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ABSTRACT 

Due to the dwindling of the global oil reserves, that are becoming harder and 

more expensive to explore, and the current efforts to reduce greenhouse emissions from 

fossil fuels consumption, new and renewable energy sources, in particular, must be 

developed and implemented. Therefore, the proposed study aims to analyze the use of 

microalgae as an advanced biofuel feedstock with an emphasis in its sustainability, and 

assess the economical, technological and political factors that can be critical to the success 

of this technology. The methods used to analyze the prospects of using microalgae as a 

feedstock for biofuels and to develop future diffusion pathways of emerging biofuels were 

a combination of a qualitative Delphi Survey with experts and modeling future scenarios 

using Stochastic Automata Networks. In this way, it was possible to draw several 

conclusions related to the potential development for microalgae commercialization in the 

biofuel market and to demonstrate the effectiveness of some public policies in the  

dissemination of advanced biofuels in the future. 

 

Keywords: Biofuel, Microalgae, Policies, Economy, Emerging 
Technologies, Advanced Biofuels, Scenarios, 
Assessment, Sustainability, Market Diffusion, 
Model, Delphi, Stochastic Automata Network. 
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RESUMO 

Devido à diminuição das reservas mundiais de petróleo, que estão tornando-se 

mais complexas e caras para exploração, e os esforços atuais para reduzir as emissões de 

gases relacionados ao consumo de combustíveis fósseis, novas fontes de energia 

renováveis precisam ser desenvolvidas e implementadas. Portanto, este estudo tem como 

objetivo analisar o uso de microalgas como matéria-prima para biocombustíveis 

avançados, com ênfase em sua sustentabilidade, e avaliar os fatores econômicos, 

tecnológicos e políticos que podem ser cruciais para o sucesso desta tecnologia. Os 

métodos utilizados para analisar as perspectivas do uso de microalgas como matéria-prima 

para biocombustíveis e desenvolver futuros caminhos para a  difusão destes 

biocombustíveis emergentes foram uma combinação de uma pesquisa qualitativa com 

especialistas com o método Delphi e modelagem de cenários futuros, utilizando Redes de 

Autômatos Estocásticos. Desta forma, foi possível tirar várias conclusões relacionadas com 

o potencial de cultivo e comercialização de microalgas no mercado de biocombustíveis e 

demonstrar a eficácia de algumas políticas públicas na disseminação de biocombustíveis 

avançados no futuro. 
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1. INTRODUCTION 

1.1. Background and Motivation 

Sustainability is currently a fundamental principle in environmental resources 

management (U.N., 1987; Daly, 2007). Currently it is increasingly clearer to society that the 

continued use of fossil fuels for energetic purposes is unsustainable. The dwindling of current 

global oil reserves, increased difficulties and costs in its explorations, and the need to reduce 

the emissions of greenhouse gases associated with their use are placing constraints in the 

usage of fossil fuels. In this context, biofuels are particularly important since they can be used 

in today automobiles with little or no modifications of engines and as an option for means of 

transportation that lack other fuel options (especially trucks, ships and aircrafts). 

Alternative energy sources derived from terrestrial crops such as sugarcane, 

soybeans, maize, rapeseed, among others, inflict a lot of pressure on the global food markets, 

contribute to water scarcity and precipitate the destruction of forests. Therefore, other 

innovative technologies and sources of energy must be developed to replace fossil fuels. The 

overall sustainability of biofuels will depend on the development of viable, sustainable, 

advanced technologies that do not appear to be yet commercially viable. 

In this perspective, algal biofuels are generating substantial awareness in many 

countries. Several studies have been conducted on the technical feasibility of growing algae 

for biofuel production in the laboratory (Tao and Aden, 2009; Chisti, 2007; Brennan and 

Owende, 2010; Carvalho et al, 2006; Hirano et al. 1997; Ono and Cuello, 2006; Pulz, 2001; 

Pulz and Gross, 2004; Sheehan et al., 1998; Spolaore et al., 2006; Terry and Raymond, 1985; 

Ugwu et al, 2008), which have proved the absence of many of the major drawbacks associated 

with current biofuels. However, not much information can be found concerning the 

production of biofuels from microalgae in a commercial scale because this is still an immature 

technology. Though several companies that grow algae on a large scale and produce biofuels 
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from them emerged in recent years, the price of this biofuel still appears to be too high to be 

competitive when compared to currently used fuels, even renewable ones. 

The current economic situation appears to be that large-scale production of algae 

biodiesel is not yet viable as a solution to displace petroleum-based fuels (Ribeiro and Silva, 

2013). The technology to efficiently produce biofuels from microalgae seems to remain not 

yet competitive with more advanced and emerging renewable technologies such as wind, 

solar, geothermal, and other forms of  biofuels. However, with policy support and incentives, 

the algal biofuel industry could continue to develop and assuming that this technology follows 

renewable energy cost trends, costs would decrease to eventually reach economic viability. 

(Pienkos and Darzins, 2009). This development is already happening with other renewable 

energy sources, such as wind and solar power to generate electricity due to advances in 

technology and policy support, a pathway that can be pursued by microalgae as feedstock for 

biofuels.  

By assessing the viability of algae projects from a market perspective, it is clearly 

apparent that total installed costs, operational and maintenance costs will be a major hurdle to 

future commercialization. According to Mcgraw (2009), current technologies should be 

improved, or even new ones invented, to reduce costs and increase yields. This can be 

accomplished through focused, comprehensive, and well-funded Research and Development 

(R&D) programs, at the international, national and even regional levels, with the participation 

of all relevant stakeholders, in particular companies.  

Public policies could also perform a great boost in this area lowering the costs of 

renewable energy sources to support the development of renewable technologies, either 

through direct means such as government-sponsored R&D, or by enacting policies that 

support the production of renewable technologies (Popp et al., 2011). In the United States, for 

example, they may contribute to achieve the biofuel production targets set by the Energy 

Independence and Security Act of 2007. Likewise, in the European Union, they may assist to 

the achievement of goals established in the recent Renewables Directive, that concerning 

transportation sector fuels, states that each member state should reach a minimum 10% share 

of renewable energy by 2020 (E.U., 2009). In order to address the technical-economic barriers 
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to the further development of this type of bio-energy, it is thus necessary to contribute with a 

study that incorporates biomass feedstock availability assessment, sustainability and 

feasibility of production, diffusion pathways, possible policies and use it in support of the 

scaling up of this promising technology if it is the general interest to do so.  

1.2. Definition of the problem and research questions 

The question addressed in this thesis is not whether biofuels from algae are 

technically possible, but rather focuses on the issue of whether they can be produced with an 

economical viability and at a scale sufficient to help contribute to the world’s fuel demand. 

Moreover, the overall sustainability (environmental, economical and social) of the algae 

biofuels produced is of great importance. Therefore, the first step of this work is to investigate 

the current status and prospects of using microalgae for biofuels production. Afterwards, the 

first research question arises: 1) What are the main drivers that influence the overall 

sustainability of microalgae biofuels, considering economic, social and environmental 

impacts? 

After analyzing these key aspects for the future development of such technology, 

there is a need to analyze the present policy situation of cultivating microalgae for biofuel 

production, to evaluate possible opportunities and weaknesses and to forecast ways to 

enhance the diffusion of algae biofuels in the market. This leads to addition objectives to be 

attended: 2) Which policies currently affect microalgae biofuels industry? and 3) What 

policies could enhance the diffusion of microalgae in the transportation market share in 

the future?  

1.3. Methodology 

In order to make the intersection of three major areas of knowledge: the economic 

policies that handle the regulation of the biofuel energy industry (with analysis of the 

incentives, regulatory constraints and taxes), with processes of technological diffusion and 
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performance evaluation (Figure 1), these three major groups of knowledge were separated in 

three different categories. One category handles with economic policies, the second focuses 

on processes of technological diffusion of emerging technologies; and the final category 

assesses the economical evaluation analysis of this technology. 

 

 

Figure 1: Three studied categories in the algal biofuels market 

 

For the economic policies category, an examination was created to point out the 

main differences between policies around the world concerning algae biofuels and other 

biofuels that could substitute fossil fuels, and how they have developed during the last years. 

As this is an emerging energy market and, so far, there is no reliable and consistent data on 

the performance of the microalgae industry, a policy review of biofuels was carried out to 

point out some of the most efficient policies and technologies so far.  

As for the technological evaluation analysis of microalgae biofuels, a qualitative 

Deplhi Survey research was applied within an universe of worldwide algae biofuel experts. 

The key objective of our Delphi study was to determine the prospects of using microalgae for 

biofuels production within a time scale extending to 2030 and to identify the experts' 

consensus pros and cons of this emerging technology. This method is especially suitable in 

Processes of 
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judgment and long-range forecasting (20-30 years) situations, when expert opinions are often 

the only source of information available, as is the case of this emergent industry, due to a lack 

of appropriate historical, economic or technical data (Gupta and Clark, 1996).  

Strictly linked with the previous categories, the subsequent category of this study 

targeted to provide information regarding to the technology diffusion of recently found 

energetic pathways, in particular to assess how they are developing and which are or were the 

main barriers found along their diffusion. Besides a first stage of data collection, the methods 

used to develop future diffusion pathways of emerging biofuels were a combination of the 

Delphi Survey with experts and modeling future scenarios using Stochastic Automata 

Networks (SANs).   

For the scenario modeling, it was required widen levelized costs estimates that 

represent the fundamental assumptions, so that biofuel cost estimates can be usefully 

compared across technologies, taking into account the market value of the power generated 

and the associated externalities. In this way, it was possible to draw several conclusions 

related to the most effective public policies implemented so far and to present possible 

scenarios that could demonstrate the dissemination of this emerging technology in the future.  

1.4. Significance of the study 

The focus of using renewable energy in the transport sector leads to reduced 

dependence on oil, and consequently a reduction of the external trade deficit balance. Also, 

the usage of biofuels based on algae or other crops oils could lead to reductions in the CO2 

emissions, thereby contributing to tackle climate change by reducing greenhouse gases 

emissions (IEA, 2012). Moreover, diversification of supply sources has the ambition to 

increase security of supply by the endogenous production of fuels, essential to the transport 

sector.  

This is where the algal biofuels can really make a contribution to the future world 

sustainability, since most studies confirmed the technical and biological feasibility to produce 

biofuels in large quantities from microalgae. However, the research so far in this area is more 
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scientific than technical, often related to areas such as biology or chemistry, pointing the need 

to investigate in other spheres (namely, economical, social, environmental, technical and 

practical implementation of new or improved technologies, and policies), so that policy 

makers, industries or entrepreneurs can make the decision whether, or not, to invest in this 

technology. 

The study herein offered targets to fill-in, at least partially, the above-mentioned 

gap by considering different categories of scenarios that exemplify some key drivers that may 

have been restraining this technology successful path. Thus, this work could support, not only 

private companies so that they could decide on the adequate method of cultivation/production 

to explore, but would also benefit governments when deciding what policies to adopt to 

enhance the diffusion of such technology. 

1.5. Thesis overview 

This thesis is organized in 6 Chapters. In this first Chapter, the introduction, 

background, and definition of the problem, methodology and significance of the study were 

presented. Afterwards, a literature review of microalgae as a feedstock for biofuels is 

developed in Chapter 2. Biofuels diffusion and policies are discussed in Chapter 3. The 

performed Delphi survey method and results are described in Chapter 4, while the diffusion 

scenarios methods, results and discussion are presented in Chapter 5. Finally, conclusions are 

drawn in Chapter 6.     
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2. LITERATURE REVIEW: MICROALGAE AS A BIOFUEL 

FEEDSTOCK 

This section gives an overview of algae, details the attributes of producing algae 

biomass and describes the process of cultivating, harvesting and producing biomass. This 

chapter also aims to provide a literature review of the relevant economic, environmental and 

social assessments.   

2.1. Algae cultivation techniques 

Microalgae are photosynthetic organisms that can grow in a wide variety of 

environments and conditions, including fresh, salty and brackish water (Benemann, 2012). 

Their mechanism of photosynthesis is similar to higher plants, with the difference that the 

conversion of solar energy is generally more efficient because of their simplified cellular 

structure and more efficient access to water, CO2, and other nutrients.  

“Its uniqueness that separates them from other microorganisms is due to presence of chlorophyll and 
having photosynthetic ability in a single algal cell, therefore allowing easy operation for biomass 
generation and effective genetic and metabolic research in a much shorter time period than conventional 
plants”.(Singh and Sharma, 2012; p.2348). 

In addition, the cultivation requirements are quite small, as most species only need 

water, CO2, and some essential nutrients such as nitrates and phosphates and potassium, 

without needing the use of pesticides or fertilizers (Groom et al., 2008; Singh and Sharma, 

2012). Microalgae can produce lipids, proteins and carbohydrates in large amounts over short 

periods of time. For these reasons, microalgae are capable of producing 30 times as much oil 

per unit of land area when compared to terrestrial oilseed (Sheehan et al., 1998). And this oil 

can be processed into both biofuels and valuable co-products (Singh and Sharma, 2012). 

The microalgae cultivation can be either heterotrophic or autotrophic. The 

heterotrophic method is a biochemical conversion that relies on input feedstock derived from 

an upstream photosynthetic source. This approach uses closed bioreactor systems in a 



 

 

 

 

 

biochemical conversion process without light inputs. This dark fermentation process is based 

on the consumption of simple organic carbon compounds, like sugars or acetate. The 

cultivation of algae using cellulosic sugars produced from wood and agricultural wastes or 

purpose grown energy crops is an area of active research and development (Buford et al. 

2012).  

On the other hand, the autotrophic cultivation requires only inorganic c

such as CO2, salts and a source of light energy for their growth. This photosynthetic 

conversion involves two main methods: open ponds and closed photobioreactors

biomass produced in these autotrophic processes include lipids that can 

(Brennan and Owende 2010; Buford et al. 2012).
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Microalgae are also grown in tanks and small-scale photobioreactors (PBRs), in 

hundreds of different systems around the world, producing from small amounts to huge sums 

of biomass annually. In this closed autotrophic approach, algae grow with sunlight or artificial 

lighting (Benemann, 2012; Buford et al., 2012). Different types of photobioreactors have been 

designed and developed for cultivating algae, that can be horizontal, vertical, tubular, flat, etc. 

(Benemann, 2012; Singh and Sharma, 2012). Each of these photobioreactors has their own 

advantages and disadvantages. Several studies are being developed which may overcome their 

limitations in the years to come (Singh and Sharma, 2012). 

2.1.1. Comparing open ponds and photobioreactors systems 

Commercial algae production facilities employ both open and closed cultivation 

systems. Each of these present advantages and disadvantages, but both require high capital 

input (Pienkos and Darzins, 2009). Open ponds are cheaper than closed systems because it 

demands relatively high capital and operations and management (O&M) costs associated with 

installation and operation of PBRs (Benemann, 2012; Buford et al., 2012).  

Lower costs and the possibility to scale up to several hectares turn open ponds the 

main choice for algae commercial production (Benemann, 2012). However, open pond 

cultures suffer from many limitations that can disrupt algal productivity during unexpected 

environmental events. Another challenge for this system includes having access to an 

adequate supply of water for growth due to continuing loss of water through evaporation. 

Therefore, open ponds must be in a geographic setting that has a fairly near source of water 

and a relatively flat terrain to avoid costly earthworks (Buford et al., 2012). Moreover, the 

open systems are susceptible to wind-born biological agents that can affect the cultivation, 

such as grazers, infectious fungi, lytic bacteria, viruses, other algae, etc., and also lower 

temperatures in colder climates (Benemann, 2012).  

These open pond limitations stimulate PBRs development, however, only a few 

commercial plants use closed PBRs, mainly due to high costs as abovementioned. Nowadays, 

according to Benemann (2012) microalgae cannot be grown in PBRs for biofuels and are not 

even successful for high value products. However, PBRs can be used for seed culture 
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production, though only for ~0.1% of the biomass. Closed photobioreactors are significantly 

more expensive to construct, but have not been engineered to the extent of other reactors in 

commercial practice, and so there may be opportunities for significant cost reductions. 

Neither open ponds nor closed photobioreactors are mature technologies. 

Therefore, until large-scale systems are built and operated over a number of years, many 

uncertainties will remain. Cultivation issues for both open and closed systems, such as reactor 

construction materials, mixing, optimal cultivation scale, heating/cooling, evaporation, O2 

build-up, and CO2 administration, have been considered and explored to some degree, but 

more definitive answers await detailed and expansive scale-up evaluations (Pienkos and 

Darzins, 2009). 

Concerning the various algal species and strains, they vary from study to study, 

depending on location and culture techniques. For that reason it is not yet possible to predict 

what species or strain will be the best suited for commercial biofuel production, but it is most 

likely that it will differ from case to case, depending on the location, cultivation techniques 

chosen, processing technologies available, nutrients source, local climacteric conditions, 

among other potential factors. 

2.1.2. Harvesting methods 

The algal biomass production process requires one or more solid-liquid separation 

steps. Generally, first stage involves a separation of biomass from the bulk suspension 

(including flocculation, flotation or gravity sedimentation). The second stage (thickening) 

raises the concentration of the slurry through techniques such as centrifugation, filtration and 

ultrasonic aggregation; hence, it is generally a more energy intensive step than bulk 

harvesting (Brennan and Owende, 2010).  

The flocculation is the first (preparatory) stage that is intended to aggregate the 

microalgae cells in order to increase the effective ‘‘particle’’ size. Unlike flocculation, 

flotation methods are based on the trapping of algae cells, using dispersed micro-air bubbles. 

Gravity and centrifugation sedimentation methods are based on characteristics of suspended 

solids and are determined by density and radius of algae cells and sedimentation velocity. It is 
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the most common harvesting technique for algae biomass in wastewater treatment because of 

the large volumes treated and the low value of the biomass generated. The filtration process is 

better suited for harvesting relatively large (>70mm) microalgae such as Coelastrum and 

Spirulina. The membrane microfiltration and ultra-filtration (hydrostatic pressure) are viable 

alternatives to recovery of biomass from smaller algae cells (<30mm), like Dunaliella and 

Chlorella (Brennan and Owende, 2010). Some species are much easier to harvest, considering 

algae densities and size. The strain characteristics, cost and energy efficiency are the main 

factors to select harvesting technology (Brennan and Owende 2010). 

2.1.3. Extraction of algae oil 

The common techniques for oil extraction are mechanical pressing, the usage of 

solvents and supercritical fluid extraction. Each of these different methods presents its own 

advantages and disadvantages. The oil extraction method can be divided into expression and 

ultrasonic-assisted extraction and the efficiency normally ranges from 70 to 75% (Rengel, 

2008). The main drawback of this method is that it generally requires drying the algae 

beforehand, which is an energy intensive step. 

Using solvents such as n-hexane, benzene, ethanol, chloroform and diethyl ether 

can efficiently extract the fatty acids from algae cells. However, the use of chemicals in the 

process could present environmental, safety and health issues. In many cases, manufacturers 

of algae oil use a combination of mechanical pressing and chemical solvents in extracting oil 

to improve efficiency (around 95%).  

Supercritical extraction requires high-pressure equipment that is both expensive 

and energy intensive. In this process, carbon dioxide is heated and compressed until it reaches 

a liquid-gas state. Then, it is applied to the harvested algae and acts like a solvent (Mendes et 

al., 1995; Ferreira et al., 2013). 

Apart from these, there are some other more expensive and less known and 

utilized methods which are enzymatic extraction that uses enzymes to degrade the cell walls 

with water acting as the solvent; and osmotic shock, that is a sudden reduction in osmotic 

pressure that can cause cells in a solution to rupture.  
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Once the oil is extracted through these methods it is referred to as "green crude". 

However, it is not ready to be used as biofuel until it undergoes a process 

called transesterification. This step is a chemical reaction in which triglycerides of the oil 

react with methanol or ethanol to produce (m)ethyl esters and glycerol (Rengel, 2008). This 

reaction creates a mix of biodiesel and glycerol that is further processed to be separated and 

leaves ready to use biodiesel.  

Direct conversions from a non-dry state are being studied and some possibilities 

that may play an important role in offsetting the costs and improve oil extraction efficiency 

are arising. Among these, it is important to highlight in situ transesterification and 

hydrothermal liquefaction  (Chen et al., 2009; Patil et al., 2008). Nevertheless, due to limited 

level information in these processes for algae, more research in these subjects is still 

desirable. 

Meanwhile, work is being made to reduce energy input and costs of extraction 

processes. Many industries claim they have come up with cost-effective methods in this area, 

however, until large scale facilities are deployed it is hard to tell which one will work in a 

large scale basis. 

The whole algae, bio oil or the residues from oil extraction are excellent feedstock 

for making other fuels and products via different processes. Some of these products will be 

presented in the next section. 

2.2. Products and processes 

Microalgae have been studied for many years for production of goods and special 

human foods and animal feeds. Moreover, algae can generate a wide range of biofuels, 

including biohydrogen, methane, oils (triglycerides and hydrocarbons, convertible to 

biodiesel, jet fuels, etc.), and, to a lesser extent, bioethanol. Meanwhile, these products 

creation involves different processes such as biochemical and thermochemical conversions or 

chemical separation or a direct combustion (Huesemann et al., 2010). Like a refinery, it is still 
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possible to obtain other non-energy products in the cultivation of microalgae, such as 

cosmetics, animal feed, nutraceuticals, among others.  

Subhadra and Edwards (2011) analyzed algal biorefinery-based integrated 

industrial sector that produce primary biofuel (biodiesel) and co-products such as algal meal 

(AM), omega-3 fatty acids (O3FA) and glycerin. They demonstrated that biorefineries have a 

clear market for AM and O3FA up to a certain level, thereafter, diversification for other co-

products is desirable. However, co-product market analysis and water footprint (WFP) of 

algal biorefineries need to be studied before large scale deployment and adoption. In addition, 

Benemann (2012) argued that saying that "animal feeds could be readily co-produced with 

algae biofuels are incorrect”; because there are significant differences in the processes focus, 

quantities production, volume and market values, comparing co-products with biofuels. 

However, algal biofuel can be integrated with aquaculture to treat the wastes. 

2.2.1. Human and animal products 

The commercial potential for microalgae represents a largely untapped resource, 

once there is a huge number of algae species. Some microalgae are mainly used to human 

nutrition, but are suitable for preparation of animal feed supplements. Like a biorefinery, it is 

possible to produce from biofuel and co-products (especially glycerin) to pigments and 

nutraceuticals. 

The production of microalgae started in the early 1960s with the culture of 

Chlorella as a food additive and had expanded in others countries (Japan, USA, India, Israel, 

and Australia) until 1980s (Brennan and Owende, 2010). The oil (triglycerides) extract from 

microalgae Chlorella, produced by dark fermentation, has high nutrient value and protein 

content, and their omega-3 fatty acid – DHA has been used as an ingredient in infant formulas 

(Brennan and Owende, 2010; Benemann, 2012).  D. salina, is exploited for its b-carotene 

content. Many strains of cyanobacteria  (e.g. Spirulina) have been studied to “produce the 

neurotoxin β-N-Methylamino-L-alanine (BMAA) that is linked to Amyotrophic Lateral 

Sclerosis (Lou Gehrig's Disease) (ALS) and Alzheimer’s disease.” (Brennan and Owende, 

2010 p. 572). The human consumption of microalgae biomass is restricted to very few species 



 

 

LITERATURE REVIEW 

 

 

26 

 

(Chlorella, Spirulina and Dunaliella species dominate the market) due to the strict food safety 

regulations, commercial factors, market demand and specific preparation. According to 

Subhadra and Edwards (2011; p.3520),  

“a market survey of global algal producers indicated that more companies are planning to grow 
algae and extract the O3FA to market to consumers […] an immediate market of 0.2– 0.4 
million ton can be foreseen for algal based O3FA. A small portion can be further refined for 
marketing as human nutraceuticals and a significant portion for fortifying the AM produced as a 
co-product by algal biofuel refineries.” 

In the end of biodiesel production, it is possible to obtain a significant amount of 

glycerin that has a clear existing market from many industries such as paint and 

pharmaceuticals. Some studies “have also shown that glycerin in turn can be effectively 

utilized to grow more algal biomass, another viable method of using glycerin in algal biofuel 

industry” (Subhadra and Edwards, 2011; p.3520). 

Although the microalgae biomass is being produced essentially to human 

nutritional products, perhaps it is most attractive as animal feeds (Benemann, 2012). Algae 

are the natural food source of aquaculture species such as molluscs, shrimps and fish. In 

addition, it assists the stabilization, improvement and enhancement of the immune systems of 

these cultures (Brennan and Owende, 2010). They possess high protein rate (typical 50%) and 

energy content (~20 MJ/kg) and high concentrations of astaxanthin (used in salmon feed) and 

valuable carotenoids (e.g. lutein - used in chicken feed). Microalgae has also a long-chain of 

omega-3 fatty acids to replace fish meal/oil (Benemann, 2012).  

2.2.2. Energetic products  

As stated before, like in a refinery, it is still possible to obtain other products in 

the cultivation of microalgae, such as methane, biohydrogen and ethanol. Some examples of 

these possibilities are presented as follows. 

2.2.2.1. Methane   

Since early studies on microalgae biofuels the production of methane biogas 

production by anaerobic digestion of biomass was a main focus (Benemann, 2012). This 

microbial conversion (of organic matter into biogas) produces a mixture of methane, CO2, 
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water vapor, small amounts hydrogen sulfide and sometimes hydrogen (Gunaseelan, 1997 

apud Huesemann et. al., 2010). This process has been successfully and economically viable 

despite the recalcitrance of some algal species to biodegradation and inhibition of the 

conversion process by ammonia released from the biomass (Benemann, 2012; Huesemann et. 

al., 2010).  According to Huesemann et al. (2010; p.169): 

“Methane generation by anaerobic digestion can be considered to be the default energy 
conversion process for microalgal biomass, including algal biomass produced during 
wastewater treatment and for the conversion of residuals remaining after oil extraction or 
fermentation to produce more valuable liquid fuels. ” 

2.2.2.2. Hydrogen  

There are three main processes to produce hydrogen from microalgae: dark 

fermentation; photo-fermentation and biophotolysis. The first involves anaerobic conversion 

of reduced substrates from algae, such as starch, glycogen, or glycerol into hydrogen, 

solvents, and mixed acids.  Secondly, these organic acids “can be converted into hydrogen 

using nitrogen-fixing photosynthetic bacteria in a process called photofermentation.” The 

latter, biophotolysis processes use microalgae to catalyze the conversion of solar energy and 

water into hydrogen fuel, with oxygen as a byproduct (Huesemann et. al., 2010). Although 

these mechanisms were successfully proven in laboratory scale, they have not yet been 

developed as a practical commercial process to produce hydrogen from algae (Huesemann et 

al., 2010; Ferreira et al., 2013).  

2.2.2.3. Ethanol 

On the other hand, ethanol can be generated from two alternative processes: 

storage carbohydrates (fermented with yeast) or endogenous algal enzymes (Benemann, 2012; 

Huesemann et. al., 2010). The main process is “yeast fermentation of carbohydrate storage 

products, such as starch in green algae, glycogen in cyanobacteria, or even glycerol 

accumulated at high salinities by Dunaliella” (Sayadi et al., 2011). A self-fermentation by 

endogenous algal enzymes induced in the absence of oxygen has been reported for 

Chlamydomonas. Against the very low ethanol yield from fermentation, several private 

companies are now reported to be developing ethanol fermentations. 
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2.2.2.4. Electricity and Gasification 

The microalgae biomass can be dried and combusted to generate electricity, but 

the drying process is fairly expensive even if solar drying is employed. The combustion and 

thermal process can destroy the nitrogen fertilizer content of the biomass and generate 

elevated emissions of NOx. In addition, the combustion process competes with coal and wood 

biomass that are cheaper than microalgae biomass (Huesemann et al., 2010). Although 

expensive, this can be a key factor for algae to achieve energetic balance and improve its 

sustainability as presented in the "environmental assessment" section. Effusive research is 

being carried in new and more effective drying techniques in order to reduce costs and 

impacts.  

