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Abstract

Sums of random variables have always attracted a lot of interest as their asymp-

totic behaviour raises relevant theoretical challenges. Moreover, many statistical pro-

cedures are described by such sums. Thus, there is a natural interest in considering

the convergence of Tn =
∑n

i=1 aniXi, where the variables Xi are centered. Therefore

this thesis focuses on weighted sums of associated random variables which verify a

particular dependence structure and on moderate deviations of non-weighted sums

of associated and strictly stationary random variables. Two problems relevant with

above mentioned subjects are considered.

At the first problem we study the convergence of Tn =
∑n

i=1 aniXi weighted sums

normalized by n1/p, p ∈ (1, 2) where the random variables Xi are associated and have

moments of order somewhat larger than p. Notice that it is well known that the

existence of the p-th order moment is an optimal assumption even for independent

variables. This requirement has been extended to non-weighted sums. As what con-

cerns weighted sums some extensions have been proved, requiring the existence of

higher order, still less than 2, moments. We could relax this moment assumption get-

ting closer the p-th order moment requirement. We also consider the Marcinkiewicz-

Zygmund law with assumptions on the 2-dimensional analogue of tail probabilities of

the random variables relaxing in this case the assumption on the decay rate on the

covariances.

Later a different approach is taken to the same problem. A truncation technique is

used together with coupling with independent variables, which allows a relaxation of

the assumptions on the weights. Moreover, this coupling allows not only for the proof

of almost sure results and but enables to identify convergence rates. The assumptions

on p, that now include the case p < 1, excluded from earlier results for positively

associated variables, depend on the asymptotic behaviour of the weights, as usual.

Also we give a direct comparison with the characterizations previously available,

showing that the scope of applicability of our results does not overlap with known

conditions for the same asymptotic results.

At the second problem, we present a moderate deviation in the non-logarithmic

scale for sums of associated and strictly stationary random variables with finite mo-

ments of order larger than 2. The control of this dependence structure relies on the



decay rate of the covariances for which we assume a relatively mild polynomial de-

cay rate. The proof combines a coupling argument together with a suitable use of a

Berry-Esséen inequality.

Keywords: almost sure convergence, associated random variables, Berry-Esséen

inequality, convergence rates, moderate deviations, weighted sums.



Resumo

O estudo de propriedades assintóticas de somas de variáveis aleatórias atraiu desde

sempre bastante atenção dadas as interessantes e não triviais questões que o seu

tratamento levanta. Além disso, muitos dos procedimentos estat́ısticos correntes de-

pendem de somas de variáveis aleatórias. É, portanto, natural o interesse no estudo

da convergência de somas do tipo Tn =
∑n

i=1 aniXi, com Xi variáveis centradas. A

presente dissertação estuda assim condições de convergência para somas ponderadas

de variáveis aleatórias dependentes. Aborda-se também o problema de caracterização

de probabilidades do tipo desvios moderados, considerando agora somas não ponder-

adas, apresenta um resultado do tipo desvios moderados.

A primeira questão estudada procura condições para a convergência das somas pe-

sadas Tn =
∑n

i=1 aniXi normalizadas por n1/p, p ∈ (1, 2), admitindo que as variáveis

Xi são associadas e têm momentos finitos de ordem um pouco maior do que p.

Recorde-se que, para variáveis independentes, a existência de momentos de ordem

p é a caracterização ótima para a convergência. Sabe-se que esta hipótese é suficiente

para a convergência de somas não pesadas de variáveis associadas. No que respeita a

somas pesadas são conhecidos resultados que garantem a convergência exigindo a ex-

istência de momentos de ordem superior a p, embora ainda inferior a 2. Apresenta-se

um relaxamento da ordem do momento exigido, aproximando-nos da caracterização

ótima p. Demonstram-se ainda leis dos grandes números do tipo Marcinkiewicz-

Zygmund sob condições nas probabilidades bidimensionais de cauda, o que permite

ainda aligeirar as hipóteses acerca da velocidade de decrescimento das covariâncias.

O problema da convergência de somas ponderadas de variáveis associadas é re-

tomado em seguida utilizando uma técnica distinta: truncagem das variáveis acom-

panhada de um emparelhamento adequado com variáveis independentes. Esta abor-

dagem permite imediatamente um relaxamento de algumas hipóteses algo restritivas

sobre o comportamento dos pesos. Além disso, este emparelhamento permite não

só demonstrar caracterizações de convergência quase certa, mas também das suas

velocidades. As hipóteses colocadas permitem agora a normalização das somas pon-

deradas por n1/p com p < 1, exclúıdo da abordagem descrita acima. O expoente de

normalização depende, como é habitual neste tipo de resultados do comportamento



assintótico dos pesos e da ordem dos momentos das variáveis. Apresenta-se finalmente

uma comparação com as caracterizações obtidas na primeira abordagem, que mostra

que os dois conjuntos de hipóteses parecem não se sobrepor.

No caṕıtulo final apresenta-se uma caracterização exata para probabilidades de

desvios moderados para variáveis associadas, estritamente estacionárias e com mo-

mentos finitos de ordem q > 2. Neste caso o controlo da estrutura de dependência

é obtido à custa de uma hipótese de velocidade de decrescimento polinomial das co-

variâncias, combinada com uma utilização adequada de uma desigualdade do tipo

Berry-Esséen.

Palavras-chave: convergência quase certa variáveis aleatórias associadas, de-

sigualdade de Berry-Esséen, velocidade de convergência, desvios moderados, somas

ponderadas.
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Introduction

This thesis focuses on two problems that are related with weighted sums of associated

random variables and moderate deviations of non-weighted sums of associated and

strictly stationary random variables respectively.

Sums of random variables have always attracted a lot of interest as their asymp-

totic behaviour raises relevant theoretical challenges. Moreover, many statistical pro-

cedures depend on such sums. Thus, there is a natural interest in considering the

convergence of Tn =
∑n

i=1 aniXi, where the variables Xi are centered. Applications

of this subject mostly includes random variables which are not centered but during

theoretical approach taking them as centered does not cause any kind of loss from

generality.

For ani = 1 and independent and identically distributed random variables Xi

Baum and Katz [5] proved the Marcinkiewicz-Zygmund strong law of large numbers,

that is, that n−1/p Sn −→ 0 where Sn =
∑n

i=1Xi and p ∈ [1, 2), almost surely if and

only if E |X1|p <∞.

Chow [12] and Cuzick [15] considered variables with finite moments of order larger

than 1 and weights satisfying certain summation conditions, to be specified later, in

order to extend the Marcinkiewicz-Zygmund law with p = 1. This was later extended

by Cheng [11] and Bai and Cheng [3] to other values of p ∈ (1, 2) requiring the

existence of moments of order between p and 2.

Later, positively associated random variables were considered by Louhichi [26]

for constant weights. Later, contributions by Ko and Kim [24], Baek, Park, Chung

and Seo [2], Cai [10], Qiu and Chen [44] or Shen, Wang, Yang and Hu [49], who

considered negatively dependent random variables, followed. Positively associated

random variables seem to be more challenging as the variance of the sums increases

with respect to the independent framework and many of these asymptotic results

rely on a suitable control of the growth of the variances of sums. Oliveira [38] took

the results of Louhichi [26], again for positively dependent random variables, and

extended them to weighted sums.
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In the second chapter, which is based on the published paper ’A note on weighted

sums of associated random variables’ by Çaḡın and Oliveira [13], as the first problem,

we extend the results in [38], relaxing the moment assumption on the random vari-

ables, getting nearer of the p-th order moment assumption used by Louhichi [26] to

prove the convergence for constant weights, while strengthening the assumption on

the decay rate of the covariances. We also consider the Marcinkiewicz-Zygmund law

with assumptions on the 2-dimensional analogue of tail probabilities of the random

variables relaxing in this case the assumption on the decay rate on the covariances,

but strengthening the moment condition.

In the third chapter, which is based on the pre-printed paper ’On convergence rates

for weighted sums of associated random variables’ by the same authors [14], we study a

different approach to the problem studied in Chapter 2. We use a truncation technique

together with coupling with independent variables, a technique, which is commonly

used in the literature of associated random variables (see for example Ioannides and

Roussas [23] and Oliveira [37] which allows a relaxation of the assumptions on the

weights. Moreover, this coupling allows not only for the proof of almost sure results,

but enables to identify convergence rates. The assumptions on the moments order p,

that now include the case p < 1, excluded from earlier results for positively associated

variables, depend on the asymptotic behaviour of the weights, as usual. Also we give

a direct comparison with the characterizations previously available, showing that the

scope of applicability of our results does not overlap with known conditions for the

same asymptotic results.

In the fourth chapter, which is based on the submitted paper ’A moderate devi-

ation for associated variables’ by Çaḡın, Oliveira and Torrado, as the third problem,

we consider a moderate deviation in the non-logarithmic scale for non-weighted sums

for associated and strictly stationary random variables with finite moments of or-

der q > 2. The control of the dependence structure relies on the decay rate of the

covariances for which we assume a relatively mild polynomial decay rate.
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1. Preliminary results on sums of
random variables

Sums of random variables have always attracted a lot of interest as their asymptotic

behaviour raises relevant theoretical challenges. It has always been a central subject in

the probabilistic literature. Moreover, many linear statistics are written as weighted

sums of random variables, raising thus the interest in the characterization of the

asymptotics of such sums, conveniently normalized.

First, sums of random variables in the form of Sn =
∑n

i=1Xi were considered.

For independent and identically distributed variables Baum and Katz [5] proved the

Marcinkiewicz-Zygmund strong law of large numbers, that is, that n−1/p Sn −→ 0

almost surely, p ∈ [1, 2), if and only if E |X1|p < ∞. For p < 1, Marcinkiewicz-

Zygmund law takes a totally different structure. Being out of our spectrum of interest,

this case is omitted and case for p ≥ 1 is focused on.

1.1 Sums of independent random variables with

weights

As a natural extension of the above mentioned summation, sums with weights were

considered i.e. Tn =
∑n

i=1 aniXi, where the variables Xi are centered and where

weights, ani, satisfy ani ≥ 0, i ≤ n, n ≥ 1, were considered.

Chow [12] and Cuzick [15] considered variables such that E |X1|β <∞ and weights

satisfying

sup
n≥1

1

n

n∑
i=1

aαn,i <∞

for some 1 < α ≤ ∞ where α−1 + β−1 = 1, to prove the Marcinkiewicz-Zygmund law

with p = 1. Due to its prominence in the development of the subject and being an

important reference in our studies, we would like to refer to the results by Cuzick [15].
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Theorem 1.1.1. (Theorem 1.1. in Cuzick [15]) Assume X,X1, X2, ... are i.i.d.,

EX = 0 and Tn =
∑n

i=1 aniXi, and assume

sup
n

(
1

n

n∑
i=1

|ani|q
)1/q

<∞ for some 1 < q ≤ ∞ (1.1)

If E|X|p <∞ for p−1 + q−1 = 1, then

1

n
Tn → 0 almost surely.

In particular if sup |ani| <∞, then

E|X| <∞⇒ 1

n
Tn → 0 almost surely.

In particular, when q =∞ we interpret the inequality (1.1) as sup |ani| <∞.
The result is also true when q = 1 under the additional assumption that

lim
n

sup
i≤n
|ani|

1

n
log n = 0.

Following theorem stands out from the line of the previously quoted results as

well as the two following results since it features weights which are not deterministic

but random variables that satisfy certain regulatory moment conditions. Notice that

the normalizing sequence is still 1/n.

Theorem 1.1.2. (Theorem 1.2. in Cuzick [15])Assume X,X1, X2, ... are i.i.d. and

ani is an i.i.d. array independent of the Xi. Let Tn =
∑n

i=1 aniXi. If E|X|p <∞ and

E|ani|q <∞ for q ≥ 2 and p−1 + q−1 = 1 then

1

n
Tn → EXEa11 almost surely. (1.2)

Furthermore, if only E|X| <∞, then (1.2) holds if we replace the moment assump-

tion on the ani’s by sup |ani| <∞ almost surely.

We would like to underline that analogs of theorem 1.1.2 holds for more gen-

eral normalizing sequences bn other than bn = n. Following cited results constitute

examples to this fact.
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Theorem 1.1.3. (Theorem 2.1. in Cuzick [15]) Assume X,X1, X2, ... are i.i.d. and

let Tn =
∑n

i=1 aniXi. Also assume

sup
n

(
1

n

n∑
i=1

|ani|q
)1/q

<∞

for some 1 ≤ q ≤ ∞ and that bn/n→∞. Let p−1 + q−1 = 1. Then B(n) ≡ b2n/n
2−2/p

is increasing and

EB−1(X2) <∞ (1.3)

implies Tn/bn → 0 almost surely. If bn = nα, α > 1, then (1.3) is equivalent

to E|X|p/(1+p(α−1)) < ∞. If additionally |ani| are bounded then (1.3) reduces to

E|X|1/α <∞.

Theorem 1.1.4. (Theorem 2.2. in Cuzick [15]) Let Tn =
∑n

i=1 aniXi where X,X1, X2, ...

is a mean zero i.i.d. sequence and ani are uniformly bounded constants. Assume B(u)

is regularly varying at infinity with index 1
2
≤ α < 1 and that

B(u)

u1/2 log u
→∞.

If

EB−1|X| <∞ (1.4)

and
B−1(x log x)

log x
G(x)→ 0 as x→∞ (1.5)

where G(x) = P (|X| ≥ x), then for bn = B(n), Tn/bn → 0 almost surely.

Corollary 1.1.5. (Corollary 2.2. in Cuzick [15]) If (1.4) and (1.5) are replaced by

E|X|1/α <∞

and

x1/α(log1/α−1 x)G(x)→ 0,

respectively, then
1

nα
Tn → 0 almost surely.

The need for condition bn/(n log n)1/2 →∞ is made clear by the following analog

of the law of the iterated logarithm for randomly re-signed partial sums. Only a single

logarithm is needed here:
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Theorem 1.1.6. (Theorem 2.3. in Cuzick [15]) Assume X,X1, X2, ... are i.i.d. with

σ2 = EX2 and let Tn =
∑n

i=1 εniXi where εni is an independent Rademacher array.

Then

lim sup
n→∞

1

(2σ1/2n log n)1/2
Tn = 1 almost surely.

