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Abstract 

Each year over half a million babies are born prematurely in Europe. The preterm 

neonates born before 32 weeks of gestation are especially at high risk for 

neurodevelopmental disorders. For these very preterm babies, cognitive deficits without 

major motor deficits are the dominant outcome (40%). Rehabilitative interventions at 

such an early age can prevent these cognitive deficits, due to the high plasticity of the 

brain at this period. However, there is currently no predictive biomarker for cognitive 

deficits at such early stage. Our aim is to label and quantify white matter (WM) 

maturation of preterms imaged at term equivalent age (TEA) and investigate its 

usefulness as a possible predictive marker for neurodevelopmental disorders.  

We implemented an automatic pipeline for atlas-based segmentation of WM 

diffusion tensor imaging (DTI) tractography. We used a previously constructed 

tractography atlas for very prematurely born babies scanned at TEA. Main contributions 

of the current study involved a tract-wise tractography registration, a skull-stripping 

method tuned for neonatal data, a tract sampling method and automation of the entire 

pipeline. The tract-wise registration was inspired by the work of O’Donnell (2012). This 

new registration approach allows using the global directional and connectivity 

information entailed in the tractography pattern. Compared with manual segmentation 

methods, our method is less time consuming and less user dependent. 

The result analysis is promising, as only 12% of the segmentations contained 

more than 30% mislabeled tracts. Segmentation performance showed not to be 

influenced by presence of WM pathology among subjects. The automatically segmented 

corpus callosum (CC) structure was further analyzed by studying the respective volume 

and anisotropy measurements per subject. For the studied measurements, volume and 

mean diffusivity (MD) showed a significant trend with degree of WM injury. These trends 

are in accordance with previous findings about how WM injury influences DTI derived 

anisotropies. This work shows that tractography can be segmented into the main WM 

anatomical structures that are of interest in neonates at risk for neurodevelopmental 

disorders and can be of added value for clinical evaluation.  
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Resumo 

Na Europa, mais de meio milhão de bebés nasce prematuramente por ano. Os recém-

nascidos com menos de 32 semanas de gestação estão especialmente em risco para 

desordens de desenvolvimento neuronal. Para estes bebés, os principais problemas de 

desenvolvimento surgem a nível cognitivo (40%). Reabilitação é possível, principalmente 

se for feita nos primeiros tempos de vida quando o cérebro é caracterizado pela sua 

enorme plasticidade. No entanto, não existem bio-marcadores que possibilitem prever 

quais os bebés prematuros que estão em risco. Este trabalho tem como objetivo analisar 

a maturação da matéria branca do cérebro em bebés prematuros e investigar a sua 

usabilidade como possível marcador para desordens de desenvolvimento neuronal.  

Um pipeline automático para segmentação atlas-based de matéria branca 

visualizada com tratografia de Diffusion Tensor Imaging (DTI) foi implementado. O atlas 

usado foi construído previamente com tratografias de bebés prematuros em term 

equivalente age (TEA). Principais contribuições correspondem à automatização do 

pipeline e desenvolvimento de algoritmos específicos para tratografias neonatais para: 

registo entre tratografias, skull-stripping e sampling. O algoritmo para registo entre 

tratografias foi inspirado no trabalho de O’Donnell (2012). Este tipo de registo utiliza a 

informação relativa à conectividade global de regiões de matéria branca no cérebro, 

característica dos dados de tratografia. Em comparação com métodos de segmentação 

manual, este método consome menos tempo e é menos dependente do utilizador.  

Os resultados são promissores, apenas 12% das segmentações contêm mais de 

30% de fibras erroneamente segmentadas por estrutura anatómica. A performance da 

segmentação não foi influenciada pela presença de patologias da matéria branca nos 

pacientes. As estruturas anatómicas automaticamente segmentadas do corpus callosum 

foram também analisadas relativamente aos seus volumes e valores de anisotropia. 

Volume e difusão média são significamente correlacionados com a intensidade de 

patologia da matéria branca. Estes resultados estão de acordo com descobertas prévias 

sobre como patologia na matéria branca influencia os valores de anisotropia. Em 

conclusão, tratografia neonatal pode ser segmentada nas principais estruturas 

anatómicas de interesse para estudo de desordens do desenvolvimento neuronal.  
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Chapter 1  

Introduction 

Each year over half a million babies are born prematurely in Europe [EFCNI, 2010]. About 

8-9% of all infants that were born prematurely suffer from severe disabilities, and 19-

22% needs special education [Kooij, 2011]. Especially preterm neonates born before 32 

weeks of gestation are at high risk for neurodevelopmental disorders. This condition is 

thought to be related with abnormal White Matter (WM) maturation of the brain. 

Therefore, early detection of WM abnormalities is important; not only for giving an 

adequate prognosis to the patient and parents, but also in the design of preventive, 

protective and rehabilitative strategies for the management of the development of the 

preterm infant. [Jong, 2012; Glass, 2011; Latal 2009; Volpe, 2009] 

 Contemporary techniques are unable to accurately distinguish which neonates 

are at risk for neurodevelopmental deficits. Collaboration has been started between the 

University Medical Center Utrecht, the Maxima Medical Center Veldhoven and the 

Biomedical Engineering department of Eindhoven University of Technology, in order to 

explore the usefulness and possible applications of Diffusion Tensor Imaging (DTI) for 

preterm neonatal patients. The main aim of this collaboration project is to investigate 

whether MRI-observed abnormalities in the brain structures after premature birth can 

help predict abnormalities in cognitive development.  

 Diffusion Tensor Imaging (DTI) is a non-invasive technique, which allows in-vivo 

reconstruction and visualization of the brain WM structures, which is referred to as fiber-

tracking or tractography [Vilanova, 2004]. Analysis of these WM structures can give a 

powerful insight about the global arrangement of brain connectivity [Pul, 2012; Dubois, 

2008; Huppi, 2006]. However, when performed automatically in the entire brain, 

tractography can generate hundreds of tracts per subject. Such output is not 

immediately useful to clinicians or researchers when it comes to assess risk of 

neurodevelopmental disorders. It makes it hard to recognize all anatomical structures, 

especially due to information cluttering.   
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 Specifically for the neonatal data, it is wished to analyze particular anatomic WM 

structures, which are still in development in these patients, and carry meaningful 

physiological information. For this, the different tract structures need to be anatomically 

categorized, a process referred as segmentation.  Although segmentation can be done 

manually [Pul 2012, Kooij 2011, Wakana, 2004], that requires extensive knowledge about 

complex WM tract anatomy, introduces user bias, and can also become very time 

consuming. New segmentation approaches have emerged, where the tracts are 

successfully segmented by automatic clustering methods [Visser, 2011; Leemans, 2009; 

Moberts, 2005]. However they do not automatically attach anatomical labels to the 

clusters, or find corresponding clusters across subjects. For this to happen, a priori 

information about the anatomical structures location, shape and other properties must 

be taken into account.  

 One way to incorporate a priori anatomical information into the segmentation 

procedure is via a WM brain atlas; where the unlabeled data is compared with the 

labeled atlas tracts [Hua, 2008; Wakana, 2007]. Because DTI data in neonates suffers 

from extra constraints such as noise and low anisotropy, tractography results from 

neonates will highly differ from adults. Consequently, tractography segmentation 

methods need to be tuned for handling neonatal data. Although some software packages 

allow for adult tractography segmentation [http://www.trackvis.org/, O’Donnell, 2012], 

none of them allow for neonatal tractography segmentation. 

  Previous work developed in the collaboration project includes: study of 

segmentation clustering techniques of WM tracts specific for preterm neonates [Boom, 

2011; Hoskam, 2009]; and the creation of an automatic atlas-based tractography 

segmentation algorithm, in which a tractography atlas from non-pathologic preterm 

neonates at term equivalent age (TEA) was created [Boom, 2011]. Although the initial 

results are promising, several improvements are necessary for applying it directly to a 

large group of data sets. The current master thesis project aimed to continue that 

development and solve main limitations of a clinical pipeline for automatic segmentation 

of anatomical brain structures in preterm neonatal patients. In concrete, the main 

contributions of this thesis are the following: 
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1. Tract-wise registration algorithm for alignment of patient with the atlas; 

2. Improvement of skull-stripping algorithm specifically for neonatal data; 

3. Study of atlas-based segmentation performance for patients with different 

degrees of WM injury; 

4. Actualization, improvement and automation of the clinical pipeline. 

 

In this thesis report, Chapter 2 provides an overview of premature birth and its 

consequences on brain development, especially for WM structures. Chapter 3 clarifies 

how the tractography results are produced. Chapter 4 discusses possible methods for 

segmentation of tractography results. Here the atlas-based approach is introduced, and 

more details are given about the employed atlas. Chapter 5 goes through the 

constructed pipeline, and the implemented algorithms.  The results and their analysis are 

presented in Chapter 6, and discussion and conclusion in Chapter 7.  The appendixes 

constitute a schematic representation of the tractography data flow used for the 

proposed method, a compilation of the study plots for the result analysis, and the first 

page (including the abstract) of two soon to be submitted papers. The first of these 

papers corresponds to the work developed under this master thesis project; the second 

paper corresponds to work of a previous externship in DTI.   
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Chapter 2  

Brain Development for Premature Infants 

This chapter focuses on the clinical and physiological aspects of brain maturation. Its goal 

is to provide the reader with an elementary understanding about premature birth and its 

implications, the anatomy and physiology of the brain, and near term brain maturation. 

The final section considers the possible triggers of development disruption and its 

consequences, especially for WM formation. 

2.1 Premature Infants 

2.1.1 Social Impact 

Approximately one in ten neonates in Europe is born prematurely, i.e., before 37 weeks 

of gestation; this corresponds to about half a million babies every year. Babies born with 

less than 32 weeks of gestation are considered to be very preterm. In the Netherlands 

these very preterm constitute 1.5% of all births [EFCNI, 2010]. During the last two 

decades, with the growing use of assisted reproductive technologies plus an older 

maternal age, the number of preterm births increased [Latal, 2009] - with a 4% increase 

in very preterm births [Jong, 2012]. These children, together with their parents, 

experience enormous physical, emotional and financial challenges. They also represent a 

significant burden on our healthcare systems [EFCNI, 2010]. 

2.1.2 Health Complications 

While the mortality rate of preterm neonates is decreasing, they remain at risk for health 

complications during their life, especially the very preterm infants. In principle, 

complications can be categorized into severe and moderate-to-mild. Severe deficits are 

summarized as functional disability, usually defined as an aggregate group comprising 

cerebral palsy, mental retardation i.e., developmental or intellectual quotient of less 

than 70, and severe visual or hearing impairment.  Cognitive deficits without major 

motor deficits are by far the dominant neurodevelopmental outcome [Kooij, 2011; Volpe, 
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2009; Latal, 2009]. In a cohort of Dutch adolescents born before 32 weeks, 38.4% had 

mild neuromotor problems and 3.2% severe neuromotor problems. Mild cognitive 

impairments were seen in 14.8% and only 4.3% suffered from moderate cognitive deficits 

[The Dutch Project on Preterm and Small for Gestational Age Infants at 19 years of age, 

2007]. 

The combination of these mild degree deficits in cognitive, motor, behavioral 

performance and in interrelated functions, often lead to a lower school performance, 

and ultimately to a lower academic achievement and social integration [Latal, 2009]. 

Especially attention deficit hyperactivity disorder (ADHD) and other attention problems 

are more frequently reported for the very preterm children [Jong 2012; Volpe, 2009]. 

2.1.3 Intervention and Assistance 

Currently, drug interventions are not able to reduce and rehabilitate brain injury. 

However, cohort studies found that individual differences in cognitive development at 

infant age were related with differences in parent-child interaction, quality of caregiver 

stimulation, differences in socioeconomic background and different society attitudes 

toward disabilities and schooling systems [Jong 2012, Latal 2009]. Furthermore, a 

delayed and alternative development of these children was observed, like the 

engagement of different pathways for language and the decrease of ADHD prevalence as 

entering adolescence [Mullen 2011; Latal 2009].  These findings suggest that 

environmental enrichment enhances cerebral plasticity and reorganization of cortical 

maps, and can also improve functional outcomes. These studies provided a good 

theoretical basis for early-intervention programs, at an age where the brain is 

characterized by a high degree of plasticity.  Moreover, recent analysis concluded that 

early-intervention programs, extra parental guidance and physiotherapy, indeed 

positively influence cognitive outcome in the preterm population [Glass, 2011].  

Therefore, early knowledge of the spectrum and severity of neurodevelopmental 

injury is necessary for counseling care-givers and for tailoring therapeutic interventions. 

Although major functional deficits in early childhood can be detected by the age of 2, this 

is not the case for moderate and mild long-term functional disabilities: moderate-to-mild 

deficits may stay undiagnosed until school age [Jong, 2012; EFCNI, 2010; Latal, 2009]. 
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2.2 Brain in a Nutshell 

The brain is an organ which exerts centralized control over the other organs of the 

human body. It collects high quantities of information from an always changing 

environment, integrates it, processes it, and accordingly engages patterns of muscle 

activity and secretion of chemicals, named hormones, on the rest of the body.  It is 

therefore responsible for a wide range of processes, from simple unconscious reflexes 

until sophisticated purposeful behaviors. All these myriad of responses are the key for 

survival and prosperity. 

2.2.1 Cell-scale 

Neurons and glial are the two types of cells present in the brain, all together they make 

more than 170 billion cells [Herculano-Houzel, 2009]. Neurons have as function to 

process and transmit information. A typical neuron will consist of a cell body and some 

fiber projections: usually short dendrites and a long axon (see figure 1.1). Axons 

propagate information along its length by a flow of chemical-electrical exchanges with 

the extra-cellular surrounding. The communication between neurons occurs at the 

synapses, between the axon of the pre-synaptic neuron with the dendrites of the post-

synaptic neuron(s). Connections can be made with up to hundreds of other neurons.  

Glial cells are responsible for the neurons’ well-being: supplying nutrients and 

oxygen, providing structure and protection, and assisting neuronal connections. White 

lipid layers, called myelin sheets, are wrapped around axons by a specific type of glial 

cell, the oligodendrocytes (Ols). This wrapping occurs at localized portions of the axon, 

blocking any possible exchange of chemical-electrical signals with the surroundings. 

Between these wrapped portions, unwrapped pieces of axon are maintained, the Ranvier 

nodes (see again figure 2.1). These nodes are the only locations at the axon which can 

make extra-cellular exchanges. Therefore, for myelinated axons, the propagation of 

signal corresponds to a saltatory exchange flow between the Ranvier nodes. This 

behavior increases the speed of signal propagation along the axon.  
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Figure 2-1 - A neuron cell body with small perturbations, the dendrites, and a long perturbation, the axon. 

