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of sequential order statistics
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Abstract

Sequential order statistics can be used to describe the lifetime of a
system with n components which works as long as k components function
assuming that failures possibly affect the lifetimes of remaining units. In
this work, the reversed hazard rates of sequential order statistics are exam-
ined. Conditions for the reversed hazard rate ordering and the decreasing
reversed hazard rate property of sequential order statistics are given.

Keywords: sequential order statistics; stochastic orderings; ageing
properties; DRHR
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1 Introduction

Kamps (1995) introduced the concept of sequential order statistics (SOS) as
an extension of the order statistics (OS) model. Following Cramer and Kamps
(2003), sequential order statistics can be defined as follows: Let F1, . . . , Fn

be continuous distribution functions with F−1
1 (1) ≤ · · · ≤ F−1

n (1) and let
B1, . . . , Bn independent random variables where Bi is beta distributed with
parameters n− i + 1 and 1, 1 ≤ i ≤ n. Then the random variables

X∗
i:n = F−1

i

(
1−Bi F i(X∗

i−1:n)
)
, for i = 1, . . . , n ,

are called sequential order statistics.
Note that OS are contained in the model of SOS via the specific choice

F1 = · · · = Fn. In the reliability context, there exists a relation between SOS
and the lifetimes of sequential k-out-of-n systems, in the same way that there
exists a connection between OS and the lifetimes of k-out-of-n systems. In this
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case, the (n − k + 1)th SOS in a sample of size n represents the lifetime of
a sequential k-out-of-n system (see Cramer and Kamps (2001)). A sequential
k-out-of-n system is more flexible than a k-out-of-n system in the sense that,
after the failure of some component, the distribution of the residual lifetime of
the components at work may change.

The model of SOS is closely connected to several other models of ordered
random variables. For instance, it is well known that the specific choice of
distribution functions Fi(t) = 1 − (1− F (t))αi , t ∈ R, 1 ≤ i ≤ n, with a
continuous distribution function F and positive real numbers α1, . . . , αn leads
to the model of generalized order statistics with parameters γi = (n− i + 1)αi,
1 ≤ i ≤ n. Further results about SOS and related models can be found, for
instance, in Kamps (1995); Cramer and Kamps (1996); Kamps and Cramer
(2001); Cramer (2006); Balakrishnan et al. (2008); Beutner (2008); Beutner and
Kamps (2009); Burkschat (2009); Bedbur (2010); Beutner (2010); Burkschat
et al. (2010); Balakrishnan et al. (2011) and Bedbur et al. (2012).

In this article, we focus on particular stochastic comparisons and ageing
properties of SOS. Some recent articles on these subjects are, e.g., Zhuang and
Hu (2007); Burkschat and Navarro (2011); Navarro and Burkschat (2011) and
Torrado et al. (2012). We will present some results on the reversed hazard rate
ordering and its associated ageing notion, the decreasing reversed hazard rate
(DRHR) property (see, e.g., Block et al. (1998); Sengupta and Nanda (1999);
Chandra and Roy (2001); Nanda and Shaked (2001); Finkelstein (2002); Nanda
et al. (2003); Ahmad and Kayid (2005); Marshall and Olkin (2007); Shaked and
Shanthikumar (2007)). Recent results on the DRHR property of some ordered
random variables are given in Kundu et al. (2009) and Wang and Zhao (2010).

In Section 2, we recall the definitions of the reversed hazard rate ordering,
the DRHR property and give some notations for SOS. The main results are given
in Sections 3 and 4. More precisely, we investigate conditions on the underlying
distribution functions on which the SOS are based, in order to compare SOS in
the reversed hazard rate ordering and to obtain the DRHR property of SOS.

Throughout the article we use the terms increasing and decreasing in the
weak sense, that is, a function g is called increasing (decreasing) if x ≤ y implies
g(x) ≤ (≥)g(y). Furthermore, we assume that the distributions of the occurring
random variables have the same support which is given by an interval of the
real line.

2 Definitions and notations

Let X be a non-negative random variable describing a lifetime with distribution
function F , survival function F̄ = 1−F , density function f and reversed hazard
rate function rX = f/F . Analogously, let Y be be a non-negative random
variable with distribution function G, survival function Ḡ = 1 − G, density
function g and reversed hazard rate function rY = g/G. First, we recall the
definition of the reversed hazard rate order (see, e.g., Shaked and Shanthikumar
(2007), Section 1.B.6).
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Definition 1 The random variable X is said to be smaller than Y in the re-
versed hazard rate order (denoted by X ≤rh Y ) if rX(t) ≤ rY (t) for all t ≥ 0.

