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Abstract

Congestion has become a global phenomenon. In particular in great urban areas, daily

traffic jams are in most cases a major concern. Managing signal plans efficiently is one

of the most cost-effective methods. However, existing signal control strategies are less

powerful in handling congested network with spillbacks and grid-type topology.

Enhancing the reliability of our networks is currently recognized as a critical goal

in the US and in Europe. There is extensive evidence that indicates that travel time

reliability is accounted by travelers in a variety of travel decisions, such as departure

time and route choice. Hence, operating our networks such as to reduce both the

average and the variability of trip travel times would be highly valued by travelers.

However, urban traffic management strategies are typically formulated such as to im-

prove first-order performance metrics (e.g. expected trip travel times, expected link

speeds). The main challenge in addressing reliability in traditional transportation

optimization problems is the need to provide an accurate analytical and tractable ap-

proximation of trip travel time distribution, or of its first- and second-order moments.

xxv



The complex between-link spatial-temporal dependency patterns makes accurate an-

alytical modeling of urban road networks a challenge. In particular when the aim is

to model metrics related to the paths chosen by the drivers, in order to reflect driver

experiences. Thus, this work proposes new signal control strategies for large-scale

congested urban networks that can tackle these challenges.

In this thesis, a simulation-based optimization (SO) approach is used to address

traffic signal control problems. Microscopic simulators describe in detail the interac-

tions between vehicle performance, traveler behavior and the underlying transportation

infrastructure. They can ultimately contribute to the design of traffic management

strategies, providing detailed system performance estimates to infer the design and

operations of urban networks. To ensure the computational efficiency, an analytical

approximation of objective function is needed. We develop different formulations of

travel time reliability based on both link travel time and path or trip travel time dis-

tributional information, and then use those formulations in signal design strategies to

fulfill the reliability requirements. We also design a simulation-based adaptive traffic

signal control algorithm to adjust signals plans dynamically according to real-time

traffic conditions.

We apply the reliable signal control strategy to both city center and the full city of

Lausanne. The proposed simulation-based adaptive traffic signal control algorithm is

applied to a grid-type urban network with heavy traffic in east Manhattan area (New

xxvi



York City, USA). In both cases, proposed methods lead to signal plan with better

performance in terms of various performance metrics.

Keywords: signal control, reliability, Little’s law, adaptive traffic signal control,

simulation-based optimization.
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Resumo

O congestionamento tornou-se um fenómeno global, com particular relevância no caso

das grandes áreas urbanas onde os engarrafamentos rodoviários são por norma uma

preocupação diária. A gestão eficiente de planos semafóricos é certamente um das

formas mais rentáveis de lidar com este fenómeno. No entanto, as estratégias existentes

para o controle de sinais semafóricos são por norma pouco poderosas na manipulação

de redes congestionadas de tipologia reticulada e que sofrem de efeitos spillback.

Melhorar a fiabilidade das nossas redes é atualmente reconhecido como um obje-

tivo fundamental, tanto nos EUA como na Europa. Há uma ampla evidência sobre

como a fiabilidade tempo de viagem é considerada por viajantes em uma variedade

de decisões de viagem, tais como na escolha do horário de saída e da rota de viagem.

Assim, operar as redes rodoviárias por forma a reduzir tanto a média como a variabil-

idade dos tempos de viagem seria muito valorizado pelos viajantes. No entanto, as

atuais estratégias de gestão do tráfego urbano são normalmente formuladas de modo

a apenas melhorar os indicadores de desempenho de primeira ordem (como é o casa
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dos tempos de viagem esperados ou as velocidades esperadas nos eixos). O principal

desafio na abordagem de introduzir objetivos de fiabilidade em problemas de otimiza-

ção de transporte tradicionais é a necessidade de encontrar uma aproximação analítica

útil e precisa para a distribuição do tempo de viagem, ou seja, para os seus momentos

de primeira e de segunda ordem. A complexidade das dependências entre os eixos da

rede e as próprias relações espaço-temporais, torna a modelação analítica exata da

rede rodoviária um desafio. Em particular quando se pretende modelar indicadores de

performance ao nível dos percursos tomados pelos condutores, de forma a refletir as

experiências de viagem dos condutores. Este trabalho propõe por isso novas estraté-

gias de controlo semafórico, que conseguem lidar com os desafios indicados e que são

particularmente úteis para redes urbanas congestionadas de grande escala.

Nesta tese, um modelo de otimização baseada em simulação (SO) é usado para

tratar problemas semafóricos de controle de tráfego. Os simuladores microscópicos

descrevem em detalhe as interações entre o desempenho do veículo, o comportamento

dos condutores e a infraestrutura de transporte subjacente. Eles podem contribuir

para o desenvolvimento de estratégias de gestão de tráfego, proporcionando estimativas

detalhadas do desempenho do sistema que podem ser usadas tanto no planeamento

como na avaliação da performance de redes urbanas. No entanto, para assegurar a

eficiência computacional, é necessária lidar com uma aproximação analítica da função

objetivo. Para isso, desenvolvemos diferentes formulações de fiabilidade do tempo
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de viagem, com base em distribuições tanto do tempo de viagem nos eixos como do

tempo de viagem no percurso ou viagem. Essas formulações foram posteriormente

usadas no desenvolvimento de estratégias que preenchem os requisitos em termos da

fiabilidade dos tempos de viagem. Desenvolveu-se ainda um algoritmo de controle

reactivo de semáforos baseado em simulação, de modo a ajustar os planos semafóricos

dinamicamente de acordo com as condições de tráfego em tempo real.

A estratégia de fiabilidade para o controle semafórico proposta nesta tese é aplicada

tanto à rede do centro da cidade de Lausanne como à rede completa da mesma cidade.

O algoritmo de controle semafórico reactivo com base em simulação é aplicado a uma

rede urbana reticulada, com elevados níveis de tráfego, na zona leste da Ilha de Man-

hattan (Nova York, EUA). Em ambos os casos, os métodos propostos obtêm planos

semafóricos com melhor desempenho em termos das várias medidas de desempenho

usadas.

Palavras-chave: planos semafóricos, fiabilidade, Little’s law, controle semafórico

adaptativo, otimização baseada em simulação.
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Chapter 1

Introduction

1.1 Background

In the future, given the growing number of population living in the urban area, the

urban road systems are facing more demand. Given urban space constraints, road

systems capacity cannot develop at the same rhythm. In fact, road systems seem

confronting a bottleneck that commonly leads to major congestion experiences. Road

congestion happens in many large cities. It is characterized by slower speeds, longer

trip times, and queueing phenomena. It may result in late arrival for work or school,

reducing travelers’ productive time, increasing fuel consumption and air pollution;

increasing individuals stress, and limit regional economic growth. In the year 2001,

the external costs caused by road traffic congestion reached almost 0.5% of the EU

Community GDP (gross domestic product) (EuropeanComission, 2001). These costs
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were expected to grow by 142% until 2010, reaching 1% of the community GDP, and

to increase more 50% in the next four decades (EuropeanComission, 2011).

Building new infrastructures, such as roads, tunnels and more interchanges, are

usually the most direct approach to increase road capacity. However, in high-density

urban areas, especially in the historical areas, it is hard to build new infrastructures.

Other approach is to explore more efficiently use of existing infrastructures by adopt-

ing efficient and effective traffic management solutions. Intersection is an important

component of urban road network, and one of the most common types is the signalized

intersection. Traffic signal controls are implemented to reduce or eliminate conflicts

among multiple traffic streams at intersections. Signals manage these conflicts by

controlling access to the intersection, allocating green time to some movements while

showing the red signal to the conflicting movements. Generally speaking, there are

two types of traffic signal setting strategies, namely the fixed-time, and adaptive traffic

signal control systems (ATCSs). Compared to the traditional fixed-time signal control

strategies, adaptive traffic control systems provide a more flexible option for adjusting

signal timings to accommodate changing traffics. Fixed-time traffic signal control is

used in majority intersections because it is easier to deploy and maintain.

Traffic signal optimization has been a major topic of research in the last 50 years

since the work of Webster (1958). However, it is widely accepted that traffic signal

benefits are not fully realized, there is plenty of room for improvement (Lo et al., 2001).
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The most common signal control design objectives only account for first-order distri-

butional information such as average or total travel time, system throughput, number

of vehicle stops. Very limited efforts have been done to account for higher-order distri-

butional information in signal control design objectives such as travel time reliability.

The main challenge in addressing reliable signal control problem is to provide accurate

and tractable analytical approximation of the trip travel time distribution account-

ing for between-link spatial-temporal dependency. Besides the reliable traffic signal

control problem, another problem for current traffic control strategies is the limited

ability to provide signal plans that could improve the system performance efficiently

under very congested traffic condition, especially for congested grid-type urban net-

works. It is still a challenge for designing signal control strategy to handle congested

and oversaturated traffic conditions.

One way of solving these issues is to incorporating the detailed and accurate sys-

tem performance estimates obtained from microscopic simulator to inform the design

and operations of traffic signal controls. Stochastic microscopic traffic simulators are

widely used in signal control analysis. The stochastic modeling of demand and supply

improves our ability to understand complex traffic and behavioral phenomena. Simu-

lators provide a detailed description of the underlying supply (e.g. road capacity and

traffic management strategies), demand (e.g. drivers behavior models), as well as of

their interaction. One of the most important system performance measure is travel
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time or delay. Taking travel time as an example, analytical techniques are computa-

tionally tractable and efficient, yet rely on strong distributional assumptions, such as

the choice of a given parametric distribution for link or path delay (e.g.: normal or

lognormal). More importantly, they fail to account for the complex spatial-temporal

dependencies between links, which are due, for instance, to vehicle-to-vehicle interac-

tions and vehicle-to-supply interactions. Such interactions highlight the complex that

the travel time distribution may take. The use of microscopic simulators, which ac-

count for local dynamics and for the complex local and network-wide supply-demand

interactions, can yield a more detailed representation of between-link dependencies,

and travel time distributions. The direct use of these stochastic and computation-

ally intensive simulators for control purposes is a challenging task. In order to derive

computationally efficient methods that embed non-efficient simulators, information

from other more tractable traffic models is used throughout the optimization process.

The role of these auxiliary models is to provide analytical structural information to

the algorithm, which enables the identification of well performing alternatives with

very small samples. Osorio (2010) presented a metamodel simulation-based (SO) opti-

mization method that combines the information from a microscopic traffic simulation

model with an analytical queueing network model. In that approach, a fixed-time

signal control problem that accounts for first-order travel time information (expected

trip travel time) is solved. Although the results obtained from this metamodel proved
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to be suitable for congestion urban networks, providing better signal plans with im-

proved performance, there is still much room for improvements such as incorporating

reliability concerns in traffic signal design objectives and extent the fixed-time signal

control problem to adaptive signal control.

Nowadays, enhancing the reliability of transportation networks is recognized as a

critical goal. Recent London and U.S. reports have demonstrated the importance of

improving the reliability of our transportation systems (Transport for London, 2010;

Texas Transportation Institute, 2012; Department of Transportation, 2008). Increased

reliability yields a more stable and less disruptive transportation service. Past work has

emphasized that traffic signal control has the potential to improve travel time reliability

(Robert L. Gordon, 2005). Furthermore, for grid-type networks with heavy traffic, the

formation of queues can cause spillback effects, blocking nearby intersections, and

spreading the congestion phenomena across the road network for a longer time period.

As a result, this research aims to extend the work developed by Osorio to solve signal

control problems that are important but receive less attention or have limitations. We

are aiming to design signal control strategy taking into consideration of travel time

reliability, and develop both fixed-time and adaptive traffic signal control strategies

for very congested urban network especially for grid-type networks with spillbacks.
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1.2 Objectives

In this thesis, two problems are of particular interests: one is designing signal control

strategy that offers reliable service for congested urban networks; the other is devel-

oping traffic signal control strategy that can be controlled and dynamically adjusted

according to the travel demand.

For the first problem, the major challenge in improving travel time reliability is

the approximation of the network travel time distribution. An analytical and accurate

expression for the full joint network distribution is difficult to derive given the intricate

between-link dependencies. For the second problem, the major challenge is to deal with

grid-type congested urban network. The studied area contains numerous intersections,

multimodal traffic and short links. In the literature, either fixed-time, or adaptive

traffic signal control systems have limited ability in handling such type of network.

Within this context, the objectives of this thesis are:

1. To incorporate tractable link travel time distributional information in signal

design objectives within the SO framework to enhance travel time reliability for

urban network.

2. To propose an analytical and accurate expression of trip travel time distribu-

tion considering intricate between-link dependency to overcome the limitation of

using independent link travel times.
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3. To incorporate the proposed trip travel time distributional information within

the SO framework to solve reliable signal control problems.

4. To investigate the performance of the signal plans derived by using different

travel time reliability formulations.

5. To design adaptive traffic signal control algorithm to improve system perfor-

mance under various traffic conditions for congested grid-type urban area.

1.3 Thesis structure and contributions

To the best of our knowledge, this thesis constitutes the first attempt to 1) derive

analytical and tractable approximation of second-order distributional information of

link, path and trip travel time that can be used to solve transportation optimization

problems and simulation-based optimization problems; 2) use higher-order distribu-

tional information (both analytical and simulation-based) to solve urban traffic signal

control problem, and 3) design simulation-based adaptive traffic signal control algo-

rithm for highly congested grid-type network using queue management techniques in

design objective.

Chapter 2 considers a simulation-based reliable signal control problem. In this

chapter, first-order and second-order link travel time distributional information are

combined in the signal design objective function to derive fixed-time signal plans.
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This formulation is used to address signal plans for both city center and full city of a

Swiss city Lausanne. The signal plans derived are compared with the signal plans that

only consider the first-order or second-order travel time distributional information to

address the added value of combing both expectation and variability of travel time in

signal control problems.

The results of Section 2.4.2 have been presented and published as:

Chen, X., and Osorio, C., and Santos, B. (2012). A Simulation-Based Approach to

Reliable Signal Control. Proceedings of the International Symposium on Transporta-

tion Network Reliability (INSTR), Dec. 18-19, 2012.

The results of Section 2.4.2-2.4.5 have been presented and published as:

Chen, X., and Osorio, C., and Santos, B. (2013). Travel Time Reliability in Sig-

nal Control Problem: Simulation-Based Optimization Approach. Proceedings of the

Transportation Research Board (TRB) Annual Meeting January 13-17, 2013.

Chen, X., and Osorio, C., and Santos, B. (2013). Simulation-based reliable signal

control. Proceedings of the Triennial Symposium on Transportation Analysis (TRIS-

TAN VIII), June 9-14, 2013.

The full chapter has been submitted to Transportation Science.

Chapter 3 proposes an analytical and tractable formulation of trip travel time

variability that explicitly considers between-link dependency. This formulation is com-

pared with the formulations that ignore the between-link dependency for different toy
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networks to verify the accuracy of the formulation. The proposed formulation of trip

travel time variability is used to solve a reliable signal control problem for the city

center of Lausanne. The performance of the signal plans derived in Chapter 3 are

compared with the signal plans derived in Chapter 2 to address the added value of

accounting between-link dependency in reliable signal control problems.

The results of Section 3.3, Section 3.4 and Section 3.5 have been presented and

published as:

Chen, X., and Osorio, C. (2014). Analytical formulation of trip travel time distri-

bution. Proceedings of the EURO Working Group on Transportation (EWGT) July

2-4, 2014.

The results of Section 3.3, Section 3.4 and Section 3.5 have been published as:

Chen, X., and Osorio, C. (2014). Analytical formulation of trip travel time distri-

bution. Transportation Research Procedia Special Issues.

The full chapter has been submitted to Transportation Science.

Chapter 4 proposes fixed-time signal control strategy for a grid-type urban net-

work with heavy traffic in east Manhattan. Based on the signal plan control strategy

proposed in Chapter 4, Chapter 5 further proposes an adaptive traffic signal control

algorithm for the same area of Manhattan. The performance of the proposed signal

plans are compared with the existing signal plan in use for that area.

Chapter 4 has been presented and published as:
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Osorio, C., Chen, X., Marsico, M., Talas, M., Gao, J., Zhang, S. (2014). Re-

ducing gridlock probabilities via simulation-based signal control. Proceedings of the

International Symposium of Transport Simulation (ISTS) June 1-4, 2014.

The preliminary results of Chapter 5 have been accepted by Transportation Re-

search Board (TRB) Annual Meeting, 2015.

Chapter 6 presents conclusions and future development of research that are re-

lated to this thesis.
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Chapter 2

A Simulation-Based Approach to

Reliable Signal Control

2.1 Introduction

Traffic signal control is a cost-effective way to make better use of the existing poten-

tial capacity of an urban transportation network, and more generally of the existing

infrastructure. It is widely accepted that traffic signal benefits are not fully realized

and there is plenty of room for improvement (Lo et al., 2001).

Travel time reliability is an important metric used to evaluate the performance

of a transportation system. It can be defined as travel time variability. According

to a stated preference survey, it is considered to be either the most important or

second most important reason for the commuting route choices of 54% of morning
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commuters in Los Angeles(Abdel-Aty and Jovanis, 1996). Bates et al. (2001) showed

that some transportation users value more the reduction of travel time variability than

the expected travel time.

Enhancing the reliability of transportation networks is currently recognized as a

critical goal. A recent Transport for London report identifies trip travel time reliability

improvements as their primary objective (Transport for London, 2010). U.S. reports

have also emphasized the importance of improving the reliability of our transportation

systems (Texas Transportation Institute, 2012; Department of Transportation, 2008).

Increased reliability yields a more stable and less disruptive transportation service.

Transport network can be model by urban traffic simulation models. There are

three main families of urban traffic simulation models: macroscopic, mesoscopic and

microscopic (for a review see Barceló (2010)). Microscopic models embed the most

detailed representation of both demand and supply. They explicitly consider vehicle-

specific attributes for each individual vehicle. They also represent individual travelers

and embed detailed disaggregate behavioral models (e.g. departure-time choice, route

choice, lane-changing, car-following, re-routing). Since they account for complex lo-

cal traffic dynamics and demand-supply interactions, they capture the between-link

spatial-temporal dependencies of the main performance measures, and can thus yield

accurate estimates of the full distribution of the main performance measures. These

distributions can be used to inform the design and operations of transportation sys-
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tems by, for instance, addressing reliable formulations of traditional transportation

problems.

The direct use of these stochastic and computationally intensive simulators for

control purposes is a challenging task. In order to derive computationally efficient

methods that embed non-efficient simulators, information from other more tractable

traffic models is used throughout the optimization process. The role of these auxiliary

models is to provide analytical structural information to the algorithm, which enables

good short-term algorithmic performance to be achieved.

This chapter proposes a methodology that enables the use of detailed stochas-

tic traffic simulators to efficiently address higher-order simulation-based optimization

(SO) problems. Additionally, we focus on the development of computationally efficient

SO techniques, the objective is to identify within the pre-specified computational bud-

get signal plans that improve both first- and second-order distributional information

(defined as a maximum number of simulation runs). In order to achieve efficiency, in-

formation from the (inefficient) simulator is coupled with information from an efficient

(i.e. tractable and differentiable) analytical approximation of the objective function.

The role of the simulator is to provide a highly detailed approximation of the dis-

tributions of interest, whereas that of the analytical model is to provide structural

information to the SO algorithm, enhancing its efficiency. This chapter is structured

as follows. Section 2.2 presents a review of reliability metrics, and their use for signal
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control. We then present the proposed methodology (Section 2.3). Empirical results

based on case studies in the Swiss city of Lausanne are presented in Section 2.4. We

conclude with a brief discussion in Section 2.5.

2.2 Literature Review

There are four types of reliability measures presented in transportation studies. The

early-proposed reliability measures are connectivity and travel time reliability. Con-

nectivity reliability is defined as the probability that the network nodes are still con-

nected if one or more links fail to connect due to incidents (Wakabayashi and Iida,

1991). Travel time reliability is used to account for the stochastic travel time varia-

tions. Capacity reliability is defined as the maximum traffic volume that a network

can accommodate (Chen et al., 1999a). More recently, the concept of potential relia-

bility or vulnerability is proposed (D’Este and Taylor, 2003). It can be defined as the

exposure of the road system to incidents that can result in significant reductions in

the system capacity. Santos et al. (2010) integrated vulnerability in a network design

problem by focusing on the potential consequences on overall network performance if

some links are closed. For a more detailed description of network reliability metrics,

see Clark and Watling (2005).

This chapter focuses on travel time reliability. The two most common metrics used

to address travel time reliability are trip travel time variability and trip travel time
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percentiles (e.g., 95th percentile) (OECD, 2010).

In order to account for travel time reliability, there is a need to go beyond the ap-

proximation of expected travel times, and use higher-order distributional information

(e.g. variance or full distributional information). Nonetheless, a major challenge in

improving travel time reliability is the approximation of the network travel time distri-

bution. An analytical and accurate expression for the full joint network distribution is

difficult to derive given the intricate between-link spatial-temporal dependencies. A va-

riety of analytical approximations have been proposed based on distributional assump-

tions such as functional form of the full joint distribution (Mirchandani and Soroush,

1987), functional form of marginal link distributions (Fu and Hellinga, 2000), and

moments of the marginal distribution (Ng et al., 2011). Empirical (non-parametric)

analysis of link travel time distributions have also been proposed (van Lint and van

Zuylen, 2005; Chen et al., 2003). On the other hand, simulators can yield distributional

estimates that account for such complex dependencies. The use of these simulators

is mostly limited to what-if (i.e., scenario-based) analysis (as in, for instance, Bullock

et al. (2004); Ben-Akiva et al. (2003)). Their use within simulation-based optimization

(SO) algorithms is rare, and limited to the use of first-order distributional information

(Li et al., 2010a; Stevanovic et al., 2009, 2008; Branke et al., 2007; Yun and Park,

2006; Hale, 2005; Joshi et al., 1995).

This chapter focuses on reducing travel time variability. In general, spatial-temporal
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variations, in both demand and supply, can lead to increased variability (see Clark and

Watling (2005) or Noland and Polak (2002) for details on common underlying causes

of supply and demand variability). Increased variability leads to increased uncertainty

for travelers, and increased travel cost (Noland and Polak, 2002). There is a substantial

body of research that studies the behavioral impacts of travel time variability. Noland

and Polak (2002) provide a review. Carrion and Levinson (2012) review methodologies

to quantify the value of travel time reliability. Such studies highlight that travel time

variability is accounted for in numerous travel decisions, and that its reduction is of

high value to travelers. Thus, there is a need to design and operate transportation

systems to account for it.

The importance of accounting for travel time variability in signal control has been

emphasized by Yin (2008). The traditional signal control objectives are network effi-

ciency maximization, such as throughput maximization (Abu-Lebdeh and Benekohal,

1997), travel time minimization (Osorio and Bierlaire, 2009b), and number of vehicle

stops or delay minimization (Wong et al., 2002).

To the best of our knowledge, the few studies that have accounted for travel time

variability in the design of signal plans are based on analytical methods. Yin (2008)

proposes an analytical technique to reduce the standard deviation of delay and, ulti-

mately, enhance the robustness of signal plans to fluctuations in demand. The demand

fluctuation is represented by different demand scenarios. The technique is applied to
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an isolated intersection. Zhang et al. (2010) extend the work of Yin (2008) to ac-

count for multiple intersections along an arterial. Another extension is proposed by

Li (2011), which illustrates the method on an isolated intersection.

Park and Kamarajugadda (2007) and Kamarajugadda and Park (2003) develop an

analytical approximation of delay variance. Parametric distributions are assumed for

link volumes and the corresponding parameters are estimated with traffic count data.

The analytical delay variances are then used to address a signal control problem for

an isolated intersection and then for a set of two adjacent intersections.

In this chapter, we use simulated travel time distributional estimates. The use of

detailed microscopic traffic simulators allows for the complex vehicle-to-vehicle and

vehicle-to-infrastructure interactions to be accounted. The simulated travel time dis-

tributional estimates are then embedded within a simulation-based optimization al-

gorithm and are used to identify signal plans with reduced expectation and standard

deviation of travel time metrics.

2.3 Methodology

2.3.1 Simulation-based optimization framework

For recent reviews of SO methods, see Hachicha et al. (2010), Barton and Meckesheimer

(2006) and Fu et al. (2005). We use the SO framework proposed by Osorio (2010).
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This SO method is a metamodel method. Metamodels are deterministic functions

that used to approximate objective functions. Comparing to other simulation-based

optimization techniques such as genetic algorithm, the metamodel method is a com-

putational efficient method because the deterministic optimization techniques can be

used.

The method has been used to successfully address complex constrained simulation-

based problems in a computationally efficient manner (Osorio et al., 2013; Osorio and

Chong, 2012; Osorio and Nanduri, 2012). This section briefly presents the framework.

This algorithm can address continuous nonlinear generally constrained optimiza-

tion problems where the objective function is derived from a stochastic simulator, i.e.

a closed-form expression is not available for the objective function, whereas closed-

form analytical expressions are available for all constraints. Such problems can be

formulated as:

min
x

f(x, z; p) (2.1)

subject to

g(x, z; p) = 0. (2.2)

The feasible space is defined by g which is a set of general, typically nonconvex, de-
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Step 2

Optimization based on a metamodel

Optimization routine

Metamodel

Simulator

Trial point
(new x)

performance estimates
(m(x),∇m(x))

Step 1: Update m

based on f̂(x)
Step 3:
Evaluate new x

Figure 2-1: Metamodel simulation-based optimization methods. Adapted from
Alexandrov et al. (1999).

terministic, analytical and differentiable constraints. The objective function f can

be, for instance, the expected value of a given stochastic performance measure F :

f(x, z; p) = E[F (x, z; p)]. The decision vector x is real-valued (e.g., green splits), z

denotes other endogenous variables (e.g., departure-time/mode/route choice probabil-

ities), and p denotes the deterministic exogenous parameters (e.g., network topology).

A metamodel is an analytical approximation of the objective function f . The main

ideas of metamodel SO methods are given in Figure 2-1. At a given iteration k, the

SO algorithm iterates over the following steps: 1) fit the metamodel, mk, based on

the set of simulation observations collected so far, 2) use mk to perform optimization

and derive a trial point xk, 3) evaluate the performance of this trial point with the

simulator, which leads to new simulation observations. As new simulated observations

become available, the accuracy of the metamodel can be improved (Step 1), leading
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to trial points with improved performance (Step 2). These steps are iterated until, for

instance, the computational budget is depleted. The SO algorithm is given in detail

in Appendix A.2.

Metamodels are classified in the literature as either physical or functional metamod-

els (Søndergaard, 2003; Serafini, 1998). Physical metamodels consist of application-

specific metamodels, their functional form and parameters have a physical or structural

interpretation. Functional metamodels are general-purpose (i.e. generic) functions

that are chosen based on their analytical tractability but do not take into account any

information with regards to the specific objective function, let alone the structure of

the underlying problem.

The Osorio (2010) framework proposes a metamodel that combines a functional

and a physical component and has the following functional form:

m(x, y;α, β, q) = αfA(x, y; q) + ϕ(x; β), (2.3)

where ϕ (the functional component) is a quadratic polynomial in x (green split), fA

(the physical component) represents the approximation of the objective function (f of

Equation (2.1)) as derived by an analytical macroscopic traffic model, y are endoge-

nous macroscopic model variables (e.g., queue-length distributions), q are exogenous

macroscopic parameters (e.g., total demand), α and β are parameters of the meta-

model. The metamodel is fitted based on simulation observations of objective function
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via regression.

We define the functional component ϕ as a quadratic polynomial in x with diagonal

second-derivative matrix:

ϕ(x; β) = β1 +
d∑

j=1

βj+1xj +
d∑

j=1

βj+d+1(xj)2, (2.4)

where d is the dimension of x, xj and βj are the jth components of x and β, respectively.

At each iteration, the simulator and the queueing model are evaluated at one or two

points, and then the metamodel parameters α and β are fitted by solving a least

square problem based on both the current iteration observations and all the pervious

observations.

The physical component fA is derived by evaluating an analytical macroscopic traf-

fic model, which is an analytical and differentiable macroscopic traffic model formu-

lated based on finite capacity queueing network theory. It provides an approximation

of the objective function across the entire feasible region. It enables the identifica-

tion of well performing alternatives (often called trial points e.g.: green split) with

very small samples. The metamodel is therefore a linear combination of an analyti-

cal approximation of the objective function and a quadratic error term. By resorting

to a metamodel approach, the stochastic response of the simulation is replaced by a

deterministic metamodel response function, m, such that efficient deterministic opti-

mization techniques can be used.
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In this chapter, we use this SO framework to address traffic signal control prob-

lems that are formulated based on higher-order (i.e., beyond first-order) distributional

information.

