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Abstract

The Taylor dispersion technique has been used for measuring mutual diffusion 

coefficients of sodium hyaluronate in aqueous solutions at T = 298.15 K, and 

concentrations ranging from (0.00 to 0.50) g·dm−3. The results are interpreted on the 

basis of Nernst, and Onsager and Fuoss theoretical equations. From the diffusion 

coefficient at infinitesimal concentration, the limiting ionic conductivity and the tracer 

diffusion coefficient of hyaluronate ion were estimated. These studies have been 

complemented by molecular mechanics calculations. 

Keywords: Diffusion coefficient; Sodium Hyaluronate Electrolytes; Solutions; Taylor 

Dispersion; Transport Properties. 

1. Introduction 



  

Hyaluronic acid sodium salt (also called hyaluronan or sodium hyaluronate)  [1-

8] (Na-HA), discovered by Meyer and Palm [1], is a linear polysaccharide 

(C14H21NaNO11)n consisting of a disaccharide repeating sequence. The two saccharide-

residues are D-glucuronic acid and N-acetyl-D-glucosamine, which are linked by –1,4 

and –1,3 glycosidic bonds with each other (figure 1). 

Na-HA is the major macromolecular component of the intercellular matrix of most 

connective tissues, such as cartilage, eye vitreous humour, and synovial fluid. Playing 

an important role in the regulation of the transport of fluids and solute in the 

intercellular processes (e.g. [2]), it is one of the most hygroscopic molecules in nature 

and when hydrated, it can contain up to 1.000- fold more water than its own weight. 

This effect is particularly important in the skin for its moisturizing ability which 

contributes to its application in anti-ageing products. In addition, it is known by its 

prominent viscoelastic properties, acting as a lubricant and shock absorber in synovial 

fluid (e.g. [2,9], as well as by its biocompatibility, biodegradability and non-

immunogenicity properties, which allows that polysaccharide to be relevant in 

pharmaceutical and medical applications [10-12]. However, the understanding of these 

complex systems has not yet been well established, and consequently, their 

characterization is very important, helping us to understand their structure and to model 

them to practical applications, such as pharmaceutical and medicinal applications, as 

well as cosmetics applications [13,14]). However, few have taken into account their 

transport behaviour (e.g. [4-6]). Transport properties, particularly mutual diffusion 

coefficients (also called inter-diffusion), involving coupled fluxes of solutes and solvent 

molecules driven by concentration gradients, provide a direct measure of the molecular 

mobility, an important factor in the preservation of biological materials in sugar 

matrices. We studied the mutual diffusion behaviour of these systems, at therapeutic 

dosage. As far as the authors know, after careful literature search, no data of mutual 

diffusion coefficients are available in the literature for aqueous systems containing this 

polysaccharide.

In the present work, the interdiffusion coefficients of sodium hyaluronate in aqueous 

dilute solutions at therapeutic dosage, that is, from (0.00 to 0.50) g·dm−3 at T = 298.15 

K, were measured using the Taylor technique in aqueous solutions.  This technique [15] 

is based on the dispersion of small amounts of solutes injected into carrier solutions 

flowing through a capillary tube. The combined action of radial diffusion and 

convection along the tube axis cause the injected solute samples to spread out, 



  

producing Gaussian concentration profiles. Mutual diffusion coefficients are calculated 

from refractive-index profiles measured across the dispersed solute peaks at the outlet of 

the dispersion tube. 

The thermodynamic factor values, FT, (attributed to the non-ideality in 

thermodynamic behaviour) and, the mobility factor, FM, as well as, the equivalent 

conductance at infinitesimal concentration of the hyaluronate ion and the tracer 

diffusion coefficient are computed according to Nernst and Onsager-Fuoss equations 

[15-18]. However, having in mind that in these equations phenomena, such as 

association between two monomers and/or counter-ion condensation [19, 20] and 

hydrolysis are not taken into consideration, those values are only estimations.  

Despite of their limitations, the molecular mechanics studies here presented permitted 

us to obtain some additional information concerning the probable interactions in this 

system containing sodium hyaluronate and helped in obtaining a better understanding of 

the diffusion in these systems.  

