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Abstract 

A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was developed. The 

sensor consists of hemin and functionalized multi-wall carbon nanotubes covalently attached to chitosan 

via the carbodiimide crosslinker EDC followed by chitosan electrodeposition on the surface of carbon 

fiber microelectrodes. Cyclic voltammetry supported direct electron transfer from the FeIII/FeII couple of 

hemin to the carbon surface at -0.370 V and -0.305 V vs. Ag/AgCl for cathodic and anodic peaks, 

respectively. Square wave voltammetry revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that 

increased linearly with NO concentration between 0.25 and 1 μM. The average sensitivity of the 

microsensors was 1.72 nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide 

reduction peaks were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was 

observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The microsensor was 

successfully applied to the measurement of exogenously applied NO in the rat brain in vivo. 
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Abstract

A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was 

developed. The sensor consists of hemin and functionalized multi-wall carbon nanotubes 

covalently attached to chitosan via the carbodiimide crosslinker EDC followed by chitosan 

electrodeposition on the surface of carbon fiber microelectrodes. Cyclic voltammetry supported 

direct electron transfer from the FeIII/FeII couple of hemin to the carbon surface at -0.370 V and -

0.305 V vs. Ag/AgCl for cathodic and anodic peaks, respectively. Square wave voltammetry 

revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that increased linearly with NO 

concentration between 0.25 and 1 μM. The average sensitivity of the microsensors was 1.72 
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nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide reduction peaks 

were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was 

observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The 

microsensor was successfully applied to the measurement of exogenously applied NO in the rat 

brain in vivo. 

Keywords: 

Nitric oxide microsensor; Hemin; Carbon nanotubes; Chitosan; In vivo electrochemistry 

1. Introduction 

Nitric oxide (NO) is a key free-radical messenger involved in a wide range of physiological 

and pathological processes. In the brain, NO can act as a neuromodulator in critical processes 

including memory. learning and neurovascular coupling (Ledo et al., 2004; Calabrese et al., 

2007; Garthwaite, 2008). Given its peculiar physicochemical properties that support a volume 

signaling process, a detailed knowledge of the cellular actions of NO has been hampered due to 

difficulties associated with the measurement of its profile of change in biological tissues. Its 

short half-life and low concentration in vivo require the use of sensitive and selective methods 

possessing high spatio-temporal resolution (Thomas et al., 2008; Santos et al., 2012). 

Electrochemical methods associated with microelectrodes are particularly attractive for this 

purpose because of their relative simplicity, good analytical performance and high temporal 

resolution with minimal damage to tissue (Lama et al., 2012). Various approaches have been 

made to design NO microsensors with enhanced performance and robustness but the main 

sensing strategy has been the oxidation of NO at a relatively high potential (+0.9 V), via the 

utilization of chemically–modified microelectrodes (Bedioui and Villeneuve, 2003; Barbosa et 

al., 2008; Hetrick and Schoenfisch, 2009; Bedioui et al., 2010). Even so, the selectivity of the 

NO microsensors is a major concern because many substances present in the brain extracellular 

space (e.g. ascorbate) are potential interferents when using amperometry. 

The electrocatalytic reduction of NO by metalloporphyrins and heme proteins immobilized on 

electrode surfaces has been less explored but it is an alternative sensing approach taking 

advantage of the high affinity of NO for transition metals. Hence, there have been numerous 

reports on the development of NO biosensors based on hemoglobin (Fan et al., 2004), myoglobin 

(Zhang et al., 2005), Cytochrome C (Koh et al., 2008), horseradish peroxidase (HRP) (Shang et 
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al., 2004) and microperoxidase (Abdelwahab et al., 2010). Hemin, which has good stability in 

solution and is relatively inexpensive, has also been used for hydrogen peroxide, oxygen and NO 

detection (Ye et al., 2004; de Groot et al., 2005; Turdean et al., 2006; Li et al., 2009). The NO 

biosensors reported so far are based on direct electron transfer (DET) between the immobilized 

metalloporphyrins or heme-containing proteins and the electrode surface. However, the 

development of mediator-free, third generation NO biosensors, is however critically dependent 

on the immobilization procedure of heme proteins due to the deep burying of the heme group in 

the protein and to the orientation of the protein on the electrode surface (Wu and Hu, 2007).  

Carbon nanotubes (CNTs) have been extensively used to enhance electrical contact between 

heme and the electrode surface due to their unique physical and chemical properties. These 

materials are usually found in two categories: single wall (SWCNTs) and multiwall (MWCNTs). 