Let the random variable X(t) be distributed as the time elapsed since the
failure time X of a unit, given that the unit failed at or before time t > 0, i.e.,
let the distribution theoretical identity

X(t)
st= [t−X | X ≤ t]

hold. The random variable X(t) is known as the inactivity time or the reversed
residual life of X at time t. Its survival function is given by

P
(
X(t) > x

)
=

F (t− x)
F (t)

, 0 ≤ x < t.

The reversed hazard rate ordering is related to the random variable X(t),
since X ≤rh Y if X(t) ≥st Y(t) for all t ≥ 0 (see Shaked and Shanthikumar
(2007), Section 1.B.6).

Related to this ordering, the decreasing reversed hazard rate (DRHR) class
of life distributions have been introduced and studied in the literature (see, e.g.,
Sengupta and Nanda (1999)).

Definition 2 The random variable X is said to have a decreasing reversed haz-
ard rate (denoted by DRHR) if rX(t) is decreasing in t.

Finally, we recall some results from the distribution theory of SOS. Let
X∗

1:n, . . . , X∗
n:n be the SOS based on distribution functions F1, . . . , Fn with re-

spective density functions f1, . . . , fn. Let hi = fi/F i, i = 1, . . . , n, denote the
hazard rates. Based on the results in Cramer and Kamps (2003), we can assume
that

X∗
1:n =H−1

1 (Z1),

X∗
i:n =H−1

i (Zi + Hi(X∗
i−1:n)), for i = 2, 3, . . . , n,

where H−1
i denotes the inverse function of the cumulative hazard function

Hi = − lnF i and Z1, . . . , Zn are independent random variables where Zi is
exponential distributed with parameter n − i + 1, 1 ≤ i ≤ n. The density
function of the first SOS is given by

f∗,1(t) = nh1(t)F̄∗,1(t),

with reversed hazard rate

r∗,1(t) = nh1(t)
F̄∗,1(t)
F∗,1(t)

.

Moreover, for i = 2, . . . , n, the density function of the ith SOS is given by

f∗,i(t) = (n− i + 1)hi(t)
(
F̄∗,i(t)− F̄∗,i−1(t)

)
, (1)
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and its reversed hazard rate is given by

r∗,i(t) = (n− i + 1)hi(t)
(

F̄∗,i(t)− F̄∗,i−1(t)
F∗,i(t)

)

= (n− i + 1)hi(t)
(

F∗,i−1(t)− F∗,i(t)
F∗,i(t)

)
. (2)

3 Reversed hazard rate ordering of SOS

In this section, we will study conditions on the underlying distribution functions
on which the SOS are based, in order to compare SOS in the reversed hazard
rate ordering.

Theorem 3 Let X∗
1:n, . . . , X∗

n:n be the SOS based on F1, . . . , Fn. Let hi denote
the hazard rate function of Fi for i = 1, 2, . . . , n. Let 1 ≤ k ≤ n− 1. If hi/hi+1

is decreasing for i = 1, 2, . . . , k, then X∗
k:n ≤rh X∗

k+1:n.

Proof: The proof is carried out by induction. At first, we want to show that
X∗

1:n = H−1
2 (H2(X∗

1:n)) ≤rh X∗
2:n = H−1

2 (Z2 + H2(X∗
1:n)). Since the reversed

hazard rate order is closed under increasing transformations (see Lemma 1.B.43
in Shaked and Shanthikumar (2007)), it is sufficient to show

H2(X∗
1:n) ≤rh Z2 + H2(X∗

1:n). (3)

According to Lemma 1.B.44 in Shaked and Shanthikumar (2007), if H2(X∗
1:n)

is DRHR, then (3) holds. Let us introduce the notation yi = H−1
i (t), for

i = 1, . . . , n, which is an increasing function in t. Let T2 = H2(X∗
1:n). Then its

reversed hazard rate function is given by

rT2(t) =
r∗,1(y2)
h2(y2)

= n
h1(y2)
h2(y2)

·
(

1
F∗,1(y2)

− 1
)

.

