metals and metalloids.  
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 The Na, Ca, Mg and 
3HCO concentrations of waters from the Pinhal do Souto  uranium 

mine (Table 1) are related to Mn and those variables are dependent on the redox potential 

(Eh). The experimental studies indicate that Mn concentrations in waters have been 

attributed to the reductive dissolution of Mn oxyhydroxides that are mediated microbially 

and by the cation exchange (Petrunic et al., 2005; Loomer et al., 2011). The Mn
2+

 released 

by reduction reactions is important in the cation exchange reaction between the water and 

cations (Na
+
, Mg

2+
 and Ca

2+
) adsorbed on the solid phase. 

3HCO is produced during the 

interaction of Mn oxides with dissolved organic matter in water. The Fe is not associated 

with these variables, because Fe-oxyhydroxides are hardly dissolved compared to Mn-

oxyhydroxides (Alloway, 1995). The general decrease of water Eh in November 2010 

(Table 1) caused the Mn oxyhydroxides dissolution and was the reason why most of the 

water has high values of the cations and also 
2NO . However, in general they reach the 

highest concentrations in water in July because of the intense water evaporation. Their 

higher concentrations in water collected in July and November 2010 than in samples 

collected in April 2010 and February 2011 justify the higher electrical conductivity values 

in the first two than in the second two months (Table 1). 

 The U concentrations in water range from 29.59 g/l to 104.42 g/l (Table 1), which 

are typical of waters from uraniferous areas (e.g., Bernhard et al., 1996; Noller et al., 

1997; Iwatsukí and Yoshida, 1999; Landa, 1999). U (VI) is much more soluble than U 

(IV) and occurs as 2
2

UO under neutral and alkaline conditions and forms complexes with 

carbonates, phosphates, vanadates, fluorides, sulphates and silicates (Langmuir, 1997). 

Uranyl carbonate and sulphate complexes, are the most stable complexes under water Eh-

pH conditions (Lottermoser et al., 2005). The highest concentrations of U occur in surface 

water and groundwater from the Pinhal do Souto uranium mine area in the wet season 
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(November 2010 and February 2011) (Table 1, Fig. 2f), when the flow is high and 

leaching from the dumps and mineralized quartz vein takes place as is common in uranium 

mine areas (e.g. Pinto et al., 2004). 

 Of the stream sediments, only one sample from the Ludares stream and the Fe-oxides 

precipitate retain U up to 0.49 g/kg in the latter (Table 3), because U was adsorbed onto 

Fe-oxyhydroxides (Lottermoser and Ashley, 2006; Abdelouas, 2006) and probably 

retained in the organic matter, which is a main uranium binding (Idiz et al., 1986). 

 The low phosphate and sulphate concentrations in water samples from the Pinhal do 

Souto uranium mine area with high uranium concentration, in particular those related to 

the mine gallery (Table 1) suggest the occurrence of uranium as uranyl tricarbonate 

species, as these minerals are extremely stable and soluble (Clark et al., 1995; Stefaniak et 

al., 2009). Those samples from the spring (PS5) and mine gallery (PS9 and PS10) were 

selected for speciation, as they show the highest U concentrations (Table 1). The U 

speciation was obtained using the Visual Minteq version 3.0 (Gustafsson, 2010). The 

calculations predict that 2
2

UO is abundant and complexed with 2
3CO in water samples 

PS5, PS9 and PS10 (Table 7). The formation of strong carbonate complexes 

2
232 )(COUO and 4

332 )(COUO is common under neutral to alkaline pH conditions 

(Grenthe et al., 1992), as in these three water samples from the Pinhal do Souto uranium 

mine (Tables 1, 7). 

 The high uranium concentration of up to 71.85 g/l in the water sample (PS7) from 

upstream of the mine influence suggests that the country granite contains uranium. The 

Variscan two-mica granite from the Pinhal do Souto uranium mine, which is cut by the 

mineralized quartz vein, has a mean 10 ppm U concentration (Silva and Neiva, 2000) and 

contains uraninite (Cabral Pinto et al., 2008, 2009). This granite belongs to the Beira 
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batholith, which contains uranium minerals (Cotelo Neiva, 2003) and is an important 

source of uranium for surface water and groundwater (Porcelli et al., 1997). 

 In fluvial systems affected by the mine drainage, the contaminant concentrations in 

sediments tend to decrease downstream of the contaminant sources, due to hydrodynamic 

and chemical processes (Hudson-Edwards et al., 1996; Cidu et al., 2011). This attenuation 

is observed in Fig. 3, as there is a decrease in the concentrations of potential toxic metals 

and metalloids from the effluents that receive mine drainage for the Ludares stream, which 

flows a long away from the mine dumps and has a higher hydraulic flow than its effluents. 

 The metals Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sr, Th, W and Zn and the metalloids As and 

Sb continue to be released from the mine dumps, leaching through the mine area and are 

retained in soils (Appendix A, Fig. 4). These soils have an acid pH (3.2-5.4, Appendix A), 

which influences the adsorption capacity of metals and metalloids (Appendix A, Fig. 4), 

because these metals and metalloids are more mobile and more available in acid than 

neutral conditions (Alloway, 1995). Cr, Th, U, Zn and Pb anomalies of soils are related to 

the mine dumps (Fig. 4). The organic matter forms soluble and insoluble complexes with 

heavy metals causing their retention in soils (Kabata-Pendias and Mukherjee, 2009). But 

the organic matter concentration is very low in these soils, ranging from 0.72 to 4.95% 

(Appendix A), so it did not play a significant role. These soils are also poor in the clay 

fraction (content up to 1.8%), because they consist mainly of sand (up to 97.4%, Appendix 

A). Therefore, the clay minerals that are good to retain metals and metalloids could not 

have played an important effect. Metals and metalloids are probably mainly retained in the 

vermiculite and Fe-oxyhydroxides of soils (James and Barrow, 1981), which is also 

supported by the PC1 association (Table 6).  

 Although the number of solid samples analysed for texture is small, the stream 

sediment samples have a higher clay content (1.7 to 6.2 %) than the soil samples (0.3 to 
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1.8 %). The Al, As, Sr and Zn attain higher concentrations in a few stream sediment 

samples than in soil samples (Table 3, Appendix A). The Al content is a major constituent 

of kaolinite, which occurs in stream sediments. But kaolinite does not easily adsorb metals 

and metalloids, which explains that generally the stream sediments are not richer in them 

than soils. In general, soils tend to have higher Cu, Mn, Pb, Sb, U and W concentrations 

than stream sediments (Table 3, Appendix A), because soils contain vermiculite which 

adsorbs metals and metalloids. The Fe-oxides precipitate has higher As, Cd, Co, Fe, Sr, W, 

Th and U concentrations than the soils (Table 3, Appendix A), because its concentrations 

of iron-oxides and organic matter are higher than those in soils. Therefore, the Fe-oxides 

precipitate has a great capacity to adsorb metals and the metalloid As.  