They provide a high surface-to-volume ratio, promote electron transfer reactions and decrease 

overpotentials of various electroactive compounds (Agui et al., 2008; Sarma et al., 2009; Vashist 

et al., 2011). The enhancement of DET of heme proteins by CNTs has been studied by physical 

adsorption of Hb-MWCNTs on pyrolytic graphite (Zhao et al., 2006) and Mb-MWCNT adsorbed 

on glassy carbon electrodes (Zhang et al., 2005), by coupling Hb to acid-treated MWCNTs in the 

presence of EDC (Zhang et al., 2007) or by adsorption of HRP on MWCNTs (Lee et al., 2006). 

In addition, microperoxidase (MP-11) has been immobilized onto a MWCNT nanocomposite 

prepared from electrodeposition of gold nanoparticles (AuNPs) and poly-TTCA (Koh et al., 

2008).  

A critical aspect of the DET and thence of the biosensor performance is the type of 

immobilization matrix in which CNTs and the biological recognition elements are embedded. A 

number of biocomposite films have been used, including room temperature ionic liquids (RTILs) 

(Xu et al., 2010), hydroxylethylcellulose (Liu et al., 2006), carboxymethylcellulose (Huang et al., 

2003), cyanoethylcellulose (Jia et al., 2009), layer-by-layer self-assembled film of hyaluronic 

acid (Barsan et al., 2010) and chitosan (Huang et al., 2002). 

Chitosan (Chit) is a linear ß-1,4-polysaccharide obtained by partial deacetylation of chitin 

from crustaceans that has been used for the immobilization of different enzymes and other 

biomolecules such as glucose oxidase, glutamate oxidase, lactate oxidase, HRP, tyrosinase and 

Cyt C (Krajewska, 2004). It is an attractive biocompatible polymer for fabrication of biosensors 

due to its high mechanical strength, excellent film forming ability and good adhesion, thus 
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providing a good matrix for immobilization of macromolecules (Krajewska, 2004; Yi et al., 

2005). In addition, the presence of reactive primary amines and hydroxyl groups allow 

advantageous chemical modification of the biopolymer. Because the pKa of Chit ranges from 6.0 

to 6.5, its solubility is pH-dependent. Given that in acidic medium most of its primary amines are 

protonated, Chit exists as a water-soluble cationic polyelectrolyte, but whereas when these 

groups deprotonate at pH above the pKa the polymer becomes insoluble (Yi et al., 2005).  

One of the most commonly methods for Chit film preparation is via cross-linking enzymes 

using glutaraldehyde or 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (EDC) to form 

enzyme-Chit gels (Ghica et al., 2009). Electrochemical deposition of Chit onto electrode surfaces 

was also reported and a series of biosensors have been developed based on this procedure 

(Krajewska, 2004). The electrodeposition of Chit, particularly by the procedure based on the 

electroreduction of p-benzoquinone as a “proton-consumer” to induce pH-dependent Chit 

deposition is a very attractive procedure for the immobilization of biomacromolecules on carbon 

fiber microelectrodes and microelectrode arrays under mild conditions, avoiding loss of 

biomolecules activity (Zhou et al., 2007).  

Noteworthy, most of the NO biosensors described in the literature were evaluated in buffer 

solutions in the absence of oxygen. This is a serious limitation owing to the potential interference 

of oxygen which is reduced at a negative potential. Actually, the presence of oxygen in 

biological media makes the NO measurement based on its electrocatalytic reduction a 

challenging task. 

In the present work, a biomimetic microsensor was designed for the NO measurement in the 

brain tissue in the presence of oxygen. The electrodeposition of Chit, cross-linked with 

MWCNTs and hemin by EDC, resulted in microsensors that were able to clearly resolve NO and 

oxygen reduction peaks, having good electrochemical stability in the presence of physiological 

brain oxygen concentrations. By using square wave voltammetry, we were able to measure 

exogenously applied NO in vivo in the rat brain. 
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2. Materials and methods 

2.1. Chemicals and solutions 

All chemicals were of analytical grade and were used as received. Hemin (>90% from bovine), 

dopamine (DA), nitrite, ascorbate (AA), dibasic sodium phosphate, monobasic sodium phosphate 

and sodium chloride and urethane were obtained from Sigma-Aldrich. Hydrogen peroxide (30%) 

and 3,4-dihydroxyphenylacetic acid (DOPAC) were purchased from Fluka. Chitosan (low 

molecular weight), p-benzoquinone, N-hidroxysuccinimide (NHS) and 1-[3-

(Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC) were from Aldrich. Multiwall 

carbon nanotubes functionalized with carboxyl groups (PD15L1-5-COOH) were obtained from 

Nanolabs (USA). The solutions were prepared in ultra-pure deionized water (�18M�.cm) from a 

Milli-Q water purification system, (Millipore Company, Bedford, MA). Phosphate-buffered 

saline (PBS lite), 0.05 M, pH 7.4 contained: 0.04 M Na2HPO4, 0.01 M NaH2PO4 and 0.1 M 

NaCl. NO standard solutions were prepared as previously described (Barbosa et al., 2008; 

Barbosa et al., 2011).. 