In conclusion, we intend to contribute not only to a deeper understanding of the 

fundamental diffusion properties of these solutions, but also to a better understanding of 

the factors governing the formation of these structures. 

2. Experimental 

2.1 Materials 

Hyaluronic acid sodium salt, from Streptococcus equi (table 1) was used as 

received. The solutions for the diffusion measurements were prepared in calibrated 

volumetric flasks using bi-distilled water and were freshly prepared and de-aerated, by 

using a Sonorex RK106 ultrasonic bath, for about 30 minutes before each set of runs.  

2.2 Mutual diffusion coefficients, D, measurements 

The theory of the Taylor dispersion technique is well described in the literature 

[21-28] and consequently the authors only point out some relevant points concerning 

such method on the experimental determination of binary diffusion coefficients and 

ternary diffusion coefficients, respectively. 



  

Dispersion methods for diffusion measurements are based on the dispersion of 

small amounts of solution injected into laminar carrier streams of solvent or solution of 

different composition, flowing through a long capillary tube. The length of the Teflon 

dispersion tube used in the present study was measured directly by stretching the tube in 

a large hall and using two high quality theodolytes and appropriate mirrors to accurately 

focus on the tube ends. This technique gave a tube length of (3.2799 ± 0.0001) 103 cm, 

in agreement with less-precise check measurements using a good-quality measuring 

tape. The radius of the tube, (0.05570 ± 0.00003) cm, was calculated from the tube 

volume obtained by accurately weighing (resolution 0.1 mg) the tube when empty and 

when filled with distilled water of known density. 

At the start of each run, a 6-port Teflon injection valve (Rheodyne, model 5020) 

was used to introduce 0.063 cm3 of solution into the laminar carrier stream of slightly 

different composition. A flow rate of 0.17 cm3·min�−1 was maintained by a metering 

pump (Gilson model Minipuls 3) to give retention times of about 8×103 s. The 

dispersion tube and the injection valve were kept at T = 298.15 K and T = (303.15 ±

0.01 K) in an air thermostat. 

Dispersion of the injected samples was monitored using a differential 

refractometer (Waters model 2410) at the outlet of the dispersion tube. Detector 

voltages, V(t), were measured at accurately timed 5 s intervals with a digital voltmeter 

(Agilent 34401 A) with an IEEE interface. Binary diffusion coefficients were evaluated 

by fitting the dispersion equation 

V(t) = V0 + V1t + Vmax (tR/t)1/2 exp[–12D(t – tR)2/r2t]                           (1)  

to the detector voltages. The additional fitting parameters were the mean sample 

retention time tR, peak height Vmax, baseline voltage V0, and baseline slope V1.

 Measurements of pH were carried out with a Radiometer pH meter PHM 240 

with an Ingold U457-K7pH conjugated electrode; pH was measured in fresh solutions 

and the electrode was calibrated immediately before each experimental set of solutions 

using IUPAC-recommended 2 and 4 pH buffers. From the pH meter calibration, a zero-

pH of (5.080 ± 0.030) and sensitivity higher than 98.7 % were obtained.  



  

2.3 Molecular mechanics studies 

Energy minimization was obtained in Hyperchem 8 (Hypercube, Inc.; USA) 

using the molecular mechanics MM+ force field, under a conjugated gradient (Polack-

Ribiere) with a final RMS gradient of 0.1 kcal/mol, in vacuum and in a cage of water 

molecules. The calculations were performed in a HP-Z620 workstation under Windows 

7 (Microsoft, Inc.; USA). 

3. Results and discussion 

3.1 Measurements of diffusion coefficients

3.1.1 Concentration dependence of mutual diffusion coefficient, D, at infinitesimal 

and finite concentrations 

Table 2 gives the average D value at infinitesimal concentration for each 

injection solution determined from 4 to 5 profiles generated by different injecting 

samples in water. D
0 is obtained by extrapolated values obtained from the D least-

squares for total number of injections (that is, D0 = 1.184 x 10-9 m2·s-1).