The function in large brackets is decreasing and h1
h2

is decreasing by assumption.
Thus, T2 is DRHR, and hence, X∗

1:n ≤rh X∗
2:n. Now, let us assume that the

assertion is valid for i − 1(< k), that is, X∗
i−1:n ≤rh X∗

i:n and we will show
that X∗

i:n ≤rh X∗
i+1:n. Let Ti+1 = Hi+1(X∗

i:n). Then its reversed hazard rate
function is given by

rTi+1(t) =
r∗,i(yi+1)
hi+1(yi+1)

= (n− i + 1)
hi(yi+1)

hi+1(yi+1)
·
(

F∗,i−1(yi+1)
F∗,i(yi+1)

− 1
)

.

By the induction hypothesis, F∗,i−1
F∗,i

is decreasing since X∗
i−1:n ≤rh X∗

i:n and hi

hi+1

is decreasing by assumption. Hence, Ti+1 = Hi+1(X∗
i:n) is DRHR. Now, again

from Lemma 1.B.44, Hi+1(X∗
i:n) ≤rh Zi+1 + Hi+1(X∗

i:n) and since the reversed
hazard rate order is closed under increasing transformations, we have proved
that X∗

i:n ≤rh X∗
i+1:n.
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The condition of the above theorem is easy to check, since it is based on the
parent distributions F1, . . . , Fn. If the condition of Theorem 3 is not satisfied,
then SOS do not need to be ordered according to the reversed hazard rate order
as the following example illustrates.

Example 4 Let us consider two SOS, X∗
1:2 and X∗

2:2, based on F1, F2. Accord-
ing to the results in Cramer and Kamps (2003), the survival function of the first
SOS is given by

F̄∗,1(t) = F̄ 2
1 (t)

with hazard rate h∗,1(t) = 2h1(t), where h1 is the hazard rate function of F1.
The survival function of the second SOS is given by

F̄∗,2(t) = F̄∗,1(t) + F̄2(t)
∫ t

0

f∗,1(z)
F̄2(z)

dz,

where f∗,1 is the density function of X∗
1:2. Note that the density function of X∗

2:2

defined in (1) can be written as

f∗,2(t) = f2(t)I(t),

where

I(t) =
∫ t

0

f∗,1(z)
F̄2(z)

dz.

Now let us assume that F̄1(t) = e−t and

F̄2(t) =

{
e−2t, 0 ≤ t ≤ ln(2)/2,

2e−2t(1− e−2t), t > ln(2)/2.

Note that h1(t) = 1 and

h2(t) =

{
2, 0 ≤ t ≤ ln(2)/2,

2(1− 2e−2t)/(1− e−2t), t > ln(2)/2.

In particular, the condition of Theorem 3 is not satisfied. Then, we have

F̄∗,1(t) = F̄ 2
1 (t) = e−2t

and we get for 0 < t ≤ ln(2)/2

I(t) =
∫ t

0

f∗,1(z)
F̄2(z)

dz = 2t

and for t > ln(2)/2

I(t) = ln(2) +
∫ t

ln(2)/2

2e−2z

2e−2z(1− e−2z)
dz = ln(2) +

1
2

ln(1− e−2t) + t.
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Hence, we obtain

F∗,2(t) =

{
1− e−2t − 2te−2t, 0 ≤ t ≤ ln(2)/2,

1− e−2t − 2e−2t(1− e−2t)(ln(2) + 1
2 ln(1 − e−2t) + t), t > ln(2)/2.

Then, we get

F∗,2(0.37)
F∗,1(0.37)

≈ 0.295 > 0.282 ≈ F∗,2(0.43)
F∗,1(0.43)

so that X∗
1:2 and X∗

2:2 are not ordered according to the reversed hazard rate
ordering.

In the following examples, we discuss two distributions that satisfy the as-
sumptions of Theorem 3 (see also Sengupta and Deshpande (1994) and Rowell
and Siegrist (1998)). Hence the corresponding sequential order statistics are
reversed hazard rate ordered.

Example 5 Let us consider the Weibull distributions defined by

Fi(t) = 1− exp
(
−θit

βi
)

for t ≥ 0, where θi, βi > 0 for i = 1, . . . , n. In this case, the hazard rate
functions are given by

hi(t) = θiβit
βi−1

for t ≥ 0 and i = 1, . . . , n. In particular,

hi(t)
hi+1(t)

=
θiβi

θi+1βi+1
tβi−βi+1

is decreasing in t if and only if βi ≤ βi+1. Then, the assumptions of Theorem 3
are satisfied and we get that X∗

k:n ≤rh X∗
k+1:n for every θi > 0 when β1 ≤ . . . ≤

βk ≤ βk+1.