 

2.2. Preparation of the hemin-based microsensors 

The carbon fiber microelectrodes (CFMs) were fabricated as previously described (Santos et al., 

2008). Three procedures were used for microsensor preparation:  

(i) Hemin and MWCNTs adsorption on the CFM surface (sensors referred as 

CFM/Hemin/MWCNT). A dispersion of MWCNTs in water was prepared by addition of 1 mg of 

MWCNTs powder to 1 mL of ultra-pure deionized water followed by ultra-sonication during 15 

min. The CFMs were first coated with MWCNTs by a dipping procedure, dried for 1 h at room 

temperature and then dipped for 20 min in 0.3 mM Hemin dissolved in 20 mM NaOH.  

(ii) Co-electrodeposition of hemin and MWCNTs with chitosan (sensors referred as 

CFM/Hemin/MWCNT/Chit). Chitosan at 1% (w/v) was solubilized in 0.9% NaCl under constant 

stirring during a few hours at pH 4-5. The final pH was set to 5-5.6 by addition of NaOH. A 

suspension of 1 mg/mL MWCNTs and 20 mg/mL hemin was prepared by addition of MWCNTs 

and hemin powder to a 20 mM NaOH aqueous solution followed by 10 min ultra-sonication. The 

final solution used for electrodeposition of chitosan was prepared by mixing 40 μL of 1% Chit 
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with 40 μL of the MWCNT/hemin suspension followed by addition of 1 mg of p-benzoquinone. 

The CFM tip was immersed in 50 μL of the electrodeposition solution and benzoquinone was 

reduced by applying a constant potential of -0.5 V vs. Ag/AgCl during 300 s. The reduction of p-

benzoquinone consumes protons and thereby locally increases the pH at the microelectrode 

surface, allowing Chit insolubilization (Zhou et al., 2007). 

(iii) Hemin and MWCNTs were cross-linked with chitosan using EDC (sensors referred as 

CFM/Hemin/MWCNT/Chit-EDC). A suspension of 50 μL of MWCNTs/hemin was mixed with 

266 μL of 1% Chit and ultrasonicated during 15 min. Then, 121 μL aqueous solution of NHS (50 

mg/mL) were added to the mixture and finally 63 μL aqueous solution of EDC methiodide (10 

mg/mL) were added under stirring, which was maintained for 1h. Before electrodeposition, 1 mg 

of p-benzoquinone was added to 80 μL of Chit cross-linked with MWCNTs/hemin. The 

electrodeposition procedure was the same as described in protocol (ii). The microsensors were 

used at least one day after preparation. Control microsensors based on the three protocols 

described above but without MWCNTs in the coatings were also prepared. 

2.3. Electrochemical measurements 

Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV) experiments were performed 

using a PGSTAT12 (Ecochemie) running GPES software and IVIUM Compactstat running 

Iviumsoft. All in vitro measurements were performed using an electrochemical cell with three 

electrode configuration, with the microsensor as working electrode, a platinum wire as auxiliary 

and an Ag/AgCl (3M KCl) reference. Calibrations in the absence of oxygen were performed in a 

sealed chamber after bubbling ultrapure argon during 30 min. SWV parameters: f =25 Hz, Es=5 

mV, Esw =25 mV. In vivo recordings were performed in two electrode configuration mode.

2.4. In vivo experiments 

All animal procedures were approved by the local institutional animal care and use committee 

and were in accordance with the European Community Council Directive for the Care and Use 

of Laboratory Animals (86/609/ECC). In vivo studies were carried out in 8-9 week old wistar rats 

(260-340 g), as previously described (Barbosa et al., 2008). Briefly, rats were anesthetized with 

urethane (1.25-1.50 g/kg, i.p.) and placed in a stereotaxic frame (Stoelting Co, USA). A Dremel® 
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rotary was used to drill a hole in the skull over the brain area of interest. An Ag/AgCl reference 

electrode (200 μm diameter), prepared from a silver wire, was inserted into the brain through a 

small hole remote from the recording area. For the preparation of microelectrode/micropipette 

arrays, a micropipette puller (Sutter Instrument Co, CA) was used to pull glass capillaries (0.58 

mm i.d x 1.0 mm o.d.; AM, Systems Inc. WA). The micropipette was attached with its tip 

positioned at 250 μm from the microelectrode tip using sticky wax and was then filled with a 

saturated nitric oxide solution in PBS before insertion of the array in the brain. In vivo 

experiments were carried out in the hippocampal CA1 sub-region by using SWV. Small volumes 

of NO solution (nL range) were pressure ejected from the micropipette using a Picospritzer III 

(Parker Hannifin Corp., USA).