Through the axon length, a flow of electrical-chemical exchanges with the surrounding occurs at consecutive 

Ranvier Nodes. In blue the myelin sheaths and in red the flow direction along the axon. In the human brain, the 

axon diameter has a length on the micrometer scale and the axon length can reach the millimeters range. 

(image from http:// http://classes.midlandstech.edu/) 

2.2.2 Tissue-scale 

At the tissue scale another division is observed: the neuron cell bodies, dendrites and 

glial cells make the Gray Matter (GM), axons bundles the White Matter (WM) (see figure 

2.2). GM is primarily located on the outer surface of the brain, called the cerebral cortex. 

WM forms the pathways within the various locations of GM and for the rest of the 

nervous system.  

 

 

Figure 2-2 - White Matter and Gray Matter in the Human Brain. (image from http://hms.harvard.edu/) 
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2.2.3 White Matter Tracts 

Some WM pathways can be anatomically distinguished and grouped in classes based on 

their structure, location and interrelated function. Main tract groups identified are the 

commissural tracts, running between the two brain hemispheres, the left and right 

partitions of the brain; the projection tracts - which can be afferent, bringing sensorial 

information to the brain, or efferent, sending information to the motor centers - uniting 

the cortex with lower parts of the brains and with the spinal cord; the association tracts, 

uniting different parts of the same cerebral hemisphere; and the brain stem tracts, at the 

posterior part of the brain, which join and are continuous with the spinal cord. 

Characteristic anatomic WM structures are the Corpus Callosum (CC), the Corona 

Radiata (CR) left and right, the Fornix (FX), the Cingulum (CG), and the Cerebellar 

Peduncles (CP) (see figure 2.3).  The CC corresponds to a commissural WM tract, and 

partial or complete absence of CC can result in motor control deficits, development 

impairments and visual and auditory memory losses. The CRs are efferent projection 

tracts, which play major roles in the transmission of motor commands to lower motor 

neurons. The FX and the CG are both association tracts. The first connects the 

hippocampus to the hypothalamus, which are both important structures for emotional 

and motor functions. The CG connects with the limbic system, thereby being involved 

with emotion, motivation pleasure and the emotional memory.  Finally, cerebellar 

peduncles, brain stem type tracts, are responsible for the conveyance of sensations of 

touch, vibration and proprioception of human beings. [Mori, 2005] 

 

 

Figure 2-3 – Main WM Tracts at the Brain. The structures are depicted in a light shade of red:  A – Cingulum, B – 
Corona Radiata, C – Middle Cerebellar Peduncles, D – Corpus Callosum, F – Fornix. At E, a scheme of the complex 
Fornix shape. (images from Gray’s Anatomy http://en.wikipedia.org/) 
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2.3 Near Term Brain Development    

Normal cognitive development is assumed to be correlated with structural maturation of 

congruous functional networks at the brain. Between 32 and 37 weeks’ gestation, the 

brain undergoes rapid growth and microstructural evolution [Volpe, 2009]. This cascade 

of events strongly benefits from the womb unique environment: ranging from the 

protection it offers from the outside world, to the influence of the mother’s natural body 

processes [Jong, 2012]. 

Projection, commissural, and association tracts are in a phase of rapid growth 

during the near term period.  Over the last trimester of gestation and in the early 

postnatal period, axonal development is remarkably exuberant in the cerebrum. Pre-

oligodendrocytes (pre-Ols), a still differentiating form of Ols, are in a phase of active 

development during 24 to 40 weeks’ gestation. These cells already ensheath axons in 

preparation for full differentiation to myelin-producing Ols (see figure 2.4). This process 

is usually named pre-myelination. Mature myelin-producing oligodendrocytes do not 

become abundant in cerebral WM until after term. [Volpe, 2009]  

 

 

Figure 2-4 - Myelination process. In yellow the axon and in blue the glial cell and correspondent myelin sheet. 
(image from http:// http://classes.midlandstech.edu/) 

 

Myelination is a long sequential nonlinear process that runs from the last 

trimester of gestation to at least 20 years of age, with a peak in the first postnatal year 

until the age of approximately 2 years. It progresses in an inferior-to-superior and 

posterior-to-anterior direction and from central to peripheral regions. As a result some 

WM structures show myelination earlier than others: motor pathways become 

myelinated before sensor pathways, projection tracts before association tracts, and 

occipital-parietal regions before temporal-frontal regions (see figure 2.5). The posterior 

and anterior part of the CC are myelinated in the first few months after birth and the 

middle part is only later myelinated [Volpe, 2008]. 
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Figure 2-5 - Sequential process of myelination over time for main WM brain structures. (image from 
http://physrev.physiology.org/)  
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2.4 Encephalopathy of Prematurity  

Premature birth is a risk for the baby, since part of the delicate process of brain 

maturation has to occur without benefitting from the womb’s special environment.  

Moreover, other organs such as the lungs and the heart also have to adapt to the 

extrauterine life at an earlier stage of development, adding stress to the undeveloped 

brain. [Jong, 2012] 

Neonatal neurodevelopment presents extreme vulnerability to exogenous and 

endogenous insults that often co-exist and can potentiate each other. The more common 

insults are hypoxia-ischaemia, inflammation and subsequent microglia harmful response, 

excitotoxicity, and free-radical attack [Volpe, 2009]. Most of the insults are potentially 

initiated during or shortly after preterm delivery, by chronic exposure to infection, and 

also by reperfusion as the infant is resuscitated after hypoperfusion and/or hypoxemia 

events [Huppi, 2006].  

WM tissue in preterm neonates is thought to be especially vulnerable to these 

insults due to its elevated blood supply [Huppi, 2006] and still immature cerebral blood 

flow regulation [Kooij, 2011]. The primary consequences for this tissue are hypothesized 

to correspond to destructive processes, i.e., injury, with the subsequent maturational/ 

developmental disturbances being secondary.  Injuries correspond to microscopic areas 

of necrosis involving all cellular elements; thus loss of pre-OLs, axons, and late-

developing neurons, are to be expected. Furthermore, failure of pre-OLs to mature into 

OLs has been well documented in a neonatal animal model. [Volpe, 2009]  

Many clinical findings support these processes of WM injury, as term equivalent 

age (TEA) preterms have been associated with reduced cerebral volume and WM 

immaturity, such as thinning of the CC, widening of the ventricles, and CC microstructural 

changes [Huppi, 1998; Pul, 2011]. Still, prediction of outcome is hard to assess, as there is 

a multitude of possible outcome patterns varying with onset times, severity, and 

duration of insults. 
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Chapter 3  

White Matter Tractography 

In the previous chapter, the anatomical and clinical backgrounds were introduced. The 

current chapter starts by discussing the relevance of neurological images for predicting 

developmental deficits.  After this, the imaging modality specifically used for this thesis is 

presented in more detail. All the main concepts and techniques behind tracking WM 

based on water diffusion in the brain are clarified. 

3.1 Neuroimaging as a Prediction Tool 

It is known that intervention among preterms at risk for neurodevelopmental disorders is 

more successful at an early post-natal age. This is a stage characterized by an optimal 

neuroplasticity [Latal, 2009]. Such interventions need to be guided by an early diagnosis 

and prognosis predictions. Due to the complex and varied neurodevelopmental outcome 

after preterm birth, this prediction can become very challenging.  

 Biochemical markers have been shown to play a secondary role for such early 

assessment. Thus, the focus has shifted to near-term neuroimaging. A possible biomarker 

can consist of an imaging parameter displaying the WM development. Myelination, only 

one of the numerous cerebral maturational processes, has been shown to be closely 

related to cognitive development during the human life span [Dubois, 2008]. Other 

possible biomarkers can also arise from the study of gray matter development and brain 

gyration degree [Pul, 2012]. 

 As for the neuroimaging modalities, cranial ultrasound (US), computed 

tomography (CT) and magnetic resonance imaging (MRI) are typically used for 

investigating the neonatal brain. US is a bedside tool used for initial assessment. US can 

detect important and common intracranial pathologies, after which the decision for 

further imaging using CT or MRI can be made. CT scans require a high dose of radiation in 

neonates and is therefore not frequently used, since most clinical questions can be 

answered using MRI.   
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 MRI is the most sensitive imaging modality to investigate white and gray matter, 

being able to detect pathologies associated with neuromotor and cognitive impairment. 

Pitfalls of using MR with neonates relates with a necessary imaging sequence adaption to 

account for the higher water content in the neonatal brain. Furthermore, more 

movement artifacts and lower signal to noise ratio (SNR) occur in comparison with adult 

patients. Movement artifacts can be reduced using sedation protocols; however, these 

protocols comprise a risk to the patient. 

 Recently, advanced magnetic resonance imaging techniques such as volumetry 

and morphometry, diffusion tensor imaging (DTI) and tractography have been used to 

better determine the full spectrum of brain injury in these neonates.  However, these do 

not yet belong to the common clinical practice. For this situation to change, new 

software specifically dedicated to clinical users, with fast learning curves and easy 

usability, must be created and made available. [Latal, 2009; Glass, 2011] 

 Specifically at the MMC in Veldhoven and the UMC in Utrecht, a MRI scan of the 

premature infants is obtained at term equivalent age (TEA), i.e., the date in which they 

would have been born considering a standard gestational period of 37 weeks. The usual 

sequences acquired are T2 and T1 weighted, and Diffusion Weighted Imaging (DWI). 

Study of anisotropy maps is part of routine clinical practice at both centers (anisotropy 

maps concept will be further explained in this chapter). The complete clinical routine also 

includes a complex continuous monitoring of respiratory system, cardiovascular system 

and brain physiological activity, and diagnostic tests comprising other neuroimaging 

techniques and clinical observations. On top of this, at the UMC in Utrecht, at least once 

a year, neurodevelopmental assessments are conducted to test motor skills and cognitive 

development. If necessary, therapy can be started.  

3.2 Water Diffusion in the Brain 

Diffusion is an essential transport mechanism in living organs. If molecules can move 

freely through a volume, the path each molecule describes will not have a preferred 

direction; it will be an isotropic displacement. The displacement (     ) will only depend 

on the observation time ( ), temperature ( ), and viscosity of the fluid on the particle ( ), 

where    is the Boltzmanns’s constant [J/K] (see equation 3.1). 
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Equation 3.1 – Brownian Movement Equation. 

 

These last two variables represent the diffusion properties of the environment 

and can be represented instead by a diffusion coefficient ( ) (see equation 3.2). In pure 

water, at body temperature, 37o Celsius, the diffusion coefficient is 3 x 10-3 mm2/s.  

 

    
   

 
 

Equation 3.2 – Diffusion Coefficient Definition. 

 

As the brain develops, the water content in the brain decreases, extracellular 

spaces diminish in size, and intra- and intercellular microstructures become more 

complex and organized, constraining the water diffusion movement [Dubois, 2008]. 

Molecules will then encounter physical constraints, i.e., obstacles, to their random 

diffusion. These obstacles are not distributed homogeneously in all directions. Water 

diffusion will be more restricted for some directions than others. For the same amount of 

time, diffusion displacement will be larger in non-restricted directions than in restricted 

directions. This type of diffusion behavior is called anisotropic. In the brain, diffusion of 

water along the WM tracts will be less restricted than diffusion in the direction 

perpendicular to the tracts.  Even for non-myelinated axonal bundles of premature 

infants, diffusion is already anisotropic due to higher restriction transverse to axons 

[Berman, 2005]. Figure 3.1 illustrates different diffusion behaviors: a non-restricted 

isotropic diffusion; a restricted but still isotropic, i.e., constraints are the same for all 

directions; and a restricted and anisotropic diffusion, like the one in the WM parts of the 

brain. 

 

Figure 3.1 – Diffusion of molecules. Diffusive molecules are depicted in red and blues circles, the correspondent 

diffusion paths are illustrated with traced trajectories. From left to right: non-constrained isotropic diffusion, 

constrained isotropic diffusion, anisotropic restricted diffusion. [Pul, 2004] 
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3.3 Magnetic Resonance Imaging   

Magnetic resonance imaging (MRI) is a medical imaging modality that uses the magnetic 

characteristics of the hydrogen proton.  The imaged volume corresponds to stacks of 

slices, with a given thickness. The volume is said to be composed of several volume 

elements, so called voxels.  

The hydrogen protons are highly abundant in the human body, since they are an 

elementary part of water molecules. The hydrogen proton possesses a property called 

spin. This is a purely quantum mechanical characteristic, which can be imagined as a 

rotation of the proton around an axis of itself, just like the spinning of a top. The 

important physics observation is that the spin possesses a magnetic field oriented along 

its axis. The spin will always rotate around itself with the same frequency, and can only 

vary the orientation of its axis. This variation is called precession and can have its own 

changeable frequency and phase (see figure 3.2).  

Inside the MR scanner, a strong magnet produces an external magnetic field, B0.  

When the water proton is placed in this external magnetic field, the spin axis of the 

proton aligns itself with this external field, just like a small magnet meeting a bigger 

magnet. The MR signal arises from disturbing this initial alignment. The disturbance is 

made possible by the existence of a coil in the scanner. This coil can create an alternating 

current, RF. This alternated current creates then a pulsed magnetic field. However, there 

is one condition that needs to be met in order for the perturbation to occur: the current 

must have the same frequency as the spin, which is called the resonance condition. 

When the RF stops, the spins return to their initial alignment with the B0 magnetic field. 

The returning is characterized by a precession of the spin axis around B0 (see figure 3.2). 

This behavior of the spin induces an alternate magnetic field. According to Maxwel’s 

equations this induces an alternate electric field in the coil. In accordance with Ohm’s law 

this creates an alternate electric current. This current corresponds to the magnetic 

resonance signal.  
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Figure 3.2 – A schematic representation of the precession of a spin. The proton is depicted as a sphere, which 

spins around an axis of itself. This axis varies its orientation in time, in a behavior called precession. After 

magnetic disturbance by the RF current, the spin gets to equilibrium by precessing around and finally aligning 

with the initial applied magnetic field (B0).  