2.2.2.5. Oil 

The significant quantities of neutral lipids, primarily as triacylglycerols, can be 

extracted from the biomass (green algae and diatoms) and converted into biodiesel or green 

diesel as substitutes for petroleum-derived transportation fuels. “Lipid biosynthesis is 

typically triggered under conditions when cellular growth is limited, such as by a nutrient 

deficiency, but metabolic energy supply via photosynthesis is not” (Roessler, 1990 apud 

Huesemann, et. al., 2010; p.170).  

The biodiesel produced from algal oil has physical and chemical properties 

similar to diesel from petroleum, to 1st generation biodiesel produced from crops, and 

compares favorably with the International Biodiesel Standard for Vehicles (EN14214) and 

other national and international norms (Brennan and Owende, 2010). 

Algal biocrude could also be produced and mixed with fossil oil in existing oil 

refineries. When compared to petroleum-derived fuels, algal biocrude can offer several 

advantages due to its elemental composition, low sulfur content, and relative lack of heavy 

metals (Liu et al., 2013).  
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2.2.3. Other products 

There are several other products that can be produced from microalgae 

cultivation. From them, special attention should be given to Glycerol (1,2,3-propanetriol or 

glycerin) that is a byproduct obtained during the production of biodiesel (Demirbas and 

Demirbas, 2010). Crude glycerol is the principal byproduct of biodiesel production, which 

accounts for about 10 wt% of vegetable oil. For every 9 kg of biodiesel produced, about 1 kg 

of a crude glycerol byproduct is formed (Dasari et al., 2005). 

Jet fuels can also be made from microalgae, making it very interesting for the air 

transportation lack of biofuel options so far. In the same manner, algae biofuel can be made 

for marine engines and have already been tested in both industries with positive results 

(Stratton, Wong and Hileman, 2010). Other possibilities of production are biopolymers, P-

series fuels, Dimethyl ethers, biofertilizers, among others.    

2.2.4. Processes schematics  

The main petroleum-based fuels are gasoline and diesel. When biomass is used in 

the production of biofuels, using different processes, different products can be obtained, such 

as sugar ethanol, cellulosic ethanol, grain ethanol, biodiesel, pyrolysis liquids, green diesel, 

green gasoline, butanol, methanol, syngas liquids, biohydrogen, algae diesel, algae jet fuel, 

and hydrocarbons (Demirbas and Demirbas, 2010). Petroleum-based and bio-based 

transportation fuels are presented in Figure 3. 
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Figure 3: Petroleum and bio-based transportation fuels (Demirbas and Demirbas, 2010). 

Focusing only in the renewable biomass part of the diagram, the range of 

feedstocks processes, and potential products is large. Each combination of feedstock, process, 

and product is characterized by its own unique combination of technical and economic 

opportunities, emerging technologies, and barriers (Demirbas and Demirbas, 2010). An 

overview of conversion routes of plant biomass feedstocks to biofuels is shown in Figure 4.  
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Figure 4: Overview of conversion processes of plant biomass feedstocks into biofuels (Demirbas and 

Demirbas, 2010). 

As said previously, when using algae as a feedstock for biofuels, it is possible to 

employ the biorefinery so that the overall process becomes more cost-effective. Biorefinery is 

a conceptual model for future biofuel production where both fuels and high-value co-product 

materials are produced. Biorefineries can simultaneously produce biofuels as well as bio-

based chemicals, co-products, heat, and power. Future biorefineries would be able to mimic 

the energy efficiency of modern oil refining through extensive heat integration and co-product 

development. Resources, energy and heat that are produced from some processes within the 

biorefinery could be used to meet the needs of other processes in the system (Demirbas and 

Demirbas, 2010). A basic concept of biorefinery is shown in Figure 5. 
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: Biorefinery concept (Demirbas and Demirbas, 2010)..  

Regarding processes to obtain energy products from microalgae, there are various 

processes described in the literature. As the cultivation of microalgae is not a mature process 

to produce biofuels, little is known about which processes are going to dominate the possible 

algae biorefineries in the future. Depending on the process chosen, different requirements are 

needed and products are made. Some of these processes are shown in Figure 

products depending on the options made in Figure 7. 
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Figure 6: Algae biofuel possible processes (U.S. DOE, 2010). 

 

Figure 7: Algae biofuel possible process options and co-products (U.S. DOE, 2010). 
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A lot of research is been carried in many of these processes so that the overall 

efficiency in terms of productivity, economical feasibility and environmental impact are 

enhanced. Unfortunately, so far it is difficult to predict which processes and co-products are 

going to be the chosen ones in order to maximize the algae biofuel potential. 

2.2.5. Productivity and lipid content 

When the oil yield of different biofuel crops are compared, it becomes clearer that 

microalgae biofuels are far more efficient, as demonstrated in Table 1. 

     

Table 1: Comparison of estimated production and land-use requirement from various biofuel crops 

Crop Oil Yield (L/ha) Land area needed (M ha) a 
Corn 172 1540 

Soybean 446 594 

Canola 1190 223 

Jatropha 1892 140 

Coconut 2689 99 

Palm oil 5950 45 

Microalgae b 136.900 2 

Microalgae c 58.700 4.5 

a 
For meeting 50% of all transport fuel needs of the United States.

 

b 
70% oil (by weight) in biomass.

 

c 
30% oil (by weight) in biomass. 

Data source: Chisti, 2007.     

 

From this table is possible to note one of the reasons why algae as a biofuel 

feedstock has drawn so much attention. However, the microalgal oil yield can vary immensely 

depending on the cultivation process and algae strain employed. Some of this oil yields as 

well the algae strain used and the cultivation process can be seen later on Table 3 (section 

2.3.2.2.7). 

Genetic modification may also be promising in improving biomass and oil 

productivity (Beer et al., 2009; Radakovits et al., 2010). However, genetically modified 
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highly resilient algae species could have very important and negative impacts on native algal 

species and to marine and freshwater ecosystems in general (Passell et al., 2013). The overall 

sustainability of algae biofuels is presented in the succeeding section. 

2.3. Sustainability of algae biofuels 

In order to address the sustainability of microalgae biofuels, first it is important to 

conceptualize sustainable development and Sustainability. The concept of sustainable 

development was described by the Bruntland Commission Report (United Nations, 1987; 

p.15) as “development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs”.  

Depending on the author, there are a different number of dimensions to be 

considered regarding sustainable development. In this study, the dimensions considered are 

society, environment and economy, which are intertwined. Therefore, sustainability is a 

paradigm for thinking about the future in which environmental, societal and economic 

considerations are balanced in the pursuit of an improved quality of life (UNESCO, 2014). 

The classic "Triple Bottom Line" displayed in Figure 8 represents these dimensions.  

 

Figure 8: Sustainability Triple Bottom Line 
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In the next sections the three dimensions abovementioned are discussed having 

microalgae biofuels in line. 

2.3.1. Environmental assessment 

This section gathers a comprehensive literature review of the main findings from 

algae-based biofuels production environmental impacts. Life cycle assessments (LCAs) of 

published scientific papers and reports were used in the development of the subsequent 

sections. 

2.3.1.1. Land 

The production of 1st generation biofuels being based on agricultural products, 

where land is the main input, represents a shift in land use away from food production and 

poses a global dilemma: the need to feed humanity versus the greater monetary returns to 

farmers from agro-energy (Azar, 2003). This shift of land use increases food prices and 

decrease stocks of food products, with respective decline of exports (Rathmann et al., 2010). 

The increased pressure on arable land could also lead to severe food shortages, in a world 

where already 842 million people suffer from hunger and malnutrition (FAO, 2013).  

As opposed to first generation land-based biofuels produced from agricultural 

feedstocks, cultivation of algae for biofuel does not necessarily use fertile agricultural land 

(Iersel and Flammini, 2010; Pittman et al., 2011). Thus, if non-arable land is used in the 

production of emerging biofuels, all the dire effects just mentioned will not occur. This is said 

to be one of the main advantages of algae biofuels cultivation and production.  

However, emerging biofuel technologies could become unsustainable if they 

compete with food crops for available land. In this scenario, their sustainability would depend 

on whether producers comply with criteria such as minimum lifecycle Greenhouse Gas 

(GHG) reductions, including land use change and social standards (Eisentraut, 2010). 

Another important requirement for cultivation is flat land, due to higher costs 

associated with soil excavation and water pumping (Davis et al., 2012). Just to cite an 
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example of feasible land normally considered in algal biofuel studies, Davis et al. (2012; p.15) 

from an Argonne and RNEL study characterize the usable land as    

“From the suitable slope areas, only non-agricultural, undeveloped, or low-density developed, 
non-sensitive, generally non-competitive land was considered for microalgal culture facilities. 
Specifically, this excludes open water, urban areas, airports, cultivated cropland and orchards, 
federal and state protected areas such as national and state parks, wilderness areas, wildlife 
refuges, wetlands, and other areas that are deemed environmentally sensitive.” 

With the possibility to use non-arable land, microalgae biofuel production has the 

potential to provide benefits such as making use of abandoned land, promote rural 

development and improve economic conditions in emerging and developing regions (Singh et 

al., 2011). This could benefit vast regions in the globe that are not proper for agricultural 

purposes and, in the present day, are not economically attractive. 

As presented in Section 2.2.5 (Table 1), another important quality of algal-based 

fuels is oil yield. This is a crucial factor to be considered for the diffusion of algae as a 

feedstock for biofuels, because make it possible to produce large amounts of fuel in 

considerable less land than 1st generation biofuels. Land use estimates show that algae 

cultivation on roughly 13% of the United States’ land area could meet the nation’s total 

annual energy consumption (Clarens et al., 2010). 

Due to all exposed before, when compared to other sources of biofuels algae 

performs favorably concerning land issues (Figure 9).  

 

Figure 9: Hectares of land needed to produce 1000 GJ of raw energy (Miller, 2010). 
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Regarding where are the best places to establish an algae biofuel facility, it is 

important to take into account the easiness of source of water. Topic that will be discussed in 

the next section.  

2.3.1.2. Water  

Water utilization is a key factor on the cultivation of microalgae where a regular 

source of water supply is fundamental for this process of producing biofuels. As fresh water is 

a natural resource with a highest consumption rate and increasingly scarce, it can be addressed 

as a significant environmental concern in the development of algal biofuels, as water is the 

essential medium of algae growth and many of the world’s aquifers are dealing with an 

unsustainable level of water extraction (Mcgraw, 2009). 

It is estimated that algae biofuel production will necessitate a significant amount 

of annual water utilization. Pienkos (2007) has estimated that in order to displace the entire 

U.S. diesel demand, which is more than 60 billion gallons per year, the water requirement 

would be within the range of 16 – 120 trillion gallons of water per year, depending on the 

efficiency of cultivation and production. Just for comparative purposes, around 5000 trillion 

gallons of fresh water is used to irrigate the U.S. corn crops, main feedstock of current U.S. 

biofuel industry (Barton and Clark, 2014). 

Although the water issue could become a problem for the cultivation of algae 

biofuels, one of the advantages of microalgae is that they can be effectively grown in 

conditions which require minimal freshwater input, thus making the process potentially 

sustainable with regard to pre-serving freshwater resources (Pittman et al., 2011). The main 

reason for that is that many algae strains can be cultivated in saline or brackish water. For 

example, microalgae could be cultivated near to the sea to utilize saline or brackish water and 

minimize the use of freshwater. For this purpose, there has therefore been significant interest 

in the growth of microalgae for biofuels under saline conditions (e.g. Rodolfi et al., 2009; 

Takagi et al., 2006).  

However, the need for high amounts of salt water could also generate some 

concerns, as Mcgraw (2009; p.24) states: 
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“Salt water aquifers would, in this case, be the entities under threat resulting in the possible 
competition and dispute over a previously nearly untouched resource. Coastal operations 
present problems in coastal management as highly productive ecosystems are typical of coastal 
regions. Coastlines are naturally dynamic entities and movement will be artificially maintained 
through the construction of permanent structures under algal biofuels development. These issues 
can be managed to reduce changes to natural systems, but proper precaution is required.” 

Even considering the above-mentioned issues, just the possibility of using saline 

water instead of freshwater, like most of other agricultural-based biofuels, is an advance in the 

biofuels industry. Nonetheless, the implementation of wide large-scale algae farming for 

biofuel would raise new questions and concerns regarding saline water resources that need to 

be addressed in the development this technology.  

Ideally, most of algae farms would be located somewhere near (less than 50 km) a 

saline source of water that would be used in cultivation. Since it is generally not desirable to 

have to transport the water over long distances as costs will increase sharply in addition to 

environmental and social impacts that may arise from implementing long distance pipelines 

(Mcgraw, 2009). 

Besides saline water, another great potential in the cultivation of microalgae is the 

possibility to use wastewater (sewer) as a medium of cultivation and to recycle the water that 

was used. These opportunities will be handled in the next section as they are closely related to 

the nutrients that are needed for the algae cultivation.  

2.3.1.3. Nutrients  

Microalgae cultivation requires a constant supply of several inorganic nutrients, 

such as nitrogen (N), phosphorous (P), and potassium (K) to maintain high algae yields. One 

of the concerns regarding future algae large-scale cultivation is the high requirement of 

nitrogen. Depending on how the cultivation process is managed, this high nitrogen 

requirement can either have positive or negative impacts on the nitrogen cycle, as nitrogen 

can be recycled and/or supplied by a waste source (Miller, 2010). 

In this context, not only nitrogen requirements take advantage from using wastes, 

as using municipal wastewaters (sewer) for making up for water and nutrients (C, N, P, etc.) 

in the cultivation phase can be of great importance in the overall environmental sustainability 
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of microalgae biofuels (Sheehan et al., 1998). Life cycle assessments often point out that 

much of the life cycle burden associated with microalgae biofuels comes from the production 

of nutrients, which occurs upstream of the algae-to-energy facility (Liu, 2013; Clarens et 

al.,2011). Therefore, nutrients are a perennial challenge to large-scale algae bioenergy 

deployment and maximizing nutrient use efficiency would be a significant element for 

enhancing the overall life cycle assessment.  

In the other hand, providing biological cleaning in the municipal wastewater could 

be of great help on lowering environmental impacts and water treatment costs in 

communities, a win-win situation in which it would decrease the need for nutrients in the 

algae cultivation while providing a useful service for society. Sewage effluent and industrial 

nitrogenous waste, such as that from aquaculture and manure from animal farms could also be 

mitigated and remediated through the use of microalgae growth (Mcgraw, 2009). A 

significant advantage of algal employment in wastewater treatment over the conventional 

chemical-based treatment methods is the potential cost saving and the lower level technology 

that is used, therefore making this approach more attractive to developing countries (Pittman 

et al., 2011). While the use of wastewater for algal biomass cultivation could help minimize 

algal nutrient requirements it could also decrease algae biofuels water footprint (Yang et al., 

2011).  

Another interesting practice already used in many industries, is to recycle the 

water used in the process. In this way, apart from using much less water in the overall 

process, harvested water recycling can significantly reduce the nutrient usage (Yang et al., 

2011). Yang et al. (2011) LCA study shows that when the harvest water is 100% recycled, the 

usage of these nutrients decreases by approximately 55% and the need of water is reduced 

84%. Furthermore, the study shows that using sea water as culture medium also decreases  

water requirement, and eliminates the need of all the nutrients except phosphate as shown in 

Figure 10.  
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Figure 10: Life cycle use of nutrients in freshwater medium with/without harvest water recycling (left) and 

life cycle use of nutrients in sea and wastewater medium with 100% harvest water recycling (right). 

(Yang et al., 2011) 

Thus, the use of sea and wastewater resources may be a viable means to enhance 

the environmental sustainability of algal biofuel production, by providing a dual use process, 

an effective growth medium for algal cultivation and freely available nutrients (Pittman et al., 

2011). 

2.3.1.4. Air  

In the majority of microalgae cultivation, carbon dioxide must be fed constantly 

during daylight hours, in fact CO2 supply is essential for high productivity. In this way, algae 

facilities can potentially use some of the carbon dioxide that is released in power plants by 

burning fossil fuels or other industrial processes. This CO2 is often available at little or no 

cost (Chisti, 2007). This sort of fixation is already being made in some large algae companies 

in a trial basis; though, there is a lack of public data of the results yet. Although this is a very 

promising future possibility, and some species have proven capable of using the flue gas as 

nutrients, there are few species that survive at high concentrations of NOx and SOx present in 

these gases (Brown, 1996). In the same manner, algae can even capture other pollutants from 

combustion gas, so whenever possible, algae cultivation should be co-located with CO2 

emitting industries (Iersel and Flammini, 2010). 
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Considering recent LCA studies, Liu et al. (2013) presented promising results 

concerning the overall GHG emissions and Energy Return on Investment (EROI) 

performance of producing biofuels from algae. This study is based on the results of a 

hydrothermal liquefaction (HTL) pilot-scale facility in which they also presented lab scale 

and a future full scale results. This study is of great importance because it was based on pilot-

scale data, while most of algae research so far are based on laboratory-scale research and 

theoretical studies.  

Liu et al. (2013) results demonstrate that the deployed algae-to-energy production 

processes in the pilot-scale scenario have energy burdens and GHG emission profiles that are 

comparable to or better than conventional biofuels, cellulosic ethanol and soybean biodiesel. 

The GHG emissions comparison with other algae fuels processes are also lower than other 

existing algae-to-energy processes based on transesterification as captured in the Meta-Model 

of Algae Bio-Energy Life Cycles (MABEL) (Liu et al., 2013). Their results are shown in 

Figure 11. 

 

Figure 11: The EROI ratio and GHG emissions/MJ of (a) algae-derived diesel and (b) algae-derived gasoline 

produced using HTL (Liu et al.,2013). 

The results are benchmarked against commercialized biodiesel or bioethanol as well as petroleum-derived versions of 
the drop-in fuels. Better outcomes are in the upper left hand corner of the plots (i.e., high EROI, low GHG emissions). 
Error bars correspond to 90% confidence intervals from the Monte Carlo simulations carried out here. The estimates 
came from (Hill et al., 2006) for soybean biodiesel; (California Air Resources Board, 2009; Wang, 2009) for cellulosic 
ethanol; (Frank et al., 2011; Wang, 2009; Farrell et al., 2006) for corn ethanol; and (Liu et al.,2012) for MABEL. 

 

For analyzing the graph, the lower the life cycle GHG emissions the better and the 

higher the EROI the better, making it desirable fuels that appear in the top left hand side of 
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both graphs. A separate analysis of the presented results show that the pilot-scale EROI is 

approximately 1, however, with the increase in efficiency and scale the full-scale scenario 

could reach an EROI between 2.5 and 3, using the described technology. Nonetheless, it is 

important to stress that EROI metrics ignores market factors that would make some energy 

outputs (e.g., liquid fuels) more desirable than others (e.g., CH4) (Liu et al., 2013). 

It is also important to notice that the soybean biodiesel results presented does not 

incorporate indirect land use effects, which are important factors influencing the carbon 

accounting of 1st generation biofuels. Although, these effects were also not considered for 

algae, it is expected that algae’s indirect land use carbon impacts will be much smaller than 

those of other crops because algae can be cultivated on marginal land as already discussed in 

Section 2.3.1.1.  

Others LCAs accounted for microalgae biofuels production GHG emissions and 

EROI, with different results. Regarding GHG emissions, in Zaimes and Khanna (2013) 

results, life cycle GHG emissions accounted for -46.2 to 48.9 g CO2 eq/MJ-biomass, while 

Campbell et al. (2011) GHG emissions ranged from -27.6 to 18.2 g CO2 eq/MJ-biomass. 

Batan et al. (2010), considering a pond-to-pump system boundary, found net GHG emissions 

comparable to the net GHG emissions for soy biodiesel, and much more favorable than the 

net GHG emissions for conventional diesel. Sander and Murthy (2010) also using the pond-

to- pump system boundary, found GHG emissions both greater and lesser than those for 

conventional gasoline depending on different algae processing steps. Clarens et al. (2010) 

base case found that GHG emissions were much greater than canola, corn, and switchgrass 

feedstocks, although cultivation using waste CO2 and wastewater nutrients could reduce those 

burdens. Passell et al. (2013) results for the base case and the future case show a Global 

Warming Potential (GWP) of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, 

petroleum diesel and soy diesel and GWP of 0.12 and 0.025, respectively. Frank et al. (2012) 

results from the baseline scenario produced 55400g CO2 equivalent per MBtu of algae 

biodiesel compared to 101000g for low-sulfur petroleum diesel. Their analysis considered the 

potential for greenhouse gas emissions from anaerobic digestion processes commonly used in 

algal biofuel models.  
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Regarding energy use, Clarens et al. (2010) found that energy use were much 

higher when compared to canola, corn, and switchgrass feedstocks. However, Clarens et al. 

(2011) built upon their earlier study and found a net positive energy balance for various 

combinations of algae biodiesel production coupled with use of waste CO2 and wastewater 

nutrients when compared to terrestrial feedstocks. Zaimes and Khanna (2013) EROI results 

for microalgae biomass vary from 0.38 to 1.08. Jorquera et al. (2010) analyzed algae biomass 

production (but not extraction, separation, or conversion to biodiesel) and found positive 

energy balances for production in both flat plate photo-bioreactors and open ponds. Frank et 

al. (2012) study shows a total energy use for algal biodiesel three times higher than petroleum 

low-sulfur diesel. 

Another metric to analyze the energy performance is the use of the cumulative Net 

Energy Ratio (NER), and is defined as the energy in algal biofuel divided by the cumulative 

energy demand of the process. It is a common tool used to show how ‘efficient’ that 

technology is in terms of providing energy to society. The greater the Net Energy Ratio 

(NER), the better.  

Batan et al. (2010) results of NER for microalgae biodiesel were less than 0.93. 

Lardon et al. (2009) provide NER values of 1.96, 1.04, 1.47, and 0.74 depending on the 

production and oil extraction processes. Frank et al. (2011) provide an NER of 2.58. Sander 

and Murthy (2010) found NERs greater than 1 across a range of analyses, depending on 

different algae processing steps. Vasudevan et al. (2012) NERs are 0.3 and 2.5, depending on 

the extraction process. 

As seen so far, the processes used to cultivate and produce the biofuels is 

determinant to the overall environmental performance of microalgae biofuels. In the same 

way, Stephenson et al. (2010) compared open raceway ponds with closed air-lift tubular 

bioreactors for producing biodiesel regarding to environmental impacts. Their study has 

shown that open ponds would have a GWP ~80% lower than fossil-derived diesel (on the 

basis of the net energy content), and if compared to bioreactors, the GWP would be ~273% 

higher than the energetically equivalent amount of fossil-derived diesel. The energy results 

also has shown that open cultivation performs better, 85% lower energy requirements than 



 

 

LITERATURE REVIEW 

 

 

45 

 

fossil-derived diesel; where with closed PBRs there is 362% higher energy needs. In their 

study, raceways would be energetically self-sufficient, with the heat and power requirement 

of the process being provided by combusting the methane generated from the anaerobic 

digestion of the residual algal biomass (Stephenson et al., 2010). 

Taking into account all exposed in this section, a discussion about all the 

possibilities and environmental impacts is presented in the next section. 

2.3.1.5. Discussion 

From all the aspects presented, so far it is not possible to say that using 

microalgae as a feedstock for producing biofuels is environmentally sustainable. It is plausible 

to state that it can be environmentally sustainable, depending on which cultivation processes 

are chosen. Microalgae’s life cycle energy balance and GHG impacts are highly dependent on 

cultivation and harvesting parameters. 

In order to reach the ideal scenario, a high level of logistics must be taken place. 

Therefore, the location of the algae farm facility must take into account a somewhat near 

source of saline water, non-agricultural land, a source of wastewater and a source of available 

CO2. Moreover, the employment of processes comparable to the use of biogas for both heat 

and electricity via a combined heat and power (CHP) system would reduce GHG and are also 

where biggest attractiveness lies. Apart from that, new technologies, which require less 

energy, need to be explored to enable the overall process to be more energy efficient. 

CO2 supply is an important upstream burden that influences the overall life cycle 

of algae cultivation. Microalgae facilities could significantly improve their overall GHG 

footprint if they could switch from using industrial CO2 (i.e., produced via natural gas 

scrubbing or from dedicated wells) to newer CO2 capture technologies (e.g., capture from the 

air or as a byproduct of other industrial processes). Anyway, a lot of CO2 sources are 

available and algal ponds could be co-located with CO2 sources, or even vice-versa (Sheehan 

et al., 1998). 

Regarding water requirements, many wastewater and saline water resources may 

be available and suitable for microalgae production, while compensating for the input of 
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many nutrients. Wastewater use could offset nutrient and CO2 demands and enhance the 

environmental assessment of algal biofuels. In the same manner, non-agricultural land is 

hardly a limitation, making resource limitations not a feasible argument against microalgae 

biofuel systems. 

Another very important topic is oil yields, since the environmental performance of 

microalgal biodiesel is highly sensitive to the oil content, esterification rate and drying rate. 

The amount of GHG decreases when the microalgae yield increases, therefore, it is important 

to achieve high yields of biomass and oil in the cultivation plant (Yanfen, Zehao and 

Xiaoqian, 2012).  

However, finding strains of algae that could perform well within all the processes 

described above is not a straightforward task. Thus, the utilization of genetic modified 

organisms may represent a potential field to be studied, although it may generate undesired 

problems in the diffusion acceptance and in the overall environmental sustainability. 

Moreover, even though the Energy Return on Investment (EROI) ratios of algae-

to-energy production are not as favorable as petroleum fuels today, improvements in the short 

term tend to make algae liquid fuels competitive on an energy basis (Liu et al., 2013). In 

addition, projections suggest that algae-based biofuels are set to surpass advanced biofuels 

(e.g., cellulosic ethanol) in terms of both EROI and GHG emissions. 

As far as our concern, using microalgae as a feedstock for biofuels can reach 

significantly GHG reductions in relation to fossil and other bio-based fuels and reach a better 

EROI with the use of appropriate technology and processes options. Therefore being a 

environmentally sustainable biofuel.   

2.3.2. Economical assessment 

This section presents the main findings from a comprehensive literature review 

carried out on algae-based biofuels production costs throughout the world. The search was 

conducted with a focus on available scientific papers to gather studies that have been 

published during the last two decades containing detailed information on the methodology, 

assumptions and data used. 
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2.3.2.1. Methods 

 
The chosen papers were the ones that shared common characteristics, namely 

providing simultaneous information about the 9 elected costs and technical specific indicators. 

The selected studies main results are summarized in Table 3. Several other articles, although 

equally relevant, were withdrawn from our sample because they did not comply with our 

current data systematization and others were excluded due to lack of transparency or 

sufficient quantitative information. It is also important to notice that not all studies deliver the 

cost of production values in the same manner. Some present the costs of producing algal 

biomass and others deliver the costs of producing oil, as illustrated in Table 3. For some 

surveyed studies, the original outcomes were further calculated to express the results in 

dollars, kg and liters. A dataset was built accordingly to the above-mentioned methodology 

and comprised specific cost related indexes (Ribeiro and Silva, 2013), presented and analyzed 

in the next section.  