2.3.2 Reliable signal control problem

The most common approach to account for both expected travel time and travel time

standard deviation information is to use a linear combination: tE + rtV , where tE

denotes the expected trip travel time, tV denotes a measure of trip travel time vari-

ability, and r is a weight parameter known as the reliability ratio. Such an approach

is used in various studies, such as in Yin (2008) and in the traditional “mean-variance”

approach (Jackson and Jucker, 1982). The reliability ratio can be interpreted as the

relative importance that either the travelers’ or the network operators’ valuation of

travel time variability. Normally, the variability metric tV is trip travel time standard

deviation.

The objective function of this chapter combines expectation and standard devia-

tion information of a given travel time performance metric. The travel time metric

used is the total link travel time (i.e., the sum of travel times over all links in the

network of interest). Link travel time metrics are easier to measure in the field, and

to approximate analytically, compared to trip travel time metrics.
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In order to formulate the problem, we introduce the following notation:

bi available cycle ratio of intersection i;

Ti Travel time along link i;

x(j) green split of phase j;

xL vector of minimal green splits;

L set of links within the area of interest;

Q set of queues that represent the links of L ;

I set of intersection indices;

PI(i) set of phase indices of intersection i;

r reliability ratio.

Note that cycle ratio is calculated as available green time over cycle time.

The signal control problem is formulated as follows:

min
x

f(x, z; p) = E[
∑
i∈L

Ti(x, z; p)] + rSD[
∑
i∈L

Ti(x, z; p)], (2.5)

subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (2.6)

x ≥ xL. (2.7)
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This problem is a fixed-time signal control problem, where the decision variables

are the green splits. In this problem, the stage structure (e.g.: phase sequence) is

given, the offsets, the cycle times and the all-red durations are fixed. The performance

metric used,
∑

L Ti, is the total link travel time. The objective function of this

problem (Equation (2.5)) consists of a linear combination of the expected total link

travel time, E[
∑

L Ti(x, z; p)], and the standard deviation of total link travel time

SD[
∑

L Ti(x, z; p)]. Constraints (2.6) guarantee that for a given intersection the sum

of green splits of the endogenous phases equals the available cycle time. Constraints

(2.7) correspond to the lower bound value for the green splits. In the case studies of

this chapter it is set to 4 seconds following Swiss transportation norms (VSS, 1992).

2.3.3 Physical component

Recall that the metamodel formulation of Equation (2.3) requires an analytical expres-

sion for fA, which is the approximation of the objective function f as derived by the

auxiliary traffic model. This section derives the analytical (and differentiable) approx-

imation of the two components of f provided by the auxiliary traffic model. That is,

we derive analytical approximations for E[
∑

L Ti] and for SD[
∑

L Ti]; or equivalently

E[
∑

Q Ti] and SD[
∑

Q Ti].

The auxiliary model used is an analytical queueing network model based on finite

capacity queueing theory. Each lane in the road network is modeled as one (or a set
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of) queues. Each queue of the model is a finite capacity M/M/1/k queue. k is the

space capacity of each queue. The model is based on a stationary regime assumption.

It consists of a system of nonlinear equations that relate the arrival and service rates

of a queue to the demand and supply of its upstream and downstream queues. It

describes spillbacks through the queueing theory notion of blocking. We briefly recall

the main variables and parameters that define each queue. For a given queue i, we

use the following notation.

λi arrival rate;

µ̂i effective service rate (accounts for both service and eventual blocking);

ki space capacity;

Ni number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, known as blocking or spillback probability;

ρi traffic intensity (defined as the ratio of arrival rate and effective service rate).

In traffic engineering, normally degree of saturation (defined as demand over ca-

pacity) is used to measure the level of congestion. In our case, the queueing network

model is used to represent the studied area. In queueing theory, traffic intensity is a

measure of the occupancy of the server, and it is used to measure the congestion level

instead of degree of saturation.
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Expected total travel time

The expected total travel time is obtained by summing the expected travel times of

the queues (or equivalently links) of interest:

E[
∑
i∈Q

Ti] =
∑
i∈Q

E[Ti]. (2.8)

The expected travel time of a given queue i is derived by applying Little’s law

(Little, 2011, 1961b):

E[Ti] =
E[Ni]

λi(1− P (Ni = ki))
, (2.9)

where the expected queue-length of queue i, E[Ni], is derived in Osorio and Chong

(2012) and given by:

E[Ni] = ρi

(
1

1− ρi
− (ki + 1)

ρkii
1− ρki+1

i

)
. (2.10)

Total travel time standard deviation

We now describe the approximation for SD[
∑

Q Ti]. By definition:

SD[
∑
Q

Ti] =

√
V AR[

∑
Q

Ti]. (2.11)
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In order to derive a tractable analytical expression, we make the following approxima-

tion:

V ar[
∑
i∈Q

Ti] ≈
∑
i∈Q

V ar[Ti]. (2.12)

The latter expression is exact only if all queues have independent travel times. This

may be an inaccurate approximation in various congestion regimes. Nonetheless, recall

that the main role of the physical component is to provide a tractable approximation

of the objective function. Given the difficulty of accurately modeling between-link

dependencies while preserving tractability (Flötteröd and Osorio, 2013; Osorio and

Wang, 2012), this independence approximation ensures tractability. By definition:

V ar[Ti] = E[T 2
i ]− E[Ti]

2. (2.13)

Equation (2.9) gives the expression for E[Ti]. An expression for E[T 2
i ] is derived

in Section 2.3.4 and is given by:

E[T 2
i ] =

1

µ̂i
2

(
4ρi − 2ρ2i
(1− ρi)2

− 2kiρ
ki+1
i

(1− ρkii )(1− ρi)
+

2− (ki + 1)(ki + 2)ρkii
1− ρkii

)
. (2.14)
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V ar[Ti] is therefore given by:

V ar[Ti] =
1

µ̂i
2

(
4ρi − 2ρ2i
(1− ρi)2

− 2kiρ
ki+1
i

(1− ρkii )(1− ρi)
+

2− (ki + 1)(ki + 2)ρkii
1− ρkii

)

−

ρi

(
1

1−ρi
− (ki + 1)

ρ
ki
i

1−ρ
ki+1
i

)
λi (1− P (Ni = ki))


2

.

(2.15)

The approximation of the objective function given in Equation (2.5) is a differen-

tiable closed-form expression that depends on three endogenous variables per queue:

ρi, λi and P (Ni = ki). Appendix A.1 gives the formulation of two auxiliary traffic

models used in this chapter to approximate (2.5). That of Appendix A.1.1 is derived

in Osorio and Bierlaire (2009b) and is used in this chapter to address a signal control

problem for the Lausanne city-center (Section 2.4.2). That of Appendix A.1.2 is a

formulation that is more efficient for large-scale problems (Osorio and Chong, 2012).

It is used in this chapter to address a signal control problem for the full Lausanne city

(Section 2.4.3).

2.3.4 Analytical approximation of E[T 2]

We derive the expression for E[T 2], where T denotes the sojourn time at a given queue.

We represent an urban road network as a finite capacity queueing network as in Osorio

and Bierlaire (2009b). Each lane is modeled as one (or a set of) M/M/1/k queue(s).

For an M/M/1/k queue the cumulative distribution function F (t) of the sojourn time
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is given by (cf. Gross et al. (1998), pages 587-641):

F (t) =
1− ρ

1− ρk

k−1∑
n=0

ρn

(
1−

n∑
m=0

(µ̂t)me−µ̂t

m!

)
, t ≥ 0, (2.16)

with µ̂, ρ and λ defined in Section 2.3.3. The probability density function f(t) is

obtained as follows:

f(t) =
dF (t)

dt
= − 1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

dg(t)

dt
, (2.17)

where g(t) is defined by:

g(t) = tme−µ̂t, t ≥ 0. (2.18)

Since:

dg(t)

dt
= mtm−1e−µ̂t − µ̂tme−µ̂t, (2.19)

then:

f(t) =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
µ̂tme−µ̂t −mtm−1e−µ̂t

)
. (2.20)
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By definition:

E[T 2] =

∫ ∞

0

t2f(t)dt =

∫ ∞

0

1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
µ̂tm+2e−µ̂t −mtm+1e−µ̂t

)
dt. (2.21)

E[T 2] =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

∫ ∞

0

(
µ̂tm+2e−µ̂t −mtm+1e−µ̂t

)
dt. (2.22)

According to Gradshteyn and Ryzhik (2007) (pages 247-386):

∫ ∞

0

tae−ctbdt =
Γ(a+1

b
)

bc(a+1)/b
, (2.23)

where Γ denotes the gamma function defined as Γ(x) = (x− 1)!.

Using the expression of Equation (2.23), we obtain the following two equalities:

∫ ∞

0

µ̂tm+2e−µ̂tdt = µ̂
Γ(m+ 3)

µ̂m+3
=

(m+ 2)!

µ̂m+2
(2.24)

∫ ∞

0

mtm+1e−µ̂tdt = m
Γ(m+ 2)

µ̂m+2
= m

(m+ 1)!

µ̂m+2
. (2.25)
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Inserting the expressions of Equations (2.24) and (2.25) into (2.22), leads to:

E[T 2] =
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

µ̂m

m!

(
(m+ 2)!

µ̂m+2
−m

(m+ 1)!

µ̂m+2

)

=
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

(
(m+ 1)(m+ 2)

µ̂2
− m(m+ 1)

µ̂2

)

=
1− ρ

1− ρk

k−1∑
n=0

ρn
n∑

m=0

2(m+ 1)

µ̂2

=
1− ρ

1− ρk

k−1∑
n=0

ρn
2

µ̂2

(
n(n+ 1)

2
+ (n+ 1)

)

=
1

µ̂2

1− ρ

1− ρk

k−1∑
n=0

(n+ 1)(n+ 2)ρn. (2.26)

The above summation can be further simplified, for ρ ̸= 1, as follows:

k−1∑
n=0

(n+ 1)(n+ 2)ρn =
k−1∑
n=0

d2(ρn+2)

dρ2
=

d2
(∑k−1

n=0 ρ
n+2
)

dρ2
=

d2
(
ρ2 1−ρk

1−ρ

)
dρ2

. (2.27)

We first calculate the first derivative with regards to ρ:

d
(
ρ2 1−ρk

1−ρ

)
dρ

=
2ρ− (k + 2)ρk+1

1− ρ
+

ρ2 − ρk+2

(1− ρ)2
. (2.28)
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We then take the first derivative of (2.28) with regards to ρ:

d
(

2ρ−(k+2)ρk+1

1−ρ
+ ρ2−ρk+2

(1−ρ)2

)
dρ

=
2− (k + 1)(k + 2)ρk

1− ρ
+

2ρ− (k + 2)ρk+1

(1− ρ)2

+
2ρ− (k + 2)ρk+1

(1− ρ)2
+

2(1− ρ)(ρ2 − ρk+2)

(1− ρ)4

=
2(ρ2 − ρk+2)

(1− ρ)3
+

4ρ− 2(k + 2)ρk+1

(1− ρ)2
+

2− (k + 1)(k + 2)ρk

1− ρ
.

(2.29)

Inserting the above expression into (2.26), we obtain:

E[T 2] =
1− ρ

µ̂2(1− ρk)

(
2(ρ2 − ρk+2)

(1− ρ)3
+

4ρ− 2(k + 2)ρk+1

(1− ρ)2
+

2− (k + 1)(k + 2)ρk

1− ρ

)
=

1

µ̂2

(
2ρ2

(1− ρ)2
+

4ρ

1− ρ
− 2kρk+1

(1− ρk)(1− ρ)
+

2− (k + 1)(k + 2)ρk

1− ρk

)
=

1

µ̂2

(
4ρ− 2ρ2

(1− ρ)2
− 2kρk+1

(1− ρk)(1− ρ)
+

2− (k + 1)(k + 2)ρk

1− ρk

)
. (2.30)

2.4 Case studies

2.4.1 General description

We evaluate the performance of this framework based on a calibrated microscopic

traffic simulation model of the Lausanne city center developed by Dumont and Bert

(2006). It is calibrated for the Lausanne city road network during evening peak period

(17h-18h). It is implemented in Aimsun (TSS, 2011). We address signal control
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problems within two networks: 1) the Lausanne city center (Section 2.4.2), 2) the

full city network (Section 2.4.3). The Lausanne city center contains 48 roads and

15 intersections, 9 of which are signalized and control the traffic on 30 roads. The

full network contains 603 roads and 231 intersections. 17 signalized intersections are

controlled by the algorithm. During the peak period, around 12,000 vehicles pass

through this area. During the simulated period, congestion increases as time goes by.

We compare the performance of the following SO metamodel approaches:

• the proposed metamodel, m (of Equation (2.3));

• a quadratic polynomial with diagonal second derivative matrix, (i.e. the meta-

model consists of ϕ as defined in Equation (2.4)). In this approach, the meta-

model consists of only a functional component, there is no physical component.

We evaluate the performance of both metamodel methods by addressing three

different signal control problems that vary according to their objective function.

• P1: this is a traditional signal control problem which uses only expectation

information in the objective function, which is given by E[
∑

L Ti(x, z; p)].

• P2: this is the reliable signal control problem, with the objective function given

by Equation (2.5).

• P3: this signal control problem uses only standard deviation information in the

objective function, which is given by SD[
∑

L Ti(x, z; p)].
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Problem P2 requires the estimation of the reliability parameter r. Recall that the

mean-variance approach considers functions of the form tE+rtV , where tE denotes the

expected trip travel time and tV usually denotes the standard deviation of trip travel

time.

In order to identify a suitable r value, we resort to travel time and travel time

variability valuation studies. The estimates for r of this parameter vary according

to, for instance, the traveler population and the trip purpose. In past work, where

tV is defined as the standard deviation of trip travel time, estimates of r have varied

between 0.1 (Hollander, 2006) and 2.1 (Batley and Ibáñez, 2009). Black and Towriss

(1997) estimate an r value of 0.79 for commuters traveling with a car. More recently,

Li et al. (2010b) derived a value of 1.43 for car commuters.

We consider evening peak period traffic, where most trips consist of commuters.

Additionally, the simulation model that we use represents only car traffic. Thus,

we use the value of 1.43, which was estimated for car commuters by Li et al. (2010b).

Additionally, the largest r value found in the literature (value of 2.1) is used to evaluate

the sensitivity of our approach to r (Section 2.4.4).

Note that the r estimates derived from these surveys are obtained by using trip

travel time as the travel time metric, whereas in this chapter we use total link travel

time. Thus, the actual r value derived from an analysis that would consider total link

travel time for the evening peak period of Lausanne, may differ from the value of 1.43
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that we use.

For all experiments the computational budget is set to 150 runs, i.e., a signal plan

with improved performance needs to be identified within 150 simulation runs. Given

the stochasticity of the simulation outputs as well as the large-scale problems that we

are addressing, these are considered very tight computational budgets.

When evaluating the performance of a given method, we need to account for the

fact that the outputs of the simulator are stochastic. Thus, for a given experiment

(i.e., a given combination of: metamodel, objective function, network, initial point

and computational budget) we run the SO algorithm five times. Each run yields an

“optimal” (or proposed) signal plan. Thus a given experiment yields five signal plans.

We then compare the performance of the signal plans across experiments. In order

to evaluate the performance of a proposed signal plan, 50 simulation replications are

run. This yields 50 observations of the expected total link travel time and total link

travel time standard deviation. We then plot the empirical cumulative distribution

function (cdf) of each of these 2 performance metrics, and compare the cdf’s obtained

by different methods.

2.4.2 Lausanne city center

The Lausanne city network is represented in Figure 2-2. The city center of interest is

delimited by an oval.
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Figure 2-2: Lausanne city network model with city center delimited by a circle (left),
city center of interest (right).

A total of 51 signal phases are endogenous. The queueing model of this network

consists of 102 queues. The trust region subproblem that is solved at each iteration

of the SO algorithm consists of 621 endogenous variables with their corresponding

lower bound constraints, 408 nonlinear equality constraints and 171 linear equality

constraints.

Figure 2-3 displays 6 plots with the results obtained from all the methods we use.

The plots in a given column correspond to a given initial point. The plots of a row

correspond to a given performance measure. The upper (resp. lower) row displays the

cdf’s of the standard deviation (resp. expectation) of total link travel time (within

the city center). Each plot displays 7 cdf’s: the solid blue cdf corresponds to the cdf

of the initial signal plan (denoted x0), the remaining 6 cdf’s correspond to solving a

given problem (P1, P2 or P3) with a given metamodel method (m or ϕ). The red

(resp. black) cdf’s correspond to the signal plans obtained when using m (resp. ϕ).
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The initial points are uniformly drawn from the feasible space (Equations (2.6) and

(2.7)) using the code of Stafford (2006).

Recall that when solving a given problem with a given metamodel, we run the SO

algorithm 5 times, yielding 5 signal plans, and then evaluate each of the 5 proposed

signal plans by running 50 simulation replications. The cdf’s displayed in Figure 2-3 are

obtained by aggregating (for a given problem and a given metamodel) the observations

from all 5 signal plans, i.e. they consist of 5*50 observations.

For the first initial point (column 1), the signal plans with best performance both

in terms of expectation and standard deviation are obtained by solving P2 (i.e., a

problem that combines expectation and standard deviation information) and using

the proposed metamodel, m. The signal plans derived by using m outperform those

derived by the traditional metamodel ϕ regardless of the problem formulation (i.e., for

all P1, P2 and P3). Similar conclusions hold for both the second initial point (column

2) and the third initial point (column 3).

All plots of Figure 2-3 indicate that using metamodel m to solve problem P2

leads to signals plans with the lowest average standard deviation, and the lowest

variance across-replications. Both contribute to a more reliable and predictable system

performance.

Figure 2-3 also indicates that when using ϕ, the best signal plans are obtained by

using only expected total travel time (P1), and the performance deteriorates when
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higher-order information is included (P2 and P3). This illustrates the added value of

using auxiliary traffic models to approximate complex objectives functions, such as

accounting for higher-order distributional information.

When comparing the use of ϕ to address the formulation that includes only stan-

dard deviation (P3) with the formulation that includes both expectation and standard

deviation (P2), the latter leads to standard deviations that are either similar or bet-

ter, which is counterintuitive. This may be explained as follows. Firstly, formulation

P1 (only expectation information) leads to low standard deviation values, thus the

expectation and standard deviation metrics may be correlated. Second, the expec-

tation metric has less variability across replications, thus it will be estimated more

accurately with few replications, leading to a better algorithmic performance for tight

computational budgets. For these 2 reasons, the formulations that include expectation

information (P1 and P2) seem to lead to improved standard deviation. Particularly

when considering tight computational budgets.

The cdf’s presented so far display the performance aggregated across all links of

the city center. Figure 2-4 illustrates the performance at the link level. This figure

displays two plots of the city center network. The links of the network are color coded

according to their link travel time standard deviation. The colors green, yellow and

red correspond, respectively, standard deviations that are lower than 20 seconds, are

between 20 and 40 seconds, and are greater than 40 seconds. These standard deviation
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estimates are obtained by running 50 replications of a given signal plan. The top

network considers the initial plan (that of column 1 of Figure 2-3), the bottom network

considers one of the plans proposed by using that initial plan and the metamodel m

to solve the reliable signal control problem P2. Figure 2-4 shows that there is an

improvement across the entire city center. This illustrates that the proposed approach

leads to both improvements when aggregating across links (e.g., total link travel time),

as well as systematic improvements at the link level.

2.4.3 Lausanne city

In this section, we address a signal control problem that controls intersections across

the entire city of Lausanne. Figure 2-5 displays the road network of the city, Figure 2-6

displays the corresponding network model. We determine the plans for 17 intersections,

which are represented as filled rectangles in Figure 2-6.

A total of 99 signal phases are endogenous. The queueing model consists of 902

queues. The trust region subproblem that is solved at each iteration of the SO algo-

rithm consists of 2805 endogenous variables with 1821 nonlinear equality constraints

and 902 linear equality constraints. The problem we address in this section is con-

sidered a large-scale traffic signal control problem and a complex simulation-based

optimization problem.

In order to compare the performance of the methods across various problems,
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Figure 2-4: Link based travel time standard deviation for initial plan (top plot) and
plan obtained by solving problem P2 with metamodel m (standard deviation estimates
are obtained by averaging over 50 replications).
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Figure 2-5: Lausanne city road network (adapted from Dumont and Bert (2006)).

Figure 2-6: Lausanne network model with the 17 controlled intersections displayed as
grey rectangles.
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we proceed as for the city center (i.e., Section 2.4.2). Figure 2-7 displays 6 plots:

each column corresponds to a given initial point, each row corresponds to a given

performance measure. The upper (resp. lower) row displays the cdf’s of the standard

deviation (resp. expectation) of total link travel time within the full city network.

Each cdf aggregates 250 (i.e., 5*50) observations.

For the first initial point (column 1), the signal plans with best performance both

in terms of expectation and standard deviation are obtained by solving P2 (i.e., a

problem that combines expectation and standard deviation information) and using

the proposed metamodel, m. The signal plans derived by using m, solving any of the

three problems, outperform those derived by the traditional metamodel ϕ. Similar

conclusions hold for initial points 2 (column 2) and 3 (column 3).

The plans obtained by using only standard deviation information (i.e. solving P3)

with metamodel m still provide improvement in terms of expected travel time (see

row-wise plots) when compared to the initial point, whereas those derived by ϕ fail to

do so for initial points 1 and 3.

As for the city center case study, the plots of Figure 2-7 indicate that using meta-

model m to solve problem P2 leads to signals plans with low average and variance

of the standard deviation. Both indicators enhance the travel time reliability of the

network.

Figure 2-8 displays the link-level results for a part of the city network. Each plot
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displays the link standard deviation (averaged over 50 simulation replications). The

top plot considers initial point 2, and the bottom plot considers a signal plan proposed

by solving P2 and using the metamodel m, given initial point 2. The colors green,

yellow and red correspond, respectively, to values smaller than 20 seconds, from 20

to 40 seconds, and greater than 40 seconds. Just as for the city center, there is a

systematic improvement at the link level. This shows that the proposed plan reduces

both the total variability as well as the individual link travel time variability within

the interval analyzed.

2.4.4 Sensitivity to reliability ratio

In this section, we evaluate the sensitivity of our proposed approach to the value of the

reliability ratio parameter r. We choose the highest r value found in the literature,

namely 2.1. We address the reliable signal control problem P2 with the proposed

metamodel m. We compare the performance of an approach that sets r to 1.43 to one

that sets r to 2.1.

We proceed as in Sections 2.4.2 and 2.4.3: we consider an initial point, and run

each approach 5 times, deriving 5 signal plans. We then evaluate the performance of

each of these signal plans by running 50 simulation replications.

Figure 2-9 displays two plots. The left (resp. right) plot displays the cdf’s of the

standard deviation (resp. expectation) of total link travel time. Each cdf consists of

45



Figure 2-8: Link travel time standard deviation for initial plan (top plot) and plan
obtained by solving problem P2 with metamodel m (standard deviation estimates are
obtained by averaging over 50 replications).
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Figure 2-9: Empirical cdf’s of the total link travel time standard deviation (left plot)
and expected total link travel time (right plot) with different reliability ratio values.

5*50 simulation observations (i.e., 5 signal plans with 50 simulation replications for

each signal plan). The cdf of the initial signal plan corresponds to the dash-dotted

curve, the cdf for the signal plans derived with r = 1.43 (resp. r = 2.1) is the solid

(resp. dashed) curve. Solving the problem P2 with these two different reliability

ratio values leads to signal plans with similar performance. The methodology seems

insensitive to such changes in the reliability ratio values. The reason is that average link

travel time and link travel time standard deviation is correlated, the curves correspond

to expected link travel time and link travel time standard deviation follow similar

trends.
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2.4.5 Computational Efficiency

Each iteration of the SO algorithm involves two computational intensive tasks: 1)

running the simulator; 2) solving the trust region subproblem. In this section, we

compare the run time needed for each of these tasks. We solve the subproblem with the

Matlab (Mathworks, Inc., 2011) fmincon routine for constrained nonlinear problems,

and use its sequential quadratic programming algorithm (Coleman and Li, 1996, 1994).

For a given initial point, we solve problem P2 5 times allowing each time for 150

SO iterations. The computer used for calculation has a processor of Intel Core i7, 3.50

Ghz and RAM of 8GB. Figure 2-10 displays the cdf of all 5*150 computational run

time observations. The left (resp. right) plot displays the run times for the Lausanne

city center (resp. full Lausanne city). The solid cdf curve displays the run time

needed for the convergence of the trust region subproblem, whereas the dashed cdf

curve displays the run time for one simulation replication. The simulation run time

is relatively constant across iterations, with run times of the order of 30 seconds, and

not exceeding 60 seconds. The trust region subproblem is solved quicker than a single

simulation run in the city center case study. For the full city case study, it can be of

the order of several minutes (i.e., equivalent to several simulation replications). This

illustrates the computational efficiency of the overall SO framework at each iteration.
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Figure 2-10: Computational run time for Lausanne city center (left) and full Lausanne
city (right).

2.5 Conclusion

This chapter presents a method to address a reliable signal control problem by us-

ing higher-order distributional information derived from a stochastic simulator. The

objective function is a linear combination of the expectation and the standard devi-

ation of total link travel time. Distributional travel time estimates are derived from

a detailed stochastic microscopic urban traffic simulator. They are combined with

analytical approximations, which are obtained from differentiable probabilistic macro-

scopic traffic models. A metamodel simulation-based optimization (SO) algorithm is

used.

The SO approach used is compared to a traditional SO approach. Three different

signal control formulations are considered. Experiments on the Lausanne city center

network and the full city network are carried out. The SO methods are evaluated
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within tight computational budgets, where the simulator can only be evaluated a total

of 150 times.

The use of the proposed method to solve a reliable signal control problem leads to

signal plans with the lowest expected total link travel time and the lowest standard

deviation of total link travel time. These signal plans also have the lowest across-

replication variability of the travel time standard deviation. The proposed approach

systematically outperforms the traditional approach. It leads to aggregate improve-

ments (total link metrics), as well as link-level improvements. The proposed method

is not sensitive to the changes in reliability ratio values.

The proposed method enables the use of highly detailed distributional information

provided by these stochastic simulators to inform the design and operations of urban

transportation networks. Such an approach can be used to efficiently address other

reliable and robust formulations of traditional transportation problems.
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Chapter 3

Analytical Approximation of Trip

Travel Time Distribution and its

Application in Reliable Signal Control

Problem

3.1 Introduction

In Chapter 2, we incorporate the second-order link travel time distributional informa-

tion in a signal control problem, and successfully reduced the travel time variability.

Given the difficulty of analytically modeling dependency between link travel times,
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we assumed that all links have independent travel times. This assumption might be

true when the network is not congested. However, congestion has become a global

phenomenon, affecting most urban areas in the world, which not only affects the lo-

cal links but also propagates through adjacent links, and thus affects a larger area

in the network. Previous researches have addressed that providing an analytical and

tractable approximation of the distribution of the main network performance mea-

sures (e.g.: travel time) is a major challenge (see for instance, Osorio and Flötteröd

(2012); Peterson et al. (1995)), and is often achieved by simplifying, or even omitting,

spatial-temporal dependencies. When traffic congestion propagates both temporally

and spatially, Rakha et al. (2006) show that this independence assumption underes-

timates path travel time variance significantly for freeway or signalized arterial road

using field link travel time data.

To overcome this limitation and incorporate path travel time variability information

in a more realistic way, in this chapter, we derive an analytical tractable approximation

of trip travel time variability from link travel time distribution. The main challenge is

to incorporate spatial dependencies between links in a tractable manner. To achieve

this, we derive a tractable extension of Little’s law for finite capacity Markovian queue-

ing networks. In this approach, given the topology of any road network, each lane in

the road network is modeled as one (or a set of) queues. We assume that travel time

of non-adjacent queues are independent, spatial dependencies are explicitly considered
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for any sets of adjacent queues. We validate this analytical approximation of path

travel time variance in a general queueing network. This expression is then used to

address an urban traffic signal control problem.