 

6.2. Contaminated waters, stream sediments and soils 

 In general, water from the Pinhal do Souto uranium mine area has higher 
2NO , As, Cd, 

Cr, Cu, Fe, Ni and Pb concentrations than the acceptable levels for drinking water under 

Portuguese law (Decree, 2007), and higher U content than the level indicated by the World 

Health Organization (WHO, 2010) (Table 1, Fig. 2a, b, f). The sample PS5 also has a 

concentration of Co that is higher than permitted for agricultural use (Portuguese Decree, 

1998). 

 To assess the contamination degree in stream sediments, the pollution index is given by 

the enrichment factor (EF), which was calculated for all metals and metalloids using the 

equation EF = [(elementsample/Alsample)] / [(elementbaseline/Albaseline)] (Sutherland, 2000; 

Andrews and Sutherland, 2004).  EF has five categories:  < 2 – no pollution; 2-5 – 

moderate pollution; 5-20 – significant pollution; 20-40 – very strong pollution; > 40 – 

extreme pollution. Geochemical normalization of trace elements to a conservative 

element, which has a uniform flux in the surface environment for a long period of time, 
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compensates for changes in the concentrations of trace elements (Sutherland, 2000). The 

Al content was used for normalization, as Al is almost immobile in the surface 

environment. The average of each element from the five regional stream sediment samples 

collected in the Pinhal do Souto uranium mine area (Table 3) was used as a baseline value, 

because background values depend on the scale and lithology and the use of background 

values obtained in large areas consisting of several lithological units can lead to spurious 

results (Reimann and Garrett, 2005). However, Co, Ni and U concentrations are below the 

detection limit in these five analysed samples. So, the concentrations of these elements 

(Co-9 ppm; Ni-19 ppm and U-0.5 ppm) given by Ferreira (2000) and Ferreira et al. (2001) 

for a low-density geochemical survey in Portugal were used. 

 The stream sediments that receive mine drainage (Table 3) are significantly to very 

strongly polluted in Cr (EF > 5, up to 38); moderately significantly to very strongly 

polluted in Mn (EF > 2, up to 23); moderately to significantly polluted in Pb (EF > 2, up to 

6) and moderately polluted in Cd, Co, Fe, Th and Zn (EF > 2). The sediment from the 

Ludares stream that receives indirect contribution from the mine drainage is extremely 

polluted in U (EF = 97) and moderately polluted in Pb (EF = 3). The pollution found in 

streams that flow through the uranium mine area is greatly attenuated and disappears in 

the Ludares stream, except for one point, which receives a direct contribution from the 

mine drainage and has a very high U concentration (36 mg/kg, Table 3). 

 The level of contamination in soils from the Pinhal do Souto uranium mine area is 

defined by comparing the total concentrations in soils with the maximum accepted levels 

in soils according to Italian Legislation (Decreto Ministeriale, 1999), which are higher for 

industrial areas than for public, private green areas and residential sites. Most of the soils 

studied have high As, Cd and Sb concentrations that render them unfit for any use (Fig. 5). 

Some soil samples have higher Cu, Pb and Zn concentrations than the acceptable level for 
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public, private green areas and residential sites. This legislation does not provide values 

for some metals. The maximum contents of Fe, As, Cd, Co, Ni, Pb, Sb, U, W and Zn of 

these soils are higher than those of Portuguese soils from the FOREGS data (Table 8). The 

median values of Fe, As, Cd, Pb, Sb, Th, U, W and Zn of soils from this Portuguese area 

are higher than those of soils from European countries of the FOREGS data (Salminen et 

al., 2005). The concentrations of Cd, Pb, Sb, U and W of soils from this Portuguese area 

also attain higher maximum concentrations than those of soils from European countries 

(Table 8). Therefore, the soils from the Pinhal do Souto mine area are contaminated due to 

the dumps. 

 

6.3. Comparison of the environmental impacts caused by two abandoned uranium mines 

in Portugal 

 The environmental impacts caused by the abandoned uranium mine from Pinhal do 

Souto (PS) are compared with those produced by another abandoned uranium mine 

located in Vale de Abrutiga (VA), central Portugal (Table 9). The PS mine was exploited 

for four years longer and produced more 3091 kg U3O8 than the VA mine, and both were 

closed down in 1989. However, the contamination of water in U, Pb and Cu is higher in 

the VA area than in the PS area, though the contamination with Th is higher in the PS area. 

The both the surface water and groundwater from the VA area have a higher electrical 

conductivity than those from the PS area, supporting the greater abundance of metals in 

waters from the VA area. The water from the VA area has an acid pH, whereas that from 

the PS area has a slightly acid to alkaline pH, because quartz veins from the VA area 

contain more sulfides than the quartz vein from the PS area which altered into oxides and 

2
4SO is formed and has a much higher value in waters from the VA area (Table 9). The 

open pit exploitation in the VA area favoured more alteration than the underground 
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exploitation in the PS area. Therefore, secondary uranium minerals should be more 

abundant in the VA quartz veins than in the PS quartz vein and dumps. Secondary minerals 

retain acidity and metals are liberated into water, particularly during the wet season (e.g. 

Jerz and Rimstidt, 2003). Water from the VA area is more contaminated with U, Pb and Cu 

than that from the PS area (Table 9). Water from the VA area is also contaminated with 

2
4SO , Fe, Mn and Ra and must not be used for drinking and irrigation (Pinto et al., 2004), 

whereas that from the PS area is also contaminated with 
2NO , As, Cd, Cr and Ni and 

must not be used as drinking water (Portuguese Decree, 2007; WHO, 2010). 

 In both areas, stream sediments that receive drainage from the U mines were compared 

with sediments collected in local streams and found to be generally enriched in Fe, Co, Cu 

and Zn but those from the PS area are also generally enriched in Pb and Th. The 

contamination of these stream sediments in Cu, Zn, Co and Fe is higher in the VA area and 

the contamination in Th and Pb is higher in the sediments from the PS area. The stream 

sediments of the VA area are also contaminated in U. However, the Fe-oxides precipitate 

related to the PS mine has the highest U, Co, Fe and Th contents (Table 3), showing the 

importance of Fe-oxyhydroxides to adsorbing metals (e.g. Carvalho et al., 2012).  

 

7. Conclusions 

 The Pinhal do Souto abandoned uranium mine caused contamination in several metals 

including Th and U and metalloids in water, stream sediments and soils, which must not 

be used. The OM content and precipitation of Mn, Fe oxyhydroxides in stream sediments 

due to the high pH values of water are the most important for the retention of metals and 

metalloids and some have higher concentrations than in soils. In general, stream sediments 

have a higher clay content than soils, but soils tend to show higher Cu, Mn, Pb, Sb, U and 
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W concentrations, which may be adsorbed by vermiculite, and a lower Fe content than 

stream sediments. The Fe-oxides precipitate is richer in As, Cd, Co, Fe, Sr, W, Th, U and 

organic matter than stream sediments and soils, as these metals and metalloid are retained 

in organic matter and oxyhydroxides. Specifically, the dumps must be rehabilitated. 