 

It is possible to encode spatial information in the signal, if each voxel experiences 

a different magnetic field. This is created by applying magnetic gradients in three 

different directions. The first gradient allows for slice-selection by generating a defined 

spatial region where nuclear spins will resonate; outside the slice, the nuclear spins are 

not affected by the RF pulse, i.e., the resonance condition is not met. The other gradients 

allow for a phase and frequency encoding of the spin axis precession; for the previously 

selected slice, spin axis will have different phase and frequency according to their 

position. Finally, a Fourier Transform is capable of depicting all these different 

frequencies and phases from the MR acquired signal, and translating them to spatial 

information. [Hornak, 1996-2014] 

3.4 Diffusion Weighted Imaging 

Diffusion Weighted Imaging (DWI) is a MR technique that is made sensitive for diffusion 

in living tissues. It does so by using a MR sequence that, apart from the standard 

magnetic gradients used for spatial encoding of the image, has two additional magnetic 

gradient pulses to measure diffusion along the gradient direction  : the Pulsed Field 

Gradients (PFGs) (see figure 3.3). These two PFG are identical in amplitude and width ( ), 

separated by a time  , and placed symmetrically about the standard 180 degree pulse of 

a MR sequence. The function of the first PFG pulse is to dephase the magnetization 
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vector generated by the addition of the spins (mostly the spin of the Hydrogen proton in 

free water). The second PFG refocuses the spins which did not diffuse. Spins which have 

diffused to a new location in the period   will acquire a phase difference. Indeed, this 

period of time cannot be too short, or molecules will not have the time to encounter 

physical barriers, resulting in an isotropic diffusion profile. By increasing the time 

between the gradients, more barriers to the diffusion are encountered and then the 

diffusion coefficient will reflect the underlying tissue structure. Hence the diffusion 

coefficient    is renamed apparent diffusion coefficient (      ). It is the fine tuning of 

the DWI parameters which allows for looking into water diffusion long enough, 10-2 s, for 

it to spread a distance of approximately an axon average diameter, 5-10 μm [Alexander, 

2006]. 

 

 

Figure 3.3 – Diffusion Weighted Spin Echo Sequence. The Pulsed Field Gradients have identical strength G, and 

width δ, and a time duration Δ between the gradients. [Pul, 2004] 

 

Figure 3.4 illustrates the effect of the PFG for static and diffusing spins in a voxel. 

The PFG pulses have no effect on stationary spins. Both stationary and diffusing spins will 

acquire a phase when exposed to the first PFG. With the second pulse, the stationary 

spin will acquire an equal but opposite phase, since the pulses are on different sides of 

the 180 degree RF pulse, cancelling each other.  The stationary spin comes back into 

phase, indicating a positive contribution to the echo. However, when the molecules in 

the voxel have moved due to diffusion, the rephasing effect of the second PFG signal will 

not correct the first PFG dephasing. The diffusing spin does not come back into phase, 

diminishing the total net magnetization signal M, the net sum of all spins. The net phase 
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effect in the voxel will be zero, since the phase of all spins in the voxel together will be 

randomly distributed. 

 

 

Figure 3.4 – Spin phase evolution during a DWI sequence and correspondent final outcome for phase and 

magnetization signal strength. The first line depicts the behavior of static spins and the second line, the 

behavior of diffusing spins. [Pul, 2004] 

 

The common mathematical model for calculating the ADC from the magnetization 

signal assumes exponential signal decay and Gaussian-distributed diffusion for each voxel 

(see equation 3.3).   is the signal obtained in the presence of a PFG in the   direction 

(    ),       the diffusion coefficient in the same direction, and   the gyromagnetic ratio 

of the hydrogen proton.   , also referred as the b0 measurement, corresponds to a 

measurement not made sensitive to diffusion, i.e., with a sequence without PFGs.  

 

         
                                 

Equation 3.3 – Stejskal and Tanner Equation. 

 

Equation 3.3 gives a simplified version of all the factors which can in reality 

contribute for decreasing the signal. It is known that also a complex interaction between 

all the applied gradients can have an impact on the measured signal. In order to describe 

in a simpler way all these possible factors, a unique value can be used instead, the b-

value ( ) (see equation 3.4). The b-value is a factor which describes how sensitive is the 

sequence for diffusion in the probed direction  . For adults, the b-value for DTI studies is 

typically in the order of 1000 mm2/s. For the infant brain, which has higher values for the 

ADC, b values are usually used in the order of 700-800 mm2/s [Huppi, 2006].  
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Equation 3.4 – Le Bihan Equation. 

 

3.5 Diffusion Tensor Imaging  

Diffusion Tensor Imaging (DTI) is a specific case of DWI, more specifically a post-

processing model of DWI. It measures the diffusion coefficient in at least six directions, 

allowing reconstructing a diffusion tensor per voxel (see equation 3.5 and 3.6).  

 

   

         

         

         

  

Equation 3.5 – Diffusion Tensor. 

  

       
      

Equation 3.6 – Relation between the diffusion tensor  , and diffusion coefficient   , for specific gradient 

direction   . 

 

To reduce noise effects, usually at least 32 directions are probed. This 

corresponds to acquire 32 DWI volumes. One extra volume is acquired for the b0-

measurement. The two main artifacts intrinsic to DWI acquisitions that may destroy the 

voxel-wise correspondence across the volumes are eddy current distortions and motion. 

Scanner software is usually designed for tackling these artifacts by performing an 

automatic alignment between the volumes. 

 For each gradient direction, an equation can be written in matrix form (see first 

part of equation 3.7); where   is a vector containing the signal values for each gradient 

direction,   is the B-matrix containing direction-dependent b-value information, and 

                            
  is a vector containing the six unique values of the 

diffusion tensor. This system of linear equations can be solved by a Least Square solution 

(see second part of equation 3.7). 

 

                             

Equation 3.7 – Estimation of the six unique values of the diffusion tensor, d’, by using Least Square Regression. 
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 The information given by the diffusion tensor can be better understood after 

eigenanalysis (see equation 3.8). The first eigenvector will give the principle direction of 

displacement and it is typically parallel to the WM fascicles. On the contrary, the second 

and third eigenvectors describe the diffusivity transverse to the axonal bundles [Dubois, 

2006].        

          

Equation 3.8 – An eigenvector of the square matrix D is a non-zero vector e that, when the matrix is multiplied 

by e, yields a constant multiple of e, the eigenvalue λ.  

  

  Commonly, tensors are visualized using eigenvectors scaled to their eigenvalues, 

which is referred as tensor shapes or glyph visualization. The most used shape is the 

ellipsoid (see figure 3.5). 3D ellipsoidal shape elongates along the preferred diffusion 

direction and squashes along restricted diffusion directions. However, when many data 

points are being studied, the density of the glyphs will lead to cluttered visualizations and 

make it difficult to distinguish between the different information per glyph. On top of 

this, glyphs can only represent local information at discrete data points. [Brecheisen, 

2012] 

 

Figure 3.5 – Different diffusion behaviors and correspondent elliptical glyphs. λ corresponds to the eigenvalues 

and e to the eigenvectors. From left to right: a) non-restricted isotropic diffusion, b) restricted isotropic diffusion, 

c) anisotropic restricted diffusion for voxel with one orientation population, d) anisotropic restricted diffusion  

for voxel with more than one tract orientation population. [Pul, 2004] 

 

 Other common approach to analyze the tensor data is the construction of scalar 

metrics from the eigenvalues per voxel, see table 3.1. In figure 3.6, different 

visualizations of DTI are represented. The most popular anisotropy metrics are fractional 
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anisotropy (FA) that measures the degree of diffusion directionality and mean diffusivity 

(MD) that corresponds to the directionally averaged magnitude of water diffusion. Many 

studies focus on the relation between these values and anatomy-physiology of the 

human brain. Anisotropy scalars trends are hypothesized to be related with normal and 

abnormal brain development. With increase of maturation, an increase of FA and 

decrease of MD is usually observed. Also linear (Cl) and planar (Cp) diffusion are often 

used for discrimination between the water diffusivities parallel and perpendicular to the 

WM tracts, with implications for axonal and myelin integrity, respectively. [Rose, 2014; 

Liu, 2012; Pul, 2012; Chen, 2011; Hasegawa, 2011; Lindqvist, 2011; Mullen, 2011; Liu, 

2011; Dubois, 2008; Dubois, 2006; Huppi, 2006] 

 

Name Equation 

Fractional Anisotropy (FA) 
     

 

 
     

           
              

               
 

    
      

      
   

 

Relative Anisotropy (RA) 

     
 

 
     

           
              

               
 

                
 

 

Volume Ratio (VR) 
        

          

                
 
 

Case Linear (Cl) 
     

           

            

 

Case Planar (Cp) 
     

            

            

 

Mean Diffusivity (MD) 
     

            

 
 

Table 3.1 – Commonly used anisotropy values. 

 

 

Figure 3.6 – Different DTI information visualizations. From left to right: Scalar anisotropic map for FA for a brain 
slice; main eigenvector direction for the same brain slice; glyph visualization for some voxels. [Boom, 2011] 
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3.6 Tractography Model 

Tractography corresponds to tracing 3D paths through diffusion vector fields. These 

vector fields are often created by numerically integrating the main eigenvector of the 

diffusion tensor (see left side of figure 3.7). The tracing models can be divided into two 

general classes: deterministic and probabilistic. The first gives always the same output for 

same input. The second does not; as it introduces an element of randomness into the 

tracking process in order to simulate the effects of data disturbances. So far, the simpler 

deterministic method has been used for when dealing with neonatal brains.  

 For the deterministic methods, the most common approach is the streamline 

tracing [Vilanova, 2004]. This implementation requires: seeding points, which define the 

initial conditions for solving the integration; numerical integration along the main 

eigenvector direction; interpolation for calculating the next integration step vector - 

usually for a pre-defined step size of around 0.2 mm; and stopping criteria. The stopping 

criteria prevent the algorithm from tracing into regions where the vector field is not 

reliably defined, such as gray matter. Often used stopping criteria are minimum 

anisotropy index like Cl, and maximum angle to avoid high curvature of the reconstructed 

tracts. 

 Allocation of seed points can be done manually or automatically. Manual placing 

requires specification of one or more regions of interest (ROI) by the user. The interior of 

the ROI is discretely sampled and used as seed points.  The automatic approach is called 

whole volume seeding (WVS) [Vilanova, 2004] and creates tracts throughout the entire 

volume using a user-defined density (see right side of figure 3.7). Manually defining seed 

points is sensitive to user bias, whereas WVS gives reproducible results. On the other 

hand, tractography using WVS produces cluttered data which is difficult to interpret and 

is more susceptible to artifacts. [Mori, 2002] 
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Figure 3.7 – Tractography result. From left to right: Tracing of principal eigenvectors through a diffusion tensor 
field of a transverse plane; WVS tracking of a preterm neonatal patient scanned at TEA, with frontal and 
transverse plane depicting an anisotropy map.  

 

Tractography results are only expected in the WM regions of the brain. 

Sometimes due to scanning artifacts, tracts are reconstructed outside the WM region – in 

GM regions and especially on the outer side of the head. Correction is usually performed 

by applying a skull-stripping algorithm, removing the spurious areas from analysis. 

Automatic skull-stripping for neonatal tractography can be performed by morphological 

inspection of anisotropy maps - i.e., by probing the connectivity between regions with 

similar intensity values [Boom, 2011; Hoskam, 2009]. However, Boom (2011) found this 

method to be insufficient for some of her tested subjects. Notestine et al (2006) 

presented a detailed comparison of common skull stripping methods and tested their 

efficiency for different datasets. They concluded that especially for young subjects, best 

results were obtained from a hybrid approach between two methods. This hybrid 

approach combined morphological operators with a threshold method which defined 

minimum and maximum values along an intensity histogram. 

3.7 White Matter Reconstructed Tracts 

Although the 3D curves originating from tractography are commonly referred to as tracts 

or fibers, they do not represent individual axons. Instead, these curves are an estimation 

of how the diffusion of water is constrained along large WM fascicles. While neurons are 

microscopic in size, the DTI voxels have a size in the millimeters range. Usually for 

neonatal MRI in clinical practice, the voxels have a range between 2 and 8 mm3 [Rose, 

2014; Geng, 2012; Liu, 2012; Pul, 2012; Chen, 2011; Hasegawa, 2011; Lindquist, 2011; 

Liu, 2011; Dubois, 2008 and 2006; Huppi, 2006; Berman, 2005]. Therefore, many 

thousands of axons can fit into one DTI voxel. The DTI measurements correspond to an 
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averaged effect of the collisions of water molecules against all the cellular components 

present per voxel. When noise, acquisition artifacts, or when different tract orientation 

populations are present at one single voxel, like in figure 3.8, this averaging can lead to 

an incorrect estimation of tract direction. Consequently, the tracking algorithm can 

continue tracking in a voxel that actually contains no real underlying structure, but is 

anisotropic, or the other way around, which will result in a misrepresentation of brain 

structures. 

 

 

Figure 3.8 – More than one tract orientation population can be present by voxel. From left to right different 
combinations of two different tract orientations: kissing tracts, crossing tracts, and converging/diverging tracts. 
[Pul, 2004] 

 

 Reconstructed tracts from voxels contain multiple tissue structures, like the ones 

depicted at figure 3.8, which can lead to an effect called the partial volume effect. It can 

occur also when different kinds of tissue are present in one voxel, like at the boundary of 

gray and white matter. The bigger the voxel size, the more pronounced the partial 

volume effect will be. In DTI, it refers usually to multiple tract directions within one voxel. 

For these voxels, errors are introduced since DTI assumes a simple 3D Gaussian 

distribution for modeling diffusion per voxel. To accurately capture the diffusion profile 

arising from such complex tract configurations, many more gradient directions are 

required as well as complex post-processing mathematical models. However, this 

requires acquisition in many directions making clinical scan times large, which is not 

easily feasible in neonates. Also, these high-diffusion directions are not commonly 

implemented in clinical scanners. Still, the visualization of tractography allows for better 

depiction of global information from DTI than all the other referred approaches, like 

anisotropy scalars or glyph visualization. 
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Chapter 4  

Atlas-based Tractography Segmentation 

This chapter introduces the research domain of atlas-based tractography segmentation 

and discusses relevant previous work in this field. Creation of tractography atlases is 

addressed, and a more detailed explanation is given about the previously constructed 

neonatal tractography atlas used for this thesis work. Based on previous works, a 

structure of processing steps is delineated. Steps with a higher complexity are discussed 

in their own section.  

4.1 Why an atlas-based segmentation? 

When tractography is performed for the entire brain, the output will consist of hundreds 

of tracts. Such output is not immediately useful to clinicians or researchers when it 

comes to assess risk of neurodevelopmental disorders. It is hard to recognize and analyze 

all anatomical structures, especially due to information cluttering. For the neonatal data, 

it is helpful to analyze particular WM anatomic structures, which are still in development, 

and carry meaningful physiological information. Therefore, after tractography, the 

different reconstructed tracts need first to be categorized into the correspondent WM 

anatomical structures. This is a process referred to as segmentation.  