Section 3.2 presents a literature review. Section 3.3 formulates the proposed queue-

ing model. Section 3.4 derives an analytical expression for the first- and second-order

moments of path and trip sojourn time. Section 3.5 validates the proposed method, and

compares its approximations to those obtained via simulation and to those obtained

by other approximate analytical methods. Section 3.6 uses the proposed method to

address an analytical urban traffic signal control problem. Section 3.7 uses the method

to address a simulation-based traffic signal control problem. Section 3.8 presents the

main conclusions.

3.2 Literature Review

Accurate path/trip travel time estimation is a challenging topic in the field of trans-

portation. Empirical studies have indicated the importance of path travel time vari-

ability in departure-time, mode and route choices (Xing and Zhou, 2011).

Most work that approximates path travel time metrics has assumed independence

across links (Noland and Polak, 2002). He et al. (2002) illustrates the inadequacy of

the independence approximation through a simulation study of a congested corridor.

In particular, they observe that traditionally used distributions with closed-form ex-
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pressions do not provide a suitable fit for the path/trip travel time distribution. The

most popular approach to approximate higher-order path travel time metrics is the

use of link travel time distributional metrics.

Several data-driven approaches that use vehicle probe data to infer both link

and path travel time metrics have been proposed. Xing and Zhou (2011) propose

a sampling-based algorithm in order to taking spatial dependencies among links into

consideration using available historical travel time data from traffic monitoring sys-

tems. They take path travel time of several days from the historical traffic database

and use them to calculate sample mean and variance directly. Charle et al. (2010) use

the link travel time information from a historical dataset, for a specific number of ob-

servation days, each day is divided into several time intervals, average link travel time

over each time interval is calculated. The path travel time variability is derived using

these historical link travel time observations. To simplified the problem, they propose

clustering algorithm to build artificial link which combines successive links that have

correlated travel time fluctuations. The correlation of travel time fluctuations between

any two subsequent links is calculated using historical link travel time observations.

Westgate (2013) uses Global Positioning System data (GPS) vehicle data particularly

for ambulance, they proposed Whole Trip(WT) method to predict trip travel time

distribution along an arbitrary route in a road network. The travel time of each trip

is modeled with a lognormal distribution conditional on the path the ambulance trav-
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elled. Mean and variance of trip travel time can depend on time, weather and other

explanatory variables, then they use a Bayesian formulation to estimate the parame-

ters of the WT model from the observations. For a recent review of the data-driven

approaches, see Zheng and Van Zuylen (2013).

Besides the data-driven approaches, analytical approximations based on the use

of link travel time data are used (Rakha et al., 2006; Fu and Rilett, 1998). In order

to ensure tractability, most analytical methods assume between-link independence

(Noland and Polak, 2002; He et al., 2002). An extensive recent review of trip travel

time estimation methods is presented by Vlahogianni et al. (2014). We focus here on

methods that approximate higher-order moments (i.e., go beyond first-order moments)

or full distributions of trip or path travel times. Most methods have focused on

highway networks. The analysis for urban networks is more intricate due to more

complex dynamic demand-supply interactions (e.g., due to signalized intersections,

short links, high-dimensional routing alternatives). This independence assumption

tends to underestimate the path travel time variance (Rakha et al., 2006). He et al.

(2002) also illustrate the inadequacy of the independence approximation through a

simulation study of a congested corridor. Few studies have proposed analytical and

tractable approaches while also accounting for spatial dependencies (Chen et al., 2012a;

Xing and Zhou, 2011).

In this chapter, we model an urban road network as a network of finite (space)
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capacity queues. In queueing theory, the time in a queueing system (e.g., total time,

delay time) is referred to as the sojourn time. We propose an analytical and tractable

description of the between-queue interactions, and derive expressions for the first- and

second-order moments of path sojourn times and trip sojourn times. These expressions

are based on an extension of Little’s law.

In queueing theory, Little’s law (Little, 1961a) states that for a given queueing

system (e.g., a single queue or a queueing network) the expected number of jobs (e.g.,

vehicles) in the system, E[L], and the expected sojourn time in the system, E[W ], are

related as follows:

E[L] = λE[W ], (3.1)

where λ represents the arrival rate to the system. Little’s law is a simple relationship

that is valid for a general class of queueing systems: from single queues to networks

of queues, from single-class to multi-class systems, for any type of arrival and service

processes. Hence, it is considered a fundamental relationship in queueing theory, and

has been extensively used in a variety of application fields.

Numerous extensions of Little’s law have been proposed and this continues to be an

active field of research (Wolff and Yao, 2013; Whitt, 2012). A more general law known

as H = λG (Brumelle, 1972) relates the arrival rate λ to a more general time-average

metric H and an associated customer-average metric G. Little’s law can be seen as a
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special case of H = λG. Laws that relate the distributions of L and W have also been

proposed (Bertsimas and Nakazato, 1995; Keilson and Servi, 1988; Haji and Newell,

1971). Since they relate full distributions, they lack generality.

Past work has also focused on the formulation of higher-order Little’s laws that

relate higher-order moments (i.e., beyond first-order moments) of L and W (or simi-

larly of H and G). Expressions exist for single queues with general arrival and service

distributions (Brumelle, 1972; Marshall and Wolff, 1971), as well as for product-form

queueing networks (McKenna, 1989; Heffes, 1982).

Extensions of Little’s law have been derived mostly for a single infinite capacity

queue, or for a network of infinite capacity queues where there is no overtaking. No

overtaking means that the first-in-first-out (FIFO) principle holds at the network level.

This is a strong assumption which may not hold for simple networks such as multi-

server tandem (i.e., series) queueing networks with stochastic service times.

Finite capacity queueing networks (FCQNs) have received less attention than their

infinite capacity counterparts, this is arguably due to the analytical complexity in-

volved in the analysis of FCQNs. The latter can accurately mimic the limited space

capacity in urban networks, and hence describe the spillback effects in congested ur-

ban traffic, where the queue of vehicles on a road spills back to its upstream roads.

In finite capacity queueing theory, spillback is referred to as blocking. Spillback is at

the origin of complex spatial between-road dependencies. Providing an analytical, let
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alone tractable, description of this dependency is intricate.

In this chapter, the proposed method focuses on finite capacity queueing networks,

with single server Marokovian queues. We propose an analytical and tractable ap-

proximate expression for the second-order moments of L and W . We then provide

an analytical approximation of path and trip sojourn time expectation and variance.

This expression is then used to address an urban traffic signal control problem. The

proposed model provides a simple, stationary and highly-tractable description of inter-

rupted vehicular traffic. It goes beyond existing models by providing a more detailed

description of between-queue interactions. As is shown in Section 3.7, it can be used to

efficiently address a variety of SO problems, where a detailed description of between-

link dependencies is needed.

3.3 Finite capacity queueing network model

We consider a general topology finite capacity queueing network (FCQN) with single

server queues. In the urban traffic case studies of Sections 3.6 and 3.7, we represent a

road network as a queueing network, where each road is represented by one or multiple

single server finite capacity queues. Thus, the models presented in Sections 3.3.1 and

3.3.2 consider single server finite capacity queueing networks.
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3.3.1 State-independent queueing network model

This section presents an FCQN model, hereafter referred to as the “state-independent

model”. Section 3.3.2 then describes how we build upon this state-independent model

in order to formulate an FCQN model that provides a more detailed description of

between-queue dependencies.

The state-independent model is derived from Osorio and Bierlaire (2009a), which is

formulated for multi-server queues. The equivalent formulation for single-server queues

is derived in Chapter 4 of Osorio (2010). This chapter focuses on this single-server

FCQN model formulation. This model is formulated as a differentiable and tractable

system of nonlinear equations. Given its tractability, this model has been used to

enhance the computational efficiency of simulation-based optmization algorithms for

various urban transportation problems (Osorio and Bierlaire, 2013; Osorio and Chong,

2013; Osorio and Nanduri, 2013).

Here, we briefly present its formulation. For a given queue i, we use the following
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notation.

γi external arrival rate;

λ̂i effective arrival rate;

µi service rate;

µ̂i effective service rate;

ρi traffic intensity;

ki space capacity, i.e., upper bound of the queue length;

Ni number of vehicles in queue i;

pij transition probability from queue i to queue j;

DS i set of downstream queues of queue i;

Q set of queues.

We consider a network of finite capacity queues. For each queue, external arrivals

arise following a Poisson process. Upon arrival to a queue, a job (e.g., a vehicle) waits

in the physical queue if there are other jobs already undergoing or waiting for service.

Jobs are processed in FIFO manner. Service times are independent and identically

distributed exponential random variables. Upon service completion, a job in queue

i transitions to queue j with probability pij. If upon service completion queue j is

full and hence cannot recieve new jobs, the job at queue i remains at the server of

queue i. It is said to be blocked, and is also blocking the use of the underlying server.
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This blocking mechanism, known as blocking-after-service, mimics spillback effects in

vehicular traffic. The job at queue i is unblocked once there is space available at queue

j. Unblocking is also carried out in FIFO manner (i.e., first blocked, first unblocked).

In FCQNs, the actual time a job occupies a server is composed of a traditional service

time and potentially a blocked time. This actual time is known as the effective service

time.

The main challenge in the formulation of an FCQN model is the analytical descrip-

tion of the blocking and unblocking mechanisms. These induce intricate dependencies

between adjacent queues. Additionally, this chapter focuses on the formulation of

tractable (i.e., computationally efficient) models, which can be efficiently used for

optimization and more specifically for simulation-based optimization. The formula-

tion of FCQN models that describe between-queue dependencies in an analytical and

tractable manner is a challenge.

The state-independent model is formulated as follows.

λ̂i = γi(1− P (Ni = ki)) +
∑
j∈Q

pjiλ̂j (3.2a)

1

µ̂i

=
1

µi

+

(∑
j∈Q

pijP (Nj = kj)

)(∑
j∈DSi

λ̂j

λ̂iµ̂j

)
(3.2b)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii (3.2c)

ρi =
λ̂i

µ̂i(1− P (Ni = ki))
. (3.2d)
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Equation (3.2a) is a flow conservation equation that relates flow at a given queue

i to flow that arises from either external arrivals or from upstream queues. Equa-

tion (3.2b) yields the expected effective service time (which is denoted 1/µ̂i), i.e., the

expected time a job occupies a server, this accounts for both an expected service time

(represented by the term 1/µi) and an expected blocked time (represented by the

second term on the right-hand side of the equation). Equation (3.2c) defines the prob-

ability that a queue is full, this is also known as the blocking probability in queueing

theory or the spillback probability in vehicular traffic. This expression is derived from

finite capacity queueing theory (Bocharov et al., 2004). The queue-length distribution

of an isolated M/M/1/k queue is given by:

P (N = n) =
(1− ρ)ρn

1− ρk+1
. (3.3)

Equation (3.2c) assumes that the functional form of the mariginal queue-length dis-

tribution of queue i is that of an isolated M/M/1/k queue. Equation (3.2d) defines

the traffic intensity of a queue (denoted ρi), which is the ratio of expected demand to

expected supply. In the System of Equations 3.2, the exogenous parameters are the

external arrival rates γ (which in urban traffic can be obtained from network demand

estimates such as an origin-destination matrix), the service rates µ (e.g., lane flow ca-

pacities), the space capacities k and the transition probabilities {pij} (e.g., routing or

turning probabilities). All other variables are endogenous. The system of equations is
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solved simultaneously for all queues. One of the main outputs is the traffic intensities

ρ that account for blocking (i.e., spillbacks). Given ρ the queue-length distribution of

each queue is approximated via Equation (3.3). A variety of queue performance met-

rics can be derived based on this marginal distribution (e.g., expected queue-length,

expected delay).

In order to approximate path or trip metrics a more accurate description of between-

queue dependencies is needed. Section 3.3.2 presents an FCQN model that builds

upon the state-independent model while describing these between-queue dependencies

in greater detail.

3.3.2 State-dependent queueing network model

The purpose of the state-dependent model is to provide a more detailed description of

between-queue interactions. The state-dependent model describes these interactions

through the use of state-dependent rates.

Queues interact through the transmission of jobs across nodes. In the case of

urban traffic these transmissions represent vehicles turning from one road to another

or vehicles changing lanes. These across-node interactions are mainly goverened by:

(i) the downstream traffic conditions of the upstream queues,

(ii) the upstream traffic conditions of the downstream queues.

In a queueing model, the upstream traffic conditions are described by the arrivals, while

63



the downstream traffic conditions are described by the service completions. Hence, for

a given node, the proposed model considers:

(i) state-dependent effective service rates of its upstream queues,

(ii) state-dependent effective arrival rates of its downstream queues.

The remaining rates (i.e., the effective arrival rates of the upstream queues and the

effective service rates of the downstream queues) are considered state-independent.

We introduce the following notation.

Dm set of downstream queues of node m;

Um set of upstream queues of node m;

US i set of upstream queues of queue i;

S (m) state space of node m;

Sm random variable that describes the state of node m;

sm a given realization of Sm;

λ̂i,sm effective arrival rate for queue i and node state sm;

µ̂i,sm effective service rate for queue i and node state sm.

Node m consists of a set of upstream queues Um and a set of downstream queues

Dm. The state of node m indicates for each downstream queue i, whether the queue

is full or not, i.e., whether Ni = ki or Ni < ki. Consider the following binary random
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variable:

Ai =


1, if Ni = ki,

0 if Ni < ki.

(3.4)

Indexing the set of downstream queues by i1, i2, . . . , im, then the state of node m

is the random tuple: Sm = (Ai1 , Ai2 , . . . , Aim). The set of all states of node m, known

as the state space, is then defined as:

S (m) =
{
sm = (ai1 , ai2 , . . . , aim) ∈ {0, 1}im

}
. (3.5)

The state-dependent model is formulated as follows.



λ̂i,sm = λ̂i ∀i ∈ Um(3.6a)

1

µ̂i,sm

=
1

µi

+
∑
j∈DSi

1(sm, j)
λ̂j

λ̂iµ̂j

∀i ∈ Um(3.6b)

λ̂i,sm = (1− 1(sm, i)) ·

(∑
j∈USi

pjiµ̂j,sm (1− P (Nj = 0|Sm = sm)) + γi

)
+ . . .

1(sm, i) · µ̂i

(
1−

∏
j∈USi

P (Nj = 0|Sm = sm)

)
∀i ∈ Dm(3.6c)

µ̂i,sm = µ̂i ∀i ∈ Dm(3.6d)

65



The indicator function 1(sm, i) is defined as:

1(sm, i) =


1, if in state sm: ai = 1,

0 otherwise.
(3.7)

This indicator function describes whether downstream queue i is full in state sm.

Equations (3.6a)-(3.6b) describe the rates of the upstream queues. Equation (3.6a)

assumes that the arrival rate of an upstream queue i is state-independent. This ar-

rival rate equals λ̂i, which is defined by the state-independent Equation (3.2a). Equa-

tion (3.6b) gives a state-dependent expression for the effective service rate. In this

equation the terms λ̂j, λ̂i and µ̂j are state-independent rates given, respectively, by

Equations (3.2a), (3.2a) and (3.2b). Equation (3.6b) states that the (state-dependent)

effective service time of upstream queue i (represented by 1/µ̂i,sm) is composed of an

exogenous expected service time (represented by 1/µi) and an expected blocked time

(represented by the second term on the right hand side of the equation). Overall this

equation is similar to Equation (3.2b). The main difference is in the calculation of the

expected blocked time. In state sm, we know which downstream queues of queue i are

full, i.e., we know which queues can actually block jobs at queue i. Hence, the expected

blocked time is a function of the effective service time of downstream queues that are

indeed full. A detailed derivation of Equation (3.6b) is presented in Appendix B.1.

Equations (3.6c)-(3.6d) describe the rates of the downstream queues. Equation (3.6c)
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gives a state-dependent expression for the arrival rate. In this equation the terms µ̂i

and µ̂j,sm are given by Equations (3.2b) and (3.6b), respectively. The approximation

for the term P (Nj = 0|Sm = sm) is derived below and given by Equation (3.10). The

right-hand side of Equation (3.6c) consists of a summation over 2 lines. The first line

considers the case where downstream queue i is not full. In this case, the effective

arrival rate to queue i is determined by the sum of the flow arising from upstream

queues and the flow from external arrivals. The flow from upstream queue j to queue

i is given by the departure rate from upstream queue j (represented by the term

µ̂j,sm) and the probability that there are jobs in queue j (represented by the term

(1 − P (Nj = 0|Sm = sm))). The external arrivals arise with a rate of γi. The second

line considers the case where downstream queue i is full. In this case, the effective

arrival rate to queue i is determined by the departure rate from queue i (term µ̂i) and

by the probability that there are jobs upstream that would like to proceed to queue i

(term (1−
∏

j∈USi
P (Nj = 0|Sm = sm))).

Equation (3.6d) assumes that the effective service rate of a downstream queue i

is state-independent, it equals µ̂i which is defined by the state-independent Equa-

tion (3.2b).

The System of Equations (3.6) defines the rates of all queues. Given these rates,

we can define the state-dependent traffic intensity of a queue i adjacent to node m:
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ρi,sm =

λ̂i

µ̂i,sm(1− P (Ni = ki))
∀i ∈ Um (3.8a)

ρi,sm =
λ̂i,sm

µ̂i

∀i ∈ Dm. (3.8b)

This state-dependent traffic intensity is an extension of the state-independent traffic

intensity of Equation (3.2d). They differ in that: (i) for upstream queues the state-

dependent effective service rate is used, rather than the state-independent rate, and

(ii) for downstream queues the state-dependent effective arrival rate is used, rather

than the state-independent rate.

This state-dependent traffic intensity allows us to define conditional queue-length

distributions for a given queue. For an upstream queue i of node m, the conditional

distribution is given by:

P (Ni = n|Sm = sm) =
(1− ρi,sm)ρ

n
i,sm

1− ρki+1
i,sm

, (3.9)

where ρi,sm is defined by Equation (3.8). This expression assumes that conditional on

the node state, the functional form of the queue-length distribution of queue i is that

of an isolated M/M/1/ki queue. This expression is used to evaluate the conditional
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probability of an upstream queue i being empty by setting n to zero:

P (Ni = 0|Sm = sm) =
1− ρi,sm
1− ρki+1

i,sm

. (3.10)

Equation (3.10) is used in the expression of the state-dependent arrival rate defined

by Equation (3.6c).

For a downstream queue i of node m, the state sm indicates whether the queue i

is full or not. Hence, we have the two following conditional distributions:

P (Ni = ki|Sm = sm) =


1, if 1(sm, i) = 1,

0, otherwise.
(3.11)

For n < ki:

P (Ni = n|Sm = sm) =


0, if 1(sm, i) = 1,

(1− ρi,sm)ρ
n
i,sm

1− ρkii,sm
, otherwise.

(3.12)

Equation (3.11) expresses that if in node state sm downstream queue i is full, then

the conditional probability P (Ni = ki|Sm = sm) is equal to 1; otherwise it is equal to

0. In other words, given the node state sm, we have full certainty about whether or

not the downstream queue i is full. Equation (3.12) expresses that if in node state sm

downstream queue i is full, then the conditional probability P (Ni = n|Sm = sm) is
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equal to 0; otherwise it is equal to a conditional distribution. The latter is assumed

to have the same functional form than the marginal queue-length distribution of an

isolated M/M/1/k − 1 queue (Equation (3.3)).

In summary, the proposed model consists of Equations (3.2), (3.6), (3.8) and (3.10).

These equations are solved simultaneously, and can be used to derive first-order and

second-order moments of network performance measures. In particular in the following

section, we show how they are used to derive an approximate first- and second-order

Little’s law for finite capacity networks.

3.4 First- and second-order sojourn time moments

Section 3.4.1 considers a path within a network, and derives an analytical approxima-

tion of the first- and second-order moments of the path sojourn time. Section 3.4.2

considers a network with multiple paths, and derives an analytical approximation of

the first- and second-order moments of the trip sojourn time.
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3.4.1 First- and second-order moments of the path sojourn

time

In this section we present the analytical approximation of the first- and second-order

moments of the path sojourn times. We introduce the following notation.

W̃p sojourn time of path p;

Wi sojourn time of queue i;

Qp set of queues in path p.

By definition:

W̃p =
∑
i∈Qp

Wi. (3.13)

Thus, the first-order moment is given by:

E[W̃p] =
∑
i∈Qp

E[Wi]. (3.14)
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Similarly, the second-order moment is given by:

V AR[W̃p] = V AR[
∑
i∈Qp

Wi] (3.15)

=
∑
i∈Qp

V AR[Wi] +
∑

(i,j)∈Q2
p,i ̸=j

COV [Wi,Wj] (3.16)

=
∑
i∈Qp

(E[W 2
i ]− E[Wi]

2) +
∑

(i,j)∈Q2
p,i ̸=j

(E[WiWj]− E[Wi]E[Wj]).(3.17)

Thus, in order to approximate E[W̃p] (Equation (3.14)) and V AR[W̃p] (Equa-

tion (3.17)), we need to approximate the following three types of terms: E[Wi], E[W 2
i ]

and E[WiWj]. We present their approximation in what follows.

Approximation of E[Wi]

We can apply Little’s law and obtain:

E[Wi] = E[Ni]/λ̂i, (3.18)

where λ̂i is given by Equation (3.2a).

For queue i with traffic intensity ρi and capacity ki, E[Ni] is given by:

E[Ni] = ρi

(
1

1− ρi
− (ki + 1)

ρkii
1− ρki+1

)
, (3.19)

where ρi is given by Equation (3.2d). This closed-form expression of Equation (3.19)
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is derived in Appendix A of Osorio and Chong (2013).

Approximation of E[W 2
i ]

For a given queue i, the following relationship holds for an isolated infinite capacity

M/G/m queue (see Equation (12) of Marshall and Wolff (1971)):

E[Ni(Ni − 1) . . . (Ni − r + 1)] = (λ̂i)
rE[W r

i ], r ∈ N∗. (3.20)

We use Equation (3.20) to approximate the higher-order moments of the sojourn time

for a finite capacity queue within a general topology queueing network.

Note that Equation (3.20) uses the effective arrival rate to queue i, λ̂i, rather than

the total arrival rate (which is given by λ̂i/(1−P (Ni = ki))). In the case of an infinite

capacity queue, the total arrival rate is equivalent to the effective arrival rate. In

networks that contain finite capacity queues, there may be losses. For these networks

Little’s law (and its extensions) holds for the effective arrival rate. For a more detailed

description of how to apply Little’s law to finite capacity queues, we refer the reader

to Tijms (2003) (pages 52-53).

Equation (3.20) for r = 2 yields:

E[Ni(Ni − 1)] = (λ̂i)
2E[W 2

i ], (3.21)
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which is equivalent to:

E[W 2
i ] =

E[N2
i ]− E[Ni]

(λ̂i)2
, (3.22)

where E[Ni] is given by Equation (3.19) and λ̂i is given by Equation (3.2a). For queue

i with traffic intensity ρi (given by Equation (3.2d)) and capacity ki, E[N2
i ] is given

by:

E[N2
i ] =

2ρ2i
(1− ρi)2

− ki(ki + 1)ρki+1
i

1− ρki+1
i

− 2(ki + 1)ρki+2
i

(1− ρki+1
i )(1− ρi)

+ E[Ni]. (3.23)

The expression of Equation (3.23) is derived in Appendix B.2.

Approximation of E[WiWj]

A set of queues is referred to as adjacent queues if they share a common node. In other

words, adjacent queues include all upstream queues and downstream queues connected

to the same node.

For non-adjacent queues, we approximate E[WiWj] with:

E[WiWj] = E[Wi]E[Wj], (3.24)

where E[Wi] and E[Wj] are given by Equation (3.18).

For adjacent queues, we use the state-dependent model to account for the between-
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queue interactions. Let queues i and j be adjacent queues with common node m.

Conditional on the node state, the variables Wi are approximated as independent Wj.

That is:

E[WiWj] =
∑

sm∈S (m)

P (Sm = sm)E[Wi|Sm = sm]E[Wj|Sm = sm]. (3.25)

An expression for the conditional expectation is obtained by applying Little’s law.

E[Wi|Sm = sm] =
E[Ni|Sm = sm]

λ̂i,sm

, (3.26)

where the rates λ̂i,sm are given by Equations (3.6a) and (3.6c). The conditional ex-

pected queue-length is given by:

E[Ni|Sm = sm] =

ki∑
n=0

nP (Ni = n|Sm = sm), (3.27)

where the conditional queue-length probabilities are defined by Equations (3.9), (3.11)

and (3.12).

The state probability P (Sm = sm) of Equation (3.25) is given by:

P (Sm = sm) =
∏

i∈Dm;1(sm,i)=1

P (Ni = ki) ·
∏

i∈Dm;1(sm,i)=0

(1− P (Ni = ki)) , (3.28)

where the probabilities P (Ni = ki) are given by Equation (3.2c). The first (resp.
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second) product considers the set of downstream queues that are (resp. are not) full

in state sm.

The next section (Section 3.4.2) considers a network with multiple paths, it uses

the moments of path sojourn time derived in this section Equations (3.14) and (3.17))

to approximate the moments of trip sojourn times.

3.4.2 First- and second-order moments of the trip sojourn time

In this section, we present the analytical approximation of the first- and second-order

moments of the trip sojourn time. Let TT denote the trip sojourn time random

variable. The first-order moment can be obtained by a direct application of Little’s

law:

E[TT ] =


∑

i∈QE[Ni]∑
i∈Q γi(1− P (Ni = ki))

blocking exists, (3.29a)∑
i∈Q E[Ni]∑

i∈Q γi
no blocking. (3.29b)

For the proposed method and the method states in Section 3.5.2, in which blocking

occurs, we use Equation (3.29a). For the method states in Section 3.5.2, since no

blocking occurs, we use the formulation in Equation (3.29b).

where E[Ni] is given by Equation (3.19). The second-order moment is given by:
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V AR[TT ] =
∑
p∈P

P (X = p)V AR[W̃p], (3.30)

where P represents the set of paths in the network, X represents the path choice of a

traveler, and P (X = p) represents the probability of choosing path p, and V AR[W̃p] is

the path sojourn time variance (given by Equation (3.17)). We approximate P (X = p)

the path choice by the expected proportion of network demand that travels along path

p. That is:

V AR[TT ] =
∑
p∈P

λ̄p

d
V AR[W̃p], (3.31)

where λ̄p denotes the expected flow on path p, and d represents the expected total

travel demand in the network.

The evaluation of Equation (3.31) requires the enumeration of all paths, which can

be a high-dimensional set in general topology networks. Hence, we now show how we

can evaluate this expression without path enumeration.

Inserting Equation (3.17), we obtain:

V AR[TT ] =
∑
p∈P

λ̄p

d

∑
i∈Qp

(E[W 2
i ]− E[Wi]

2) +
∑

(i,j)∈Q2
p,i ̸=j

(E[WiWj]− E[Wi]E[Wj])

 .

(3.32)
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For non-adjacent queues, Equation (3.24) holds, so the second inner summation

of Equation (3.32) equals zero. Thus, we can limit this second inner summation to

adjacent queues along a path. This leads to:

V AR[TT ] =
∑
p∈P

λ̄p

d

∑
i∈Qp

(E[W 2
i ]− E[Wi]

2) +
∑
i∈Qp

∑
j∈Qp∩{DSi∪USi}

(E[WiWj]− E[Wi]E[Wj])

 .

(3.33)

Let Gi denote the set of paths that go through queue i, and let Gij denote the set

of paths that go through adjacent queues i and j. We can exchange the order of the

summations in (3.33), this leads to:

V AR[TT ] =
∑
i∈Q

∑
p∈Gi

(
λ̄p

d
(E[W 2

i ]− E[Wi]
2)

)
+
∑
i∈Q

∑
j∈DSi∪USi

∑
p∈Gij

λ̄p

d
(E[WiWj]−E[Wi]E[Wj]).

(3.34)

This expression can be further rearranged to:

V AR[TT ] =
∑
i∈Q

(E[W 2
i ]−E[Wi]

2)(
∑
p∈Gi

λ̄p

d
)+
∑
i∈Q

∑
j∈DSi∪USi

(E[WiWj]−E[Wi]E[Wj])(
∑
p∈Gij

λ̄p

d
)

(3.35)

The term
∑

p∈Gi
λ̄p/d is the ratio of the expected demand along queue i, and the

expected network demand. Similarly, the term
∑

p∈Gij
λ̄p/d is the ratio of the expected
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demand that goes through both queues i and j and, and the expected network demand.

These terms are approximated as follows.