 Uranium concentrations in water from the Pinhal do Souto area are of particular 

concern because they are permanently above the human consumption limits, in both the 

wet and dry seasons, whereas metals and arsenic generally cause environmental concern in 

the dry season (April and July). In the wet season, secondary uranium minerals are 

dissolved and uranium is released into the solution. Metals and arsenic are released in 

lower concentrations than uranium, as sulphides occur in low amounts. In the dry season, 

their concentrations increase due to evaporation, whereas U is scavenged from the solution 

through the formation of secondary minerals. 

 This area was compared with the abandoned uranium mine area at Vale de Abrutiga. 

Although both mines were closed down in 1989 and the former was exploited for four 

years longer and produced 3000 kg more U3O8, it caused less of an environment impact 

on the water and stream sediments than the latter. This is attributed to the fact that sulfides 

are less abundant and underground mineral alteration was less intense in the former, as 

shown by a lower 2
4SO concentration in water than in the latter, which was exploited in an 

open pit. In the Pinhal do Souto uranium mine area, soils have higher median values of Fe, 

As, Cd, Pb, Sb, Th, U, W and Zn than soils from European countries of the FOREGS data 

(Salminen et al., 2005), because they are contaminated due to the dumps. 
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Figure Captions 

Fig. 1. Geological area containing the Pinhal do Souto uranium mine and the sample collection sites. a. 

Location of the Tragos area on the map of Portugal; b. Geological map of this area with the Ludares stream 

and its effluents and the area of detailed study; c.d. Simplified map showing the two mine dumps and 

location of water and stream sediment samples in c and soil samples in d., where the area used in the maps 

of soil anomalies (Fig. 4) is shown. 

Fig. 2. Seasonal chemical variations in waters from the Pinhal do Souto uranium mine area. a) As, b) Pb, c) 

Th, d) Na, e) 
2

4SO , f) U. VMR - recommended values for agriculture; VMA - permitted values for 

agriculture; VP - permitted values for human consumption (Portuguese Decrees, 1998, 2007), except for U 

(WHO, 2010). 

Fig. 3. Variation in concentrations of metals and a metalloid in stream sediments from the Pinhal do Souto 

uranium mine area. 

Fig. 4. Location of soil samples and geochemical distribution of seven metals and one metalloid in the 

Pinhal do Souto uranium mine area. 

Classes defined for Cr (0-3, 3-7, 7-12, >12 mg/kg); Th (0-23, 23-35, 35-47, >47 mg/kg); U (0-46, 46-106, 

106-167, >167 mg/kg); Zn (3-112, 112-185, 185-258, >258 mg/kg); Sb (0-27, 27-63, 63-99, >99 mg/kg);  

Pb (0-98, 98-251, 251-404, >404 mg/kg); Sr (0-13, 13-27, 27-41, >41 mg/kg); W (0-21, 21-39, 39-56, >56 

mg/kg). 

Fig. 5. Selected concentrations of some metals and metalloids of soils from the Pinhal do Souto uranium 

mine area. Maximum levels for — public, private green areas and residential sites; - - - industrial areas 

(Decreto Ministeriale, 1999). 
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    Physico-chemical parameters   Anions (mg/l)   Major cations (mg/l) 

Sample 
 

T (ºC) pH Eh (mV) DO (mg/l) EC (μS/cm) 
 

HCO3
- SO4

2- PO4
2- NO3

- NO2
- Cl- F- 

 
Na K Ca Mg 

PS1  w April 2010 13.9 5.12 333 7.29 96 

 

9.31 4.91 0.09 17.04 0.38 14.51 0.09 

 

7.05 4.03 3.90 3.01 

 

July 2010 15.6 6.03 51 5.65 94 

 

10.80 6.66 0.09 14.88 0.76 14.61 0.04 

 

8.14 3.85 3.28 3.46 

 

Nov. 2010 12.5 5.77 -134 3.75 80 

 

10.20 5.85 0.21 10.88 0.65 12.25 0.06 

 

7.88 3.09 3.59 1.95 

 

Feb. 2011 12.0 7.54 177 7.10 87 

 

9.15 10.70 0.18 16.03 0.61 12.87 0.08 

 

7.90 3.66 3.72 1.34 

                    PS2  w April 2010 11.0 6.23 59 1.92 53 

 

14.45 1.01 < 0.006 0.10 0.86 11.78 0.13 

 

5.88 1.55 2.07 2.00 

 

July 2010 14.4 6.52 -235 0.91 62 

 

21.60 1.57 0.19 < 0.004 1.20 11.61 0.03 

 

6.45 2.35 2.26 1.86 

 

Nov. 2010 8.3 6.47 -47 0 64 

 

21.01 1.77 0.18 0.08 1.09 14.77 0.02 

 

7.90 3.23 2.84 1.03 

 

Feb. 2011 6.3 8.11 -93 0 43 

 

14.56 2.59 < 0.006 < 0.004 0.94 9.72 0.02 

 

6.12 1.96 1.75 < 0.001 

                    PS3  w April 2010 12.1 7.96 91 2.93 83 

 

17.82 7.04 < 0.006 4.33 0.83 10.95 0.11 

 

5.40 1.47 7.04 3.16 

 

July 2010 17.6 6.87 -5 5.24 113 

 

47.52 13.05 0.16 0.05 1.75 10.25 0.18 

 

6.03 1.75 22.63 9.81 

 

Nov. 2010 12.8 5.87 -7 1.96 89 

 

20.40 12.15 < 0.006 3.60 1.01 10.29 0.06 

 

7.90 3.23 2.84 1.03 

 

Feb. 2011 9.0 8.07 133 2.01 89 

 

24.96 14.99 0.21 10.19 1.14 11.12 0.10 

 

5.80 1.94 11.5 2.61 

                    PS4  st April 2010 12.1 8.10 68 7.74 46 

 

1.19 2.04 < 0.006 2.20 0.37 7.42 0.13 

 

4.64 1.58 2.36 2.01 

 

July 2010 15.0 6.31 124 5.82 99 

 

20.74 6.73 0.37 10.15 0.94 15.28 0.10 

 

9.36 3.37 4.29 4.47 

 

Nov. 2010 10.2 6.53 -19 5.29 87 

 

18.97 6.33 0.20 6.62 0.72 15.26 0.26 

 

8.99 3.02 5.09 1.75 

 

Feb. 2011 10.1 8.11 134 9.59 49 

 

12.06 5.19 0.06 3.82 0.52 8.35 0.12 

 