Results by Chow [12] and Cuzick [15] were extended by Cheng [11] and Bai and

Cheng [3] to other values of p ∈ (1, 2). Results in the latter paper are as follows:

Theorem 1.1.7. (Theorem 2.1. in Bai, Cheng [3]) Let Tn =
∑n

i=1 aniXi be a

weighted sum where X1, X2, ... are independent and identically distributed random

variables with EXi = 0. Set 1/p = 1/α + 1/β, for 1 < α, β < ∞ and assume for

some 1 < p < 2 and 1 < α, β <∞ we have the moment condition E|X|β <∞. Also

assume

Aα = lim supAα,n <∞ where Aαα,n =
1

n

n∑
i=1

|ani|α (1.6)

holds. Then
1

n1/p
Tn → 0 almost surely. (1.7)

Conversely, if (1.7) is true for any coefficient arrays satisfying (1.6), then

E|X|β <∞ and EX = 0.

Proof. Sufficiency:

We start by making following definitions for all 1 ≤ i ≤ n:

Xc
i = XiI[|Xi|β>n],

X
′

i = XiI[ n1/β

(logn)3(α−1)
<|Xi|≤n1/β ]

,

X̄i = XiI[|Xi|≤ n1/β

(logn)3(α−1)
]
.

Further define:

a
′

ni = aniI[|ani|> n1/α

log2 n
]
, for 1 < α <∞,

āni = ani − a
′

ni, for all 1 ≤ i ≤ n.

Using above defined expressions, set

T cn =
n∑
i=1

aniX
c
i ,
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T
′

n =
n∑
i=1

a
′

niX
′

i ,

T ∗n =
n∑
i=1

a
′

niX̄i,

T̄n =
n∑
i=1

āni(X
′

i + X̄i) =
n∑
i=1

āni(Xi −Xc
i ).

By definition

Tn = T cn + T
′

n + T ∗n + T̄n. (1.8)

We show first that T cn/n
1/p → 0 almost surely. Since 1/p = 1/α + 1/β and β =

α/(α− 1){(1 + β(1− 1/p))}, it holds that

|Xc
i | ≤ |Xc

i |β(α−1)/αn−(1−1/p).

By the Hölder inequality and the moment condition E|X|β <∞,

n−1/p|T cn| ≤ n−1
n∑
i=1

|ani||Xc
i |β(α−1)/α ≤ Aα, n

(
1

n

n∑
i=1

|Xc
i |β
)(α−1)/α

→ 0 a.s. (1.9)

Secondly, for T
′
n, by the definitions of Aα,n and X

′
i , we have

n−1/p|T ′n| ≤

{
max
1≤i≤n

|a′niX
′

i |+

(
n∑
i=1

|a′niX
′

i |

)
I[]{i:a′niX′i 6=0}≥2]

}
≤ n−1/β max

1≤i≤n
|Xi|+ n(1−1/α)I[]{i:a′niX′i 6=0}≥2]. (1.10)

Since E|X|β ≤ ∞, the first term of the last sum converges zero almost surely. For

the last term on the right hand side, there are at most O(log2α n) many nonzero a
′
ni

by the definitions of Aα,n and a
′
ni, and so, by the definition of X

′
i ,

P []{i : a
′

niX
′

i 6= 0} ≥ 2] ≤ P

(⋃
i 6=j

{a′niX
′

i 6= 0, a
′

njX
′

j 6= 0}

)
≤ [O(log n)]4αP 2[|Xi| > n1/β(log n)−3(α−1)]

= O[(log n)4α+6β(α−1)]n−2.

By this estimate and Markov’s inequality, the probability that the last term of (1.10)

is positive is a general term of a convergent series in n ≥ 1. Therefore, the left hand

7



side of (1.10) converges to zero almost surely. Furtermore, associated with (1.9) and

(1.10), we find that

n−1/p|E(T cn + T
′

n)| ≤ n−1/pE|X|β
∑n

i=1 |ani|
[n1/β(log n)−3(α−1)]β−1

≤ Aα,nE|Xβ|n−1/α(log n)3(α−1)(β−1) → 0 (1.11)

Thirdly, by the definitions of a
′
ni and X̄i, we can estimate T ∗n − ET ∗n by

n−1/p|T ∗n − ET ∗n | ≤
2
∑n

i=1 |ani|α{n1/β/(log n)3(α−1)}
n1/p(n1/α log−2 n)α−1

=
2

n(log n)α−1

n∑
i=1

|ani|α → 0. (1.12)

Finally, let Yni = āni(Xi −Xc
i ). By 1/p = 1/α + 1/β, 1 < p < 2, we have

E
n∑
i=1

Y 2
ni ≤ nAα∧2α∧2,n(n1/α log−2 n)(2−α)

+

n(2−β)+/β‖ X ‖β∧2β∧2 = O(max(n2/α, n2/β, n))

where a ∧ b = min(a, b). On the other hand, for any t > 0, tn1/p|Yni| ≤ tn2/p log−2 n

and max{n2/α, n/β, n} = o(n2/p log−2 n).

It follows by Bernstein’s inequality (see [7], Theorem 1.2.) that

P (|T̄n − ET̄n| > tn1/p) = P

(
|

n∑
i=1

(Yni − EYni)| > tn1/p

)

≤ 2 exp

(
−t2n2/p

tn2/p log−2 n

)
, (1.13)

which is summable in n. The proof of sufficiency part of Theorem 1.1.7 is complete

in the view of (1.8) through (1.13)

Necessity:

Suppose (1.7) is true for any weights sequence satisfying (1.6). Choose, for each

n, an1 = · · · = an,n−1 = 0 and ann = n1/α. Then, by (1.7) we have

1

n1/β
Xn → 0 almost surely,

which implies that E|X|β <∞. Since β > 1, EX exists. Moreover, by the sufficiency

part of Theorem (1.1.7), we have

1

n1/p
(Tn − ETn)→ 0 almost surely

8



for any weight sequence satisfying (1.6). Therefore,

1

n1/p
ETn =

1

n1/p

n∑
i=1

aniEX → 0

for any weight sequence ani satisfying (1.6). Selecting ani = 1, we show what EX = 0.

It is now assumed that random variable |X|γ has a finite moment generating

function. Or in another words we assume that for some h, γ > 0

E exp(h|X|γ) <∞. (1.14)

This corresponds to the case with and arbitrarily large β in Theorem 1.1.7. The

following result, thus, complements the results of Cuzick [15].

Theorem 1.1.8. (Theorem 2.2. in Bai, Cheng [3]) Let Tn =
∑n

i=1 aniXi be a

weighted sum. Suppose that (1.6) holds for α ∈ (0, 2) and (1.14) holds. Then for

0 < α ≤ 1 and bn = n1/α log1/γ n

lim sup
|Tn|
bn
≤ h−1/γAα a.s., (1.15)

moreover, for 1 < α < 2, bn = n1/α(log n)1/γ+γ(α−1)/α(1+γ), and EX = 0,

lim sup
|Tn|
bn

= 0 a.s. . (1.16)

Conversely, if (1.15) holds when 0 < α ≤ 1 for all weights sequences satisfying (1.6),

then necessarily (1.14) holds, E(h
′|X|γ) <∞ for any h

′
, 0 < h

′
< h; if (1.16) holds

when 1 < α < 2, then E|X|ν <∞ for any h > 0, where 1/ν = 1/γ+γ(α−1)/α(1+γ).

Proof of this theorem is an involved one and it is not crucial for the results of this

thesis, hence excluded from the text for sake of simplicity.

Improvement from the results of Cuzick [15] to Bai and Cheng [3] is the relaxing

of the moment assumptions. Also the normalizing sequence is more general. Still,

the assumption for the independence of the random variables is essential throughout

all of them. It is natural to consider dependent random variables. This will be our

next subject.
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1.2 Sums of dependent random variables without

weights

Here we shift to a different kind of sequence of random variables which requires us

to introduce the definition of positively associated random variables. This will be

important during the following parts.

Definition 1.2.1. Let X1, X2, ... be a sequence of random variables. If for every

subcollection Xi1 , ..., Xin and every pair of coordinatewise non decreasing functions

h, k : Rn → R

Cov(h(Xi1 , ..., Xin), k(Xi1 , ..., Xin)) ≥ 0,

whenever the covariance is defined, then X1, X2, ... are called positively associated

random variables.

Non weighted sums of positively associated random variables were considered by

Louhichi [26]. We are going to present her results with the additional assumption of

random variables being centered (i.e. EX = 0) whenever it is convenient for our later

use.

Theorem 1.2.2. (Theorem 1 in Louhichi [26]) Let p be a fixed real number in

[1, 2). Let X1, X2, ... be a sequence of centered and associated random variables. Sup-

pose that there exists a positive random variable X such that EXp < ∞ and that

supi>0 P (|Xi| > x) ≤ P (X > x), for any positive x. If∑
1≤i<j≤∞

∫ ∞
j1/p

v−3Gi,j(v)dv <∞ (1.17)

where

Gi,j(v) = Cov(gv(Xi), gv(Xj)), gv(u) = max(min(u, v), −v)

then

lim
n→∞

1

n1/p
Sn = 0, almost surely . (1.18)

It is worth noticing that we are requiring only the existence of moments order less

than 2. From this results, the following corollaries are easily derived.

Corollary 1.2.3. (Remark on Theorem 1 in Louhichi [26]) For weakly stationary

and associated sequences condition (1.17) holds as soon as

∞∑
r=1

∫ ∞
(r+1)1/p

vp−3G0,r(v)dv <∞.

10



For random variables with finite variance, above theorem yields the following

result, providing rates of convergence in the strong law of large numbers of Birkel [6].

Corollary 1.2.4. (Corollary 1 in Louhichi [26]) Let X1, X2, ... be a sequence of cen-

tered and associated random variables that fulfills the requirement of above theorem.

Suppose moreover that X1, X2, ... has finite variance. If

∞∑
j=1

j−2/pCov(Xj, Sj−1) <∞, for some p ∈ [1, 2),

with the convention that S0 = 0, then

lim
n→∞

1

n1/p
Sn = 0, almost surely .

Proof of Theorem 1.2.2 relies on a few technical arguments that will be explained in

detail later when we present our own contribution on Chapter 2(see 2.2.1). Therefore

for now, we find it sufficient to give just the main idea of the proof of the above stated

theorem. In order to prove this statement Louhichi uses the following lemma (and

several other already well known ones in the literature):

Lemma 1.2.5. (Lemma 1 in Louhichi [26]) Let X1, X2, ... be a sequence of associated

random variables. Let S∗n = supk≤n Sk where Sn =
∑n

i=1(Xi − EXi). Suppose that

there exists a positive random variable X such that for any positive x, supi>0 P (|Xi| >
x) ≤ P (X > x). Then for any positive real numbers x and M

P (S∗n ≥ x) ≤ 4n

x2
EX2I[X≤M ] +

4n

x
EXI[X>M ] +

4nM2

x2
P (X > M) +

8

x2

∑
1≤i<j≤n

Gi,j(M)

Louhichi’s proof uses Borel-Cantelli Lemma to prove (1.18). A direct usage would

mean showing
∑

i P (Sn > εn1/p) < ∞. Instead, we replace Sn by the larger S∗n, as

defined in 1.2.5, which is an increasing sequence of random variables. Taking this

into account, it is enough to prove

∑
n≥0

n−1P (S∗n ≥ εn1/p) <∞.

11



1.3 Sums of positively associated random variables

with weights

Now we go on citing some results by Oliveira [38] who, combining the methods de-

scribed in the previous sections, considered weighted sums of positively associated

random variables. He shows the following.

Theorem 1.3.1. (Theorem 4.1. in Oliveira [38]) Let X1, X2, ... be centered and

identically distributed associated random variables such that

E|X1|p(α+2)/α <∞, for some p ∈ (1, 2), α >
2p

2− p
,

∑
1≤i<j<∞

∫ ∞
j1/p

v−3+2 p
αGi,j(v)dv <∞.

Assume that the weights satisfy

an,i ≥ 0, i ≤ n, n ≥ 1, and ak,j ≥ ak−1,j for each k, j ∈ N

and that supn∈NAn,α <∞ where An,α is defined in the same way with (1.6) . Then

1

n1/p
Tn → 0 a.s. .

where Tn =
∑n

i=1 an,iXi

Remark 1.3.2. (Remark 4.3., Oliveira [38]) If we allow α → ∞ in the same as-

sumptions of the above theorem these reduce to the assumption of Theorem 1.2.2. As

mentioned before, Louhichi’s framework corresponds to case of constant weight so,

for every α > 0, An,α is equal to the constant defining the weight; thus we are really

allowed to let α→∞. That is, above theorem really extends Louhichi’s results.

For an even more general normalizer, he shows the following.

Theorem 1.3.3. (Theorem 4.4., Oliveira [38]) Let X1, X2, ... be centered and identi-

cally distributed associated random variables such that

EX2
1 <∞

E

(
X2

1

log
2
γ
−1 |X1|

)
<∞, for some γ ∈ (0, 2),

∑
1≤i<j<∞

∫ ∞
j1/β

1

vβ+1
Gi,j(v)dv <∞,

12



where β > 0 if α < 2 and β ∈ (0, 2α
α−2) if α > 2. Assume that α > 1 and that the

weights satisfy

an,i ≥ 0, i ≤ n, n ≥ 1, and ak,j ≥ ak−1,j for each k, j ∈ N

and supn∈NAn,α <∞. Define q = 2α
α+2

. Then

1

n1/q log1/γ n
Tn → 0, a.s. .

1.4 Contributions on this thesis

1.4.1 Weighted sums of associated random variables

The results on sums of independent random variables were firs extended by consider-

ing weighted sums and late, by dropping the independence assumption but considering

no weights. A first extension in merging these two extensions, that is, considering

weighted sums of dependent random variables, was made in Oliveira [38].

At the second chapter of this thesis we extend the results in [38], relaxing the

moment assumption on the random variables, still assuming the existence of mo-

ments somewhat larger than p, approaching the p-th order moment assumption used

by Louhichi [26] to prove the convergence of weighted sums of associated random

variables normalized by constant weights, n1/p, p ∈ (1, 2), while strengthening the

assumption on the decay rate of the covariances. We also consider the Marcinkiewicz-

Zygmund law with assumptions on the 2-dimensional analogue of tail probabilities of

the random variables relaxing in this case the assumption on the decay rate on the

covariances, but strengthening the moment condition.

Besides moment conditions we assume a convenient behaviour either on truncated

covariances or on joint tail probabilities. Our results extend analogous characteriza-

tions known for sums of independent or negatively dependent random variables.