2.3.2.2. Analysis of surveyed studies 

2.3.2.2.1. Oil by Weight   

Microalgae produce storage lipids in the form of triacylglycerols (TAGs). The 

percentage of lipids is strongly related to the species or on how the cultivation process is 

made, as many microalgae species can be induced to accumulate substantial quantities of 

lipids. In this study, not all reviewed studies expressed the percentage of oil by weight of 

biomass, but analyzing those that provide these numbers, it is clear the wide range of values 

that can be achieved. The percentages of oil by weight varied from 10% to 60% and there was 

not a clear correlation between price and oil by weight in the selected studies. 

2.3.2.2.2. Oil Yield   

Similarly, significant variations were verified among oil yields from different 

authors. This was an expected outcome due to the utilization of different species and 

cultivating techniques. In spite of being an expected result, it is an important data when 

comparing species, techniques and costs among the studies, for example to select the more 
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adequate species for cultivation. On the other hand, these comparisons have to be made 

carefully, due to different units in which the results are presented. 

2.3.2.2.3. Cost per liter of oil  

This item is one of the main issues of algae biofuel nowadays, if not the most 

important one. Every effort is being made to reduce this figure, so that algae biofuel can be 

more competitive and can be a viable alternative in of transportation fuels market. The data 

vary widely from study to study, with conclusions stating that it is economically feasible or 

impossible to be competitive. The prices shown are not normalized for today prices, as they 

represent what authors found at that point of time. The economical feasibility of microalgae is 

one of the main drawbacks of this technology for producing biofuels. Algal biofuels have to 

be cheap to compete with other biofuels and also with the currently dominant fossil fuels. 

Given the long-term uptrend in crude oil prices, the real competitive price level for algal 

biofuels can be far higher and it could be nearer than predicted, although it is impossible to 

predict exactly when that will happen. 

2.3.2.2.4. Cost per kg of dry algae biomass 

The cost per kg of dry algae biomass is an alternative measure for evaluating the 

economically feasibility of this technology, as it is the raw material from where the oils are 

going to be extracted. Likewise to the cost per liter of oil, it was verified significant variations 

among different studies, depending on the processes and procedures used to obtain it. 

2.3.2.2.5. Type of production and culture 

The types of production found were open ponds, photobioreactors (PBRs) and 

using fermentors. Concerning the various algal species and strains, they vary from study to 

study, depending on location and culture techniques. For that reason it is not yet possible to 

predict what species or strain will be the best suited for commercial biofuel production, but it 

is most likely that it will differ from case to case, depending on the location, cultivation 

techniques chosen, processing technologies available, nutrients source, local climacteric 

conditions, among other potential factors.  
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2.3.2.2.6. Co-products 

Many of the authors refer the possibility of commercializing co-products 

generated in the production of algae biofuels. As stated before, algae can also produce 

valuable co-products, such as proteins, natural colorants, and biomass after oil extraction, that 

can be used as animal feed, as medicines or as fertilizers (Brennan and Owende, 2010; 

Spolaore et al., 2006), or, additionally, can be fermented to produce ethanol, methane or other 

biofuels (Hirano et al., 1997). Although this possibility is widely reported, just a few studies 

(Benemann and Oswald, 1996; Moheimani, 2005; van Harmelen and Oonk,  2006; Dmitrov, 

2007; Alabi et al., 2009; Williams and Laurens, 2010) looked deeply tino this issue and 

provided financial calculations on the feasibility of producing biofuel and co-products 

together. This could be a promising opportunity to make algae biofuel more economically 

feasible. With the production of many products in algae cultivation (as it is done in a 

petrochemical refinery for fossil), technical and in particular economical efficiency can arise 

in the joint production of two or more products. If the cost of producing two products by one 

firm is less than the cost of producing the same two products by two firms, the production 

process exhibits economies of scope (Rothwell, 2000).  Thus, it is expected a reduction in the 

price of algae biofuels in the coming years, if this approach is followed. In Table 2, a broad 

analysis of some possible commercial markets is presented. 
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Table 2: Summary of microalgae commercial products market 

Commercial Product 
Market Size 

(tons/yr) 
Sales Volume 

(Millions $US/yr) 
Reference 

BIOMASS    

Health Food 7,000 2,500 Pulz and Gross (2004) 

Aquaculture 1,000 700 
Pulz and Gross (2004); 
Spolaore et al. (2006) 

Animal Feed Additive N/A 300 Pulz and Gross (2004) 

Poly-Unsaturated Fatty 
Acids (PUFAs) 

   

ARA N/A 20 Pulz and Gross (2004) 

DHA < 300 1,500 
Pulz and Gross (2004); 
Spolaore et al. (2006) 

PUFA Extracts N/A 10 Pulz and Gross (2004) 

GLA Potential Product  Spolaore et al. (2006) 

EPA Potential Product  Spolaore et al. (2006) 

Anti-Oxidants    

Beta-Carotene 1,200 > 280 
Pulz and Gross (2004); 
Spolaore et al. (2006) 

Tocopherol CO2 Extract N/A 100-150 Pulz and Gross (2004) 

Coloring Substances    

Astaxanthin < 300 < 150 
Pulz and Gross (2004); 
Spolaore et al. (2006) 

Phycocyanin N/A > 10 Pulz and Gross (2004) 

Phycoerythrin N/A > 2 Pulz and Gross (2004) 

Fertilizers/Soil 
Conditioners 

   

Fertilizers, growth promoters, 
soil conditioners 

N/A 5,000 
Pulz and Gross (2004); 

Metting and Pine (1986) 
Source: U.S. DOE, 2010. 
N/A: Not available 

 

From the possibilities presented above, all these markets are currently growing 

and can be explored by the algae industry. Naturally, the conceivable co-products to be 

produced depend on the type of processes employed and algae strains. For example, the use of 

flue gases or wastewater rich in heavy metal contaminants could impact the suitability of 

using residual biomass for co-products like human food and animal feed. Yet, when 

producing other co-products such as protein in conjunction with substantial amounts of 

biofuels, it is a potential threat the saturation of potential markets, due to the large amounts 

produced (Dmitrov, 2007).  
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2.3.2.2.7. CO2 paid/free/revenue 

The input of CO2 needed for most of the processes could be provided for free, 

with no financial counterpart, it could be bought (paid) or some company that produces a 

considerable amount of CO2 could pay the algae biofuel producer to process this CO2. So far, 

this last option is just a possibility for future financial calculations, as all the studies surveyed 

or accounted CO2 for free or paid for this gas. The existing and future Carbon Markets, 

coupled with more stringent limits of the emissions, may lead to companies increasingly 

paying to dispose off of their CO2 emissions, and this may represent a reduction in the 

productions costs, resulting in lower microalgae fuel prices. Thus, the fixation of the waste 

CO2 of other sorts of business could represent another source of income to the algae industry. 

2.3.2.2.8. Commercial 

Most of the studies available in the open literature are based on small-scale 

laboratory experiments, not commercial facilities already selling algae biomass and/or 

biofuels. As most of the algae biofuel production so far was made in experimental facilities 

with low capacity of fuel production, and with many companies expanding their facilities, it is 

expected that this will lead to economies of scale, now that production is increasing and 

average costs of cultivating algae are falling (and marginal costs are below average cost) 

(Alabi et al., 2009). In this context, it is also expected that the efficiency of such companies 

rise. In this regard it is possible to differentiate “technical efficiency” and “economical 

efficiency”. Technical efficiency implies that the maximum output has been produced with a 

given set of inputs, giving that the most adequate technologies and processes are used. 

Economical efficiency implies that the maximum output has been produced at a given 

(opportunity) cost, or that a minimum (opportunity) cost has been achieved for a given level 

of output (Alabi et al., 2009). With a large set of alternatives of inputs and outputs within a 

developing market such as the algae one, it can be complex and hard to achieve the technical 

and economical efficiency in the near future, but as the time goes by and the technology 

matures, better trends in production will arise. 
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Table 3: Costs for algal biomass and biodiesel production: relevant data, processes and key results 

 
 
*For conversion, a barrel was calculated as 159 liters, a US gallon 3,78 liters and currency conversions are: $ Aus/$ US=1,05 and €/$ US= 1,4. 
** NM: Not mentioned 

Authors Year
Oil by 

Weight
Oil yield

Cost per liter of 

oil (L
-1
)

Cost per Kg of 

dry algae 

biomass (Kg
-1
)

Type of 

Production
Culture

Co-

products

CO2 

paid/free

/revenue

Commercial Country

Gladue and Maxey 1994 50% 20g.L
-1
.d
-1 NM $12 Fermentor N. alba No NM No USA

Benemann and 

Oswald
1996 50% 30g.m

-2
.d
-1 $0.43 $0.24 Open NM Yes Paid Yes USA

Sheehan et al. 1998 40% 67,5 mt/ha/yr $0.63-1.01 NM Open NM No Paid No USA

Lee 2001 NM 25g.m
-2
.d
-1 NM $8-15 Open NM No NM Yes Singapore

Benemann et al. 2002 NM 33g.m
-2
.d
-1 NM $0.10 Open NM No Free No USA

Molina Grima et 

al.
2003 10% 1,25Kg.m

-3
.d
-1 NM $32.16 PBR

Phaeodactyl

um
No Paid No Spain

Behrens 2005 NM 5,8g.L
-1
.d
-1 NM $2.01 Fermentor NM No NM Yes USA

Moheimani 2005 NM
15,6-20 and        

20g.m
-2
.d
-1 NM

$7.87. $11.23 

and $9.87
Open

P. carterae 

and D. 

salina

Yes Paid No Australia

Harmelen and 

Oonk
2006 30% 27g.m

-2
.d
-1 $1.06 $0.29 Open NM Yes Free No Netherlands

Chisti 2007 30% 72 and 35g.m
-2
.d
-1 $1.41 and $1.81 $0.47 and $0.60

PBR and 

Open
NM No Free No New Zeland

Dmitrov 2007 15%-25% 0,14-0,33 L/m
2
/yr $5.38 NM PBR NM Yes Free No USA

Li, Xu and Wu 2007 44%-48% 12,8-15,5g.L
-1
.d
-1 $2.40 NM Fermentor

Chlorella 

protothecoi

des

No NM No China

Alabi, Tampier 

and Bibeau
2009

15%, 25% 

and 50%

9,38, 15,3.m
-2
.d
-1 

and 50g.L
-1

$14.44. $24.6 and 

$2.58

$2.66. $7.32 and 

$1.54

Open, PBR 

and 

Fermentor

NM Yes Free No Canada

Pate 2009 Vary Vary
$2.38 - 4.49 and      

$5.28 - $10.30
Vary

PBR and 

Open
NM No Vary Vary USA

Williams and 

Laurens
2010 15%-50% 18-37g.m

-2
.d
-1 $0.79 - $3.08 $0.36 - $0.65

Hybrid 

Open/PBR
NM Yes Free No UK

Davis, Aden and 

Pienkos
2011 25%

25.m
-2.
d
-1
 and 

1.25Kg.L
-1 $2.25 - $4.78 $0.36 - $0.65

Hybrid 

Open/PBR
NM Yes Free No UK
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The sample of surveyed results was displayed chronologically, in order to 

assess the existence of any type of progress in the indicators values over a time frame of 

almost 20 years. However, there is no evident evolution in the outcomes along the years, 

what reinforces the need for more research focused in the economical aspects of 

microalgae production. Few cost estimates are also available, what justifies the apparent 

shortness of our database. However, it can be concluded that to reach commercial viability, 

costs will need to be substantially reduced. Given the early stage of this technology and its 

rapid development, cost reductions may indeed be possible. 

2.3.2.3. Discussion 

The basic economic motivation for biofuels resides in the fact that they are a 

convenient, low-priced, domestically producible and a substitute for oil. In the presented 

survey it became clear that algae are now being intensively researched as a potential 

biofuel feedstock. Although many testing and start-up companies are in operation in 

several countries, cost information is scarce.  

The problems concerning large-scale production of biofuels from algal farms 

include inconsistent and insufficient algal productivities, uncertain capital and operating 

costs, volatile market prices and unknown levels of government support. This survey 

permits to conclude that although intensive work is being done on many technological 

issues, economic studies and respective data are scattered, incomplete and divergent. Also, 

this paper provided both, a chronological perspective and an updated analysis of the 

production and economic conditions that are certainly going to have a profound effect on 

the success of this important alternative fuel production process. From our assembly of 

nine elected indicators, cost per liter of oil clearly appears to be a key determinant for 

eventual market success, in spite of the discrepancy of its proposed values and no clear 

trend of findings over time. 

By assessing the costs of different algae cultivation techniques, it is apparent 

that the current economic situation standpoint towards large-scale production of algae 

biodiesel has not yet seemed to be viable as a solution to displace petroleum-based fuels. In 

the present situation, the technology to efficiently produce biodiesel from microalgae is not 

competitive with more advanced and emerging renewable technologies. However, the 

currently fast rate of development of algae biofuel technology and the actual rising of 



 

 

LITERATURE REVIEW 

 

 

54 

 

petroleum-based fuels prices are encouraging algae-based biofuels feasibility in the next 

few years.   

Moreover, with policy support and incentives, it is expected that the algal 

biofuel industry will continue to develop and assuming that this technology follows 

renewable energy cost trends, costs will decrease to eventual economic viability. In 

parallel, processes must be developed to reduce costs and increase production.  

2.3.3. Social assessment 

Not much is found in the literature regarding the social impacts of a microalgae 

biofuel future. However, from the overall technical, environmental and economical 

assessments it is possible to believe that algae farming have the potential to stimulate the 

economy, provide jobs, and alleviate poverty. In developing countries, the potential job 

creation could provide social and economic benefits (Mcgraw, 2009).  

Taking the advanced biofuels industry as a comparative of jobs created, it is 

possible to present the following data on Table 4. 

Table 4: Prediction of jobs created from 27 U.S. advanced biofuel new facilities coming online in 2015  

 Capacity Direct Construction Indirect TOTAL 

Reported 643.49 1,443 4,408 2,564 8,415 

Per Million Gallon  2.24 10.29 14.66  

Total Estimated (low) 676.95 1,518.03 6,965.61 9,924.52 18,408 

Total Estimated (high) 1,756.78 3,939.50 18,076.67 25,755.45 47,772 
Source: Solecki et al. (2012). 

 

Of the 27 commercial U.S. advanced biofuel facilities that are scheduled to 

come online by 2015, 24 reported permanent operation job estimates, 12 reported peak 

construction job estimates, and 7 provided indirect job estimates (Solecki et al., 2012). 

Using this data, Solecki et al. (2012) looked at job estimates on a per gallon basis and 

concluded that a million gallons of production capacity generates 2.24 permanent jobs, 

10.29 construction jobs, and nearly 15 indirect jobs on average. Multiplying these averages 

against their low and high-end production scenarios for commercial facilities, they found 

the data presented on Table 4. Both direct and indirect jobs are permanent positions. 

Biofuel producers report that fuel production jobs will be full-time skilled and unskilled 

positions, starting around US$30,000 to 40,000 per year. Solecki et al. (2012) estimates do 

not include permanent and temporary jobs created in related industries, such as technology, 
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equipment manufacturing, or transportation. Nor does it account for PhD level research 

and development jobs, which according to Bio-era (2009) could reach 12,100 by 2022. 

Still according to Bio-era (2009), U.S. direct job creation from advanced 

biofuels production could reach 94,000 by 2016 and 190,000 by 2022. Total job creation, 

accounting for economic multiplier effects, could reach 383,000 in 2016 and 807,000 by 

2022. 

Beyond job generation impacts, since microalgal biofuels do not need 

"geographical proven reserves", they may allow for increased independence on foreign 

energy and increase the energy security of many countries, as developing domestic sources 

of energy are key to promoting energy security. Moreover, for developing countries with 

high levels of poverty, the relationship of increased consumption of energy and well-being 

is stronger. Providing economic stimulus for such countries, algal biofuel production 

would provide jobs, energy availability and security, while encouraging infrastructure 

development and social development such as better health services (Mcgraw, 2009).  

Tackling the food versus fuel problem make it possible for countries to better 

manage its agricultural and non-agricultural land, increasing food plantation lands and 

decreasing hunger. Finally, overall environmental positive effects could lead to lower 

pollution, better population health and better quality of life.  

2.3.4. Comparing feedstocks for biofuel 

Biofuel production could be made from several sources. Among crops, it could 

be obtained from corn, sugar cane, switch grass, soybeans, rapeseed, canola, etc. Each crop 

has its own impacts and land-use requirements as identified in Table 5. 
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Table 5: Comparison Of Biofuel Feedstock Environmental Impacts For Transportation Fuels 

Crop type 
Used to 
Produce 

Use of resources during growing, harvesting 
and refining of fuel Pros & Cons 

Water Fertilizer Pesticide Energy 

Corn Ethanol High High High High 
Technology ready and relatively 
cheap; reduces food supply. 

Sugar cane Ethanol High High Med Med 
Technology ready; limited as to 
where it will grow; reduces food 
supply. 

Switch grass Ethanol Med-low Low Low Low 
It will not compete with food 
crops; technology not fully ready. 

Wood 
residue 

Ethanol, 
Biodiesel 

Med Low Low Low 
Technology ready; reduces food 
supply. 

Soybean Biodiesel High Low-med Med Med-low 
Technology ready; reduces food 
supply. 

Rapeseed, 
Canola 

Biodiesel High Med Med Med-low 
Technology ready; reduces food 
supply. 

Algae 

Biodiesel, 
Ethanol, 
Gasoline, 
Bio-oil 

Med Low Low Med-High 
Potential for huge production 
levels; technology not fully ready 
for scale up. 

Data source: Adapted from Groom et al., 2007.     

 

Comparing to other sources of feedstock to produce biofuels, algae-based 

biofuels have several advantages. These advantages are: (1) microalgae are capable of 

producing oil during all year long, therefore the oil productivity of microalgae is higher 

when compared to the most efficient crops; (2) microalgae can be produced in brackish 

(salt) water  and on not arable land (Searchinger et al., 2008); not affecting food supply or 

the use of soil for other purposes (Chisti, 2007); (3) microalgae have a fast growing 

potential and several species have 20 to 50% of oil content by weight of dry biomass 

(Chisti, 2007); (4) Regarding air quality, production of microalgae biomass can fix carbon 

dioxide (1 kg of algal biomass fixes roughly 1.83 kg of CO2) (Chisti, 2007); (5) Nutrients 

for the cultivation of microalgae can be obtained from sewage, therefore there is a 

possibility to assist the municipal wastewater treatment (Cantrell et al., 2008); (6) Growing 

algae do not need the use of herbicides or pesticides (Rodolfi et al., 2009); (7) Algae can 

also produce valuable co-products, as proteins and biomass after oil extraction, that can be 

used as animal feed, medicines or fertilizers (Spolaore et al., 2006; Brennan and Owende, 

2010), or fermented to produce ethanol or methane (Hirano et al., 1997); (8) Biochemical 

composition of algal biomass can be modulated by different growth conditions, so the oil 

yield can be significantly improved (Qin, 2005); (9) microalgae are capable of performing 

the photobiological production of "biohydrogen" (Ghirardi et al., 2000) and (10) Low 
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sulfur and relative heavy metals-free algal biocrude could also be produced and mixed with 

fossil oil in existing oil refineries (Liu et al., 2013).  

The above combination of the potential for biofuel production, CO2 fixation, 

wastewater treatment and the possibility of production of biocrude highlight the potential 

applications of the microalgae cultivation. Compared to other biofuel technologies, the 

most favorable factors for the cultivation of microalgae for the production of biofuels is 

that they can be grown in brackish water, on non-fertile land and the oil yield production is 

far superior.    

2.3.5. Challenges of algae-based biofuels 

Despite its vocation as a potential source of biofuels, many challenges have 

hindered the development of biofuels technology from microalgae to become 

commercially viable. Among them, and based on recent literature, we elect as the most 

important: (1) the selection of species must balance the requirements for biofuel production 

and extraction of valuable by-products (Ono and Cuello, 2006) and still reach 

environmental and economical sustainability; (2) achieve greater photosynthetic efficiency 

through the continuous development of production systems (Pulz and Scheinbenbogan, 

1998); (3) develop techniques for growing a single species, reducing evaporation losses 

and diffusion of CO2 (Ugwu et al. 2008); (4) few commercial cultivating "farms", so 

there is a lack of data on large-scale cultivation (Pulz, 2001) and standard processes; (5) 

impossibility of introducing flue gas at high concentrations, due to the presence of toxic 

compounds such as NOx and SOx (Brown, 1996); (6) choosing algae strains that require 

fresh water to grow can be unsustainable for operations on a large scale and exacerbate 

fresh water scarcity (Mcgraw, 2009); (7) price is still too high to compete with fossil fuels; 

(8) Current harvest and dewatering are still too energy intensive (Chen et al., 2009); (9) 

Some recent life cycle analyses project algae biofuels as having poor energy or greenhouse 

gas benefits (Clarens et al., 2010); (10) Depending on the processes, PBR systems can 

consume more energy than they produce (Slade and Bauen, 2013); (11) Possible scarcity of 

sites with favorable climate, land, water, and CO2 resources, all required in one place 

(Benemann, 2012; Clarens et al., 2010; Slade and Bauen, 2013); (12) CO2 supply is 

relatively expensive, due to high capital and operational costs for piping CO2 to, and 

transferring it into, the ponds (Benemann, 2012) and (13) Large-scale cultivation of algal 
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biomass will require a lot of nitrogen and phosphorus; recycling nutrients from wastewater 

and seawater could potentially provide some of the nutrients required (Slade and Bauen, 

2013). 

 Although, as often mentioned throughout this work, there are multiple 

challenges related to the development of microalgae biofuels technology, many policies are 

being prepared focusing on this new source of feedstock for biofuels as it is stated in the 

chapter 3. 
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3. BIOFUEL MARKET DIFFUSION AND POLICIES 

Up to now it has been shown that it is scientifically and technically possible to 

derive energy products from algae in the laboratory. Economic feasibility is believed to be 

currently the main hurdle to overcome for this technology. Current costs associated to both 

the state of the science and technologies are sizeable and represent a main factor working 

against development.  

This characteristic is not unique for algae biofuels as high costs often prevent 

the market diffusion of novel and efficient energy technologies. As microalgae biofuel is 

not a mature technology, it becomes important to provide a revision of technological 

innovation and diffusion aspects to enlighten some available options that may help 

overpass the barriers found by innovative technologies. Thus, this chapter stresses the 

importance of public policies in the diffusion of emerging technologies.  

3.1. Market diffusion 

The current economic situation points towards large-scale production of algae 

biofuel not  being viable as a solution to displace petroleum-based fuels (Ribeiro and Silva, 

2013). The technology to efficiently produce and disseminate biofuels from microalgae is 

not yet competitive with more mature transportation energy options, and the high costs 

prevent the market diffusion of novel energy technologies.  

It is widely recognized that modern economic analysis of technological 

innovation originates fundamentally from the work of Joseph Schumpeter (1934), who 

stressed the existence of three necessary conditions for the successful deployment of a new 

technology: invention, innovation and diffusion. Each of these keywords represents 

different aspects, in particular: invention includes the conception of new ideas; innovation 

involves the development of new ideas into marketable products and processes; and 

diffusion, in which the new products and processes spread across the potential market. 

Emergent technologies are relatively expensive at the point of market 

introduction but eventually become cheaper due to mechanisms such as learning-by-doing, 

technological innovation and/or optimization, and economies of scale. The combined 

effects of these mechanisms are commonly referred to as technological learning. Over the 
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last decades, learning theories combination with evolutionary economics have led to the 

innovation systems theory that expands the analysis of technological innovation, covering 

the entire innovation system in which a technology is embedded. In particular, “An 

innovation system is thereby defined as the network of institutions and actors that directly 

affect rate and direction of technological change in society” (Junginger et al., 2008; p.39). 

In the emerging energy technologies field, there is a strong need to influence 

both the speed and the direction of the innovation and technological change. With that in 

mind, policymakers are putting their efforts on lowering the costs of renewable energy 

sources to support the development of renewable technologies, either through direct means 

such as government-sponsored research and development (R&D), or by enacting policies 

that support the production of renewable technologies. It is well documented (Johnstone et 

al. 2010; Popp, 2002) that both higher energy prices and changes in energy policies 

increase inventive activity on renewable energy technologies. As noted by Popp et al. 

(2011), the higher costs of renewable energy technologies suggest that policy intervention 

is necessary to encourage investment. The impact of the lack of public policies favoring 

the development of renewable energy is that production costs remain too high and 

renewable energy does not represent an option in replacing fossil fuels. 

Policies to foster innovation should not only focus on the creation and supply 

of new technologies and innovations, but also on the diffusion and take-up of green 

innovations in the market place. Such policies need to be well designed to ensure that they 

support and do not distort the market formation, and should be aligned with competition 

policies and international commitments (OECD, 2011). With this purpose, several 

government policies have been introduced in the energy markets worldwide in an effort to 

reduce costs and accelerate the market penetration of renewables (U.S. DOE, 2010). 

In Section 3.2, some of the U.S. policies that could enhance the development of 

microalgae biofuels are, therefore, revised.  

3.2. United States policies 

In this section, special focus is devoted to biofuels policies, because they 

include major drivers for biofuel technology deployment. The U.S. policies were chosen 

due to its representative share of algal biofuel producing companies. The United States 
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show a level of 78% of all algal biofuel producing companies around the world (Singh and 

Gu, 2010). 

There are many objective aims in U.S. biofuels policies (De Gorter and Just, 

2010). Firstly, there is a strong desire to decrease the dependence of the United States on 

foreign oil. The 2008 spike of fossil fuel prices is a lively reminder that fluctuations in 

such levels can have sizeable impacts on U.S. welfare. In addition, there is an increasing 

motivation in developing alternative, environmentally friendly and more secure energy 

sources. The idea is that using biofuels might alleviate the environmental impacts of oil 

energy consumption. At last, increasing biofuels production has the added implication of 

increasing the demand for agricultural production and thus is consistent with a long-

standing U.S. commitment to support its farm sector (Lapan and Moschini, 2012). 

In order to boost the adoption and development of biofuels, the key instruments 

widely adopted have been mandatory blending targets, tax exemptions and subsidies. 

Supplementary to those, governments have intervened on the production chain by 

supporting intermediate inputs (feedstock crops), subsidizing value-adding factors (labor, 

capital, and land) or granting incentives that target end-products. Import tariffs have also 

played a significant role by protecting national industries from external competition (Sorda 

et al., 2010). 

A vivid example of the utilization of these policies is the steeply rise of the 

U.S. corn-based ethanol production, going from 1.62 billion gallons in 2000 to 13.31 

billion gallons in 2013 (U.S. EIA, 2014). It is clear that this expansion of ethanol 

production owes much to the implementation of critical support policies. The corn ethanol 

industry has received a great share of subsidies over the past 20 years. Through federal tax 

credits, loan guarantees, grants and other subsidies, billions of dollars have been invested 

in this industry. While the biofuels industry as a whole was intended to help achieve 

American energy independence, reduce greenhouse gas emissions, and spur rural economic 

development, the corn ethanol industry has fallen short of achieving these goals and 

generated unintended consequences and long-term liabilities (Yang et al., 2012; Pimentel, 

2003). 