5.14 2.22 2.82 < 0.001 

                    PS5 sp April 2010 13.7 7.14 56 3.17 134 

 

101.38 2.37 < 0.006 0.18 8.62 9.10 0.30 

 

8.11 2.62 11.52 5.57 

 

July 2010 14.2 7.55 -69 5.52 136 

 

117.50 < 0.004 < 0.006 < 0.004 8.38 9.36 0.37 

 

9.21 2.97 12.39 21.11 

 

Nov. 2010 14.3 7.17 -142 5.56 149 

 

108.53 < 0.004 < 0.006 < 0.004 8.31 8.23 0.32 

 

9.55 2.77 13.22 7.30 

 

Feb. 2011 13.7 8.30 52 6.19 141 

 

100.26 3.54 < 0.006 < 0.004 6.65 8.42 0.28 

 

9.33 2.93 13.27 7.47 

                    PS6 st April 2010 12.1 6.73 77 7.81 33 

 

5.74 1.32 < 0.006 3.20 0.21 6.67 0.07 

 

4.03 1.32 0.87 1.81 

 

July 2010 13.2 5.11 193 6.47 42 

 

5.18 2.34 < 0.006 4.85 0.43 8.47 0.06 

 

4.63 1.89 1.11 1.24 

 

Nov. 2010 11.4 5.86 12 6.96 49 

 

5.10 2.44 < 0.006 8.05 0.40 9.43 0.06 

 

5.89 2.06 1.80 0.90 

 

Feb. 2011 10.0 8.06 155 9.76 35 

 

6.66 3.00 < 0.006 3.59 0.33 6.20 0.04 

 

4.21 1.98 1.06 < 0.001 

                    PS7 sp April 2010 12.0 6.46 120 8.21 22 

 

7.92 0.33 0.10 1.81 0.33 4.76 0.06 

 

3.54 1.03 0.40 1.65 

 

July 2010 15.1 6.14 47 6.36 41 

 

13.18 0.72 0.21 1.56 1.09 6.73 0.07 

 

4.49 1.90 1.76 0.98 

 

Nov. 2010 14.1 5.30 72 7.25 41 

 

14.08 0.34 0.20 1.73 1.17 6.18 0.06 

 

4.84 1.81 1.88 0.49 

 

Feb. 2011 12.2 7.82 136 7.48 26 

 

14.77 1.01 0.20 1.96 0.94 6.14 0.06 

 

4.57 1.94 2.19 < 0.001 

                    PS8 w April 2010 11.5 6.35 64 5.78 38 

 

6.14 3.31 0.06 2.85 0.25 9.81 0.08 

 

4.52 1.20 0.80 1.88 

 

July 2010 13.5 6.03 36 6.80 44 

 

5.40 5.23 0.12 3.96 0.52 7.05 0.06 

 

5.12 1.85 1.03 1.42 

 

Nov. 2010 13.2 5.74 89 5.67 47 

 

7.96 3.62 0.16 3.88 0.85 6.48 0.06 

 

5.54 1.73 1.39 0.73 

 

Feb. 2011 11.1 7.46 238 7.37 37 

 

4.58 6.20 0.09 2.45 0.48 5.86 0.06 

 

4.62 1.82 0.84 < 0.001 

                    PS9 mg April 2010 14.9 6.57 35 5.02 120 

 

70.29 0.30 < 0.006 0.17 1.82 9.26 0.20 

 

6.37 2.19 7.01 4.09 

 

July 2010 17.2 6.50 -33 1.76 129 

 

86.40 0.17 < 0.006 < 0.004 3.32 9.75 0.30 

 

7.78 2.79 8.46 12.52 

 

Nov. 2010 12.0 6.40 10 0.22 107 

 

57.12 < 0.004 < 0.006 < 0.004 8.41 8.77 0.24 

 

8.58 2.75 10.48 5.49 

 

Feb. 2011 10.8 6.84 90 3.41 67 

 

40.56 1.47 < 0.006 0.27 1.52 7.09 0.12 

 

5.57 2.37 5.21 1.59 

                    PS10 mg April 2010 14.4 6.89 -30 3.50 109 

 

60.39 0.16 < 0.006 < 0.004 2.09 9.38 0.21 

 

6.44 2.15 7.33 4.15 

 

July 2010 19.7 7.70 -278 0.35 235 

 

109.08 < 0.004 < 0.006 < 0.004 8.12 10.82 0.31 

 

8.75 2.69 11.30 20.43 

 

Nov. 2010 9.5 6.95 -158 0.01 129 

 

110.77 < 0.004 < 0.006 < 0.004 7.39 9.31 0.21 

 

8.48 2.59 10.44 6.22 

 

Feb. 2011 9.2 8.48 11 0.72 84 

 

57.20 0.63 < 0.006 0.07 2.31 8.01 0.06 

 

6.58 2.44 6.91 3.37 

                    PS11 st April 2010 13.3 6.76 88 7.71 45 

 

12.67 2.30 < 0.006 2.38 0.29 8.01 0.14 

 

4.77 2.39 2.53 < 0.001 

 

July 2010 15.3 6.24 135 6.08 100 

 

21.17 6.98 0.32 11.06 0.96 16.08 0.13 

 

9.48 3.37 4.57 5.10 

 

Nov. 2010 10.0 6.85 43 5.72 86 

 

17.75 3.31 0.11 4.60 0.55 11.10 0.11 

 

9.15 2.94 5.26 1.78 

 

Feb. 2011 10.0 8.09 86 9.90 49 

 

12.69 5.11 0.06 3.79 0.53 8.21 0.10 

 

5.27 2.19 2.85 < 0.001 

VMR 

       

nd 575 nd 50 nd 70 1 

 

nd nd nd nd 

VMA 

       

nd nd nd nd nd nd 15 

 

nd nd nd nd 

VP               nd 250 nd 50 0.5 250 1.5   200 nd nd nd 
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 Table 1- Physico–chemical and chemical results of waters from the Pinhal do Souto uranium mine area 

 

 
T - temperature; Eh - relative to field pH electrode; DO - dissolved oxygen; EC - electrical conductivity. w- well; st- stream; sp - spring; mg - mine gallery; Nov.- November; Feb.- February; VMR - recommended value for agriculture 

use; VMA - permitted values for agriculture; VP - permitted values for human consumption (Portuguese Decrees 1998; 2007), except for U (WHO, 2010); TDS - total dissolved solids, TS - Total solids; nd - not defined.  Analyst: A.C.T. 