∑
p∈Gi

λ̄p

d
=

λ̃i∑
i∈Q γi

(3.36)

∑
p∈Gij

λ̄p

d
=

pijλ̃i∑
i∈Q γi

, (3.37)

where the expected demand along queue i is denoted λ̃i and is obtained by solving the

following flow-conservation equations:

λ̃i = γi +
∑
j

pjiλ̃j. (3.38)

This leads to:

V AR[TT ] =
∑
i∈Q

(E[W 2
i ]−E[Wi]

2)
λ̃i∑
i∈Q γi

+
∑
i∈Q

∑
j∈DSi∪USi

(E[WiWj]−E[Wi]E[Wj])
pijλ̃i∑
i∈Q γi

,

(3.39)

Equation (3.39) is used to evaluate the second-order moment of the trip sojourn time.

The terms E[Wi], E[W 2
i ] and E[WiWj] are given by Equations (3.18), (3.22) and (3.25),

respectively.

In the following sections the proposed approximations of the second-order moments

of both path and trip sojourn time will be validated and then used to address urban
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traffic management problems.

3.5 Validation

This section validates the approximations of the second-order moments of both the

path sojourn time and the trip sojourn time. We compare the analytical approx-

imations to both simulated esimates and to the approximations obtained by other

approximate analytical methods. Section 3.5.1 presents the considered networks and

scenarios. Section 3.5.2 presents the simulation-based and analytical methods that

are compared. A computational run time comparison is presented in Section 3.5.3.

The validation of the second-order moments of the path (resp. trip) sojourn times is

discussed in Section 3.5.4 (resp. Section 3.5.5).

3.5.1 Validation scenarios

We consider two networks. Network 1 is displayed in Figure 3-1. The queues are

depicted as circles, and the possible turnings or transitions are depicted with arrows.

This network consists of 8 queues. External arrivals arise only to queue 1 (i.e., ∀i ̸=

1, γi = 0). Departures from the network arise only from queues 7 and 8. There are a

total of 3 paths: path 1 goes from queue 1 to queue 7 via queue 2; path 2 goes from

queue 1 to queue 7 via queue 3; path 3 goes from queue 1 to queue 8. Jobs at queue

1 proceed to queue 2 with probability 0.3 and to queue 3 with probability 0.7. Jobs
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1 2 6 7

3

4

5 8

Figure 3-1: Topology of network 1.

i : 1 2 3 4 5 6 7 8
µi 10 4 7 4 5 6 6 5
ki 8 8 8 8 8 8 8 8

Table 3.1: Configuration of network 1.

at queue 3 proceed to queue 4 with probability 0.4 and to queue 5 with probability

0.6. The service rates and space capacities of the queues are defined in Table 3.1.

We consider a set of 5 demand scenarios with increasing levels of congestion (i.e.,

increasing external arrival rate to queue 1). These 5 scenarios are defined in Table 3.2.

Network 2 is displayed in Figure 3-2. It consists of 10 queues. External arrivals

arise only to queue 1 and queue 7. Departures from the network arise only from queues

4, 6 and 10. This leads to a total of 5 paths: path 1 goes from queue 1 to queue 4;

path 2 goes from queue 1 to queue 10; path 3 goes from queue 1 to queue 6; path 4

scenario 1 2 3 4 5
γ1 6 7 8 9 9.99

Table 3.2: Demand scenarios for network 1.
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1 2 3 4

10 9 8 7

5 6

Figure 3-2: Topology of network 2.

i : 1 2 3 4 5 6 7 8 9 10
µi 10 10 6 6 6 10 10 9 9 9
ki 8 8 8 8 8 8 8 8 8 8

Table 3.3: Configuration of network 2.

goes from queue 7 to queue 10; path 5 goes from queue 7 to queue 6. Jobs at queue 2

proceed to queue 3 (resp. queue 5) with probability 0.4 (resp. 0.6). Jobs at queue 5

proceed to queue 6 (resp. queue 9) with probability 0.5 (resp. 0.5). Jobs at queue 8

proceed to queue 6 (resp. queue 9) with probability 0.5 (resp. 0.5). The service rates

and space capacities of the queues are defined in Table 3.3. We consider a set of 5

demand scenarios with increasing levels of congestion (i.e., increasing external arrival

rates to queues 1 and queue 7). These 5 scenarios are defined in Table 3.4.

scenario 1 2 3 4 5
γ1 6 7 8 9 9.99
γ7 6 7 8 9 9.99

Table 3.4: Demand scenarios for network 2.
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3.5.2 Benchmark methods

Stochastic simulation model

We use a stochastic discrete-event simulation model of finite capacity Markovian net-

works (Meier, 2007). For each scenario, the simulation estimates are obtained from

1000 replications, each with a total run time of 10,000 time units including a warm

up period of 1,000 time units. We display 95% confidence intervals, which are given

by: s̄± 1.96ŝ/
√
1000− 1, where s̄ represents the estimated average sojourn time, and

ŝ represents the estimated standard deviation of the sojourn time.

State-independent model

The state-independent model is defined by the System of Equations (3.2). The compar-

ison of the state-independent model with the proposed state-dependent model serves

to illustrate the added value of using state-dependent arrival and service rates to yield

a more detailed description of between-queue dependencies and ultimately a more

accurate description of path and trip sojourn time metrics.

We describe here how the first- and second-order moments of the path and the trip

sojourn times are calculated for the state-independent model. For the path sojourn

time, the first-order moment is given by Equations (3.14), (3.18) and (3.19). For

this model, the sojourn times of all queues are assumed independent, hence all the

covariance terms COV [WiWj] of Equation (3.16) equal zero. Thus, the second-order
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moment of the path sojourn time is given by:

V AR[W̃p] =
∑
i∈Qp

(E[W 2
i ]− E[Wi]

2), (3.40)

where E[Wi] is given by Equation (3.18) and E[W 2
i ] is given by Equations (3.22) and

(3.23).

In summary, the differences with the proposed state-dependent model are: (i) the

use of state-independent rates (rather than state-dependent rates), (ii) the assumption

of independent queue sojourn times (whereas the state-dependent model assumes that

the sojourn time of adjacent queues along a path are dependent).

State-independent model without blocking

This model differs from the model of Section 3.5.2 in that it does not account for any

blocking (i.e., spillback) effects between queues. The description of blocking events

is necessary to describe the spatial propagation of congestion. Nonetheless, blocking

events are the main reason why an analytical analysis of finite capacity networks is

challenging. The comparison of the model of Section 3.5.2 with this model illustrates
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the added value of accounting for blocking. The model is formulated as follows.

λ̃i = γi +
∑
j

pjiλ̃j (3.41a)

ρ̃i =
λ̃i

µi

, (3.41b)

where λ̃i represents the arrival rate to queue i, and ρ̃i represents the traffic intensity

of queue i. Equation (3.41a) is a flow conservation equation that assumes that no

blocking occurs, and hence no losses at the entries of the network occur. For a network

where for all queues there is a zero probability of blocking, then Equation (3.41a) is

equivalent to Equation (3.2a). Equation (3.41b) defines the traffic intensity as the

ratio of the arrival rate to the service rate. Note that the denominator is the service

rate rather than the effective service rate that is used in Equation (3.2d). If there is

a zero probability of jobs at queue i getting blocked, then the service rate, µi, equals

the effective service rate, µ̂i.

For this model, the sojourn times of all queues are assumed independent, hence

all the covariance terms COV [WiWj] of Equation (3.16) equal zero. This leads to the

following expressions for the first- and second-order moments of the path and the trip
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sojourn times.

E[W̃p] =
∑
i∈Qp

E[Wi] (3.42a)

V AR[W̃p] =
∑
i∈Qp

(E[W 2
i ]− E[Wi]

2) (3.42b)

E[Wi] = E[Ni]/λ̃i (3.42c)

E[W 2
i ] =

E[N2
i ]− E[Ni]

(λ̃i)2
(3.42d)

E[Ni] = ρ̃i

(
1

1− ρ̃i
− (ki + 1)

ρ̃kii
1− ρ̃ki+1

)
, (3.42e)

E[N2
i ] =

2ρ̃2i
(1− ρ̃i)2

− ki(ki + 1)ρ̃ki+1
i

1− ρ̃ki+1
i

− 2(ki + 1)ρ̃ki+2
i

(1− ρ̃ki+1
i )(1− ρ̃i)

+ E[Ni]. (3.42f)

This model is equivalent to assuming infinite capacity queues (where no blocking

can occur) to calculate the arrival rate and traffic intensity of a queue, while assuming a

finite capacity queue to calculate the marginal queue-length distribution. In summary,

the differences of this model with the proposed state-dependent model are: (i) the

assumption of no blocking occurring at any queue, (ii) the use of state-independent

rates (rather than state-dependent rates), (iii) the assumption of independent queue

sojourn times (whereas the state-dependent model assumes that the sojourn time of

adjacent queues along a path are dependent).
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Scenario 1 2 3 4 5
Network 1 0.40 0.45 0.43 0.41 0.39
Network 2 0.61 0.47 0.51 0.46 0.49

Table 3.5: Computational time to evaluate the proposed analytical model (in seconds).

Scenario 1 2 3 4 5
Network 1 114 147 120 159 186
Network 2 54 75 120 159 144

Table 3.6: Average computational time to run one simulation replication (in seconds).

3.5.3 Computational run times

For all scenarios of network 1and network 2, the computational time needed to eval-

uate the proposed analytical model in Matlab for each demand scenario is shown in

Table 3.5. For each scenario and each network, the analytical model can be solved

instantly.

The computational time for one replication of the simulator is displayed, for each

scenario and each network, in Table 3.6. For the analysis of this paper, 1000 simulation

replications are run, hence the total computational savings for each network and each

scenario are three orders of magnitude larger than the values displayed in Table 3.6.

This table shows that even for very small networks, the analytical model is significantly

more computationally efficient than a simulation-based model.
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3.5.4 Second-order moment of path sojourn time

In this section, we validate the second-order moment of the path sojourn time, i.e., the

standard deviation of the path sojourn time. The results for network 1 are displayed

in Figure 3-3. Figures 3-3(a), 3-3(b) and 3-3(c) represent the results for paths 1, 2 and

3, respectively. Each plot displays the path sojourn time standard deviation along the

x-axis. The y-axis considers each of the 5 demand scenarios. Note that as the scenario

index increases, so does the network demand.

The 95% confidence intervals of the simulation estimates are displayed as solid

lines. The estimates for the state-independent-no-blocking method are displayed as

triangles. Those for the state-independent (resp. state-dependent) method are dis-

played as circles (resp. stars).

For all paths and all scenarios, the method with the least accurate performance

is the state-independent-no-blocking method. It is followed by the state-independent

method. Both of these methods only perform well under light traffic conditions (e.g.,

scenario 1), and both fail to capture the trend of the performance measure as con-

gestion increases. Under congested conditions, they both significantly underestimate

the standard deviation of path sojourn time. The proposed state-dependent yields ac-

curate standard deviation approximations for both uncongested and highly congested

conditions. As congestion increases, the proposed method indeed captures the trends

of the simulation estimates. This is particularly important if the model is to be used
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Figure 3-3: Path sojourn time standard deviation for each of the 3 paths in network
1.
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for optimization purposes.

Note that the state-independent method outperforms the state-independent-no-

blocking method, and the level of outperformance increases with congestion. This

indicates the added value of analytically accounting for blocking.

Figure 3-4 displays the results for the scenarios of network 2. Again, as conges-

tion increases, so does the scenario index. Similar conclusions hold. For paths 2-5,

the following conclusions hold. The state-independent-no-blocking method and the

state-independent methods: (i) yield accurate estimates only for light traffic condi-

tions, (ii) have decreasing accuracy with increasing congestion, (iii) fail to capture the

trends of the simulation estimates as congestion increases. The state-independent-

no-blocking method is outperformed by the the state-independent method, and the

level of outperformance increases with congestion. This illustrates the added value

of analytically describing blocking, in particular for congested traffic conditions. The

proposed method leads to consistently accurate estimates, and it captures the trends

of the simulated estimates as congestion increases. For path 1, the most accurate es-

timates are those obtained by the state-independent-no-blocking method, followed by

the state-independent method, and then the state-dependent method. The proposed

method does not capture the trends of the simulated estimates, it overestimates path

sojourn time standard deviation. This overestimation increases with congestion.
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Figure 3-4: Path sojourn time standard deviation for each of the 5 paths in network
2.
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3.5.5 Second-order moment of trip sojourn time

In this section, we validate the second-order moment of the trip sojourn time, i.e.,

the standard deviation of the trip sojourn time. Figure 3-5(a) (resp. Figure 3-5(b))

displays the results for network 1 (resp. network 2). The x-axis displays the trip

sojourn time standard deviation, the y-axis displays the scenario index. Just as in the

figures of Section 3.5.4, as the scenarios index increases, so does congestion. Similar

conclusions as for Section 3.5.4 hold. In particular, the most accurate method is the

proposed state-dependent method, followed by the state-independent method, and

then the state-independent-no-blocking method. The state-independent-no-blocking

method and the state-independent methods yield accurate estimates only for light

traffic conditions, have decreasing accuracy with increasing congestion, and they both

fail to to capture the trends of the simulation estimates as congestion increases. The

state-independent-no-blocking method is outperformed by the the state-independent

method, and the level of outperformance increases with congestion, i.e., it increases

as the occurence of blocking increases. The proposed method leads to consistently

accurate estimates, and it captures the trends of the simulated estimates as congestion

increases.
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Figure 3-5: Trip sojourn time standard deviation for networks 1 and 2.
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3.6 Analytical optimization case study

In this section we evaluate the ability of the proposed method to address an analytical

urban traffic signal control problem. The road network of interest is presented in

Section 3.6.1. The traffic signal control problem is formulated in Section 3.6.2, and

the results are discussed in Section 3.6.3.

3.6.1 Road network

We consider a signal control problem for the city center of the Swiss city of Lausanne

(same as the network used in Chapter 2). We consider the evening peak period 17h-

18h, where congestion gradually increases.

3.6.2 Traffic signal control problem

For a review of traffic signal control terminology and formulations, we refer the reader

to Appendix A of Osorio (2010) or to Lin (2011). The signal control problem that

we consider is known as a fixed-time, also known as pre-timed control strategy. A

fixed-time signal plan is a periodic plan defined by a cycle time (the period). For a

given intersection, the cycle time is typically of the order of 60, 90 or 120 seconds.

The green times of the cycle are allocated to signal phases. These phases consider a

set of non-conflicting traffic movements. For a given phase, the green time to cycle

time ratio is known as the green split. Offset variables are often used to synchronize
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the signal plans of adjacent intersections.

In order to formulate the signal control problem, we introduce the following nota-

tion:

bi available cycle ratio of intersection i;

x(j) green split of phase j;

xL vector of minimal green splits;

z endogenous queueing model variables;

q exogenous queueing model parameters;

I set of intersection indices;

PI(i) set of phase indices of intersection i;

r reliability ratio.

The signal control problem is formulated as follows:

min
x

E[T (x, z; q)] + rSD[T (x, z; q)] (3.43)∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (3.44)

x ≥ xL, (3.45)

where T is the trip sojourn time in the city center, x is the decision vector, which

represents the green splits, z are endogenous queueing model variables (e.g., blocking
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probabilities, queue-length distributions) and q are exogenous queueing model param-

eters (e.g., network topology, travel demand).

In Problem (3.43)-(3.45), the decision variables x are the green splits. All other

signal plan parameters (e.g., cycle time, offsets, all-red durations, stage structure)

are considered fixed. The objective function (Equation (3.43)) consists of a linear

combination of the expected trip travel time, E[T (x, z; p)], and the standard deviation

of trip travel time SD[T (x, z; p)]. The latter is weighted with weight r, which is

known as the reliability ratio. The term reliability refers to the interpretation of travel

time variability (as measured by the standard deviation) as a metric for travel time

reliability. The reliability ratio r is set to 1.43, as given in Li et al. (2010b). Constraints

(3.44) guarantee that for a given intersection the sum of green splits of the endogenous

phases equals the available cycle time. Constraints (3.45) ensure lower bounds for the

green splits. In the case studies of this chapter, the lower bounds are set to 4 seconds

following the Swiss transportation norms (VSS, 1992).

3.6.3 Results

Problem (3.43)-(3.45) is solved with each of the following two queueing models: (i) the

state-dependent queueing model , and (ii) the state-independent queueing model. The

objective function (Equation (3.43)) is calculated via Equations (3.29a) and (3.30) as:

E[TT ] + r
√

V AR[TT ]. (3.46)
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The initial point is a random initial signal plan sampled uniformly from the feasible

region, which is defined by Equations (3.44)-(3.45). Uniform sampling is done with

the method of Stafford (2006).

In order to evaluate the performance of an optimal signal plan, we use a stochastic

simulator of urban traffic. We use the calibrated microscopic traffic simulation model

of the Swiss city Lausanne developed by Dumont and Bert (2006). It is calibrated for

the evening peak period of Lausanne. It is implemented in Aimsun (TSS, 2013). For

a given signal plan, we embed it within the traffic simulator and run 50 simulation

replications. For each replication, we evaluate the average trip travel time (i.e., average

travel time within the city center) and the trip travel time standard deviation. We then

plot the cumulative distribution function (cdf) of these 50 simulation replications. The

x-axis of each plot of Figure 3-6 considers a given performance measure (e.g., average

trip travel time). For a given x value, the y-axis gives the proportion of simulation

replications (out of the 50 replications) that yield a performance measure smaller or

equal to x. Hence, the more the cdf curves are shifted to the left, the higher the

occurence of low values of the performance measures, i.e., the better the performance.

Each plot of Figure 3-6 considers a given performance measure. Figure 3-6(a)

considers the objective function (Equation (3.43)). The individual components of the

objective function are displayed in Figures 3-6(b) and 3-6(c). Figure 3-6(b) considers

the average trip travel time, Figure 3-6(c) considers the trip travel time standard
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Figure 3-6: Cumulative distribution functions of the objective function, the average
trip travel time and the trip travel time standard deviation.
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deviation.

Figure 3-6(a) displays three cdf curves of the objective function. The solid curve

is that of the proposed state-dependent method, the dashed curve is that of the state-

independent method. The dotted curve is the cdf of the intial signal plan. The

signal plan proposed by the state-independent method has slightly better performance

than the initial signal plan. Both plans are outperformed by the plan of the state-

dependent method. The same conclusions hold for each component of the objective

function (Figures 3-6(b) and 3-6(c)). The proposed method leads to lower average trip

travel times as well as lower trip travel time standard deviation.

We test whether the objective function performance of the signal plan proposed by

the state-dependent method is statistically lower than that of the state-independent

method. We perform a paired t-test, where the null hypothesis states that the objective

function of the signal plan proposed by the state-dependent method is statistically

lower than that of the state-independent method. We perform a paired t-test. When

running the 50 simulation replications that evaluate the performance of a given signal

plan, we used the same set of replication seeds for each signal plan. The paired t-tests

are carried out by pairing observations that have common seeds. Let Y denote the

average paired difference, let ŝ denote its standard deviation, and let O denote the

sample size. Then the paired t-statistic is given by (see, for instance, Hogg et al.

(1977, p. 486)): t =
√
O Y /ŝ. The average paired difference is Y = 1.40, its standard
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deviation is ŝ = 3.13, and the sample size O = 50. Hence, the t-statistic is 3.15.

The critical value at the 2.5% significance level is t0.025(49) = 2.01. Hence, the null

hypothesis is rejected. The signal plan proposed by the state-dependent method leads

to statistically significantly lower objective function values.

3.7 Simulation-based optimization (SO) signal con-

trol problem

In this section, we use the proposed analytical traffic model to address a simulation-

based traffic signal optimization problem. We consider the same city center network

and the same peak-period demand scenario as those of Section 3.6. The only difference

with Section 3.6 is the objective function of the signal control problem. In this section,

the objective function is a simulation-based objective function. It can be written as:

E[T (x; q̃)] + rSD[T (x; q̃)], (3.47)

where x represents the decision vector (i.e., the green splits), and q̃ represents the

exogenous parameters of the simulator (e.g., network topology, network demand, etc.).

The first term (resp. second term) of Equation (3.47) represents the simulation-based

expected trip travel time (resp. simulation-based trip travel time standard deviation).

The weight parameter r is the reliability ratio, we use the same numerical value as in
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Section 3.6. The SO problem has the same constraints as the problem of Section 3.6,

these are given by Equations (3.44)-(3.45). These are analytical constraints.

In summary, the problem considered in this section consists of a simulation-based

objective function (Equation (3.47)) and analytical constraints (Equations (3.44)-

(3.45)).

The state-dependent analytical model proposed in this chapter is used to con-

struct a metamodel. A metamodel is an analytical approximation of the (unknown)

simulation-based objective function. For details on metamodel formulations and meta-

model SO literature, see Osorio and Bierlaire (2013). We use the metamodel SO al-

gorithm of Osorio and Bierlaire (2013). This algorithm considers a metamodel that

combines information from an analytical traffic model and from the simulation-based

traffic model. In this section, we use the proposed state-dependent analytical traffic

model as the analytical traffic model. We call this method the “State-dependent SO”

method.

In order to benchmark the performance of this SO approach, we compare its perfor-

mance to 2 other methods. The first considers the SO algorithm of Osorio and Bierlaire

(2013), yet uses the state-independent analytical traffic model (defined/discussed in

AFAF) to construct the metamodel. We call this method the “State-independent SO”

method. The comparison of “State-dependent SO” method to the “State-independent

SO” method illustrates the added value of accounting analytically for detailed between-
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queue dependencies when performing SO.

The second method that is benchmarked is that proposed in (Chen et al., 2012b).

We call this method the “Reliability SO” method. This is an SO method that has also

been used to design signal plans with reduced travel time variability. Since an ana-

lytical and computationally tractable approximation of the trip travel time standard

deviation (i.e., term SD[T (x; q̃)] of Equation (3.47)) was not available at the time, the

SO problem was formulated considering the link travel time standard deviation. The

SO problem used the following objective function:

E[
∑
i∈L

Ti(x; p̃)] + rSD[
∑
i∈L

Ti(x; p̃)], (3.48)

where L denotes the set of queues within the network of interest, and Ti(x; p̃) denotes

the (simulation-based) travel time along queue i. In other words, the objective function

considers the first- and second-order moments of the total link travel time rather than

that of the trip travel time.

The signal plans identified by the “Reliability SO” method are designed based on

a different objective function than that of Equation (3.47). Nonetheless, they aim to

achieve the same goal: reducing the average travel time and the travel time variability

for travelers. The comparison of “State-dependent SO” method to the “Reliability SO”

method illustrates the ability of our proposed method to actually achieve this goal.

The computational budget is set to 450 simulation runs. The performance of a given
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point (i.e., a signal plan) is evaluated by running 3 simulation replications. Hence, the

computational budget of 450 allows for a maximum of 150 points to be evaluated.

Once the computational budget is depleted, the current iterate is considered as the

final solution, i.e., it is the “proposed” signal plan.

We consider the same initial signal plan in Section 3.6.2. This plan is sampled uni-

formly from the feasible region, which is defined by Equations (3.44)-(3.45). Uniform

sampling is done with the method of Stafford (2006). For each of the 3 SO methods

mentioned above, we consider the given initial plan and the given computational bud-

get, and we run the SO method three times. We run it three times since the output of

the algorithm is now stochastic. For each SO method, this leads to 3 proposed signal

plans. The performance of a proposed signal plan is evaluated just as in Section 3.6:

i.e., we run 50 simulation replications with the same set of random seeds for each signal

plan. For each SO method, we aggregate the results for all 3 proposed signal plans,

and construct a single cumulative distribution function (cdf). In other words, the cdf

curve consists of 50*3 observations.

We first plot the empirical cumulative distribution function (cdf) of the perfor-

mance measures obtained by solving different methods aggregately over all 3 signal

plans in Figure 3-7. Because of the stochastic feature of the simulator, we then plot

the cdf of the performance metrics for each signal plan in Figure 3-8. The objective

function for the reliability method is not the same as the other 2 methods, to be com-
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Figure 3-7: Expected trip travel time, trip travel time SD and objective function of
the signal control methods when applied to the Lausanne city center. These plots
consider various problem formulations.
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parable with other two methods, we also calculate the summation of expected trip

travel time and 1.43 times travel time SD for the reliability method.

In Figure 3-7, each subfigure shows 4 cdf curves. Figure 3-7(a) shows the plots

for expected trip travel time. The black dotted curve shows the expected trip travel

time obtained from the initial signal plan which contains 50 observations. The other

3 cdf curves represent the expected trip travel time of the signal plans obtained by

solving different signal control problems. Each of the curve contains 3*50 observations

from 3 signal plans because we run the SO algorithm for each problem 3 times. The

x-axis represents the value of the expected trip travel time. The signal plan derived by

“reliability" (displayed as grey dashed line) lead to signal plans with smallest expected

trip travel time. The “state-independent" method (displayed as dash-dot line) yields

the signal plan with largest expected trip travel time. Figure 3-7(b) shows the plots for

trip travel time SD. The “state-dependent" method (displayed as solid line) leads to the

signal plans with smallest value of trip travel time SD. Figure 3-7(c) shows the plots

for objective function. The “state-dependent" method leads to the signal plans with

smallest value of objective function, the “state-independent" method yields the signal

plan with largest objective function value. Although the “reliability" method does not

optimize the summation of expected trip travel time and 1.43 times travel time SD, it

leads to signal plan with smaller values comparing to the “state-independent" method.

All signal plans are better than the initial signal plan for all measures.
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To test if the performance of the signal plan derived by solving different methods are

statically different from each other. We perform a paired t-test to test the hypothesis

that the expected trip travel time, trip travel time SD, and objective function values

derived from the “reliability" formulation are equal to the expected trip travel time, trip

travel time SD, and objective function values derived by “state-dependent" method.

Since each curve contains three signal plans and we use the same set of random seeds

when we evaluate all signal plans in the simulator, we take the average value of average

trip travel time, trip travel time SD and objective function over all signal plans derived

by the same method.

The mean of the paired difference between “reliability" and “state-dependent" for

average trip travel time, average trip travel time SD and objective function are -

0.1116, 0.5162 and 0.6265 respectively; the corresponding standard deviation of the

paired difference are 0.2100, 1.1185 and 1.7798. The t values are -3.7582, 3.2631

and 2.4890 for expected trip travel time, trip travel time SD and objective function

respectively. For expected trip travel time, the mean of the paired difference between

“reliability" and “state-dependent" method is negative, which means “reliability" yields

signal plan with smaller average trip travel time. The t-value for expected trip travel

time is -3.7582, thus the null hypothesis is rejected. The mean differences are positive

for other two metrics, the t-values are all larger than t0.025(49) = 2.01, thus null

hypothesis for trip travel time SD and objective function are rejected. Signal plans
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derived by “reliability" method have smaller expected trip travel time than the signal

plans derived by “state-dependent" method. Signal plans derived by ‘state-dependent"

method have better performance in terms of trip travel time SD.

We also perform a paired t-test to test the hypothesis that the expected trip

travel time, trip travel time SD, and objective function values derived from the ’state-

independent’ formulation are equal to the expected trip travel time, trip travel time

SD, and objective function values derived by “state-dependent" method. The mean of

the paired difference between “state-dependent" and “state-independent" for average

trip travel time, average trip travel time SD and objective function are 0.5031, 0.6290

and 1.4026 respectively; the corresponding standard deviation of the paired difference

are 0.2748, 1.0402 and 1.6974. The t values are 12.9461, 4.2758 and 5.8430 for expected

trip travel time, trip travel time SD and objective function respectively.They are all

larger than t0.025(49) = 2.01, thus null hypothesis are rejected for all performance met-

rics. Signal plans derived by “state-dependent" method have better performance for

all performance metrics than the signal plans derived by “state-independent" method.

Figure 3-8 shows the performance comparison of each signal plan obtained by

solving different problems with different objective functions. Figure 3-8(a), Figure 3-

8(b) and Figure 3-8(c) display 10 cdf curves of expected trip travel time, trip travel

time SD and objective function for different methods respectively. In each of the figure,

the black dotted curve shows the expected trip travel time, trip travel time SD and
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Figure 3-8: Performance of the signal control methods when applied to the Lausanne
city center. These plots consider various problem formulations.
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objective function obtained from the initial signal plan which contains 50 observations.

The other 9 cdf curves represent the performance of the signal plans obtained by

solving different signal control problems. Each of the curve contains 50 observations.