2.5. Data analysis 

Data was analyzed by GPES software and Microcal Origin Pro 7.5. The limit of detection 

(L.O.D.) was defined as the concentration that corresponds to signal-to-noise ratio of 3. 

Statistical analysis was performed using GraphPad Prism 5.0. Data is plotted as mean ± S.E.M. 

and presented in text and tables as mean ± standard deviation (S.D.). The values of n represent 

the number of microsensors used. Differences between two data sets were evaluated by a 

Student’s t-test. Statistical tests between multiple data sets were carried out using one- or two-

way analysis of variance (ANOVA). 

 

3. Results and Discussion 

3.1. Morphology of the composite films 

Figure 1 illustrates SEM images of dry hemin/MWCNT composite films prepared by 

adsorption (A), co-electrodeposition with chitosan (B) and electrodeposition of chitosan cross-

linked with hemin/MWCNT (C). Very small differences are evident between SEM images of the 

surface of the bare carbon fiber (Santos et al., 2008) and the fiber after hemin/MWCNTs coating 

suggesting that a relatively uniform and thin film of hemin/MWCNTs was formed (Fig. 1A). A 

film with a rough morphology was observed on the tip of the CFM/Hemin/MWCNT/Chit 

microsensors (Fig. 1B) due to the electrodeposition of the chitosan/MWCNT/hemin matrix. It is 

expectable that pH-dependent chitosan precipitation creates a much stronger driving force for co-
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deposition of hemin and MWCNTs than simple adsorption upon dipping, because the later relies 

on relatively weak intermolecular interactions. Accordingly, this rationale might explain the 

greater accumulation of material on the surface of the fibers induced by Chit/MWCNTs/Hemin 

electrodeposition than by MWCNTs/Hemin adsorption. A much thicker film appeared on the 

microsensor surface when MWCNTs and hemin were covalently bound to chitosan 

(CFM/Hemin/MCWNT/Chit-EDC), as shown in Fig. 1C. Several factors might contribute to the 

distinct morphology of these coatings: 1) The crosslinking likely forms linkages composed of 

hemin molecules or MWCNTs that connect adjacent chitosan polymer chains turning the matrix 

more robust and less porous; 2) The functionalization of the amine groups of Chit can alter its 

pH-dependent behaviour (e.g. pKa) affecting the electrodeposition process at the microelectrode 

surface.. 

 

3.2. Electrochemical characterization of the hemin-based microsensors 

The electrochemical characterization of the three types of composite films was performed by 

CV to investigate the DET of hemin immobilized on the CFM surface. The enhancement of DET 

by MWCNTs was also evaluated by comparison with control microsensors that lack MWCNTs 

in the coatings. Fig. 2A shows voltammograms of a CFM/Hemin/MWCNT/Chit-EDC 

microsensor recorded at potential sweep rates ranging from 5 to 100 V/s in PBS purged with 

ultra-pure argon. At a scan rate of 10 V/s, cathodic (Epc) and anodic (Epa) peaks attributed to the 

FeIII/FeII couple of hemin were observed at -0.370 ± 0.012 V and -0.305 ± 0.019 V (n=5), 

respectively, corresponding to a formal potential (Eo’) of -0.338 V vs. Ag/AgCl. The peak 

potentials of the FeIII/FeII couple are in agreement with previous reports supporting DET from 

hemin (de Groot et al., 2005; Turdean et al., 2006; Li et al., 2009). The corresponding calibration 

plot of peak current vs. scan rate (�) from 10 to 100 V/s is depicted in Fig. 2B. The slope of the 

straight line of Ipc vs. � is 5.5 nA V-1 s (R2=0.992) and for Ipa is 4.8 nA V-1 s (R2=0.995). The 

linear relationships are characteristic of a surface-confined electrochemical process. The peak 

separation of the redox couple at 10 V/s (�Ep) was 0.065 ± 0.026 V and increased with scan rate, 

a behaviour that is typical of a quasi-reversible heterogeneous electron transfer process. For scan 

rates below 5 V/s, the FeIII/FeII redox couple was not clearly visible on the CVs which might be 

explained by the geometry and ultra-small size of the microsensors. Average peak potentials of 
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where m was graphically related to the separation between anodic and cathodic peaks based on 

the series of values published by Laviron, 1979, assuming a charge transfer coefficient (�) of 0.5. 

The estimated ks was 837 ± 401 s-1 (n=9) for CFM/Hemin/MWCNT/Chit-EDC microsensors, 980 

± 346 s-1 (n=8) for CFM/Hemin/MWCNT/Chit sensors and 510 ± 343 s-1 (n=8) for 

CFM/Hemin/MWCNT microsensors. No significant differences were found between the three 

types of microsensors (p>0.05, ANOVA). Moreover, the high charge transfer rate constants are 

in agreement with previous reports for hemin monolayers on the electrode surface, ranging from 

160 to 4900 s-1 (Sagara et al., 1993; Feng et al., 1995), and are at least two orders of magnitude 

higher than values obtained for thicker films (Ye et al., 2004; Cao et al., 2012).