 Segmentation can be done interactively using expert knowledge. This method is 

based on manually defining regions of interest (ROIs). Tracts are labeled as the same 

anatomical structure when passing through the same ROIs.  One of the strongest 

examples of this method is the work presented by Wakana (2004). Also manual 

segmentation has already been successfully performed in neonates from the 

collaboration project between UMCU-MMC-TU/e [Pul 2012, Kooij 2011]. Although this is 

the most common approach for tractography segmentation in clinical studies, it poses 

some drawbacks. It requires extensive knowledge about complex WM tract anatomy, it is 

user biased and it can become very time consuming. On top of this, manual selection 

might be difficult to perform for some anatomical structures with complex shapes, like 
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the fornix (FX) which requires multiple ROI’s to be selected. Figure 4.1 depicts ROI 

drawing for FX segmentation in the coronal plane (vertical from head to feet orientation 

plane) and subsequent result. This image represents the best manual segmentation 

result from Pul (2012). In figure 4.2, the more common result obtained for FX 

segmentation is shown. For these cases, only a small part of the FX can be segmented. 

 

 

Figure 4.1 – Manual Segmentation of ROI in red – in the left, the ROI drawing; in the center, ROI and 
segmentation results in frontal view; in the right same results in traversal view. 

 

 

Figure 4.2 – ROI and typical segmentation result of FX. 
 

Another common approach for tract segmentation is to automatically organize 

similar tracts in groups, i.e., to cluster them [Boom, 2011; Visser, 2011; Hoskam, 2009; 

Leemans, 2009; Moberts, 2005]. Similarity between tracts is decided usually based on 

the distance between tracts (e.g., [Lori, 2002]). Tracts that are similar to each other, 

based on this metric, are grouped together. The grouping is very dependent on the type 

of similarity metric, clustering method and the clustering algorithm parameters [Boom, 

2011; Moberts, 2005]. This type of approach has two inter-related drawbacks. First, 

although similar tracts are grouped together, automatic anatomical labeling is not 

included in the algorithm. Second, in order to avoid having clusters containing tracts 

from more than one anatomical structure, tracts from the same anatomical structure will 
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be also separated into different clusters. For neonatal data, the optimal number of 

clusters to ensure that one cluster contains only one anatomical structure is in the order 

of 200, which is clearly superior to the number, less than 10, of anatomical structures 

wished to segment (see figure 4.3; and see chapter 2, section 2.2 for the anatomical 

structures of interest). In conclusion, clustering alone shows to be not enough for 

producing an anatomically meaningful automatic segmentation. 

 

 

Figure 4.3 – Clustered tractography of a preterm scanned at TEA using Boom clustering method (2011). 

 

 To overcome this, another segmentation approach has emerged that uses a 

priori information about the WM anatomy. The information of interest comprises 

anatomical structures location, shape and other differentiating properties of the WM 

tracts. Due to the complexity of this information, the creation of such model is usually 

accomplished by manually labeling tractography results from subject’s data. These 

models are called tractography atlases. Atlas and subject are compared, and the tract 

from the new subject will then inherit the label of the atlas tract to which it is most 

similar. Atlas creation is a step performed once. This segmentation approach is called 

atlas-based segmentation.  

4.2 Atlas Creation 

A brain atlas is a map of the brain that consists of pictures and/or tables and charts that 

label the anatomical structures, i.e., the atlas labels. The Talairach-Tournoux atlas is 

probably the first successful and most widely used atlas space for mapping of the human 

brain [Talairach and Tornoux, 1988] (see left image in figure 4.4). This atlas is based on a 
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single post-mortem dissection of a human adult brain and labeled according to the 

Brodmann’s brain regions. Its coordinates are defined by making two anchors, the 

anterior commissure and the posterior commissure, lying on a straight horizontal line: 

the AC-PC line.  

Currently, many more alternative atlases exist, including atlases from in-vivo data. 

Mori et al. (2005) created the first WM brain atlas, by hand segmenting volumes of a 

standard-space average of diffusion MRI tensor maps from 81 healthy subjects (see right 

image in figure 4.4). Wakana et al. (2007) and Hua et al. (2008) created a tractography 

atlas, by identification of 20 structures from an average of 28 deterministic tractography 

results of normal subjects.  

 

           

Figure 4.4 – Representation of two brain atlas in tranversal view. From left to right: Talairach-Tournoux atlas; 
Mori WM atlas. (images from http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) 

 

  Preterm neonatal brain tractography results are quite different from 

tractography of healthy normal adult subjects (see figure 4.5). The difference comes from 

the low brain development degree. First, lower tract organization and myelination 

degree translate in different tract patterns.  Tractography from neonates is characterized 

by a lower number of tracts, presence of smaller and broken tracts, and even missing 

anatomical structures yet to develop. Second, neonates have a smaller brain size, making 

tractography more sensitive to partial volume effects. Third, the neonatal patient group 

presents a large variation in gestational age, birth weight, and severity of illness which 

translates into a high degree of variability across subject brains. Therefore, adult atlases 

are of little use for segmenting neonatal data [Boom, 2011]. 
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Figure 4.5 – Tractography results of non-pathologic patients with head shape in transparency. Tracts are color 
labeled: blue for feet to head orientation, green for back to front and red for left to right. From left to right: 
adult patient tractography, with length from bottom of ear to top of head of approximately 21 cm; premature 
at TEA tractography, with length from bottom of ear to top of head of approximately 12.5 cm. 

 

 During literature search, the only tractography atlases for neonatal data found 

corresponded to the work of Boom (2011). This is the atlas used for the current study. 

This atlas was built from three tractography datasets of preterm neonates imaged with 

DTI at term equivalent age (TEA) in UMCU. The tracts were constructed using software 

developed at the Biomedical Image Analysis Group from the University of Eindhoven, 

vIST/e [http://bmia.bmt.tue.nl/software/viste/]. The tracking parameters used were 

specific for the patient type of neonates at TEA, as suggested by Pul (2004). After 

tractography, the results were evaluated by experts, to make sure they provided an 

accurate representation of the brain WM anatomy structure as expected for this degree 

of development. The tractography results from two of the patients were aligned, i.e., 

registered, with the third patient. After registration, all tracts from the three patients 

were clustered together in small groups by applying an Affinity Propagation Method 

[Frey, 2007].  All clusters were visually inspected by three experts and labeled according 

to anatomical structure based on the WM atlases by Mori (2005) and Wakana (2004). In 

this way all the tracts were divided into the following labels: CC (corpus callosum), CR 

(corona radiata, left and right), SS (sagittal stratum, left and right, CG (cingulum), FX 

(fornix), MCP (middle cerebellar peduncle), Cheeks, Artifacts and Other. For more details 

the reader is referred to the master thesis of Boom (2011), “Automatic Atlas based White 

Matter Bundle Labelling for Neonates”. The atlas is presented in figure 4.6 and 4.7. 

 

 

 



48 
 

 

 

Figure 4.6 – Atlas of preterm neonates imaged at TEA – lateral view. Label of segmented structure is depicted by 
a color-key, at right side of the image. 

 

 

 

Figure 4.7 – Atlas of preterm neonates imaged at TEA  – frontal and anterior views. Same color key as in figure 
4.6. 
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4.3 Segmentation Procedure 

After creation of the tractography atlas, tractography data of new subjects can be 

segmented by comparing them with the atlas. The new subject tracts will inherit the 

label of the atlas tract with which they have the highest similarity, the Label Attribution 

step. This comprises previous computation of a similarity metric between the atlas tract 

set and the new subject atlas tract set, the Similarity Metrics step. By definition, similarity 

metric is distance-based. Therefore, it is critical to have the subject and atlas 

geometrically aligned previously to similarity computations between them. The process 

of finding the best alignment between the atlas tract set and the new subject tract set is 

the Registration to Atlas step. Previous to registration, some specific algorithms can be 

employed for improving performance, like Down-Sampling of the tracts. Down-Sampling 

requires also an extra final step at the end of the segmentation flow, Label Propagation; 

such that the labeled sampled tracts information is propagated to the entire 

tractography set. The correspondent processing procedure, i.e. pipeline, of these steps is 

depicted in figure 4.8.  

 

 

Figure 4.8 – Procedure for segmentation of new subject using a previously constructed atlas: down-sampling of 
new subject tractography, registration to atlas of the sampled tracts, similarity metrics computation between 
atlas and sampled tracts, sample tracts label attribution and label propagation from sample tracts to all the 
tracts. 
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4.4 Similarity Metrics 

Similarity is usually based on the point-wise spatial distance between the points    that 

represent the tracts  . There are several choices on how to define the similarity between 

curves. Moberts (2005) showed that the Mean of Closest Points (MC) distance gave the 

best results for computing accurate similarity for adult brains between two tracts    and 

    represented by r and l points correspondently (see equation 4.1).   

 

                      
           

               

Equation 4.1 – Mean of closest points (MC) distance. 

 

However, for representing similarity between neonatal tractography, this 

distance measure is not optimal. As already mentioned, neonatal tractography can 

present broken tracts. Normally, when two tracts cross, the MC will be large, because the 

mean of all distances of the two tracts will be taken into account. When one tract is 

shorter than the other, the MC distance between them will be small, and can be 

equivalent to two parallel tracts with a reasonable distance. This is an undesired situation 

for neonatal brain imaging since tracts that cross have different orientation and 

therefore should be classified as non-similar.  

 Another distance that can be used is the Classic Hausdorff (see equation 4.2). The 

Classic Hausdorff distance similar to the MC, however it computes the maximum distance 

between the closest point pairs instead of the mean. 

 

                                    
           

               

Equation 4.2 – The Classic Hausdorff distance. 

 

The Classic Hausdorff is a directed distance, i.e., the distance from tract i to tract k 

can differ from tract k to I (see figure 4.9). For transforming it in a symmetric distance the 

maximum of these two distances is used (equation 4.3). This is a conservative distance; 

tracts will only be similar when all points have small distances.  
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Figure 4.9 – The Classic Hausdorff distance as a direct type distance. The Classic Hausdorff distance is different 
between tract k to tract i, first line of image, with tract i to tract k, second line. The first row depicts the first step 
of the Classic Hausdorff distance, with the distance between the points of the study tract with its closest tract 
points. The second row depicts the final step of taking the maximum of the previous computed distances. 

 

                              

                                                               

Equation 4.3 – Classic Hausdorff distance made conservative by taking the maximum of the two possible 
directed Classic Hausdorff distances for a pair of tracts.  

 

 In the neonatal brain, also a broken tract can run parallel with a tract with a 

larger length. The Symmetric Hausdorff overestimates the distance for two parallel tracts 

with very different lengths. The Adapted Hausdorff [Boom, 2011] is still a symmetric 

distance, but instead of taking the maximum of the two possible direct distances, it takes 

the minimum of these two. In conclusion, the Adapted Hausdorff solves the problem of 

broken tracts, as it does not overestimate the distance between two parallel tracts of 

different length, or underestimates the distance between two crossing tracts of different 

lengths. In figure 4.10 these two situations are depicted. 

 

 

Figure 4.10 – Pair of tracts with very different lengths due to presence of broken tracts for neonatal data. From 
left to right: parallel tracts; crossing tracts. 

 

                                                                                        

Equation 4.4 – The Adapted Hausdorff distance between tract    and   . 
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4.5 Registration to Atlas 

In order to maximize the accuracy of the distance-based similarity computation, the 

tractography results from the new subject need first to be geometrically aligned with the 

atlas tracts. This correction is necessary due to two factors. The first arises from the fact 

that MRI scans of different patients are not always acquired in exactly the same position, 

so position and orientation of the datasets usually differ across patients. A second factor 

comes from variation in head size and shape among subjects. Consequently, a good 

registration will normalize the subject variability, having the atlas as reference. However, 

the registration process should not alter the anatomical features specific for each 

structure, such as the structures relative location to each other and the different shapes 

of tract bundles. These are the features necessary to maintain for an accurate 

computation of similarity between atlas tract set and the new subject tract set, necessary 

for the anatomical labeling of the subject tracts set. 

The process of finding the best alignment of the new subject tract set with the 

atlas tract set corresponds to an optimization problem. Alignment of the subject tracts 

with the atlas tracts involves applying a coordinate transformation model to the subject 

tracts points. Finding the best alignment comprises a study of similarity between subject 

and atlas tracts. Search for the highest similarity, considering the deformation model 

applied, can be performed in different domains: atlas and subject can be compared at 

scalar-domain, tract-domain or even feature-domain. 

4.5.1 Transformation Models  

Transformation models for registration purposes cover a high range of possibilities: from 

global rigid deformation [Leemans, 2006], where only translation and rotation are 

allowed, until fluid models based on physical processes which allow different local 

deformations [Zitova, 2003]. Considering tractography registration, the most used 

transformation corresponds to the Affine type, where not only translation and rotation 

are allowed but also scaling and shearing [O’Donnell, 2012; Mayer, 2011; Zvitia, 2011]. 

Deformations more complex than affine, like elastic or fluid deformations, were not 

found in literature for registering tractography. Indeed even for voxel-wise registrations 

these more complex deformations need to be used with care. Although they allow for a 
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more detailed alignment, they can corrupt the local spatial variability characteristic of 

each tract population which needs to be preserved [Murgasova 2011]. 

4.5.2 Similarity Metric Search Domain 

Although the goal of the registration is to align the subject tractography with the atlas 

tractography, search for the best alignment can be performed by using other DTI-derived 

data. The most commonly used data corresponds to scalar information extracted from 

the DT-MRI images, like anisotropy maps [Anjari, 2007]. One advantage of performing 

tractography registration based on scalar images is that classical intensity based 

registration methods can be used. Boom (2011) used this type of registration for 

constructing the atlas. The atlas tractography registration was conducted by employing a 

transformation to the tracts that was found by comparison of Cl anisotropy maps 

between subjects and reference. Boom also applied the same registration procedures to 

register new subjects to her atlas. This approach showed to be problematic, as for more 

than 10% of subjects the registration failed without any specific reason being elucidated. 