Santos.  
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Table 1 (cont.) - Physico–chemical and chemical results of waters from the Pinhal do Souto uranium mine area 

      Trace elements (μg/l)     

Sample 
 

Al As Ba B Cd Co Cr Cu Fe Li Mn Ni Pb Sr Th U Zn TDS (mg/l) 
TS 

(mg/l) 

PS1  w April 2010 100.3 29.70 90.82 67.99 47.35 19.24 55.59 60.51 60.89 61.14 68.41 88.92 73.80 93.86 72.12 32.15 68.40 61 111 

 

July 2010 <1 6.54 62.50 59.91 46.92 3.90 46.43 55.47 105.40 45.50 51.54 46.41 54.03 80.52 98.10 43.55 60.67 57 123 

 

Nov. 2010 35.6 < 3 23.98 12.73 7.14 4.43 7.76 19.03 38.73 2.25 12.17 11.01 14.20 34.22 16.03 68.90 20.57 52 71 

 

Feb. 2011 9.0 4.29 17.83 10.97 < 1 <1 <1 < 1 < 1 2.00 5.15 < 1 < 6 34.33 8.51 64.75 < 2 58 108 

                     PS2  w April 2010 147.8 30.71 76.60 53.54 48.14 18.55 58.22 75.05 201.00 59.29 295 58.91 76.07 77.18 69.92 29.59 54.30 36 167 

 

July 2010 26.5 10.67 50.56 56.17 46.93 4.42 46.42 46.51 759.00 44.04 290 46.24 54.10 72.94 97.77 43.94 52.44 39 61 

 

Nov. 2010 61.0 < 3 13.93 13.92 6.51 3.65 5.67 2.64 980.00 0.39 334 4.17 8.07 30.53 12.98 61.50 8.64 47 83 

 

Feb. 2011 18.9 3.28 4.52 0.84 < 1 <1 <1 < 1 65.71 <1 288 < 1 < 6 22.09 7.51 61.97 < 2 33 66 

                     PS3  w April 2010 162.9 31.03 81.62 54.37 47.96 19.66 59.96 72.80 63.94 60.52 275 57.79 78.44 103.67 71.11 32.73 54.02 55 70 

 

July 2010 73.0 10.42 58.78 61.98 50.58 11.31 49.08 56.27 144.00 49.32 150 58.95 94.95 102.05 97.79 45.94 53.56 66 92 

 

Nov. 2010 61.0 < 3 13.93 13.92 6.51 3.65 5.67 2.64 980 0.39 334 4.17 8.07 30.53 15.50 62.88 8.64 58 64 

 

Feb. 2011 48.1 10.29 8.19 1.38 < 1 <1 <1 3.39 < 1 0.74 170 < 1 < 6 55.01 8.91 68.57 < 2 64 112 

                     PS4  st April 2010 144.5 34.25 73.98 53.19 47.04 18.47 55.35 79.69 84.52 59.82 65.88 56.93 73.29 74.61 70.75 30.25 51.35 43 30 

 

July 2010 6.4 16.21 51.61 68.11 47.00 4.01 47.90 48.55 82.23 46.56 65.58 45.89 58.15 76.77 99.71 48.96 54.65 93 61 

 

Nov. 2010 40.7 < 3 14.79 17.76 6.55 4.06 5.75 5.35 105.00 1.84 28.51 8.11 9.17 32.30 14.69 61.59 10.20 84 60 

 

Feb. 2011 16.3 < 3 2.84 1.58 < 1 <1 <1 20.05 10.29 0.29 8.02 < 1 < 6 22.20 8.23 61.90 < 2 50 34 

                     PS5 sp April 2010 129.3 31.42 122.19 56.88 48.71 82.25 60.66 68.14 51.76 101.20 2837 64.30 87.68 141.60 70.97 31.18 54.14 85 148 

 

July 2010 11.6 17.10 77.69 56.76 46.46 46.25 46.19 43.15 54.70 78.15 2141 48.45 51.58 118.51 98.70 48.21 49.63 85 260 

 

Nov. 2010 31.5 16.53 44.93 12.83 6.52 51.81 6.24 7.27 227.28 35.90 2494 9.45 15.79 78.08 15.46 69.01 7.73 94 153 

 

Feb. 2011 28.7 15.50 23.63 4.04 < 1 28.97 <1 1.82 < 1 37.22 2000 < 1 < 6 79.10 9.21 72.75 < 2 89 123 

                     PS6 st April 2010 138.0 37.01 75.00 47.29 46.98 19.28 57.35 56.67 48.69 59.15 55.49 58.02 74.07 69.94 70.03 31.44 49.81 22 67 

 

July 2010 20.1 5.30 48.68 50.16 46.35 3.63 46.23 47.44 40.07 43.34 47.74 45.70 49.68 66.38 97.12 45.79 49.92 27 54 

 

Nov. 2010 48.3 < 3 14.61 9.02 6.40 4.48 6.06 3.88 7.21 1.48 9.28 7.19 16.00 25.15 15.64 65.44 8.15 33 58 

 

Feb. 2011 17.6 < 3 2.30 <1 < 1 <1 <1 8.08 < 1 <1 < 1 < 1 < 6 17.68 7.83 62.87 < 2 24 47 

                     PS7 sp April 2010 128.4 37.81 72.63 42.79 47.06 19.17 57.61 56.51 49.10 59.30 54.44 58.39 74.64 66.39 69.62 30.72 49.36 14 35 

 

July 2010 <1 7.78 48.78 46.21 46.13 3.25 45.84 48.48 38.52 47.01 44.85 45.43 49.52 65.98 96.73 45.68 50.92 25 43 

 

Nov. 2010 8.6 5.02 12.75 3.72 6.28 4.60 6.51 13.35 4.41 4.49 3.79 5.58 15.50 21.31 18.21 71.85 13.15 26 43 

 

Feb. 2011 1.4 6.44 3.39 <1 < 1 <1 <1 24.50 < 1 3.79 < 1 < 1 < 6 18.98 8.14 68.36 < 2 17 61 

                     PS8 w April 2010 139.7 39.17 75.57 47.82 47.32 19.92 59.07 62.51 49.13 60.41 57.97 57.30 78.67 72.16 70.33 33.85 53.35 25 59 

 

July 2010 <1 5.81 48.13 50.83 46.13 3.92 45.97 48.13 40.07 45.97 48.28 45.70 49.19 67.72 97.38 47.53 52.96 28 50 

 

Nov. 2010 40.7 7.90 12.71 8.34 6.33 4.77 6.09 11.54 6.33 4.40 7.14 7.34 16.76 23.77 16.80 76.38 11.34 30 38 

 

Feb. 2011 12.4 3.66 2.01 <1 < 1 <1 <1 5.14 2.80 1.36 2.39 < 1 < 6 18.72 8.00 67.82 5.10 25 48 

           
 

   
 

     PS9 mg April 2010 127.4 50.68 93.61 48.34 47.74 25.92 61.58 56.91 80.68 68.42 1277 61.29 81.17 108.91 71.11 36.23 54.77 74 106 

 