In Figure 3-8(a), 2 signal plans obtained by solving the “reliability" problem (displayed

as grey dashed line) have smaller expected trip travel time than all other plans. In

Figure 3-8(b), 2 signal plans derived by “state-dependent" method (displayed as solid

line) have the smaller trip travel time SD than all other plans. Signal plans derived by

“state-independent" method (displayed as dash-dot line) have better performance than

2 out of 3 signal plans derived by ’reliability’ method. In Figure 3-8(c), 1 signal plan

obtained by ’reliability’ method has similar performance to the signal plans derived

by ’state-dependent’ method. Signal plans obtained by ’state-independent’ method

have the worst performance. In all figures, the signal plans derived by using different

methods have better performance than the initial signal plan.

The proposed formulation that accounts for between link dependency yields signal

plans with smaller expected trip travel time and trip travel time SD comparing to

the one assuming independent link travel time. Furthermore, signal plans obtained

by minimizing average total link travel time and total ink travel time SD has smaller

expected trip travel time but larger trip travel time SD comparing to the signal plans

derived by proposed formulation.
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3.8 Conclusions

In this chapter, we derive path travel time SD that could be used for finite capacity

queueing networks based on first- and second- order Little’s law which is originally

derived for infinite capacity queues. We take into consideration the interactions be-

tween adjacent queues and model the link dependency. The results obtained from our

approach are compared with the formulation that ignores the link dependency and the

simulated results for a toy network with 10 queues and 5 different paths. We then use

this model to address a traffic signal control problem analytically to account the added

value of accounting link dependencies. Further more, the proposed method is used to

solve a simulation-based optimization signal control problem. The results show that

accounting link dependency helps to reduce trip travel time variability comparing to

the approach that does not account for that. We also compare the performance of

the signal plan derived from the proposed method with the signal plan obtained in

Chapter 2. The method proposed in Chapter 3 reduces trip travel time variability

significantly at the expenses of increasing average trip travel time comparing to the

signal plan derived in Chapter 2. This represents a tradeoff between expectation and

SD of trip travel time, a balance point between efficiency (first-order information)

and reliability (second-order information) can be discussed in future research. It is of

interest to performance a sensitive test with respect to different values of reliability

ratio.
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Chapter 4

Limiting the spatial propagation of

congestion via simulation-based signal

control

4.1 Introduction

The occurrence, dynamics and impact of urban network spillbacks have received at-

tentions. For uncongested network, there is no significant queue formation, but for

congested network, demand approaches or even exceeds capacity, queues build up. The

propagation of congestion may have major impacts in the vicinity of major arterials. In

a recent FHWA report, it states that different signal control strategies are appropriate
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for different traffic conditions (e.g. peak, off-peak) (Gettman et al., 2013). Thus for

uncongested and congested network, signal design strategy differs. The control strat-

egy which is suitable for uncongested network might not be appropriate for congested

network. For a highly congested urban network with multimodal traffic, numerous sig-

nalized intersections, short links and a grid-type topology, the design of signal plans

that indeed improve traffic conditions is a real challenge. The grid-type topology leads

to high-dimensional route alternatives, and may lead to complex behavior of travelers

as they react to the formation and propagation of congestion. Furthermore, congested

networks with grid-type topologies and short links are highly prone to the occurrence

of spillbacks. If spillback happens in certain links, congestion propagates quickly and

affects larger areas.

In this chapter, we propose a method to design signal control strategies that can be

used for highly congested urban road network with grid-type topology. In particular,

we propose signal settings for an area in eastern Manhattan (New York City, USA)

around the highly congested Queensboro bridge. It is the busiest bridge in New York

City with around 178,000 vehicles crossing during each normal weekdays in the year

of 2010 (NYCDOT, 2014). Morning peak period vehicular traffic in this area is in

the order of 11,000 vehicles per hour. The traffic conditions around Queuesboro area

have a large impact on the traffic access to/egress from the highly congested corridor.

Currently, only fixed-time signal plan is used in this area, it is of particular interest
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to New York City Department of Transport (NYCDOT) to explore the potentials of

using novel signal control strategy in that area. Traditional signal control strategies

are difficult to tailor to the specific needs of such networks, this is due to the following

reasons. First, they embed low-resolution macroscopic traffic models which do not

provide a detailed description of traveler behavior or of the underlying network supply

(e.g. prevailing traffic operations). Second, they most often have pre-determined

objective functions to be used for optimization. The simulation-based optimization

algorithm stated in Chapter 2 is used to identify traffic signal plans tailored to the

context and needs of the specific underlying networks.

4.1.1 Network topology

Figure 4-1 shows the topology of the studied Queensboro bridge area. The network

consists of a total of 134 roads, 313 lanes, 27 signalized intersections and 5 non-

signalized intersections.

This chapter is structured as follows: Section 4.2 presents a review of traffic signal

control strategy for congested urban road network. We then present the methodology

in Section 4.3. We evaluate the performance of the proposed signal plan in Section

4.4. We conclude with a brief discussion in Section 4.5.
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Figure 4-1: Topology of Queensboro bridge area.
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4.2 Literature Review

Queue management is often used in congested network to form up control strat-

egy. Michalopoulos and Stephanopoulos (1977) optimize signal plans for two con-

gested intersections, they minimize delay at intersections subject to queue-length con-

straints. Abu-Lebdeh and Benekohal (1997) maximize system throughput for a three-

intersection congested system. They use state equations to manage queue formulation

and dissipation, in which the number of vehicles in the queues, and the number of ve-

hicles arriving to and departing from the queues for each cycle are explicitly considered

in order to ensure the upstream queues are not blocked when downstream queues build

up; offsets and green splits change when demand and queue status change dynami-

cally. Aboudolas et al. (2010) minimize links occupancy which is defined as the ratio

of queue-length over time and maximum admissible queue-length subject to maximum

admissible queue-length. They prove that considering queue-length in signal control

problems helps to reduce the risk of queue spillback. Liu and Chang (2011) model dy-

namic evolution of physical queues as a function of signal timing, arrivals, departures

over time, the control objective can be either minimizing total travel time or maxi-

mizing throughput. For a detailed review of queue management method and signal

control strategy for congested network, see Quinn (1992) and Hajbabaie et al. (2011).
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4.3 Methodology

The SO algorithm described in Chapter 2 is used to identify the signal plan for this

area. In this SO framework, signal design objectives can be adjusted according to

the needs of transport agencies such as incorporating reliability concerns described

in Chapter 2 and 3, or enhancing system efficiency. The SO algorithm looks for

signal plans that could improve the system performance for the whole studied area

rather than individual intersection. The advantage of using such strategy is that under

different traffic conditions, considering all links in calculating signal plans give us more

potential to achieve an improvement for the whole area of interest. Signal changing

might influence drivers’ routing behavior; vehicle re-routing might influence the travel

time again. Looking at the signal plan for an area rather than a set of intersections

along a major road would help us to address the influence of the signal plan on drivers’

behavior and the consequences it might bring back to the overall system performance.

In order to use the SO framework, the queuing model needs to be calibrated ac-

cording to the network topology and flow level associated. For a detailed description

of the calibration techniques, see Appendix C. All the links in the study area are

represented as 284 queues.

To illustrate the congestion level of the studied area, we present a few details

regarding the queue-lengths of the network of interest.

Figure 4-2 displays for each queue in the network its spillback probability under the
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signal plan currently used in the field for morning peak demand. These probabilities

are calculated as follows. We run 50 replications of the simulation model. For each

replication and each queue, every three seconds we evaluate the vehicular queue-length.

We use these queue-length measurements to estimate over the 8am-9am hour the

proportion of time where spillback occurred. This proportion is obtained as an average

over both the 8am-9am period of interest and over the 50 simulation replications.

These proportions are used as estimates of the spillback probabilities. What we can see

from Figure 4-2 is that there are various queues where spillback happens more than 50%

of the time. More importantly, even for the queues where the spillback probability is

low, the occurrence of spillback may have a significant effect on congestion propagation

upstream due to the existence of short links. Once spillback happens, it spreads out

quickly. This motivates the use of a signal control formulation that explicitly accounts

for queue-length metrics.

In order to formulate the signal control problem, we introduce the following nota-
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Figure 4-2: Spillback probability for each queue under the existing signal plan.

tion:

bi available cycle ratio of intersection i;

QLl queue-length of link l;

T average trip travel time;

x(j) green split of phase j;

xL vector of minimal green splits;

L set of links within the area of interest;

I set of intersection indices;

PI(i) set of phase indices of intersection i;
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For congested network, the signal control problem is formulated as follows:

min
x

f(x) =
∑
l∈L

E[QLl(x, z; p)] (4.1)

subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (4.2)

x ≥ xL. (4.3)

This problem is a fixed-time signal control problem, where the decision variables

x are the green splits. In this problem, the stage structure (e.g. phase sequence) is

given, the offsets, the cycle times and the all-red durations are fixed. The performance

metric used,
∑

l∈L E[QLl(x, z; p)], is the sum of expected queue-lengths over all links.

Constraints (4.2) guarantee that for a given intersection the available cycle time is

distributed across all endogenous phases. Constraints (4.3) ensure lower bounds for

the green splits. They are set to 5 seconds, and are based on current New York City

Department of Transportation (NYCDOT) practices.

Recall that the metamodel formulation (described in Chapter 2) requires an ana-

lytical expression, which is the approximation of the objective function f as derived

by the analytical queueing-theoretic model. Here, we present the analytical and dif-

ferentiable expressions for f for congested and uncongested networks. We first derive
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the objective function for congested network.

Let Q denotes the set of queues that represent the links, L . Then, the objective

function for congested network can be rewritten as a function of queue metrics, rather

than link metrics:

∑
l∈L

E[QLl(x, z; p)] =
∑
i∈Q

E[Ni]. (4.4)

We now present how an analytical expression for the expected queue-length of a

queue, E[Ni], is derived. We use the the same analytical queueing-theoretic traffic

model described in Chapter 2, and the same notations for all variables (detailed in

Appendix A.1.1). We recalled the notations for each variable:

γi external arrival rate;

λi total arrival rate;

µ̂i effective service rate;

ki space capacity;

P (Ni = ki) probability of queue i being full, known as blocking or spillback probability;

ρi traffic intensity (defined as the ratio of arrival rate and effective service rate);

E[Ni] expected queue-length.

In order to approximate the objective function f (of Equation (4.1)), we proceed

122



as follows. For a given queue i, its expected queue-length is defined as:

E[Ni] =

ki∑
n=0

nP (Ni = n). (4.5)

The stationary marginal queue-length probabilities P (Ni = n) are obtained when

evaluating the traffic model, they are given by:

P (Ni = ni) =
1− ρi

1− ρni+1
i

ρni
i , n ∈ [0, ki] (4.6)

Combining ideas from Equations (4.5) and (4.6), we can obtain the following closed-

form expression for E[Ni]:

E[Ni] = ρi

(
1

1− ρi
− (ki + 1)

ρkii
1− ρki+1

i

)
. (4.7)

Hence, the analytical approximation of the objective function (Equation (4.1)) is

given by:

∑
i∈Q

E[Ni] =
∑
i∈Q

ρi

(
1

1− ρi
− (ki + 1)

ρkii
1− ρki+1

i

)
. (4.8)
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4.4 Performance of the proposed fixed-time signal

plan

We start from the existing NYC signal plan and run the SO five times. The compu-

tational budget is set to 150 simulation runs each time. In total we derive five signal

plans. Signal plan with the smallest total queue-length without deteriorating the sys-

tem throughput is selected as the new signal plan. To evaluate the performance of

the new signal plan derived by SO, we run the signal plan derived by SO and existing

signal plan 50 replications respectively.

In order to provide a more detailed analysis of the performance of the derived

signal plans and the existing signal plan, we consider both temporal evolution of a set

of performance measures every 15 minutes and the aggregated performance over the

simulation period.

After a warm-up period of 20 minutes, we consider the temporal evolution of the

following 4 performance metrics every 15 minutes:

• average network queue-length over every 15 minutes;

• average trip travel time (including all finished and unfinished trips for that time

period) over every 15 minutes;

• entry flow every 15 minutes;

• average spillback probability over every 15 minutes.
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For each 15 minutes, average network queue-length is calculated as the average of

the queue-length over all links in the network. To calculate average trip travel time,

total network travel time experienced by all users (both finished and unfinished trips) is

obtained over every 15 minutes, then average trip travel time is calculated as the ratio

between total network travel time and total number of vehicles entered the network

during 15 minutes. Entry flow is calculated as the total number of vehicle entered

network for each 15 minutes, to be comparable with the total demand level, the entry

flow every 15 minutes is then transformed to entry flow per hour (multiplied by 4).

Average spillback probability is calculated as the average of the spillback probabilities

over all queue in the network. In order to estimate the spillback probability, we

measure queue-length for each link every 3 seconds. Then each link is mapped into a

queue or a set of queues, unused links are not modeled in the queueing network. Note

that the spillback probability of a queue can be interpreted as the proportion of time

the queue remains full.

We then study the following performance measures over the whole studied period

(1 hour):

• average network queue-length.

• average spillback probability;

• average trip travel time of finished trips;
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• total number of finished trips;

• average trip travel time of unfinished trips;

• total number of unfinished trips;

Average network queue-length and average spillback probability are calculated in

the same way as the performance measures mentioned above for temporal evolution

study. Instead of calculating average network flow without distinguishing finished and

unfinished trips, we calculate number of finished trips and unfinished trips respectively

at the end of simulation period. The number of unfinished trips represents the number

of vehicles blocked in the network, together with the number of vehicles that just enter

the network and do not have enough time to finish the trip at the end of simulation. It

is hard to distinguish these two types of vehicles in the simulator. Assume that under

the same demand level, number of vehicles enter the network but do not have enough

time to finish their trips at the end of simulation are similar for different signal plan,

larger number of unfinished trips means more blocked vehicles.

Comparing to the average travel time of those blocked vehicles, average travel time

for those vehicles that just enter the network and do not have time to finish the trip

is very small. Normally, the average travel time for blocked vehicles are larger than

average travel time of finished trips. When we compare the average travel time of

unfinished trips obtained by different signal plan, we first compare the average travel

time of unfinished trips with average travel time of finished trips to justify if blocking
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happens.

For each signal plan and each performance metric mentioned above, we use the 50

observations obtained from 50 simulation replications. We use these 50 observations

to construct a cumulative distribution function (cdf). We then perform a paired t-test

to test the hypothesis that the performance measures obtained from the signal plan

derived by SO are better than the performance measures obtained from the existing

signal plan for each signal plan. The paired t-test is performed using script coded in

Matlab.

Figure 4-3 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure 4-3(a), Figure 4-

3(b), Figure 4-3(c), and Figure 4-3(d) show the comparison of average queue-length of

the adaptive signal settings and the existing signal plan for each 15 minutes; Figure 4-

3(e), Figure 4-3(f), Figure 4-3(g), and Figure 4-3(h) show the the comparison of average

trip travel time.

Figure 4-4 shows the comparison of average spillback probability and entry flow

for all time period. Figure 4-4(a), Figure 4-4(b), Figure 4-4(c), and Figure 4-4(d)

show the comparison of the average spillback probability Figure 4-4(e), Figure 4-4(f),

Figure 4-4(g), and Figure 4-4(h) show the comparison of entry flow.

The performance of the proposed signal plan is displayed in solid line (indicated

as optimized); the performance of the existing signal plan is displayed in dashed line
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(indicated as existing). For all time intervals, the signal plan derived by SO yields

smaller average trip travel time, and smaller average spillback probability. For the

first and second time interval, proposed signal plan leads to similar entry flow to

existing signal plan, and for the third and fourth time interval, proposed signal plan

leads to significantly larger entry flow with smaller variability. For the first, second and

third time intervals, the signal plan derived by SO yields smaller average queue-length,

for the fourth time interval, proposed signal plan leads to larger queue-length.

The aggregated performance over the simulating period is shown in Figure 4-5. Fig-

ure 4-5(a) shows the average queue-length; Figure 4-5(b) shows the average spillback

probability; Figure 4-5(c) shows the average travel time of unfinished trips; Figure 4-

5(d) shows the average travel time of all finished trips; Figure 4-5(e) shows the number

of unfinished trips; Figure 4-5(f) shows the number of finished trips. proposed signal

plan leads to better performance in terms of all performance measures.

We use across-replication variability to represents the day-to-day variability in

performance metrics. For average finished trip travel time, number of finished trips,

and average spillback probability, the cdf curves correspond to proposed signal plan

are steeper, which means it leads to more stable system performance.

Table 4.1 shows the statistics of each performance measure over 50 replications.

TT represents average trip travel time of finished trips; TP is the number of finished

trips; TTun is the average trip travel time for unfinished trips; TPun is the number of
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Figure 4-5: Comparison of the performance of the proposed signal plan and the existing
signal plan.
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 4.10 4.72 5.63 0.32 3.70 4.01 4.25 0.13
TP 10407 11400 11719 267.42 11403 11576 11718 60.86

TTun 8.71 11.03 15.11 1.52 5.91 7.67 9.48 0.80
TPun 714 821 1012 58.81 594 664 771 35.93
QL 3.07 3.67 5.03 0.32 2.41 2.69 2.99 0.15
SP 0.0836 0.1119 0.1467 0.0141 0.0805 0.0848 0.0930 0.0029

Table 4.1: Performance metrics statistics for proposed signal plan and existing signal
plan.

unfinished trips; QL is the average network queue-length; SP is the average spillback

probability. Average trip travel time for unfinished trips is larger than average trip

travel time for finished trips, thus blocking happens. The new plan derived by SO

reduces the average travel time for those travelers that are blocked in the network.

The new plan also yields smaller average queue-length, smaller average spillback prob-

ability, smaller average finished trip travel time, smaller number of unfinished trips,

and larger number of finished trips.

Table 4.2 shows the paired t-test for each performance measure. For each aggre-

gated performance measure, the null hypothesis states that the performance of the

signal plan proposed by SO method is equal to that of the existing signal plan, the

alternative hypothesis states that the performance of the signal plan proposed by SO

method is better (e.g. smaller average queue-length; smaller average spillback proba-

bility; smaller average travel time for unfinished trips; smaller average travel time for

finished trips; smaller number of unfinished trips and lager number of finished trips)
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Y ŝ t-statistic
TT 0.7153 0.3572 14.1572
TP 176.4800 275.4490 4.5304

TTun 3.3602 1.6915 14.0472
TPun 156.5600 66.3224 16.6919
QL 0.9831 0.3528 19.7036
SP 0.0271 0.0151 12.6513

Table 4.2: Paired t-test for proposed signal plan and existing signal plan.

than that of the existing signal plan. When running the 50 simulation replications to

evaluate the performance of a given signal plan, we use the same set of 50 replication

seeds for each signal plan. The paired t-tests are carried out by pairing observations

that have common seeds. Let Y denote the average paired difference between any

two aggregated performance measures , let ŝ denote its standard deviation, and let O

denote the sample size. Then the paired t-statistic is given by (see, for instance, Hogg

et al. (1977, p. 486)): t =
√
O Y /ŝ.

Taking the average finished trip travel time as an example, we test the hypothesis

that the average finished trip travel time from the proposed signal plan is equal to

the average finished trip travel time obtained from existing signal plan. The mean

of the paired differences Y is around 0.7153 minutes. The standard deviation of the

paired differences ŝ is around 0.3572 minutes. The sample size O is 50. The critical

value at the 2.5% significance level is t0.025(49) = 2.01. The t values is 14.1572. Thus

the null hypothesis is rejected. For all the other performance metrics, the t-values

are larger than t0.025(49) = 2.01, thus the null hypothesis is rejected. Proposed signal
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plan derived by SO leads to significant smaller queue-length, smaller average spillback

probability, smaller average trip travel time for both finished and unfinished trips,

smaller number of unfinished trip, and larger number of finished trips.

Improving total system throughput (number of finished trips) while reducing num-

ber of travelers being blocked is not a simple task. The proposed signal plan leads to

larger number of finished trips which means the system throughput is increased, more

travelers could pass the network with a reduced average trip travel time. Compared

to the existing signal plan, the proposed signal plan also reduces the number of unfin-

ished trips which includes the travelers that are blocked in the network, and reduces

the time spent in the network for them.

Since both major and minor links are important in this area, to visualize the

improvements obtained by proposed signal plan under normal morning peak demand

for each link, we proceed as follows: for the existing signal plan and the new signal

plan, we estimate for each link the following performance metrics:

• average link queue-length;

• average link travel time.

Average link queue-length is calculated as the average queue-length for each link

over the whole simulation period, we then calculate the average over 50 simulation

replications. Similarly, the average link travel time is calculated as the average link

travel time over the simulation period, then for 50 replications.
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We use the ratio of performance measure obtained from the proposed signal plan

and the existing signal plan. In terms of both measures, a smaller ratio means a larger

improvement. We classify the ratio into 4 levels:

• more than 20% reduction (green);

• less than 20% reduction (dark green);

• increased less than 20% (orange);

• increased more than 20% (red).

Figure 4-6 displays the results for the average link queue-lengths. The majority of

the links, and in particular almost all cross street links (minor streets), are marked by

green and dark green. This indicates a reduction in their average queue-length.

Figure 4-7 displays the results for the link travel times. Almost all links are marked

by green and dark green. This indicates a reduction in their average travel time.

4.5 Conclusion

In this chapter, we address a signal control problem for a highly-congested area in

eastern Manhattan (New York City, USA), where spillbacks frequently occur. The

network has complex traffic dynamics due to its multimodal congested traffic, short

links, numerous signalized intersections and grid-type topology. For such networks

it is a great challenge to design signal plans that mitigate the spatial and temporal
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Figure 4-6: Average queue-length: ratio between proposed plan and existing plan.
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Figure 4-7: Average link travel time: ratio between proposed plan and existing plan.
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propagation of congestion. The performance of the proposed plan is compared to that

of the existing plan for that area. The proposed plan yields significant improvements

when evaluated with various performance metrics. In future research, queue-length

can be scaled by link length for each queue in the objective function to limit spillback

probability directly.

138



Chapter 5

Simulation-based adaptive traffic

signal control algorithm

5.1 Introduction

In Chapter 4, fixed-time signal plan control strategy has been proposed for the con-

gested Queensboro bridge area. As what has been stated before, design signal control

strategy for congested grid-type network is a very challenging task. Compared to

the traditional pre-timed signal control strategies, adaptive traffic control systems

(ATCSs) provide a more flexible option for adjusting signal timings to accommodate

changing traffic variations.

The purpose of this chapter is to design an adaptive simulation-based optimiza-

tion algorithm for such type of network. Different traffic conditions that vary from
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light traffic to oversaturated condition are explicitly modeled in the highly detailed

stochastic microscopic traffic simulators via a set of demand scenarios. We first con-

sider the design of fixed-time signal plans under each demand scenario to form up a set

of candidate signal plans. We then propose a simulation-based adaptive traffic control

algorithm to select signal plan for different time periods (e.g. every 15 minutes) based

on simulation observations. Two case studies are used to evaluate the performance of

the proposed algorithm. To apply the proposed algorithm in reality, real-time field

data can be used instead of the simulation observations in adjusting signal plans.

This chapter is structured as follows: Section 5.2 presents a review of current

adaptive traffic signal control systems (ATSCs). We then present the methodology in

Section 5.3. We explain how the proposed algorithm can be applied to the subnetwork

of Manhattan in Section 5.4. We evaluate the performance of the algorithm in Section

5.5 through two case studies. We conclude with a brief discussion in Section 5.6.

5.2 Literature Review

Adaptive traffic control systems (ATCSs) adjust signal timings according to real time

traffic information. In most cases, ATCSs are considered as effective ways of reducing

travel time, delays and number of stops (Stevanovic, 2010). Usually it utilizes mea-

surements of traffic volume and occupancy data. In reality, the signal plans are ad-

justed by using softwares such as SCOOT (Split Cycle Offset Optimization Technique)
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(Hunt et al., 1982), SCATS (Sydney Coordinated Adaptive Traffic System) (Sims and

Dobinson, 1979), OPAC (Optimization Policies for Adaptive Control) (Gartner, 1983),

and RHODES (Real Time Hierarchical Optimized Distributed and Effective System)

(Head et al., 1992).

SCOOT and SCATS are the most widely used adaptive traffic control softwares.

SCOOT adjusts signal timing with small (several seconds each time) changes, the

loop detectors measure traffic volume and occupancy information each second and

send them to the central controller to estimate the real-time flow. SCOOT has three

optimizers that optimize green split, offset and cycle time. Each optimizer estimates

the impact of a small change on the overall performance (a weighted measure of de-

lay, stops at individual link level) of the area of interest to decide if the signal plan

will be adjusted. SCOOT adjusts the cycle time to maintain degree of saturation

(flow/capacity) below 90% for each movement. SCATS groups intersections into a few

subsystems with a critical intersection in each. The signal plans for each subsystem

are mainly determined by the signal setting at the critical intersection. Then each

subsystem will be coordinated with adjacent subsystems to maintain traffic platoons

of vehicles. There are two levels of control: strategic and tactical. Strategic control

adjusts green split, offset and cycle time for each subsystem; tactical control deter-

mines if the phase needs to be terminated earlier or even omitted at each individual

intersection. These two softwares share around 67% of the ATCSs market in the
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US (Stevanovic, 2010). More recently, new ATCSs use mathematical programming

techniques to calculate signal plans such as OPAC. Based on predefined stages, these

strategies calculate the optimal values of next switching times (red-green switching)

that minimize the overall vehicle delays obtained by simple traffic model. For the

global optimization of the performance function (total delay), OPAC uses a complete

enumeration (red-green switching time) method.

ATCSs require extensive amount of detectors, and the infrastructures need to allow

communications between central and/or local processors. Due to the high operating

and maintenance costs of these equipments. In a recent survey, it has been found

that in the US, less than 1% of existing traffic signals are using ATCSs based on real

time information (Hagemann et al., 2010). Thus simpler adaptive control software

ACS-Lite (Luyanda et al., 2003) emerges. ACS-Lite adjusts coordinated signal plans

along corridors by changing phase duration and offset every 5-10 mins (cycle times

are fixed). For a more detailed description of the characteristics and operating logic

behind all methods discussed above, see Stevanovic (2010).

Although it has been widely accepted that the deployment of ATCSs helps to

reduce delay, there are still some challenging situations for those systems to handle.

One is their application in grid-topology networks; the other is their ability to cope

with oversaturated traffic condition.

After the deployment of the ATCS in the grid-topology network, overall system
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performance (e.g. total delay) is better than before: improvements are obtained for

the major streets whereas the delay on minor streets increased (Hutton et al., 2010).

Furthermore, in urban grid-type network with high volume of pedestrians, the deploy-

ment of ATCS results in pedestrian delays ( green time duration assigned to pedestrian

is reduced in order to assign more time to motorized vehicles) which might offset the

benefit the ATCS brings (Hu, 2014).

In oversaturated networks, the benefit of using ATCS is more controversial: in a

survey carried out by Stevanovic (2010), only 3% of the interviewed agencies that op-

erate ATCSs consider such systems could help to prevent and eliminate oversaturated

situations, over one third of the interviewed users thought that it worsens the traffic.

When some links or a set of intersections are oversaturated, the ATCSs might skip

stages or extend phases to allow more green time for those links with large flow. The

delay for the main street is reduced at the expenses of the side streets, and the overall

delay might increase (Martin, 2007).

In reality, to investigate the performance of ATCS, 89% of the ATCSs are evaluated

on field through before-and-after study. Using microscopic simulation to evaluate the

performance of ATCS before install it is very rare due to the complexity of incorpo-

rating ATCS software with detailed simulator and the high cost of modeling traffic

conditions in microscopic simulation (Stevanovic, 2010), let alone using microscopic

simulator to design ATCSs.
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In this chapter, we propose a simulation-based adaptive traffic signal control algo-

rithm to design signal setting for highly congested grid-type urban networks without

imposing extra delay for minor street users. Due to the high volume of pedestrian

traffic, the green time assigned to them are fixed, thus we cannot assign more green

times to motorized traffic by reducing the green time assigned to pedestrians. Unlike

the traditional ATCSs that adjust signal plan based on the flow observed at individual

intersection, the proposed algorithm looks for signal plans that could improve the sys-

tem performance for the whole studied area, which give us more potential to achieve

an improvement for the whole area of interest.