Regarding emerging biofuels, the U.S. Environmental Protection Agency 

suggested revisions to the National Renewable Fuel Standard program (RFS). The 

proposed rules intended to address changes to the RFS program as required by the Energy 
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Independence and Security Act of 2007 (EISA). The revised statutory requirements 

establish new specific volume standards for cellulosic biofuel, biomass-based diesel, 

advanced biofuel, and total renewable fuel that must be used in transportation fuel each 

year. The regulatory requirements for RFS will apply to domestic and foreign producers 

and importers of renewable fuel (U.S. EPA, 2010). This rule proposes to establish the 

revised annual renewable fuel standard (RFS2) and to make the necessary program 

modifications as set forth in EISA. The required volume modifications made under RFS2 

are shown in Table 6, eventually reaching 36 billion gallons by 2022.  

Table 6: U.S. Renewable Fuel Volume Requirements for RFS2 

Year Cellulosic 
biofuel  

Biomass-based 
diesel  

Advanced 
biofuel  

Total renewable 
fuel  

2008 n/a n/a n/a 9.0 

2009 n/a 0.5 0.6 11.1 

2010 0.1 0.65 0.95 12.95 

2011 6.6* 0.80 1.35 13.95 

2012 8.65* 1.00 2.0 15.2 

2013 6.0* 1.28 2.75 16.55 

2014** 17.0* 1.28 2.2*** 18.15 

2015 3.0 a 5.5 20.5 

2016 4.25 a 7.25 22.25 

2017 5.5 a 9.0 24.0 

2018 7.0 a 11.0 26.0 

2019 8.5 a 13.0 28.0 

2020 10.5 a 15.0 30.0 

2021 13.5 a 18.0 33.0 

2022 16.0 a 21.0 36.0 

2023+ b b b b 
Volumes in billion gallons, unless otherwise stated. 
Source: U.S. EPA, 2010. 
a: To be determined by EPA through a future rulemaking, but no less than 1.0 billion gallons.  
b. To be determined by EPA through a future rulemaking. 
* Million Gallons 
** Proposed Rule (U.S. EPA, 2013). 
*** Reduced from 3.75 billion gallons. (U.S. EPA, 2013). 

 

Based on the table above for all renewable fuel categories, the applicable 

standards for 2010 onwards were proposed, each representing the fraction of a refiner's or 

importer's gasoline and diesel volume which must be renewable fuel.  

The proposed specific targets for 2014 in the U.S. include 0.010% from 

cellulosic biofuel, 1.16% from biomass-related diesel, 1.33% from advanced biofuel, and 

9.20% from total renewable fuels. As defined by the Energy Independence and Security 

Act of 2007 (p.28),  

“advanced biofuels are renewable fuels, other than ethanol derived from corn starch, that 
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have lifecycle greenhouse gas emissions that achieve at least a 50 percent reduction over 
baseline lifecycle greenhouse gas emissions. Advanced biofuels may include ethanol derived 
from cellulose or lignin, sugar or starch (other than corn starch), or waste material, including 
crop residue, other vegetative waste material, animal waste, and food waste and yard waste; 
biomass-based diesel; biogas produced through the conversion of organic matter from 
renewable biomass; butanol or other alcohols produced through the conversion of organic 
matter from renewable biomass; and other fuel derived from cellulosic biomass.” 

While cellulosic ethanol is expected to play a large role in meeting the 2007 

EISA goals, a number of next generation biofuels, especially those with higher-energy 

density than ethanol, show significant promise in helping to achieve the 36 billion gallon 

goal. Of these candidates, biofuels derived from algae, particularly microalgae, have the 

potential to help the U.S. meet the new RFS while at the same time moving the nation ever 

closer to energy independence (U.S. DOE, 2010). Algae-based fuels could be considered 

under the advanced biofuel or bio-based diesel portion of the RFS, according to the 

proposed rule (U.S. EPA, 2013). 

To accelerate the deployment of biofuels produced from algae, President 

Obama and Secretary of Energy Steven Chu announced on May 5th, 2009 the investment 

of US$800 Millions new research on biofuels in the American Recovery and Renewal Act 

(ARRA). This announcement included funds for the Department of Energy Biomass 

Program to invest in the research, development, and deployment of commercial algal 

biofuel processes (U.S. DOE, 2010). 

Meanwhile, the Algal Biomass Organization (ABO) are focusing its efforts on 

achieving three main goals for the algae biofuels technology: (1) Financial parity: Algae 

Fuels must receive the same tax incentives, subsidies and other financial benefits that are 

currently accorded to other biofuel feedstocks. (2) Regulatory parity: Algae must be 

recognized as an effective medium for the “beneficial reuse” of carbon dioxide, and a 

significant part of the solution to the American overall carbon reduction strategy. Federal 

agencies should develop regulations that treat algae’s growth and production similarly to 

other biofuel feedstocks and carbon sequestering technologies. (3) RFS parity: Because 

algae are not cellulosic, low-carbon algae-based fuels were not counted towards the 16 

billion gallon cellulosic biofuel carve-out within the RFS’s advanced biofuel mandate. 

Consequently, all non-cellulosic biofuels, including algae-based fuels, were left to compete 

among themselves to meet the threshold within the mandate (ABO, 2014). However, in the 

Family and Business Tax Cut Certainty Act of 2012 bill, the definition of qualified 
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cellulosic biofuel production was expanded to include algae-based fuel (U.S. Senate, 

2012). The bill would also extend the cellulosic biofuel tax credit to algae-based fuel for 

the first time.   

As the main region so far for algae biofuel production, The U.S. is leading 

policies concerning this technology. Although it is expected much more advances in this 

field in the next few years, research on the welfare economics of renewable energy policy 

is still in its infancy and the economic effects of biofuel policies are not only complex and 

difficult to understand, but are ultimately ambiguous in theory (De Gorter and Just, 2010).  

In the next section, the European policies are presented since EU presents 13% 

of all algal biofuel producing companies around the world (Singh and Gu, 2010). 

3.3. European Union policies 

In order to promote the use of energy from renewable sources, The European 

Parliament published on April 2009, the Directive 2009/28/EC which  

 
“establishes a common framework for the promotion of energy from renewable sources. It 
sets mandatory national targets for the overall share of energy from renewable sources in 
gross final consumption of energy and for the share of energy from renewable sources in 
transport. It lays down rules relating to statistical transfers between Member States, joint 
projects between Member States and with third countries, guarantees of origin, 
administrative procedures, information and training, and access to the electricity grid for 
energy from renewable sources. It establishes sustainability criteria for biofuels and 
bioliquids.” (E.U., 2009, p.27). 

The Directive 2009/28/EC also establishes in its Article 4 that each Member 

State shall adopt a national renewable energy action plan. In a nutshell, the national 

renewable energy action plans shall set out Member States’ national targets for the share of 

energy from renewable sources consumed in 2020 and the policies and measures adopted 

to achieve those targets. 

Concerning energy from biofuels, the Directive 2009/28/EC establishes in its 

Article 17, the sustainability criteria for these fuels, stating that biofuels that do not fulfil 

the sustainability criteria set out in this article shall not be taken into account. The main 

criteria are: (1) The greenhouse gas emission saving from the use of biofuels taken into 

account shall be at least 35 %. From January 2017, the greenhouse gas emission saving 

shall be at least 50 % and from January 2018 shall be at least 60%. (2) Biofuels shall not be 
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made from raw material obtained from land with high biodiversity value, (3) from land 

with high carbon stock, (4) or from land that was peatland in January 2008, unless 

evidence is provided that the cultivation and harvesting of that raw material does not 

involve drainage of previously undrained soil. 

By the end of 2010, a communication from the European Parliament has set the 

strategy for competitive, sustainable and secure energy by 2020. The Strategic Energy 

Technology (SET) Plan sets out a medium term strategy valid across all sectors. Yet 

development and demonstration projects for the main technologies (e.g. second generation 

biofuels) must be speeded up (E.U., 2007). 

The European SET-Plan lists several energy technologies, which will be 

required to bring together economic growth and a vision of a decarbonized society. It states 

that advanced biofuels, namely microalgae, are supposed to play a significant role. EU 

energy policy aims to represents a green “new deal”, which will hopefully enhance the 

competitiveness of EU industry in an increasingly carbon-constrained world (E.U., 2007).  

Among the projects to be launched, the €9 billion European Industrial 

Bioenergy Initiative aims to ensure quick market uptake of sustainable second-generation 

biofuels. Since implementing large-scale sustainable biofuel production is one of the 

targets to be achieved. 

 After reviewing some of the policies focused on this new source of feedstock 

for biofuels, chapter 4 presents what are the visions of microalgae experts for its future. 
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4. WORLD EXPERTS VISIONS THROUGH A DELPHI SURVEY 

Currently, much experimental and even theoretical/simulation work is being 

done to ensure that biofuels from microalgae become a reality in the short to medium term. 

Some aspects were already identified as significant for the overall competiveness, such as: 

the microalgae should have high biomass and lipids productivities (Singh and Gu, 2010; 

Sander and Murthy, 2010; Pittman et al., 2011); the processing system should be highly 

efficient and integrated with other processes following the biorefinery concept (Pokoo-

Atkins, 2010); there must be markets or valorization potential for the process byproducts or 

other high value products that may be obtained (Resurreccion et al, 2012); waste streams 

and/or remaining nutrients should be used to reduce operating costs and increase the 

process sustainability (Pittman et al., 2011); among others. Each of the previous 

possibilities have a positive impact on the competiveness of using microalgae as a 

feedstock for biofuels, but there is a lot of discussion in which one should focus efforts of 

research and development.  

To fulfill this gap, this chapter presents a study based on the Delphi method to 

obtain more concrete information and predictions on how this area should be further 

developed. This way it will be possible to better define which lines of research should be 

supported, and what policy and funding instruments are more adequate. To the authors’ 

awareness, no study can be found in the literature addressing these questions with this 

methodology, involving the usage of microalgae as feedstock for biofuels.  

A related work is the National Algal Biofuels Technology Roadmap (U.S. 

DOE, 2010), the result of a two day workshop that brought together specialists from 

various areas, including engineers, scientists, policy makers, financiers, and others, to 

discuss the present and future of microalgae as a feedstock for biofuel production. The 

final document was intended to serve as a revision of the current state of the art in the area, 

and to identify which are the key challenges that must be considered to achieve a 

commercial scale production, serving as a guide to ongoing efforts. The study is rather 

comprehensive and extensive but fails to highlight which are the areas and aspects that are 

considered to be more important and should be considered first, from a cost-benefit point 

of view. 
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Also related, the EurEnDel project was a European wide Delphi study on the 

future developments in the energy sector, with a time horizon of 2030 based on the 

situation up to 2003. Its main goal was to provide advice on energy R&D activities in this 

key area. Hundreds of responses from experts in a wide range of topics were gathered, 

several future scenarios were developed, and in which concerns biofuels, there is a short-

term need for new production processes and an increase in their market share (Wehnert et 

al, 2004 and 2007).  

In 2009, a Delphi study was published dealing with the potential of biofuels in 

Alabama (Guthrie, 2009). The information gathered supported the idea that there are no 

simple and unique technology answers for the commercial implementation, and that local 

questions and an array of technologies and feedstocks is the most adequate strategy. 

Similar conclusions were reached by Celitkas and Kocar (2010) in their Delphi study of the 

renewable energy sector in Turkey, and by Lubieniechi and Smyth (2011) in their work on 

the barriers to biofuels in Canada. 

4.1. Methodology  

The Delphi method is a qualitative research aiming to support strategic future-

oriented action, such as policy making in the areas of science and technology. It typically 

entails two or more survey rounds in which the participating experts are provided with the 

results of the previous rounds. The panel of experts is used as the source of information, 

and the questionnaires act as the medium of interaction. The key characteristics of a 

traditional Delphi study are iteration, participant and response anonymity, controlled 

feedback, and group statistical response. It is especially suitable in judgment and long-

range forecasting (20-30 years) situations, when expert opinions are often the only source 

of information available, due to a lack of appropriate historical, economic or technical data 

(Blind et al., 2001; McLeod and Childs, 2007; Rowe and Wright, 1999). 

The key objective of our Delphi study is to determine the prospects of using 

microalgae for biofuels production within a time scale extending to 2030. Before initiating 

the Delphi study, a brainstorming was organized by four microalgae specialists. In the 

brainstorming, the participants identified factors affecting production and competition of 
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microalgae biofuels. Subsequently, the factors were categorized into sentences as presented 

in the Delphi study later on. The brainstorming participants also suggested panelists for the 

Delphi survey. Based on this meeting, the statements for the first Delphi survey round were 

formed by the researchers. The questionnaires were sent to the Delphi experts via e-mail, 

enquiring about their willingness to participate in the study. In the first Delphi survey 

round, all statements were presented to the panelists at the same time. In the second survey 

round, the respondents similarly had the opportunity to comment on the critical factors 

voted on in the first round (Ribeiro et al., 2014).  

Our Delphi study included three survey rounds (the workshop and two Delphi 

rounds), which made it possible to understand the features that may develop or hold back 

this technology in the future. All three rounds were carried out during three months (from 

May 2012 to July 2012). From all the experts inquired, there were 55 respondents in the 

first round, reaching a response rate of 36.7 %, and, in the second round, when only were 

questioned those 55 experts that answered the first round, the response rate was 54.5 %. 

The Delphi participants were selected based on their expertise on the subject matter, as it is 

required in-depth knowledge about the microalgae biofuel markets and processes from all 

the experts (Ribeiro et al., 2014).  

Overall, the panelists represented 10 countries (United States, Portugal, the 

Netherlands, Italy, Norway, United Kingdom, Spain, Uruguay, Brazil and Australia). The 

experts can be categorized into three groups based on the field they represented: Academy 

(38.5 %), Government (23.1 %), Business (28.8 %), Academy/Business (7.7 %) and 

Academy/Business/Government (1.9 %) (Figure 12). The main focus of this Delphi study 

was to gather insights from specialists that symbolized distinctive fields, and not 

specifically the strategies of each country. 
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Figure 12: Survey experts’ fields of work. 

In the workshop, participants raised several factors that could affect 

competition in this particular market and they were categorized into four main themes. The 

first theme concerned microalgae biofuel economics as it plays a crucial role in 

establishing well-functioning and competitive market. The second theme studied some 

future trend hypothesis to be rejected or accepted by participants on the Delphi survey. The 

third key element in the study dealt with environmental sustainability, which directly 

affects confidence-building in the development of the microalgae biofuel market. The final 

group of statements focused on policies and on forecast concerning the future.  

The 1st round questionnaire consisted of 50 statements. Those that did not 

reach an overall consensus (more than 66 % agree or disagree) shaped the basis of the 

second round, which included open-ended fields for further explanations or suggestions. 

The second round focused on clarifying the answers of the first round. All the 

questionnaires were pre-tested, and the panelists were given feedback after the first round 

with all the participants’ answers from the first round. The participants in the study were 

likewise encouraged to provide arguments supporting their views and opinions. 

4.2. Results and discussion 

Once all the respondents had completed the first round, each answer was 

examined. The statements that, in the view of the experts, did not achieve an overall 

consensus formed the footing for the questions of the second round.  
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In Appendix A, the statements of the first three themes asked in the survey are 

shown. The question asked in Themes 1, 2 and 3 was "Please rate how strongly you agree 

or disagree with each of the following statements by placing a check mark in the 

appropriate box." The respondents could choose in a seven-level Likert scale from "Totally 

Disagree, Strongly Disagree, Disagree, Neither agree nor disagree, Agree, Strongly Agree 

and Totally Agree". The full questionnaire sent to the experts is presented in Appendix B. 

After the first round of answers, the aggregated results of the economics Theme 1 is shown 

Table 7. 

Table 7: Delphi survey Theme 1 cumulative overall results 

Statement Respondents Agree (%) Neither Agree nor Disagree (%) Disagree (%) Variance 

1.1 55 94,5 3,6 1,8 1.14 

1.2 54 68.5 24.1 7.4 1.94 
1.3 55 63.6 20.0 16.4 2.53 
1.4 54 42.6 22.2 35.2 2.87 

1.5 54 85.2 9.3 5.6 1.97 

1.6 55 94.5 3.6 1.8 1.08 

1.7 54 66.7 14.8 18.5 2.90 

1.8 55 81.8 10.9 7.3 1.92 

1.9 55 78.2 16.4 5.5 1.88 

1.10 53 83.0 9.4 7.5 1.83 

1.11 54 79.6 7.4 13.0 2.21 

1.12 52 94.5 3.8 1.9 0.99 

1.13 54 83.3 9.3 7.4 1.46 

1.14 53 67.9 22.6 9.4 2.17 

1.15 53 84.9 7.5 7.5 1.51 

 

In the economics theme, expressive consensus were achieved on statements 

1.1, 1.6 and 1.12 (above 90 %), in a way that experts consider that there is plenty of room 

for innovative and more effective production processes that could lead to economic 

feasibility, considered one of the main challenges facing large-scale deployment of 

biofuels from microalgae. 

Statements 1.5, 1.8, 1.10, 1.13, 1.15 also revealed a high consensus level 

(above 80 %). From those, it is important to highlight the awareness that R&D subsidies 

and supporting programs will be needed to promote improvements in the technology in 

order to reduce the costs of algal biofuels and speed up development. Moreover, an 

interesting issue relates the perception that the increase in the overall consumption of 

biofuels, and the expected growing pressures on currently used feedstocks can be a key 

factor to the economic viability of microalgae. 



 

 

WORLD EXPERTS VISIONS THROUGH A DEPLHI SURVEY 

 

 

72 

 

The experts also reached an agreed consensus on statements 1.2, 1.7, 1.9, 1.11 

and 1.14, but with less intensity (from 66 % to 80 % agree) of which, it is important to 

highlight the interest in other co-products outside the transportation sector, such as 

nutraceuticals and compounds for the pharmaceutical and/or fine chemistry industries. The 

commercialization of theses co-products could assist industries to reach economic 

feasibility of microalgae biofuel.  

Questions 1.3 and 1.4 did not reach a clear consensus and were asked again in 

the 2nd round for further analysis. From the results, 1.3 has a clear tendency on agreement 

(63.6% agree), however, we could not conclude a clear overall consensus, since the sample 

that agreed now (69.0 %) had already agreed on the 1st round (70.0 %). Some of the 

experts' answers are presented as follows and could lead to an understanding why this 

statement did not achieve a consensus.  

Statement 1.3: "Microalgae biofuel will become a co-product of future large-

scale facilities, where other high-value products are generated." 

"High-value products may be co-products of any successfully large-scale biofuel 

production from algae, but co-products may not be possible at the scale of biofuels, which will 

be huge" (Strongly Disagree). 

"This is akin to a petrochemical complex, generates less residues, and ensures that 

there is a lower risk in the microalgae base industry as there is less dependence on just one 

product" (Strongly Agree). 

"Depends on the commercialization strategy of the facility; a near-term, "1st of a 

kind" facility may rely primarily on other high-value products to generate required revenue 

with algal oil/biofuel as a co-product, and could transition to a larger emphasis on algal biofuel 

as a principal product as the technology matures" (Neither Agree nor Disagree). 

On the other hand, Statement 1.4 did not reach any consensus (26.7 % disagree 

/ 33.3 % neither agree nor disagree / 40.0 % agree). 

In Theme 2 (Table 8), expressive consensus was reached only on statement 2.8, 

which reached 92.2 % of agreement. Therefore, experts strongly agree that no single 

microalgae strain will be the dominant one, and that different strains of microalgae will be 

used depending on the nutrients and/or waste streams available, and particular local 

climatic and water availability conditions. 
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Table 8: Delphi survey Theme 2 cumulative overall results 

Statement Respondents Agree (%) Neither Agree or Disagree (%) Disagree (%) Variance 

2.1 52 78.8 15.4 5.8 1.58 

2.2 52 73.1 11.5 15.4 2.08 

2.3 51 47.1 25.5 27.5 2.28 

2.4 52 84.6 7.7 7.7 1.41 

2.5 52 75.0 15.4 9.6 2.05 

2.6 50 70.0 14.0 16.0 2.99 

2.7 50 66.0 18.0 16.0 2.67 

2.8 51 92.2 7.8 0.0 0.86 

2.9 49 40.8 24.5 34.7 3.08 

2.10 51 82.4 13.7 3.9 1.57 

2.11 51 82.4 9.8 7.8 1.41 

  

High consensus was observed on declarations 2.4, 2.10 and 2.11. In this way, 

the reduction of oil imports dependence and the potential development of local and 

national economies is a relevant factor for the development of microalgae biofuels. Experts 

also believe that biofuels from microalgae will be produced commercially, but only in the 

mid to long term. This conviction was better described on Theme 5 of this study.  

Mild agreement was reached on 2.1, 2.2. 2.5, 2.6, and 2.7 (from 66 % to 80 % 

agree). Two factors related to the economic feasibility of algae biofuels are noteworthy to 

point out. They relate to the sense that not only higher petro-oil prices, but also a more 

developed, globalized and comprehensive Carbon Market could foster microalgae biofuel 

to become more economically feasible.  

Questions 2.3 and 2.9 did not reach a clear consensus and were asked again in 

the 2nd round for further enlightenment. Neither an achieved consensus was obtained on the 

2nd round nor were some reasons clarified by the experts, for instance:  

Statement 2.3: "Algal biofuels will be developed, but will play only a minor 

role in the future mix, in particular for the transportation sector."  

"Algal biofuels have the potential to play a major role in the future mix relative to 

many other biofuel pathways, but it depends on cost and time scale" (Disagree). 

"Too early to reach conclusions" (Neither Agree nor Disagree). 

"Hard to make predictions know. Depends on the evolution of other biofuels, 

technological advances, development of other biofuels... This is one is tough..." (Neither Agree 

nor Disagree). 

Since this prediction involves several factors, it was difficult for experts to 

reach a consensus (47.1 % agree / 25.5 % neither agree nor disagree / 27.5 % disagree).    
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Statement 2.9: "Open pond cultivation, or similar, will dominate the future 

production systems, although for small production involving the processing of waste 

streams the close cultivation systems will be also used." 

"Open pond cultivation represents 90% of the world production... now and in the 

future also..." (Agree) 

"Only closed systems with industrial scale will make algae biofuels possible. Pond 

systems do not scale up for biofuels." (Strongly disagree) 

Here again the respondents struggled with the fact of predicting the future and 

no consensus was reached (33.3% agree / 33.3% neither agree nor disagree / 33.3% 

disagree).    

The Sustainability theme was the most controversial one (Table 9). In which, 

eight from twelve statements did not show consensus (3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.10 and 

3.11). All these were asked again in the 2nd round of the survey. 

 

Table 9: Delphi survey Theme 3 cumulative overall results 

Statement Respondents Agree (%) Neither Agree or Disagree (%) Disagree (%) Variance 

3.1 50 38.0 28.0 34.0 3.20 
3.2 50 60.0 18.0 22.0 2.60 
3.3 46 15.2 41.3 43.5 2.87 
3.4 47 27.7 42.6 29.8 3.23 

3.5 48 72.9 12.5 14.6 1.94 

3.6 48 47.9 29.2 22.9 1.84 
3.7 49 59.2 10.2 30.6 3.58 

3.8 49 79.6 18.4 2.0 1.86 

3.9 48 79.2 14.6 6.3 1.78 

3.10 46 32.6 32.6 34.8 2.11 
3.11 49 61.2 22.4 16.3 2.12 

3.12 49 81.6 12.2 6.1 2.17 

 

The highest consensus was achieved on 3.12 (82 % agree) that said, "The 

potential to use waste streams and/or easily available renewable nutrients is a key factor in 

the overall system sustainability."  

Agreement was also reached on 3.5, 3.8 and 3.9, but with lower intensity (from 

66 % to 80 % agree). All these statements had in common "carbon emissions", where 

experts agree that the need to reduce world’s CO2 emissions is a key advantage for 

microalgae biofuels; and that the actual overall life cycle carbon balance is key aspect to 

consider in the microalgae biofuel production. They think that being carbon neutral is a 

key factor concerning microalgae biofuel production sustainability. 
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From the ones asked on the 2nd round, it is interesting to highlight that because 

biofuels of this origin do not have a well-known industrial process (there are different 

methods for producing them) and microalgae are not yet being cultivated commercially for 

this purpose, it was difficult for the experts to answer questions related to sustainability. 

Some of the comments to these questions were:  

Statement 3.3: "Open pond cultivation is more environmentally friendly 

than PBRs cultivation." 

"More information and practical data is needed to answer this one." (Neither agree 

nor disagree).  

"There is not sufficient evidence in the literature to support or negate this statement." 

(Neither agree nor disagree). 

 "That depends on the nutrient source, direct and indirect land use and other issues 

specific to each site." (Disagree).  

Although there is a tendency on disagreement, no clear consensus was reached 

(10.3% agree / 34.5% neither agree nor disagree / 55.2% disagree),    

Statement 3.6: "The production of algae biofuels in large scale could generate 

potential impacts on local ecosystems from new algal species." 

"All these statements are dependent on other factors, therefore difficult to respond 

with just a simple agree/disagree.";  (Disagree) 

"The "potential" is certainly there for affecting local ecosystems; the issue comes 

down to containment and safety contingency planning." (Agree) 

"if genetically modified organisms are used, that could be an issue." (Agree) 

No consensus was reached (34.5% agree / 31.0% neither agree nor disagree / 

34.5% disagree).    

 Statement 3.10: "Some potential undesired environmental aspects may 

arise from microalgae cultivation, as for example, increased emissions of NOx and/or 

methane." 

"Depends on the processes utilized for product and co-products generation/use." 

(Neither agree nor disagree) 

"Possible situation, in particular if the cultivation systems are not well designed or 

adjusted." (Agree) 

"Only if actions to minimize/restrict those impacts are not taken." (Disagree).  

No consensus was reached (20.7% agree / 37.9% neither agree nor disagree / 

34.5% disagree).    
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Theme 4 concerned "Policies", where several prospects of policies were 

presented and the respondents were asked to choose "How important is each policy below 

to the success of microalgae biofuels?" The answers were presented in a seven-level Likert 

scale ranging from "Unimportant" to "Extremely Important". The policies presented are 

displayed in Table 10. 

Table 10: Delphi survey Theme 4 statements and results 

    
Theme 4: POLICIES 

 
Mean  

4.1 Mandatory country objectives; 5.52 
4.2 Sustainability standards (Emissions, production, etc.); 5.70 
4.3 Public Investment in R&D; 6.09 
4.4 Tax incentives and subsidies; 5.71 

4.5 
Certification schemes, in particular those concerning raw materials or the entire fuel life 
cycle; 

5.48 

4.6 
Specific legislation or international agreements (such as European Directives) aimed 
specifically to biofuels or to specific environmental questions (such as carbon emissions) 
where biofuels have a pivotal role; 

5.70 

4.7 
Development strategies aimed to renewable resources, either research, utilization and 
integration in existing systems. 

5.91 

 
All policies were seen by experts as important, in which the sum of 

"Important", "Very Important" and "Extremely Important" in all items were above 80% of 

valid responses. In an attempt to rank, which were the most important ones, values were set 

from 1 to 7 to "Unimportant" through "Extremely Important". Consequently, it was 

possible to estimate the most important policies in the view of the experts interviewed. For 

that purpose, an overall mean was computed for each policy and is presented in Table 10. 

Analyzing this data, experts believe that "Public Investment in R&D" is the most important 

mechanism to develop microalgae biofuels. However, the other mechanisms were also 

important for this purpose and it is a sum of efforts that makes the development to go on.       