13



1.4.2 Convergence rates for weighted sums of associated ran-
dom variables

At the third chapter, we study the convergence of weighted sums of associated random

variables assuming only the existence of moments of order p < 2. We utilize a

truncation technique together with coupling with independent variables which allows

a relaxation of the assumptions on the weights. Truncation of random variables

is a common technique already present in the associated literature for the proof

of exponential inequalities (see Ioannides and Roussas [23] and Oliveira [37]). The

assumptions on p, which depends on the asymptotic behaviour of the weights, as usual,

now includes the case p < 1, which was excluded from earlier results for positively

associated variables.

Also, we give a direct comparison with the characterizations previously available,

showing that the scope of applicability of the results obtained in this chapter does

not overlap with previously known conditions for the same asymptotic results.

In Sect. 3.1 we describe the framework and useful results, Sect. 3.3 presents the

main results, and compares with results in Çaḡın and Oliveira [13], while Sect. 3.2

states versions of these results in a reduced setting, but proves the main steps for the

final theorems.

1.4.3 A moderate deviation for associated random variables

Chapter 4 evolves around the concept of moderate deviations. Since this subject is

different than the previously mentioned ones, we will give a short account of relevant

early results on this subject.

Moderate deviations are an important topic in many theoretical or applied statis-

tical areas. We consider a moderate deviation for associated and strictly stationary

random variables with finite moments of order q > 2. The control of this dependence

structure relies on the decay rate of the covariances for which we assume a relatively

mild polynomial decay rate. The proof combines a coupling argument together with

a suitable use of a Berry-Esséen inequality.

As mentioned before, sums of random variables have always been a central subject

in the probabilistic literature, with a special interest on their asymptotic. Among re-

sults on this topic the important Central Limit Theorems (CLT) describes the limiting

distributional behaviour of such sums, providing useful approximate descriptions of

the tail probabilities. These, besides their natural theoretical interest, are extremely

relevant in statistical applications.
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There is, however, a limitation inherent to the properties of convergence in distri-

bution, requiring that the tails considered through the limiting process should behave

like the variance. More specifically, if the random variables Xn, n ≥ 1, are assumed

centered and we define Sn = X1 + · · · + Xn, s2n = ES2
n, the CLT provide the ap-

proximation of P(Sn > xsn) by N(x) = 1 − Φ(x), for x > 0 fixed, where Φ is the

distribution function of a standard Gaussian variable. If we allow x to depend on

n, converging to infinity, then the above approximation is known as a moderate or

large deviation, depending on how fast x grows to infinity, moderate deviations cor-

responding to the case where x = O(sn) (throughout the text me may use x ∼ sn to

represent the same approximation). Remark that the approximating function N is

no longer necessarily the tail of a standard Gaussian, depending on the growth rate

of x to infinity.

First large deviations were proved by Linnik [25], Ibragimov and Linnik [22],

Nagaev [30];

Theorem 1.4.1. (Theorem 1.9. in Navaev [30]) Let X1, X2, ..., Xn be identically

distributed and suppose that 1 − F (x) = l(x)x−t(1 + o(1)) as x → ∞, where l(x)

is a slowly varying function and t > 2. If, in addition, EX1 = 0, σ2 = 1, and

E|X1|2+δ <∞ for some δ > 0, then

P (Sn ≥ x) = [1− Φ(x/n
1
2 )][1 + o(1)] + n[1− F (x)](1 + o(1))

for n→∞ and x ≥ n
1
2 .

and Nagaev [31] or Rozovski [45] for independent and identically distributed vari-

ables. We refer the reader to the survey paper by Nagaev [32] for a nice account of

these early results. The techniques of proof were much based on suitable exponential

bounds, the so called Fuk-Nagaev inequalities, on the tail probabilities. A typical

result in Nagaev [32], states that

P(Sn > xsn) = (1− Φ(x) + nP(X1 > xsn)) (1 + o(1)), (1.19)

provided that x ≥ 1, sn = n1/2 and the right tail of the Xn’s is a regularly varying

function.

Extensions of such results have been recently proved by Peligrad, Sang, Zhong

and Wu [43] considering weighted sums S̃n =
∑

i cn,iXi instead of Sn. These authors

prove a result similar to (1.19) under essentially the same assumptions on the random

variables (i.i.d. and regularly varying tails) and a regularity condition on the weights:
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maxi cn,i/ES̃
2
n −→ 0. The proof of this extension relies on moderate or large devia-

tions for triangular arrays of random variables and convenient strong approximations

between the tails of S̃n and the sums of tails of the Xn’s, much in the same spirit of

the proof technique used in Theorem 1.9 in Nagaev [32].

Going back to early results, moderate or large deviations for triangular arrays

of row-wise independent variables were considered by Rubin and Sethuraman [46],

Amosova [1], Slastnikov [50] or, more recently, by Frolov [18].

All the results mentioned so far characterize the tail probabilities directly. Con-

cerning large deviations, that is, x growing fast to infinity, a lot of attention was given

to the logarithms of the tail probabilities instead, thus providing exponential bounds

for the tail probabilities themselves. The bound for these logarithms appears then as

the Fenchel-Légendre transform of the normalized logarithm of the Laplace transform

of Sn (notice that we are now back to non-weighted sums). A good account of results

in this direction can be found in the book by Dembo and Zeitouni [16].

The interest on logarithmic tails meant that there are much fewer results available

in the non-logarithmic scale in recent literature, particularly for weighted sums. An-

other recent direction of development is concerned with dependent variables. Here,

available results seem even more scarce. Looking at large deviations, some results

were proved by Nummelin [36], Bryc [8] or Bryc and Dembo [9] considering mixing

variables or, Henriques and Oliveira [21] for associated random variables. Here the

interest was on logarithmic scale results and the proof techniques relied on suitable

exponential bounds and required a rather fast decay on the coefficients characterizing

the dependence structure, meaning they should decrease faster than geometrically.

More recently, for mixing variables Merlevède, Peligrad and Rio [28] relaxed the

assumption on the mixing coefficients, requiring just the geometric decay to prove a

large deviation. Their proof technique, called by the authors a “Cantor set construc-

tion”, adapts the block decomposition of sums, popular for proving CLT, to large

deviations. These authors have more recently extended their results to other forms

of weak dependent variables (see Merlevède, Peligrad and Rio [29]). Efforts in the

non-logarithmic scale for dependent variables were made by Grama [19], Grama and

Haeusler [20] for martingales, Wu and Zhao [54] for stationary processes, Tang [52]

for negatively dependent variables or Liu [27] for negatively dependent heavy tailed

variables.

At the fourth chapter of this thesis, we present a moderate deviation in the non-

logarithmic scale for sums of associated and strictly stationary random variables with

finite moments of order larger than 2. The control of this dependence structure relies
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on the decay rate of the covariances for which we assume a relatively mild polynomial

decay rate. The proof combines a coupling argument together with a suitable use of a

Berry-Esséen inequality. In Sect. 4.1 we give some definitions and recall some auxiliary

results, in Sect. 4.3 we prove the main result and a corollary with an assumption that

identifies more explicitly the behaviour of the relevant dependence coefficients, and

finally in Sect. 4.4 we give an application to moving averages of our main result.
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2. A note on weighted sums of
associated random variables

In this chapter we prove the convergence of weighted sums of associated random

variables normalized by n1/p, p ∈ (1, 2), assuming the existence of moments somewhat

larger than p, depending on the behaviour of the weights, improving on previous

results by getting closer to the moment assumption used for the case of constant

weights. Besides moment conditions we assume a convenient behaviour either on

truncated covariances or on joint tail probabilities.

Our results extend analogous characterizations known for sums of independent or

negatively dependent random variables.

2.1 Framework and preliminaries

Let Xn, n ≥ 1, be a sequence of random variables and define partial sums Sn =∑n
i=1Xi and weighted partial sums Tn =

∑n
i=1 an,iXi, where an,i ≥ 0, i ≤ n, n ≥

1. The variables Xn, n ≥ 1, are assumed to be positively associated (or simply

’associated’ in our framework), that is, for any m ≥ 1 and any two real-valued

coordinatewise nondecreasing functions f and g,

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists. It is well known that the covariance structure of

associated random variables characterizes their asymptotics, so it is natural to seek

assumptions on the covariances.

In this chapter we will be interested in the case where second order moments

do not exist, so we will avoid using covariances directly, using them only through

truncation. For this later argument, define, for each v > 0, the nondecreasing function

gv(u) = max(min(u, v),−v), which performs the truncation at level v, and introduce,

for each n ≥ 1, the random variables X̄n = gv(Xn) and X̃n = Xn − X̄n.

19



It is easily checked that both these families of random variables are associated, as

they are nondecreasing transformations of the original ones. Define next the weighted

sums of the truncated variables: for each n ≥ 1, T̄n =
∑n

i=1 an,i(X̄i − EX̄i) and T̃n =∑n
i=1 an,i(X̃i − EX̃i), and the maxima T ∗n = maxk≤n |Tk| and T̄ ∗n = maxk≤n

∣∣T̄k∣∣. To

handle covariances define, for each i, j ≥ 1, ∆i,j(x, y) = P(Xi ≥ x,Xj ≥ y)− P(Xi ≥
x)P(Xj ≥ y). Of course, Cov(Xi, Xj) =

∫
R2 ∆i,j(x, y) dxdy. Moreover,

Gi,j(v) = Cov(X̄i, X̄j) =

∫
[−v,v]2

∆i,j(x, y) dxdy. (2.1)

The control of moments of maxima of partial sums is a crucial argument through-

out. For nonweighted sums it was proved by Newman and Wright [34] that

E (maxk≤n S
2
k) ≤ ES2

n.

This maximal inequality is one of the key ingredients used by Louhichi [26] to

control tail probabilities of maxima of sums of associated random variables and then

prove that n−1/pSn −→ 0 a.s., where p ∈ [1, 2) when one only has p-th order moments.

For weighted sums, the following extension of this maximal inequality was proved by

Oliveira [38].

Lemma 2.1.1. Let Xn, n ≥ 1, be centered and associated random variables. Assume

the coefficients are such that

an,i ≥ 0, and an,i ≥ an−1,i, i < n, n ≥ 1. (2.2)

Then E (maxk≤n T
2
k ) ≤ E(T 2

n).

We will need some more assumptions on the weights. Define, for each α > 0,

Aαn,α = n−1
∑n

i=1 |ani|
α . These coefficients are considered in [2, 3, 10, 15, 24, 44, 51],

assuming them to be either bounded or convergent.

Finally, we recall the following extension of Lemma 1 in Louhichi [26] proved by

Oliveira [38].

Lemma 2.1.2. Let Xn, n ≥ 1, be centered and identically distributed associated

random variables and assume the weights satisfy (2.2). Then, for every α > 1, x ∈ R
and v > 0,

P(T ∗n > x) ≤ 8

x2
n1+2/αA2

n,αE
(
X2

1 I|X1|≤v
)

+
8

x2
n1+2/αA2

n,αv
2P(|X1| > v)

+
16

x2
n2/αA2

n,α

∑
1≤i<j≤n

Gi,j(v) +
4

x
nAn,αE

(
|X1| I|X1|>v

)
.

(2.3)
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Proof. Taking into account

T ∗n ≤ T̄ ∗n +
n∑
i=1

an,i

(∣∣∣X̃i

∣∣∣+ E
∣∣∣X̃i

∣∣∣)
and Markov’s inequality, we have

P(T ∗n > x) ≤ P
(
T̄ ∗n >

x

2

)
+

4

x

n∑
i=1

an,iE
(∣∣∣X̃i

∣∣∣)
≤ 4

x2
E
(
(T̄ ∗n)2

)
+

4

x

n∑
i=1

an,iE
(∣∣∣X̃i

∣∣∣)
≤ 8

x2
E
(
T̄ 2
n

)
+

4

x

n∑
i=1

an,iE
(∣∣∣X̃i

∣∣∣) .
Remembering maxi≤n |an,i| ≤ n1/αAn,α and

∑n
i=1 |an,i| ≤ nAn,α, the last term is

bounded above by

4

x
E
(∣∣∣X̃1

∣∣∣)∑
i

an,i ≤
4

x
E
(
|X1| I|X1|>v

)
nAn,α.

For the upper bound of E
(
T̄ 2
n

)
use

E
(
T̄ 2
n

)
=

n∑
i,j=1

an,ian,jGi,j(v)

≤ max
i≤n

a2n,i

n∑
i,j=1

Gi,j(v) ≤ n2/αA2
n,α

n∑
i,j=1

Gi,j(v).

(2.4)

and

n∑
i,j=1

Gi,j(v) ≤ nE
(
X̄2

1

)
+ 2

∑
1≤i<j≤n

Gi,j(v)

= nE
(
X2

1 I|X1|≤v
)

+ nv2P(|X1| > v) + 2
∑

1≤i<j≤n

Gi,j(v).
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2.2 Some Marcinkiewicz-Zygmund strong laws

We now prove the almost sure convergence of n−1/pTn based on the Borel-Cantelli

Lemma. Instead of considering Tn directly, we replace it by the larger T ∗n , which is

an increasing sequence. For this increasing sequence T ∗n , the use of the Borel-Cantelli

Lemma may be reduced to proving
∑

n n
−1P(T ∗n > εn1/p) < ∞ (see, for example,

Yang, Su and Yu [55]).

Theorem 2.2.1. Let Xn, n ≥ 1, be centered and identically distributed associated

random variables. Let p ∈ (1, 2). Assume the weights satisfy (2.2) and supn≥1 An,α <

∞, for some α > 2p
2−p . Further, assume that E |X1|p

α−2
α−2p <∞. If

∑
1≤i<j<∞

∫ ∞
j(α−2p)/(αp)

v−2
α−p
α−2p

−1Gi,j(v) dv <∞, (2.5)

then n−1/p Tn −→ 0 almost surely.

Proof. The proof follows similar arguments as in Theorem 4.1 in Oliveira [38]. Taking

into account (2.3), with v = n1/q, where q is to be specified later, we find that

1

n
P(T ∗n > εn1/p) ≤ 8n2/α−2/p

ε2
A2
n,αE

(
X2

1 I|X1|≤n1/q

)
+

8n2/α−2/p+2/q

ε2
A2
n,αP(|X1| > n1/q)

+
16n2/α−2/p−1

ε2
A2
n,α

∑
1≤i<j≤n

Gi,j(n
1/q)

+4n−1/p

ε
An,αE

(
|X1| I|X1|>n1/q

)
.