 

3.3. Electrocatalytic reduction of nitric oxide 

The electrochemical response of the microsensors to NO was evaluated by SWV following 

successive additions of a saturated NO solution to PBS in the absence of oxygen. Fig 3 shows a 

peak at -0.302 V recorded before NO addition using a CFM/Hemin/MWCNT/Chit-EDC sensor 

which is attributed to the FeIII/FeII redox couple. Following NO addition, a cathodic peak was 

observed at -0.763 V due to the electrocatalytic NO reduction by hemin. This value is close to 

that observed for hemin (de Groot et al., 2005; Li et al., 2009), Hb (Jia et al., 2009) and Mb 

(Huang et al., 2003). 

The electrocatalytic reduction of NO by hemin can be described by the following reaction 

mechanism (de Groot et al., 2005): 

Fe(II)  + NO                                Fe(II)-NO 

Fe(II)-NO  + H+  + e-                      Fe(II)-HNO 

Fe(II)_HNO +  2H+ +  2e-                     Fe(II)  + H2NOH 

The peak current increased linearly with the NO concentration, from 250 to 1000 nM. The 

calculated sensitivity was 1.7 ± 0.67 nA/μM and the microsensor’s LOD was 25 ± 14 nM 

(n=16). Comparison with control microsensors showed a slight but significant increase in 

sensitivity induced by MWCNTs, which is in accordance with the enhancement of DET (Fig. 

S1). Furthermore, the sensitivity of CFM/Hemin/MWCNT/Chit and CFM/Hemin/MWCNT 

microsensors was at least 2-fold higher than that of CFM/Hemin/MWCNT/Chit-EDC, which 

translated into a lower LOD, as summarized in Table 2. 
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This result could be explained by the much ticker morphology of the Hemin/MWCNT/Chit-

EDC composite film, which likely limits the diffusion of NO to the CFM surface, the place 

where most of the hemin molecules are located. A similar effect exerted by film thickness on the 

catalytic efficiency was shown to occur in Mb-CMC and Hb-CMC films (Huang et al. 2003). 

Nevertheless, the sensitivities reported here are much higher than the previously obtained value 

of 0.34 nA/μM for the same carbon fibers used to measure NO by direct oxidation at +0.9 V 

(Santos et al., 2008). Furthermore, the LODs in Table 2 are in the range reported for NO 

detection by direct oxidation using chemically-modified microelectrodes (Bedioui and 

Villeneuve, 2003; Hrbac et al., 2007; Santos et al., 2008; Brown et al., 2009; Bedioui et al., 

2010) which are significantly lower than the LOD of 200 nM reported for the electrocatalytic 

NO reduction with a carbon-powder microsensor based on hemoglobin (Guo et al., 2008). 

A major concern regarding the application of the microsensors for in vivo measurements of 

NO in biological media is the interference of oxygen, which is reduced at negative potentials 

(Zheng et al., 2002; Ye et al., 2004). Therefore, the electrochemical reduction of oxygen was 

investigated by adding aliquots of a PBS solution containing 250 μM oxygen to deoxygenated 

buffer. A cathodic peak which was proportional to oxygen concentration was observed at -0.269 

± 0.033 V (n=8), as shown in Fig. S2A.  

The sensitivities of the CFM/Hemin/MWCNT/Chit and CFM/Hemin/MWCNT microsensors 

were significantly higher than microsensors containing hemin covalently bound to chitosan 

(p<0.05 and p<0.01 respectively, table S1). However, the CFM/Hemin/MWCNT/Chit and 

CFM/Hemin/MWCNT sensors underwent a loss of response in the presence of oxygen. After 

100 scans performed in the presence of 40 μM oxygen, the cathodic peak height decreased 

significantly (Fig. S2C), which contrasts with the oxygen peak stability obtained with the 

CFM/Hemin/MWCNT/Chit-EDC microsensors (Fig. S2B). Fig. 4A  shows that the oxygen peak 

of CFM/Hemin/MWCNT/Chit-EDC microsensors does not change significantly after 100 

consecutive SWV scans, whereas large decreases were found for the other types of sensor. When 

the oxygen peak was completely lost after successive SWV scans in the presence of oxygen, the 

microsensors no longer displayed the typical FeIII/FeII redox couple, nor any electrocatalytic 

effect towards NO reduction. These results demonstrate that the microsensors containing 

MWCNTs and hemin covalently bound to chitosan are the most appropriate for NO 

measurement in biological tissues due to their ability to preserve the electrochemical response of 
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hemin under physiological oxygen concentrations. The actual mechanism underlying the loss of 

response that we observed following successive scans in the presence of oxygen has not been 

elucidated but is probably related with leaching of hemin from the electrode surface. It has been 

reported that most electrocatalytic systems of metalloporphyrins and substituted phthalocyanine 

are not very stable due to the porphyrin leaching from the electrode surface (Zheng et al. 2002; 

Cao et al. 2012). Therefore, a plausible explanation for the CFM/Hemin/MWCNT/Chit-EDC 

stability is that the covalent binding of hemin to chitosan by EDC stabilizes the microsensor 

response in the presence of oxygen by preventing the loss of entrapped hemin to the PBS 

solution.   