When working with anisotropy maps, not all the directional information contained in the 

tensors is being used. In addition, since every voxel of the data set is included, this 

approach can be inefficient, as many voxels contain no information about the WM 

structure and can be seen as not contributing to the real optimization process. [Hutton, 

2003; Zitova, 2003] 

 Another option is to perform the registration directly between the tracts, i.e., by 

searching at tract-domain [O’Donnell, 2012; Mayer, 2011; Wasserman, 2010; Zvitia, 

2010; Mayer, 2007; O’Donnell, 2007; Leemans, 2006]. For this approach, the directional 

information contained in the diffusion tensors is naturally inherited by the reconstructed 

WM tracts and further enhanced by the connectivity information described by each tract. 

This approach then uses global information as opposed to the scalar-wise approach, 

which uses only local information. In addition, with the eventual goal of modeling and 

analysis of WM tracts, it may be advantageous to register the tracts themselves, as the 

quantity being optimized during registration will be closely related to the final goal. 

Drawbacks from directly registering tractography data can arise from three 

sources. First, tractography registration focuses only on the tensor information contained 

in the first eigenvector, in regions where anisotropy values are high enough for 

reconstructing WM tracts. By not considering information from outside these regions, 
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i.e., information from GM regions, it might be argued that information of added value is 

being discarded. Secondly, tractography registration requires extra computation, a 

quadratic increase, as each tract of the new subject is compared with each of the tracts 

from the reference tractography. Finally, any possible errors on the tractography 

procedure will be propagated to the registration. 

As for the feature domain, it corresponds to reducing the tract to some 

geometrical features, like curvature and length. Each tract is then mapped into a feature 

space, and similarities are computed there [Leemans, 2006; O’Donnell, 2007]. Problems 

arise with the fact that it is not clear which are the best geometrical features for 

describing similar WM tracts.  

4.6 Down-Sampling 

Registration time and accuracy can be improved by reducing the number of tracts fed to 

its algorithm. In this way the complexity of registration is reduced. This can be performed 

automatically by sampling methods. All important anatomical structures should continue 

to be tract-represented after the sampling. However, for neonatal data, some anatomical 

structures, e.g. like the cingulum (CG), contain no more than 5-8 reconstructed tracts. For 

including in the sample a representation of anatomical bundles with a reduced number 

of tracts, a new clustering approach is suggested in this thesis. The sampled data-set is 

constituted by an existent tract from each cluster that is the cluster center tract. The 

specific algorithm used for the current work will be presented in the next chapter. 

  



55 
 

Chapter 5  

Pipeline Implementation 

The previous chapters laid the foundation for the proposed method: the importance of 

this type of research direction was clarified, tractography type data and its usability were 

elucidated, and plus its possible drawbacks and the methods probed so far for 

segmenting neonatal tractography were discussed. In this chapter, the contribution of 

this thesis to the field of neonatal atlas-based tractography segmentation is explained.   

First, a schematic overview of the proposed pipeline flow is given. For some of the steps 

previous work was mostly not altered, while for other steps major alterations were 

implemented.  Input data, output data, parameter settings, and implementation details 

are also presented for each processing step section. 

5.1 Pipeline Flow 

How WM tractography arises from DWIs was clarified in chapter 3. Then in chapter 4, the 

processing steps from raw tractography to segmented tractography were also explained. 

The pipeline in this thesis consists of both parts, as it starts from the DWIs acquired, to 

attain in the end a segmented tractography. Consequently, eight main processing steps 

can be identified (see also figure 5.1): skull stripping, tensor fitting, tractography, down-

sampling, registration to atlas, computation of similarities between subject and atlas, 

label attribution and label propagation.  In appendix I, another scheme is depicted, this 

one focusing on the data flow from raw tractography to segmented tractography. 

 

Implementation 

Previous to skull stripping, the scanned data is converted from the standard scanner data 

type, Digital Imaging and Communication in Medicine (DICOM), to the standard 

neuroscience data type, NifTi (Neuroimaging Informatics Technology Initiative). This data 

conversion is performed with dcm2nii software [http://www.mccauslandcenter.sc.edu/].  
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 The pipeline runs on Matlab®. Some steps were written in a different language; 

therefore, executables for these steps were created and then called via Matlab®. Three 

libraries are necessary for the pipeline, a Matlab® function library called VISTASoft 

[http://vistalab.stanford.edu/] for processing of medical images, the VTK library 

[http://www.vtk.org/] for tract representation and visualization, and the O’Donnell 

library for registration of WM reconstructed tracts [O’Donnell, 2012]. The entire pipeline 

runs automatically, and the user does not need to tune any parameter. There is only one 

exception: the user needs to manually initialize the tractography algorithm in the 

pipeline. This is done in vIST/e, a software tool developed at the Biomedical Image 

Analysis Group from the University of Eindhoven 

[http://bmia.bmt.tue.nl/software/viste/]. After tractography, the pipeline continues 

automatically.  

 

Figure 5.1 – Pipeline flow. The flow from raw tractography to segmented tractography was already presented 
on the previous chapter. Now, also the procedures from the scanned image data to its raw tractography are 
depicted. 

5.2 Skull Stripping 

The skull stripping is performed as a first step, before fitting the tensors. Its constitutive 

steps are depicted in figure 5.2, and its effects on the tractography dataset in figure 5.3. 
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It takes as input the b0 image (see section 3.5). The used algorithm is similar to the one 

proposed by Hoskam (2009) and Boom (2011), as it also applies image morphological 

operators; more specifically one dilation step and two erosions. For the current pipeline, 

the morphological operators are extended from simple dilations and erosions to more 

complex operations, referred as smart morphological operations, and a threshold step is 

performed previous to these. This is done with the aim of reducing spurious tracts 

pervious to segmenting the tractography. 

The threshold step analyses the intensity histogram of the b0 image. The b0 

image is clipped according to a lower and upper intensity threshold. The clipping is 

special, as the voxels with intensities bigger than the upper threshold are clipped to 0, 

instead of the normal approach of clipping to the upper threshold value. The upper and 

lower thresholds are defined in percentile values, i.e., percentages of the intensity value 

distribution, see table 5.1, percentile parameters. After clipping, the intensity values are 

transformed in a logical mask, where all intensity values bigger than 0 are assigned to the 

logical value true.  

This mask is then further processed by application of morphological operators. 

First, satellites are removed. For this, voxels are grouped by a 3-dimensional 26-

connectivity, i.e., voxels are considered neighbors if they touch each other faces, or 

edges, or corners. Groups with less than a predefined number of voxels, see table 5.1 

satellite size parameter, are seen as satellites, and their logical value changes to 0. 

Secondly, holes are filled by using a smart closing operator. A smart closing operator is 

defined similar to a normal closing operator, i.e., dilation followed with erosion, having in 

addition the property of conserving the initial mask outside contour. It does so by 

comparing the after-closing mask with a complementary image of the before-closing 

mask [Vicent, 1993]. The structural element comprises a 3-dimensional 6-connectivity, 

i.e., voxels are considered neighbors only if they touch each other faces.  

Thirdly, the image is smoothed by a 3-dimensional Gaussian kernel, see table 5.1 

sigma size parameter. The smoothed result is again converted into a mask by assigning 

the value true to voxels higher then 0.5; this can be seen as a second erosion procedure. 

After smoothing, the mask gets its satellites removed and holes filled one more time. The 

mask is then applied to the multiple DW images. The DW images are already aligned 
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between themselves by the scanner software for correction of eddy current and motion 

artifacts. 

 

 
Figure 5.2 – Skull stripping consecutive steps. First, b0 image is clipped and transformed into a mask. Then this 
mask passes through morphological operations which allow for satellite removal, then hole filling and after 
smoothing. After smoothing, step 2 and 3 are repeated.  

 

 

 

Figure 5.3 –Effects of skull stripping in tractography results with b0 image in side plane. Left: No Stripping 
applied; Right: Tractography results from a tensor image for which skull stripping was performed. 

 

 

Implementation 

VISTASoft was the basis for implementing the skull stripping step. Before the 

implementation at Matlab®, some threshold methods were probed using the software 

ImageJ [http://imagej.nih.gov/]. For the tested subjects, the percentile threshold 

performed better in comparison with other threshold methods available at ImageJ. In 

table 5.1 the main functions and corresponding parameters can be found. Taking into 

account the differences between neonatal and adult brain (see section 4.2, paragraph 3), 

an empirical investigation of the optimal parameters for neonatal datasets was 

conducted. Parameter values which generated a skull stripping mask containing holes in 

the brain region were disregarded. Optimal parameters were seen as the ones which did 

not result in these holes and contained less amount of non-brain region, like facial and 

neck area and above the skull regions. 

 

 

1. Clipping 2. Remove Satellites 3. Fill Holes 4. Smoothing 
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Step Functions Parameters 

Clipping mrAnatHistogramClip.m, 

modified for clipping to 0 

Percentiles (%) 85% 

99.9% 

Remove Satellites dtiCleanImageMask.m Satellite size (voxels) 100 

Fill Holes imfill.m - 

Smoothing dtiSmooth3.m   Sigma size (voxels) 10 

Table 5.1 – Skull stripping functions and correspondent parameters. 

 

5.3 Tensor Fitting  

Tensor fitting is performed with the simplest and more common algorithm, the Linear 

Least Square (LLS) (section 3.5).  

 

Implementation  

VISTASoft library functions were again chosen for this implementation. 

dtiRawFitTensor.m was slightly modified for allowing fitting with standard LLS and 

posterior tractography processing. 

5.4 Tractography  

Tractography is performed with a deterministic full brain seeding algorithm (section 3.6). 

 

Implementation  

Tractography was performed by vIST/e plug-in Fiber-Tracking. Pul (2004, 2012) specific 

tractography parameters for neonates were used (see table 5.2). These parameters have 

especially taken into account the lower anisotropy values, and smaller sizes of WM 

anatomic regions in neonatal DTI in comparison with adult DTI. 

 

Parameter name Value 

Minimum tract length  20 mm 

Minimum anisotropy index (0 - 1)  Case liner (Cl) of 0.12 

Maximum tract angle  10° 

Minimum seed distance  0.5 voxels 

Table 5.2 – Tractography constrains applied from Pul (2012). 



60 
 

5.5 Down-Sampling 

Down-sampling step starts by computing distance-based similarities for each pair of 

tracts within the subject tractography. These similarities are saved in a matrix format and 

constitute the input of the clustering algorithm. Next, clustering is performed and finally 

the sampled dataset is made of the cluster center tracts, which emerge from the 

clustering algorithm. This process is shown in figure 5.4. The subject tract set and the 

atlas tract set are both down-sampled prior to registration. The atlas tract down-sampled 

set is presented in figure 5.5 

 

 

Figure 5.4 – Down-sampling data flow. The input data corresponds to the subject raw tractography. After, tract 
pair distance-based similarity is computed. The clustering algorithm uses then these similarities for clustering 
the tracts. The cluster centers become the down-sampled dataset. 

 

 

Figure 5.5 – The atlas down-sampled set by the proposed method of cluster down-sampling. 

 

Affinity Propagation (AP) [Frey, 2007] is the clustering algorithm implemented. 

From the studied clustering methods, AP produced clusters containing reconstructed 

tracts from not more than one WM anatomic structure [Boom, 2011; Leemans, 2009]. In 

addition, AP can take as input general similarities like the Adapted Hausdorff distance, 

which for the neonatal preterm dataset is clearly an advantage (section 4.4).  
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AP algorithm clusters by studying distance-based similarity between the tract pair 

and their neighbor tracts. It initially considers every tract simultaneously as a potential 

cluster center and iteratively exchanges messages between the tracts until a set of 

cluster centers and corresponding clusters emerge. For the current implementation, 

distance,          , is taken into account in the similarity metric by computing the 

negative squared product of the Adapted Hausdorff distance proposed by Boom (2011), 

                          (see equation 5.1). 

 

                                    
  

Equation 5.1 – Negative squared Adapted Hausdorff distance as the difference metric desired to minimize 
between tracts    and   . See equation 4.4 for the expression of the Adapted Hausdorff. 

 

There are two types of iteratively exchanged messages which measure how 

appropriate it is for    to be the cluster center of   , responsibilities and availabilities. 

Responsibility,         , takes into account that    can have other more appropriate 

cluster centers. It does so by studying how far away    is from   , and the best competitor 

of tract    for being the cluster center of    (see equation 5.2 and left side of figure 5.6). 

 

                                                          

Equation 5.2 – Responsibility of    to be cluster center of   . 

 

Availability,         , takes into account the other possible tracts for which    can be 

considered an appropriate cluster center. It does so by studying the responsibility of 

   to   , and all the positive responsibilities of    for being the cluster center of other 

tracts (see equation 5.3). Self-availability,         , is computed differently as the 

sum of all the positive responsibilities of tract    (see equation 5.4 and right side of 

figure 5.6). 

 

                                                  

         

 

Equation 5.3 – Availability of    to be cluster center of   . 
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Equation 5.4 – Self-availability of tract   . 

 

 

Figure 5.6 – Exchanged values between tracts of a tractography data-set. 

 

 

Implementation 

Computation of similarity metrics was performed in Matlab®. The computation of the 

correspondent distances is performed on C++ from adaptation of previous work from 

Boom (2011) and Moberts (2005). The clustering algorithm was made available by Frey in 

a Matlab function, apcluster.m [Frey, 2007]. There is only one parameter which needs to 

be tuned, the initial responsibility of each tract. Currently, for the approach followed in 

this thesis, there is no known a priori information about which tracts are more 

appropriated to become cluster centers and constitute the down-sampled dataset. 

Therefore, initial responsibility is made equal for al tracts. This parameter was empirically 

found by Boom (2001) to be optimal at the value of -200. Although Boom (2001) did not 

use the AP algorithm for sampling purposes, she empirically found that for typical 

preterm neonate at TEA tractography data, this value produced an optimum number of 

clusters (see figure 4.3, section 4.1). 

5.6 Registration to Atlas 

The deformation model used for registering the new subject to the atlas corresponds to 

an affine transformation of the subject tracts [O’Donnell, 2012; Boom, 2011], presented 

at sub-section “5.6.1 Affine Transformation of Tracts”.  Registration is performed directly 

between the tracts, by studying the similarities between the down-sampled new subject 
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tracts with the down-sampled atlas tracts. The specific similarity metric corresponds to a 

probability density function [O’Donnell, 2012; Wasserman, 2010; Zvitia, 2010] and its 

concept is clarified in sub-section “5.6.2 Similarity Probability Density Function”. The 

optimization algorithm, responsible for searching for the best transformation, is 

presented at sub-section “5.6.3 Similarity Optimization Algorithm”. As a registration 

output example see figure 5.7. 