The remaining argument is to prove that this upper bound defines a convergent

series. Taking into account that An,α is bounded, we may drop these terms. Notice

that α > 2p
2−p is equivalent to 2

α
− 2

p
< −1. Using Fubini’s Theorem we easily find

that:
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∞∑
n=1

n2/α−2/pE
(
X2

1 I|X1|q≤n
)

= E

X2
1

∞∑
n=|X1|q

n2/α−2/p

 ≤ c1E |X1|q(1+2/α−2/p)+2 ,

∞∑
n=1

n2/α−2/p+2/qE
(
I|X1|q>n

)
= E

|X1|q∑
n=1

n2/α−2/p+2/q

 ≤ c2E |X1|q(1+2/α−2/p)+2 ,

∞∑
n=1

n−1/pE
(
|X1| I|X1|q>n

)
≤ c3E |X1|q(1−1/p)+1 .

(2.6)

The constants c1, c2 and c3 used above only depend on p, q and α. As 1 + 2
α
− 2

p
< 0,

in order to consider the lowest moment assumption possible on the variables, the first

two terms above imply that we want to choose q as large as possible. On the other

hand, as 1− 1
p
> 0, the last term implies that we should choose q as small as possible.

It is clear that for small values of q we have q
(

1− 1
p

)
+ 1 < q

(
1 + 2

α
− 2

p

)
+ 2, so

we choose q such that these two expressions coincide, that is, q = αp
α−2p . Notice that

α > 2p
2−p , with p ∈ (1, 2), implies that α > 2p, so the above choice for q is positive.

It is now straightforward to verify that the moments considered above are of order

p α−2
α−2p , thus finite.

Finally we control the term depending on the covariances. Again, using Fubini’s

Theorem we may write

∞∑
n=1

n2/α−2/p−1
∑

1≤i<j≤n

Gi,j(n
1/q)

=
∑

1≤i<j<∞

∫ ∫ ∑
n>j

n2/α−2/p−1 In>max(|x|q ,|y|q ,j) ∆i,j(x, y) dxdy

≤ c4
∑

1≤i<j<∞

∫ ∫ (
max(|x|q , |y|q , j)

)2/α−2/p
∆i,j(x, y) dxdy

= c4
∑

1≤i<j<∞

∫ ∫ ∫ j2/α−2/p

0

I
|x|≤u

− αp
2q(α−p)

I
|y|≤u

− αp
2q(α−p)

du∆i,j(x, y) dxdy

=
2q(α− p)c4

αp

∑
1≤i<j<∞

∫ ∞
j1/q

v−2q
α−p
αp
−1Gi,j(v) dv <∞, (2.7)

taking into account (2.5), where c4 depends only on p and α, so the proof is concluded.
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Remark 2.2.2. Notice that α > 2p
2−p , as assumed in Theorem 2.2.1, implies that

p α−2
α−2p < 2, thus we are still not assuming second order moments.

Remark 2.2.3. In Theorem 4.1 in Oliveira [38] the moment considered was pα+2
α

. It

is easily seen that α > 2p
2−p implies that pα+2

α
> p α−2

α−2p , thus we are improving somewhat

the moment assumption. As what regards the integrability assumption (2.5), in [38]

the exponent of the polynomial term in the integrand was −3+2 p
α
> −2 α−p

α−2p−1, thus

the present integrability assumption is a little stronger. The difference between these

exponents is equal to 4p p−α
α(α−2p) , thus of order α−1.

Remark 2.2.4. To compare this result with Louhichi’s [26] conditions for nonweighted

sums, notice that allowing α −→∞ in the assumptions of Theorem 2.2.1 we are lead

to assume the existence of p-th order moments and the exponent in the integrability

condition converges to −3, that is, we find the assumptions of Theorem 1 in [26].

It is easy to adapt the integrability assumption (2.5) to the case where the random

variables are stationary.

Corollary 2.2.5. Let Xn, n ≥ 1, be centered and stationary associated random

variables. Let p ∈ (1, 2). Assume the weights satisfy (2.2) and supn≥1 An,α <∞, for

some α > 2p
2−p . Put β = 2(α−p)

α−2p + 1. If E |X1|p
α−2
α−2p <∞ and

∞∑
n=1

∫ ∞
(n+1)(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v) dv <∞, (2.8)

then n−1/p Tn −→ 0 almost surely.

We present next an application of the above result, extending Corollary 4 of

Louhichi [26]. Let εn, n ∈ Z, be stationary, centered and associated random vari-

ables, φn, n ≥ 0, positive real numbers and define Xn =
∑∞

i=0 φiεn−i. The random

variables Xn are associated and stationary. If the variables εn have finite moments

of order s,
∑∞

i=0 φ
ρs
i < ∞ and

∑∞
i=0 φ

(1−ρ)s/(s−1)
i < ∞, for some ρ ∈ (0, 1), then,

using Hölder inequality, it follows E |Xn|s < ∞. Write now Un =
∑n

i=0 φiεn−i and

Vn =
∑∞

i=n+1 φiεn−i. Then

G0,n(v) = Cov(gv(X0), gv(Xn))

= Cov(gv(X0), gv(Un + Vn)− gv(Vn)) + Cov(gv(X0), gv(Vn)).
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Taking into account that v > 0 and |gv(y)| ≤ |y| it follows that, given γ ∈ (0, 1),

G0,n(v) ≤ 2 (E |gv(X0)Vn|+ E |gv(X0)|E |Vn|)

≤ 2 (E(min(v, |X0|) |Vn|) + E(min(v, |X0|))E |Vn|)

≤ 2vγ
(
E(|X0|1−γ |Vn|) + E |X0|1−γ E |Vn|

)
.

Using now Hölder inequality for a suitable r > 1, it follows that

G0,n(v) ≤ 4vγ(E |Vn|r)1/r(E |X0|(1−γ)r/(r−1))(r−1)/r.

It is easily verified that

E |Vn|r ≤

(
∞∑

i=n+1

φ
(1−ρ)r/(r−1)
i

)(r−1)/r( ∞∑
i=n+1

φρri

)
E |ε0|r .

Assume that the moments of X0 and ε0 above are finite. Then, with β defined as in

Corollary 2.2.5, the following upper bound holds,

∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v) dv ≤ c′ (E |Vn|r)1/r
∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β+γ dv.

If γ < 2(α−p)−αp
α−2p , so that the integrals above converge, it follows that (2.8) holds

whenever,

∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v) dv

≤ c′1

∞∑
n=1

nγ
α−2p
αp
− 2(α−p)

αp
+1

(
∞∑

i=n+1

φ
(1−ρ)r/(r−1)
i

)(r−1)/r2 ( ∞∑
i=n+1

φρri

)1/r

(E |ε0|r)1/r <∞.

So, finally, the above condition implies that n−1/p
∑n

i=1 an,iXi −→ 0 for every choice

of weights satisfying (2.2) and supn≥1An,α < ∞. If we assume that φn ∼ n−a, for

some a > 1, E |ε0|r < ∞ and choose ρ ∈ (1/(ar), 1 − (r − 1)/(ar)), both the series

above defined using the coefficients φn are convergent and then (2.8) is satisfied if we

can choose γ ∈ (0, 1) such that

γ
α− 2p

αp
− 2(α− p)

αp
− a

(
1− ρ
r

+ ρ

)
+

2r − 1

r2
< −2.

Choosing r = p(α − 2)/(α − 2p), meaning the existence of the moment assumed to

be finite in Theorem 2.2.1 and Corollary 2.2.5, the condition rewrites as

γ
α− 2p

αp
− a

(
(1− ρ)(α− 2p)

p(α− 2)
+ ρ

)
<

2(α− p)
αp

− 2− 2(α− 2p)

p(α− 2)
+

(α− 2p)2

p2(α− 2)2
.
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Allowing α −→ +∞, which corresponds to the case studied in Louhichi [26], means

that we should find a > p(γ+2)−1
p(1−ρ+pρ) . The most favorable choice is ρ = 1. The condition

that follows on the convergence for the coefficients φn defining the moving average

is somewhat stronger than what is assumed in Corollary 4 in Louhichi [26], which

is a > 2 − 1/p, which is essentially what corresponds to the choice ρ = 0. But this

stronger assumption is due to the fact that we are assuming the εn to be dependent,

so an extra effort must be made in order to control the moments of the variables Xn.

The statement of Theorem 2.2.1 assumes a moment condition and adjusts the

integrability condition on the truncated covariances to get the convergence. One may

be interested in doing the opposite, that is, assume an integrability condition on the

truncated variables and describe which moments should be required. Assume that

for some β > 0 and a suitable q > 0 we have∑
1≤i<j<∞

∫ ∞
j1/q

v−β Gi,j(v) dv <∞. (2.9)

We now choose q conveniently. Comparing with (2.7) we need that 2qα−p
αp

+ 1 ≥ β or,

equivalently, q ≥ pα(β−1)
2(α−p) . Assume that α > 2p

2−p , which is equivalent to 2
α
− 2

p
< −1

and implies that α > 2p. So, if β ∈ [0, 1] the above condition is verified for every

choice of q > 0, thus, as seen in the proof of Theorem 2.2.1, the choice q∗ = αp
α−2p

optimizes the moment assumption, requiring the existence of the absolute moment of

order p∗ = p α−2
α−2p . Because of the integration region in (2.9) we need to assume that

q ≥ q∗. If β > 1, we look at αp
α−2p−

pα(β−1)
2(α−p) . As we assumed that α > 2p it is easily seen

that the sign of this difference is equal to the sign of (3−β)α−2p(2−β). If β ∈ (1, 2]

this means that the sign is positive if α > 2p2−β
3−β = 2p

(
1− 1

3−β

)
which always holds.

Thus, the optimization of the moments is achieved by the choice q∗ = αp
α−2p . If

β ∈ (2, 3] the above difference is always nonnegative, so we choose again q∗ = αp
α−2p .

Now, if β > 3, αp
α−2p −

pα(β−1)
2(α−p) ≥ 0 is equivalent to α ≤ 2pβ−2

β−3 = 2p
(

1 + 1
β−3

)
. So,

when β > 3, if 2p < α ≤ 2p
(

1 + 1
β−3

)
we should also choose q∗ = αp

α−2p . Finally,

when β > 3 and α > 2p
(

1 + 1
β−3

)
we must assume the finiteness of the largest of the

moments appearing in (2.6), where q∗ is taken to be pα(β−1)
2(α−p) . Thus we have proved

the following statement.

Theorem 2.2.6. Let Xn, n ≥ 1, be centered and identically distributed associated

random variables. Assume the weights satisfy (2.2) and supn≥1 An,α < ∞. Further,

assume that p ∈ (1, 2) and α > 2p
2−p are satisfied.
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Define q∗ and p∗ as

• if β ≤ 3 or if β > 3 and α ∈
(

2p, 2p
(

1 + 1
β−3

)]
, q∗ = αp

α−2p and p∗ = p α−2
α−2p ,

• if β > 3 and α > 2p
(

1 + 1
β−3

)
, q∗ = pα(β−1)

2(α−p) and p∗ = 1 + α(β−1)(p−1)
2(α−p) .

If (2.9) is satisfied with q ≥ q∗ and E |X1|p
∗
<∞ then n−1/p Tn −→ 0 almost surely.

We will now look for assumptions on the functions ∆i,j rather than on the trun-

cated covariances. Remark that the ∆i,j may also be interpreted as covariances:

∆i,j = Cov
(
I[x,+∞)(Xi), I[y,+∞)(Xj)

)
. It follows from Sadikova [47] that, if the

random variables have bounded density and covariances do exist that ∆i,j(x, y) ≤
cCov1/3(Xi, Xj), where c > 0 is a constant depending only on the density function.

This made natural to seek for assumptions on the ∆i,j while studying the asymptotics

of empirical processes based on associated random variables, as in Yu [56], Shao and

Yu [48] or Oliveira and Suquet [40, 42]. Moreover, the ∆i,j(x, y) play, in dimension

two, the role of the tail probabilities usually considered in the one dimensional frame-

work. So, we will now consider the following assumption on the limit behaviour of

∆i,j:

sup
i,j≥1

∆i,j(x, y) = O
(
max(|x| , |y|)−a

)
, as max(|x| , |y|) −→ +∞. (2.10)

Thus, outside of some [−j0, j0]2 we may assume that all the ∆i,j are, up to the

multiplication by some constant c0, that does not depend on i or j, bounded above

by max(|x| , |y|)−a. Thus

Gi,j(v) ≤ 4j20 + 4c0

∫ ∞
j1/q

∫ x

−x
x−a dy dx = 4j20 +

4c0
2− a

(
v2−a − j2−a0

)
. (2.11)

Remember that Cov(Xi, Xj) = Gi,j(+∞). Looking at the expression above, if we

allow v −→ +∞ we have convergence to a finite limit whenever a > 2. Thus, the

most interesting case for us corresponds to 0 < a ≤ 2, so that we do not have finite

covariances between the random variables.

Theorem 2.2.7. Let Xn, n ≥ 1, be centered and identically distributed associated

random variables. Assume the weights satisfy (2.2) and supn≥1 An,α < ∞. Let

p ∈ (1, 2) and α > 2p
2−p . Assume that (2.10) is satisfied for some a ∈ (0, 2] and

(2.9) holds for some q > 0 and β > 3 − a + 2q. If E |X1|p
∗
< ∞, where p∗ =

max
(
q
(

1 + 2
α
− 2

p

)
+ 2, q

(
1− 1

p

)
+ 1
)

then n−1/p Tn −→ 0 almost surely.
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Proof. Using (2.11) to compute the integral in (2.9), one easily finds that, as β >

3− a+ 2q > 3− a, ∫ ∞
j1/q

v−βGi,j(v) dv ≤ c′0j
(1−β)/q + j3−(β+a)q,

where c′0 does not depend on i or j. Thus inserting this upper bound in (2.9) and

taking into account the summation, we have a convergent series if both 1 + 1−β
q
< −1

and 1 + 3−(β+a)
q

< −1. But these two inequalities follow from β > 3 − a + 2q.

As the summations in (2.6) are finite due to our moment assumptions, the proof is

concluded.

Remark 2.2.8. The above statement allows to consider β < 3 in (2.9). This was

out of reach in Theorem 2.2.1. However, the moment assumed to be finite is of order

p∗ = max
(
q
(

1 + 2
α
− 2

p

)
+ 2, q

(
1− 1

p

)
+ 1
)

. It is easily seen that if q > αp
α−2p , then

p∗ = q
(

1− 1
p

)
+ 1. The difference between this order and the one considered in

Theorem 2.2.1 has the same sign as (α− 2p)q − pα ≥ 0 for the range of values for q

where this applies. Likewise, if q < αp
α−2p then the difference of order moments has the

same sign as (p−2)α2 +2pα(3−p)−2p2 > 0 for the range of values for q considered.