The response of microsensors to NO was also evaluated in the presence of oxygen (43 μM). 

Fig. 4B shows typical voltammograms of a CFM/Hemin/MWCNT/Chit-EDC sensor following 

NO additions in the range of 250-1000 nM. On average, the cathodic peak resulting from 

electrocatalytic NO reduction appeared at -0.719 ± 0.011 V (n=15), which was significantly 

lower than in the absence of oxygen (-0.762 ± 0.010 V, p<0.0001). Similar peak potentials were 

obtained for CFM/Hemin/MWCNT/Chit sensors. On contrast, no peaks were recorded with the 

CFM/Hemin/MWCNT sensors due to the poor electrochemical stability of adsorbed hemin in the 

presence of oxygen. The average sensitivity of CFM/Hemin/MWCNT/Chit-EDC sensors was 2.6 

± 1.7  nA/μM (n=15) and the L.O.D. was 26 ± 16 nM (n=15). The results are summarized in 

Table 2. 

3.4. Selectivity 

The selectivity of the CFM/Hemin/MWCNT/Chit-EDC microsensor against potential 

interferents present in the brain extracellular space was evaluated. The microsensor did not 

respond to ascorbate (250 μM), dopamine (8 μM), DOPAC (80 μM) or nitrite (80 μM), as shown 

in Fig S3A). A catalytic reduction peak at -0.332 V was observed following addition of 20 μM 

hydrogen peroxide which, however, does not interfere with NO detection in view of the good 

separation between peaks (Fig. S3B). Overall, these results indicate that the microsensors display 

a very high selectivity towards NO measurement at its electrocatalytic peak potential, exceeding 

that of microsensors based on NO oxidation (Bedioui and Villeneuve, 2003; Bedioui et al., 

2010). The use of SWV having the advantage of scan speed and high sensitivity over other 
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electrochemical techniques in association with these microsensors, also offers the chemical 

resolution that is needed for electrochemical signal identification. 

3.5. Nitric oxide measurement in vivo in the rat brain 

To establish the proof of concept for the utilization of the CFM/Hemin/MWCNT/Chit-EDC 

microsensor to measure NO in vivo in the rat brain and simultaneously avoid the inherent 

difficulties associated with the pathways for endogenous NO production, exogenously applied 

NO was measured in vivo in the rat brain. A saturated solution of NO was locally applied at very 

low volumes (nanoliter range) with the help of a micropipette positioned at 250 μm away from 

the microsensor tip. Because exogenous NO signals are very short in duration (Santos et al., 

2011a; Santos et al., 2011b) high temporal resolution is needed to follow NO concentration 

changes. Therefore, the potential window used for SWV recordings in vivo was shortened to the 

interval from -0.5 to -1.0 V, corresponding to a scan duration of 2.2 s. Fig. 5A shows a set of 

scans obtained following local application of 62 nL of NO solution in the rat hippocampus. The 

maximum peak height was attained at the second scan after NO application, followed by a rapid 

decrease in the following scans. Typically, NO was detected during the first 4-6 scans after 

having been ejected from the micropipette. The short duration of the signals (ca. 10 s) is in 

accordance with previous works using microelectrodes coated with Nafion and o-

phenylenediamine (Santos et al., 2011b). The peak potential and short signal duration are 

highlighted in the color plot shown in Fig. 5B. Based on the calibration performed in the 

presence of oxygen before the experiment, the NO signal in the color plot corresponds to a NO 

concentration of 1 μM. The NO peak potential measured in vivo was -0.850 V which 

corresponds to a 0.1 V shift as compared with the in vitro calibrations. This difference might be 

related with the composition of the brain extracellular space and the use of a pseudo-reference 

Ag/AgCl electrode in two electrode configuration mode in vivo.
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4. Conclusion 

 