July 2010 4.5 15.53 62.24 52.95 46.06 8.39 46.29 43.62 58.63 64.52 1260 46.64 52.20 96.68 97.37 46.21 54.35 76 114 

 

Nov. 2010 66.7 24.88 33.03 10.18 6.44 12.01 6.22 14.05 12.96 23.99 1588 7.22 18.50 61.50 17.75 76.95 76.39 71 186 

 

Feb. 2011 7.2 8.75 13.94 <1 < 1 1.10 <1 18.50 69.49 9.61 648 < 1 < 6 34.33 7.94 68.16 6.82 46 101 

                     PS10 mg April 2010 128.3 53.71 89.67 47.74 47.57 24.28 60.13 72.83 316.00 66.83 945 59.53 83.91 109.02 70.72 33.63 53.34 68 132 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 2 

 

July 2010 12.6 18.09 66.48 51.46 46.27 7.40 46.66 43.23 70.75 55.25 1679 45.91 53.05 115.60 98.01 47.07 49.72 131 183 

 

Nov. 2010 31.9 31.14 30.65 8.98 9.08 10.41 6.49 3.50 12301.00 12.43 1455 8.47 21.63 62.93 16.91 104.42 12.83 91 148 

 

Feb. 2011 22.0 10.90 9.87 <1 < l <1 <1 8.09 424.00 6.48 370 < 1 < 6 43.72 7.73 68.14 1.05 60 96 

           
 

   
 

     PS11 st April 2010 23.7 44.21 12.82 2.70 25.02 18.02 16.44 20.25 43.53 21.08 40.57 21.08 22.48 86.33 70.99 33.91 10.84 29 76 

 

July 2010 6.0 11.53 51.29 59.07 46.20 3.58 46.15 45.44 96.97 46.52 78.07 45.49 52.33 77.48 98.05 47.18 52.91 62 70 

 

Nov. 2010 38.6 10.28 15.27 14.73 6.43 4.75 6.21 14.45 96.87 2.38 34.58 7.53 14.88 32.56 18.22 74.83 11.57 60 94 

 

Feb. 2011 19.5 4.10 2.96 <1 <1 <1 <1 19.09 15.62 0.50 11.45 < 1 < 6 22.03 8.96 64.89 1.42 34 30 

VMR 

 

5000 100 1000 300 10 50 100 200 5000 2500 200 500 500 nd nd nd 2000 

  VMA 

 

20000 10000 - 3750 50 10000 20000 5000 nd 5800 10000 2000 20000 nd nd nd 10000 

  VP   200 10 - 1000 5 nd 50 2 200 nd 50 20 25 nd nd 15 nd     



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 
Table 2 
Results of principal component analysis for waters from the Pinhal do Souto uranium mine 
area 
 

 
PC1 PC2 PC3 

pH -0.209 0.328 0.364 

Eh -0.133 -0.614 -0.087 

O2 -0.130 -0.537 0.075 

EC 0.394 0.813 -0.277 

Cl- 0.166 0.106 -0.861 

NO2
-
 0.292 0.882 0.169 

NO3
-
 -0.126 -0.350 -0.778 

SO4
2-

 -0.226 0.184 -0.563 

HCO3
-
 0.349 0.899 0.162 

Na 0.103 0.736 -0.573 

K -0.049 0.420 -0.783 

Ca 0.303 0.730 -0.045 

Mg 0.512 0.672 -0.100 

B 0.909 -0.199 -0.287 

Al 0.555 -0.262 0.325 

Ba 0.974 -0.044 0.018 

Cd 0.935 -0.261 -0.098 

Co 0.618 0.363 0.285 

Cr 0.948 -0.289 -0.029 

Cu 0.889 -0.373 0.048 

Fe -0.068 0.371 0.086 

Li 0.978 -0.004 0.080 

Mn 0.392 0.827 0.228 

Ni 0.942 -0.288 -0.081 

Pb 0.947 -0.248 0.015 

Sr 0.930 0.255 -0.025 

Zn 0.884 -0.169 -0.154 

As 0.690 -0.047 0.373 
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Th 0.852 -0.206 -0.201 

U -0.783 0.478 -0.022 

Eingenvalue 12.29 6.76 3.45 

Total 40.96 22.52 11.51 

Cumulative 40.96 63.48 74.99 
 

O2 – dissolved oxygen; EC – electrical conductivity. Number of water samples (n = 44). 
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Table 3 

Textural characteristics, organic matter (OM%), cation exchange capacity (CEC cmol/kg), electrical conductivity (EC S/cm), pH, Al and Fe contents (g/kg) and concentrations of trace metals and metalloids (mg/kg) 
of stream sediments from the Pinhal do Souto uranium mine area 
 

  Local stream sediments   Mine drainage stream sediments   Ludares stream sediments   Precip. 

samples PS-SED7 PS-SED21 PS-SED6 PS-SED22 PS-SED23   PS-SED20 PS-SED12 PS-SED13 PS-SED14 PS-SED18 PS-SED19   PS-SED4 PS-SED15 PS-SED16 PS-SED17   PS-SED5 

% sand  —  —  —  —  — 
 

46.3 85.5  —  —  — 83.1 
 

 —  —  —  — 
 

76.3 

% silt  —  —  —  —  —   47.5 12.8  —  —  — 14.8    —  —  —  —   19.8 

% clay — — — — —   6.2 1.7 — — — 2.1   — — — —   3.9 

OM — — — — —   4.13 1.00 — 5.07 1.70 —   0.24 — — —   7.26 

CEC — — — — —   4.53 3.23 — 3.65 1.27 —   0.67 — — —   5.06 

EC 16 18 20 46 49   59 34 57 115 22 46   26 33 21 15   200 

pH 5.2 4.8 4.7 4.0 4.5   4.5 5.4 5.2 4.6 4.5 4.6   5.4 5.5 4.6 5.3   5.6 

Al 13.66 17.98 12.26 14.27 18.90   16.46 16.17 8.01 10.05 11.63 13.28   11.34 9.73 9.41 9.49   8.07 

Fe 8.55 9.63 8.30 8.09 8.31   11.27 10.33 10.32 20.54 20.08 8.05   7.78 7.91 7.34 7.44   278.94 

As 93.37 89.09 105.82 117.62 100.25   82.83 130.31 79.17 194.27 144.49 62.43   46.14 40.96 35.29 37.80   3710.78 

Cd 32.30 24.86 25.17 38.08 20.53   35.82 37.40 40.74 92.28 70.17 17.58   22.76 8.93 12.42 8.27   1241.37 

Co * * * * *   * 15.15 * 10.33 * *   * * * *   1337.19 

Cr 2.09 * * * *   11.18 6.05 4.74 6.57 21.47 8.11   * * * *   9.25 

Cu 5.91 5.6 11.84 3.19 11.36   12.50 8.79 * 20.81 4.29 1.98   5.67 * 2.28 *   10.26 