5.3 Methdology

In this section, we propose a simulation-based adaptive traffic control algorithm that

can be used for highly congested grid-type urban networks. The conceptual structure

of the algorithm can be described as follow:

• Step 1: specify traffic condition into different levels according to historical data

(e.g. flow, speed ) from light traffic to heavy traffic;

• Step 2: derive signal plans using the simulation-based optimization (SO) frame-

work described in Chapter 2 for each traffic condition;

• Step 3: build look-up tables using simulator for each proposed signal plan un-
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der different traffic conditions. The look-up table includes the information of

the performance metrics (e.g. link travel time, speed) under different traffic

condition;

• Step 4: use the proposed adaptive traffic signal control algorithm to adjust signal

plans. The proposed algorithm divides the studied time period (e.g. morning

peak) into several time periods, and selects signal plans according to the ob-

servations we obtained from the simulator for each time period. Based on the

selection, we forecast the influence of changing to a new plan for the next time

period. If switching plan results in worse system performance than not switching,

no changes will be made, otherwise, signal plans are switched.

In the next sub-sections, we describe each step in greater details to show how it

can be applied to a congested urban road network with grid-type topology.

5.3.1 Specify traffic conditions

Normally, traffic conditions are classified into different congestion levels based on his-

torical data of flow or travel time. Thus in step 1, for different traffic levels such as

light traffic (e.g. weekend), moderate traffic (e.g. off-peak period of weekdays), heavy

traffic (e.g. peak period) and very severe congestion (e.g. demand grows and conges-

tion lasts, spillbacks happen, congestion propagates spatially and blocks the adjacent

streets), a fully calibrated microscopic simulator is needed.
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5.3.2 Derive signal plans for each traffic condition

In step 2, the SO algorithm described in Chapter 2 is used to identify the best signal

timing for each demand level. For uncongested and congested network, signal design

objective function differs. The objective function that is suitable for uncongested

network (minimization of average travel time is the most common design objective)

might not be appropriate for congested network. When we are facing a set of traffic

conditions with different demand levels, different signal design objectives should be

used.

A general simulation-based signal control problem can be formulated as follows:

min
x∈Ω

f(x) = E[F (x, y; p)], (5.1)

where the decision vector x represents the signal control variables (e.g. green times),

and the objective function is the expected function of a stochastic network performance

metric F (e.g. link speeds, trip travel time), which depends on x as well as on other

endogenous simulation variables y (e.g. link flow capacities, route choice probabilities)

and exogenous (i.e., fixed) simulation parameters p (e.g. dynamic origin-destination

matrices, network topology, transit network). The feasible region Ω is typically a set

of analytical differentiable constraints and bound constraints.

146



5.3.3 Look-up table creation

A set of look-up tables will be built. For each signal plan, there is a look-up table

associated. The reason we build one look-up table for each signal plan is that the

performance metrics such as link travel time are influenced by demand and supply.

Not only demand levels but also signal settings will influence the link travel time.

Under the same demand level, different signal plans will have different performance

in terms of link travel time. To infer the traffic condition from system performance

measure such as link travel time, both demand and supply play an important role on

it. We will further justify the use of multiple look-up tables in Section 5.4 with an

example.

For each traffic condition, we use microscopic simulator to reproduce the day-

to-day variability in traffic dynamics. By running the simulator, we obtain detailed

performance measures such as average trip/link travel time, average queue length, etc..

Let S denote the set of links of interest for the studied network. It could be the

set of links that has detection equipments.

Taking average link travel time as an example, performance measure can be calcu-

lated as the average value over the studied period (e.g. one hour morning peak).

∑
l∈S

E[TTl(x, z; p)]. (5.2)
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E[TTl(x, z; p)] is the average link travel time for link l. Assume we have G traffic

conditions and G signal plans, traffic conditions and their corresponding signal plans

are ordered from demand scenario with lowest demand (e.g. demand scenario 1) to

highest demand (e.g. demand scenario G). For each signal plan t, a look-up table is

constructed.There are several steps of building the table:

• Step a. For signal plan t, run simulator 300 replications to obtain a vector

PM t
j for each traffic condition j (j ∈ [1, G]), PM t

j contains 300 observations

of the selected performance measure such as average link travel time (given in

Equation 5.2) under traffic condition j;

• Step b: Define boundary value btj of the performance measure between traffic

condition j and traffic condition j + 1 according to:

min[P (X t
j > btj) + P (X t

j+1 < btj)], j ∈ [1, G− 1];

in which, X t
j and X t

j+1 are the variables of average link travel time associated

with the jth and j + 1th demand scenarios;

• Step c: Set the lower and upper bound of average total link travel time for traffic

condition j as:

[btj−1, b
t
j), j ∈ [1, G],

in which bt0 = 0, btG ≈ ∞.

When there are G signal plans, there will be G + 1 boundary values from bt0 to

btG, and G link travel time intervals.
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In step b, P (X t
j > btj) represents the probability that the variable X t

j takes a value

larger than btj; P (X t
j+1 < btj) represents the probability that the variable X t

j+1 takes a

value less than btj. P (X t
j > btj) can be calculated as the number of the observations that

are larger than btj over the total observation number 300. min[P (X t
j > btj)+P (X t

j+1 <

btj)] minimizes the summation of the probability that these two curves overlap each

other in interval j and j + 1.

We show a simple example here to further explain the algorithm. In Figure 5-1,

there are two cdf (cumulative distribution function) curves, the x-axis shows the total

average link travel time. The two cdf curves are obtained from the simulator by using

the same signal plan t under different demand levels. The vertical line classifies the

boundary between the first and second interval. The length of the line marked by red

on top shows the probability that variable X t
1 on first curve takes a value greater than

bt1: P (X t
1 > bt1) (the probability that the first curve enters the second interval). The

length of the line marked by red at bottom shows the probability that variable X t
2

on second curve takes a value smaller than bt1: P (X t
2 < bt1) (the probability that the

second curve enters the first interval). min[P (X t
1 > bt1) + P (X t

2 < bt1)] minimizes the

summation of the probability that these 2 curves overlap each other in the first and

second interval.

To calculate bt1, we move the vertical line from the smallest value on curve 1 to the

largest value on curve 2 to calculated the summation of P (X t
1 > bt1) and P (X t

2 < bt1).
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Figure 5-1: Obtaining boundary values.

To calculate btj, we follow the steps as follows:

• Step a. set up a small step size s, which depends on the magnitude of X t
j ;

• Step b. set n = 0;

• Step c. start from minPM t
j , calculate the summation of P (X t

j > minPM t
j +n ∗

s) + P (X t
j+1 < minPM t

j + n ∗ s),

• Step d: n = n+ 1;

• Step e: if minPM t
j +n ∗ s < maxPM t

j+1, go back to step c; otherwise, continue;

• Step f: find minPM t
j + n ∗ s that has the smallest value of P (X t

j > minPM t
j +

n ∗ s) + P (X t
j+1 < minPM t

j + n ∗ s);
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• Step g: set btj to minPM t
j + n ∗ s

For each signal plan, under each traffic condition there is a lower bound and an

upper bound of the performance measure to classify the boundary values. The values

between the lower bound and upper bound represent the day-to-day variability of the

performance measure.

5.3.4 Simulation-based adaptive traffic signal control algorithm

In step 4, a simulation-based adaptive traffic signal control algorithm is used. In our

algorithm, we divide the simulation period into several time intervals with 15 minutes

each. Take the one hour morning peak period (8am-9am) as an example, it is divided

into 4 time periods: TP1, TP2, TP3, and TP4. TP1 represents the first time period

from 8:00am to 8:15am; TP2 represents the second time period from 8:15am to 8:30am;

TP3 represents the third time period from 8:30am to 8:45am; TP4 represents the last

time period from 8:45am to 9:00am. SPi is the signal plan selected for each time

period. TBi is the look-up table associated with signal plan SPi.

If the studied network uses fixed-time signal control strategy, there will be a signal

plan in hand. The algorithm starts from this existing signal plan (SP1). Then the

proposed algorithm selects a competing signal plans (CP1) by matching the observa-

tions we obtained from the simulator with the look-up table. Based on the selection,

we forecast the influence of changing to a new plan (CP1) for the second time period.
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If switching plan results in worse system performance than not switching, no changes

will be made. This process will be iterated until the end of the studied period.

We denote the signal plan selected for time period i as SPi, we evaluate its perfor-

mance several times for TPi to obtain a vector of performance measure under signal

plan SPi, and denote it as PMSPi
i . Then the average value PM

SPi

i of PMSPi
i is used

to judge the traffic condition j and select a competing plan CPi to be used for that

traffic condition j. To forecast the performance of SPi and CPi under traffic condition

j, we evaluate their performance several times respectively in the simulator to obtain

vectors of performance measure PMSPi
i+1 under signal plan SPi and PMCPi

i+1 under signal

plan CPi. PM
SPi

i+1 is the average value of PMSPi
i+1 for time period i + 1, PM

CPi

i+1 is the

average value of PMCPi
i+1 for time period TPi+1.

Taking the the one hour morning peak (8am-9am) as an example, we have:

0. Initialization.

• Set a demand level in the simulator;

• set i=1;

• for the first 15 minutes, signal plan SPi is set to existing signal plan.

1. Select CPi.
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• Run the simulator 50 replications;

• calculate the average value of PMSPi
i over 50 replications for TPi as: PM

SPi

i =∑50
n=1 PMSPi

i (n)/50;

• go to look-up table associated with signal plan SPi;

• find traffic condition j such that PM
SPi

i ∈ [bj−1, bj);

• select the signal plan j as CPi (competing plan);

• if CPi is different from SPi, go to step 2; otherwise, go to step 3.

2. Forecast the performance of CPi and SPi under traffic condition j,

and select SPi+1 for TPi+1.

• Set signal plan SPi and traffic condition j in the simulator, and run the simulator

50 replications;

• set signal plan CPi and traffic condition j in the simulator, and run the simulator

50 replications;

• calculate PM
SPi

i+1 under traffic condition j as: PM
SPi

i+1 =
∑50

n=1 PMSPi
i+1 (n)/50;

• calculate PM
CPi

i+1 for TPi+1 as: PM
CPi

i+1 =
∑50

n=1 PMCPi
i+1 (n)/50;

• if PM
SPi

i+1 <= PM
CPi

i+1 , set SPi+1 to SPi; otherwise, set SPi+1 to CPi;
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• set i = i+ 1;

• if i < 4, go to step 1; otherwise, stop.

3. Set SPi for TPi+1.

• Set SPi+1 to SPi;

• set i = i+ 1;

• if i < 4, go to step 1; otherwise, stop.

For any network that uses fixed time signal control strategy, we start from the

existing signal plan. Based on the simulation observations obtained every 15 minutes,

the proposed algorithm classifies the current traffic condition and suggests the signal

plan to use for the next time period.

5.4 Case study

We apply the proposed algorithm to the highly congested area around Queensboro

Bridge in east Manhattan. We consider part of the morning peak-period 8am-9am.

Since the historical data of different levels of congestion is not available, we set up a

set of demand scenarios to represent different traffic conditions from light traffic to

154



oversaturated traffic. For each demand scenario, we calculate the optimal signal plan

that could provide significant reduction in travel time, queue length, and spillback

probability without deteriorating the system throughput. Then we select signal plans

according to the observations we obtained from the simulator for each time period.

Based on the selection, we forecast the influence of changing to a new plan for the next

time period. If switching plan results in worse system performance than not switching,

no changes will be made.

The topology of the studied Queensboro bridge area is shown in Figure 5-2. To

optimize the signal plan for each demand level, all links and intersections inside this

area are considered. The links marked by red rectangular are particularly important

(identified by NYCDOT and in the future detection equipments might be installed

for those links). Travel times along those links inside the red rectangular are used to

create the look-up table to classify the traffic condition for each signal plan.

Demand scenarios

In simulator, demand is scaled into different levels to represent different levels of

congestion. Besides the morning peak demand (scenario 4), we build 6 additional

demand scenarios that are calculated as:

• Scenario 1: 70% of morning peak demand;

• Scenario 2: 80% of morning peak demand;
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Figure 5-2: Topology of Queensboro bridge area.
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• Scenario 3: 90% of morning peak demand;

• Scenario 4: morning peak demand;

• Scenario 5: 110% of morning peak demand;

• Scenario 6: 120% of morning peak demand;

• Scenario 7: 130% of morning peak demand;

Signal design for different demand scenarios

The study area of interest is a Manhattan subnetwork that consists of a total of 134

roads, 313 lanes, 27 signalized intersections and 5 non-signalized intersections. We

consider part of the morning peak-period 8am-9am. For each demand scenario, using

the existing signal plan, we recalibrate the queueing model. For a detailed description

of the queueing model calibration, see Appendix C.

In this part, we observed that different signal control design objectives are suitable

for different demand levels. For demand scenarios with less demand than the normal

morning peak demand (scenario 4), minimizing average trip travel time yields signal

plan with best performance in terms of average trip travel time, average queue length,

system throughput and spillback probability. Signal plans derived by minimizing total

queue length do not outperform the existing signal plan for demand scenarios with light

traffic. For demand scenario 4 and scenarios with higher demand levels, minimizing
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average trip travel time results in a significant reduction in the system throughput. In

this case study, for congested network, minimizing total average queue length yields

signal plans with better system performance without deteriorating throughput.

For each demand scenario, we start from the existing NYC signal plan and run the

SO algorithm 5 times. The computational budget is set to 150 simulation runs each

time. In total we derive five signal plans. To evaluate the performance of the signal

plans derived by SO, we run each signal plan 50 simulation replications and compare

the average trip travel time, system throughput, average queue-length, and spillback

probability with existing signal plan. Signal plan with the smallest average trip travel

time without deteriorating the system throughput will be selected as the new signal

plan. If all signal plans derived by SO yield larger average trip travel time or smaller

system throughput, the existing signal plan will be used for that demand level. For a

detailed description of the formulation of the objective functions, and the performance

of each derived signal plan, see Appendix D.

We have new plans for demand scenario 1, 3, 4, 5, 6. For demand scenario 2 and 7,

the signal plans derived deteriorate the system throughput, thus we stick to existing

signal plan. We name signal plan for each demand scenario from plan 1 to plan 7,

plan 2 and plan 7 are the same.

• Plan 1 (70% of morning peak demand);

• Plan 2 (80% of morning peak demand);
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minPMj PMj maxPMj σj TT interval
scenario 1 29.70 31.00 35.26 1.21 (0, 34)
scenario 2 32.24 39.94 73.10 5.45 [34,61)
scenario 3 63.98 98.17 127.46 15.97 [61,126)
scenario 4 97.68 148.43 207.94 21.27 [126,172)
scenario 5 102.13 182.39 250.47 26.30 [172, 207)
scenario 6 131.58 211.68 301.75 33.15 [207,240)
scenario 7 163.43 257.20 363.97 34.52 [240, inf)

Table 5.1: Average total link travel time statistic and link travel time interval classifi-
cation according to different demand scenario under signal plan 1.

• Plan 3 (90% of morning peak demand);

• Plan 4 (morning peak demand provided by NYCDOT);

• Plan 5 (110% of morning peak demand);

• Plan 6 (120% of morning peak demand);

• Plan 7 (130% of morning peak demand);

Look-up table creation

Under certain signal setting, the performance measure recorded in the look-up table

helps us to identify the congestion level. An example is presented later to illustrate

the needs of constructing a look-up table for each signal plan.

Let S denote the set of links of interest for the studied network.

We show look-up tables for signal plan 1 and signal plan 4 in Table 5.1 and Ta-

ble 5.2, for a detailed analysis of all look-up tables, see Appendix E.
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minPMj PMj maxPMj σj TT interval
scenario 1 36.09 38.50 41.82 1.14 (0, 40)
scenario 2 37.08 40.98 44.82 1.27 [40,43)
scenario 3 40.85 45.76 53.19 1.96 [43,53)
scenario 4 53.54 64.95 85.64 5.49 [53,81)
scenario 5 72.83 93.74 108.93 6.60 [81, 109)
scenario 6 109.86 125.91 154.54 10.41 [109,140)
scenario 7 136.88 150.85 166.87 6.97 [140, inf)

Table 5.2: Average total link travel time statistic and link travel time interval classifi-
cation according to different demand scenario under signal plan 4.

PMj represents the vector of total average link travel time for demand scenario j,

which contains 300 simulation replications. In each table, minimum, maximum, mean

and standard deviation of the total average link travel times for traffic condition j are

indicated by minPMj, maxPMj, PMj and σj, TT intervals shows the lower and upper

bounds of total average link travel time specified for each demand scenario. Taking

Table 5.1 as an example, from demand scenario 1 to demand scenario 7, the values of

PMj and σj increase, which indicates the growing across-replication variability.

To further justify the reason that a look-up table is needed for each signal plan,

we show an example: if plan 1 is used, and the total average link travel time obtained

from the simulator is 100 minutes. Assume we just have one look-up table which is

designed based on the performance of plan 4 (Table 5.2), the value of 100 minutes falls

into the fifth interval, which corresponds to demand scenario 5. The demand level

under this traffic condition is considered to be similar to demand scenario 5. If we

have a look-up table designed for plan 1 (Table 5.1), the value of 100 minutes falls to
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the third interval which corresponds to demand scenario 3. Thus using a single look-

up table under different signal settings might result in different classification of traffic

condition. If we just use a generalized look-up table from one signal plan, we ignore

the influence of using different signal plans on performance measures. To represent the

traffic condition accurately, we build a look-up table for each signal plan under those

seven demand scenarios. In total, we have six different signal plans for seven demand

scenarios (plan 2 and plan 7 are the same).

In reality, signal plans are adjusted according to real-time information. In our

algorithm, since the real-time information is not available, we use simulation outputs

to select plans and evaluate the performance of the proposed algorithm. Assume we

have both historical data and real-time information, for any agency who would like

to apply such adaptive traffic signal control algorithm in reality, a fully calibrated

microscopic traffic model is needed for the area of interests. The structure of the

algorithm can be adjusted slightly:

• specify traffic condition into different levels according to historical data from

light traffic to heavy traffic instead of simply scaling demand in simulator;

• for each traffic condition, initialize the simulator with the demand associated

with that traffic condition. The queueing model should be calibrated accordingly,

the details of calibrating the queueing model is specified in Appendix C;

• for heavy traffic condition, use queue management techniques to optimize the

161



signal plan; for light traffic, optimize signal plan by minimizing average trip

travel time;

• build look-up tables using simulator for each proposed signal plan under different

traffic condition based on historical data;

• classify traffic condition and selecting the competing signal plan each 15 minutes

by matching real-time information with the look-up table;

• given the traffic condition classified in previous step, using the simulator and the

historical demand data corresponds to that traffic condition (has been defined in

the simulator) to approximate the traffic condition. To ensure fast response to

real-time traffic information, fewer replications can be used (e.g. 10 replications).

Then simulator is used to forecast the performance of the the competing signal

plan for next time period to decide if a switch in signal plan is needed.

5.5 Results

We apply the proposed algorithm to the highly congested area around Queensboro

Bridge in east Manhattan. We consider part of the morning peak period 8am-9am.

Based on the demand scenarios defined, and the look-up tables proposed, we design

two case studies.

In the first case study, we use demand scenario 6 with 20% higher of normal demand
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for each OD pair. In the second case study, we use another given OD matrix that is

different from the OD matrix (7 demand scenarios) we used to derived signal plans.

In previous comparison, it has been shown that for each demand level, the signal

plan derived by SO is better than existing signal plan in terms of many performance

metrics. If we still use the same set of demand scenario to test the performance of the

proposed adaptive algorithm, it would be less convincible to show the robustness of

algorithm because in real world, traffic patterns are different over time. Furthermore,

to study if the framework we developed in this chapter can be applied to various traffic

conditions that are different from the demand scenarios defined.

The travel demand of the studied area is extracted from a simulation model that

contains broader area. The demand we used to derive the signal plan is based on static

traffic assignment for this larger area. The demand we use to validate the performance

of the proposed algorithm in the second case study is calculated based on dynamic

traffic assignment. They are all provided by NYCDOT. For these two sets of demand

data, total demand are similar (around 11,000 trips per hour) but demand for each

OD (origin-destination) pair are different.

For the studied area, there is no ATCS and detection equipments, thus fixed-time

signal plan is used for morning peak regardless of flow changes. We initialize the

algorithm with plan 4 because plan 4 is used to replace the existing fixed-time signal

plan in the proposed algorithm.
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For the transport agency (NYCDOT), they are interested in to what extent we

could improve the system performance comparing with their existing solution, thus we

first compare the temporal evolution of the performance measures of adaptive signal

setting and existing signal plan for each 15 minutes to illustrate the benefit of using

proposed method over time.

Given that plan 4 outperforms the existing signal plan even without adaptive signal

setting. To investigate the added value of using adaptive signal setting, we then

compare the aggregated performance of adaptive signal setting, existing signal plan

and plan 4 over the whole simulation period. In each case study, to compare the

performance of different signal plans, we run the adaptive signal setting, plan 4, and

the existing fixed time signal plan 50 simulation replications respectively.

We use the same performance measures stated in Chapter 4. After a warm-up

period of 20 minutes, we consider the temporal evolution of the following 4 performance

metrics every 15 minutes:

• average network queue-length over every 15 minutes;

• average trip travel time (including all finished and unfinished trips for that time

period) over every 15 minutes;

• entry flow over every 15 minutes;

• average spillback probability over every 15 minutes.
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We then study the following performance measures over the whole studied period

(1 hour):

• average network queue-length;

• average spillback probability;

• average trip travel time of finished trips;

• total number of finished trips;

• average trip travel time of unfinished trips;

• total number of unfinished trips;

5.5.1 Case study with severe congestion

In the first case study, the whole simulating period is divided into 4 time intervals, and

the demand is 20% higher than the normal peak demand. By applying the adaptive

signal control algorithm, several signal plans are selected for different time period. For

the first 15 minutes, plan 4 (initial plan) is used; for the second 15 minutes, plan 5 is

selected; for the third and fourth 15 minutes, plan 6 is selected.

Figure 5-3 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure 5-3(a), Figure 5-

3(b), Figure 5-3(c), and Figure 5-3(d) show the comparison of average queue-length of
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the adaptive signal settings and the existing signal plan for each 15 minutes; Figure 5-

3(e), Figure 5-3(f), Figure 5-3(g), and Figure 5-3(h) show the the comparison of average

trip travel time.

Figure 5-4 shows the comparison of average spillback probability and entry flow

for all time period. Figure 5-4(a), Figure 5-4(b), Figure 5-4(c), and Figure 5-4(d)

show the comparison of the average spillback probability. Figure 5-4(e), Figure 5-4(f),

Figure 5-4(g), and Figure 5-4(h) show the comparison of entry flow.

The performance of the adaptive signal setting is displayed in solid line; the perfor-

mance of the existing signal plan is displayed in dashed line. They show the temporal

evolution of each performance measure. The performance of the adaptive signal setting

is displayed in solid line; the performance of the existing signal plan is displayed in

dashed line. For the first and second 15 minutes, adaptive signal setting yields larger

average trip travel time due to the increased number of vehicles entering the network.

In the third and fourth time periods, average trip travel time obtained from adaptive

signal setting is reduced. Adaptive signal setting yields smaller average queue-length

and lower average spillback probability for all time periods. Adaptive signal setting

increases entry flow for all time periods. The adaptive signal setting also leads to small

across-replication variability in terms of entry flow and average spillback probability,

which indicates more stable performances.

The aggregated performance over the simulating period is shown in Figure 5-5. The
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performance of the adaptive signal setting is displayed in solid line; the performance

of the existing signal plan is displayed in dashed line; the performance of plan 4 is

displayed in dotted line. Figure 5-5(a) shows the average queue-length; Figure 5-5(b)

shows the average spillback probability; Figure 5-5(c) shows the average travel time

of unfinished trips; Figure 5-5(d) shows the average travel time of all finished trips;

Figure 5-5(e) shows the number of unfinished trips; Figure 5-5(f) shows the number

of finished trips.

Comparing to the existing signal plan, adaptive signal setting achieves significant

improvements for all performance measures: smaller average queue-length; smaller

average spillback probability; smaller average travel time for finished and unfinished

trips; smaller number of unfinished trips and larger number of finished trips.

Comparing to the newly proposed fixed-time signal plan 4, adaptive signal setting

yields smaller average travel time of finished trips; smaller average queue-length and

smaller average spillback probability. Both number of finished and unfinished trips

obtained by adaptive signal setting are larger than plan 4, expectation of unfinished

trip travel time is similar to that of plan 4. The difference between the number

of unfinished trips obtained from adaptive signal setting and plan 4 is around 100

vehicle per hour, but the average travel time for these travelers does not increase.

Note that 20% higher than normal demand is considered to be highly congested, in

which spillback and blocking could easily happen. Adaptive signal setting allows more
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 6.74 8.09 9.47 0.60 6.30 7.53 8.18 0.44
TP 8370 11342 12248 719.72 11608 12242 12754 213.96

TTun 18.27 22.19 35.89 2.87 14.33 16.23 17.86 0.95
TPun 896 1015 1249 85.35 800 883 990 40.03
QL 4.36 4.92 6.14 0.33 3.31 3.66 4.16 0.19
SP 0.1153 0.1549 0.1980 0.0180 0.0863 0.0937 0.1175 0.0070

Table 5.3: Performance metrics statistics for adaptive signal setting and existing signal
plan (case study 1).

vehicles to enter, and might result in some of these vehicles being blocked in the

network.

Comparing to the existing signal plan, fixed-time signal plan (plan 4) we proposed

leads to better performance for all performance metrics.

To illustrate the benefit of using our algorithm, we compare the performance of the

proposed algorithm with the existing signal plan in use in New York City. Table 5.3

shows the statistics of each performance measure over 50 replications. TT represents

average trip travel time of finished trips; TP is the number of finished trips; TTun

is the average trip travel time for unfinished trips; TPun is the number of unfinished

trips; QL is the average network queue-length; SP is the average spillback probability.

Table 5.4 shows the paired t-test for each performance measure. For each aggre-

gated performance measure, the null hypothesis states that the performance of the

adaptive signal setting is equal to that of the existing signal plan, the alternative

hypothesis states that the performance of the adaptive signal setting is better (e.g.

170



3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: average queue−length [veh]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(a) average queue-length

0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: average spillback probability

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(b) average spillback probability

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: expectation of unfinished trip travel time [min]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(c) average unfinished trip travel time

6 6.5 7 7.5 8 8.5 9 9.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: expectation of finished trip travel time [min]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(d) average finished trip travel time

700 800 900 1000 1100 1200 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: number of unfinished trips [veh/hr]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(e) number of unfinished trips

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: number of finished trips [veh/hr]

E
m

pi
ric

al
 c

df
 F

(x
)

 

 

Existing
Adaptive
Plan4

(f) number of finished trips

Figure 5-5: Comparison of the performance of adaptive signal setting, existing signal
plan, and plan 4 (case study 1).
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Y ŝ t-statistic
TT 0.5670 0.8903 4.5032
TP 900.1800 790.6408 8.0507

TTun 5.9524 3.1048 13.5563
TPun 132.1400 95.0310 9.8323
QL 1.2623 0.3946 22.6179
SP 0.0611 0.0186 23.2253

Table 5.4: Paired t-test for adaptive signal setting and existing signal plan (case study
1).

smaller average queue-length; smaller average spillback probability; smaller travel time

for unfinished trips; smaller average travel time for finished trips; smaller number of

unfinished trips and lager number of finished trips) than that of the existing signal

plan. The adaptive signal setting yields significant smaller finished, unfinished trip

travel time, smaller number of unfinished trips, smaller average queue-length, smaller

average spillback probability, and significant larger number of finished trips.

For each performance measure, we compare the mean value over 50 replications for

adaptive signal setting and existing signal plan (using the value shown in Table 5.3):

the adaptive signal setting reduces average finished trip travel time by 7% from 8.09

minutes to 7.53 minutes; increases the average number of finished trips by 8% from

11342 veh/hr to 12242 veh/hr; reduces the average trip travel time of unfinished trips

by 35% from 22.19 minutes to 16.23 minutes; reduces the number of unfinished trips

by 21% from 1015 veh/hr to 883 veh/hr; reduces average queue-length by 27% from

4.92 to 3.66; and reduces average spillback probability by 44% from 0.1549 to 0.0937.
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5.5.2 Case study with different demand data

In this case study, a different set of OD demand data is used to evaluate the perfor-

mance of the proposed algorithm. As mentioned before, total demand of these two

demand data are similar. In this case study, we use the normal peak hour demand

(around 11,000 trips per hour). By applying the proposed algorithm, plan 4 is used

in the first 15 minutes; plan 5 is selected in the second and third 15 minutes; plan 6 is

selected in the fourth 15 minutes.