In order to better specify which policies were the most important ones, in the 

2nd round the same set of policies were given, but this time, the respondents were asked to 

rank them (from 1-most important to 7-least important) without repeating numbers. The 

results were similar to the ones from the first survey: public investment in R&D was 

elected as the most important one, with a statistic mode of 1 (most important) chosen by 

34.5% of the respondents and ranked in the top 3 to other 27.6% of the respondents. This 

policy was followed by "developing strategies aimed to renewable resources, either 

research, utilization and integration in existing systems"; "tax incentives and subsidies"; 

and "mandatory country objectives", subsequently. The results from Theme 4 in the 2nd 

round are presented in Table 11. 
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Table 11: Delphi survey Theme 4 2
nd

 round policies priorities 

    
Theme 4: POLICIES 1st 2nd  3rd 4th 5th 

4.1 Mandatory country objectives; 27.6% 6.9% 10.3% 10.3% 10.3% 

4.2 Sustainability standards (Emissions, production, etc.); 0.0% 17.2% 6.9% 24.1% 24.1% 

4.3 Public Investment in R&D; 34.5% 13.8% 13.8% 13.8% 10.3% 

4.4 Tax incentives and subsidies; 6.9% 20.7% 20.7% 17.2% 6.9% 

4.5 Certification schemes 0.0% 6.9% 3.4% 13.8% 17.2% 

4.6 Specific legislation or international agreements 10.3% 13.8% 20.7% 10.3% 20.7% 

4.7 Development strategies aimed to renewable resources 20.7% 20.7% 24.1% 10.3% 10.3% 

 

Theme 5 was named "Future" where the question asked was "When do you 

think the following would happen in microalgae biofuels industry?" The outcomes are 

shown in Figure 13. 

The graph of Figure 13 shows that most of the experts think that production of 

microalgae for biofuels will achieve full commercial scale until 2020. From 2021 to 2030 

it is believed to represent from 1 % to 5 % of the total worldwide fuel consumption and 

from 2030 onwards it could reach figures of 10 % to 25 %. However, almost half of the 

experts (47 %) do not believe it could ever reach 25 % of worldwide fuel consumption. 

 

Figure 13: Delphi survey results about the future of microalgae biofuels. 

 
Therefore, one of the key findings is that most of the experts believe that the 

production of microalgae for biofuels will achieve full commercial scale until 2020 and 

from that period on, it could represent an important share of the total worldwide fuel 

consumption. In order to boost development, experts agree that public investment in R&D 

is the most important policy to be adopted by countries. Developing strategies aimed to 
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renewable resources; applying tax incentives and subsidies; and issuing mandatory country 

objectives were also encouraged.  

Although this Delphi Survey research has reached its aims, the outcomes might 

not represent the majority of the microalgae experts’ opinion due to the limited sample 

size. In the same manner, after analyzing the results, some questions did not reach a 

consensus and could be further explored in a supplementary study or in a third round. All 

the results obtained in the survey are presented in Appendix C. 

The Delphi method proved to be a successful research method when expert 

opinions are the main source of information available, due to a lack of appropriate 

historical, economic or technical data and the outcomes herein provided clearly outline the 

main issues of microalgae biofuels' market at present and in the future. In particular, the 

two-round survey revealed the most important issues affecting this emerging market and 

also, recommended ways to influence future policies and development of this biofuel. 

With all the information gathered in the microalgae literature review, public 

policies and in this Delphi survey, a model was developed in order to analyze possible 

diffusion pathways of microalgae biofuels. This is presented in the next Chapter.  
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5. MODELING POLICIES IMPACTS ON BIOFUELS 

MARKET DIFFUSION 

To analyze the impact of different policies in the transportation fuel market 

share, a computational model using Stochastic Automata Networks (SANs) was built. 

First, a basic model reflecting the scenario without policies was constructed and then 

different policies were added. The objective was not only to investigate the effect of each 

specific policy alone, but also the interplay among the different policies. The basic model 

is parameterized by the prices of fuels and their availability (taking into account not only 

the availability of the fuel itself for end-consumers, but also of vehicles using this fuel). 

The policies model is an extension of the basic model including 4 different policies that 

tackle: subsidies, taxes, R&D investments and mandates. Diverse U.S. transportation 

scenarios were analyzed in the period from 2010 to 2040. The analysis consists of 

searching for the equilibrium state (steady state) in each scenario. This equilibrium state 

represents the market share that results from the given parameters of the scenario. 

In the following, after a short introduction to SANs, the construction of the 

basic and policy models are presented, and then the results of the analysis of some 

scenarios are discussed. 

5.1. Stochastic Automata Network 

In the Stochastic Automata Network (SAN) formalism (Plateau, 1985; Baldo et 

al., 2005), a system is modeled by interacting subsystems, which are represented by 

automata. An automaton is composed by states and transitions labeled with event names. 

These automata may evolve independently with local events (that may affect only the local 

state of the automata participating in this event), or by synchronizing events that are used 

to model joint evolution of two or more automata. With the association of distribution 

probabilities to the events, the labeled transition system generated by a SAN gives rise to a 

Markov Chain and it is possible to calculate the steady state probability of each state of a 

SAN. More precisely, to each event there is an occurrence rate associated. The inverse of 
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the occurrence rate is the mean value of the exponential distribution function that regulates 

the time interval between two occurrences of the event. 

A SAN defines the set of events that are used to synchronize the different 

automata during the execution. The state changes of SANs are possible when all different 

automata that may be engaged in some event are in some state in which a transition labeled 

with this event is possible. Note that since there may be different transitions labeled with 

the same event, there may be different reachable states starting with the same state and 

executing the same event. 

SAN has been employed to flexibly model and analyze different kinds of 

systems, such as: prediction of geological stratal stacking patterns (Assunção et al., 2013); 

performance evaluation of software development teams (Fernandes et al., 2011); process 

scheduling for NUMA machines (Chanin et al., 2006); master/slave parallel programs 

(Baldo et al., 2005); ad hoc wireless networks (Dotti et al., 2005); production line 

(Fernandes et al., 2013); quality of service assessment in multi-tier web services (Czekster 

et al., 2011); spatial distribution of mobile nodes (physical mobility models) (Dotti et al., 

2011), to cite a few. 

5.1.1. Comparing SAN with other modeling techniques 

This section presents a comparison of recent studies analyzing the impacts and 

consequences of biofuel policies using different model generators techniques. Some of 

these techniques are: TIMES-MARKAL, ESIM, AGLINK-COSIMO, CAPRI, IMPACT 

and GTAP models (Loulou et al., 2005; Taheripour, et al., 2008; Banse et al., 2010; 

OECD, 2006; Britz and Witzke, 2012; Rosegrant et al., 2012). The purpose of this review 

is to illustrate the variety of output that could be obtained from such techniques, to discuss 

the pros and cons of the different models, and to provide some insights that may be useful 

when comparing the results reported later in this study. It is to mention, that the selection 

of techniques is not comprehensive. The main selection criteria are that the study involving 

the technology should be recent, and that its objective should be relevant to that of the 

current study. 

There are many ways in which a mathematical model can be built to describe 

the reality to be studied. A fundamental difference among modeling techniques is whether 

the model is constructed based on an external or on an internal perspective. External means 
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that the result of observations gives rise to the model. Typically, such model captures 

relations among the variables that are relevant to the system (like e.g. equations), and are 

called analytical models. Having an internal perspective means that the way the system 

behaves is captured by the model, that is, the cause/effect relation is used to build the 

model. These are termed computational models. The emphasis here resides not only to 

model that some relationship among inputs and results are obtained, but rather on why they 

are obtained. Building a computational model requires thus a deeper understanding of the 

system being modeled. But, once there is a computational model that closely describes a 

reality, it is possible not only to analyze which equilibrium states are reached (like it is the 

case of analytical methods), but also to reason about the process of reaching such states.  In 

many situations, understanding the process may be even more important than knowing the 

result of the process. Synthesizing, a computational method emphasizes the process being 

modeled, whereas analytical methods emphasize the result of this process. 

An example of computational model is the agent-based computational 

economics (ACE), which is the computational study of economies modeled as evolving 

systems of autonomous interacting agents (Tesfatsion, 2002). An important characteristic 

of ACE is interactions of autonomous agents, as described by Tesfatsion (2002; p.23):  

“The dynamics of the ensuing economic process are governed by agent-agent interactions, 
not by exogenously imposed systems of equations, and the state of the economy at each 
point in time is given by the internal attributes of the individual agents that currently 
populate the economy. ”  

The SAN model presented in the next sections can be described as a partial 

equilibrium model governed by agent-agent interactions, where the agents are the users of 

fuels that compose the U.S. transportation market. But, unlike a pure agent system, a 

network of automata is used allowing the computation of equilibrium states (steady states). 

Regarding other model generators, a well-known system that is often used for 

modeling energy scenarios is TIMES (The Integrated MARKAL-EFOM System). TIMES 

is an analytical model whereas SAN is a computational model. This means that in TIMES 

the reality is described by some of its properties (in TIMES, the equations of the linear 

programming model). Finding an equilibrium in TIMES means to find values for the 

interest variables of the equations, such that they are all satisfied in an optimum way 

(Loulou et al., 2005). This equilibrium is in terms of variables that denote consumers and 

producers (or, said in another way, in terms of prices and quantities). In a computational 
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model, like SANs, a system is described by its behavior, that is, by the actions or events 

that may take place. A SAN typically models a complex system as a set of different 

subsystems that may interact and influence each other.  If, at some moment in time, more 

than different future is possible, this can be modeled in SANs by giving different rates to 

transitions denoting these different evolutions of the system. These rates may vary over 

time since they may depend on the state of the system. An equilibrium state in a SAN 

(called steady state) describes that the modeled system converges to situation in which the 

relationships among all its subsystems is constant. This equilibrium state may be found 

analyzing all possible states of the system (this is performed by solving a Markov model, 

in SANs the solution is optimized such that it is not necessary to consider states that would 

never be reached). 

SAN is a general purpose modeling formalism and, as such, it could be 

possible to construct many different SAN models to describe different aspects of a system. 

Here, a model that describes the behavior of consumers (users of transportation) is built, 

given different kinds of energy and their corresponding prices and availabilities of different 

energy sources. The aim is not to find the prices of fuel that would bring a system to some 

equilibrium, but rather to understand how the users may move from one fuel to another, 

given as input the prices and availabilities. The result of a run of the model is the market 

share induced by these inputs. Policies may alter prices and/or availability of items, thus 

they may be given as inputs as well, and will influence the market share by making it more 

or less likely that users opt for some kind of fuel.  

In both models, calibration of the reference model is crucial, and means, in the 

case of TIMES, to find the right values of the parameters to build the equations that model 

reality, and in the case of SANs, finding the right rates for the transitions that make the 

system evolve.  

TIMES is a very sophisticated tool to model energy systems, taking into 

account hundreds of different parameters. This is necessary because analytical models 

describe a system by its observations and thus the more parameters and equations we have, 

the more accurate the model will be. However, this may make models very large and 

difficult to fully understand. Moreover, the fact that non-commercial immature 

technologies do not have a well-known process of production makes it difficult to insert all 

the inputs needed for an accurate model.  
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SANs model reality in a simpler way, but knowledge on the intrinsic behavior 

of the system is required. For each transition that the system may perform, it is necessary 

to exactly state what is the situation that triggers the transition and what its effect is. 

Moreover, in a stochastic model, the probability that this transition happens must also be 

given. This means that a deeper understanding of the system is needed to build a SAN. But 

if it is possible to construct and calibrate a SAN to depict some reality, the analysis that can 

be done is far richer because we can analyze not only the final state but the whole process 

(for example, we may investigate not only the final state of the system, but analyze how 

this state can be reached). Moreover, by having an explicit behavior model the results can 

be better understood and explained. 

There coexist also additional analytical representations that were used to model 

policies in the scope of biofuels. They possess many similarities to TIMES and thus, the 

comparison with SANs is analogous. The main difficulty to use these modeling techniques 

resides in the facts that it is not possible to include microalgae biofuels or advanced 

biofuels, since most of them already come with a fixed set of possible biofuel feedstocks in 

the system. In the following paragraph, some of these modeling tools are described.  

GTAP is a multiregional, multisectoral, computable general equilibrium model 

with perfect competition (Taheripour, et al., 2008). One of the latest versions of GTAP, 

known as GTAP-E, has been extended to deal with substitution between biofuels and fossil 

fuel for transport use and climate change policies. However, only three different feedstock 

for biofuels are explicitly modeled: maize-based ethanol, sugar-cane-based ethanol and 

biodiesel. Advanced Biofuels are not supported (Taheripour, et al., 2008; Fonseca et al., 

2010). 

The ESIM model is a partial equilibrium multi-country model of the 

agricultural sector (Banse et al., 2010). Since it is mainly designed to simulate agricultural 

markets in the EU, policies are modeled only for these countries. Concerning biofuels, it 

only contains explicit supply and demand functions for biodiesel and ethanol (Banse et al., 

2010; Fonseca et al, 2010).  

Similar to ESIM model, AGLINK-COSIMO (OECD, 2006), CAPRI (Britz and 

Witzke, 2012) and IMPACT (Rosegrant et al., 2012) are economic models for the 

agricultural sector. They incorporate a wide range of agricultural and trade policies for 

several countries and regions. They are mainly used for food market related issues, 
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measuring alternative futures for global food supply, demand, trade, prices, and food 

security (Britz and Witzke, 2012; Rosegrant et al., 2012; OECD, 2006). They possess 1st 

generation feedstocks for biofuels production. Microalgae are not supported as a feedstock.   

Analyzing all these modeling tools, the main drawback related to microalgae 

biofuels or advanced biofuels is that they are closed systems and these emerging 

technologies cannot be inserted easily. Apart from that, they were not tailored to model 

energy sources, but instead food markets (with the exception of TIMES), and this could 

mislead the focus of the research.  

The TIMES model was the only one among them in which it was possible to 

insert new technologies, such as microalgae as a feedstock for biofuels, and much more 

emphasis was given to this possibility. However, to insert a new technology, a production 

process has to be given, with all the inputs related to this process. Complex data regarding 

the inputs characterization, quantities, emissions and costs are necessary. It would be 

possible to choose one microalgae process and fulfill these requirements. Yet, as 

abovementioned, cultivating microalgae is still an immature technology and there are 

hundreds of pathways to produce different types of fuels and co-products. These distinctive 

processes generate diverse emissions, quantities of biofuels and can possess very different 

costs. Therefore, it would be misleading to choose one single microalgae process for 

producing biofuel and use it for modeling different policies. A simpler model without the 

need of these complex inputs would be a superior choice for the purposes of this thesis. 

With this in mind, a SAN-based model with this autonomy was developed from scratch, in 

order to model this emerging technology without the need of fixing a production process 

that is yet not well established for the case of microalgae fuel.        

5.2. Modeling policies 

The United States transportation market was chosen due to its representative 

share of algal biofuel producing companies nowadays and because of the potential for 

future growth. Therefore, all the results presented in this chapter rely on the U.S. 

transportation sector. 

In order to develop a full scenario (from 2010 to 2040), each year inputs have 

to be defined and ran separately using the software SAN Lite Solver, and then the results 
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of each year are aggregated to build a curve. The inputs and basic assumptions are 

presented in the next section.   

5.2.1. Model assumptions 

In order to reduce the uncertainty and simplify the model, the Advanced 

Biofuels share is considered as a sum of cellulosic biofuel, biomass-based diesel and 

advanced biofuel shares of the RFS2. This basic assumption was made due to the difficulty 

to analyze each of these emerging biofuels separately, and forecast their market diffusion.  

The reference scenario considered the years from 2010 to 2040 and the only 

policy used was 1st generation biofuels mandate, because it already affects the market share 

greatly. Since in this study Biofuels, Gasoline/Diesel and Advanced Biofuels are expressed 

in units that have the same energy content (MBtu per gallon), we are assuming that these 

fuels are perfect substitutes. The main variables that need to be set for each year and for 

each of the energy sources are price, availability and policies. An energy-equivalent price 

was computed relying on EIA reference prices (U.S. EIA, 2013). The availability ranges 

from 0 to 100, as 0 being no availability and 100 being total availability. This variable 

takes into account the availability of resource, fueling stations and vehicles that run with 

that energy source. The availability and change costs are described as follows but were 

defined through a rigorous step of calibration presented in Section 5.2.4.  

The model consists of 5 automata representing the users of each considered 

energy source: Petrol, Gas, Biofuels, Advanced Biofuels and Electricity. The basic 

assumptions made for each of these automata are described as follows. 

5.2.1.1. Petrol Share 

Gasoline and Diesel together represent the Petrol share of the model. Aviation 

fuels and other petrol derivatives were not considered in this study. Future prices of 

Gasoline were based on EIA reference case study (U.S. EIA, 2013) and converted to an 

energy-equivalent basis (Dollars per MBtu). The Petrol prices used as inputs for each year 

in the model are presented in Table 12. Diesel prices were not taken into account. 

Concerning Petrol availability, it was set to a maximum (100) because it is widely 

available in gas stations all over the U.S. and it is quite easy acquire a car that runs on 

gasoline or diesel. 
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Table 12: Reference case Petrol prices used. 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

$23.18  $28.70  $29.14  $27.02  $26.37  $25.99  $26.00  $26.25  $26.69  $27.22  $27.84  

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

 $28.32  $28.72  $28.92  $29.13  $29.26  $29.51  $29.75  $30.01  $30.37  $30.73  

 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 

 $31.07  $31.44  $31.97  $32.41  $32.99  $33.59  $34.19  $34.79  $35.47  $36.18  

* Source: U.S. EIA (2013). Prices in 2011 dollars per million Btu. 
  

5.2.1.2. Gas share 

Natural gas in the model was considered as Compressed Natural Gas (CNG). 

Future prices of CNG were based on EIA reference case study (U.S. EIA, 2013) and 

converted to an energy-equivalent basis (Dollars per MBtu). The Natural Gas prices used 

as inputs for each year in the model are presented in Table 13. Since regular cars need to 

be adapted to run with gas, there is a cost for adapting a car to use CNG that was 

considered as well. The adaptation costs vary from 10 to 100 units, in which 10 means that 

the user needs to buy a new car and 100 denotes that the same car can be used with no 

changes. Since to consume gas a car must be adapted, but it is not demanded to buy a new 

one, the adaptation cost for natural gas was set to 20 units. The availability of this type of 

fuel is somewhat available in petrol stations but it is not found everywhere. Thus, the 

availability for the reference case was set to 25 units.  

Future scenarios of Natural Gas use in transportation could vary due to policies 

and new resource discoveries, however, as it was not one of the objectives of this study, 

these different Natural Gas scenarios were not modeled. Nevertheless, it is conceivable to 

use this model to develop different Natural Gas scenarios by altering prices, availability 

and policies related to this source of energy.  
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Table 13: Reference case Natural Gas prices used. 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

$16.51  $16.14  $14.59  $15.85  $15.73  $15.74  $16.15  $16.35  $16.63  $16.78  $16.87  

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

 $17.02  $17.30  $17.55  $17.77  $17.97  $18.22  $18.37  $18.58  $18.75  $18.90  

 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 

 $19.06  $19.18  $19.31  $19.57  $19.86  $20.20  $20.51  $20.85  $20.98  $21.20  

Source: U.S. EIA (2013). Prices in 2011 dollars per million Btu. 

 

5.2.1.3. Biofuels share 

Due to the fact that the vast majority of biofuels sold in the U.S. is ethanol 

(even if through blending), the Biofuels share is composed by ethanol. Future prices of the 

Biofuels share were based on ethanol prices of EIA reference case study (U.S. EIA, 2013) 

and are shown in Table 14.  

The availability to buy directly ethanol (not mixed in gasoline) is low and most 

of the ethanol is sold mixed in gasoline due to mandate policies. Therefore, the availability 

for the reference case was set to 8. There is no cost for adapting a car to use biofuels. The 

users do not give preference to any fuel due to environmental issues. 

In order to model the insertion in the market of biofuel blending mandates, a 

mathematical policy was set. As this is not an option of the users, because they buy 

gasoline (petrol) and receive ethanol blended with it, this policy worked as a percentage of 

Petrol. Thus, a factor of 0.1 (10%) is multiplied by the overall Petrol users, subtracted from 

the Petrol share and added to the Biofuels share already modeled.  
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Table 14: Reference case Biofuels prices used. 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

$25.56  $25.30  $33.64  $31.12  $24.81  $24.94  $24.51  $24.77  $25.84  $26.81  $29.64  

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

 
$29.38  $28.22  $28.25  $27.15  $27.27  $27.52  $26.36  $26.24  $26.60  $26.94  

 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 

 $27.29  $27.67  $28.19  $28.63  $29.19  $29.79  $30.40  $30.99  $31.67  $30.58  

* Source: U.S. EIA (2013). Prices in 2011 dollars per million Btu. 

5.2.1.4. Advanced Biofuels share 

Analyzing the diffusion of Advanced Biofuels depending on different policies 

is the main objective of this model. In order to reduce the uncertainty and simplify the 

model, the Advanced Biofuels share is considered as a sum of cellulosic biofuel, biomass-

based diesel and advanced biofuel shares of the RFS2. 

Since it is difficult to forecast future prices of Advanced Biofuels share, as 

referred in the economical assessment of microalgae (Section 2.3.2), various prices were 

tested. Regarding Advanced Biofuel prices, two scenarios were taken into account; one, in 

which price drops from 42 dollars per MBtu in 2020 by 1% per year, and another, with 

fixed price 42 dollars per MBtu in 2020 onwards. These options were made to model two 

different situations, one that the prices of Advanced Biofuels drop with advances in 

technology and production and another one where the price reaches a limit that cannot be 

further reduced. 

The availability to buy directly advanced biofuels (not mixed in gasoline) is 

low. Therefore, the availability for the reference case was set to 7 and it rises depending on 

the investment of R&D that is applied. With the increase of R&D in emerging advanced 

biofuels, it is expected that the resource availability grows. In this manner, with low R&D 

investment, in the reference case, the availability grows 2.5% per year from 2015 onwards. 

Likewise, the availability increases yearly with medium and high investments in R&D in 

4.0% and 6.5%, respectively.   

As said previously, advanced feedstock for fuels can produce a great variety of 

fuels, such as ethanol, biodiesel, biogasoline or bio-oil (considered perfect petroleum 

substitute). Therefore, in this model, no cost for adapting cars to use advanced biofuels was 

accounted for. 
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In the scenarios where advanced biofuels mandates are modeled, the same 

methodology of 1st generation biofuels blending mandates was used. If the RFS2 mandates 

of Table 6 are considered to be met, a factor of 0.04 (4%) in 2015 is multiplied by the 

overall Petrol users, subtracted from the Petrol share and added to the Advanced Biofuels 

share already modeled. These values increase by 0.02 until 2022, when they remain 

constant. 

5.2.1.5. Electricity share 

The electricity share of the model was represented by what is already used 

nowadays plus the incorporation of electric cars. Future prices of the electricity share were 

grounded on a projection of electricity for transportation from U.S EIA (2013). These 

future prices are offered in Table 15. 

Electric cars have a greater efficiency than combustion engine cars, and 

because of this characteristic, there is a lower energy need to travel the same distance with 

fuel electric cars. To model this, the electricity price was multiplied by a factor of 0.35 so 

that the energy equivalent is cheaper and the price is in tune with reality.   

 

Table 15: Reference case Electricity prices used. 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

$33.91  $32.77  $31.12  $30.59  $30.13  $29.84  $30.01  $29.95  $29.97  $29.76  $29.60  

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

 
$29.45  $29.42  $29.66  $30.04  $30.40  $30.71  $30.93  $31.21  $31.33  $31.53  

 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 

 $31.74  $31.92  $32.19  $32.43  $32.84  $33.35  $33.76  $34.21  $34.76  $35.07  

* Source: U.S. EIA (2013). Prices in 2011 dollars per million Btu. 
 

The availability to buy an electric car is increasing each year due to 

technological advances in this field. Several limitations still halt the mass diffusion of this 

kind of transportation (e.g. autonomy, battery life, recharging time and stations, vehicle 

cost, etc.). However, it is expected a rise in electric and hybrids sales and thus, the 

availability for the reference case was set to 2 but it increases in 0.1 yearly over time from 

2015 onwards. As commented before, in order to the user change to/from this energy 

source, there is the need of buying a new car, therefore, the cost for changing to/from 

electricity is 10.  
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Similarly to natural gas, many different scenarios could be modeled regarding 

different future paths for electric cars. However, since electric cars are not the main 

objective of this study, just one pathway was considered. The reference baseline for hybrid 

and electric cars was based on EIA (2013), and set to 20 million cars on the market in 2040 

(accounting for cars and light trucks). These numbers contrast to 240 million conventional 

cars and light trucks in 2040 in the U.S. using gasoline and diesel (EIA, 2013). Therefore, 

in this scenario, it is not expected elevated electricity consumption and diffusion of the 

Electricity Share of the model. As stated earlier, another reason for this low level of 

diffusion is that electric cars are more efficient than conventional cars and will use less 

energy to travel the same distance, and the overall transportation market diffusion of this 

model is presented in an energy unit basis. More optimistic assumptions regarding electric 

vehicles market diffusion in the future of transportation can be modeled by changing 

prices, availability and change costs for this energy source.  

With all the assumptions presented, in the next section it is described how each 

year was modeled and the equations that were used. 

5.2.2. Modeling each year 

The model consists of 5 automata representing the users of each considered 

energy source (Petrol, Gas, Electricity, Biofuels and Advanced biofuels). The structure of 

automata are analogous (Figure 14).  

 
Figure 14: Automaton Users Of Petrol 

Automaton UP (Users of Petrol) has 51 states, each representing a range of 2% 

of users. For example, if this automaton is in state 1, there is 1 to 2% of users of Petrol, if it 

is in state 49, users of Petrol are 97 to 98% of the total users of transport energy fuels. The 

increase/decrease of the number of users of Petrol occurs according to the transitions. 
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Transitions are triggered by events. For example, in UP it is possible to change from state 0 

to state 1 if one of the following events occur: GtoP (Gas to Petrol), EtoP (Electricity to 

Petrol), BtoP (Biofuels to Petrol), AtoP (Advanced Biofuels to Petrol). The intuitive 

meaning is that there can only be an increase in the number of Petrol users if the user of 

some other fuel changes to Petrol. Figure 15 shows part of the automata UP and UG (Users 

of Gas). There we can perceive that the same event name is used in both automata. This 

means that these events are synchronized, that is, must occur at the same time, assuring 

that the users really move from one fuel to the other. 

 

 
Figure 15: Synchronized Events 

Moreover, each event has its own occurrence rate that governs how often the 

event will happen. These rates are thus the essential component of the model. Rates are 

values ranging from 0 to 1, where higher rates represent that it is more likely that the 

transition between the corresponding states occurs. The basic parameters (without 

considering policies) that are used to define the rates of transitions are, for each fuel X: 

 

PRICE_X: price of fuel X. The price is given in Dollars per MBtu. 

  

AVAIL_X: the availability of fuel. This may range from 1 to 100, and is a 

bound limiting the number of users of fuel X (if AVAIL_X is 10, at most 10% of users 

may use X). We consider the value of 100 as unlimited availability. 

 

The mathematical expression that gives the rate of event XtoY (changing from 

a fuel X to fuel Y) is basically a weighted harmonic mean. The mathematical expression 

(Equation 1) should be understood as follows: if there is still availability of fuel Y, the rate 

to change from X to Y is the weighted harmonic mean considering the cost of converting 
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the car (if necessary), with weight one, the availability of Y, with weight 2 and the price 

difference, with weight 3. 
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where 

 

available_Y: denotes whether fuel Y has not yet reached its limit. The value of 

this variable is zero if the number of users of this fuel is equal or greater than the 

availability of this resource, and one otherwise. In our model, an availability of 100 means 

that there is no limit, and, thus, in case fuel Y has availability 100, available_Y is one.  