The registration algorithm was inspired by the group-wise registration from 

O’Donnell (2012). The main difference between the used implementation and 

O’Donnell’s method, it is that the implemented method aims to find the best alignment 

between a group of tractographies by giving a reference tractography for performing the 

alignment; the atlas is the reference for alignment. Thus, in O’Donnell’s work, all the 

input tractographies can be deformed, while searching for the best alignment between 

all of them. While in the current pipeline, only one tractography is deformed, the 

subject’s tractography. 

 

 

Figure 5.7 – Registration of subject cluster center tracts to atlas cluster center tracts. The subject is deformed to 
the atlas as reference. Subject depicted in orange and atlas in blue. 

 

5.6.1 Affine Transformation of Tracts 

Each subject tract from the down-sampled subject set,       is represented by a set of 

points,       . An affine transformation    can be expressed as a matrix which acts on 

the coordinates (  ,   ,   ) of every of these points   (see equation 5.5). The different 

entries of the transformation matrix are depicted as tmi,j. 
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Equation 5.5 – 3-dimensional affine transformation. 
 
In order to accelerate convergence, prior to registration and after down-sampling, 

the subject down-sampled tract set center of mass is aligned with the center of mass of 

the down-sampled tract set atlas.  

5.6.2 Similarity Probability Density Function  

For each iteration of the registration algorithm, a different affine transformation 

is probed and applied to the subject tracts. For each probed transformation, 

corresponding similarity metrics between all the subject tracts with all the atlas tracts are 

computed. This means, the similarity metrics between the atlas and the new subject are 

computed as many times as the algorithm iterates. Similarity metrics are distance-based 

by definition. Computing distances between two tracts corresponds to studying all the 

possible pair of points between the pair of tracts. Consequently, computation of 

distance-based similarity metrics for registration purposes is very computationally 

expensive. 

 O’Donnell proposes a distance which does not study all possible pair of points 

between the subject tract and the atlas tract. Instead, the pairs of points between the 

two tracts are fixed: the first point of tract    always pairs with the first point of tract 

  , the second point of tract    pairs always with the second point of tract   , and so 

forth until the last point.  

However, the number of points differs between tracts, as it is dictated by the 

tract length and the tractography parameter of the space between tract points (see 

section 3.6). Making the number of points per tract uniform is a compromise between 

fidelity to the original tract shape and computational complexity. It was earlier 

empirically found by Mayer et al. (2011) and O’Donnell et al. (2011) that a good balance 

between these two factors can be attained with a re-description by five equally spaced 

points: endpoint, midpoint, and two intermediate points. If necessary, the new points are 

found by applying a nearest neighbor interpolation.  This re-description of the tract by 

five equally distant points is depicted in figure 5.8. 
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Figure 5.8 – Tract re-description of tracts    and    using five equally distant points.  

 

The distance proposed by O’Donnell corresponds then to using the maximum 

distance of the five distances that arise from the five fixed pairs between points. Because 

point ordering along the tract is not known a priori, the maximum distance of 

correspondent pairs is computed twice, the second time with an inverse ordering for one 

of the tracts. The final pair-wise tract distance corresponds to the minimum of these two 

maximums (see equation 5.6). 

 

                 

                  
                                     

    

                         

Equation 5.6 – O’Donnell distance between tract    and   . Points of    are referred as   , points of    as   . 
 

 The distance between points is transformed to a probability density function 

         (see equation 5.7). This pdf describes how probable it is for that subject tract to 

have close-by neighbor atlas tracts. However, it is important to understand that this 

function is only defined for a positive domain, as distance is always a positive value. In 

addition, as a pdf it will take only values between 0 and 1.   allows the definition of a 

radius of interest; where distances outside this radius will have similarities close to 0.    

is normalization constant, and therefore will not influence the optimization procedure. 

The distance metric used corresponds to the previously defined in equation 5.6. 

 

          
   

        
 

  

 
 

Equation 5.7 - Similarity metric as an affinity probability density function.          corresponds to the O'Donnel 
distance between tract    from the subject and tract    from the atlas defined in equation 5.6. 
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Taking into account all the pdf’s of a subject tract to all the atlas tracts        , 

allows to describe how probable it is for that subject tract to have close-by neighbor atlas 

tracts (see equation 5.8). 

 

                               

Equation 5.8 – Similarity probability distribution function of tract    to all the atlas tracts,      A. 
 

5.6.3 Similarity Optimization Algorithm 

The best alignment between subject tracts with atlas tracts can be found by maximizing 

the probability of all the subject tracts having close-by atlas tracts. Information theory 

attains this by minimizing the entropy of this distribution [Maes, 1997; Collignon, 1995; 

Shannon, 1948]. The Shannon Entropy ( ) corresponds to the expected value ( ) of the 

negative log-probability of the subject tracts. By the weak law of large numbers [Poisson, 

1837], the expected value can be replaced by the sample average value. This concept is 

the foundation for the construction of the cost function used by the optimization 

problem (see equation 5.9). The average was obtained by dividing per the number of 

tracts in the atlas tract set. It might be pointed that dividing by the number of tracts in 

the subject tract set would be more accurate for computing the average. However, this 

value    is a constant through the entire algorithm, and therefore will not have a 

influence in the optimization search. 

 

                     
 

          
          

 

          
     

        

Equation 5.9 – Cost function as the subject tracts similarity probability distribution functions entropy. H is the 
Shannon entropy,   the affine transformation performed at the subject tracts, A the set of all atlas cluster center 
tracts, S the set of all subject cluster center tracts, and δ the similarity probability distribution function of tract 
   to all the atlas tracts,      A. nA is the number of tracts in set A. 

 

The optimization algorithm searches for the optimal transformation,   , in the 

space of all affine transformations,     (see equation 5.10). The algorithm sees the 

optimal affine transformation, as the one that, once applied to the cluster center subject 

tracts, brings the minimal value for the cost function defined in equation 5.9. 
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Equation 5.10 – Optimal affine transformation,   , as the argument which brings the cost function, H, to its 
minimum. Whereas τ  is the affine transformation applied to the subject tract points coordinates,   is the space 
of all possible affine transformations, A the set of all atlas cluster center tracts, and S the subject cluster center 
tract set. 

 

The space of all affine transformations comprises twelve degrees of freedom 

(dof). Therefore, the optimization problem is a multi-variable problem. In addition, there 

is no analytical solution for the derivative of this cost function. Consequently, the 

algorithm applied is a direction set method, where the optimal function is reached by 

linear approximations. The multiple variables are represented as vertices of a simplex 

geometrical (see figure 5.9). Both size of the simplex and size of neighborhood for next 

vertex interpolations are constrained by a spherical region of trust. Constraint 

parameters correspond then to the expected initial step size, ρbeg, and final step size, 

ρend, for each variable. The ρend is responsible for determining convergence. The 

algorithm was first proposed by Powell on 1998, and is usually referred by the name of 

COBYLA, which stands for Constrained Optimization by Linear Approximation (Powell, 

1998). 

 

Figure 5.9 – Representation of a simplex direction set method for a 3-variable optimization problem. The 
simplex is seen as a triangle in a 3D space, in which each of its vertices corresponds to one of the 3 variables. 10 
iterations are represented in direction of the (local) minimum of the 3-D cost-function, depicted as a grid 
surface. (image from http://www.princeton.edu/) 

 

Implementation  

The registration step implementation was based on a python library developed by Lauren 

O’Donnell’s research group [O’Donnell, 2012]. Classes for description of the 

reconstructed WM tracts, similarity metric, transformation model, and optimization 

algorithm were used without any modification besides parameter tuning. The 
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optimization algorithm was performed with the python toolkit scipy.optimize 

[http://www.scipy.org/] which already includes a COBYLA package. Main modifications 

were performed in the cost function definition, as for the current pipeline a pair-wise 

registration was of interest, instead of the group-wise method implemented by 

O’Donnell.  

One of the more important parameters to empirically tune was the similarity pdf 

standard deviation value,  . For adult tractography, optimal results are found by running 

several iterations for different  , from 30 mm to 5 mm. For the neonatal tractography 

data, the results were optimal for the value of 3 mm, and iterations were not found to 

produce any observable improvements.  

As for the constraint parameters, ρbeg and ρend were tuned in order to avoid an 

unnecessary overall rotation or translation of the tracts, and to avoid the shrink to a 

point solution that artifactually reduces entropy, table 5.3. This was done by taking into 

account the expected transformation variable magnitudes. Different parameter 

combinations were empirically probed, with O’Donnell’s empirical parameters for a 

typical adult dataset performing the best.  

 

 ρbeg ρend 

Rotation (degrees) 5 0.1 

Translation (mm) 5 0.1 

Scale (factor) 0.01 0.001 

Shear (degrees skewed) 2 0.5 

 
Table 5.3 – COBYLA constraint parameters [O’Donnell, 2012]. 

 

It is also important to remark that for the type of data tested, the best results 

were not found while optimizing simultaneously in a domain of twelve dofs. Instead, they 

were found while optimizing iteratively between four distinct deformation modes of 

translation, rotation, scaling and shearing. For each iteration, the optimization probes 

then in a domain of only three dofs, one for each spatial coordinate. O’Donnell also 

proposes an iterative optimization in her implementation. However, for the tested 

dataset, a simpler iteration sequence than the one proposed by O’Donnell was found to 

give the best results. This iteration corresponds to first optimizing using only translation, 

then rotation, scaling, and then shearing. Due to the difficulty of registering the cingulum 
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(CG) cluster center tracts for some subjects, the modes of translation and rotation are 

performed one more time. 

5.7 Between Similarities  

After registration, another computation of similarity is performed, between every 

registered cluster center tract and every cluster center atlas tract. The metric used 

corresponds again to the distance-based metric suggested by Boom (2001), the Adapted 

Hausdorff (4.4 Similarity Metrics). This is a computationally expensive metric, since it 

studies all the pair of points between tracts. For this step, differently from the 

registration step, the metric only needs to be computed once; and differently from the 

down-sampling method, it is computed between two down-sampled tract sets, 

consequently between a reduced number of tracts.  

 

Implementation 

The computation of the correspondent distances is performed on C++ from an 

adaptation of previous work from Boom (2011) and Moberts (2005). Distances are 

loaded in Matlab® as a matrix. As oppose to the distance matrix from the down-sampling 

metric, it is important to have in mind that this matrix will not be square or symmetric. 

5.8 Label Attribution 

Each cluster center registered tract receives the label of the atlas cluster center tract 

with which it has the highest similarity, i.e., the lowest Adapted Hausdorff distance. 

 

Implementation  

This attribution is performed in Matlab®. Besides the “between-similarities”, also the key 

of atlas cluster center tract identification number with anatomical label need to be 

assessed. A label key is created for the cluster center tracts. The label key corresponds to 

a file which connects tract identification number with anatomical label. Because 

identification number of the cluster center tracts does not change with the registration 

procedure, this key is valid both for un-registered and registered cluster center tract sets. 

Visualization of such intermediate results, like the one represented at the left side of 

figure 5.10, can be performed in vIST/e, using the Clustering plug-in. 
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5.9 Label Propagation 

The label of the cluster center tract is finally propagated to all the tracts which belong to 

the cluster they are representing (see right part of figure 5.10). It is therefore possible to 

return to the full tractography dataset, without any deformation performed to the tracts. 

 

 

Figure 5.10 – Label Propagation from cluster center tracts to all subject tracts. 

 

Implementation 

Two keys are now given as input, the key with the correspondence between cluster 

center tract and the tracts which belong to that cluster and the key with the anatomical 

label for each cluster center tract. The produced output corresponds to a key of all tracts 

identification number with correspondent anatomical label. The final segmentation 

results can be visualized in vIST/e using the Clustering plug-in. Besides qualitative 

evaluation, vIST/e also allows for quantitative evaluation as anisotropy values can be 

generated for each anatomical bundle of tracts. This evaluation will be further explored 

in the next chapter. 
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Chapter 6  

Experimentation and Evaluation 

The present chapter presents the evaluation of the segmentation results for clinical data. 

First the dataset used to test the pipeline is introduced. The evaluation/analysis of results 

is divided in two sections: the first section centers on a qualitative score regarding 

performance of segmentation; the second section focuses on the volume and anisotropic 

values of the segmented anatomical structures. 

6.1 Dataset 

Both the University Medical Center Utrecht (UMCU) and the Maxima Medical Center 

(MMC) provided clinical data for this study. The patient data from UMCU was part of a 

larger cohort that has been published previously (Kooij 2011, Pul 2012). The use of 

patient data from the UMCU was approved by the Institute’s Medical Ethical Committee 

and parental informed consent was obtained. For the MMC, the scans are part of routine 

clinical practice and as the method is used for quality control to improve the image 

processing chain, no ethical approval was necessary. 54 scans were included in this study 

(23 from UMCU and 31 from MMC). The neonates were all scanned at term equivalent 

age (TEA). For a full-term neonate this corresponds to its birth date +10 days later. As for 

a preterm neonate, this corresponds to approximately the date on which she/he would 

be born if they would have been inside their mother’s womb for the standard gestation 

period of 40 weeks. 

 The data was acquired on a Philips Achieva 3.0T MRI-scanner, in both hospitals 

and the DTI sequence was almost similar, except for the SENSE factor. The DTI-sequence 

is performed with Sensitivity Encoding (SENSE) factor 3 (UMCU) and factor 2 (MMC - in 

order to reduce artifacts), b-values 0 and 800 s/mm2 in 32 directions using a single-shot-

EPI sequence. The use of this sequence allows for reducing scan time, and therefore 

reducing the influence of motion artifacts; each sequence took less than 5 minutes. The 

dataset consists of 50 adjacent slices, each slice with 128x128 voxels, each voxel 
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corresponds to a size of 1.44 by 1.41 by 2 mm. For correction of movement artifacts and 

eddy current distortions, registration between the DWI images is performed with 

software from the scanner workstation.  

Quality control was then performed by visual inspection using research image 

analysis tools, such as MRIcron [http://www.mccauslandcenter.sc.edu/], ImageJ 

[http://imagej.nih.gov/] and vIST/e, for checking if all the images were correctly 

imported, sorted, and free of potential artifacts. Of the 54 scans, 2 were excluded due to 

corruption of their DICOM file (both from UMCU) - as their header had not been 

appropriately saved, 7 were excluded due to presence of scanner artifacts which highly 

disrupted the DTI anatomical structure information (1 from UMCU and 6 from MMC), 

and 2 due to unavailable clinical information (both from MMC).  