Example 6 Let us consider the power function distributions defined by

Fi(t) =
(

t

c

)αi

for 0 < t < c and αi > 0 for i = 1, . . . , n. In this case, the hazard rate functions
are given by

hi(t) =
1
t αi

(
1
c t

)αi

1−
(

t
c

)αi
,

for t ≥ 0 and i = 1, . . . , n. In particular,

hi(t)
hi+1(t)

=
αi

αi+1

(
cαi+1 − tαi+1

cαi − tαi

)
tαi−αi+1

is decreasing in t if and only if αi ≤ αi+1. Hence, the assumptions of Theorem
3 are satisfied and we get that X∗

k:n ≤rh X∗
k+1:n for every c > 0 when α1 ≤ . . . ≤

αk ≤ αk+1.
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In Torrado et al. (2012), sufficient conditions are given for the likelihood
ratio ordering of SOS. First, let us recall the definition of a TP2 function. A
positive function h of two variables, x and y, say, is called TP2 if h(x′, y)/h(x, y)
is increasing in y whenever x ≤ x′. Then, the following result for the likelihood
ratio ordering of SOS can be proven (see Theorem 5 in Torrado et al. (2012)).

Theorem 7 Let X∗
1:n,. . . ,X∗

n:n be SOS based on F1, . . . , Fn. If fi(t)
fi+1(t) and hi(t)

are TP2 in (i, t), and Fi ≤hr Fi+1 for i = 1, . . . , n− 1, then

X∗
i:n ≤lr X∗

i+1:n,

for i = 1, . . . , n− 1.

Note that hi(t) is TP2 in (i, t) means that hi+1(t)/hi(t) is increasing in t.
Thus, this is the same condition as in Theorem 3. However, this condition is
not a sufficient condition for the likelihood ratio ordering as we illustrate in the
following example.

Example 8 Let us consider two sequential order statistics based on F1, F2,
where F̄1(t) = e−t (exponential) and F̄2(t) = e−t2 (Weibull), for t ≥ 0. Then
their hazard rate functions are h1(t) = 1 and h2(t) = 2t, respectively, so h1/h2

is decreasing in t, and hence, the sequential order statistics are reversed hazard
rate ordered according to Theorem 3. However, it can be shown that X∗

1:2 and
X∗

2:2 are not hazard rate ordered (see Example 3.1 in Navarro and Burkschat
(2011)) and, as an immediate consequence, the sequential order statistics are
not ordered according to the likelihood ratio ordering. Note that h1 and h2 are
not ordered for t ≥ 0. Therefore, the condition Fi ≤hr Fi+1 of Theorem 7 does
not hold.

4 DRHR class of SOS

In this section, we will study the DRHR property of SOS. Since X∗
k−1:n ≤rh X∗

k:n

is equivalent to the fact that F∗,k−1
F∗,k

is a decreasing function, we immediately
obtain from (2) the relation

X∗
k−1:n ≤rh X∗

k:n ⇐⇒ r∗,k(t)
hk(t)

is decreasing in t. (4)

Consequently, we get this sufficient condition for the DRHR property in the
presence of a reversed hazard rate ordering of SOS.

Theorem 9 Let X∗
1:n, . . . , X∗

n:n be SOS based on F1, . . . , Fn with hazard rate
functions h1, . . . , hn. Let 2 ≤ k ≤ n and let hk be decreasing. If X∗

k−1:n ≤rh

X∗
k:n, then X∗

k:n is DRHR.

Proof: Since hk is decreasing, relation (4) yields the assertion.

Combining this result with Theorem 3 from the preceding section, we get a
condition only in terms of the underlying hazard rates.
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Theorem 10 Let 1 ≤ k ≤ n. If hi/hi+1 is decreasing for i = 1, 2, . . . , k − 1
and hk is decreasing, then X∗

k:n is DRHR.

Proof: Let k = 1. If h1 is decreasing, it is well known that X∗
1:n is DHR

and hence DRHR. If 2 ≤ k ≤ n, then the result follows from Theorem 3 and
Theorem 9.

Let the underlying distributions F1, F2, . . . , Fn be given by

F̄i = F̄αi , i = 1, 2, . . . , n, (5)

where F denotes an absolutely continuous distribution function and αi > 0, 1 ≤
i ≤ n. In this model the underlying distributions possess proportional hazard
rates.