 

changeCost_XtoY: this represents the cost of changing from fuel X to fuel Y 

regarding car adaptations that are necessary. We work with three values for this variable: 1, 

when no adaption is necessary; 0.4 when some adaption is necessary (like in the case of 

adapting a car to use gas); and 0.1 when a car change is necessary. 

 

priceDiff_XtoY: This variable gives the distance between the prices of fuel X 

and Y. We use a unity-based normalization using as interval the distance between the 

minimum cost in all scenarios (10) and the maximum cost (50). If prices of X and Y are 

the same, priceDiff_XtoY is 0.5. If Y is cheaper than X, priceDiff_XtoY will be greater 

than 0.5 (the greater the difference in price, the more this variable approximates to 1). 

Analogous to this, if Y is more expensive than X, priceDiff_XtoY will be smaller than 0.5. 

 

Four kinds of policies were modeled: subsidy (policy 1), taxes (policy 2), 

mandates (policy 3) and R&D investment (policy 4). To simulate the effects of these 

policies in the model, the following parameters must be set for each fuel X: 

Policy1_X: Subsidy is modeled by decreasing the price of a fuel by a factor 

(subsidy factor), ranging from 0 to 1.  

Policy2_X: Taxes are modeled analogously, but with factors that are greater 

than 1. In this way, the price of fuel X that is considered in each model is obtained by 

multiplying the actual cost of X by the subsidy and tax factors. 

Policy3_X: Mandates are also modeled by factors from 0 to 1 that represent the 

percentage of a fuel (Bio or Advanced Biofuel) in Gasoline. 
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R&D investment (policy 4) was modeled by increasing the availability of the 

resource, since the expected medium to long term effect of such investment is to improve 

the efficiency of the technology for production and use of these biofuels. 

By solving the Markov chain associated to each scenario we find the 

equilibrium state, that is the distribution of users in states to which the system would 

converge. In this way, altering all the inputs and running in the SAN Lite Solver it is 

possible to model one year. The model template of the source code developed is presented 

in Appendix D. With the yearly results a scenario can be modeled. This step is presented in  

following section. 

5.2.3. Modeling a scenario 

The time span to be modeled is divided into 31 periods of equal length, 

corresponding to the years of 2010 through 2040. Since the change in energetic sources 

take a long time to reach penetration, such time horizons tend to cover several decades, 

being in this study until 2040.  

In order to make a scenario, each individual year must be ran as described 

previously and the results compiled together, so that a curve can be attained. For example, 

Figure 16 (in section 5.2.4) is created from 31 "dots" arising from each energy source, 

representing their respective each year market shares based on the parameters established 

for each year. In this way, depending on prices fluctuations, availability changes or policies 

employed, the equilibrium state and the distribution of users of each year will be different, 

and the overall scenario will differ as well. 

So, it was possible to create different scenarios to represent the future of 

transportation fuels in the U.S. depending on the policies adopted. However, for this model 

to represent realistic scenarios, it had to be calibrated and validated. More information 

about these steps is presented in the subsequent section.    

5.2.4. Calibrating and validating the model 

The challenge was to calibrate this model to make it a realistic representation 

of the U.S. transportation market shares, such that it would be worthwhile to use it to 

perform analysis of future scenarios. The calibration involved the choices of harmonic 
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mean, weights of the harmonic mean components, factors of change cost, unity based 

normalization for price differences, and availability values of resources.  

The choice for weighted harmonic mean was made to penalize low values. In 

this way, if a fuel is very cheap but has no availability, it will never achieve high market 

share, only if it increases its availability. Similarly, if a fuel is widely available but the 

price is too high, the weighted harmonic mean penalizes this fuel, as occurs in reality.    

The factors of changing from an energy source to another were based on the 

reality whereas there is no change in infrastructure to change from gasoline/diesel to 

ethanol/biodiesel. Although ethanol is not recommended for older cars (prior to 2001) with 

gasoline engines, newer ones can use up to 15% (E15) of ethanol blended in their gasoline. 

Newer flex fuel cars are already been sold and can even use E100. In this way, changing 

costs for Petrol fuels to Biofuels and Advanced Biofuels were set to 100 (none). On the 

other hand, natural gas car adaptations were set to 40 and the purchase of an electric car set 

to 10. These numbers were achieved in the calibration process whereas the right set of 

inputs was needed so that the real transportation market shares were reached, as described 

further.       

Regarding energy price differences, a unity-based normalization using as 

interval the distance between the minimum cost in all scenarios ($10.00) and the maximum 

cost ($50.00) was applied. Setting these parameters was necessary to achieve values 

ranging from 0 to 1, without having inaccuracies due to possible differences among 

scenarios. For example, if it were normalized solely with minimum and maximum values 

within the studied scenario, given year could present a minimum price of $30.00 and a 

maximum of $35.00 among all the energy sources. This would lead to a total range of only 

$5.00, and the fuel costing 35.00 would be greatly penalized, although it is not much more 

expensive than the others. In order to prevent these inaccuracies, all price differences were 

calculated based on a maximum range of $40.00, as stated before ($50.00 minus $10.00).     

Availability is one of the key parameters in the model. In order to define the 

availability of each energy source, a relation with the real market was made as described in 

the assumptions section. Therefore, Petrol fuels were defined as widely available (100) and 

the other fuel availabilities were defined through the calibration process.    
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After the model was calibrated, the validation of the model was performed in 

three ways: (1) by considering real U.S. transportation market shares data of existing years, 

(2) by analyzing threshold situations, and (3) by analyzing a reference scenario.  

The years 2010 and 2013 were chosen as references and the market shares 

resulting from the solution of the model should be very approximate to the real values of 

the considered years. In this way, with all the same inputs, except for price (based on real 

ones), the modeled years 2010 and 2013 results must be very similar to the real values. In 

order to accomplish that, the values for availability and prices used are shown in Table 16. 

 

Table 16: Availability and price calibration (2010 and 2013 inputs). 

Energy sources 2010 2013 

 Availability Price Availability Price 

Petrol 100 23.18 100 27.02 

Natural Gas 25 16.51 25 15.85 

Biofuels 8 25.56 8 31.12 

Advanced Biofuels 7 50.00 7 50.00 

Electricity 2 33.91 2 30.59 

Prices in US$ per Million Btu. 

 

It is important to highlight that with only an alteration of prices, that was based 

on the real ones (U.S. EIA, 2013) except for Advanced Biofuels, and using the same 

availability for each source, the market shares resulting from the solution of the model 

were very close to the real values of the selected years (Table 17).  

Another characteristic of this model is that it points out tendencies. For 

example, if the price of Natural Gas drops vigorously for a given year, the market share of 

gas is bound to raise in the model. However, in the real world market, a transition among 

different energy sources takes time, and it is not probable to witness strong changes from 

one year to another. Due to this reality, the Natural Gas share was particularly difficult to 

calibrate because the price decreased from 2010 to 2013 (U$16.51 to U$15.85) and just a 

small raise in market share was observed (3.03% to 3.36%). Consequently, the model 

results presented a higher raise in Natural Gas market share, due to lower prices.    
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Table 17: Real transportation U.S. values versus model results from years 2010 and 2013. 

Energy sources Real Model Real Model 

 2010 2010 2013 2013 

Petrol 88.80% 88.78% 87.81% 87.91% 

Natural Gas 3.03% 2.53% 3.36% 3.40% 

Biofuels 7.94% 8.02% 7.94% 7.94% 

Advanced 
Biofuels 

- 0.33% 0.52% 0.36% 

Electricity 0.23% 0.32% 0.37% 0.36% 

* Petrol represents a sum of fossil Gasoline and Diesel. Aviation fuels and petrol derivatives were 
not considered. Market shares are represented in % of Mbtu used. 

 

Furthermore, the analysis of limit situations showed the robustness of the 

model. The model behaves as expected considering, among others, circumstances where all 

fuels had the same price and/or all the same availability. A total of 32 limit tests were 

performed with the final version of the model. A list of some of these limit tests are shown 

below and the test results are presented in Table 18. Note that all the tests were based on 

2010 reference values and only the changes made are listed. 

• Test 1: Advanced Biofuels availability = Petrol = 100   

• Test 2: All sources availability = 100 

• Test 3: Advanced Biofuels availability = 100 and Price 10.00  

• Test 4: Advanced Biofuels availability = 100 and Petrol price = Adv. Bio = 23.18 

• Test 5: Advanced Biofuels price = 20.00 

• Test 6: Natural Gas availability = 100 

• Test 7: Electricity availability = 50 

• Test 8: Electricity availability = 100 and Biofuel Price = Adv. Bio = 25.56 

• Test 9: Advanced Biofuels price = Petrol = 50.00 

• Test 10: Advanced Biofuels price = Petrol = 20.00 
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Table 18: Limit situations test results. 

Energy 
sources 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 

Petrol (%) 88.36 9.51 3.58 45.29 88.73 82.37 73.77 51.55 65.43 89.40 

Natural Gas 
(%) 

2.76 6.51 1.26 2.40 2.45 9.74 2.98 2.85 23.45 2.08 

Biofuels (%) 7.84 7.95 1.20 4.82 7.93 7.47 6.98 5.44 10.07 7.91 

Advanced 
Biofuels (%) 

0.87 0.60 93.82 47.32 0.74 0.25 0.25 0.51 0.65 0.46 

Electricity (%) 0.15 75.41 0.11 0.14 0.13 0.14 15.99 39.62 0.38 0.12 

 

The results from Table 18 are reached to analyze if the resulting market share 

behaves as expected with the given inputs. For example, Test 4 changes the availability of 

Advanced Biofuels to 100, and the price is set as the same as Petrol. In this fictitious 

scenario, it is expected from the users to be divided mainly between these two fuels. That 

is, in fact, what occurs, with a slight difference from the biofuels mandate policy 3 that 

subtracts some of the users of Petrol. Thus, this same analysis is continually performed to 

all 32 tests.     

 After calibrating the model and analyzing the test sequences, a full scenario 

could be built. For that, each year inputs for every energy source were inserted in the 

model and ran separately. With all data from all years done, the resulting reference U.S. 

transportation market share can be seen in Figure 16. 
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(a) 

 
(b) 

Figure 16: U.S. Transportation market share diffusion reference scenario (a) and a graphic zoom in non-

petrol fuels (b). 

From this reference scenario, it is possible to notice only a minor decrease in 

the users of Petrol if no other policies are in effect, since the only policy used in the 

reference model was the 1st generation biofuels mandates. In the Figure 16 (b), there is a 

slight yearly increase in electricity, natural gas and advanced biofuels use. Other scenarios 

can be created by altering the assumed policies . This will be made in the next section. 

5.3. Results and analysis 

After the steps of calibrating and validating the model, many scenarios were 

calculated from 2010 to 2040 with different policies configurations. Initially, a price 

subsidy of Advanced Biofuels was modeled (Policy 1) from 2020 onwards. This price 

subsidy scenario, based on the reference scenario, reduced the final price of Advanced 

Biofuels in 10%, 25% and 50% with no alterations made in the reference availability of 
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Advanced Biofuels (low investment on R&D). The results can be met in Figure 17. It is 

only shown the graphic zoom in the non-Petrol fuels due to the very high market shares of 

Petrol (84.6, 84.0 and 82.2% in 2040, respectively).  

 
(a) 

 
(b) 

 
(c) 

Figure 17: U.S. Transportation market share diffusion of reference scenario with low investment in R&D and 

10% (a), 25% (b) and 50% (c) Advanced Biofuels price subsidy. 
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From the above graphs it is possible to realize that with low investment in 

R&D, no mandates and solely price subsidies, slight is the effect on the future diffusion of 

Advanced Biofuels, since in the strongest 50% subsidy scenario (c), the Advanced Biofuels 

share does not reach 4% in the market share by 2040. 

With the purpose of assessing the impact of Research & Development, a 

medium investment on R&D was modeled without subsidies and with the same Advanced 

Biofuels price subsidies already used. The new reference scenario is shown in Figure 18.  

 
(a) 

 
(b) 

Figure 18: U.S. Transportation market share diffusion reference scenario with medium Advanced Biofuels 

R&D investment (a) and a graphic zoom in non-petrol fuels (b). 

 
Comparing the medium and low R&D investment scenarios for Advanced 

Biofuels, it is possible to witness a small increase of market shares by the end of 2040 

(1.6% to 2.3%). In the same manner, the Petrol share decreases from 84.9% to 84.2% of 

the total market share in 2040. The scenarios with Advanced Biofuels subsidies and 

medium R&D investment are presented in Figure 19. The Petrol share are not represented 

in this figures, but they achieved 83.7, 82.7 and 79.4% in 2040, respectively.  
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(a) 

 
(b) 

 
(c) 

Figure 19: U.S. Transportation market share diffusion of reference scenario with medium investment in 

R&D and 10% (a), 25% (b) and 50% (c) Advanced Biofuels price subsidy. 

 

Analyzing these graphs, it is interesting to point out that the market diffusion 

outcomes obtained from a price subsidy coupled with a medium investment in R&D are 

more effective regarding Advanced Biofuels, when compared with the low R&D 
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investments scenarios. In Figure 19(c) it is possible to see that not only the Advanced 

Biofuels share made progress in the final market share, but also the Natural Gas share 

raised as well (2040 Reference Natural Gas from 4.46% to 5.21%), even if no policies or 

different availabilities were applied in this energy source.   

To conclude this section of R&D investments, a high investment in Advanced 

Biofuels was modeled according the same pattern presented in the previous ones. The 

results of the overall market diffusion with no subsidies are shown in Figure 20.   

 

  
(a) 

 
(b) 

Figure 20: U.S. Transportation market share diffusion reference scenario with high Advanced Biofuels R&D 

investment (a) and a graphic zoom in non-petrol fuels (b). 

 

The Advanced Biofuels share is reasonably higher in this scenario, achieving 

4.31% of the overall U.S. transportation market share in 2040. When this higher 

investment in R&D is combined with price subsidies, the results are far more promising. 
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Figure 21 displays the results of Advanced Biofuels high investment in R&D and price 

subsidies of 10 and 25%. 

 

  
(a) 

 
(b) 

Figure 21: U.S. Transportation market share diffusion of reference scenario with high investment in R&D 

and 10% (a) and 25% (b) Advanced Biofuels price subsidy. 

 

From Figure 21 it is clear that with high investment in R&D and with price 

subsidies, Advanced Biofuels market diffusion can become an important market player in 

the future. In Figure 22 it is shown the great impact on the overall U.S transportation 

market diffusion with a high investment in R&D and high subsidies for Advanced 

Biofuels. 
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Figure 22: U.S. Transportation market share diffusion reference scenario with high R&D investment and 

50% price subsidy for Advanced Biofuels. 

 
Although it is unlikely that such a high subsidy is to be implemented by any 

government, it is valid to model this feature for academic purposes. In this figure, it is 

interesting to witness a sensible growth in the Advanced Biofuels share, reaching 19.03% 

in 2040. On the other hand, the Petrol share decreases from 87.87% nowadays to 67.33% 

of U.S. transportation market share in 2040.  

The importance of R&D investment as a policy was mentioned in the Delphi 

survey (Section 4.2) by the algae experts and proved to be successful on the scenarios 

modeled. In this way, R&D investment not only in the algae industry but also in all 

advanced biofuels one can be crucial to the development of these technologies.   

In the next step of modeling scenarios, price taxes on the Petrol share were 

applied attempting to achieve even higher market diffusion for Advanced Biofuels. In a  

similar method, other sources of energy would benefit from higher prices of the Petrol 

share, and an increase of the Natural Gas and Electricity shares were also expected.   

The same models with Advanced Biofuels price subsidies (10%, 25% and 

50%) were coupled with Petrol taxes that increased the price of Petrol in 10%, 25% and 

50%. These 9 scenarios were recalculated with low, medium and high R&D investments, 

performing a total of 27 new scenarios to be analyzed. Some of these scenarios are 

presented as follows (Figure 23). A complete table with all the results achieved in each 

scenario is displayed in Appendix E. A 10% Petrol tax was applied from 2020 onwards in 

the next scenarios. 
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(a) 

 
(b) 

Figure 23: U.S. Transportation market share diffusion of reference scenario with low investment in R&D, 

10% Advanced Biofuels subsidy and 10% Petrol tax (a) and a graphic zoom in non-petrol fuels (b). 

 

From these graphs it is noteworthy the growth of other energy sources when a 

10% Petrol Tax is applied. The Natural Gas share ascends from 4.46% to 6.49% in 2040, 

while the Electricity share slightly climbs from 0.96% to 1.10% in this new scenario. The 

Advanced Biofuels share shows an increase from 1.63% to 2.29% based on the reference 

scenario. 

When medium and high investments in R&D in Advanced Biofuels are 

considered, it is noted a higher rate of market diffusion of Advanced Biofuels, as expected 

(Figure 24).  
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(a) 

 
(b) 

Figure 24: U.S. Transportation market share diffusion graphic zoom in non-petrol fuels of reference scenario 

with 10% Advanced Biofuels subsidy, 10% Petrol tax and medium (a) and high (b) investment in R&D.  

 

With a higher penetration of Advanced Biofuels, a small drop in 1st generation 

biofuels is observed (Figure 24b). The reason for this decrease is that almost 99% of the 

volume of ethanol is sold through blending mandates, sold simultaneously with gasoline 

(U.S EIA, 2013). In this way, when users increase their use of Advanced Biofuels, 

Electricity and Natural Gas, they decrease their utilization of gasoline (75.9% of users in 

2040), consequently reducing the amount of biofuels sold through blending.  

Analogously, these scenarios were developed with different policies and Table 

19 presents the final results (in 2040) of Advanced Biofuels and Petrol shares in % of total 

U.S. transportation. In this table, results are summarized for four different policies: 

Research & Development (R&D) investment in Advanced Biofuels (low, medium and 

high), advanced biofuels price subsidies (10%, 25%, and 50% price abatement), Petrol 
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taxes (10%, 25%, and 50% price increase) and 1st generation biofuels mandates (already in 

the reference model).   

 

Table 19: U.S. Transportation Market Shares In 2040 Depending On Different Policies. 

Reference: Advanced Biofuels share Petrol (Gasoline + Diesel) share 

R&D Low Med High Low Med High 

Reference 1.6% 2.3% 4.3% 84.9% 84.2% 82.2% 

Price subsidy 10% 1.9% 2.7% 5.7% 84.6% 83.7% 80.8% 

Price subsidy 25% 2.3% 3.6% 9.1% 84.0% 82.7% 77.4% 

Price subsidy 50% 3.6% 6.4% 19.0% 82.2% 79.4% 67.3% 

With 10% Petrol Tax      

Price subsidy 10% 2.3% 3.5% 8.5% 82.0% 80.8% 75.9% 

Price subsidy 25% 2.9% 4.9% 13.8% 81.0% 79.1% 70.4% 

Price subsidy 50% 4.9% 9.0% 23.4% 78.0% 73.9% 59.9% 

With 25% Petrol Tax      

Price subsidy 10% 3.4% 5.8% 16.3% 74.1% 71.8% 61.3% 

Price subsidy 25% 4.7% 8.3% 22.1% 72.0% 68.3% 54.6% 

Price subsidy 50% 8.2% 14.1% 27.0% 65.9% 59.9% 46.9% 

With 50% Petrol Tax      

Price subsidy 10% 9.6% 15.2% 27.5% 50.3% 44.3% 30.7% 

Price subsidy 25% 12.1% 17.3% 28.5% 46.2% 40.7% 28.2% 

Price subsidy 50% 14.7% 19.1% 29.4% 40.5% 36.2% 24.5% 

 

As commented previously, the greatest difference in final market diffusion of 

Advanced Biofuels depends on how intense is the R&D investment. Price subsidies also 

help the diffusion of Advanced Biofuels, however, with little investment in R&D the scale 

of production do not raise sufficiently and, consequently, a low percentage of users can 

change to this biofuel. Thus, a combination of investment in R&D with price subsidies 

showed better results.    

Taking into account the implementation of Petrol taxes, it is significant to 

highlight that not only the Advanced Biofuels share increased, but users of all other 

sources of energy also enhanced. This is shown in Figure 25. 
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(a) 

 
(b) 

Figure 25: U.S. Transportation market share diffusion of reference scenario with medium investment in 

R&D, 50% Advanced Biofuels subsidy and 25% Petrol tax (a); and 25% Advanced Biofuels subsidy, 50% 

Petrol tax (b).  

In these scenarios a much more balanced situation, regarding the sources of 

energy used in transportation, is achieved. For example, in Figure 25b, Advanced Biofuels, 

Natural Gas and Electricity reach in 2040 17.32%, 24.09% and 3.79% of the transportation 

market share respectively, while the use of Petrol fuels declines to 40.71%. However, it is 

imperative to make clear that such elevated petrol taxes are unlikely to happen in reality, at 

least nowadays, but for scientific purposes it revealed to be important to project these 

scenarios.        

It is essential to recap that with an 1% yearly decrease in Advanced Biofuels 

price as reference (from 2023 onwards), the final price, without taxes or subsidies, was 

cheaper than the Petrol (in which gasoline prices were used) US$ 35.05 versus US$ 36.18 

per MBtu in 2040. Recognizing that it could be difficult to lower prices only due to better 
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industry efficiency and economies of scale, all these scenarios were run again with fixed 

advanced biofuels prices of US$ 42 per MBtu, in an attempt to mimic a scenario that 

advanced biofuels industry reach its minimum feasible price. The results are shown in 

Table 20.    

 

Table 20: U.S. Transportation Market With Fixed Price U$ 42.00 per Mbtu Share in 2040 Depending 

on Different Policies.   

Reference: Advanced Biofuels share Petrol (Gasoline + Diesel) share 

R&D Low Med High Low Med High 

Reference 1.3% 1.7% 2.6% 85.2% 84.8% 83.7% 

Price subsidy 10% 1.5% 2.0% 3.5% 85.0% 84.5% 83.0% 

Price subsidy 25% 1.9% 2.7% 5.7% 84.6% 83.7% 80.8% 

Price subsidy 50% 3.0% 5.0% 14.8% 83.1% 81.1% 71.7% 

With 10% Petrol Tax      

Price subsidy 10% 1.8% 2.5% 4.8% 82.6% 81.9% 79.5% 

Price subsidy 25% 2.3% 3.5% 8.5% 81.9% 80.7% 75.9% 

Price subsidy 50% 3.9% 7.0% 20.1% 79.5% 76.4% 63.7% 

With 25% Petrol Tax      

Price subsidy 10% 2.5% 3.8% 9.1% 75.4% 74.1% 68.7% 

Price subsidy 25% 3.4% 5.8% 16.3% 74.0% 71.8% 61.3% 

Price subsidy 50% 6.5% 11.7% 25.7% 68.8% 63.5% 49.5% 

With 50% Petrol Tax      

Price subsidy 10% 6.5% 11.4% 25.1% 68.8% 49.5% 34.6% 

Price subsidy 25% 9.6% 15.3% 27.5% 50.3% 44.3% 30.7% 

Price subsidy 50% 13.9% 18.5% 29.1% 42.5% 37.8% 25.9% 

 

In order to assess how the mandates influence the advanced biofuels diffusion 

in the transportation sector of the U.S., the next scenario is made based on RFS2 mandates 

of Table 6 from 2015 onwards. It is significant to highlight that although these mandates 

are in place, the actual produced volumes differ greatly from what was previously 

predicted. Regarding cellulosic biofuels, for example, the volume for 2014 established in 

2010 was 1.75 billion gallons (U.S. EPA, 2010), but this amount was changed in 2013 to 

17 million gallons (U.S. EPA, 2013). Thus, although the volume amounts used in this next 

scenario were based on that table, these amounts are probably going to be altered by the 

U.S. Environmental Protection Agency in the next years to values consistent with reality.    

In Figure 26, a representation of how the RFS2 mandates for advanced biofuels 

would affect the market shares if they could accomplish the 36 billion gallons goal as it 

was planned (U.S. EPA, 2010). The problem with this approach is that the mandates only 

do not have the power to make these fuels available, and the real production is well below 

to what was established. 
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(a) 

 
(b) 

Figure 26: U.S. Transportation market share diffusion of reference scenario with low investment in R&D and 

Advanced Biofuel Mandates based on RFS2(a); and a graphic zoom in non-petrol fuels (b). 

Regarding the first years of the RFS2 mandates, real production is not 

following the path established. The U.S. EIA (2013) states that the consumption of 36 

billion gallons ethanol equivalent established on EISA 2007 RFS target will not be reached 

in 2022 since the RFS program does not provide sufficient incentives to promote 

significant new ethanol capacity in this pricing environment. Thus, with the purpose of 

generating a better representation of the advanced biofuels mandates so far, data from U.S. 

EIA (2013) projection was used to develop this new scenario of mandates. Table 21 

presents these possible future scenarios from U.S EIA (2013) and Figure 27 presents a 

representation of those values developed from the model.   
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Table 21: Altered EISA2007 RFS2 mandate from 2011-2040 (billion gallons ethanol eq.) 

 
Advanced 

Ethanol 

Biomass-

based Diesel 

Cellulosic 

drop-in fuels 
TOTAL 

2011 0.05 0.30 0.00 0.35 

2012 0.13 1.49 0.02 1.64 

2013 0.25 1.92 0.02 2.18 

2014 0.34 1.91 0.05 2.29 

2015 0.34 1.91 0.08 2.33 

2016 0.35 1.91 0.14 2.40 

2017 0.35 1.91 0.16 2.42 

2018 0.35 1.89 0.18 2.42 

2019 0.36 1.90 0.21 2.47 

2020 0.36 1.90 0.25 2.51 

2021 0.36 1.91 0.28 2.55 

2022 0.36 1.91 0.33 2.59 

2023 0.35 1.92 0.38 2.65 

2024 0.35 1.91 0.44 2.71 

2025 0.35 1.91 0.52 2.78 

2026 0.35 1.91 0.61 2.87 

2027 0.35 1.91 0.72 2.98 

2028 0.35 1.91 0.85 3.11 

2029 0.35 1.91 1.01 3.26 

2030 0.34 1.91 1.20 3.45 

2031 0.34 1.90 1.46 3.70 

2032 0.34 1.91 1.78 4.02 

2033 0.34 1.90 2.17 4.41 

2034 0.34 1.91 2.65 4.90 

2035 0.34 1.91 3.25 5.49 

2036 0.34 1.91 3.98 6.23 

2037 0.34 1.91 4.88 7.13 

2038 0.34 1.91 5.99 8.24 

2039 0.34 1.91 7.36 9.61 

2040 0.34 1.91 9.03 11.28 

Source: U.S. EIA projection (2013) 
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(a) 

 
(b) 

Figure 27: U.S. Transportation market share diffusion of reference scenario with low investment in R&D and 

revised RFS2 Advanced Biofuel Mandates based on U.S. EIA (2013)(a); and a graphic zoom in non-petrol 

fuels (b). 

As represented on Table 21, U.S. EIA (2013) states that domestic consumption 

of drop-in cellulosic biofuels will grow from 0.3 billion gallons to 9.0 billion gallons 

ethanol equivalent per year from 2011 to 2040 while production costs for biofuel 

technologies fall. In comparison, little raise is seen on advanced ethanol and bio-based 

diesel, mainly due to the uncertainty related to the scale production of microalgae. After 

some commercial microalgae plants start production in the next years, these values can be 

altered.      