The insertion of electrochemical NO microsensors in the brain tissue has been a promising 

strategy to reveal the profile of NO change but still requiring improvements, particularly in terms 

of selectivity. The novel microsensor here described takes advantage of the EDC-dependent 

covalent attachment of hemin and MWCNTs in a biocompatible polymer, chitosan, originating a 

stable and robust microsensor for brain insertion in the presence of physiological oxygen 

concentration. Electrochemical characterization by cyclic voltammetry and square wave 

voltammetry support an excellent electrocatalytic activity for NO reduction in addition to a high 

sensitivity and a limit of detection in the low nanomolar range. Furthermore, because most 

compounds present in the brain extracellular space cannot be electrochemically reduced, the 

microsensor selectivity surpasses that of chemically-modified microsensors based on NO 

oxidation. Accordingly, no response was observed for several compounds present in the brain 

extracellular space, including ascorbate, dopamine and nitrite. The biomimetic microsensors 

were successfully implanted into the rat hippocampus in vivo allowing the measurement of 

exogenous NO applied locally. Nevertheless, the electrocatalytic reduction of oxygen and 

hydrogen peroxide limits the usefulness of the microsensonsor in the amperometry mode at high 

negative potentials, which could provide higher temporal resolution. Monitoring the NO 

produced endogenously in vivo in the brain by taking advantage of its electrocatalytic reduction 

on heme-based microsensors will be the ultimate goal of this work. 
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Figure legends 

 

Fig. 1. SEM images of the surface of hemin-based microsensors. Typical SEM images with 

same magnification (5000x) of (A) hemin/MWCNT (B) hemin/MWCNT/Chit and (C) 

hemin/MWCNT/Chit-EDC composite films. 

Fig. 2. Characterization of hemin electrochemical behavior by cyclic voltammetry. (A) 

Cyclic voltammograms of a CFM/Hemin/MWCNT/Chit-EDC microsensor, potential sweep rate 

range from 5 to 100 V/s. (B) Plot of peak current vs. scan rate, slopes 5.5 nA V-1 s for the 

cathodic peak (R2=0.992) and 4.8 nA V-1 s for the anodic peak (R2=0.995).  

Fig. 3. Microsensor response to nitric oxide in the absence of oxygen. (A) Square wave 

voltamograms recorded with a CFM/Hemin/MWCNT/Chit-EDC microsensor following 

successive NO additions corresponding to final concentrations of 250, 500 and 1000 nM. A 

cathodic peak appeared at -0.763 V. The peak height was proportional to NO concentration with 

a sensitivity of 1.6 nA/μM (R2=0.978). SWV parameters: f =25 Hz, Es=5 mV, Esw =25 mV. 

Fig. 4. Microsensor stability and response to nitric oxide in the presence of oxygen. (A) 

Average oxygen reduction peak height recorded by SWV (relative to the first scan) for the three 

types of microsensor after 30, 60 and 100 scans in the presence of 43 μM of oxygen. *, p<0.05; 

**, p<0.01; ***, p<0.001 vs. peak height of the first scan (n=4-8). (B) Square wave 

voltammograms recorded with a CFM/Hemin/MWCNT/Chit-EDC microsensor following 

successive NO additions corresponding to final concentrations of 250, 500 and 1000 nM in the 

presence of 43 μM oxygen. A cathodic peak appeared at -0.717 V. The peak height was 

proportional to NO concentration with a sensitivity of 6.5 nA/μM (R2=0.927).  
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Fig. 5. Exogenous nitric oxide measurement in the brain in vivo. Nitric oxide was measured 

upon pressure ejection of a saturated nitric oxide solution from a micropipette at 250 μm distance 

from the CFM/Hemin/MWCNT/Chit-EDC microsensor in the rat hippocampus. (A) 

Representative baseline-subtracted square wave voltammograms, following pressure ejection of 

62 nL of NO solution. (B) Corresponding color plot of current intensity illustrating the 

voltammograms. 

Fig S1. Effect of carbon nanotubes on nitric oxide sensitivity. The bars show average 

sensitivities of the three kinds of microsensors fabricated (legend) with and without MWCNTs 

(control). The p values indicated were calculated by using two-way ANOVA to assess the effect 

of MWCNTs on the microsensors response. The results are plotted as mean ± S.E.M.. 

Fig. S2. Response of microsensors to oxygen. Oxygen reduction by the microsensors was 

evaluated by addition of oxygen from a PBS solution (250 μM) to the supporting electrolyte, 

previously bubbled with argon. (A) SWV (baseline-subtracted) obtained with a 

CFM/Hemin/MWCNT/Chit-EDC microsensor following successive additions of oxygen 

corresponding to final concentrations of 12, 23, 32 and 43 μM, (captions a to d). A cathodic peak 

was observed at -0.25 V that was proportional to the oxygen concentration (see inset). The slope 

of the trend line was 0.24 nA/μM (R2=0.998). Cathodic oxygen peaks in the presence of 43 μM 

of oxygen, recorded after 30, 60 and 100 scans are shown for a CFM/Hemin/MWCNT/Chit-EDC 

(B) and a CFM/Hemin/MWCNT/Chit microsensor (C).  