Tables 3 and 4 give the average D value for finite concentrations at two carrier 

solutions (0.25 g·cm-3 and 0.5 g·cm-3), determined from 4 to 5 profiles generated by 

injecting samples in those solutions (i.e., D = 0.717 x 10-9 m2·s-1 and D = 0.600 x 10-9

m2·s-1, respectively). Table 5 show all results, including the D value obtained for 0.3 g 

cm-3, but determined from 4 profiles generated by different injecting samples more or 

less concentrated than the carrier solution. Good reproducibility was, in general, 

observed, within ±2 %.  

The concentration dependence of the measured diffusion coefficients can be 

represented by the polynomial equation, 

D/(10−9 m2·s−1 ) = 1.174-0.845 c1/2  (R2 = 0.992) (2)



  

permitting us to calculate values of diffusion coefficients at specified concentrations 

within the range of the experimental results shown in the table 4. The goodness of the fit 

(obtained with a confidence interval of 98 %) can be assessed by the excellent 

correlation coefficients, R2 and the low percentage of standard deviation (< 1 %).  

The pH measurements were made on some of the sodium hyaluronate in aqueous

solutions to assist interpretation of these results for c = 4g·dm-3 and T = 298.15 K, the 

pH value was 6.33. 

The interpretation of the diffusion behaviour of this aqueous system (sodium 

hyaluronate) can be made on the basis of the Onsager-Fuoss model (equation 3),

suggesting that D is a product of both kinetic, FM (or molar mobility coefficient of a 

diffusing substance) and thermodynamic factors, FT (FT = c∂ /∂c), where  represents 

the chemical potential of the solute. Thus, two different effects can control the diffusion 

process: the ionic mobility and the gradient of the Gibbs energy,  

TM
FFD ×=                   (3) 
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±y  represents the thermodynamic activity coefficient of the solute, D is the mutual 

diffusion coefficient of the electrolyte in m2 s-1, R is the gas constant in J·K-1·mol-1, T is 

the absolute temperature, z1 and z2 are the algebraic valences of a cation and of an anion, 



  

respectively, and the last term in parenthesis is the activity factor, with ±y being the 

mean molar activity coefficient, c the concentration in mol·m-3, and M , in mol2·s·

m-3·kg-1 , given by 
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In equation 6, the first- order electrophoretic term, is given by 

where 0 is the viscosity of the water in N·s·m-2, NA is the Avogadro’s constant, e0 is the 

proton charge in coulombs, 
c

and 
a

are the stoichiometric coefficients, 0
c

and 0
a

are the limiting molar conductivities of the cation and anion, respectively, in m2·mol-1

·Ω -1, k is the “reciprocal average radius of ionic atmosphere” in m-1 (see e.g., Harned & 

Owen, 1964 [16]), a is the mean distance of closest approach of ions in m, (a = 5.1 x 10-

10 m). 

The values of the 1, indicated in table 5, are very small and, consequently, FM is 

almost constant for the concentration range. In fact, the values of the 1 for the studied 

interval of concentrations contribute only around 0.1 % to the decreasing of D0.

From our measurements of diffusion coefficients, D, and considering equation (3), 

we have estimated the thermodynamic factor values within the interval of 

concentrations studied (table 5). The decrease of the diffusion coefficients, D, and also, 

of the gradient of the Gibbs energy with concentration, FT, leads us to conclude that this 

behaviour of the sodium hyaluronate in aqueous solutions at T = 298.15 K appear to be 

affected by the presence of aggregated species (fact that is confirmed by molecular 

mechanics calculations), having a lower mobility than hyaluronate monomers due to 
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their size. Considering our experimental conditions (i.e., dilute solutions), and 

consequently, assuming that the parameters such as viscosity, dielectric constant, 

hydration and association or complexation, (factors not taken into account in this 

model) do not change with concentration, we can conclude that the variation in D is due 

mainly to the variation of FT (attributed to the non-ideality in thermodynamic 

behaviour), and, secondary, to the electrophoretic effect in the mobility factor, FM (table 

5).  