Mn 190.35 253.87 267.73 263.10 311.98   475.90 741.45 3116.46 1242.92 784.66 250.25   229.70 156.57 269.32 302.42   1663.21 

Ni * * * * *   * 98.37 * * * *   * * * *   36.47 

Pb 43.43 25.41 37.66 27.03 37.21   83.12 9.83 66.94 137.01 110.35 45.68   85.16 17.80 4.25 *   68.98 

Sb 7.76 6.77 6.49 8.30 4.99   3.89 19.58 * * 4.16 3.35   * * * *   17.20 

Sr 17.95 12.65 13.78 10.76 9.12   22.35 24.87 15.34 23.67 9.41 10.42   10.41 26.77 30.14 25.81   112.57 

Th 26.70 32.64 25.80 49.72 19.05   41.59 28.38 32.45 98.35 72.27 20.53   29.40 37.28 35.95 26.00   1053.12 

U * * * * *   * * * * * *   35.68 * * *   485.20 

W * * * 19.84 17.24   * 10.69 * * 18.24 *   * * * *   108.33 

Zn 126.97 105.10 111.69 90.80 83.28   234.48 201.39 131.12 239.39 136.47 100.40   90.20 59.12 54.86 57.21   198.15 
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Precip. – Fe-oxides  precipitate; * - below the detection limit;  — not determined. Analyst: A.C.T. Santos. 

 

 
Table 4 

Correlation matrix in stream sediments from the Pinhal do Souto uranium mine area 
 

 Al As Cd Cr Cu Fe Mn Pb Sb Sr Th W Zn pH EC 

Al 1.0               

As 0.2 1.0              

Cd -0.1 0.9 1.0             

Cr 0.0 0.5 0.6 1.0            

Ca 0.3 0.7 0.6 0.1 1.0           

Fe -0.1 0.8 0.9 0.7 0.5 1.0          

Mn -0.4 0.3 0.4 0.2 0.0 0.4 1.0         

Pb -0.1 0.6 0.8 0.6 0.5 0.8 0.4 1.0        

Sb 0.6 0.4 0.1 0.1 0.2 -0.1 -0.2 -0.3 1.0       

Sn -0.1 0.3 0.3 -0.2 0.4 0.1 0.4 0.3 0.1 1.0      

Th -0.3 0.7 0.9 0.5 0.5 0.9 0.2 0.7 -0.2 0.1 1.0     

W 0.6 0.6 0.4 0.4 0.3 0.4 -0.1 0.2 0.5 -0.5 0.3 1.0    

Zn 0.2 0.7 0.7 0.5 0.7 0.6 0.3 0.6 0.3 0.1 0.5 0.2 1.0   

pH -0.3 -0.4 -0.3 -0.3 -0.3 -0.2 0.1 -0.2 0.0 0.4 -0.3 -0.7 -0.1 1.0  

EC -0.1 0.6 0.7 0.2 0.6 0.5 0.4 0.6 -0.2 0.1 0.6 0.1 0.6 -0.3 1.0 
 

EC – electrical conductivity. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 2 

 

Table 5                    

Correlation 
matrix in 
soils from 
the Pinhal 
do Souto 
uranium 
mine area 

                   

                                        

                    

 Al As Cd Co Cr Cu Fe Mn Ni Pb Sb Sr Th U W Zn Temp. pH EC 
                                        

Al 1.0                   

As 0.8 1.0                  

Cd 0.7 0.5 1.0                 

Co 0.4 0.2 0.6 1.0                

Cr 0.4 0.4 0.4 0.4 1.0               

Cu 0.6 0.7 0.6 0.3 0.5 1.0              

Fe 0.8 0.7 0.7 0.5 0.6 0.7 1.0             

Mn 0.4 0.7 0.3 0.1 0.4 0.7 0.6 1.0            

Ni 0.5 0.3 0.6 0.8 0.6 0.3 0.5 0.1 1.0           

Pb 0.6 0.7 0.6 0.4 0.6 0.6 0.7 0.6 0.6 1.0          

Sb 0.6 0.7 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.7 1.0         

Sr 0.6 0.7 0.6 0.2 0.3 0.7 0.7 0.7 0.3 0.8 0.6 1.0        

Th 0.5 0.5 0.5 0.4 0.5 0.6 0.7 0.5 0.5 0.5 0.5 0.6 1.0       

U 0.0 -
0.2 

0.2 -
0.1 

-
0.1 

-
0.1 

0.0 -
0.4 

0.1 -
0.1 

-
0.3 

-
0.2 

0.0 1.0      

W 0.8 0.8 0.7 0.5 0.5 0.6 0.7 0.5 0.6 0.7 0.8 0.6 0.6 -
0.2 

1.0     

Zn 0.4 0.6 0.3 0.3 0.4 0.5 0.5 0.5 0.3 0.6 0.7 0.6 0.6 -
0.2 

0.5 1.0    

Temp 0.2 -
0.2 

0.3 0.2 -
0.3 

-
0.1 

-
0.1 

-
0.3 

0.1 -
0.4 

-
0.2 

-
0.2 

-
0.1 

0.3 0.0 -
0.3 

1.0   

pH 0.2 0.1 0.2 0.0 -
0.1 

0.3 0.2 0.5 -
0.1 

0.2 0.2 0.4 0.1 -
0.2 

0.2 0.2 -0.2 1.0  
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EC 0.0 0.0 -
0.2 

-
0.2 

-
0.2 

0.1 0.0 0.2 -
0.2 

0.0 -
0.2 

0.1 -
0.2 

-
0.2 

-
0.1 

-
0.2 

-0.2 0.4 1.0 

                                        

                    

Temp - 
temperature; 
EC - 
electrical 
conductivity. 
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Table 6 
Results of principal component 
analysis for 
soils from the Pinhal do Souto 
uranium mine area 
 

 
PC1 PC2 PC3 

pH 0.245 0.669 0.239 

EC -0.115 0.628 0.366 

Al 0.809 -0.055 0.338 

As 0.824 0.185 -0.005 

Cd 0.754 -0.290 0.424 

Co 0.584 -0.477 -0.077 

Cr 0.644 -0.280 -0.257 

Cu 0.780 0.257 0.167 

Fe 0.882 -0.014 0.135 

Mn 0.665 0.660 -0.141 

Ni 0.662 -0.569 -0.008 

Pb  0.869 0.036 -0.030 

Sb 0.832 -0.080 -0.321 

Sr 0.816 0.337 0.131 

Th 0.747 -0.074 -0.093 

U -0.125 -0.527 0.646 

W 0.861 -0.090 0.047 

Zn 0.695 0.136 -0.358 

Eingenvalues 8.91 2.45 1.30 

Total 49.49 13.62 7.23 

Cumulative 49.49 63.11 70.34 
 

EC - electrical conductivity. Number 
of soil samples (n=47). 
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Table 7 