Therefore, 43 scans were eligible for automatic segmentation (20 from UMCU 

and 23 from MMC) and 11 were dismissed. Of the 43 included scans, clinical information 

was available from the scanned patient, such as gestational age, and a MRI based injury 

scoring. This injury scoring is an internationally accepted score [Woodward, 2006], and 

takes into account WM deviations/abnormalities, sub-arachnoids’ space, cysts presence 

and ventricular dilation; scores from 5 to 6 represent patients for which no abnormality 

was observed; values from 7 to 9 for patients with mild abnormalities, 10 to 12 for 

moderate abnormalities and 13 to 15 for severe abnormalities [Pul 2012; Kooij 2011, 

Woodward, 2006].  The 14 scanned patients were full term neonates and 29 were very 

preterm neonates, i.e., with less than 32 weeks of gestation age. In the studied dataset, 

there were no patients between 32 and 37 weeks of gestation. Pathology present in the 

dataset included damage in the basal ganglia, widened ventricles, hemorrhage and large 

WM deviations. Using this scoring system, abnormalities in the basal ganglia are not 

scored. Moreover, 11 of the included patients had no abnormalities, 28 had mild 

abnormalities, and 5 had moderate abnormalities. Patients with MRI injury scoring of 13 

to 15, were not present in the studied dataset. 

6.2 Segmentation Evaluation 

For the current pipeline, visualization of the segmentation results is done by loading the 

pipeline output in the visualization software vIST/e. This allows for visual inspection of 

the segmentation result. A global evaluation of the segmented tractography was 
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performed by a MRI expert. For each segmented structure, the number of incorrectly 

labeled tracts is evaluated. The ratio of incorrectly labeled tracts with the total number of 

tracts per segmented structure is further referred to as percentage error. For minor 

structures, FX, CG, MCP, IFOs, segmentation errors are seen as less severe than 

segmentation errors at major structures, CRs and CC. Therefore, segmentation 

performance is divided in 4 performance classes. They are: 

 

4 - Good: When all segmented structures, major and minor, have less than 10% of 

error; 

3 - Well: When major structures continue to have less than 10% of error but 

minor structures have between 10% and 50% of error; 

2 - Moderate: When major structures have now more than 10% of error but still 

less than 30%; 

1 - Bad: When major structures have more than 30% of error; the segmentation is 

said to have failed for these patients. 

 

The results distribution is presented with a pie chart in figure 6.1. From the eligible 

patients, 19 - 44%, were classified as Good. 12 patients - 23%, and 7 patients - 16%, were 

classified as Well and Moderate correspondently. 5 patients - 12%, were classified as 

Bad. In figure 6.2, one exemplar segmented tractography is depicted for each of the four 

classes.  

 

 
Figure 6.1 – Segmentation performance among the eligible scans. 
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Figure 6.2 – Representative tractography segmentation example for each quality class, posterior view. From left 
to right and top to bottom: Good segmentation performance example; Well segmentation performance 
example, Moderate segmentation performance example; Bad segmentation performance example; key of 
structure color with anatomical label. 

 

There might be two sources of segmentation error: 

1. Errors because the atlas variability is not enough, i.e., not all necessary 

anatomical information for labeling the tested dataset is present in the atlas.  

2. Errors because pipeline algorithms are failing, i.e., they are not propagating 

correctly the anatomical information from the atlas to the new subject. 

 

For understanding better the contributions of these two possible sources of 

errors, some variables that might be influencing the segmentation performance are 

studied. First, it is probed if segmentation performance is affected by the presence of 

pathology. Second, the relation between registration performance and segmentation 

performance is assessed. Third, influence of spurious tracts in segmentation 

performance, due to an ineffective skull-stripping, is also addressed.  
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6.2.1 Presence of Pathology 

Presence of pathology is here assessed by the MRI based injury scoring [Pul 2012; Kooij 

2011]. Segmentation performance with injury scoring is presented at plotted at figure 

6.3. There is no significant linear trend, as the R-squared is in the range of 10-4.  

 

 

Figure 6.3 – Plot of segmentation performance per injury scoring. A linear regression was probed with result of 
non-significant R-squared of 0.004. 

 

Average, minimum value and maximum value of segmentation performance per 

each different injury scoring values is presented in a graph in figure 6.4. Also here, the 

amount of patients per different injury scoring is depicted in bars. Average of 

performance for all different injury scoring values is around 3, the well segmentation 

performance class.  

 

 

Figure 6.4 – Average, minimum value and maximum value of segmentation performance per different injury 
scoring. 
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Distribution of different abnormality degrees per class of segmentation 

performance is summarized in table 6.1.  The patients with no abnormalities were never 

classified as having a bad segmentation performance. And of the 5 patients with 

moderate abnormalities, 4 were classified as presenting good segmentations and 1 

presented a bad segmentation. Patients with mild abnormalities are distributed among 

all the four classes of segmentation performance, but are also in greater number in 

classes of well and good segmentation performance.  

 

Segmentation 

Performance 

No 

Abnormality 

Mild 

Abnormality 

Moderate 

Abnormality 

Severe 

Abnormality 

1 - Bad - 4 1 - 

2 - Moderate 2 5 - - 

3 - Well 4 8 - - 

4 - Good 3 12 4 - 

 
Table 6.1 – Distribution of abnormalities degree per class of segmentation performance. 

 

 Figure 6.5 presents the segmentation results for 3 patients with severe WM 

deviations. The first has CC agenesis, i.e., inexistence of corpus callosum (CC). No CC was 

segmented for this patient, i.e., no tracts are colored in yellow in the picture. A yellow 

arrow was inserted in the typical CC region only for ease of interpretation. This patient 

was classified as having a good segmentation performance. The second patient was also 

classified as having a good segmentation. The third shows poor segmentation 

performance and it was inserted in performance class 1, since the CC (a main structure) is 

clearly showing mislabeled tracts. For this last patient the frontal part of the CC, in 

yellow, is labeled as FX, in green.   
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Figure 6.5 – Segmentation results for patients with severe WM deviation, posterior views. From left to right: 
patient with CC agenesis and with good segmentation performance; another patient with severe WM deviation 
and good segmentation performance; patient with severe WM deviation and poor segmentation performance, 
anterior part of the CC is segmented as FX. 

 

6.2.2 Registration Performance 

Registration performance is here assessed by studying optimization cost function (CF); 

the entropy from the similarity probability density functions that should be as small as 

possible. A plot of the distribution of last CF value per segmentation performance class is 

presented at figure 6.6. The relation between the last CF as a function of injury shows 

that the last CF value decreases with increase of segmentation performance. R-squared 

correlation measure is of 0.35 for 42 data-points with ANOVA significance of less than 

0.001.   

The sampled tracts of some subjects of interest were visualized after and before 

registration. Patients with last cost value bigger than 35 were individually assessed; this 

corresponded to 7 patients. Only one of these patients presented no abnormalities, the 

other 6 had mild abnormalities. It was also found that one of two factors was always 

present for these patients: presence of spurious tracts and highly curved anterior part of 

the CC. The same type of visual assessment was also conducted for the patients with last 

cost value under 35 which were classified as having a bad segmentation performance; 

this corresponded only to 2 patients. These patients did not have spurious tracts. 

However, they also had a highly curved anterior part of the CC, elucidated in figure 6.7. 

They both presented abnormalities, one mild and the other moderate. For most of these 

9 patients, registration always seemed to result in excessive shrinking along superior-

inferior and anterior-posterior orientations. An example is presented in figure 6.8. 
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Figure 6.6 – Distribution of last CF value per segmentation performance class. In orange the points with last CF 
value of more than 35. In green the points from class 1 with less than 35 for last CF value. A linear regression 
was probed with result of R-squared of 0.35. 
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Figure 6.7 – Tractography with anterior part of CC highly curved in the left. Tractography with standard anterior 
part of CC in the right. Lateral view. 

 

        

 

 Figure 6.8 –Example of registration with excessive shrinking. In green the down-sampled tracts of the atlas, in 
red the down-sampled tracts previous to registration, in blue the down-sampled tracts after registration. 
Anterior views. 

 

 

 

      



80 
 

6.2.3 Skull Stripping Performance 

Skull stripping performance is assessed in terms of existence of spurious tracts, i.e., tracts 

outside the WM region. Existence of these spurious tracts is seen as an error from the 

skull stripping method, and therefore a lower performance of this algorithm. These tracts 

correspond usually to spurious tracts above the skull. For the neonate dataset it is also 

usual to have spurious tracts coming from facial muscular structures, usually from the 

cheeks. 

For the complete analyzed dataset, only 30% of the patient tractographies 

contained spurious tracts. Existence of spurious tracts is almost evenly present for all the 

four performance classes, as it can be observed in the bar plot on image 6.9.  Boom also 

used part of this dataset in her work [Boom, 2011]. For this specific part of the dataset, 

Boom results contained spurious tracts from all patient tractographies, i.e., 100% of 

spurious tracts presence. When applying the skull-stripping method proposed in the 

current work, this number is reduced to 55%, a decrease of almost half.  

 

 

Figure 6.9 – Spurious tracts presence distribution among segmentation performance classes. 
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6.3 Volume and Anisotropy Trends 

The vIST/e software allows to output quantitative information about each segmented 

structure; such as volume and anisotropy values. Volume value is calculated by knowing 

the number of voxels occupied by the structure tracts and the size of the voxel.  

Anisotropy value per structure corresponds to a weighted average of voxel anisotropy 

values: the anisotropy value of the voxels are included as many times as the number of 

tracts passing through them. 

6.3.1 Difference between manual and automatic segmentation 

For 20 Utrecht patients a manual segmentation of the corpus callosum (CC) was available 

[Pul, 2012]. The manual segmented tracts belong to a tractography result produced with 

the same software and parameters used for the current automatic segmentation 

pipeline.  In addition, the same tensor fitting algorithm was used. Volume and some 

anisotropy values (FA, Cl and MD) were available for the manually segmented CC. 

Therefore, these values were also generated for the current automatic segmentation, 

and compared.  

The difference between segmentation methods was analyzed by calculation of p-

value from a two tail paired t-test and via the difference plot Bland-Altman. Only 

segmented tractography from performance class 4, 3 and 2 are included, i.e., 

tractography segmentations with more than 30% of error for the CC are not included. 

This resulted in analyzing 14 outcome pairs.  

In table 6.2 the correspondent p-values are presented. All tested parameters have 

a p-value < 0,05 and therefore parameter measurement with manual and automatic 

method are considered significantly different.  

 

Measurement p-value from 2 tails paired t-test 

Volume 0.001 

FA 0.024 

Cl 0.028 

MD 0.002 

Table 6.2 – P-values from a two tail paired t-test between manual and automatic measurements for the 
segmented CC. 
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Bland-Altman is a type of plot that has the horizontal axis depicting the average of 

the two measurements from the different methods for each patient. The vertical axis 

depicts the difference between the pair of measurements, normalized with the expected 

value for that measurement. Measurement from the manual method is subtracted from 

the automatic method. Consequently, positive values in the vertical axis will indicate the 

automatic method measurement is bigger than the measurement from the manual 

method. An example of a Bland-Altman plot is shown in figure 6.10 and 6.11, for volume 

and FA comparison respectively. 

 All other plots can be found in appendix II. Usually, the automatic method 

produces bigger volume and MD values than the manual method. And the manual 

method produces bigger FA and Cl values than the automatic. Differences between the 

methods seem to occur more often for lower volumes, lower FA and lower Cl values. For 

higher MD values, higher difference between methods seems to occur more often.   

 

 

Figure 6.10  – Bland Altman CC volume comparison between the automatic and the manual method. 

 

 

Figure 6.11 – Bland Altman CC FA comparison between the automatic and the manual method. 
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6.3.2 Volume and anisotropy as functions of injury scoring  

It was also assessed if anisotropy and volume correlated with injury scoring. Two 

examples are shown in figure 6.12 and 6.13 of MD and volume respectively. This study 

was conducted only for one of the automatically segmented anatomical structures, the 

corpus callosum (CC). This structure was chosen due to its significance in prediction of 

neurodevelopment disorders at term equivalent age (TEA). Only CC’s segmented with 

less than 30% of error are included for this study, i.e., quality segmentation classes 4, 3 

and 2, excluding 1. Also the patient with CC agenesis was excluded. This resulted in the 

analysis of 37 patients. The plots of volume and anisotropy values with WM injury degree 

can be found in the appendix II. A summary of the statistic results can be found on table 

6.3. Significant trends were found for MD and volume, where the p-value was < 0.05. 

 

Qualitative Output Type of correlation R-squared ANOVA significance 

Volume Negative 0.0951 0.043  

FA Negative 0.0542 0.165  

Cl Negative 0.0389 0.242  

Cp Positive 0.0010 N/A 

MD Positive 0.2401 0.02  

Table 6.3 – Summary of volume and anisotropy correlation and significance with injury scoring for 

segmentations of quality class 1, 2 and 3. 
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Figure 6.12 – Plot of CC anisotropic value MD per injury scoring. A linear regression was probed with the result 
having a R-squared of 0.24. 

 

 

 

Figure 6.13 – Plot of CC volume per injury scoring. A linear regression was probed with the result having a R-
squared of 0.09. 
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Chapter 7  

Discussion and Conclusion 

7.1 Discussion  

This thesis had as starting point that tract-based assessment of the neonatal brain would 

be of added value in comparison with voxel-based assessments, such as the ones using 

MRI and DTI [Geng, 2012]. Tractography segmentation is seen as promising due to 

representation of global information as opposed to the voxel local information. It is 

hypothesized that this global information allows not only for a more complete study of 

the present WM anatomical structures, but can also improve atlas-based segmentation 

by allowing a better (global) comparison between atlas and patient.  

Tractography registration performs an alignment of the subject tractography set 

with the atlas tractography set. The best alignment is the one for which the subject tract 

set is more similar to the atlas tract set. In this thesis, this similarity is computed directly 

in the tract domain [O’Donnell, 2012]. This method is referred to as tract-wise 

tractography registration, as opposed to voxel-wise tractography registrations 

  Tract-wise tractography registration has three potential drawbacks. First, it aligns 

patient with the atlas by only considering the tensor information that is contained in the 

first eigenvector, in regions where anisotropy values are high enough for reconstructing 

WM tracts, and therefore not even considering information from the GM areas. Second, 

it is computationally expensive, due to the similarity calculations between subject and 

atlas tracts. Third, inaccurate reconstruction of the WM bundles by the tractography 

model will result in erroneous tracts that can decrease registration accuracy.  