Fig. S3. Evaluation of microsensor selectivity. (A) super-imposed SWV scans obtained with a 

CFM/Hemin/MWCNT/Chit-EDC microsensor in PBS in the absence of oxygen for 1 μM NO, 

80 μM NO2
-, 250 μM ascorbate (AA), 8 μM dopamine (DA) and 80 μM 3,4-

dihydroxyphenylacetic acid (DOPAC). (B) SWV scans in PBS containing 20 μM hydrogen 

peroxide (red trace), which was followed by addition of 1 μM NO. The cathodic peaks for H2O2 

and NO reduction were observed at -0.332 V and -0.737 V, respectively. 
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Table 1-Electrochemical characterization of direct electron transfer of FeIII/FeII in 

immobilized hemin 

 

The data are given as the mean ± SD (CV).  

The number of microelectrodes tested is given in parenthesis.  

  

Microsensor  Epc (V) Epa (V) 

Slope Ipc vs. scan 

rate

(nA V-1 s)

Slope Ipa vs. 

scan rate 

(nA V-1 s)

CFM/Hemin 
-0.373 ± 0.012 

(3.2%) (n=4) 

-0.297 ± 0.048 

(16%) (n=4) 

-1.15 ± 0.41 (36%) 

(n=4) 

0.81 ± 0.36 (44%)

(n=4) 

CFM/Hemin/MWCNT 
-0.396 ± 0.031 

(7.6%) (n=8) 

-0.281 ± 0.023 

(8.1%) (n=8)  

-4.59 ± 3.67 (80%)  

(n=7) 

3.72 ± 3.12 (84%)

(n=3)  

CFM/Hemin/Chit 
-0.436 ± 0.022 

(5.0%) (n=6) 

-0.287 ± 0.086 

(30%) (n=6) 

-1.40 ± 0.80 (57%)  

(n=9) 

0.87 ± 0.31 (36%)

(n=9) 

CFM/Hemin/MWCNT/Chit 
-0.389 ± 0.018 

(4.6%) (n=11) 

-0.319 ± 0.024 

(7.5%) (n=11)  

-2.22 ± 1.18 (53%)  

(n=10)  

1.59 ± 1.02 (64%)

(n=10)  

CFM/Hemin/Chit-EDC 
-0.377 ± 0.017 

(4.5%) (n=5) 

-0.289 ± 0.029 

(10%) (n=5) 

-2.45 ± 0.59 (24%)  

(n=5) 

2.09 ± 0.63 (30%)

(n=5) 

CFM/Hemin/MWCNT/Chit-

EDC 

-0.382 ± 0.018 

(4.7%) (n=13) 

-0.286 ± 0.021 

(7.4%) (n=13)  

-3.82 ± 1.95 (51%)  

(n=11) 

3.08 ±1.51 (49%)

(n=11)  
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Table 2- Microsensor electrochemical response to NO 

 

 Absence of oxygen Presence of oxygen (43 µM) 

Microsensor 
NO peak 

(V)

Sensitivity

(nA/µM) 
LOD (nM)NO peak (V) 

Sensitivity

(nA/µM) 

LOD

(nM)

CFM/Hemin/MWCNT 

-0.737 ± 

0.004 

(0.6%) 

(n=8) 

4.62 ± 1.66 

(36%)* 

 (n=7)  

7.9 ± 3.87 

(49%)* 

(n=7) 
- - - 

CFM/Hemin/MWCNT/Chit 

-0.752 ± 

0.009 

(1.2%)  

(n=12) 

4.19 ± 1.55 

(37%)* 

 (n=12)  

12.2 ± 

(9.15) 75%

(n=12) 

-0.705 ± 

0.015 

(2.1%)# 

 (n=7) 

4.29 ± 3.52 

(82%) (n=5)

13 ± 3.8 

(29%) 

(n=5) 

CFM/Hemin/MWCNT/Chit-

EDC 

-0.762 ± 

0.011 

(1.4%)  

(n=17) 

1.72 ± 0.67 

(39%)  

(n=16)  

25 ± 15 

(58%) 

(n=16) 

-0.719 ± 

0.012 

(1.6%)# 

(n=15) 

2.61 ± 1.67 

(64%) 

(n=15) 

26 ± 15 

(59%) 

(n=15) 

The data are given as the mean ± SD (CV).  

The number of microelectrodes tested is given in parenthesis.  

*, p<0.05 vs. CFM/Hemin/MWCNT/Chit-EDC; #, p<0.0001 vs. in the absence of oxygen. 

Highlights

� A microsensor for nitric oxide (NO) is designed based on a novel nanocomposite film. 

� Cyclic voltammetry shows direct electron transfer from hemin.  

� The electrocatalytic reduction of NO provides high sensitivity and selectivity. 

� The microsensor is able to resolve NO and oxygen peaks by square wave voltammmetry. 

� Measurement of exogenously applied NO in vivo in the rat brain is demonstrated. 
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