3.1.2 Estimation of tracer diffusion coefficient of the hyaluronate ion 

By using the Nernst-Hartley equation [15, 18]  
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where D0 value is the diffusion coefficient for the sodium hyalunorate at infinitesimal 

concentration (table 2), Zc and Za, and 0
c and 0

a represent the algebraic valences and 

the equivalent conductance at infinitesimal concentration of Na+ and HA, respectively, 

and taking the limiting ionic conductivity of sodium ion as equal to 50.10 x 10-4 S·m2

·mol−1 [29], we estimated 0
a, being equal to 40.05 x 10-4 S·m2·mol−1

From this value for limiting ionic conductivity of the hyaluronate ion, the corresponding 

limiting tracer diffusion coefficient, 0
T

D , can be estimated through the Nernst equation 

(equation 9) 

T

FZD 2
0

a R
a

0
T=                 (9)

giving a value of 1.066 ×10−9 m2·s−1.

Taking into account that the 0
a represents the limiting equivalent conductance of the 

hyaluronate anions in unit of sodium hyaluronate, and not the limiting ionic 



  

conductance of polymeric HA-anions, one would expect us to achieve a higher value for 

the tracer diffusion coefficient, 0
T

D , compared to what would be predicted. 

Our calculation shows that the mutual diffusion coefficient of this system at 

infinitesimal concentration is significantly larger (1.1 times) than that the corresponding 

tracer diffusion coefficient. This increase characterises the electrostatic dragging effect 

of sodium ions on hyaluronate ions.  

3.2. Molecular mechanics in vacuum and in water 

Our computational studies were designed to evaluate two experimental 

situations. The first one was the mobility of the Na+ cation over the polymer backbone. 

The second was the probability of aggregation between two independent polymer units. 

To do the evaluation of the mobility of the Na+ cation we run several 

calculations of geometry optimization based in energy minimization. The first 

interesting observation was that the Na+ ion placed near de -COO- group in the stating 

basis, after geometry optimization based in energy minimization shifts quickly to the 

region between the -COO- group and the nearby hydroxyls 15 and 12. That shows the 

Na+ cations have a noticeable tendency to coordinate with the hydroxyls present along 

the polymer backbone and therefore have a reasonable mobility around the polymer. 

Similar results were obtained in a cage of 500 water molecules. That, is some way, can 

be interpreted in terms of the ion condensation over polyelectrolytes described by the 

Manning theory, despite more detailed calculations need to be made to support these 

preliminary findings. 

To evaluate the probability of the aggregation between two independent polymer 

units we performed several geometry optimization calculations by docking two polymer 

repeating units (PRU) side by side, both head-to-head and head-to-tail. All calculations 

gave similar results in terms of energy of the systems. Also the calculations in vacuum 

or in a cage of 1700 water molecules gave similar results in terms of the geometry, 

pointing for solvent independent interactions. The calculations were made assuming a 

pH of 7, which discards the possibility of amide hydrolysis but allows for the existence 

of zwitterions, resulting from the intramolecular protonation of the amide by the 

carboxylic acid. Using MM+ geometry minimization, all those chemical species were 

evaluate for global energy variations and geometry similarities and all showed very 



  

similar results in terms of energy and geometry, both in vacuum and in water solutions, 

with deviation of less than 5 % between them. But despite the energetics of those 

systems being similar the docking process showed several close contacts between the 

paired PRUs that may be responsible for association processes. In the case of the paired 

zwitterionic species this close contacts reached very short values, near 3 x 10-10 m, and 

may be responsible for the aggregation process observed up on higher concentration of 

hyaluronic acid sodium salt experiments. That distance is even shorter than the distance 

between the carboxylic acid and the Na+ cation (5.1 x 10-10 m), pointing indeed to a 

relevant electrostatic interaction between the polymeric chains, that may induce a 

considerable aggregation between hyaluronic acid chains. 

As can be seen in figure 2 the calculated isopotential surface generated for two 

PRU side by side in a head-to-tail arrangement in the zwiterionic form shows several 

well defined positive (lighter) and negative (dark) zones that can be responsible for the 

observed aggregation of hyaluronic acid polymeric chains and may help in the 

understanding of the experimental behaviour observed. 