  It is important to understand that these three drawbacks are also the drawbacks 

of segmenting WM using tractography information, as opposed to using DTI or other 

scalar information. Indeed, for the factors hypothesized to be affecting segmentation 

performance, a correlation was only found with registration accuracy. 
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The first possible drawback relates specifically with the type of information 

contained in a tract, as opposed to the information contained per voxel. Because 

segmentation performance showed to not be affected by pathology presence, it was 

possible in the current study to assess the trends of volume and anisotropies with WM 

abnormality degree. Therefore, assessing the clinical relevance of tractography derived 

information. Analysis was only conducted for the CC anatomical structure. The trends for 

volume and MD with WM abnormality degree were found to be significant. MD was 

found to increase with WM abnormality, and volume to decrease with WM abnormality 

for the CC anatomical structure. This is coherent with the results based on a manual 

segmentation method by Pul et al (2012). Her work suggests that infants with WM injury 

will have reduced CC volume. This is also observed visually in our dataset, especially due 

to the fact that the middle part of the CC is often not tracked for patients with low 

degree of development, as the central part of the CC is known to normally mature later 

than the peripheral parts. Increase of MD is seen as a consequence of a less hindered 

diffusion for these patients. This model from Pul et al (2012) also suggests that WM 

injury will result in a decrease of FA and Cl. This last behavior was not statically significant 

for our dataset. The tested dataset comprised only 43 patients. This was quite a small 

group and for the MMC patients the pathology was quite heterogeneous. Testing the 

pipeline for bigger datasets with other forms of WM injury can lead to more significant 

results.  

Still related with this topic, it is also of interest to comment on the differences in 

results between the proposed automatic segmentation method and the common manual 

segmentation method for the CC structure. The measurements between these two 

techniques showed some differences. Bigger volumes and MD values, and smaller FA and 

Cl values are observed for the automatic method. These differences are more 

pronounced for the range of lower volumes, FA and Cl values and higher MD values. A 

possible explanation might be that the automatic method includes more peripheral 

tracts from the anatomical structure than the manual method; with this difference being 

more pronounced for less mature CC. The comparison of manual versus automatic 

segmentation needs still to be investigated for the anatomical structure corona radiata 

(CR). Furthermore, an investigation of other structures will be of much interest. With the 

current method, fornix (FX) segmentation results still did not allow for an accurate 
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investigation of this structure anisotropy. There are still too many erroneous tracts 

present. Therefore, future improvements should also focus on increasing FX 

segmentation accuracy. Guevara (2012) and O’Donnell (2007) also found for their 

methods that the association type tracts, FX and CG for the used atlas labels, were the 

ones more difficult to segment.  

  As for the computation complexity arising especially with calculation of 

similarities between tracts, two solutions are proposed. First, the skull-stripping method 

from Hoskam (2009) was improved successfully by a reduction of almost half of the 

spurious tracts presence, therefore reducing calculation of similarities for tracts without 

anatomical interest. Second, for most part of the segmentation pipeline a down-sampled 

tract set is used, both for subject and atlas. The down-sampled set proposed is created 

by the cluster-centers of the complete tractography set. This method allows to have 

represented in the down-sampled set all the anatomical structures of interest, even 

anatomical structures which have in total not more than 5-8 tracts.  A pitfall from 

performing a cluster-based down-sampling arises with the fact that clustering in itself 

makes use of similarity metrics. Still, performing registration and label attribution using 

as input a down-sampled set was found to improve the accuracy of these pipeline steps, 

in contrast with using the complete tractography set for representing the atlas and the 

patient tracts. Down-sampling computation complexity can be improved by using less 

expensive similarity metrics, such as the one used proposed by O’Donnell (2012). In 

addition, future versions of the atlas should consider the removal of spurious 

tracts/labels representation from the atlas. Besides adding extra complexity to the 

similarity calculations, their existence is also source of mislabeling for some of the tested 

subjects. After all, the spurious tracts contained in the atlas are only examples of all the 

possible spurious tracts patterns. 

 The tractography model implemented corresponds to a deterministic whole 

volume seeding based in a DTI with 32 directions with voxel size of almost 4mm3 tuned 

for neonatal data [Pul, 2012]. The relation between tractography accuracy and 

segmentation performance was not evaluated. However, subjects with poor 

segmentation performance often showed partial volume effects. These occurred usually 

between the corpus callosum (CC) and fornix (FX), or between the CC and cingulum (CG). 

For some patients a partial volume effect was also observed between CC and the corona 
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radiatas (CR). Improvement of tractography accuracy, i.e., reduction of partial volume 

effects, is directly related with DTI resolution and the accuracy of the implemented 

tractography model - which of course, also depends partially on DTI’s voxels resolution. 

Currently, new scanner sequences and software are becoming available for improving 

both variables. However, DTI resolution corresponds to a delicate balance between 

acquisition time and signal to noise ratio, which for neonatal clinical practice is very much 

constrained. Within maximum of 5 minutes the scan needs to be performed, because the 

baby may get restless. Therefore, for the current clinical restrictions, reduction of partial 

volume effect should be mostly tackled by the improvement of tractography models. 

  Besides this drawback consideration, it is also of interest to report a special case 

of inaccurate registration/segmentation. For some subjects, a special shape of the 

anterior part of the corpus callosum (CC) was identified by visual inspection as a probable 

trigger for an inaccurate segmentation. For these patients, registration often lead to an 

excessive shrinking of the tracts. Excessive shrinking might be caused due to an 

ineffective tuning of the registration constraint parameters, and/or due to the fact this 

kind of CC shape is not represented in the atlas, and/or even due to a misleading 

similarity metric definition between atlas and subject tracts. Possible ways to tackle this 

can include: increasing the atlas variability by adding more anatomical labeled subjects to 

the atlas; applying a different deformation model which allows for local transformation, 

like elastic and fluid deformations - with the need of then defining optimal constraints for 

these models; finally, might be also of interest to tune the similarity metric being used 

for registration [O’Donnell, 2012] specifically for dealing with neonatal data [Boom, 

2011]. Further research about the effect of these factors on the 

registration/segmentation performance should be conducted. 

In addition, two other improvements should be also considered. First, 

segmentation results were qualitatively evaluated by only one DTI expert (due to time 

constraints). Further analysis from more than one expert, and in particular including at 

least a neonatologist and a radiologist experienced with DTI is a necessary improvement. 

Second and last, in this phase only a global evaluation of segmentation performance was 

performed. A more detailed performance analysis for each segmented anatomical 

structure is needed. 
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7.2 Conclusion 

The new proposed pipeline performs automatic atlas-based segmentation of WM 

anatomical structures from DTI tractography in preterms imaged at term equivalent age 

(TEA). This method allows the study of WM maturation as a possible predictive marker 

for neurodevelopmental disorders of preterms at TEA, making the procedure less time 

consuming than a manual method and, more importantly, less user dependent. Main 

contributions in the current study involved a tract-wise tractography registration, a skull-

stripping method, a tract sampling method specific for neonatal data and automation of 

the entire pipeline. The tract-wise registration was inspired by the work of O’Donnell 

(2012). This new registration approach allows using the global directional and 

connectivity information entailed in the tractography.  

The resulting analysis is promising, as only 12% of the segmentations contained 

more than 30% mislabeled tracts. Segmentation performance showed not to be 

influenced by presence of WM pathology among subjects, even when anatomical 

structures were missing due to severe WM deviations. The CC structure automatically 

segmented by the pipeline was further analyzed, by studying its respective volume and 

anisotropy measurements per subject. For the studied measurements, volume and MD 

showed a significant trend with degree of WM injury. These trends are in accordance 

with previously findings about how WM injury influences DTI derived anisotropies [Rose, 

2014; Liu, 2012; Pul, 2012; Chen, 2011; Hasegawa, 2011; Lindqvist, 2011; Mullen, 2011; 

Liu, 2011; Dubois, 2008; Dubois, 2006; Huppi, 2006].  

These findings can be of added value when it comes to understanding WM global 

deviations from the standard WM pattern. Such understanding is critical for clinical 

evaluation, as many pathologies related with neurodevelopmental deficits, like asphyxia, 

are characterized by a WM disturbed pattern [Pul, 2004]. 

Future work should aim to increase atlas variability and also to probe similarity 

metrics between tracts that are less computational expensive but still adequated for 

neonatal tractography. In addition, it might be of interest to extend the atlas for 

representing all gestational ages, for allowing study of full-term neonates at risk of 

neurodevelopmental disorders. 
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Appendix I – Tractography Data Flow 

 

In this appendix, the tractography data 

flow is depicted. The main processing 

steps’ titles appear in the black boxes. 

These are then followed with the 

correspondent tractography output 

images. The scheme has two different 

columns: the left column corresponds to 

the subject space and the right column 

to the atlas space. Data flow is depicted 

in two differently colored lines, orange 

for the patient tractography data and 

blue for the atlas tractography data.  

Both atlas and subject full tractography 

(1.Tractography) are down-sampled 

(2.Down-Sampling). After, the subject 

down-sampled set is registered to the 

atlas down-sampled set, i.e., passing 

from subject space to atlas space 

(3.Registration). Then, still in the atlas 

space, labeling of the down-sampled 

subject is performed by measurement of 

similarities with the atlas down-sampled 

set (4.Labeling). The labeling is then 

propagated to the full tractography 

subject set, producing the complete 

segmentation result (5.Propagation). 

This last step makes the final passage 

from atlas space to subject space. 
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Appendix II – Result Analysis Plots 

Here all the Bland-Altman plots for comparison of volume and anisotropies between 

manual and automatic method can be found, from figure A.1 to A.8. The difference 

between the measurements is plotted twice, the second plot takes the absolute value of 

the difference.  

Also, the plots of volume and anisotropies with the MRI-based injury scoring are 

presented with the correspondent linear regression trend, from figure A.9 to A.13. 

 

 

Figure A. 1 - Bland-Altman plot for difference of CC volume measurements between automatic and manual 
method. 

 

 

Figure A. 2 - Bland-Altman plot for absolute difference of CC volume measurements between automatic and 
manual method. 
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Figure A. 3 - Bland-Altman plot for difference of CC FA measurements between automatic and manual method. 

 

 

Figure A. 4 - Bland-Altman plot for difference of CC FA measurements between automatic and manual method. 

 

 

Figure A. 5 - Bland-Altman plot for absolute difference of CC Cl measurements between automatic and manual 
method. 
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Figure A. 6 - Bland-Altman plot for absolute difference of CC Cl measurements between automatic and manual 
method. 

 

 

Figure A. 7 - Bland-Altman plot for difference of CC MD  measurements between automatic and manual method. 

 

 

Figure A. 8 - Bland-Altman plot for absolute difference of CC MD measurements between automatic and manual 
method. 
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Figure A. 9 – Volume of CC with MRI-based injury scoring and correspondent linear regression. 

 

 

Figure A. 10 – FA of CC with MRI-based injury scoring and correspondent linear regression. 
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Figure A. 11 – Cl of CC with MRI-based injury scoring and correspondent linear regression. 

 

 

Figure A. 12 – Cp of CC with MRI-based injury scoring and correspondent linear regression. 
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Figure A. 13 – MD of CC with MRI-based injury scoring and correspondent linear regression. 

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = 3E-05x + 0.0012 
R² = 0.2401 

0.0011 

0.0012 

0.0013 

0.0014 

0.0015 

0.0016 

4 5 6 7 8 9 10 11 12 13 14 15 

M
D

 -
 0

 t
o

 1
 r

an
ge

 

Injury scoring from MRI 

MD CC - Injury Scoring 



107 
 

Appendix III – Papers for Submission 

 

Title: Automatic atlas-based segmentation of brain white matter in neonates 

at risk for neurodevelopmental disorders. 

 

Order of Authors: Lucia Fonseca1,2,3; Carola van Pul2; Nicolás Lori4,5; 

Rieneke van den Boom1; Linda S. de Vries6; Manon J.N.L. Benders6; P. 

Andriessen2; J. Buijs2; Floris Groenendaal6; Anna Vilanova1 

1 Department of Biomedical Image Analysis, Eindhoven University of Technology, The Netherlands 

2 Department of Clinical Physics, Maxima Medical Center, Veldhoven, The Netherlands 

3 Physics Department, Coimbra University, Coimbra, Portugal 

4 Medical School, University of Coimbra, Coimbra, Portugal 

5 CIPROMEC, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal 

6 Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands 

 

Suggested Reviewers: Carl-Fredrik Westin - Department of Radiology, 

Brigham and Women's Hospital - westin@bwh.harvard.edu; Lauren 

O'Donnell -Department of Radiology, Brigham and Women's Hospital - 

odonnel@bwh.harvard.edu 

 

ABSTRACT 

Maturation degree of anatomical white matter (WM) structures at the brain 

can constitute a biomarker for prediction of neurodevelopmental disorders 

already at early post-natal period. Therefore, we propose a new in-vivo and 

non-invasive global analysis of the WM patterns at the brain: we perform an 

automatic atlas-based segmentation of Diffusion Tensor Imaging (DTI) 

tractography; which then allows measuring the maturation degree per 

segmented anatomical structure. Due to the under-developed stage of the 

neonatal brain, segmentation approaches which are typically used for adult 

tractography datasets were rethought and redesigned having into account the 

neonatal tractography specific characteristics.  

Forty-three neonates scanned at term equivalent age (TEA) were 

automatically segmented by our proposed method. Segmentation performance 

showed not to be influenced by the presence of WM pathology among subjects. 

The automatically segmented corpus callosum (CC) structure was further 

analyzed by studying the respective volume and anisotropy measurements per 

subject. For the studied measurements, volume and mean diffusivity (MD) 

showed a significant trend with degree of WM injury. These trends are in 

accordance with previous findings about how WM injury, and subsequent WM 

maturation degree, influences DTI derived anisotropies. 
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ABSTRACT 

We developed diffusion MRI data processing methodology that extracts the 

white matter (WM) axonal orientation distribution function (ODF), and 

estimates the isotropic and anisotropic fractions of the orientational 

distribution of WM fibers. The obtained axonal ODF was compared to the 

structural arrangement of fiber bundles obtained by an advanced tractography 

method. In our model, we defined the isotropic component of the ODF as a 

sphere of radius R, and the anisotropic component as Gaussian-like peaks 

above the isotropic sphere, this model agreeing with microscopy results. In 

addition, we determined parameters that build the ODF which best 

approximates the obtained experimental diffusion MRI data. We found that 

the regions that form a 3-axis grid with the neighboring voxels have a lower 

isotropic fraction than the regions that form a plane or a simple connection. 

We also obtained that in the corpus callosum the isotropic fraction is low 

enough to consider that there is no isotropic axonal ODF. 