Thus, the moment condition assumed in Theorem 2.2.7 is always stronger than the

one in Theorem 2.2.1.
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3. Convergence rates for weighted
sums of associated variables

In this chapter we study the convergence of weighted sums of associated random vari-

ables assuming only the existence of moments of order p < 2. We use a truncation

technique together with coupling with independent variables, which allows a relax-

ation of the assumptions on the weights. Moreover, this coupling allows not only for

the proof of almost sure results and but enables to identify convergence rates. The

assumptions on p, that now include the case p < 1, excluded from earlier results for

positively associated variables, depend on the asymptotic behaviour of the weights,

as usual. We give a direct comparison with the characterizations previously available,

showing that the scope of applicability of our results does not overlap with known

conditions for the same asymptotic results.

Our frame work is as follow: In Sect. 3.1 we describe the framework and useful

results, Sect. 3.3 presents the main results, and compares with results in Çaǧın and

Oliveira [13], while Sect. 3.2 states versions of these results in a reduced setting, but

proves the main steps for the final theorems.

3.1 Definitions and preliminary results

Let us assume that the Xn, n ≥ 1, are centered and associated random variables

and denote Sn = X1 + · · · + Xn. Let an,i, i = 1, . . . , n, n ≥ 1, be non negative real

numbers and define, for some α > 1, Aαn,α = n−1
∑n

i=1 |an,i|
α. We will be interested

in the convergence of Tn =
∑n

i= an,iXi assuming that

Aα = sup
n
An,α <∞. (3.1)

This is the only condition on the weights throughout this chapter, thus relaxing the

assumption on the weights when compared to Oliveira [38] or Çaǧın and Oliveira [13].

Remark that, due to the nonnegativity of the weights, the variables Tn, n ≥ 1, are
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associated. Define the usual Cox-Grimmett coefficients

u(n) = sup
k≥1

∑
j:|k−j|≥n

Cov(Xj, Xk). (3.2)

If the random variables are stationary, then u(n) = 2
∑∞

j=n+1 Cov(X1, Xj).

Consider pn a sequence of natural numbers such that pn <
n
2
, rn the largest integer

less or equal to n
2pn

, and define the variables

Yj,n =

jpn∑
i=(j−1)pn+1

an,iXi, j = 1, . . . , 2rn.

These random variables are associated, due to the nonnegativity of the weights. More-

over, if the variables Xn are uniformly bounded by c > 0, then it is obvious that

|Yj,n| ≤ cAαn
1/αpn. Finally, put

Tn,od =
rn∑
j=1

Y2j−1,n and Tn,ev =
rn∑
j=1

Y2j,n.

We prove first an easy but useful upper bound.

Lemma 3.1.1. Assume the variables Xn, n ≥ 1, are associated, stationary, centered,

bounded (by c > 0) and u(0) <∞. Then E(S2
n) ≤ 2c∗n, where c∗ = c2 + u(0).

Proof. Using the stationarity, it follows easily that

E(S2
n) = nVar(X1) + 2

n−1∑
j=1

(n− j)Cov(X1, Xj+1) ≤ 2nc2 + 2nu(0)

.

The next result is an extension of Lemma 3.1 in Oliveira [37].

Lemma 3.1.2. Assume the variables Xn, n ≥ 1, are centered, associated, stationary,

bounded (by c > 0), u(0) < ∞ and the nonnegative weights satisfy (3.1). If dn ≥ 1

and 0 < λ < dn−1
dn

1
cAαn1/αpn

, then

rn∏
j=1

E
(
eλY2j−1,n

)
≤ exp

(
λ2c∗A2

αn
1+2/αdn

)
and

rn∏
j=1

E
(
eλY2j,n

)
≤ exp

(
λ2c∗A2

αn
1+2/αdn

)
.

where c∗ = c2 + u(0).
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Proof. As remarked above, as the variables Xn are bounded, we have that |Yj,n| ≤
cAαn

1/αpn. So, using a Taylor expansion it follows that

E
(
eλY2j−1,n

)
≤ 1 + λ2E

(
Y 2
2j−1,n

) ∞∑
k=2

(cAαλn
1/αpn)k−2.

Now, E
(
Y 2
2j−1,n

)
=
∑

`,`′ an,lan,`′Cov(X`, X`′) ≤ n2/αA2
αE(S2

pn), due to the stationar-

ity and the nonnegativity of the weights and covariances. So, applying Lemma 3.1.1,

it follows that

E
(
eλY2j−1,n

)
≤ 1 +

2λ2c∗A2
αn

2/αpn
1− cAαλn1/αpn

≤ exp
(
2λ2c∗A2

αn
2/αpndn

)
.

To conclude the proof multiply the upper bounds and remember 2rnpn ≤ n.

A basic tool for the analysis of convergence and rates is the following inequality

due to Dewan and Prakasa Rao [17].

Theorem 3.1.3. Assume X1, . . . , Xn are centered, associated and uniformly bounded

(by c > 0). Then, for every λ > 0,∣∣∣∣∣Eeλ∑j Xj −
∏
j

EeλXj

∣∣∣∣∣ ≤ 1

2
λ2ecλn

∑
j 6=k

Cov(Xj, Xk). (3.3)

3.2 The case of uniformly bounded variables

We assume first that there exists some c > 0 such that, with probability 1, |Xn| ≤ c,

for every n ≥ 1. This allows for a direct use of the results proved above. We start by

deriving an upper bound for the tail probabilities for the summations defined above.

Lemma 3.2.1. Assume the variables Xn, n ≥ 1, are centered, associated, stationary

and bounded (by c > 0) and u(0) < ∞. If the nonnegative weights satisfy (3.1),

dn ≥ 1 and 0 < λ < dn−1
dn

1
cAαn1/αpn

, then, for every ε > 0 and n large enough,

P(Tn,od > n1/pε) ≤ 1

4
λ2n1+2/αA2

α exp
(
1
2
cn1+1/αAαλ− λn1/pε

)
u(pn)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
.

(3.4)

An analogous inequality for P(Tn,ev > n1/pε) also holds.
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Proof. If we apply (3.3) to Tn,od we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣ ≤ 1

2
λ2 exp

(
cAαrnpnn

1/αλ
)∑
j 6=j′

Cov(Yn,j, Yn,j′). (3.5)

Now, it is obvious that each 0 ≤ an,i ≤ n1/αAn,α, thus

Cov(Yn,j, Yn,j′) ≤
∑
`,`′

an,`an,`′Cov(X`, X`′) ≤ n2/αA2
α

∑
`,`′

Cov(X`, X`′).

Put Y ∗n,j =
∑jpn

`=(j−1)pn+1X`, j = 1, . . . , rn. Then we have just verified that

Cov(Yn,j, Yn,j′) ≤ n2/αA2
αCov(Y ∗n,j, Y

∗
n,j′).

Using twice the stationarity of the random variables we obtain∑
j 6=j′

Cov(Y ∗n,j, Y
∗
n,j′) = 2

rn−1∑
j=1

(rn − j)Cov(Y ∗n,1, Y
∗
n,2j−1)

and

Cov(Y ∗n,1, Y
∗
n,2j−1)

≤
pn−1∑
`=0

(pn − `)Cov(X1, X2jpn+`+1) +

pn−1∑
`=1

(pn − `)Cov(X`, X2jpn+1)

≤ pn

(2j+1)pn∑
`=(2j−1)pn+2

Cov(X1, X`).

Inserting this inequality in (3.5) we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣
≤ 1

2
λ2n2/αA2

αrnpn exp
(
1
2
cn1+1/αAαλ

) 2rn−1∑
`=pn+2

Cov(X1, X`)

≤ 1

4
λ2n1+2/αA2

α exp
(
1
2
cn1+1/αAαλ

)
u(pn + 2).

We can now use this together with Markov’s inequality to find that, for every ε > 0,

P(Tn,od > n1/pε) ≤ e−λn
1/pε

∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣+ e−λn
1/pε
∏
j

EeλYn,2j−1

≤ 1

4
λ2n1+2/αA2

α exp
(
1
2
cn1+1/αAαλ− λn1/pε

)
u(pn + 2)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
,

and remember that u(pn+2) ≤ u(pn), due to the nonnegativity of the covariances.
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3.2.1 Almost sure convergence

We prove two different versions of the almost sure of n−1/pTn, depending on the

Cox-Grimmett coefficients being decreasing at polynomial or geometric rate.

Theorem 3.2.2. Assume the random variables Xn, n ≥ 1, are centered, associated,

stationary and bounded (by c > 0). Assume that p < 1 and α > 1 are such that
1
p
− 1

α
≥ 1 and u(n) ∼ n−a, for some a > 0. If the nonnegative weights satisfy (3.1),

then, with probability 1, n−1/pTn −→ 0.

Proof. Consider the decomposition of Tn into the blocks Yn,j defined previously, taking

pn ∼ nθ, for some θ ∈ (0, 1). It is obviously enough to prove that both n−1/pTn,od

and n−1/pTn,ev converge almost surely to 0. As these terms are analogous we will

concentrate on the former, starting from (3.4). A minimization of the exponent on

the second term of the upper bound in (3.4) leads to the choice

λ =
ε

2c∗A2
α

n1/p−1−2/α

dn
, (3.6)

meaning that

exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
= exp

(
−ε

2n2/p−1−2/α

4c∗A2
αdn

)
.

Assume that, for some β > 1,

ε2n2/p−1−2/α

4c∗A2
αdn

= β log n ⇔ dn =
ε2

4c∗A2
αβ

n2/p−1−2/α

log n
. (3.7)

As 1
p
− 1

α
> 1, it follows that, for n large enough, we have dn > 1 as required in

Lemma 3.1.2. In order to use Lemma 3.1.2 we also need to verify that the condition

on λ is satisfied: λ < dn−1
dn

1
cAαn1/αpn

. Replacing the above choices for λ and dn, this

condition on λ is satisfied if

ε−1 ≤ 1

2cAαβ

n1/p−1/α

nθ log n
. (3.8)

As θ < 1 ≤ 1
p
− 1

α
this upper bound grows to infinity, so this inequality is satisfied for

n large enough.

We consider now the first term in (3.4), the term involving the Cox-Grimmett

coefficients. The exponent in this term is

cn1+1/αAαλ− λn1/pε =
cε

2c∗Aα

n1/p−1/α

dn
− ε2

2c∗A2
α

n2/p−1−2/α

dn
.
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The second term above is, up to multiplication by 2, the exponent that was found

after the optimization with respect to λ of the exponent on the second term of (3.4).

So, to control the upper bound (3.4) we can factor this part of the exponential, leaving

to control, after substituting the expression for dn,

1

4
λ2n1+2/αA2

α exp

(
2cAαβ

ε
n1/α−1/p+1 log n

)
u(pn). (3.9)

As the term that we factored defines a convergent series, it is enough to verify that

(3.9) is bounded. Further, the polynomial term in (3.9) is clearly dominated by the

exponential, thus we may drop it, verifying only that

exp

(
2cAαβ

ε
n1/α−1/p+1 log n

)
u(pn) ≤ c0, (3.10)

for some c0 > 0. Taking logarithms and taking into account the choice for pn ∼ nθ,

the above inequality is equivalent to 2cAαβ
ε

n1/α−1/p+1 log n − aθ log n having a finite

upper bound. But then, this a consequence of the assumption on p and α, as 1
p
− 1

α
≥ 1

implies that the exponent on the first term is not positive, so this term converges to

0.

We may relax somewhat the assumptions on p and α if the covariances decrease

faster.

Theorem 3.2.3. Assume the random variables Xn, n ≥ 1, are centered, associated,

strictly stationary and bounded (by c > 0). Assume that p < 2 and α > 1 are such

that 1
p
− 1

α
> 1

2
and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative weights satisfy

(3.1), then, with probability 1, n−1/pTn −→ 0.

Proof. Follow the proof of Theorem 3.2.2, choosing max(0, 1
p
− 1
α

+1) < θ < 1
p
− 1
α

, until

(3.10). Remark that the assumption on p and α ensures that such a choice for θ is pos-

sible. Now the boundedness required in (3.10) is equivalent to 2cAαβ
ε

n1/α−1/p+1 log n−
nθ log ρ being bounded above. But this follows from θ > 1

p
− 1

α
+ 1 and ρ ∈ (0, 1).
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3.2.2 Convergence rates

A small modification of the previous arguments allows, for the case of geometric

decreasing Cox-Grimmett coefficients, the identification of a convergence rate for the

almost sure convergence just proved.

Theorem 3.2.4. Assume the random variables Xn, n ≥ 1, are centered, associated,

strictly stationary and bounded (by c > 0). Assume that p < 2 and α > 1 are such

that 1
p
− 1

α
> 1

2
and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative weights satisfy

(3.1), then, with probability 1, n−1/pTn −→ 0 with convergence rate logn
n1/p−1/α−1/2−δ , for

arbitrarily small δ > 0.

Proof. We again start as in the proof of Theorem 3.2.2 choosing θ = 1
2

+ δ, with

0 < δ < 1
p
− 1

α
− 1

2
and pn ∼ nθ. Now, on (3.7), allow ε to depend on n:

ε2n =
4βc∗A2

αdn log n

n2/p−1−2/α .

The verification of the assumptions of Lemma 3.1.2, given above by (3.8), becomes

now:
n1/p−1/2−1/α

2(βc∗)1/2Aαd
1/2
n (log n)1/2

≤ 1

2cβAα

n1/p−1/α

nθ log n
,

which is equivalent to dn ≥ c2β
c∗
n2θ−1 log n ∼ n2δ log n. Thus, as we are interested in a

slow growing sequence, we choose dn ∼ n2δ log n. So, ε2n ∼ n2δ−2/p+2/α+1(log n)2 −→ 0,

given the choice for δ. To complete the proof, it is enough to bound exp(cn1+1/αλ)u(pn).

It is easily verified that n1+1/αλ ∼ n1/2−δ, so the term we need to bound is of order

n1/2−δ + nθ log ρ = n
1
2
−δ + n1/2+δ log ρ. But, this is an immediate consequence of

ρ ∈ (0, 1) and δ > 0, so the proof is concluded.

Remark 3.2.5. The above argument does not hold if the decrease rate of the Cox-

Grimmett coefficients is only polynomial. Indeed, in this case we would be driven to

bound n1/2−δ + a(1
2

+ δ) log n, which is always unbounded as 1
2

+ δ > 0.

3.3 The general case

For general sequences of random variables we need an extension of Lemma 3.2.1. For

this purpose we will introduce a truncation on the random variables, which can be

analysed using the results in the previous section, and control the remaining tails.