Conclusions 

Based on these measurements of diffusion coefficients of sodium hyaluronate in 

aqueous solutions, and on the molecular mechanics calculations, we conclude that the 

diffusion of this polysaccharide in aqueous solutions, is strongly affected by the 

presence of new different species resulting from various equilibria (e.g. aggregation) 

and, consequently, to the decreasing of the diffusion coefficients with the increasing of 

concentration. The effect of aggregation on the diffusion of Na-HA, confirmed by 

analysis of the dependence of diffusion on concentration as well as by molecular 

mechanics calculations is due mainly to the variation of FT (attributed to the non-ideality 

in thermodynamic behaviour), and, secondarily, to the electrophoretic effect in the 

mobility factor, FM.



  

Diffusion coefficients measured for aqueous solutions of sodium hyaluronate provide 

transport data necessary to model the diffusion in pharmaceutical and engineering 

applications. 
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Figure 1 
The monomeric unit of hyaluronate anion [5] 



  

Figure 2 

 Isopotential surface generated for two polymer repeating units, side by side in a 

head-to-tail arrangement in the zwiterionic form (positive (lighter) and negative 

(dark) zones) 



  

Table 1. Provenance and mass fraction purity of the sample. 

Chemical name Source Purity 

Hyaluronic 
acid sodium 

salt. 

Sigma-Aldrich  
Streptococcus equi  

CAS number 9067-32-7, code 53747 

Mass fraction purity  0.99 
%, 



  

Table 2. Mutual diffusion coefficients, D, of Na-HA in aqueous solutions at 

infinitesimal concentrations at T = 298.15 K and the standard deviations of 

the means, DS

c

/(g·dm-3)

Da )± DS

/(10-9 m2·s-1)

2.000 

2.500 

3.000 

3.500 

4.000 

0.997 ± 0.003 

0.947 ± 0.003 

0.887 ± 0.002 

0.855 ± 0.004 

0.805 ± 0.003 

D0 = 1.184 x 10-9 m2·s-1 b)

a D is the mean diffusion coefficient value from 4-6 experiments and DS is the standard deviation of that 

mean.  b Extrapolated values obtained from the D least-squares for total number of injections , that is,  D/

10-9 m2·s-1 = 1.184 - 0.095 c (R2 = 0.993). 



  

Table 3. Mutual diffusion coefficients, D, of Na-HA at T = 298.15 K in aqueous 

solutions at concentrations 0.25 g·dm-3 and 0.50 g·dm-3

cinj

/(g·dm-3)a)

D± DS b)

/(10-9 m2·s-1)

(c = 0.25 g·dm-3)

D ± DS b)

/(10-9 m2·s-1)

(c = 0.50 g·dm-3)

2.000 

2.500 

3.000 

3.500 

4.000 

0.622 ± 0.026 

0.591 ± 0.015 

0.570 ± 0.020 

0.551 ± 0.025 

0.520 ± 0.023 

0.523 ± 0.020 

0.505 ± 0.021 

0.487 ± 0.025 

0.466 ± 0.026 

0.447 ± 0.016 

D = 0.717 x 10-9 m2·s-1 c) D = 0.600 x 10-9 m2·s-1 d)

a cinj represent the concentration of the injection  solutions.  bD is the mean diffusion coefficient value 

from 4-6 experiments and DS is the standard deviation of that mean. cExtrapolated values obtained from 

the D least-squares for total number of injections, that is,  D/ 10-9 m2·s-1= 0.717 - 0.049 c (R2 = 0.992).
dExtrapolated values obtained from the D least-squares for total number of injections, that is,  D/10-9 m2·s-

1 = 0.600 - 0.038 c (R2 = 0.999).



  

Table 4. Mutual diffusion coefficients, D, of Na-HA at T = 298.15 K in aqueous 

solutions at infinitesimal and finite concentrations, c.

c

/(g·dm-3)

D a)

/(10-9 m2·s-1)

0.00 

0.25 

0.40 

0.50 

1.184 

0.717 

0.641b)

0.600 

aD is the mean diffusion coefficient value from 4-6 experiments and DS is the standard deviation of that 

mean. bValue obtained from the D least-squares for different injecting samples more and less 

concentrated than the carrier solution ( c = ± 0.8).
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Binary diffusion coefficients for the systems containing sodium hyaluronate. 

Influence of the aggregation on diffusion of the sodium hyaluronate in the aqueous 

media. 

Estimation of the thermodynamic and mobility factors from mutual diffusion. 