Corollary 11 Let (5) hold. If F is DHR, then X∗
k:n is DRHR for k = 1, . . . , n.

Proof: By assumption, h1, h2, . . . , hn are decreasing and hi/hi+1 = αi/αi+1

is constant for i = 1, 2, . . . , n− 1. Hence, the result follows from Theorem 10.

Remark 12 It is well known that the DHR property implies the DRHR prop-
erty. Note that the conclusion of Corollary 11 cannot be strengthened to the DHR
property. This can be shown by considering the second sequential order statistic
in model (5) based on a standard exponential distribution F (t) = 1− e−t, t ≥ 0,
and α1 = α2 = 1, i.e., the usual order statistic X2:2 based on F for a sample of
size 2. Then F is DHR (and IHR), but it is well known that X2:2 is not DHR
(but instead IHR).

Remark 13 The DHR assumption on F in Corollary 11 cannot be replaced
by the DRHR property. This follows from Counterexample 3.1 in Kundu et al.
(2009).

Consider model (5) and let γi = (n − i + 1)αi for i = 1, . . . , n. If the
parameters γ1, . . . , γn are pairwise different, i.e., γi 6= γj for i 6= j, then the
distribution function and the density of the kth sequential order statistic are
given by (see Kamps and Cramer (2001))

FX∗
k:n(t) = 1− ck−1

k∑

i=1

ai,k

γi
(1− F (t))γi ,

fX∗
k:n(t) = ck−1

k∑

i=1

ai,k (1− F (t))γi−1
f(t),

with the constants

ck−1 =
k∏

j=1

γj , ai,k =
k∏

j=1
j 6=i

1
γj − γi

, 1 ≤ i ≤ k ≤ n.
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The empty product
∏
∅ is defined to be 1.

In the following theorem, we give a transmission property of the DRHR class
among the first sequential order statistics when the underlying distributions
possess proportional hazard rates.

Theorem 14 Let (5) hold and 2γ1 ≥ γ2. If X∗
2:n is DRHR, then X∗

1:n is DRHR.

Proof: If γ1 = γ2 holds, then the result follows from Theorem 3.2 in Kundu
et al. (2009). Let 2γ1 ≥ γ2 and γ1 6= γ2. Then the reversed hazard rates of X∗

1:n

and X∗
2:n are

r∗,1(t) =
f∗,1(t)
F∗,1(t)

=
γ1(1− F (t))γ1−1f(t)

1− (1− F (t))γ1
, (6)

r∗,2(t) =
f∗,2(t)
F∗,2(t)

=
γ1γ2

γ2−γ1

(
(1− F (t))γ1−1 − (1− F (t))γ2−1

)
f(t)

1− 1
γ2−γ1

(γ2(1 − F (t))γ1 − γ1(1− F (t))γ2)
. (7)

We want to show that r∗,1/r∗,2 is a decreasing function. It is sufficient to
consider the uniform distribution and then to show that

η1,2(x) =
r∗,1(1 − x)
r∗,2(1 − x)

, x ∈ (0, 1),

is increasing. After some simplifications, we obtain

η1,2(x) =
1
γ2

(
γ1 − γ2

1− xγ1−γ2
− γ1

1− xγ1

)
+ 1, x ∈ (0, 1),

with the derivative

η′1,2(x) =
1
γ2

(
(γ1 − γ2)2xγ1−γ2−1

(1− xγ1−γ2)2
− γ2

1xγ1−1

(1− xγ1)2

)
, x ∈ (0, 1). (8)

Consider the function

h(x, d) =
d2xd

(1 − xd)2
=

d2

(1− xd)(x−d − 1)
, x ∈ (0, 1), d 6= 0.

Note that h(x, d) = h(x,−d) for every x ∈ (0, 1). We want to show that h(x, d)
is a decreasing function in d > 0 for fixed x ∈ (0, 1). Then, we obtain

h(x, c) ≥ h(x, γ1), 0 < |c| ≤ γ1,

and the assertion follows from (8) and the assumption −γ1 ≤ γ1 − γ2 < γ1.
Thus, we consider the derivative

∂

∂d
h(x, d) =

d

(1 − xd)3
{
2xd − 2x2d + xd ln(xd) + x2d ln(xd)

}

9



for x ∈ (0, 1) and d > 0. It is sufficient to show that the expression in curly
brackets is non-positive. By applying the substitution −2 ln(xd) = z > 0, this
can be shown to be equivalent to

−4e−z/2 + 4e−z + ze−z/2 + ze−z ≥ 0.