Figure 5-6 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure 5-6(a), Figure 5-

6(b), Figure 5-6(c), and Figure 5-6(d) show the comparison of average queue-length of

the adaptive signal settings and the existing signal plan for each 15 minutes; Figure 5-

6(e), Figure 5-6(f), Figure 5-6(g), and Figure 5-6(h) show the the comparison of average

trip travel time.

Figure 5-7 shows the comparison of average spillback probability and entry flow

for all time period. Figure 5-7(a), Figure 5-7(b), Figure 5-7(c), and Figure 5-7(d)

show the comparison of the average spillback probability. Figure 5-7(e), Figure 5-7(f),

Figure 5-7(g), and Figure 5-7(h) show the comparison of entry flow. The performance

of the adaptive signal setting is displayed in solid line; the performance of the existing

signal plan is displayed in dashed line.

Comparing to the normal demand level for morning peak (around 11,000 trips
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per hour), for all time periods, existing signal plan deteriorates system throughput

significantly. Adaptive signal setting increases system throughput significantly for all

time periods. For the first 15 minutes, adaptive signal setting yields larger average trip

travel time, in the second 15 minutes, adaptive signal setting yields similar average

trip travel time to that of existing signal plan. In the third and fourth 15 minutes,

adaptive signal setting has smaller average trip travel time. For average queue-length

and average spillback probability, adaptive signal setting yields better performance for

all time periods.

We then study the performance of the adaptive signal setting, existing signal plan

and proposed fixed-time signal plan (plan 4) for the whole simulation period aggre-

gately. The performance of the adaptive signal setting is displayed in solid line; the

performance of the existing signal plan is displayed in dashed line; the performance

of plan 4 is displayed in dotted line. Figure 5-8(a) shows the average queue-length;

Figure 5-8(b) shows the average spillback probability; Figure 5-8(c) shows the aver-

age travel time of unfinished trips; Figure 5-8(d) shows the average travel time of all

finished trips; Figure 5-8(e) shows the number of unfinished trips; Figure 5-8(f) shows

the number of finished trips.

Comparing to existing signal plan, adaptive signal setting reduces average queue-

length and average spillback probability. The reason that adaptive signal plan leads

to similar average travel time for finished trips is the significantly improved number of

174



2.
5

3
3.

5
4

4.
5

5
5.

5
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 q

ue
ue

−
le

ng
th

 [v
eh

]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(a
)

av
er

ag
e

qu
eu

e-
le

ng
th

fo
r

th
e

fir
st

15
m

in
s

3
4

5
6

7
8

9
10

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 q

ue
ue

−
le

ng
th

 [v
eh

]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(b
)

av
er

ag
e

qu
eu

e-
le

ng
th

fo
r

th
e

se
co

nd
15

m
in

s

3
4

5
6

7
8

9
10

11
12

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 q

ue
ue

−
le

ng
th

 [v
eh

]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(c
)

av
er

ag
e

qu
eu

e-
le

ng
th

fo
r

th
e

th
ir

d
15

m
in

s

4
5

6
7

8
9

10
11

12
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 q

ue
ue

−
le

ng
th

 [v
eh

]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(d
)

av
er

ag
e

qu
eu

e-
le

ng
th

fo
r

th
e

fo
ur

th
15

m
in

s

3
3.

5
4

4.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 tr

av
el

 ti
m

e 
[m

in
]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(e
)

av
er

ag
e

tr
ip

tr
av

el
ti

m
e

fo
r

th
e

fir
st

15
m

in
s

3
3.

5
4

4.
5

5
5.

5
6

6.
5

7
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 tr

av
el

 ti
m

e 
[m

in
]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(f
)

av
er

ag
e

tr
ip

tr
av

el
ti

m
e

fo
r

th
e

se
co

nd
15

m
in

s

2
4

6
8

10
12

14
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 tr

av
el

 ti
m

e 
[m

in
]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(g
)

av
er

ag
e

tr
ip

tr
av

el
ti

m
e

fo
r

th
e

th
ir

d
15

m
in

s

2
4

6
8

10
12

14
16

18
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

x:
 a

ve
ra

ge
 tr

av
el

 ti
m

e 
[m

in
]

Empirical cdf F(x)

 

 

E
xi

st
in

g
A

da
pt

iv
e

(h
)

av
er

ag
e

tr
ip

tr
av

el
ti

m
e

fo
r

th
e

fo
ur

th
15

m
in

s

F
ig

ur
e

5-
6:

C
om

pa
ri

so
n

of
th

e
av

er
ag

e
qu

eu
e-

le
ng

th
an

d
av

er
ag

e
tr

ip
tr

av
el

ti
m

e
of

ad
ap

ti
ve

si
gn

al
se

tt
in

g
an

d
th

e
ex

is
ti

ng
fix

ed
-t

im
e

si
gn

al
pl

an
(c

as
e

st
ud

y
2)

.

175



0.09
0.1

0.11
0.12

0.13
0.14

0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: average spillback probability

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(a)
average

spillback
probabil-

ity
for

the
first

15
m

ins

0.08
0.1

0.12
0.14

0.16
0.18

0.2
0.22

0.24
0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: average spillback probability

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(b)
average

spillback
probabil-

ity
for

the
second

15
m

ins

0.1
0.15

0.2
0.25

0.3
0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: average spillback probability

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(c)
average

spillback
probabil-

ity
for

the
third

15
m

ins

0.1
0.15

0.2
0.25

0.3
0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: average spillback probability

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(d)
average

spillback
probabil-

ity
for

the
fourth

15
m

ins

8500
9000

9500
10000

10500
11000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: entry flow
 [veh/hr]

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(e)
entry

flow
for

the
first

15
m

ins

5000
6000

7000
8000

9000
10000

11000
12000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: entry flow
 [veh/hr]

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(f)
entry

flow
for

the
second

15
m

ins

4000
5000

6000
7000

8000
9000

10000
11000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: entry flow
 [veh/hr]

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(g)
entry

flow
for

the
third

15
m

ins

3000
4000

5000
6000

7000
8000

9000
10000

11000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

x: entry flow
 [veh/hr]

Empirical cdf F(x)

 

 

E
xisting

A
daptive

(h)
entry

flow
for

the
fourth

15
m

ins

F
igure

5-7:
C

om
parison

ofthe
average

spillback
probability

and
entry

flow
ofadaptive

signalsetting
and

the
existing

fixed-tim
e

signalplan
(case

study
2).

176



Existing plan Adaptive setting
Min Mean Max σ Min Mean Max σ

TT 3.13 5.15 7.40 0.93 3.85 4.90 7.08 0.60
TP 5778 7135 8500 678.58 6511 9582 10769 962.29

TTun 24.57 32.80 41.74 4.37 10.91 17.97 37.72 5.15
TPun 1256 1505 1772 105.90 776 1188 1619 211.96
QL 6.76 8.02 9.07 0.51 3.52 5.35 8.23 1.16
SP 0.1843 0.2167 0.2505 0.0156 0.1050 0.1482 0.2364 0.0308

Table 5.5: Performance metrics statistics for adaptive signal setting and existing signal
plan (case study 2).

finished vehicles. The adaptive signal setting increases the number of finished trips and

reduces their travel times. Meanwhile, the number of unfinished trips are reduced, the

travel time experienced by the those vehicles are also reduced. Furthermore, adaptive

signal setting leads to smaller across-replication variability in terms of number of

finished trips. Comparing to the newly proposed fixed-time signal plan 4, the adaptive

signal settings leads to improved performance for all performance metrics.

Besides the average travel time of finished trips, plan 4 leads to significant better

performance for all other performance metrics comparing to existing signal plan. One

possible reason is that plan 4 also increases the number of finished trips, when the

system throughput increases, it would be hard to reduce the average travel time. This

shows that even just use the newly proposed fixed-time signal plan, an achievement in

system performance can be obtained.

Table 5.5 shows the statistics of each performance measure over 50 replications for

existing plan and adaptive signal settings. Table 5.6 shows the paired t-test for each
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Figure 5-8: Comparison of the performance of adaptive signal setting, existing signal
plan, and plan 4 (case study 2).
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Y ŝ t-statistic
TT 0.2448 0.9875 1.7532
TP 2447 1080 16.0213

TTun 14.8341 6.0573 17.3168
TPun 316.6400 10.3539 10.6439
QL 2.6670 1.2565 15.0088
SP 0.0685 0.0338 14.3541

Table 5.6: Paired t-test for adaptive signal setting and existing signal plan (case study
2).

performance measure. Except average finished trip travel time, adaptive signal setting

yields significantly better performance for all other performance metrics. As mentioned

before, the adaptive signal setting increases system throughput significantly, thus the

average travel time of finished trip is not reduced significantly.

For each performance measure, we compare the mean value over 50 replications for

adaptive signal setting and existing signal plan (using the value shown in Table 5.5):

the adaptive signal setting reduces average finished trip travel time by 5% from 5.15

minutes to 4.90 minutes, and increases the average number of finished trips by 34%

from 7135 veh/hr to 9582 veh/hr. The adaptive signal setting also reduces the aver-

age trip travel time of unfinished trips by 45% from 32.80 minutes to 17.97 minutes;

reduces the number of unfinished trips by 21% from 1505 veh/hr to 1188 veh/hr; re-

duces average queue-length by 33% from 8.02 to 5.35; and reduces average spillback

probability by 32% from 0.2167 to 0.1482. As mentioned before, increasing system

throughput while reducing the number of vehicles being blocked in the network is

challenging, furthermore, travelers are experiencing less travel time.
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In both case studies, adaptive signal setting does not yield smaller average trip

travel time in the first and second time interval comparing to exiting NYC signal plan,

one possible reason is that the adaptive signal setting increases the network through-

put significantly at the beginning of the simulation period. When more travelers are

allowed to enter the network, the network becomes congested and the travel time in-

creases. In this case study, from the temporal evolution study of the average trip

travel time for most of the fixed-time signal plans, we learn that normally average

travel time keeps increasing from the first time period to the fourth time period when

congestion lasts. The adaptive traffic signal control algorithm is able to capture this

phenomena. When congestion happens and travel time increases, the algorithm switch

signal plans in order to accommodate higher level demand, then travel time does not

increase significantly as time goes by. On the contrary, fixed-time plan is not able to

tackle this situation. Thus for the last two time periods, the proposed algorithm select

signal plans that are suitable for higher demand levels, and lead to smaller average

trip travel time.

5.6 Conclusion

In this chapter, we address a simulation-based adaptive traffic signal control problem

for a congested grid-type urban network in eastern Manhattan (New York City, USA).

To evaluate the performance of the proposed method, two case studies are carried
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out. In the first case study, the method is used to address signal setting under severe

congestion. In the second case study, the proposed method is used to address signal

setting under a different set of demand data with different OD matrices. In both

cases, the proposed method leads to signal plans with improved network performance.

Furthermore, an improvement could be achieved by just using the newly proposed

fixed-time signal plan comparing to the existing signal plan. In this case study, we

simply scale demand into different levels to represents different traffic conditions from

light traffic to heavy traffic. To apply such algorithm in reality, it is of interest to

investigate how to define traffic conditions from the historical data.
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Chapter 6

Conclusion

This thesis addressed signal control problems that are important but receive less at-

tentions or have limitations. The main contributions are the development of reliable

signal control problems with different formulations, and the adaptive traffic signal

control algorithm proposed for congested gird-type urban network.

Chapter 2 and Chapter 3 address the reliable signal control problems. Chapter

2 incorporates tractable link travel time distributional information in signal design

objectives. Due to the difficulty of approximating link travel time dependency, we

assume independent link travel times and derive analytical approximation of link travel

time SD. We use two SO metamodel approaches to solve three different signal control

problems: reliable signal control problem that combines average and SD of link travel

time information; traditional signal control problem that considers average total link

travel times, and signal control problem which uses only link travel time SD in the
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objective function. We first optimize signal plans for Lausanne city center, and then

extend to the full city area. In both cases, the metamodel which combines analytical

approximation of objective functions and functional component leads to signal plans

with smaller total average link travel time and total link travel time SD. The signal

plans derived by solving the reliable signal control problem have the lowest link travel

time SD and average link travel time.

Chapter 3 can be considered as an extension of Chapter 2 with more realistic

assumption for between-link dependency and interactions. In Chapter 3, an analyt-

ical tractable approximation of path travel time SD that accounts for between-link

dependency is proposed. The trip travel time SD is then obtained by aggregating

the path travel time SD. The formulation that accounts for between-link dependency

is compared with the formulation ignores between-link dependency. Taking the sim-

ulation observations of path and trip travel time SD as references, we validate the

proposed formulation through two toy networks with different topology. It shows that

for low demand scenarios, these two methods has similar estimates of path and trip

travel time SD. When demand keeps increasing, the proposed formulation that ac-

counts between-link dependency leads to more accurate estimates of path and trip

travel time SD. This finding suggests that it is not accurate to ignore between-link

dependency for congested networks. However, this is just verified for toy network,

it is of interest to test if it still holds for real world network with more complicated
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traffic interactions. We then use the formulation of trip travel time SD to address an

analytical reliable signal control problem and a simulation-based optimization reliable

signal control problem for the city center of Lausanne. For the analytical reliable sig-

nal control problem, signal plans derived by using the proposed formulation and the

formulation that ignores between link dependency are compared. It shows that the

signal plan derived by proposed formulation provides a smaller average trip travel time

and trip travel time SD. For the simulation-based optimization reliable signal control

problem, besides the formulation that ignores between link dependency, the proposed

formulation is compared with the formulation proposed in Chapter 2. Comparing to

the signal plan derived in Chapter 2, it shows that signal plans obtained in Chapter

3 reduce trip travel time variability at the expense of increasing average trip travel

time. Since average trip travel time and trip travel time SD is less correlated, a sen-

sitive test of using different reliability ratios is of interest. Moreover, the reliability

ratio used in Chapter 2 and Chapter 3 is not estimated for the network we studied,

it might not be the right value to represent the trade-off between average travel time

travel time SD for the travelers in Lausanne.

In general, Chapter 2 and Chapter 3 enable the use of second-order travel time

information (both analytical and simulation-based) in large-scale traffic signal opti-

mization problems. Both formulations can be used in signal design objective functions

to reduce either link travel time variability or trip travel time variability depending
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on the needs of transport agency. The tractable approximation of path travel time SD

proposed in Chapter 3 captures the impacts of the demand changes on trip travel

time variability. As mentioned before, path travel time variability is one of the most

important factor that would influence the route choices, thus this formulation can be

used to study the routing behavior of the drivers in future research.

Besides the reliable signal control problem, Chapter 4 and Chapter 5 design sig-

nal control strategy for highly congested urban network. In high density urban areas

especially in network with short links and grid-type topology, the traditional traffic

signal control strategy (both fixed-time and adaptive traffic signal control strategy) has

limited ability to reduce the spillbacks and ease congestion. We focus on an area in east

Manhattan (New York City, USA) and build a set of demand scenarios to reflect differ-

ent traffic conditions, from light to heavy traffic. At first, for each traffic condition, we

use the SO framework to calculate fixed-time signal plan for that traffic condition. For

low demand level, traditional signal design objective is used to calculate the optimal

signal plan. Under high demand levels, spillbacks happen frequently. Using tradi-

tional signal design techniques yields signal plans that do not capture these spillbacks,

deteriorating the system throughput. Under such circumstance, queue management

techniques are used to optimize signal plans. For each demand scenario corresponds

to each traffic condition, the proposed signal plan outperforms the existing signal plan

in terms of different performance measures such as: throughput, average link travel
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time, average trip travel time, queue length. We then design a simulation-based adap-

tive traffic signal control algorithm to select among the set of signal plans designed

for different traffic conditions. Comparing to the current signal plan, the proposed

algorithm leads to signal plans with less average trip travel time, shorter queue length,

smaller spillback probability and higher system throughput. The proposed adaptive

traffic signal control algorithm is based on simulation observations instead of real-time

information due to the inadequacy of historical and real-time data. From the analysis

of the signal plan performance, we observe that travel time variability is larger for

demand scenario with higher demand. Incorporating travel time reliability metrics

proposed in Chapter 2 and Chapter 3 in signal design objective for the proposed

adaptive traffic signal control algorithm is of interest in future research. Furthermore,

to enhance the performance of the proposed algorithm, more powerful and accurate

forecasting sector used to select signal plans can be further investigated.

One limitation of the SO algorithm we used in this thesis is that all the trial

points (candidate signal plans) derived by the SO framework is only evaluated once

in the simulator, and then the algorithm decides if a trial point would be accepted

or rejected. The SO framework optimizes the problem sequentially, in which the trial

points derived later are always based on all the previous results. This might lead to

the problem of choosing an actually bad design which has good performance in a single

run. One way of overcoming this limitation is to perform several replications for the
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trial points to verify the performance measures. This way has been verified in Chapter

3, we noticed that trip travel time SD has large variability, and evaluating each trial

point once sometimes leads to signal plan with even worse performance than the initial

signal plan we start. As a results, for each trial point SO derived, we evaluate it three

times and calculate the average value over three observations to decide if it should be

accepted or rejected. Evaluating each trial point three times leads to signal plans with

significant better performance comparing to the method that just evaluates each trial

point once. However, this would result in huge computational burden, which violates

the aim of solving the signal control problem efficiently. Instead of incorporating the

statistical selection techniques during the optimization process, the SO framework

can be divided into two stages and the same amount of total computational budget

(e.g.:150 simulation runs) can be allocated to them. Based on empirical test of the

SO framework, in most of the cases the algorithm converges fast in the first dozens

of simulation runs, the following simulation runs do not help to improve the system

performance. As a result, the same SO framework is used in the first stage with

fewer computational budget and all the accepted trial points will be kept, then a post-

processing stage will be added to select the final best solution statistically from the

solution sets (all accepted trial points). We have built the post-processing technique

upon the widely used optimal computing budget allocation (OCBA) procedure (Chen

et al., 1999b, 2000) and applied that technique to Chapter 2. The proposed post-
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processing techniques are evaluated by probability of selection (PCS) and compared

with total equal allocation (TEA) which is defined as allocating computational budget

equally to each alternative. Among the solution set, we know which signal plan is

the best one with the smallest total link travel time and total link travel time SD,

we run OCBA and TEA 1000 times respectively, the PCS is calculated as the how

many times that each algorithm chooses the best signal plan over 1000. However,

OCBA does not outperform TEA. Comparing to TEA, OCBA takes variance of each

alternative into consideration when allocating computational budget (Fu et al., 2008),

but average total link travel time and total link travel time SD has small variance

(shown in Figure 2-3, the cdf curves are very steep). Thus we cannot benefit from

OCBA in this case. It is of interest to apply the proposed method for Chapter 3

to further investigate this problem, in which the values of the objective function has

much larger variance.
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Appendix A

Physical components and SO

algorithm

A.1 Physical components

A.1.1 Physical component used in Section 2.4.2

Recall from Section 2.3.3 that the analytical approximation of the objective function

(Equation (2.5)) provided by the physical component is a function of three endogenous

variables per queue: ρi, λi and P (Ni = ki). We present below the analytical traffic

model that derives these variables. This model is based on the general queueing

network model of Osorio and Bierlaire (2009a). Its formulation for an urban traffic

network is given in Osorio and Bierlaire (2009b). Each lane of an urban road network
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is modeled as one or a set of finite capacity queues. The model describes the between-

link interactions (e.g., spillbacks) through the queueing theory notion of blocking. It

provides an analytical description of how congestion arises and propagates through

the network. In the following notation the index i refers to a given queue.

γi external arrival rate;

λi arrival rate (also referred to as total arrival rate);

µi service rate;

µ̃i unblocking rate;

µ̂i effective service rate (accounts for both service and eventual blocking);

ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;

pij transition probability from queue i to queue j;

Di set of downstream queues of queue i;

The queueing network model is defined through the following system of nonlinear
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equations:



λi = γi +

∑
j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
(A.1a)

1

µ̃i

=
∑
j∈Di

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µ̂j

(A.1b)

1

µ̂i

=
1

µi

+ P f
i

1

µ̃i

(A.1c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii (A.1d)

P f
i =

∑
j

pijP (Nj = kj) (A.1e)

ρi =
λi

µ̂i

. (A.1f)

The exogenous parameters are γi, µi, pij and ki. All other parameters are endoge-

nous. When used to solve a signal control problem (as in this chapter), the capacity of

the signalized lanes become endogenous, which makes the corresponding service rates,

µi, endogenous.

A.1.2 Physical component used in Section 2.4.3

This model builds upon the model of Osorio and Bierlaire (2009a) and of Osorio

and Bierlaire (2009b) (for its detailed derivation see Osorio and Chong (2012)). It

approximates the traffic intensity of queue i, ρi, by the effective traffic intensity, ρeff
i ,

where ρeff
i = ρi(1 − P (Ni = ki)). Throughout the System of Equations (A.1), ρ is

replaced by ρeff, and the following model is obtained:
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λi = γi +

∑
j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
(A.2a)

ρeff
i =

λi(1− P (Ni = ki))

µi

+

(∑
j∈Di

pijP (Nj = kj)

)(∑
j∈Di

ρeff
j

)
(A.2b)

P (Ni = ki) =
1− ρeff

i

1− (ρeff
i )ki+1

(ρeff
i )ki . (A.2c)

A.2 SO algorithm

This SO algorithm is formulated in detail in Osorio (2010) and is based on the

derivative-free trust region algorithm of Conn et al. (2009). The parameters of the

algorithm are set according to the values in Osorio (2010).

0. Initialization.

Define for a given iteration k: mk(x, y;αk, βk, q) as the metamodel (denoted

hereafter as mk(x)), xk as the iterate, ∆k as the trust region radius, νk = (αk, βk)

as the vector of parameters of mk, nk as the total number of simulation runs

carried out up until and including iteration k, uk as the number of successive

trial points rejected, εk as the measure of stationarity (norm of the derivative

of the Lagrangian function of the trust region (TR) subproblem with regards to

the endogenous variables) evaluated at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 <

γ < 1 < γinc, εc > 0, 0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N∗. Set the total
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number of simulation runs permitted (across all points) nmax, this determines

the computational budget. Set the number of simulation replications per point

r̃ (here we use r̃ = 1).

Set k = 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Given the initial point x0, compute fA(x0) (analytical approximation of Equa-

tion (2.1)) and f̂(x0) (simulated estimate of Equation (2.1)), fit an initial model

m0 (i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode.

2. Step calculation. Compute a step sk that reduces the model mk and such that

xk + sk (the trial point) is in the trust region (i.e. approximately solve the TR

subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.

Include the new observation in the set of sampled points (nk = nk + r̃), and fit

the new model mk+1.
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4. Model improvement. Compute τk+1 = ∥νk+1−νk∥
∥νk∥

. If τk+1 < τ̄ , then improve

the model by simulating the performance of a new point x, which is uniformly

drawn from the feasible space. Evaluate fA and f̂ at x. Include this new obser-

vation in the set of sampled points (nk = nk + r̃). Update mk+1.

5. Trust region radius update.

∆k+1 =


min{γinc∆k,∆max} if ρk > η1

max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū

∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k = k + 1.

If nk < nmax, then go to Step 1. Otherwise, stop.
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Appendix B

Derivation of Equation (3.6b) and

Equation (3.23)

B.1 Derivation of Equation (3.6b)

We describe the derivation of Equation (3.6b). By definition the expected effective

service time conditional on state sm is the summation of the expected service time and

the expected blocked time conditional on state sm:

1

µ̂i,sm

=
1

µi

+ E[Bi|Sm = sm], (B.1)

where E[Bi|Sm = sm] is the expected blocked time at queue i given state sm. We

assume that all downstream queues of queue i that are full are also blocking queue i.
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This is equivalent to:

E[Bi|Sm = sm] =
∑
j∈DSi

1(sm, j)pijE[Bi,j|Sm = sm], (B.2)

where Bi,j represents the blocked time at queue i due to blocking by queue j. We

approximate E[Bi,j|Sm = sm] by:

E[Bi,j|Sm = sm] =
1

rijµ̂j

, (B.3)

where rij represents the expected proportion of flow that arises to queue j due to

queue i, and µ̂j is given by Equation (3.2b). Note that 1/µ̂j represents the expected

effective service time of queue j. Since queue j is full, 1/µ̂j can also be interpreted as

the expected time between successive departures from queue j. In other words, it is

the expected time between unblockings of jobs blocked by queue j at queues upstream

of j. The term 1/(rijµ̂j) is used to approximate the time between unblockings of jobs

blocked by queue j at queue i. The term rij accounts for the fact that unblocking

events occur in a first-in-first-out manner. The term rij is approximated as:

rij =
pijλ̂i

λ̂j

, (B.4)

where λ̂i and λ̂j are given by Equation (3.2a).

Successively inserting Equation (B.2) into (B.1), (B.3) into (B.2), and (B.4) into
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(B.3); we obtain:

1

µ̂i,sm

=
1

µi

+
∑
j∈DSi

1(sm, j)pijE[Bi,j|Sm = sm] (B.5)

=
1

µi

+
∑
j∈DSi

1(sm, j)pij
1

rijµ̂j

(B.6)

=
1

µi

+
∑
j∈DSi

1(sm, j)pij
λ̂j

pijλ̂iµ̂j

(B.7)

=
1

µi

+
∑
j∈DSi

1(sm, j)
λ̂j

λ̂iµ̂j

(B.8)

Equation (B.8) coincides with Equation (3.6b).

B.2 Derivation of Equation (3.23)

We present the derivation of the expression for E[N2
i ] given by Equation (3.23). Here-

after, we drop the queue index i.

By definition:

E[N2] =
k∑

n=0

n2P (N = n). (B.9)

We can insert the expression for P (N = n) of Equation (3.3) to obtain:

E[N2] =
k∑

n=0

n2 1− ρ

1− ρk+1
ρn. (B.10)
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We can rewrite n2 as n(n− 1) + n:

E[N2] =
1− ρ

1− ρk+1

k∑
n=0

(n(n− 1)ρn + nρn) . (B.11)

This is equivalent to:

E[N2] =
1− ρ

1− ρk+1

k∑
n=0

(n(n− 1)ρn) +
k∑

n=0

n
1− ρ

1− ρk+1
ρn. (B.12)

Notice that the second summation is equal to E[N ], hence:

E[N2] =
1− ρ

1− ρk+1

k∑
n=0

(n(n− 1)ρn) + E[N ]. (B.13)

We now focus on the first summation of the above equation. For a geometric series,

such that ρ ̸= 1, we have:

k∑
n=0

ρn =
ρk+1 − 1

ρ− 1
. (B.14)

We differentiate the left and the right side of this equation with respect to ρ:

k∑
n=0

nρn−1 =
1− ρk+1

(1− ρ)2
− (k + 1)ρk

1− ρ
. (B.15)
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We differentiate once again with respect to ρ:

k∑
n=0

n(n−1)ρn−2 =
−(k + 1)ρk

(1− ρ)2
−(1− ρk+1)2(1− ρ)(−1)

(1− ρ)4
−k(k + 1)ρk−1

1− ρ
+
(k + 1)ρk(−1)

(1− ρ)2
.

(B.16)

This can be rearranged to obtain:

k∑
n=0

n(n− 1)ρn−2 =
2(1− ρk+1)

(1− ρ)3
− k(k + 1)ρk−1

1− ρ
− 2(k + 1)ρk

(1− ρ)2
. (B.17)

We insert the above expression into Equation (B.13) to obtain:

E[N2] =
1− ρ

1− ρk+1
ρ2
(
2(1− ρk+1)

(1− ρ)3
− k(k + 1)ρk−1

1− ρ
− 2(k + 1)ρk

(1− ρ)2

)
+E[N ] (B.18)

This can be rearranged to obtain:

E[N2] =
2ρ2

(1− ρ)2
− k(k + 1)ρk+1

1− ρk+1
− 2(k + 1)ρk+2

(1− ρk+1)(1− ρ)
+ E[N ]. (B.19)

Equation (B.19) coincides with Equation (3.23).
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Appendix C

Queueing model calibration details

In general, there are three parts of calibration: static, dynamic, and signal plan en-

coding. The exogenous queueing model parameters stated in Appendix A.1.1(γi, µi,

ki, pij, Di ) are obtained via calibration.