Predicted U species in selected water samples from the 

Pinhal do Souto uranium mine area 
 

 Unit PS5 PS9 PS10 

Uranium g/l 72.75 76.95 104.4 

pH  8.30 6.40 6.95 

Alkalinity mg HCO3
-
/l 100.2 57.12 110.7 

Redox potential mV 52 10 -158 

Sulphate mg/l 3.54 <0.004 <0.004 

Fluoride mg/l 0.28 0.24 0.21 

Phosphate mg/l <0.006 <0.006 <0.006 

UO2CO3(aq) % of UTot 0 73 25 

UO2(CO3)2
-2

 % of UTot 12 24 50 

UO2(CO3)3
-4

 % of UTot 88 1 25 

UO2(OH)3
-
 % of UTot 0 0 0 

UO2(OH)2(aq) % of UTot 0 0 0 

UO2
+2

 % of UTot 0 0 0 

UO2OH
+
 % of UTot 0 2 0 
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Table 8 

Comparison of concentrations in mg/kg of metals and metalloids, except Fe in %, in 

soils from the Pinhal do Souto uranium mine area with those of soils of the FOREGS 

Geochemical Atlas of Europe  
 

               Portuguese Pinhal do Souto 

area  

 Portugal  European countries 

   

Median 

  

Maximum  

 

N 

 

Methods 

  

Range 

 

N 

  

Median 

 

Range 

 

N 

 

Methods 

                

Fe  
8.72 15.1 

47 aqua 

regia 

ICP-

OES 

 0.35 - 

3.49 19 

 

1.96 

0.070 - 

15.2 837 

aqua 

regia 

ICP-

AES 

As  
94.9 196 

47 aqua 

regia 

ICP-

OES 

 5.00 - 

31.00 19 

 

6.00 

< 5.00 

- 220 837 

aqua 

regia 

ICP-

AES 

Cd  
0.32 82.9 

47 aqua 

regia 

ICP-

OES 

 0.03 - 

0.10 19 

 

0.140 

0.010 - 

14.1 840 total 

ICP-

MS 

Co  
0.00 52.9 

47 aqua 

regia 

ICP-

OES 

 3.00 - 

21.0 19 

 

7.00 

<1.00 - 

260 837 

aqua 

regia 

ICP-

AES 

Cr  
1.22 17.3 

47 aqua 

regia 

ICP-

OES 

 8.00 - 

28.0 19 

 

22.0 

1.00 - 

2300 837 

aqua 

regia 

ICP-

AES 

Cu  
10.4 237.0 

47 aqua 

regia 

ICP-

OES 

 3.00 - 

27.0 19 

 

12.0 

1.00 - 

240 837 

aqua 

regia 

ICP-

AES 

Mn  
214 6009 

47 aqua 

regia 

ICP-

OES 

 250 - 

6500 19 

 

380 

<10.0 - 

6500 837 

aqua 

regia 

ICP-

AES 

Ni  
0.00 46.1 

47 aqua 

regia 

ICP-

OES 

 3.00 - 

35.0 19 

 

14.0 

<2.00 - 

2600 837 

aqua 

regia 

ICP-

AES 

Pb  
62.2 944 

47 aqua 

regia 

ICP-

OES 

 7.00 - 

32.0 19 

 

15.0 

<3.00 - 

890 837 

aqua 

regia 

ICP-

AES 

Sb  
18.5 152 

47 aqua 

regia 

ICP-

OES 

 0.280 - 

3.06 19 

 

0.600 

0.020 - 

31.1 840 total 

ICP-

MS 

Sr  
10.9 87.4 

47 aqua 

regia 

ICP-

OES 

 30.0 - 

3100 19 

 

89.0 

8.00 - 

3100 848 total 

ICP-

MS 

Th  
26.2 47.2 

47 aqua 

regia 

ICP-

OES 

 7.24 - 

75.9 19 

 

7.24 

0.300 - 

75.9 843 total 

ICP-

MS 

U  
25.1 337 

47 aqua 

regia 

ICP-

OES 

 2.00 - 

53.2 19 

 

2.00 

0.200 - 

53.2 843 total 

ICP-

MS 

W  
19.1 57.2 

47 aqua 

regia 

ICP-

OES 

 <5.00 - 

14.0 19 

 

<5.00 

<5.00 - 

14.0 848 total 

ICP-

MS 

Zn  
92.7 347 

47 aqua 

regia 

ICP-

OES 

 13.0 - 

85.0 19 

 

48.0 

4.00 - 

2300 837 

aqua 

regia 

ICP-

AES 
 

 

N – Number of samples. 
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Table 9 
Comparison of environmental impacts caused by two Portuguese abandoned 
uranium mines  
 

 Pinhal do Souto (PS) area  Vale de Abrutiga (VA) area 

Host rock of quartz 

veins 

two-mica granite  schist-greywacke complex 

U minerals from 

quartz veins 

mainly autunite, torbernite, also 

uraninite, meta-torbernite, 

sabugalite, parsonite, 

phosphuranylite and black 

uranium oxides 

 saleeite, meta-saleeite, Fe-

saleeite, coffinite 

Exploitation way underground  an open pit 

Exploitation dates 1978-1989  1982-1989 

Mine production 93091 kg U3O8  90000 kg U3O8 

    

Surface water; 

groundwater 

   

pH 5.11-8.11; 5.12-8.48  2.25-6.65; 4.50-6.22 

Electric conductivity 

S/cm 

33-100; 22-235  84-6660; 175-720 

U   g/l 30.25-74.83; 29.59-104.42  *-18660; *-1000 

Th   g/l 7.83-99.71; 7.51-98.10  0.01-20.40; 0.03-0.11 

Pb   g/l *-74.07; *-94.95    *-110.00; *-170.00 

Cu   g/l 3.88-79.69; *-75.05  10.00-1470.00; 10.00-130.00 

SO4
2-

 mg/l 1.32-6.98; *-14.99  *-6576; *-284 

    

Stream sediments 

with  U mine drainage 

   

U  mg/kg *-35.68  27.80-301.00  

Th mg/kg  20.53-98.35  3.30-10.80 

Pb  mg/kg *-137.01  25.00-44.00 

Cu  mg/kg *-20.81  18.10-66.50 

Zn  mg/kg 54.86-239.39  130.00-803.00 

Co  mg/kg *-15.15  11.00-74.00 

Fe     g/kg 7.34-20.54  27.00-239.00 

    

References This article  Pinto et al. (2004), Cabral Pinto 

et al. (2008, 2009) 

Waters and stream sediments samples are downstream the uranium mines and dumps. * 

– below the detection limit. In the Pinhal do Souto area, U was only detected in one stream 
sediment sample. The data on both areas were collected before rehabilitation. Only the VA 
area has been rehabilitated later. 