35



Let cn, n ≥ 1, be a sequence of nonnegative real numbers such that cn −→ +∞ and

define, for each i, n ≥ 1,

X1,i,n = −cnI(−∞,−cn)(Xi) +XiI[−cn,cn](Xi) + cnI(cn,+∞)(Xi),

X2,i,n = (Xi − cn)I(cn,+∞)(Xi), X3,i,n = (Xi + cn)I(−∞,−cn)(Xi),
(3.11)

where IA represents the characteristic function of the set A. Notice that the above

transformations are monotonous, so these new families of variables are still associated.

Morevoer, it is obvious that, for each n ≥ 1 fixed, the variables X1,1,n, . . . , X1,n,n are

uniformly bounded. Consider, as before, a sequence of natural numbers pn such that,

for each n ≥ 1, pn <
n
2

and define rn as the largest integer less or equal to n
2pn

. For

q = 1, 2, 3, and j = 1, . . . , 2rn, define

Yq,j,n =

jpn∑
`=(j−1)pn+1

an,i

(
Xq,`,n − E(Xq,`,n)

)
, (3.12)

and

Tq,n,od =
rn∑
j=1

Yq,2j−1,n, Tq,n,ev =
rn∑
j=1

Yq,2j,n, (3.13)

For q = 2, 3, assuming the variables are identically distributed, we have the following

upper bound,

P

(∣∣∣∣∣
n∑
i=1

an,i

(
Xq,i,n − E(Xq,i,n)

)∣∣∣∣∣ > n1/pε

)

≤ nP

(
|Xq,1,n − E(Xq,1,n)| > n1/p−1ε

Aα

)
≤ n3−2/pA2

α

ε2
Var(Xq,1,n) ≤ n3−2/pA2

α

ε2
E(X2

q,1,n).

The following result is an easy extension of Lemma 4.1 in [37].

Lemma 3.3.1. Let X1, X2, . . . be strictly stationary random variables such that there

exists δ > 0 satisfying sup|t|≤δ E(etX1) ≤Mδ < +∞. Then, for t ∈ (0, δ],

P

(∣∣∣∣∣
n∑
i=1

an,i

(
Xq,i,n − E(Xq,i,n)

)∣∣∣∣∣ > n1/pε

)
≤ 2MδA

2
αn

3−2/pe−tcn

t2ε2
, q = 2, 3.

(3.14)
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3.3.1 Almost sure convergence and rates

We may now prove the extensions of the results proved for uniformly bounded se-

quences of random variables. The main argument in the proofs in Sect. 3.2 was the

control of the exponent in the exponential upper bounds found. The bound obtained

in (3.14) is, essentially, of the same form, depending on the choice of the truncation

sequence. So, we will obtain the same characterizations for the almost sure con-

vergence and for its rate, as in the case of uniformly bounded sequences of random

variables. Remark that, due to the association of the variables,

Cov(X1,1,n, X1,j,n)

=

∫ ∫
[−cn,cn]2

P(X1 > u,Xj > v)− P(X1 > u)P(Xj > v) dudv

≤
∫ ∫

R2

P(X1 > u,Xj > v)− P(X1 > u)P(Xj > v) dudv = Cov(X1, Xj).

Obviously, this inequality holds even if Cov(X1, Xj) is not finite.

Theorem 3.3.2. Assume the random variables Xn, n ≥ 1, are centered, associated

and strictly stationary. Assume that p < 1 and α > 1 are such that 1
p
− 1

α
> 1 and

u(n) ∼ n−a, for some a > 0. If the nonnegative weights satisfy (3.1), then, with

probability 1, n−1/pTn −→ 0.

Proof. To control the tail terms, that is, Tq,n,od and Tq,n,ev, for q = 2, 3, choose the

truncation sequence cn = log n and t = β > 4 − 2
p
. Thus according to Lemma 3.3.1,

the probabilities depending on these variables are bounded above by a convergent

series. Concerning the remaining term, follow the proof of Theorem 3.2.2 but keep

in mind that the constants c and c∗ now depend on n. According to the comment

immediately after Lemma 3.1.1, we have c∗n = c2n + u(0) ∼ (log n)2. Thus, instead of

(3.6), we find the choice

λ =
n1/p−1−2/αε

2c∗nA
2
αdn

∼ n1/p−1−2/αε

(log n)2dn
,

and

n2/p−1−2/αε2

4c∗nA
2
αdn

= β log n ⇔ dn =
ε2

4c∗nβA
2
α

n2/p−1−2/α

log n
∼ n2/p−1−2/α

(log n)3
.

The condition on λ required by Lemma 3.1.2 translates now into

ε−1 ≤ n1/p−1/α

2cnβAαnθ log n
∼ n1/p−1/α−θ

(log n)2
.
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Thus, up to a logarithmic factor, we find an upper bound with the same behaviour as

the one found in (3.8), so the argument used in course of proof of Theorem 3.2.2 still

applies. Remark also that the present choice for dn also only changes with respect

to the one made in the proof of Theorem 3.2.2 by the introduction of a logarithmic

factor in the denominator. Thus the fact that dn becomes larger that 1, for n large

enough, is not affected. The same holds for the term corresponding to (3.10). Indeed,

the exponent we need to control takes now the form cnn
1+1/αλ ∼ n1−1/p+1/α(log n)2,

that is, the same we found before multiplied by a logarithmic factor that, as is easily

verified, does not affect the remaining argument of the proof.

For sake of completeness we state the results corresponding to Theorems 3.2.3 and

3.2.4. We do not include proofs as these are modifications of the corresponding ones

exactly as done for Theorem 3.3.2.

Theorem 3.3.3. Assume the random variables Xn, n ≥ 1, are centered, associated

and strictly stationary. Assume that p < 2 and α > 1 are such that 1
p
− 1

α
> 1

2
and

u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative weights satisfy (3.1), then, with

probability 1, n−1/pTn −→ 0.

Theorem 3.3.4. Assume the random variables Xn, n ≥ 1, are centered, associated

and strictly stationary. Assume that p < 2 and α > 1 are such that 1
p
− 1

α
> 1

2
and

u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative weights satisfy (3.1), then, with

probability 1, n−1/pTn −→ 0 with convergence rate logn
n1/p−1/α−1/2−δ , for arbitrarily small

δ > 0.

The above statements include an assumption on the Cox-Grimmett coefficients

of the original untruncated variables. In fact, this assumption, which implies the

existence of second order moments, may be relaxed, as we only need the coefficients

corresponding to the truncated variables defined as, assuming already the stationarity

of the variables,

u∗(n) = 2
∞∑

j=n+1

Cov(X1,1,n, X1,j,n).

Taking into account the inequality between the covariances, it is obvious that u∗(n) ≤
u(n). Of course, this choice for the statements would imply a definition for the

truncating sequence on the statement.
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3.3.2 Comparing with previous results

Theorem 3.3.2 above extends Corollary 3.5 in Çaǧın and Oliveira [13]. Indeed, in

[13] it is assumed that p > 1 due to the technicalities of the proof, while here we

are assuming p < 1. This later case would imply, with respect to the framework of

[13], the need to assume the existence of moments of order 2, which was what was

trying to be avoided in [13]. In the present case, as we are dealing with bounded

variables or using truncation, this is not a problem. In order to be somewhat more

precise on the relations of the present results and those in [13] we need some more

notation, extending the truncation in (3.11). Given v > 0 and i ≥ 1, define X1,i,v =

−vI(−∞,−v)(Xi) + XiI[−v,v](Xi) + vI(v,+∞)(Xi) and Gi(v) = Cov(X1,1,v, X1,i,v). Now

the assumption on the Cox-Grimmett coefficients in Theorem 3.3.2 rewrites as

u∗(n) = 2
∑
j=n+1

Gj(log n) ∼ n−a, a > 0.

A translation of this decay rate directly into the covariances is achieved if we assume

that Gj(v) ∼ e−(a+1)v, thus a geometric decay rate for the covariances. Moreover,

we may still verify that Corollary 3.5 in Çaǧın and Oliveira [13] does not overlap

with Theorem 3.3.2, considering the version with an assumption on the truncated

Cox-Grimmett coefficients u∗(n) instead. In fact, the result in [13] assumes that

∞∑
n=1

∫
(n+1)(α−2p)/(αp)

v
α(p−1)
α−2p

−2Gn(v) dv <∞.

If Gj(v) ∼ e−(a+1)v, this condition is equivalent to

∞∑
n=1

∫
(a+1)(n+1)(α−2p)/(αp)

t
α(p−1)
α−2p

−2e−t dt <∞.

The convergence of the series above is equivalent to the finiteness of the integral∫ ∞
1

∫
(a+1)(n+1)(α−2p)/(αp)

t
α(p−1)
α−2p

−2e−t dt dx,

which, after inverting the integration order is bounded above by∫ ∞
2(α−2p)/(αp)(a+1)

t(2αp−α)/(α−2p)−2e−t dt ≤ Γ
(

2αp−α
α−2p − 1

)
,

where Γ represents the Euler Gamma function, and this is finite if the argument is

positive, that is, if αp > α− p or, equivalently, if 1
p
− 1

α
< 1, the reverse inequality of

what is assumed in Theorem 3.3.2.
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4. A moderate deviation for
associated random variables

In this chapter we consider a moderate deviation for associated and strictly stationary

random variables with finite moments of order q > 2. The control of this dependence

structure relies on the decay rate of the covariances for which we assume a relatively

mild polynomial decay rate. We present a moderate deviation in the non-logarithmic

scale for sums of associated random variables. Outline of the chapter is as follows:

In Section 2 we give some definitions and recall some auxiliary results, in Section 3

we prove the main result and a corollary with an assumption that identifies more

explicitly the behaviour of the relevant dependence coefficients. The proof combines

a coupling argument together with a suitable use of a Berry-Esséen inequality; finally

in Section 4 we give an application to moving averages of our main result.

4.1 Framework and auxiliary results

To define appropriately our framework let Xn, n ≥ 1, be strictly stationary centered

and associated random variables with finite variances. Denote Sn = X1+· · ·+Xn and

s2n = ES2
n. Recall that association means that for any m ≥ 1 and any two real-valued

coordinatewise nondecreasing functions f and g,

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists. It is well known that the covariance structure of

associated random variables characterizes their asymptotics, so it is natural to seek

assumptions on the covariances. A common assumption when proving CLT is 1
n
s2n −→

σ2 > 0 (see, for example, Newman and Wright [34, 35] or Oliveira and Suquet [40, 41]),

so we will be assuming this is fulfilled in the sequel. Notice this assumption implies

that s2n ∼ n. Finally, recall the Cox-Grimmett coefficients, currently used to control
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dependence for associated random variables (remember they are assumed stationary):

u(n) =
∞∑
k=n

Cov(X1, Xk). (4.1)

Our proof will rely on a suitable approximation to independent variables which will

be chosen so that these satisfy the moderate deviation we want to extend. We quote

next a result by Frolov [18] providing a moderate deviation for triangular arrays of

row-wise independent random variables. This will be the tool to prove the moderate

deviation for the approximating variables.

Theorem 4.1.1 (Theorem 1.1 in Frolov [18]). Let Xn,k, k = 1, . . . , kn, n ≥ 1, be an

array of row-wise independent variables with Fn,k(y) = P(Xn,k ≤ y), EXn,k = 0 and

EX2
n,k = σ2

n,k < ∞. Denote Tn =
∑kn

k=1Xn,k and Bn =
∑kn

k=1 σ
2
n,k. For q > 2, let

βn,k =
∫∞
0
yq Fn,k(dy) < +∞. Define

Mn =
kn∑
k=1

βn,k and Ln = B−q/2n Mn.

Assume that Ln −→ 0, and that, for each ε > 0,

Λn(x) = x4B−1n

n∑
k=1

∫ −ε√Bn/x5
−∞

y2 Fn,k(dy) −→ 0. (4.2)

If x −→ +∞ such that x2 − 2 log(L−1n )− (q − 1) loglog(L−1n ) −→ −∞ then

P(Tn ≥ xB1/2
n ) ∼ 1√

2π x
e−x

2/2.

Remark that, using standard Gaussian approximations, from the conclusion of

this theorem follows easily that P(Tn ≥ xB
1/2
n ) = (1 − Φ(x))(1 + o(1)), where Φ

stands for the distribution function of a standard Gaussian variable.

Finally, we will be dealing with integration of squares of sums of random variables

that we will need to decompose. The following result describes how we can do this

and control the original integral.

Lemma 4.1.2 (Lemma 4 in Utev [53]). Let Un, n ≥ 1, be random variables. Then,

for every ε > 0 and n ≥ 1,∫
{|∑n

i=1 Ui|>εn}

(
n∑
i=1

Ui

)2

dP ≤ 2n
n∑
i=1

∫
{|Ui|>ε/2}

U2
i dP.
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4.2 A general moderate deviation

We now state the moderate deviation for associated random variables. Besides mo-

ment conditions we will require a suitable decrease rate on the Cox-Grimmett coeffi-

cients (4.1). To state and prove our main result we need some preparatory definitions.

Consider an increasing sequence of integers pn <
n
2

and define rn as the largest integer

that is less or equal to n
2pn

. Decompose Sn = X1 + · · ·+Xn into blocks, each summing

pn variables. For this purpose, define

Yj,n =

jpn∑
`=(j−1)pn+1

X`, j = 1, . . . , rn,

which obviously verify

Sn = Y1,n + · · ·+ Y2rn,n +
n∑

`=2rnpn+1

X`.

The final term is a residual block summing at most 2pn − 1 variables. Finally, put

Zn,od =
rn∑
j=1

Y2j−1,n and Zn,ev =
rn∑
j=1

Y2j,n.

Define now a family of coupling variables: Y ∗j,n, j = 1, . . . , rn, are independent random

variables such that Y ∗j,n has the same distribution as Yj,n. Remark that, if the original

variablesXn are strictly stationary, the Y ∗j,n, j = 1, . . . , 2rn, are identically distributed.

Moreover, in such case, E(Y ∗j,n)2 = s2pn . Further, denote

Z∗n,od =
rn∑
j=1

Y ∗2j−1,n

and analogously for Z∗n,ev.

Theorem 4.2.1. Let Xn, n ≥ 1, be strictly stationary centered and associated random

variables. Let Sn = X1 + · · ·+Xn, s2n = ES2
n. Assume that

(A1) the random variables Xn have finite moments of order q > 2;

(A2) x2n = 2γ log n, for some γ < q
2
− 1;

(A3) 1
n
s2n −→ σ2 for some σ2 <∞;

(A4) u(n) = O
(
n−

1+3γ
1−α

)
, where α ∈

(
max

(
1
2

+ 1
q
, 1
2

+ 1+2γ
2(q−1)

)
, 1

)
;
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(A5) |P (Sn > 2xnsn)− 2P (Zn,od > xnsn)| = O (n−γ).