The static calibration converts the road network into queueing network. It retrieves

information of network topology such as number of links, link length, number of lanes

for each link, type of links (e.g.: bus lane, parking lane, entrance link, exit link), type

of intersections (e.g.: signalized intersection, non-signalized intersections) from the

simulator. Each link is represented by a queue or a set of queues. We are focusing

on passenger cars and trucks, thus bus and parking lanes are removed in the queueing

network. For exogenous queueing model parameters stated in Appendix A.1.1: upper

bound of the queue length ki, set of downstream queues Di of queue i are calculated

via static calibration. ki is calculated from the length of each link, for a detailed
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description, see Chapter 4.3.3 of Osorio (2010). Di are defined based on the rules of

the road (e.g.: turning is allowed) and the topology of the network (e.g.: links that

are physically linked together). After performing the static calibration, the queueing

network is able to represents the physical structure of road network. Based on the

physical representation of the road network, we can proceed to dynamic calibration.

When we perform dynamic calibration for each demand scenario, we run the simu-

lator 10 times for the one hour morning peak with 20 minutes warm-up period. Then

we calculate the average flow per hour on each link over 10 replications. Dynamic

calibration converts network demand into external arrival rate γi based on flow of en-

trance links, where the vehicles initially originated. The transition probability pij is

calculated as the proportion of flow coming from the one link to another. For each

demand scenario, total demand, flow on each link and route choices are different thus

some links might not have flow under certain demand scenarios, which means no user

selects those links. To ensure the computational efficiency, queues correspond to these

links (no flow) are removed in the queueing network.

Based on the information of intersections retrieved from the static calibration,

signal plan encoding can be performed to calculate service rate µi. For signalized

intersections, the service rate is calculated form the green splits correspond to each

movement. For non-signalized intersections, each movement is ranked according to

HCM (TRB, 2000), all upstream queues linked to that intersection are matched with
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certain movement, the service rate of each queue is calculated as the capacity associated

with that movement. When queueing model are calibrated, the SO framework can be

used to optimize signal plan according to the design objective (e.g.: minimize average

queue length, minimize average trip travel time, maximize system throughput, etc. ).
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Appendix D

Comparison of the performance of

signal plans derived and the existing

signal plan for different demand levels

We test three signal design objectives for each demand level: 1) traditional signal de-

sign objective that minimizes average trip travel time; 2) a formulation that explicitly

accounts for queue-length metrics and mitigates the occurrence of urban spillbacks and

gridlocks: minimizing average total queue-length in the network; 3) maximize average

system throughput.

Based on these experiments, we found that different signal control design objectives

are suitable for different demand levels. For demand scenarios with less demand than
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the normal morning peak demand (scenario 4), minimizing average trip travel time

yields signal plan with best performance in terms of average trip travel time. Signal

plans derived by minimizing total queue-length do not outperform the existing signal

plan in terms of average trip travel time, and system throughput. For demand scenario

4 and scenarios with higher demand than scenario 4, minimizing average trip travel

time results in a significant reduction in the system throughput. For scenarios with

higher demand levels, minimizing total average queue-length yields signal plans with

better system performance in terms of average queue-length without deteriorating

throughput. Maximizing throughout in objective function is also tested for the studied

area, comparing to other performance metrics (e.g.: average queue-length, average trip

travel time), the value of throughput is large (around 11000 trips per hour), even small

fluctuation causes large number change in throughput. For instance, 11100 trips per

hour might not be statistically different from 11000 trips per hour due to the variability

in demand, but for SO algorithm, it is considered to be a better plan and will be kept.

When using system throughput in objective functions, we end up with signal plans

that do not outperform existing signal plan for all demand scenarios in terms of both

throughput and average trip travel time. In order to use system throughput in SO

framework, more replications are needed to evaluate the performance of each derived

point, which brings huge computational burden.

For each demand scenario, we start from the existing NYC signal plan and run
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the SO five times. The computational budget is set to 150 simulation runs each time.

In total we derive five signal plans. To evaluate the performance of the signal plans

derived by SO, we run the signal plan derived by SO and existing signal plan under

each demand scenario 50 times respectively. We then compare their average trip travel

time, system throughput, average queue-length, and spillback probability. For demand

scenario 1, 2 and 3, in which minimizing average trip travel time is used as objective

function, signal plan with the smallest average trip travel time without deteriorating

the system throughput will be selected as the new signal plan. For demand scenario 4,

5, 6, and 7, in which minimizing total queue-length is used as objective function, signal

plan with the smallest total queue-length without deteriorating the system throughput

will be selected as the new signal plan.

For demand scenario 1, 2 and 3, the objective function is minimizing average trip

travel time. The signal control problem is formulated as:

min
x

f(x) = T (x, z; p) (D.1)
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subject to

∑
j∈PI(i)

x(j) = bi, ∀i ∈ I (D.2)

x ≥ xL. (D.3)

This problem is a fixed-time signal control problem, where the decision variables x

are the green splits. In this problem, the stage structure (e.g.: phase sequence) is given,

the offsets, the cycle times and the all-red durations are fixed. The performance metric

used, T (x, z; p), is the average trip travel time. Constraints (D.2) guarantee that for a

given intersection the available cycle time is distributed across all endogenous phases.

Constraints (D.3) ensure lower bounds for the green splits.

For demand scenario 4, 5, 6, and 7, the objective function is minimizing total

average queue-length. It has been discussed in Chapter 4.

For certain demand scenario, if all signal plans derived by SO yield larger aver-

age trip travel time, larger average queue-length, or smaller system throughput, the

existing signal plan will be used for that demand level.

We have new plans for demand scenario 1, 3, 4, 5, and 6. For demand scenario 2

and 7, the signal plans derived do not yields better performance than existing signal

plan, thus we stick to existing signal plan. We name signal plan for each demand

scenario from plan 1 to plan 7, plan 2 and plan 7 are the same.

210



The performance comparison of signal plans derived by SO (expect plan 4 that

has been shown in Chapter 4) and existing signal plan used in NYC are shown in

this Appendix. Under each demand scenario, we study the performance of the sig-

nal plan (denoted as “optimized” and displayed in solid line) derived by SO and the

existing signal plan (denoted as “existing” and displayed in dashed line). Recall that

we have four performance measures to evaluate the temporal evolution of the system

performance: average queue length, average trip travel time, average spillback proba-

bility and entry flow; and six aggregated performance measures: average queue length,

average travel time of finished trips, average travel time of unfinished trips, average

spillback probability, number of finished trips, and number of unfinished trips.

Comparison of the performance of plan 1 and the existing signal plan

This section shows the comparison of the performance of the signal plan derived by

SO and the existing signal plan under demand scenario 1. We first show the temporal

evolution of each performance measure.

Figure D-1 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure D-1(a), Figure D-

1(b), Figure D-1(c), and Figure D-1(d) show the comparison of average queue-length of

the adaptive signal settings and the existing signal plan for each 15 minutes; Figure D-

1(e), Figure D-1(f), Figure D-1(g), and Figure D-1(h) show the the comparison of

average trip travel time.
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Figure D-2 shows the comparison of average spillback probability and entry flow

for all time period. Figure D-2(a), Figure D-2(b), Figure D-2(c), and Figure D-2(d)

show the comparison of the average spillback probability Figure D-2(e), Figure D-2(f),

Figure D-2(g), and Figure D-2(h) show the comparison of entry flow. In all figures,

the performance of the signal plan derived by SO is displayed in solid line, and the

performance of the current plan is displayed in dashed line. The signal plan derived

by SO yields smaller average queue length and average spillback probability for all

time intervals. The signal plan derived by SO has smaller average trip travel time for

the first and second time intervals, and larger entry flow for the first and third time

intervals.

We then study the performance of the signal plan derived by SO and the existing

signal plan for the whole simulation period aggregately. Figure D-3(a) shows the

average queue length; Figure D-3(b) shows the average spillback probability; Figure D-

3(c) shows the average travel time of unfinished trips; Figure D-3(d) shows the average

travel time of all finished trips; Figure D-3(e) shows the number of unfinished trips,

Figure D-3(f) shows the number of finished trips.

In Figure D-3, the derived signal plan yields smaller expected finished and un-

finished trip travel time, smaller average queue length, and smaller average spillback

probability. For number of finished and unfinished trips, the derived signal plan and

the existing signal plan have similar performance.
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Figure D-3: Comparison of the performance of plan 1 and the existing signal plan for
demand scenario 1.
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 1.96 2.05 2.18 0.05 1.96 2.02 2.14 0.05
TP 8609 8645 8675 14.53 8626 8645 8675 10.56

TTun 1.37 1.62 2.03 0.13 1.42 1.55 1.95 0.10
TPun 267 290 315 10.15 268 288 308 8.72
QL 0.82 0.88 1.00 0.05 0.90 0.83 1.06 0.05
SP 0.0283 0.0308 0.0337 0.0012 0.0258 0.0284 0.0316 0.0012

Table D.1: Performance metrics statistics for plan 1 and existing signal plan.

Table D.1 shows the statistics of each performance measure over 50 replications.

For each performance measure, we calculate the minimum value (min), mean value

(mean), maximum value (max) and standard deviation (σ) for existing plan and new

plan. TT represents average trip travel time of finished trips; TP is the number of

finished trips; TTun is the average trip travel time for unfinished trips; TPun is the

number of unfinished trips; QL is the average network queue-length; SP is the average

spillback probability.

For each aggregated performance measure, the null hypothesis states that the per-

formance measure of the signal plan proposed by SO method is equal to that of the

existing signal plan, the alternative hypothesis states that the performance measure

of the signal plan proposed by SO method is better (e.g.: smaller travel time for

unfinished trips; smaller average travel time for finished trips; smaller average queue

length; smaller average spillback probability; smaller number of unfinished trips and

lager number of finished trips) than that of the existing signal plan. When running

the 50 simulation replications to evaluate the performance of a given signal plan, we
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use the same set of 50 replication seeds for each signal plan. The paired t-tests are

carried out by pairing observations that have common seeds. Let Y denote the average

paired difference between any two aggregated performance measures , let ŝ denote its

standard deviation, and let O denote the sample size. Then the paired t-statistic is

given by (see, for instance, Hogg et al. (1977, p. 486)): t =
√
O Y /ŝ.

Taking the average finished trip travel time as an example, we test the hypothesis

that the average finished trip travel time from plan 1 is equal to the average finished

trip travel time obtained from existing signal plan. The mean of the paired differences

Y is around 0.0264 minutes. The standard deviation of the paired differences ŝ is

around 0.0397 minutes. The sample size O is 50. The critical value at the 2.5%

significance level is t0.025(49) = 2.01. The t values is 4.6998. Thus the null hypothesis is

rejected. We show the paired t-test results for each performance measure in Table D.2.

For average number of finished trips and unfinished trips, the t-values are 0.5693 and

1.0618 respectively, thus the null hypothesis is accepted. For all the other performance

metrics, the t-values are larger than t0.025(49) = 2.01, thus the null hypothesis is

rejected. Plan 1 derived by SO leads to significant smaller average trip travel time for

both finished and unfinished trips, shorter queue length and smaller average spillback

probability. The number of finished and unfinished trips obtained from both plans are

similar.

Plan 1 and existing signal plan leads to similar number of finished and unfinished
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Y ŝ t-statistic
TT 0.0264 0.0397 4.6998
TP 1.0400 12.9173 0.5693

TTun 0.0817 0.1180 4.8914
TPun 1.4200 9.4569 1.0618
QL 0.0224 0.0644 2.4565
SP 0.0024 0.0015 11.3563

Table D.2: Paired t-test for plan 1 and existing signal plan.

trips, however, travel time of finished and unfinished trips are significantly reduced,

moreover, average queue length over all queues over time and the average spillback

probability per queue over time are significant reduced. Plan 1 leads to better system

performance while maintaining the same level of system throughout.

Plan 2 and plan 7 are the same as existing signal plan, the performance comparison

of plan 4 and existing signal plan has been shown in Chapter 5.

Comparison of the performance of plan 3 and the existing signal plan

This section shows the comparison of the performance of the signal plan derived by

SO and the existing signal plan under demand scenario 3.

Figure D-4 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure D-4(a), Figure D-

4(b), Figure D-4(c), and Figure D-4(d) show the comparison of average queue-length of

the adaptive signal settings and the existing signal plan for each 15 minutes; Figure D-

4(e), Figure D-4(f), Figure D-4(g), and Figure D-4(h) show the the comparison of

average trip travel time.
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Figure D-5 shows the comparison of average spillback probability and entry flow

for all time period. Figure D-5(a), Figure D-5(b), Figure D-5(c), and Figure D-5(d)

show the comparison of the average spillback probability Figure D-5(e), Figure D-5(f),

Figure D-5(g), and Figure D-5(h) show the comparison of entry flow. For all time

intervals, the signal plan derived by SO yields smaller average queue-length, smaller

average trip travel time, smaller average spillback probability, and larger entry flow.

We then study the performance of the signal plan derived by SO and the existing

signal plan for the whole simulation period aggregately. Figure D-6(a) shows the

average queue length; Figure D-6(b) shows the average spillback probability; Figure D-

6(c) shows the average travel time of unfinished trips; Figure D-6(d) shows the average

travel time of all finished trips; Figure D-6(e) shows the number of unfinished trips;

Figure D-6(f) shows the number of finished trips. We use across-replication variability

to represents the day-to-day variability. The proposed signal plan leads to steeper cdf

curves in terms of number of finished trips and expectation of unfinished trip travel

time, which means more stable performance.

Table D.3 shows the statistics of each performance measure over 50 replications.

The new plan derived by SO yields smaller average queue length, smaller spillback

probability, smaller average finished trip travel time but larger expectation of unfin-

ished trip travel time. The proposed signal plan leads to larger number of finished trips

which means the system throughput is increased, more travelers could pass the net-
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Figure D-6: Comparison of the performance of plan 3 and the existing signal plan for
demand scenario 3.
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 2.88 3.23 3.94 0.25 2.50 2.68 3.15 0.11
TP 10379 10805 10966 132.34 10825 10936 11018 34.07

TTun 3.57 5.26 10.38 1.33 5.43 6.62 7.89 0.56
TPun 553 647 875 58.92 409 444 536 23.33
QL 2.00 2.41 2.96 0.2 1.50 1.62 2.22 0.12
SP 0.0686 0.0826 0.1173 0.0084 0.0507 0.0586 0.0726 0.0042

Table D.3: Performance metrics statistics for plan 3 and existing signal plan.

work with a reduced average trip travel time. Comparing to the existing signal plan,

the proposed signal plan also reduces the number of unfinished trips which includes

the travelers that are blocked in the network. Improving total system throughput

(number of finished trips) while reducing number of cars being blocked is not a simple

task, thus the average travel time for unfinished trips is increased. For those small

amount of travelers, they are suffering longer travel time, but for majority of the road

network users, the travel time are reduced significantly, furthermore, more traveller

are served.

Table D.4 shows the paired t-test for each performance measure. Besides average

unfinished trip travel time, plan 3 yields significant better performance than existing

signal plan for all other performance metrics. Note that the standard deviation of the

paired differences ŝ for number of finished trips is large, that is because of the long

tail in the cdf curve of the number of finished trips obtained by existing signal plan.
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Y ŝ t-statistic
TT 0.5492 0.2528 15.3637
TP 130.9400 130.1554 7.1137

TTun -1.3549 1.2604 -7.6012
TPun 203.6200 65.1601 22.0965
QL 0.7963 0.2345 24.0166
SP 0.0240 0.0094 18.0012

Table D.4: Paired t-test for plan 3 and existing signal plan.

Comparison of the performance of plan 5 and the existing signal plan

This section shows the comparison of the performance of the signal plan derived by

SO and the existing signal plan under demand scenario 5.

Figure D-7 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure D-7(a), Figure D-

7(b), Figure D-7(c), and Figure D-7(d) show the comparison of average queue-length of

the adaptive signal settings and the existing signal plan for each 15 minutes; Figure D-

7(e), Figure D-7(f), Figure D-7(g), and Figure D-7(h) show the the comparison of

average trip travel time.

Figure D-8 shows the comparison of average spillback probability and entry flow

for all time period. Figure D-8(a), Figure D-8(b), Figure D-8(c), and Figure D-8(d)

show the comparison of the average spillback probability Figure D-8(e), Figure D-8(f),

Figure D-8(g), and Figure D-8(h) show the comparison of entry flow. For all perfor-

mance measures and all time intervals, the signal plan derived by SO yields smaller

average queue-length, smaller average trip travel time, smaller average spillback prob-
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ability, and larger entry flow. Furthermore, proposed signal plan leads to smaller cross

replication variability for average trip travel time, average spillback probability and

entry flow comparing to existing signal plan.

This section shows the comparison of the performance of the signal plan derived

by SO and the existing signal plan under demand scenario 5.

Figure D-9(a) shows the average queue length; Figure D-9(b) shows the average

spillback probability; Figure D-9(c) shows the average travel time of unfinished trips;

Figure D-9(d) shows the average travel time of all finished trips; Figure D-9(e) shows

the number of unfinished trips; Figure D-9(f) shows the number of finished trips.

Besides average queue length and expectation of finished trip travel time, proposed

signal plan leads to smaller across-replication variability for all other performance

metrics and offers more stable service.

Table D.5 shows the statistics of each performance measure over 50 replications.

The new plan derived by SO yields smaller expectation of finished and unfinished

trip travel time, larger number of finished trips, smaller number of unfinished trips,

smaller average queue-length and smaller average spillback probability. Table D.6

shows the paired t-test for each performance measure. Plan 5 yields significant better

performance than existing signal plan in terms of all performance metrics. Plan 5

systematically increases the number of finished trip without imposing extra travel

time, and reduces the number of vehicles being blocked in the network.
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Figure D-9: Comparison of the performance of plan 5 and the existing signal plan for
demand scenario 5.
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 5.31 6.27 7.52 0.49 4.98 5.32 5.97 0.20
TP 8593 11415 12225 632.07 11740 12102 12327 117.76

TTun 13.05 17.46 31.51 2.82 11.12 13.06 17.21 1.29
TPun 785 961 1240 88.71 727 791 864 33.12
QL 4.28 5.02 6.46 0.41 3.57 4.04 5.68 0.34
SP 0.0944 0.1356 0.1898 0.0209 0.0900 0.1012 0.1188 0.0059

Table D.5: Performance metrics statistics for plan 5 and existing signal plan.

Y ŝ t-statistic
TT 0.9443 0.5131 13.0132
TP 686.3400 645.2933 7.5209

TTun 4.3999 3.0395 10.2358
TPun 170.3600 91.2737 13.1980
QL 0.9907 0.4995 14.0253
SP 0.0344 0.0219 11.0871

Table D.6: Paired t-test for plan 5 and existing signal plan.

Comparison of the performance of plan 6 and the existing signal plan

This section shows the comparison of the performance of the signal plan derived by

SO and the existing signal plan under demand scenario 6.

Figure D-10 shows the comparison of average queue-length and average trip travel

time from the first time interval until the fourth time interval. Figure D-10(a), Fig-

ure D-10(b), Figure D-10(c), and Figure D-10(d) show the comparison of average

queue-length of the adaptive signal settings and the existing signal plan for each 15

minutes; Figure D-10(e), Figure D-10(f), Figure D-10(g), and Figure D-10(h) show

the the comparison of average trip travel time.

Figure D-11 shows the comparison of average spillback probability and entry flow
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Existing plan New plan
Min Mean Max σ Min Mean Max σ

TT 6.74 8.09 9.47 0.60 5.53 6.90 7.76 0.47
TP 8370 11342 12248 719.72 10490 12071 12420 351.35

TTun 18.27 22.19 35.89 2.87 14.01 18.09 25.83 1.70
TPun 896 1015 1249 85.35 760 905 1213 97.97
QL 4.36 4.92 6.14 0.33 3.57 4.04 5.68 0.34
SP 0.1153 0.1549 0.1980 0.0180 0.1291 0.1525 0.2050 0.0162

Table D.7: Performance metrics statistics for plan 6 and existing signal plan.

for all time period. Figure D-11(a), Figure D-11(b), Figure D-11(c), and Figure D-

11(d) show the comparison of the average spillback probability Figure D-11(e), Fig-

ure D-11(f), Figure D-11(g), and Figure D-11(h) show the comparison of entry flow.

For the first and second time intervals, the signal plan derived by SO yields smaller

average queue-length, smaller average trip travel time, larger network throughput but

larger average spillback probability. For the last two time intervals, plan 6 leads to

better performance in terms of all performance metrics.

Figure D-12(a) shows the average queue length; Figure D-12(b) shows the average

spillback probability; Figure D-12(c) shows the average travel time of unfinished trips;

Figure D-12(d) shows the average travel time of all finished trips; Figure D-12(e) shows

the number of unfinished trips; Figure D-12(f) shows the number of finished trips.

Table D.7 shows the statistics of each performance measure over 50 replications.

The new plan derived by SO yields smaller average queue-length, similar spillback

probability, smaller expectation of finished and unfinished trip travel time, smaller

number of unfinished trips, and larger number of finished trips.
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Figure D-12: Comparison of the performance of the plan 6 and the exiting signal plan
for demand scenario 6.
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Y ŝ t-statistic
TT 1.1950 0.5857 14.4271
TP 728.7800 816.4712 6.3116

TTun 4.0924 3.6788 7.8661
TPun 110.0800 134.0330 5.8074
QL 0.9907 0.4995 14.0253
SP 0.0023 0.0267 0.6130

Table D.8: Paired t-test for plan 6 and existing signal plan.

Table D.8 shows the paired t-test for each performance measure. Besides average

spillback probability, plan 6 leads to significant better performance than existing signal

plan for all other performance metrics. Plan 6 and existing signal plan have similar

performance in terms of average spillback probability. Under demand scenario 6, the

demand level is 20% higher than the normal morning peak demand, in which spillback

could easily happen. In this case, the proposed signal plan does not outperform existing

signal plan in terms of spillback probability might due to the high level of demand.
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Appendix E

Look-up tables

We show the look-up table for each signal plan in Table E.1, Table E.2, Table E.3,

Table E.4, Table E.5, and Table E.6. In each table, PMj represents the vector of total

average link travel time for demand scenario j, which contains 300 simulation replica-

tions. In each table, minimum, maximum, mean and standard deviation of the total

average link travel times for traffic condition j are indicated by minPMj, maxPMj,

PMj and σj, TT intervals shows the lower and upper bounds of total average link travel

time specified for each demand scenario. Taking Table E.1 as an example, from demand

scenario 1 to demand scenario 7, the values of PMj and σj increase, which indicates

the growing across-replication variability. We use the across-replication variability

to indicates day-to-day travel time variability, as demand increases, traffic dynamics

are more complicated, thus the variability of the performance measure increases. For

highly congested network, reducing travel time variability or focusing on eliminating
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minPMj PMj maxPMj σj TT interval
scenario 1 29.70 31.00 35.26 1.21 (0, 34)
scenario 2 32.24 39.94 73.10 5.45 [34,61)
scenario 3 63.98 98.17 127.46 15.97 [61,126)
scenario 4 97.68 148.43 207.94 21.27 [126,172)
scenario 5 102.13 182.39 250.47 26.30 [172, 207)
scenario 6 131.58 211.68 301.75 33.15 [207,240)
scenario 7 163.43 257.20 363.97 34.52 [240, inf)

Table E.1: Average total link travel time statistic and link travel time interval classi-
fication according to different demand scenario under signal plan 1.

minPMj PMj maxPMj σj TT interval
scenario 1 28.56 30.42 34.71 1.25 (0, 34)
scenario 2 31.76 37.64 46.92 2.22 [34,45)
scenario 3 46.10 56.37 70.80 4.83 [45,71)
scenario 4 68.68 85.93 116.48 7.80 [71,104)
scenario 5 102.12 126.11 160.03 13.46 [104, 135)
scenario 6 128.17 160.42 210.51 17.81 [135, 164)
scenario 7 150.68 186.12 271.47 18.34 [164, inf)

Table E.2: Average total link travel time statistic and link travel time interval classi-
fication corresponding to different demand scenarios under plan 2 & plan 7 (existing
signal plan plan).

the long tail of the cdf curve might improve system performance.

From Figure E-1 to Figure E-6, in each figure seven cdf curves of the performance

measure corresponding to each level of demand are displayed. X-axis represents the

average total link travel time over all links of interest. From the left to the right,

each curve represents a scenario from lowest demand (scenario 1) to highest demand

(scenario 7). The vertical lines classify travel time boundaries from b1 to b6. It is more

clear that from the left to the right, the variability across-replications become larger

as demand increases in most of the cases.
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Figure E-1: Average total link travel time cdfs according to different demand levels
based on signal plan 1.
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Figure E-2: Average total link travel time cdfs according to different demand levels
based on plan 2 & plan 7 (existing signal plan plan).
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minPMj PMj maxPMj σj TT interval
scenario 1 40.77 42.94 45.14 0.83 (0, 44)
scenario 2 42.68 44.50 47.12 0.78 [44,47)
scenario 3 46.47 49.66 64.77 3.44 [47,60)
scenario 4 59.94 86.75 163.67 15.52 [60,104)
scenario 5 97.96 127.57 211.81 17.37 [104, 136)
scenario 6 123.20 157.37 199.50 18.25 [136,171)
scenario 7 159.51 189.34 239.15 14.40 [171, inf)

Table E.3: Average total link travel time statistic and link travel time interval classi-
fication according to different demand scenario under signal plan 3.
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Figure E-3: Average total link travel time cdfs according to different demand levels
based on signal plan 3.

238



minPMj PMj maxPMj σj TT interval
scenario 1 36.09 38.50 41.82 1.14 (0, 40)
scenario 2 37.08 40.98 44.82 1.27 [40,43)
scenario 3 40.85 45.76 53.19 1.96 [43,53)
scenario 4 53.54 64.95 85.64 5.49 [53,81)
scenario 5 72.83 93.74 108.93 6.60 [81, 109)
scenario 6 109.86 125.91 154.54 10.41 [109,140)
scenario 7 136.88 150.85 166.87 6.97 [140, inf)

Table E.4: Average total link travel time statistic and link travel time interval classi-
fication according to different demand scenario under signal plan 4.
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Figure E-4: Average total link travel time cdfs according to different demand levels
based on signal plan 4.
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minPMj PMj maxPMj σj TT interval
scenario 1 31.84 39.90 41.91 1.13 (0, 41)
scenario 2 38.33 42.90 46.20 1.00 [41,46)
scenario 3 46.10 50.09 62.06 2.79 [46,60)
scenario 4 60.45 75.04 123.36 7.46 [60,89)
scenario 5 89.31 109.65 172.22 12.32 [89, 124)
scenario 6 127.96 145.00 196.05 16.22 [124,159)
scenario 7 146.53 169.25 194.77 10.28 [159, inf)

Table E.5: Average total link travel time statistic and link travel time interval classi-
fication according to different demand scenario under signal plan 5.
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Figure E-5: Average total link travel time cdfs according to different demand levels
based on signal plan 5
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minPMj PMj maxPMj σj TT interval
scenario 1 89.28 92.45 95.23 1.09 (0, 94)
scenario 2 92.57 96.19 98.94 1.16 [94,98)
scenario 3 96.35 100.85 107.46 1.88 [98,106)
scenario 4 106.16 114.27 151.30 6.67 [106,123)
scenario 5 116.91 134.11 173.47 10.13 [123, 143)
scenario 6 142.06 157.97 197.23 10.94 [143,171)
scenario 7 168.41 182.85 208.21 6.98 [171, inf)

Table E.6: Average total link travel time statistic and link travel time interval classi-
fication according to different demand scenario under signal plan 6.
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Figure E-6: Average total link travel time cdfs according to different demand levels
based on signal plan 6
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Figure E-1 shows the cdfs of the performance measure obtained from signal plan

1 for each demand scenario. Plan 1 is derived under the demand scenario with the

lowest demand. Compared to other signal plans designed for demand scenario with

higher demand such as plan 4 and 5, average link travel time obtained from plan 1

significantly increases under demand scenario 4, 5, 6 and 7.

On the contrary, Figure E-6 shows the cdfs of the performance measure obtained

from signal plan 6 for each demand scenario. Plan 6 is derived under demand scenario

6. Compared to other signal plans designed for demand scenario with lower demand,

average link travel time obtained from plan 6 is much larger under demand scenario

1, 2, and 3.

This proves that signal plans designed for light traffic is not suitable for heavy

traffic. Similarly, signal plan designed for heavy traffic might have poor performance

under light traffic. Selecting the most appropriate signal plan under different traffic

conditions helps to reduce travel time and enhance system throughput.
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