Finally, from the results presented some considerations can be drawn:  

a) Investment in Research & Development in advanced biofuels plays a key 

role in the future diffusion of these fuels;  
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b) It is more interesting in terms of diffusion to create policies that enhance 

research and development of advanced biofuels that would lead to increased availability 

and lower future prices than to merely enable subsidies to make them readily competitive 

with other fuels;  

c) Enabling Petrol taxes not only enhances the diffusion of Advanced Biofuels 

but also all other fuels in the market share; and if there are not enough biofuels to fulfill the 

demand, natural gas and electricity become key players in the market share;  

d) If no public policy is enabled to enhance the Advanced Biofuels industry, it 

would play a minor role in the future of energy transportation. This scenario could 

dramatically change depending on the policies adopted and  

e) Given the uncertainty of long-term crude oil prices, the real competitive 

price level for advanced biofuels can be far higher.  

 

Although it is very unlikely to promote such taxation on petroleum products, it 

is interesting to study how strong fiscal impacts would affect the market diffusion of all 

fuels until 2040. Moreover, with policy support and incentives, the algal biofuels industry 

(and advanced biofuels) will continue to develop and assuming that this technology 

follows renewable energy cost trends, costs will decrease to eventual economic viability.  
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6. CONCLUSIONS 

As several times mentioned throughout this work, the continued use of fossil 

fuels for energetic purposes is gradually becoming clearer to society that is unsustainable. 

Innovative technologies and sources of energy must then  be developed to replace fossil 

fuels. However, alternative sources of biofuel derived from terrestrial crops such as 

sugarcane, soybeans, maize, rapeseed, among others, inflict a lot of pressure on the global 

food markets, contribute to water scarcity and precipitate the destruction of forests. 

Furthermore, many countries cannot grow most of the terrestrial crops due to climate 

factors or lack of fertile cultivation areas for energetic purposes. In this context, using 

microalgae as a feedstock for biofuels is strongly believed to make a contribution for the 

future world sustainability.  

Algae biofuel technological advances in cultivation and extraction of oil are 

scientifically well known, and should continue to move forward in the coming years with 

increasing investment in R&D in this area. However, as shown in this thesis, many are the 

challenges for this technology to be successful and produce biofuels in a sustainable 

manner. Therefore, what are the main drivers that influence the overall sustainability 

of microalgae biofuels, considering economic, social and environmental impacts? 

 Consensus among the algae experts was reached in many of the prospects and 

bottlenecks of this technology. The Delphi method proved to be a successful research 

method when expert opinions are the main source of information available, due to a lack of 

appropriate historical, economic or technical data. The outcomes provided a clear outline 

of the main issues of microalgae biofuels' market at the present and in the future. In 

particular, the two-round survey revealed the most important issues affecting this emerging 

market and also, recommended ways to influence future policies and development of this 

biofuel. 

Environmental sustainability can be directly affected by several issues in 

microalgae cultivation, such as poor energy balance, water scarcity or greenhouse gas 

benefits if some processes are not adopted in the cultivation and production. Some of the 

key processes are anaerobic digestion to generate energy for the process, recycling 

nutrients from wastewater and seawater, and using a source of CO2 from emitting 

industries. The need of finding locations with favorable climate, in non-agricultural land, 
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with feasible water supply and CO2 resources are also key aspects concerning 

environmental sustainability of microalgae biofuels. However, as shown in the 

sustainability assessment, it is possible to produce biofuels from microalgae while being 

environmentally sustainable depending on the cultivation processes that are chosen.  

Social equity presents a favorable panorama. The possibility to produce fuels 

with no need of "proven geographical reserves" renders to this technology a strong social 

characteristic, in which many countries have the possibility to produce it. This allows 

increased independence on foreign energy and increase the energy security of producing 

countries, as developing domestic sources of energy are key to promoting energy security. 

Moreover, for developing countries with high levels of poverty, the relationship of 

increased consumption of energy and well-being is stronger. Therefore, beyond job 

generation impacts, providing economic stimulus for such countries, algal biofuel 

production would provide energy availability and security, while encouraging 

infrastructure and social development, without the dire effects of the food versus fuel issue 

of 1st generation biofuels.  

Economical viability still is uncertain as the cost of producing biofuels from 

algae still generates divergence among experts and it is unknown, so far,  if it could 

compete equally with other fuels in the market. Thus, for the establishment of a credible 

market, steady and with a growing demand, experts agree that microalgae biofuels need to 

be stimulated, as many of the implementation stages of emerging technologies can face 

limitations that can lower the possibility of success. Therefore, with policy support and 

incentives, the algal biofuel industry could continue to develop and assuming that this 

technology follows renewable energy cost trends, costs would decrease to eventually reach 

economic viability. This leads to the second question, which policies currently affect 

microalgae biofuels industry?   

Although the idea of a global carbon offset is already affecting all renewables 

market, concerning particularly microalgae biofuels, depending on the region different 

policies are found. In the United States, the Energy Independence and Security Act of 2007  

establishes annual renewable fuel standard (RFS and RFS2) and is an important 

mechanism of energy sources change, aiming to reach 36 billion gallons of renewable fuel 

by 2022. Besides that, investment in microalgae R&D in cultivation and deployment of 

commercial processes through the American Recovery and Renewal Act (ARRA), 
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Department of Energy Biomass Program and the U.S Ministry of Defense are also 

important measures to be highlighted. 

In the European Union, the Directive 2009/28/EC sets mandatory national 

targets for the overall share of energy from renewable sources in gross final consumption 

of energy and for the share of energy from renewable sources in transport. Although, it 

does not mention algae fuels directly, it also establishes sustainability criteria for biofuels 

and bioliquids. In the other hand, the Strategic Energy Technology (SET) Plan sets out a 

medium term strategy valid across all sectors stating that development and demonstration 

projects for the main technologies must be speeded up. The SET-Plan lists several energy 

technologies, which will be required to bring together economic growth and a vision of a 

decarbonized society. It states that advanced biofuels, namely microalgae, are supposed to 

play a significant role.  

Although It is expected much more advances in this field in the next few years, 

research on the welfare economics of renewable energy policy is still in its infancy and the 

economic effects of biofuel policies are not only complex and difficult to understand, but 

are ultimately ambiguous in theory. Thus, in an attempt to clarify a part of this matter the 

last question emerges: What policies could enhance the diffusion of microalgae in the 

transportation market share in the future? 

Experts consent that public investment in R&D is the most important policy to 

be adopted by countries and this was confirmed through the development of a model. 

Modeling using SAN formalism proved to be an effective research method and offered 

useful future scenarios regarding the advanced biofuels market. It emphasized what the 

experts had already agreed upon, and also revealed the potential impact of advanced 

biofuels subsidies and petrol taxes. Mandates were are also considered of great importance, 

although the model failed to predict how is the real impact of such policy in the diffusion. 

These results can serve as recommendations concerning public policies to be enacted 

through policy makers.  

Cultivating microalgae to produce biofuels has, consequently, a strong 

potential in multiple domains, such as energy, food and agriculture, national security and 

sustainability. The task that remains is how to disentangle the puzzle of a sustainable 

(technical, economical, social and environmental) production process, with all the 

obstacles that were herein presented. Nonetheless, according to our analysis, it is believed 
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to be feasible. It will, thus, require innovative dimensions of political will and institutional 

cooperation to achieve the solution to this complex challenge. 

6.1. Limitations and recommendations for future 

research 

Although this research has reached its aims, some tests ahead still remain. In 

this section, the main limitations of this work and some recommendations for future 

research are addressed.  

First of all, the sample size of the Delphi survey could have been larger and, 

thus, more representative in statistical terms. The author is aware that the outcomes might 

not represent the majority of the microalgae experts’ opinion. In the same manner, after 

analyzing the results, some questions that did not reach a consensus could be further 

explored in a supplementary study or in a third round of survey. More robust statistical 

calculations could have been done with the data obtained. However, due to the small 

sample size, this was not possible.  

Regarding the model developed, some limitations can also be highlighted. With 

the current model, it was arduous to mimic the impact of policy mandates, since the real 

effect of them in the market is not based in prices or quantity produced. Some studies 

consider them as binding policies, but, many times, it is not what happens in the real world, 

as we can see, namely,  in the advanced biofuels field in the U.S. 

Some other issues were not dealt with and could be interesting to develop 

further studies on them. For example, the GHG emissions were not considered in the 

model and with some adaptations it is possible to combine them with the current model. 

Other possibilities are to account for the difference of overall energy used throughout the 

years; to model the impacts of GHG policies and other pathways for natural gas and 

electricity; and to develop models for other regions such as Europe or even the entire 

World.  

6.2. Contributions 

The research presented in this thesis has lead to the following publications: 
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APPENDIX A: Statements of Themes 1,2 and 3. 
 Theme 1: ECONOMICS  

1.1 Achieving economic viability is considered one of the main challenges facing large-scale deployment of biofuels from microalgae. 
1.2 The idea of a Biorefinery is considered the business model more likely to ensure the economic viability of microalgae cultivation for biofuel production. 
1.3 Microalgae biofuel will become a co-product of future large-scale facilities, where other high-value products are generated. 
1.4 The price of competing fuels, especially biobased, will make it difficult for algal biofuels to achieve high growth on the cost only basis. 
1.5 R&D subsidies and support programmes will be needed to promote improvements in the technology that reduce the costs of algal biofuels. 
1.6 The potential of using waste streams from other processes, industries or systems, as for example waste flue gases or waste waters, can have a significant impact in the microalgae economic process viability. 
1.7 Besides biofuels, the more relevant co products that will improve the economic viability of microalgae cultivation are nutraceuticals and compounds for the pharmaceutical and/or fine chemistry industries. 
1.8 One of the key advantages of cultivating microalgae is the capacity of producing raw materials all year round, simplifying the process logistics and reducing costs. 
1.9 The utilization of Genetic Engineering or more effective selection criteria may lead to more effective strains of microalgae, in particular in terms of overall productivity and/or cultivation robustness. 
1.10 The economic feasibility is strongly affected by the amount of energy needed in the process, mainly due to the high water content of the original raw materials that has to be removed before the chemical reaction. 
1.11 The limiting steps, in terms or processing costs, are the oil separation and water removal steps. Any improvements in these steps can have a profound impact in the economical feasibility of the microalgae biofuel 

production process. 
1.12 There is still plenty of room for innovative and more effective production processes, from the cultivation, passing through the raw material processing, chemical reactions involved and purification steps. 
1.13 The increase in the overall consumption of biofuels, and the expected growing pressures on currently used feedstocks can be a key factor to the economic viability of microalgae. 
1.14 The economical viability of the microalgae production can be further enhanced if biofuels applications outside the transportation sector can be found and promoted. 
1.15 Microalgae cultivation may become an important factor in the development of local economies and reduce the dependence on non renewable energy sources. 
 Theme 2: FUTURE TRENDS  
2.1 Higher petro oil prices could make algae biofuel economically feasible. 
2.2 A more developed, globalized and comprehensive Carbon Market could make algae biofuel more economically feasible. 
2.3 Algal biofuels will be developed, but will play only a minor role in the future mix, in particular for the transportation sector. 
2.4 Biofuels from microalgae will be produced commercially, but only in the mid to long term. 
2.5 Advances in strain identification and process engineering are key factors in the development of the technology. 
2.6 The nature of the cultivation system, closed or open, will depend on the production quantities, type of nutrients required, waste streams available and strains used. 
2.7 The microalgae cultivation process will be increasingly used integrated in existing industrial processes, usually not related with energy production and for waste treatment and/or carbon capture purposes. 
2.8 Different strains of microalgae will be used depending on the nutrients and/or waste streams available, and particular local climatic and water availability conditions. No single strain will be dominant one. 
2.9 Open pond cultivation, or similar, will dominate the future production systems, although for small production involving the processing of waste streams the close cultivation systems will be also used. 
2.10 The main aspects that have to be considered in the process development are improving its overall energy efficiency, the ability to produce other high value products, or the possibility to integrate it in other process 

under the biorefinery concept umbrella. 
2.11 The reduction in the dependence in oil imports, and the potential development of local and national economies, is a relevant factor in the development of the area. 
 Theme 3: SUSTAINABILITY  
3.1 The environmental sustainability of microalgal derived biofuels is a potential problem. 
3.2 The utilization of genetic modified organisms may represent a potential problem in the diffusion of algal biofuels. 
3.3 Open pond cultivation is more environmentally friendly than PBRs cultivation. 
3.4 Closed PBRs cultivation is more environmentally friendly than open pond cultivation. 
3.5 The need to reduce world’s CO2 emissions is a key advantage for algae biofuels. 
3.6 The production of algae biofuels in large scale could generate potential impacts on local ecosystems from new algal species. 
3.7 The production of algae biofuels in large scale could generate potential impacts on water reserves. 
3.8 Although microalgae can be used to capture CO2, the actual overall life cycle carbon balance is key aspect to consider. 
3.9 The potential of biofuels from microalgae to be carbon neutral is a key factor concerning their sustainability. 
3.10 Some potential undesired environmental aspects may arise from microalgae cultivation, as for example, increased emissions of NOx and/or methane. 
3.11 The environmental impacts of energy consumption is the key factor concerning the sustainability of the microalgae cultivation. 
3.12 The potential to use waste streams and/or easily available renewable nutrients is a key factor in the overall system sustainability. 
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APPENDIX B: Delphi Survey Questionnaire 
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APPENDIX C: Delphi Survey Overall Results 
 

Theme 1:  

1.1 "Achieving economic viability is considered one of the main challenges facing large-scale 

deployment of biofuels from microalgae." 

RESPONDENTS 55 

MEAN 6.47 

MEDIAN 7 

STANDARD DEVIATION 1.07 

VARIANCE 1.14 

Coefficient of Variation 17% 

 

 

 

Cumulative results: 

Agree 52 95% 

Neither 2 4% 

Disagree 1 2% 

  55   

 

1.2 The idea of a Biorefinery is considered the business model more likely to ensure the 

economic viability of microalgae cultivation for biofuel production. 

RESPONDENTS 54 

MEAN 5.39 

MEDIAN 6 

STANDARD 
DEVIATION 

1.39 

VARIANCE 1.94 

Coefficient of Variation 26% 

 

1 0 0 2 3

11

38

0
5

10
15
20
25
30
35
40

Totally 

Disagree

Strongly 

Disagree

Disagree Neither 

Agree 

nor 

Disagree

Agree Strongly 

Agree

Totally 

Agree



 

 

APPENDIX C 

 

136 

 

 

Cumulative results: 

Agree 37 69% 

Neither 13 24% 

Disagree 4 7% 
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1.3 Microalgae biofuel will become a co-product of future large-scale facilities, where other 

high-value products are generated. 
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The idea of a Biorefinery is considered the business model more likely to 

ensure the economic viability of microalgae cultivation for biofuel 

production.



 

 

APPENDIX C 

 

137 

 

 

 

Cumulative results: 

Agree 35 64% 

Neither 11 20% 

Disagree 9 16% 
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1.4 The price of competing fuels, especially biobased, will make it difficult for algal 

biofuels to achieve high growth on the cost only basis. 
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Microalgae biofuel will become a co-product of future large-scale 

facilities, where other high-value products are generated. Microalgae 

biofuel will become a co-product of future large-scale facilities, where 

other high-value products are generated.
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Cumulative results: 

Agree 23 43% 

Neither 12 22% 

Disagree 19 35% 
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1.5 R&D subsidies and support programmes will be needed to promote improvements in 

the technology that reduce the costs of algal biofuels. 
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The price of competing fuels, especially biobased, will make it difficult for 

algal biofuels to achieve high growth on the cost only basis.
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Cumulative results: 

Agree 46 85% 

Neither 5 9% 

Disagree 3 6% 
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1.6 The potential of using waste streams from other processes, industries or systems, as 

for example waste flue gases or waste waters, can have a significant impact in the microalgae economic 

process viability. 
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R&D subsidies and support programmes will be needed to promote 

improvements in the technology that reduce the costs of algal biofuels.
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Cumulative results: 

Agree 52 95% 

Neither 2 4% 

Disagree 1 2% 
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1.7 Besides biofuels, the more relevant co products that will improve the economic 

viability of microalgae cultivation are nutraceuticals and compounds for the pharmaceutical and/or 

fine chemistry industries. 
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The potential of using waste streams from other processes, industries or 

systems, as for example waste flue gases or waste waters, can have a 

significant impact in the microalgae economic process viability.
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Cumulative results: 

Agree 36 67% 

Neither 8 15% 

Disagree 10 19% 
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1.8 One of the key advantages of cultivating microalgae is the capacity of producing raw 

materials all year round, simplifying the process logistics and reducing costs. 
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Besides biofuels, the more relevant co products that will improve the 

economic viability of microalgae cultivation are nutraceuticals and 

compounds for the pharmaceutical and/or fine chemistry industries.
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Cumulative results: 

Agree 45 82% 

Neither 6 11% 

Disagree 4 7% 
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1.9 The utilization of Genetic Engineering or more effective selection criteria may lead to 

more effective strains of microalgae, in particular in terms of overall productivity and/or cultivation 

robustness. 
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One of the key advantages of cultivating microalgae is the capacity of 

producing raw materials all year round, simplifying the process logistics 

and reducing costs.
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Cumulative results: 

Agree 43 78% 

Neither 9 16% 

Disagree 3 5% 
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1.10 The economic feasibility is strongly affected by the amount of energy needed in the 

process, mainly due to the high water content of the original raw materials that has to be removed 

before the chemical reaction. 
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The utilization of Genetic Engineering or more effective selection criteria 

may lead to more effective strains of microalgae, in particular in terms of 

overall productivity and/or cultivation robustness.
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Cumulative results: 

Agree 44 83% 

Neither 5 9% 

Disagree 4 8% 
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1.11 The limiting steps, in terms or processing costs, are the oil separation and water 

removal steps. Any improvements in these steps can have a profound impact in the economical 

feasibility of the microalgae biofuel production process. 
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The economic feasibility is strongly affected by the amount of energy 

needed in the process, mainly due to the high water content of the 

original raw materials that has to be removed before the chemical 

reaction.
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Cumulative results: 

Agree 43 80% 

Neither 4 7% 

Disagree 7 13% 
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1.12 There is still plenty of room for innovative and more effective production processes, 

from the cultivation, passing through the raw material processing, chemical reactions involved and 

purification steps. 
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The limiting steps, in terms or processing costs, are the oil separation and 

water removal steps. Any improvements in these steps can have a 

profound impact in the economical feasibility of the microalgae biofuel 

production process.
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Cumulative results: 

Agree 49 94% 

Neither 2 4% 

Disagree 1 2% 
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1.13 The increase in the overall consumption of biofuels, and the expected growing 

pressures on currently used feedstocks can be a key factor to the economic viability of microalgae. 
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There is still plenty of room for innovative and more effective production 

processes, from the cultivation, passing through the raw material 

processing, chemical reactions involved and purification steps.
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Cumulative results: 

Agree 45 83% 

Neither 5 9% 

Disagree 4 7% 
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1.14 The economical viability of the microalgae production can be further enhanced if 

biofuels applications outside the transportation sector can be found and promoted. 

RESPONDENTS 53 

MEAN 5.28 

MEDIAN 6 

STANDARD 
DEVIATION 

1.47 

VARIANCE 2.17 

Coefficient  of Variation 28% 

 

0
1

3

5

16
17

12

0

2

4

6

8

10

12

14

16

18

Totally 

Disagree

Strongly 

Disagree

Disagree Neither 

Agree nor 

Disagree

Agree Strongly 

Agree

Totally 

Agree

The increase in the overall consumption of biofuels, and the expected 

growing pressures on currently used feedstocks can be a key factor to the 

economic viability of microalgae.
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Cumulative results: 

Agree 36 68% 

Neither 12 23% 

Disagree 5 9% 
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1.15 Microalgae cultivation may become an important factor in the development of local 

economies and reduce the dependence on non renewable energy sources. 
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The economical viability of the microalgae production can be further 

enhanced if biofuels applications outside the transportation sector can be 

found and promoted.
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Cumulative results: 

Agree 45 85% 

Neither 4 8% 

Disagree 4 8% 
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Theme 2:  

2.1 Higher petro oil prices could make algae biofuel economically feasible. 
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Microalgae cultivation may become an important factor in the 

development of local economies and reduce the dependence on non 

renewable energy sources.
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Cumulative results: 

Agree 41 79% 

Neither 8 15% 

Disagree 3 6% 
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2.2 A more developed, globalized and comprehensive Carbon Market could make algae 

biofuel more economically feasible. 
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Higher petro oil prices could make algae biofuel economically feasible.
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Cumulative results: 

Agree 38 73% 

Neither 6 12% 

Disagree 8 15% 
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2.3 Algal biofuels will be developed, but will play only a minor role in the future mix, in 

particular for the transportation sector. 
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A more developed, globalized and comprehensive Carbon Market could 

make algae biofuel more economically feasible.
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Cumulative results: 

Agree 24 47% 

Neither 13 25% 

Disagree 14 27% 
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2.4 Biofuels from microalgae will be produced commercially, but only in the mid to long 

term. 
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Algal biofuels will be developed, but will play only a minor role in the 

future mix, in particular for the transportation sector.
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Cumulative results: 

Agree 44 85% 

Neither 4 8% 

Disagree 4 8% 
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2.5 Advances in strain identification and process engineering are key factors in the 

development of the technology. 
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Biofuels from microalgae will be produced commercially, but only in the 

mid to long term.
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Cumulative results: 

Agree 39 75% 

Neither 8 15% 

Disagree 5 10% 
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2.6 The nature of the cultivation system, closed or open, will depend on the production 

quantities, type of nutrients required, waste streams available and strains used. 
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Advances in strain identification and process engineering are key factors 

in the development of the technology.
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Cumulative results: 

Agree 35 70% 

Neither 7 14% 

Disagree 8 16% 
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2.7 The microalgae cultivation process will be increasingly used integrated in existing 

industrial processes, usually not related with energy production and for waste treatment and/or 

carbon capture purposes. 
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The nature of the cultivation system, closed or open, will depend on the 

production quantities, type of nutrients required, waste streams 

available and strains used.
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Cumulative results: 

Agree 33 66% 

Neither 9 18% 

Disagree 8 16% 
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2.8 Different strains of microalgae will be used depending on the nutrients and/or waste 

streams available, and particular local climatic and water availability conditions. No single strain will 

be dominant one. 
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The microalgae cultivation process will be increasingly used integrated in 

existing industrial processes, usually not related with energy production 

and for waste treatment and/or carbon capture purposes.
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Cumulative results: 

Agree 47 92% 

Neither 4 8% 

Disagree 0 0% 

  51   

 

2.9 Open pond cultivation, or similar, will dominate the future production systems, 

although for small production involving the processing of waste streams the close cultivation systems 

will be also used. 

RESPONDENTS 49 

MEAN 4.04 

MEDIAN 4 

STANDARD 
DEVIATION 

1.76 

VARIANCE 3.08 

Coefficient  of Variation 43% 

 

0 0 0

4

8

20
19

0

5

10

15

20

25

Totally 

Disagree

Strongly 

Disagree

Disagree Neither 

Agree nor 

Disagree

Agree Strongly 

Agree

Totally 

Agree

Different strains of microalgae will be used depending on the nutrients 

and/or waste streams available, and particular local climatic and water 

availability conditions. No single strain will be dominant one.



 

 

APPENDIX C 

 

158 

 

 

Cumulative results: 

Agree 20 41% 

Neither 12 24% 

Disagree 17 35% 
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2.10 The main aspects that have to be considered in the process development are 

improving its overall energy efficiency, the ability to produce other high value products, or the 

possibility to integrate it in other process under the biorefinery concept umbrella. 
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Open pond cultivation, or similar, will dominate the future production 

systems, although for small production involving the processing of waste 

streams the close cultivation systems will be also used.
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Cumulative results: 

Agree 42 82% 

Neither 7 14% 

Disagree 2 4% 
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2.11 The reduction in the dependence in oil imports, and the potential development of 

local and national economies is a relevant factor in the development of the area. 
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The main aspects that have to be considered in the process development 

are improving its overall energy efficiency, the ability to produce other high 

value products, or the possibility to integrate it in other process under the 

biorefinery concept umbrell
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Cumulative results: 

Agree 42 82% 

Neither 5 10% 

Disagree 4 8% 
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Theme 3:  

3.1 The environmental sustainability of microalgal derived biofuels is a potential 

problem. 
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The reduction in the dependence in oil imports, and the potential 

development of local and national economies is a relevant factor in the 

development of the area.
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Cumulative results: 

Agree 19 38% 

Neither 14 28% 

Disagree 17 34% 
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3.2 The utilization of genetic modified organisms may represent a potential problem in 

the diffusion of algal biofuels. 
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The environmental sustainability of microalgal derived biofuels is a 

potential problem.
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Cumulative results: 

Agree 30 60% 

Neither 9 18% 

Disagree 11 22% 
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3.3 Open pond cultivation is more environmentally friendly than PBRs cultivation. 
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The utilization of genetic modified organisms may represent a potential 

problem in the diffusion of algal biofuels.
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Cumulative results: 

Agree 7 15% 

Neither 19 41% 

Disagree 20 43% 
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3.4 Closed PBRs cultivation is more environmentally friendly than open pond cultivation. 
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Open pond cultivation is more environmentally friendly than PBRs 

cultivation.
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Cumulative results: 

Agree 13 28% 

Neither 20 43% 

Disagree 14 30% 

  47   

 

3.5 The need to reduce world’s CO2 emissions is a key advantage for algae biofuels. 
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Closed PBRs cultivation is more environmentally friendly than open pond 

cultivation.
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Cumulative results: 

Agree 35 73% 

Neither 6 13% 

Disagree 7 15% 
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3.6 The production of algae biofuels in large scale could generate potential impacts on 

local ecosystems from new algal species. 
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Coefficient  of Variation 31% 
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The need to reduce world’s CO2 emissions is a key advantage for algae 

biofuels.
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Cumulative results: 

Agree 23 48% 

Neither 14 29% 

Disagree 11 23% 

  48   

 

3.7 The production of algae biofuels in large scale could generate potential impacts on 

water reserves. 

RESPONDENTS 49 

MEAN 4.43 
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VARIANCE 3.58 

Coefficient  of Variation 43% 
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The production of algae biofuels in large scale could generate potential 

impacts on local ecosystems from new algal species.
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Cumulative results: 

Agree 29 59% 

Neither 5 10% 

Disagree 15 31% 

  49   

 

3.8 Although microalgae can be used to capture CO2, the actual overall life cycle carbon 

balance is key aspect to consider. 

RESPONDENTS 49 

MEAN 5.76 
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VARIANCE 1.86 

Coefficient  of Variation 24% 
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The production of algae biofuels in large scale could generate potential 

impacts on water reserves.
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Cumulative results: 

Agree 39 80% 

Neither 9 18% 

Disagree 1 2% 

  49   

 

3.9 The potential of biofuels from microalgae to be carbon neutral is a key factor 

concerning their sustainability. 

RESPONDENTS 48 

MEAN 5.44 

MEDIAN 5 

STANDARD 
DEVIATION 

1.34 

VARIANCE 1.78 

Coefficient  of Variation 25% 
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Although microalgae can be used to capture CO2, the actual overall life 

cycle carbon balance is key aspect to consider.
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Cumulative results: 

Agree 38 79% 

Neither 7 15% 

Disagree 3 6% 

  48   

 

3.10 Some potential undesired environmental aspects may arise from microalgae 

cultivation, as for example, increased emissions of NOx and/or methane. 