Then

P(Sn > 2xnsn) = (1− Φ(xn))(1 + o(1)). (4.3)

Proof. The proof of the theorem follows the more or less classical steps after the

decomposition of Sn into blocks and coupling these blocks with variables with the

same distribution but independent: 1. prove the moderate deviation for the coupling

variables; 2. control the difference between the original blocks and the coupling ones;

3. prove the residual block converges to zero at the appropriate rate; 4. finally,

approximate the convenient tail probabilities. To complete this plan we need to be

more specific about the sequence pn used for the construction of the blocks. We

will assume that pn ∼ n1−α, where α ∈ (0, 1) is given by (A4) (remark that the

assumption on γ in (A2) ensures that a choice α < 1 is indeed possible).

Step 1. To accomplish this step we apply Theorem 4.1.1 to the random variables

Y ∗j,n defining each of the summations Z∗n,od and Z∗n,ev. We shall concentrate on Z∗n,od,

as the other summation is analogous. Now, as mentioned above, Z∗n,od is a sum of

identically distributed random variables. It follows from (A1), that the moment

assumption required by Theorem 4.1.1 on the variables Y ∗j,n is satisfied. Referring

to the notation of Theorem 4.1.1, we have Bn = rns
2
pn ∼ nσ2 (this corresponds

to our s2n), Mn = rnE(Y q
j,nIYj,n≥0) and Ln = rnB

−q/2
n E(Y q

j,nIYj,n≥0) ∼ rnn
−q/2pqn =

n(1−α)(q−1)+1−q/2. The exponent in this last expression is rewritten as q
2
− α(q −

1) < −γ < 0, as follows from (A4), thus Ln −→ 0, as required by Theorem 4.1.1.

Moreover, x2n − 2 logL−1n ∼ n2γ − n2α(q−1)−q, again from (A4), α > 1
2

+ 1+2γ
2(q−1) , so it

follows that 2α(q − 1) − q > 2γ, thus x2n − 2 logL−1n −→ −∞, hence satisfying the

assumption on xn in Theorem 4.1.1.

Concerning (4.2), a Lindeberg like assumption in Theorem 4.1.1, notice that when

applied to the Y ∗j,n variables, remembering that Bn ∼ n and all the terms in the

summation are identical, it may be rewritten as

x4nE
(
Y 2
j,nI(−∞,−εsn/x5n)(Yj,n)

)
−→ 0.

(We do not include the ∗ as the mathematical expectation above only depends on

the moments of each variable). Of course, we may replace sn by n1/2. Enlarging the

integration set, we obviously have the upper bound

x4nE
(
Y 2
j,nI(−∞,−εn1/2/x5n)(Yj,n)

)
≤ x4nE

(
Y 2
j,nI|Yj,n|>εn1/2/x5n

)
.
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The integrand above is the square of a sum of random variables, so we need to separate

the random variables in this square. This may be accomplished using Lemma 4.1.2.

Remembering that the Xn variables are identically distributed, one easily obtains

that

x4nE
(
Y 2
j,nI|Yj,n|>εn1/2/x5n

)
≤ 2x4np

2
n

∫
{|Xi|>εn1/2/(2pnx5n)}

X2
i dP

≤ 2x4np
2
n (E |X1|q)2/q

(
P

(
|X1| >

εn1/2

2pnx5n

))1−2/q

≤ 2x4np
2
n (E |X1|q)2/q

(
E |X1|q

(
2pnx

5
n

εn1/2

)q)1−2/q

= 2E |X1|q
2q−2pqnx

5q−6
n

εq−2n(q−2)/2 .

Taking into account (A2), xn grows to infinity at a logarithmic rate, thus the be-

haviour of the term above is driven by the polynomial factors. We have chosen

pn ∼ n1−α, so it follows that

pqnx
5q−6
n

n(q−2)/2 ∼
pqn(log n)5q/2−3

n(q−2)/2 ∼ nq(1/2−α)+1(log n)5q/2−3 −→ 0,

since q(1
2
− α) + 1 < 0, as follows from (A4). Then, from Theorem 4.1.1 it follows

that (remember E(Y 2
j,n) = s2pn)

P
(
Z∗n,od > xnspn

√
rn
)
∼ 1√

2π xn
e−x

2
n/2.

Step 2. Denote by G1 the distribution function of Zn,od, by G2 the distribution

function when the summands are assumed independent, that is, the distribution func-

tion of Z∗n,od, and by ϕ1 and ϕ2 the corresponding characteristic functions:

ϕ1(t) = E
(
eitZn,od

)
, and ϕ2(t) =

rn∏
j=1

E
(
eitYj,n

)
.

The classical Berry-Esséen inequality shows that

sup
x∈R
|G1(x)−G2(x)| ≤ c1

∫ T

−T

|ϕ1(t)− ϕ2(t)|
|t|

dt+
c2
T
, for every T > 0,

where c1 and c2 are constants independent of T . It follows from Newman’s inequality

for characteristic functions of associated variables (Theorem 1 in Newman [33]) that

|ϕ1(t)− ϕ2(t)| ≤
t2

2

∑
j 6=k

Cov (Yj,n, Yk,n) .
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As the Xn are stationary, it still follows that

∑
j 6=k

Cov (Yj,n, Yk,n) ≤ n

+∞∑
`=pn+2

Cov (X1, X`) = nu(pn + 2) ≤ nu(pn),

referring to the Cox-Grimmett coefficients, as the covariances are nonnegative. In-

serting this into the Berry-Esséen bound one finds

sup
x∈R
|G1(x)−G2(x)| ≤ c1

2

∫ T

−T
nu(pn) |t| dt+

c2
T
≤ c1

2
nu(pn)T 2 +

c2
T
,

So, by choosing T ∼ (nu(pn))−1/3, we find an upper bound of order (nu(pn))1/3.

Using now the choice pn ∼ n1−α and taking into account (A4), it follows that

(nu(pn))1/3 ∼ n−γ. Given the behaviour of xn described in assumption (A2), it

follows that x−1e−x
2/2 ∼ n−γ, hence, we have (nu(pn))1/3 = O

(
x−1e−x

2/2
)

, which

controls the convergence rate of the approximation between the actual variables and

the coupling ones.

Step 3. We prove that the residual block defines probabilities that converge to

zero faster than the terms considered in the previous steps. Remember that it follows

from (A3) that sn ∼ n1/2. Thus, as the variables X` are identically distributed,

P

(
n∑

`=2rnpn+1

X` > xnsn

)

≤
n∑

`=2rnpn

P

(
X` >

xnn
1/2

n− 2rnpn

)
≤ (n− 2rnpn)q+1

xnnq/2
E |X1|q .

As x2n = 2γ log n it is enough to verify that

(n− 2rnpn)q+1

nq/2
≤ 2q+1pq+1

n

nq/2
∼ n(q+1)(1−α)−q/2.

Now (q + 1)(1− α)− q
2
> (q − 1)(1− α)− q

2
> γ, as follows from the (A4), so

P

(
n∑

`=2rnpn+1

X` > xnsn

)
= O

(
n−γ
)
.

Step 4. In the previous steps we controlled the behaviour of P(Zn,od > xnspn
√
rn),

but we are interested in probabilities of the form P(Sn > xnsn). The difference

between these two terms is controlled at the appropriate convergence rate by (A5).
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Remark 4.2.2. Assumption (A5) is not a very natural one. We give an example

showing that it is indeed achievable. We have assumed the Xn to be stationary, so Zn,od

and Zn,ev have the same distribution. Assume, for simplicity, that Sn = Zn,od +Zn,ev,

that is, the residual term does not exist (remember we have already shown that this

residual term is negligible). So one could look at

P (Sn > 2xsn)− 2P (Zn,od > xsn) .

Assume (Zn,od, Zn,ev) has Gaussian distribution with mean (0, 0) and Cov(Zn,od, Zn,ev) =

ρn. Remark that, as Var(Zn,od) ∼ Var(Zn,ev) ∼ n
2
, we have ρn ≤ n

2
. It is easily verified

that Sn is Gaussian with mean 0 and variance n+ 2ρn. So, denoting by Z a standard

Gaussian random variable:

P
(
Sn > 2x

√
n+ 2ρn

)
− 2P

(
Zn,od > x

√
n+ 2ρn

)
= P(Z > 2x)− P

(
Z > x

√
2n+ 4ρn

n

)
.

(4.4)

As we have already remarked, as x −→ +∞,

P(Z > x) ∼ 1√
2π x

e−x
2/2 .

Using this approximation on (4.4) and multiplying by xex
2/2, we find[

P
(
Sn > 2x

√
n+ 2ρn

)
− 2P

(
Zn,od > x

√
n+ 2ρn

)] x

e−x2/2

∼ exp (−3x2/2)

2
√

2π
+

exp (−x2(1/2 + 2ρn/n))√
2π
√

2 + 4ρn/n
.

As both exponents are negative, this remains bounded, so that (A4) is fulfilled.

Remark 4.2.3. Still about (A5). One can easily see that the argument above is a

lot more restrictive if we compare∣∣∣P (Sn > xsn)− 2P
(
Zn,od >

xsn
2

)∣∣∣ .
Indeed, repeating the approximations for the Gaussian variable as above, one could

only conclude about the boundedness of this difference if ρn ≥ n
2
. Now remember that

ρn represents the covariance of two random variables with variances equal to n
2
, so

in order to make these two requirements compatible we would need that ρn ∼ n
2
, thus

reducing significantly the possibility of choices for ρn.
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Assumption (A4) describes the decrease rate for the Cox-Grimmett coefficients

depending on a parameter that is used for tuning the technical construction needed for

the proof. It is useful to have a version of the result with an assumption independent

from these tuning parameters.

Corollary 4.2.4. The result in Theorem 4.2.1 holds if we replace (A4) by

(A4 ′) u(n) = O
(
n−θ
)
, where θ > (1 + 3γ) max

(
2 + 4

q−2 , 2 + 4γ+2
q−2γ−2

)
.

Proof. With respect to the proof of Theorem 4.2.1, it is enough to verify that

θ > 1+3γ
1−α , where α > max

(
1
2

+ 1
q
, 1
2

+ 1+2γ
2(q−1)

)
. From here follow immediate bounds

for 1−α that we plug in the above expression to find the given condition for he choice

of the parameter θ.

Remark 4.2.5. Notice that the assumption on the Cox-Grimmett coefficients, in ei-

ther form (A4) or (A4 ′), is much milder than what was assumed in Henriques and

Oliveira [21] to prove a large deviation principle: Cov (X1, Xn) = a0 exp (−n(log n)1+a),

where a0 > 0 and a > 0.

Let us get back to a discussion about assumption (A5), seeking for more a natural

sufficient condition. According to Remark 4.2.2, when the distributions are Gaussian

(A5) is satisfied. So, one way to look for more natura conditions is to try to control

the distance with respect to Gaussian distributions using Berry-Esséen bounds.

Theorem 4.2.6. Let Xn, n ≥ 1, be strictly stationary centered and associated ran-

dom variables. Let Sn = X1 + · · · + Xn, s2n = ES2
n. Assume that (A1)–(A5) in

Theorem 4.2.1 are satisfied with q > 2 and γ < min(1
5
, q
2
− 1) Then (4.3) holds.

Proof. We need to verify that (A5) is satified. For this purpose introduce Gaus-

sian centered variables Ŝn, Ẑn,od and Ẑn,ev with variances ES2
n, EZ2

n,od and EZ2
n,ev,

respectively, and such that Cov(Ẑn,od, Ẑn,ev) = Cov(Zn,od, Zn,ev), and decompose

|P (Sn > 2xnsn)− 2P (Zn,od > xnsn)|

≤
∣∣∣P (Sn > 2xnsn)− P

(
Ŝn > 2xnsn

)∣∣∣+
∣∣∣P(Ŝn > 2xnsn

)
− 2P

(
Ẑn,od > xnsn

)∣∣∣
+
∣∣∣P(Ẑn,od > xnsn

)
− 2P (Zn,od > xnsn)

∣∣∣ .
Remark 4.2.2 shows that the middle term above

∣∣P (S∗n > 2xnsn)− 2P
(
Z∗n,od > xnsn

)∣∣ =

O (n−γ). As the variables satisfy the Central Limit Theorem, the remaining terms

may be bounded by the Berry-Esséen inequality. Now, taking into account Corol-

lary 4.14 in Oliveira [39], the convergence rate for these terms is of order n−1/5.
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Hence, |P (Sn > 2xnsn)− 2P (Zn,od > xnsn)| is of the same order as the slowest term,

that is n−γ, thus (A5) is satisfied, so the conclusion of Theorem 4.2.1 holds, that is,

(4.3) is verified.

4.3 Main result

The result stated in Theorem 4.2.6 is a sort of a worst case scenario concerning the

approximation to the Gaussian distribution. We may improve on our Theorem 4.2.1 if

we are more precise about the convergence rate in assumption (A3). To accomplish

this we need first to prove an adapted version of the Berry-Esséen bound for the

approximation of distribution functions in the Central Limit Theorem.

Theorem 4.3.1. Let Xn, n ≥ 1, be strictly stationary centered and associated random

variables with finite moments of order 3. Let Sn = X1 + · · · + Xn, s2n = ES2
n and

assume that 1
n
s2n −→ σ2 <∞. If pn and rn are sequences as defined in the beginning

of Section 4.2, then, for n large enough,

|P (Sn ≤ xsn)− Φ(x)| ≤ T 2

(
1−

2rns
2
pn

s2n

)
+

24

π
√

2π T
+ 4
√
π c′1e

c′1/(2c
2
1)
rnE |Yj,n|3

s3n
,

(4.5)

where Φ(·) is the distribution function of the standard Gaussian distribution, T =
s2pnsn

4E|Y 3
j,n|

and c1, c
′
1 > 0 are constants that do not depend on the random variables.