The last expression coincides with the density function of the sum X1 + X2 of
random variables (X1, X2) that follow McKay’s bivariate gamma distribution
with parameters a = b = 2, c = 1 (see Kotz et al., 2000, p. 432). This yields
the assertion.

Remark 15 It can be shown for γ1, γ2 > 0, γ1 6= γ2, that

lim
x→1−

η1,2(x) =
1
2
, lim

x→0+
η1,2(x) =

{
0, γ1 > γ2,

(γ2 − γ1)/γ2, γ1 < γ2.

In particular, if 2γ1 < γ2, then the function η1,2 is not an increasing function.

Remark 16 In Kundu et al. (2009) and Wang and Zhao (2010) the trans-
mission of the DRHR property is studied for k-records and m-generalized order
statistics, in particular usual order statistics. Theorem 14 extends Theorem 3.1
in Kundu et al. (2009) in the case n = 2, k ∈ N, and Theorem 2.3(i) in Wang
and Zhao (2010) in the case r = 2 to the model of SOS.

The following example illustrates that under the assumptions of Theorem 14
the third SOS may not possess the DRHR property although the second (and
therefore the first) SOS is DRHR.

Example 17 Let (5) hold and suppose that F is a uniform distribution over
(0, 1). Assume that γ1 = 2, γ2 = 4 and γ3 = 1/2. Note that the assumptions of
Theorem 14 hold. Then, from (6) and (7), we get the reversed hazard rates of
X∗

1:n and X∗
2:n, namely

r∗,1(t) =
1
t

+
1

t− 2
and r∗,2(t) = 2r∗,1(t),

which are decreasing functions for t ∈ (0, 1), so X∗
1:n and X∗

2:n both are DRHR.
However, it is evident from Fig. 1 that X∗

3:n is not so.

Clearly, the preceding example does not contradict a possible general result
that X∗

k:n DRHR implies X∗
k−1:n DRHR for k ≥ 2. However, the proof of

Theorem 14 is tailored to the case k = 2 and an extension of this particular
derivation to k ≥ 3 is not obvious.

Finally, we give a condition such that the DRHR property of SOS implies
their reversed hazard rate order. Let us first present the following lemma which
can be straightforwardly proven (for related results, see, e.g., Righter et al.
(2009)).
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Figure 1: Plot of the reversed hazard rate function of X∗
3:n when (5) holds with

γ1 = 2, γ2 = 4, γ3 = 1/2 and F is a uniform distribution over (0, 1)

Lemma 18 Let X be an absolutely continuous random variable and φ be a
strictly increasing and convex function. If X is DRHR, then φ(X) is DRHR.

Applying the preceding lemma, we have this sufficient condition for the
reversed hazard rate order.

Theorem 19 Let X∗
1:n, . . . , X∗

n:n be SOS based on F1, . . . , Fn with hazard rate
functions h1, . . . , hn. Let 2 ≤ k ≤ n and let hk be increasing. If X∗

k−1:n or X∗
k:n

is DRHR, then X∗
k−1:n ≤rh X∗

k:n .

Proof: Note that the function Hk is strictly increasing on the support.
Moreover, it is convex, because hk is increasing. Assume that X∗

k−1:n is DRHR.
Then Hk(X∗

k−1:n) is DRHR according to Lemma 18. By applying Lemma 1.B.43
and 1.B.44 in Shaked and Shanthikumar (2007), it follows

X∗
k−1:n = H−1

k (Hk(X∗
k−1:n)) ≤rh H−1

k

(
Zk + Hk(X∗

k−1:n)
)

= X∗
k:n.

Now assume that X∗
k:n is DRHR. Using Lemma 18, we obtain that Wk =

Hk(X∗
k:n) is also DRHR. Because the reversed hazard rate of Wk is given by

rWk
(t) =

r∗,k
hk

(
H−1

k (t)
)
,

we conclude that r∗,k(t)/hk(t) is decreasing in t. Thus, the result follows from
relation (4).

Remark 20 It can be seen from the previous proof that Hk(X∗
k:n) is DRHR if

and only if r∗,k(t)/hk(t) is decreasing in t. Taking this into accont, (4) yields
the general relation

X∗
k−1:n ≤rh X∗

k:n ⇐⇒ Hk(X∗
k:n) is DRHR.
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