RESPONDENTS 46 

MEAN 3.93 

MEDIAN 4 

STANDARD 
DEVIATION 

1.45 

VARIANCE 2.11 

Coefficient  of Variation 37% 
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The potential of biofuels from microalgae to be carbon neutral is a key 

factor concerning their sustainability.
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Cumulative results: 

Agree 15 33% 

Neither 15 33% 

Disagree 16 35% 

  46   

 

3.11 The environmental impacts of energy consumption is the key factor concerning the 

sustainability of the microalgae cultivation. 

RESPONDENTS 49 

MEAN 4.96 
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Coefficient  of Variation 29% 
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Some potential undesired environmental aspects may arise from 

microalgae cultivation, as for example, increased emissions of NOx 

and/or methane.
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Cumulative results: 

Agree 30 61% 

Neither 11 22% 

Disagree 8 16% 

  49   

 

3.12 The potential to use waste streams and/or easily available renewable nutrients is a 

key factor in the overall system sustainability. 

RESPONDENTS 49 

MEAN 5.53 

MEDIAN 6 
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DEVIATION 

1.47 

VARIANCE 2.17 

Coefficient  of Variation 27% 
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The environmental impacts of energy consumption is the key factor 

concerning the sustainability of the microalgae cultivation.



 

 

APPENDIX C 

 

172 

 

 

Cumulative results: 

Agree 40 82% 

Neither 6 12% 

Disagree 3 6% 

  49   

 

Theme 4:  

How important is each policy below to the success of algae biofuels? 

 

Answer options 
 

Not at 
all 

import
ant 

Unimp
ortant 

Slightly 
Unimp
ortant 

Neutral Import
ant 

Very 
Import

ant 

Extrem
ely 

Import
ant 

Prefer 
not to 

answer 

Respon
se 

Count 

Mandatory country objectives; 1 0 0 8 11 16 10 6 52 
Sustainability standards (Emissions, 
production, etc.); 

1 0 0 5 10 19 11 6 52 

Public Investment in R&D; 0 0 0 5 7 12 21 7 52 
Tax incentives and subsidies; 1 1 0 2 13 15 13 7 52 
Certification schemes, in particular 
those concerning raw materials or 
the entire fuel life cycle; 

0 1 0 4 18 17 6 6 52 

Specific legislation or international 
agreements (such as European 
Directives) aimed specifically to 
biofuels or to specific 
environmental questions (such as 
carbon emissions) where biofuels 
have a pivotal role; 

0 0 0 5 13 19 9 6 52 

Development strategies aimed to 
renewable resources, either 
research, utilization and integration 
in existing systems. 

0 0 0 4 12 14 16 6 52 
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The potential to use waste streams and/or easily available renewable 

nutrients is a key factor in the overall system sustainability.
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Delphi survey Theme 4 statements and results 

    
Theme 4: POLICIES 

 
Mean  

4.1 Mandatory country objectives; 5.52 
4.2 Sustainability standards (Emissions, production, etc.); 5.70 
4.3 Public Investment in R&D; 6.09 
4.4 Tax incentives and subsidies; 5.71 

4.5 
Certification schemes, in particular those concerning raw materials or the entire fuel life 
cycle; 

5.48 

4.6 
Specific legislation or international agreements (such as European Directives) aimed 
specifically to biofuels or to specific environmental questions (such as carbon emissions) 
where biofuels have a pivotal role; 

5.70 

4.7 
Development strategies aimed to renewable resources, either research, utilization and 
integration in existing systems. 

5.91 

 
2nd round: 

 

Delphi survey Theme 4 2
nd

 round policies priorities 

    
Theme 4: POLICIES 1st 2nd  3rd 4th 5th 

4.1 Mandatory country objectives; 27.6% 6.9% 10.3% 10.3% 10.3% 

4.2 Sustainability standards (Emissions, production, etc.); 0.0% 17.2% 6.9% 24.1% 24.1% 

4.3 Public Investment in R&D; 34.5% 13.8% 13.8% 13.8% 10.3% 

4.4 Tax incentives and subsidies; 6.9% 20.7% 20.7% 17.2% 6.9% 

4.5 Certification schemes 0.0% 6.9% 3.4% 13.8% 17.2% 

4.6 Specific legislation or international agreements 10.3% 13.8% 20.7% 10.3% 20.7% 

4.7 Development strategies aimed to renewable resources 20.7% 20.7% 24.1% 10.3% 10.3% 

 

Theme 5:  

When do you think the following would happen in algae biofuels industry? 

Results:  

Answer options 
 

 
Before 
2015 

From 
2015 to 

2020 

From 
2021 to 

2030 

From 
2031 to 

2050 
Never 

Prefer 
not to 

answer 

Respon
se 

Count 

Fully Commercial Scale  5 20 16 2 3 6 52 
1% of worldwide fuel consumption  0 7 32 1 1 11 52 
5% of worldwide fuel consumption  0 1 27 9 2 13 52 
10% of worldwide fuel consumption  0 0 10 21 6 15 52 
25% of worldwide fuel consumption  0 0 3 15 16 18 52 
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APPENDIX D: Model Template used for Generating the Scenarios 
 
identifiers 
//////////////  PARAMETERS 
 
// POLICY 1: Subsidies 
// Value from 0 to 1: indicates the remaining amount (after reduction /increase)  : 1 = inactive policy 
Policy1_Gas = oooPolicy1_Gooo ;    
Policy1_Petrol = oooPolicy1_Pooo ;    
Policy1_BIO = oooPolicy1_Booo ;    
Policy1_ADVBIO = oooPolicy1_Aooo ;    
Policy1_ELEC = oooPolicy1_Eooo ;  
 
//POLICY 2: Cost of Carbon Emission 
// Value from 0 to 1: indicates the remaining amount (after reduction /increase)  : 1 = inactive policy 
Policy2_Gas = oooPolicy2_Gooo ;    
Policy2_Petrol = oooPolicy2_Pooo ;    
Policy2_BIO = oooPolicy2_Booo ;    
Policy2_ADVBIO = oooPolicy2_Aooo ;    
Policy2_ELEC = oooPolicy2_Eooo ;  
 
//POLICY 3: Mandate 
// Value from 0 to 1 indicating the percentage of Biofuel/AdvBio in gasoline. Zero means inactive policy. 
Policy3_B =  oooPolicy3_Booo; 
Policy3_A =  oooPolicy3_Aooo; 
 
 
// Value from 0 to 1 indicating the percentage of gasoline use within the Petrol=Gasoline+Diesel users 
GasolineInPetrol = 0.75; 
 
//COST OF RESOURCES: 
costGas = ooocost_Gooo  * Policy1_Gas * Policy2_Gas; 
costPetrol = ooocost_Pooo * Policy1_Petrol * Policy2_Petrol ;// gasoline + diesel 
costBIO = ooocost_Booo  * Policy1_BIO * Policy2_BIO; 
costADVBIO = ooocost_Aooo * Policy1_ADVBIO * Policy2_ADVBIO; 
costELEC = ooocost_Eooo * Policy1_ELEC * Policy2_ELEC; 
 
// AVAILABILITY OF RESOURCES: 
// This variable denotes the availability of a resource (100 MEANS THERE IS NO LIMIT). 
// If AVAIL = X then at most X% of users can use this fuel, except in the case of 0, that means that 
// 0 to 1% of users may use this fuel. 
// The availabilities of BIO and ADVBIO include also the amount due to mandate (Policy3). 
AVAIL_P = oooAVAIL_Pooo ; 
AVAIL_G = oooAVAIL_Gooo ;  
AVAIL_B = oooAVAIL_Booo + (((AVAIL_P - ((st UP)*2)+1))* oooPolicy3_Booo ); 
AVAIL_A = oooAVAIL_Aooo + (((AVAIL_P - ((st UP)*2)+1))* oooPolicy3_Aooo ); 
AVAIL_E = oooAVAIL_Eooo;  
 
///////////// END OF PAREMETERS 
 
// Number of user levels: 51 
   USER_RANGE = [0..50]; 
 
// Cost of changing fuel: Depends on cost of adapting the vehicle and fuel availability  
// Value between 0 (maximum cost) and 100 (no cost) 
 
FULL_EO = 10;  
FULL_OE = 10; 
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PART = 20; 
NONE = 100; 
NONE_OB = 100 ; 
NONE_OA = 100 ; 
 
changeCostPG = PART /100; 
changeCostGP = NONE /100; 
changeCostPB = NONE_OB /100; 
changeCostBP =  NONE  /100; 
changeCostGB =  NONE_OB /100; 
changeCostBG =  PART /100; 
changeCostAB =  NONE /100; 
changeCostBA =  NONE /100; 
changeCostEB =  FULL_EO /100; 
changeCostBE =  FULL_OE/100; 
changeCostGA =  NONE_OA /100; 
changeCostAG =  PART /100; 
changeCostEA =  FULL_EO /100; 
changeCostAE =  FULL_OE /100; 
changeCostPE =  FULL_OE /100; 
changeCostEP =  FULL_EO /100; 
changeCostGE =  FULL_OE /100; 
changeCostEG =  FULL_EO/100; 
changeCostAP =  NONE /100; 
changeCostPA =  NONE_OA /100; 
 
// Actual Availability: Availability (percentage) 
actualAVAIL_P = ( AVAIL_P / 100 ) ;  
actualAVAIL_G = ( AVAIL_G / 100 ) ;  
actualAVAIL_B = ( AVAIL_B / 100 ) ;  
actualAVAIL_A = ( AVAIL_A / 100 ) ;  
actualAVAIL_E = ( AVAIL_E / 100 ) ;  
 
// GuardAVAIL : This is used to prevent users from going to a fuel if there is no availability.  
// To disable the guard, all values can be set to 1. 
// The value of this variable is zero (if the availability has reached its limit) or 1 (otherwise). 
 
actAVAIL_P = ((AVAIL_P == 100)  * 1) + 
      ((AVAIL_P != 100)  * ((((AVAIL_P - ((st UP)* 2) ) +1) / 100) ) ); 
actAVAIL_G = ((AVAIL_G == 100)  * 1) + 
      ((AVAIL_G != 100)  * ((((AVAIL_G - ((st UG)* 2) ) +1) / 100) ) ); 
actAVAIL_B = ((AVAIL_B == 100)  * 1) + 
             ((AVAIL_B  != 100) * ((((AVAIL_B - ((st UB)* 2) ) +1) / 100) ) ); 
actAVAIL_A = ((AVAIL_A == 100)  * 1) + 
      ((AVAIL_A != 100)  * ((((AVAIL_A - ((st UA)* 2) ) +1) / 100) ) ); 
actAVAIL_E = ((AVAIL_E == 100)  * 1) + 
      ((AVAIL_E != 100)  * ((((AVAIL_E - ((st UE)* 2) ) +1) / 100) ) ); 
 
 GuardAVAIL_P =  (actAVAIL_P > 0); 
 GuardAVAIL_G =  (actAVAIL_G > 0); 
 GuardAVAIL_B =  (actAVAIL_B > 0); 
 GuardAVAIL_A =  (actAVAIL_A > 0); 
 GuardAVAIL_E =  (actAVAIL_E > 0); 
 
// Price comparisons: A number between 0 and 1. 
// A unity-based normalization using as interval the distance between the minimum cost in all scenarios (10)  
// and the maximum cost (50). If prices of X and Y are the same, priceDiff_XtoY is 0.5.  
// To prevent zero values (that would cause division by zero later), we add 0.0001 to the result. 
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MAX_DIST = 40;    // 40 = 50 (MAX_PRICE)   -   10 (MIN_PRICE); 
  
priceDiff_PtoG =  0.0001 +((costPetrol-costGas)+MAX_DIST) / (2 * MAX_DIST) ;  
priceDiff_GtoP =  0.0001 +((costGas-costPetrol)+MAX_DIST) / (2 * MAX_DIST) ;  
priceDiff_PtoE =  0.0001 +((costPetrol-costELEC)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_EtoP =  0.0001 +((costELEC-costPetrol)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_PtoA =  0.0001 +((costPetrol-costADVBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_AtoP =  0.0001 +((costADVBIO-costPetrol)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_PtoB =  0.0001 +((costPetrol-costBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_BtoP =  0.0001 +((costBIO-costPetrol)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_GtoB =  0.0001 +((costGas-costBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_BtoG =  0.0001 +((costBIO-costGas)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_BtoA =  0.0001 +((costBIO-costADVBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_AtoB =  0.0001 +((costADVBIO-costBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_BtoE =  0.0001 +((costBIO-costELEC)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_EtoB =  0.0001 +((costELEC-costBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_GtoA =  0.0001 +((costGas-costADVBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_AtoG =  0.0001 +((costADVBIO-costGas)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_EtoA =  0.0001 +((costELEC-costADVBIO)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_AtoE =  0.0001 +((costADVBIO-costELEC)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_GtoE =  0.0001 +((costGas-costELEC)+MAX_DIST) / (2 * MAX_DIST) ; 
priceDiff_EtoG =  0.0001 +((costELEC-costGas)+MAX_DIST) / (2 * MAX_DIST) ; 
 
// Rates of conversion from one fuel to the other. These rates are numbers from 0 to 100   
// representing how likely it is to make this change. This takes into account: 
// * the cost of changing from one fuel to another and 
// * the difference in the costs of fuels  
//     * the availability of the fuel 
// The availability of the new fuel affects the formula by preventing the change if the fuel is not available. 
// We use weighted harmonic mean, price has a greater weight.  
 
WEIGHT_CHANGE = 1; 
WEIGHT_PRICE = 3; 
WEIGHT_AVAIL = 2; 
SUM_WEIGHT = WEIGHT_CHANGE + WEIGHT_PRICE + WEIGHT_AVAIL ; 
  rateGP =  GuardAVAIL_P  * 
             ( SUM_WEIGHT / ( (WEIGHT_CHANGE /  changeCostGP ) +  
    (WEIGHT_AVAIL  /  actualAVAIL_P) +                  
                              (WEIGHT_PRICE  / priceDiff_GtoP   ) )  ) ;   
  ratePG =  GuardAVAIL_G *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostPG ) +  
    (WEIGHT_AVAIL  / actualAVAIL_G ) +  
                              (WEIGHT_PRICE  / priceDiff_PtoG  ) )  ) ; 
  rateBP =  GuardAVAIL_P   *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostBP ) +  
    (WEIGHT_AVAIL  / actualAVAIL_P )+                 
                              (WEIGHT_PRICE  / priceDiff_BtoP  ) )  ) ; 
  ratePB =  GuardAVAIL_B *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostPB ) +  
    (WEIGHT_AVAIL  / actualAVAIL_B) +                  
                              (WEIGHT_PRICE/ priceDiff_PtoB  ) )  ) ; 
  rateAP =  GuardAVAIL_P   *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostAP ) +  
    (WEIGHT_AVAIL  / actualAVAIL_P) +                  
                              (WEIGHT_PRICE/ priceDiff_AtoP  ) )  ) ; 
  ratePA =  GuardAVAIL_A  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostPA ) +  
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    (WEIGHT_AVAIL  / actualAVAIL_A) +                  
                              (WEIGHT_PRICE/ priceDiff_PtoA  ) )  ) ;                            
  rateEP =  GuardAVAIL_P  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostEP ) +  
    (WEIGHT_AVAIL  / actualAVAIL_P) +                 
                              (WEIGHT_PRICE/ priceDiff_EtoP  ) )  ) ;                              
  ratePE =  GuardAVAIL_E  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostPE ) +  
    (WEIGHT_AVAIL  / actualAVAIL_E) +                 
                              (WEIGHT_PRICE/ priceDiff_PtoE  ) )  ) ;                             
  rateAB =  GuardAVAIL_B  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostAB ) +  
    (WEIGHT_AVAIL  / actualAVAIL_B) +                 
                              (WEIGHT_PRICE/ priceDiff_AtoB  ) )  ) ;                              
  rateBA =  GuardAVAIL_A  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostBA ) +  
    (WEIGHT_AVAIL  / actualAVAIL_A)  +             
                              (WEIGHT_PRICE/ priceDiff_BtoA  ) )  ) ;                                                        
   rateEB =  GuardAVAIL_B  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostEB ) +  
    (WEIGHT_AVAIL  / actualAVAIL_B) +                   
                              (WEIGHT_PRICE/ priceDiff_EtoB  ) )  ) ;                        
  rateBE =  GuardAVAIL_E   *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostBE ) +  
    (WEIGHT_AVAIL  / actualAVAIL_E) +                 
                              (WEIGHT_PRICE/ priceDiff_BtoE  ) )  ) ;                            
  rateGB =  GuardAVAIL_B  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostGB ) +  
    (WEIGHT_AVAIL  / actualAVAIL_B) +                  
                              (WEIGHT_PRICE/ priceDiff_GtoB  ) )  ) ;                          
  rateBG =  GuardAVAIL_G   *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostBG ) +  
    (WEIGHT_AVAIL  / actualAVAIL_G) +                  
                              (WEIGHT_PRICE/ priceDiff_BtoG  ) )  ) ;                            
  rateAG =  GuardAVAIL_G  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostAG ) +  
    (WEIGHT_AVAIL  / actualAVAIL_G) +                   
                              (WEIGHT_PRICE/ priceDiff_AtoG  ) )  ) ; 
  rateGA =  GuardAVAIL_A  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostGA ) +  
    (WEIGHT_AVAIL  / actualAVAIL_A )+                  
                              (WEIGHT_PRICE/ priceDiff_GtoA  ) )  ) ;                            
  rateAE =  GuardAVAIL_E  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostAE ) +  
    (WEIGHT_AVAIL  / actualAVAIL_E) +                 
                              (WEIGHT_PRICE/ priceDiff_AtoE  ) )  ) ;                       
  rateEA =  GuardAVAIL_A  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostEA ) +  
    (WEIGHT_AVAIL  / actualAVAIL_A )+                  
                              (WEIGHT_PRICE/ priceDiff_EtoA  ) )  ) ; 
  rateGE =  GuardAVAIL_E   *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostGE ) +  
    (WEIGHT_AVAIL  / actualAVAIL_E) +                 
                              (WEIGHT_PRICE/ priceDiff_GtoE  ) )  ) ;                         
  rateEG =  GuardAVAIL_G  *  
  ( SUM_WEIGHT /((WEIGHT_CHANGE /  changeCostEG ) +  
    (WEIGHT_AVAIL  / actualAVAIL_G) +                   
                              (WEIGHT_PRICE/ priceDiff_EtoG  ) )  ) ;   
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events 
  syn PtoG ratePG    
  syn PtoB ratePB    
  syn PtoA ratePA 
  syn PtoE ratePE     
  syn GtoB rateGB  
  syn GtoP rateGP  
  syn GtoA rateGA 
  syn GtoE rateGE    
  syn BtoG rateBG  
  syn BtoP rateBP  
  syn BtoA rateBA 
  syn BtoE rateBE     
  syn AtoG rateAG  
  syn AtoP rateAP  
  syn AtoB rateAB 
  syn AtoE rateAE     
  syn EtoG rateEG  
  syn EtoP rateEP  
  syn EtoA rateEA 
  syn EtoB rateEB  
   
  
//////    INITIAL STATE      
reachability = ( (st UP==range48) && (st UB==range0) && (st UG==range2)  && (st UA==range0) && (st 
UE==range0) ); 
/////     
 
//////// AUTOMATA 
network Fuel (continuous) 
  aut UG // represents the percentage of Users of Gas, each state represents a range of 2%              
    stt  range[USER_RANGE] 
          to  (++ ) 
   BtoG  
   PtoG   
   AtoG 
   EtoG      
          to (--) 
   GtoB   
   GtoP  
   GtoA 
   GtoE   
 
 aut UP // represents the percentage of Users of Gasoline,each state represents a range of 2%              
    stt  range[USER_RANGE] 
          to  (++) 
   BtoP 
   GtoP  
   AtoP 
   EtoP     
          to (--)  
            PtoB 
   PtoG 
   PtoA 
   PtoE 
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  aut UB // represents the percentage of Users of BIO, each state represents a range of 2%                     
    stt  range[USER_RANGE] 
          to  (++)     
   GtoB   
   PtoB      
   EtoB 
   AtoB    
          to  (--)    
   BtoG   
   BtoP     
        BtoA 
   BtoE      
  
  aut UA // represents the percentage of Users of ADVBIO, each state represents a range of 2%                  
    stt  range[USER_RANGE] 
          to  (++)       
   GtoA     
   PtoA      
   EtoA 
   BtoA    
          to  (--)    
   AtoG   
   AtoP   
   AtoB 
   AtoE  
   
 aut UE // represents the percentage of Users of ELECTRICITY, each state represents a range of 2%                   
    stt  range[USER_RANGE] 
          to  (++)      
   GtoE   
   PtoE    
   AtoE 
   BtoE    
          to  (--)    
   EtoG    
   EtoP   
        EtoB 
   EtoA       
      
results 
           PETROL_BIO_ADVBIO_use = (st UP)*2 ; 
           PETROL_ONLY_use = (st UP)*2 - ((((st UP)*2)  * Policy3_B * GasolineInPetrol) +  (((st UP)*2)  * 
Policy3_A)); 
           GAS_use = (st UG)*2; 
           BIO_ONLY_use = (st UB)*2  ; 
           BIO_use = (st UB)*2  + (((st UP)*2)  * Policy3_B * GasolineInPetrol); 
           ADVBIO_ONLY_use = (st UA)*2  ; 
           ADVBIO_use = (st UA)*2 + (((st UP)*2)  * Policy3_A); 
           ELEC_use = (st UE)*2; 
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APPENDIX E: Results of all scenarios modeled 
 

 

Tabela REF in 2040

Low Low Low Low Low Med Med Med Med Med High High High High High

UP UG UB UA UE UP UG UB UA UE UP UG UB UA UE

Reference 84.9% 4.5% 8.1% 1.6% 1.0% 84.2% 4.5% 8.0% 2.3% 1.0% 82.2% 4.6% 7.9% 4.3% 1.0%

Price subsidy 10% 84.6% 4.5% 8.1% 1.9% 1.0% 83.7% 4.5% 8.0% 2.7% 1.0% 80.8% 4.6% 7.8% 5.7% 1.0%

Price subsidy 25% 84.0% 4.6% 8.1% 2.3% 1.0% 82.7% 4.7% 8.0% 3.6% 1.0% 77.4% 4.8% 7.7% 9.1% 1.0%

Price subsidy 50% 82.2% 5.1% 8.0% 3.6% 3.6% 79.4% 5.2% 7.9% 6.4% 1.1% 67.3% 5.4% 7.2% 19.0% 1.1%

With 10% Petrol Tax

Price subsidy 10% 82.0% 6.5% 8.2% 2.3% 1.1% 80.8% 6.5% 8.1% 3.5% 1.1% 75.9% 6.7% 7.8% 8.5% 1.2%

Price subsidy 25% 81.0% 6.8% 8.2% 2.9% 1.1% 79.1% 6.8% 8.1% 4.9% 1.1% 70.4% 7.0% 7.6% 13.8% 1.2%

Price subsidy 50% 78.0% 7.8% 8.1% 4.9% 1.2% 73.9% 7.9% 7.9% 9.0% 1.2% 59.9% 8.2% 7.2% 23.4% 1.3%

With 25% Petrol Tax

Price subsidy 10% 74.1% 12.6% 8.4% 3.4% 1.5% 71.8% 12.6% 8.3% 5.8% 1.5% 61.3% 12.9% 8.0% 16.3% 1.5%

Price subsidy 25% 72.0% 13.4% 8.5% 4.7% 1.5% 68.3% 13.4% 8.3% 8.3% 1.5% 54.6% 13.8% 7.9% 22.1% 1.6%

Price subsidy 50% 65.9% 15.6% 8.6% 8.2% 1.7% 59.9% 15.8% 8.5% 14.1% 1.7% 46.9% 16.1% 8.3% 27.0% 1.8%

With 50% Petrol Tax

Price subsidy 10% 50.3% 23.7% 12.9% 9.6% 3.4% 44.3% 23.7% 13.2% 15.2% 3.5% 30.7% 23.9% 14.3% 27.5% 3.7%

Price subsidy 25% 46.2% 24.1% 13.9% 12.1% 3.7% 40.7% 24.1% 14.1% 17.3% 3.8% 28.2% 24.2% 15.2% 28.5% 3.9%

Price subsidy 50% 40.5% 24.7% 15.7% 14.7% 4.4% 36.2% 24.7% 15.5% 19.1% 4.5% 24.5% 24.7% 16.8% 29.4% 4.6%

Tabela REF Price 42.00 (Advanced Biofuels) in 2040

Low Low Low Low Low Med Med Med Med Med High High High High High

UP UG UB UA UE UP UG UB UA UE UP UG UB UA UE

Reference 85.2% 4.5% 8.1% 1.3% 1.0% 84.8% 4.5% 8.1% 1.7% 1.0% 83.7% 4.6% 8.0% 2.6% 1.0%

Price subsidy 10% 85.0% 4.4% 8.1% 1.5% 1.0% 84.5% 4.5% 8.1% 2.0% 1.0% 83.0% 4.6% 8.0% 3.5% 1.0%

Price subsidy 25% 84.6% 4.5% 8.1% 1.9% 1.0% 83.7% 4.5% 8.0% 2.7% 1.0% 80.8% 4.6% 7.8% 5.7% 1.0%

Price subsidy 50% 83.1% 4.9% 8.1% 3.0% 1.0% 81.1% 4.9% 7.9% 5.0% 1.0% 71.7% 5.1% 7.4% 14.8% 1.1%

With 10% Petrol Tax

Price subsidy 10% 82.6% 6.4% 8.2% 1.8% 1.1% 81.9% 6.4% 8.1% 2.5% 1.1% 79.5% 6.6% 8.0% 4.8% 1.2%

Price subsidy 25% 81.9% 6.5% 8.2% 2.3% 1.1% 80.7% 6.5% 8.1% 3.5% 1.1% 75.9% 6.7% 7.8% 8.5% 1.2%

Price subsidy 50% 79.5% 7.3% 8.1% 3.9% 1.2% 76.4% 7.4% 8.0% 7.0% 1.2% 63.7% 7.6% 7.3% 20.1% 1.3%

With 25% Petrol Tax

Price subsidy 10% 75.4% 12.2% 8.4% 2.5% 1.4% 74.1% 12.3% 8.3% 3.8% 1.5% 68.7% 12.5% 8.1% 9.1% 1.5%

Price subsidy 25% 74.0% 12.6% 8.4% 3.4% 1.5% 71.8% 12.6% 8.3% 5.8% 1.5% 61.3% 12.9% 8.0% 16.3% 1.5%

Price subsidy 50% 68.8% 14.6% 8.5% 6.5% 1.6% 63.5% 14.7% 8.4% 11.7% 1.6% 49.5% 15.1% 8.1% 25.7% 1.7%

With 50% Petrol Tax

Price subsidy 10% 54.5% 23.5% 12.1% 6.7% 3.3% 49.5% 23.4% 12.3% 11.4% 3.3% 34.6% 23.5% 13.3% 25.1% 3.5%

Price subsidy 25% 50.3% 23.7% 12.9% 9.6% 3.4% 44.3% 23.7% 13.2% 15.3% 3.5% 30.7% 23.9% 14.3% 27.5% 3.7%

Price subsidy 50% 42.5% 24.4% 15.0% 13.9% 4.1% 37.8% 24.5% 15.0% 18.5% 4.2% 25.9% 24.5% 16.2% 29.1% 4.3%