Proof. Using the classical Berry-Esséen bound we have for every T > 0 (see, for

example, Theorem A.1 in [39]),

|P (Sn ≤ xsn)− Φ(x)| ≤ 1

π

∫ T

−T

1

|t|

∣∣∣ϕSn( t
sn

)− e−t2/2
∣∣∣ dt+

24

π
√

2π T
,

where ϕSn represents that characteristic function of Sn. To bound the integral above

remember that Sn = Y1,n + · · ·+Y2rn,n and add and subtract the terms
∏2rn

j=1 Ee
it
sn
Yj,n

and e−rnt
2s2pn/s

2
n inside the absolute value and separate the corresponding three inte-

grals, and that, due to the strict stationarity, the blocks Yj,n have the same distribu-

tion as Spn . Now, using Newman’s inequality for characteristic functions (Theorem 1

in Newman [33]), for the first integral obtained it follows immediately that,∫ T

−T

1

|t|

∣∣∣∣∣E exp

(
it
sn

2rn∑
j=1

Yj,n

)
−

2rn∏
j=1

Ee
it
sn
Yj,n

∣∣∣∣∣ dt
≤ 1

2

∫ T

−T

1

|t|
∑
j 6=j′

t2

s2n
Cov(Yj,n, Yj′,n) dt =

T 2

2

(
1−

2rns
2
pn

s2n

)
.
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The third integral is also easily bounded. Indeed, using |ex − ey| ≤ |x− y|,∫ T

−T

1

|t|

∣∣∣e−rnt2s2pn/s2n − e−t2/2∣∣∣ dt ≤ T 2

2

(
1−

2rns
2
pn

s2n

)
.

We have thus obtained the first two terms in the upper bound in (4.5). The remaining

integral to analyse is∫ T

−T

1

|t|

∣∣∣∣∣
2rn∏
j=1

Ee
it
sn
Yj,n − e−rnt2s2pn/s2n

∣∣∣∣∣ dt =

∫ T

−T

1

|t|

∣∣∣∣∣
2rn∏
j=1

ϕYj,n

(
t
sn

)
− e−rnt2s2pn/s2n

∣∣∣∣∣ dt,
where ϕYj,n is the characteristic function of Yj,n. Let Wj, j = 1, . . . , 2rn, be random

variables with the same distribution as Yj,n such that the two variables are indepen-

dent. Then, for each j = 1, . . . , rn, E(Wj − Yj,n) = 0, Var(Wj − Yj,n) = 2s2pn and

E |Wj − yj,n|3 ≤ 8E |Yj,n|3. Hence, for some θ ∈ (−1, 1),

∣∣∣ϕYj,n ( t
sn

)∣∣∣2 = ϕWj−Yj,n

(
t
sn

)
≤ 1−

s2pnt
2

s2n
+

4θ

3

|t|3 E |Yj,n|3

s3n
≤ exp

(
−
s2pnt

2

s2n
+

4θ

3

|t|3 E |Yj,n|3

s3n

)
,

and ∣∣∣∣∣
2rn∏
j=1

ϕYj,n

(
t
sn

)∣∣∣∣∣
2

≤ exp

(
−

2rnt
2s2pn
s2n

+
8θ

3

|t|3 E |Yj,n|3

s3n

)
.

Assume that |t| ≤ T =
s2pns

2
n

4E|Y 3
j,n|

. Then 8θ
3

|t|3E|Yj,n|3

s3n
≤ 2rnt2s2pn

3s2n
, thus

∣∣∣ϕYj,n ( t
sn

)
− e−rnt2s2pn/s2n

∣∣∣ ≤ exp

(
−

2rnt
2s2pn

3s2n

)
+exp

(
−
rnt

2s2pn
s2n

)
≤ 2 exp

(
−

2rnt
2s2pn

3s2n

)
.

(4.6)

Another Taylor expansion gives, for some θ ∈ (−1, 1),

ϕYj,n

(
t
sn

)
= 1−

t2s2pn
2s2n

+ θ
|t|3 E |Yj,n|3

6s3n
. (4.7)

If we assume now that |t| ≤ sn

c1(2rnE|Yj,n|3)
1/3 , it follows from the previous inequality

that ∣∣∣ϕYj,n ( t
sn

)
− 1
∣∣∣ ≤ 1

2(2rn)2/3c21
+

1

12c31rn
,

which is, for n large enough, arbitrarily small, thus the characteristic function is

bounded away from 0 for |t| ≤ sn

c1(2rnE|Yj,n|3)
1/3 . Moreover, from (4.7) and taking into

account the upper bound for |t|, it follows that∣∣∣ϕYj,n ( t
sn

)
− 1
∣∣∣2 ≤ t4s4pn

2s4n
+
t6(E |Yj,n|3)2

18s6n
≤ |t|

3 E |Yj,n|3

s3n

1 + 18c21
36c31

.
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As the characteristic functions are bounded away from 0, we may take their loga-

rithms, for which we find that, for some θ, γ ∈ (−1, 1),

logϕYj,n

(
t
sn

)
= −

t2s2pn
2s2n

+θ
|t|3 E |Yj,n|3

6s3n
+γ

1 + 18c21
36c31

|t|3 E |Yj,n|3

s3n
= −

t2s2pn
2s2n

+η
|t|3 E |Yj,n|3

2s3n
,

where η = θ
3

+ γ
1+18c21
18c31

. If we define c′1 = 1
3

+
1+18c21
18c31

, we have |η| ≤ c′1 ≤ 1, for c1

conveniently chosen. Summing these bound for the logarithms, we find that

logϕSn

(
t
sn

)
= −

rnt
2s2pn
s2n

+ η
rn |t|3 E |Yj,n|3

s3n
,

and ∣∣∣∣∣
2rn∏
j=1

Ee
it
sn
Yj,n − e−rnt2s2pn/s2n

∣∣∣∣∣ ≤ e−rnt
2s2pn/s

2
n

∣∣∣ec′1rn|t|3E|Yj,n|3/s3n − 1
∣∣∣

≤ c′1rn|t|
3E|Yj,n|3

s3n
ec
′
1rn|t|

3E|Yj,n|3/s3n e−rnt
2s2pn/s

2
n .

In order to get an unified upper bound with (4.6) we choose the constant c1 such

that, for |t| > sn

c1(2rnE|Yj,n|3)
1/3

c′1rn |t|
3 E |Yj,n|3

s3n
≥ c′1

2c31
=

6c31 + 18c21 + 1

36c61
≥ 2,

which is fulfilled if c1 < .7621. For such a constant we have thus that∣∣∣∣∣
2rn∏
j=1

Ee
it
sn
Yj,n − e−rnt2s2pn/s2n

∣∣∣∣∣ ≤ c′1rn |t|
3 E |Yj,n|3

s3n
ec
′
1rn|t|

3E|Yj,n|3/s3n e−rnt
2s2pn/s

2
n ,

for every |t| ≤ T =
s2pnsn

4E|Y 3
j,n|

. Taking into account this variation for t, it still follows

that
c′1rn|t|

3E|Yj,n|3

s3n
≤ c′1

2c21
. Furthermore, as 1

n
s2n −→ σ2 it follows

rns2pn
sn
−→ 1, hence, for

n large enough, we have 1
4
<

rns2pn
sn

< 1, so that e−rnt
2s2pn/s

2
n ≤ e−t

2/4. Inserting this

bounds in the integral we find the remaining upper bound in (4.5).

Theorem 4.3.1 show that the rate of the convergence 1
n
s2n −→ σ2 can play an

important role on simplifying assumption (A5) in Theorem 4.2.1.
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Theorem 4.3.2. Let Xn, n ≥ 1, be strictly stationary centered and associated random

variables. Let Sn = X1 + · · ·+Xn, s2n = ES2
n. Assume that

(B1) the random variables Xn have finite moments of order q ≥ 3;

(B2) x2n = 2γ log n, for some γ < min
(
1
2
, q
2
− 1
)
;

(B3) for some σ2 <∞,
∣∣ 1
n
s2n − σ2

∣∣ = O(nβ), for some β < 0;

(B4) u(n) = O
(
n−

1+3γ
1−α

)
, where α ∈

(
3
4

+ γ
2
, 1
)
;

Then

P(Sn > 2xnsn) = (1− Φ(xn))(1 + o(1)). (4.8)

Proof. We follow the arguments in the proof of Theorem 4.2.1, with pn ∼ n1−α.

This produces a convergence term of order n−γ. Now, we have to verify that the

approximation to the Gaussian is, at least, as fast as the arte n−γ. With respect to

the proof Theorem 4.3.1 remark, from (B3) it follows that
∣∣∣1− 2rns2pn

s2n

∣∣∣ = O(nβ(1−α)).

Moreover, we have T =
s2pnsn

4E|Yj,n|3
∼ n1/2p−2n ∼ n2α−3/2 −→ ∞, as α > 3

4
. This

implies that the two first terms in the upper bound in (4.5) are of order T 2nβ(1−α) ∼
n4α−3+β(1−α) and T−1 ∼ n3/2−2α. It follows from (B4) that both 4α−3+β(1−α) < −γ
and 3/2 − 2α < −γ, thus converging faster that the order n−γ that comes from the

arguments in course of proof of Theorem 4.2.1. Finally, the last term in the upper

bound in (4.5) is easily verified to be of order n3/2−2α, line the term corresponding to

T−1, so the proof is concluded.

Finally, we may state a result in the same spirit as Corollary 4.2.4. We state

it without proof, as this is a very simple replication of the argument used to prove

Corollary 4.2.4.

Corollary 4.3.3. The result in Theorem 4.3.2 holds if we replace (B4) by

(B4 ′) u(n) = O
(
n−θ
)
, where θ > 4 + 20γ

1−2γ .
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4.4 An application

As an application of the previous results, consider a moving average model Xn =∑∞
i=1 φiεn−i, where the εn are independent and identically distributed with mean 0,

variance 1 and finite moments of order q > 2, and φn > 0, so the Xn, n ≥ 1, are

associated. Using Hölder inequality it easily follows that Xn has finite moment of

order q, for some ρ ∈ (0, 1),
∑∞

i=1 φ
ρq
i < ∞ and

∑∞
i=1 φ

(1−ρ)q/(q−1)
i < ∞. Concerning

the covariances, whose control is needed in order to verify (A4 ′), it is easily verified

that

Cov(X1, Xn) =
∞∑
i=1

φiφn−1+i ≤

(
∞∑
i=n

φτi

)1/τ ( ∞∑
i=1

φτ
′

i

)1/τ ′

, (4.9)

where τ, τ ′ > 1 are such that τ−1 + (τ ′)−1 = 1. So, (A4 ′) is verified if the moving

average coefficients satisfy, for some τ > 1,

φn −→ 0,

∞∑
i=1

φsi <∞, where s = min

(
ρq,

(1− ρ)q

q − 1
,

τ

τ − 1

)
, ρ ∈ (0, 1),

∞∑
i=n

φτi ∼ n−θτ , θ > (1 + 3γ) max

(
2 +

4

q − 2
, 2 +

4γ + 2

q − 2γ − 2

)
.

Assume now that the coefficients verify φn ∼ n−a, for some a > 0. We need to

adjust the choice of the decrease rate, that is, the exponent a, in order to meet the

requirements discussed above. To have the appropriate finite moment of order q for

the Xn we need to ensure the convergence of the above mentioned series. This follows

if we can choose ρ ∈ (0, 1) such that aρq > 1 and (1−ρ)aq
q−1 > 1, that is 1

aq
< ρ < 1− aq

q−1 .

Such a choice is always possible as soon as a > 1. Inserting now the behaviour of

the φi in (4.9) it follows that Cov(X1, Xn) ∼ n−(a+1/τ), so that the Cox-Grimmett

coefficient u(n) ∼ n−(a+1+1/τ), where τ > 1 is arbitrarily chosen. Thus, in order to

verify (A4 ′) we must require a+ 1 + 1
τ
> (1 + 3γ) max

(
2 + 4

q−2 , 2 + 4γ+2
q−2γ−2

)
, where

0 < γ < q
2
− 1 and q > 2. So, finally, taking into account the liberty to choose τ ,

it is enough to require that a > (1 + 3γ) max
(

2 + 4
q−2 , 2 + 4γ+2

q−2γ−2

)
− 2. A condition

based on the more usable Corollary 4.3.3 would require a+ 1 + 1
τ
> 4 + 20γ

1−2γ or, using

the liberty to choose τ , a > 2 + 20γ
1−2γ and we should remember that in this case we

must have 0 < γ < min
(
1
2
, q
2
− 1
)

and q ≥ 3.
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5. Conclusions and future work

Studying convergence rates of weighted sums of associated random variables and

moderate deviations of sums of associated and strictly stationary random variables

were the objectives of this dissertation.

We showed the convergence of weighted sums of associated random variables nor-

malized by n1/p where p ∈ (1, 2) assuming moments larger than p. Some previous

results by Oliveira [38] are extended by relaxing the moment assumption on the ran-

dom variables, approaching the p−th order moment assumptions used by Louhichi [26]

to prove the convergence for constant weights, while strengthening the assumption on

the decay rate of the covariances. We also considered the Marcinkiewicz-Zygmund law

with assumptions on the 2-dimensional analogue of tail probabilities of the random

variables relaxing in this case the assumption on the decay rate on the covariances.

Our results extended analogous characterizations known for sums of independent or

negatively dependent random variables.

We utilized a truncation technique together with coupling with independent vari-

ables which allows a relaxation of the assumptions on the weights. The assumptions

on p, which depends on the asymptotic behaviour of the weights, as usual, now in-

cludes the case p < 1, which was excluded from earlier results for positively associated

variables. Also, we gave a direct comparison with the characterizations previously

available, showing that the scope of applicability of the results obtained in this chapter

does not overlap with previously known conditions for the same asymptotic results.

Finally, we presented a moderate deviation in the non-logarithmic scale for sums

of associated and strictly stationary random variables with finite moments of order

larger than 2.

As sums of associated random variables are concerned; a possible improvement on

the regularity conditions of the coefficients is not likely to be achieved. Rather one

should look for characterizations of the asymptotics of weighted sums for more general

normalizations, in the same sprit as explored by Cuzick [15], that is considering

logarithmic factors in the normalizing sequence. Also, searching for more general
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description of normalizing sequences allowing to prove almost sure results should be

addressed.

Still about weighted sums consideration of random weights could be an interesting

problem. Both previous problems could contribute to some results on characterisation

of consistency of non-parametric regression estimators based on associated sample.

As what concerns moderate deviation these results must be accompanied by large

deviation counterparts. This will require a rather different approach to the problem.

Having such characterization will allow for some explicit contributions for approxi-

mating a few risk measures that are popular in application literature.
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Poincaré 32 (1996), 549–569.

[10] Cai, G., Strong laws for weighted sums of NA random variables, Metrika 68

(2008), 323-331.

57



[11] Cheng, P., A note on strong convergence rates in nonparametric regression,

Statist. Probab. Lett. 24 (1995), 357–364.

[12] Chow, Y., Some convergence theorems for independent random variables, Ann.

Math. Statist. 37 (1966), 1482–1493.
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