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Highlights

! ! Spontaneous remyelination in MS fails with disease progression

! ! Remyelination decline is multifactorial 

! ! Cell therapy may rely on NPCs transplantation or stimulation of local OPCs

! ! Oligodendrogenesis may be a key target in cell therapy for MS

! ! Ex vivo models of demyelination constitute an important tool toward MS cell 

therapy
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Abbreviations - MS: multiple sclerosis; NPCs: neural precursor cells; CNS: central nervous system; 
PDGFRα: platelet-derived growth factor receptor alpha; OPCs: oligodendrocyte precursor cells; PNS: 
peripheral nervous system; NSCs: neural stem cells; SVZ: subventricular zone; EAE: experimental 
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growth factor; CPZ: cuprizone; DIV: days in vitro; eGFP: enhanced-green fluorescent protein; DG: 
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Abstract

Mobilization of remyelinating cells spontaneously occurs in the adult brain. These 

cellular resources are specially active after demyelinating episodes in early phases of 

multiple sclerosis (MS). Indeed, oligodendrocyte precursor cells (OPCs) actively 

proliferate, migrate to and repopulate the lesioned areas. Ultimately, efficient 

remyelination is accomplished when new oligodendrocytes reinvest nude neuronal 

axons, restoring the normal properties of impulse conduction. As the disease progresses 

this fundamental process fails. Multiple causes seem to contribute to such transient 

decline, including the failure of OPCs to differentiate and enwrap the vulnerable 

neuronal axons. Regenerative medicine for MS has been mainly centered on the 

recruitment of endogenous self-repair mechanisms, or on transplantation approaches. 

The latter commonly involves grafting of neural precursor cells (NPCs) or neural stem 

cells (NSCs), with myelinogenic potential, in the injured areas. Both strategies require

further understanding of the biology of oligodendrocyte differentiation and 

remyelination. Indeed, the success of transplantation largely depends on the pre-

commitment of transplanted NPCs or NSCs into oligodendroglial cell type, while the 

endogenous differentiation of OPCs needs to be boosted in chronic stages of the 

disease. Thus, much effort has been focused on finding molecular targets that drive 

oligodendrocytes commitment and development. The present review explores several 

aspects of remyelination that must be considered in the design of a cell-based therapy 

for MS, and explores more deeply the challenge of fostering oligodendrogenesis. In this 

regard, we discuss herein a tool developed in our research group useful to search novel 

oligodendrogenic factors and to pharmacologically study oligodendrocyte 

differentiation in a time- and cost-saving manner.

Keywords

Cell therapy; neural stem cells; oligodendrocytes; multiple sclerosis; remyelination; 

CNS repair.
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1. Introduction

Central Nervous System (CNS) plasticity and neural adaptation are concepts that 

have received much attention in recent years. In fact, neuronal circuitries, glial 

meshworks and vasculature constantly adjust to the changing needs and interact with 

one another. This highly dynamic activity models the brain parenchyma in response to a 

given insult, ageing, hormonal changes, learning or physical exercise. One remarkable 

example of such naturally occurring CNS responses is the extensive regenerative 

capacity of the demyelinated brain in early phases of multiple sclerosis (MS), the most 

common myelin disorder. The remyelinating activity, by native precursor cells upon 

acute MS lesions, results in restoration of the myelin sheaths and functional recovery. 

Nevertheless, at later stages of the chronic disease this spontaneous reparative process 

eventually fails, leading to axonal degeneration and progressive neurological deficits.

Cell therapy for MS has been an important focus in attempts to develop

strategies that aim at reinstalling the normal cytoarchitecture of the CNS. This goal has 

been pursued by introducing cells with myelinogenic capacity, or by helping the 

endogenous precursors in their endeavor to reinvest nude and vulnerable axons. 

Accordingly, to reach these objectives, it is crucial to understand: 1) the biology of the 

disease and its progression; 2) why remyelination fails, and ultimately 3) how to 

manipulate the endogenous precursor cells, or the transplanted cells, to accomplish 

remyelination in the chronic non-permissive scenario. In the present review we discuss 

these aims and refer to available tools useful to instruct neural stem or precursor cells to 

differentiate into myelinating oligodendrocytes, in order to efficiently attain 

remyelination.

2. Multiple sclerosis (MS)

MS is a chronic inflammatory and neurodegenerative disease of the CNS that 

affects more than 2 million people worldwide, usually beginning in early adulthood 

(Flachenecker and Stuke, 2008). Although the etiology is unclear, it appears to be

linked to both genetic and environmental factors. MS causes disability through 

demyelination of axons, affecting neuronal conduction of action potentials and 

contributing to axonal vulnerability and atrophy. The prevalent scenario involves a 

direct attack, by infiltrating autoreactive T cells and macrophages, against 

oligodendrocytes and myelin. As a result, activated macrophages and microglia release 
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massive amounts of inflammatory cytokines, and phagocyte myelin debris, thus 

amplifying the autoimmune pro-inflammatory reaction. However, in apparent 

contradiction, the observation of extensive oligodendrocyte apoptosis and microglia 

activation with only few, or in some cases, none T cells in early MS lesions has 

challenged this view (Barnett and Prineas, 2004). Accordingly, the latter study raises a 

new conceptual hypothesis for the initial formation of MS lesions. Consistently, primary 

oligodendrocyte cell loss triggers a progressive autoimmune cascade against myelin, 

resulting in widespread demyelination. It is noteworthy to mention that samples from 

MS patients reveal an important inter-individual heterogeneity concerning the 

pathogenesis of the disease, suggesting that both scenarios may be possible and are not 

mutually exclusive (Lucchinetti et al., 2000).

In the CNS, the myelin sheath is formed by cholesterol-rich specialized 

membranes of oligodendrocytes, compactly enwrapped around axons. The myelin 

sheath is not a continuous structure along the axons, forming internodes of myelin 

intercalated with nude nodes of Ranvier. This structure provides electrical insulation 

and clustered distribution of ion channels in the nodes and paranodes, allowing a fast 

and saltatory propagation of the action potential along the axon. In addition, myelin 

sustains and protects the axon. Mutually, healthy axons are necessary for the 

maintenance of myelin, suggesting a win-win symbiotic relationship (Taveggia et al., 

2010). Thus, myelin integrity is essential for the rapid conduction of the neuronal 

impulse and also for axonal protection. Denuded, unprotected, axons become vulnerable 

and start degenerating as the disease progresses. Functional axonal failure and axonal 

loss represent the main cause of physical impairment in demyelinating diseases. Current 

treatments for MS are largely based in immunomodulatory agents that in essence reduce 

the frequency and intensity of relapse events in the most common forms of MS; the 

partially reversible relapsing-remitting MS, consisting on recurrent episodes of sudden 

symptomatic attacks, interspersed by periods of remission.

2.1. Remyelination in MS

Spontaneous and robust remyelination occurs at the early stages of MS. 

However, under these circumstances, remyelination is incomplete – i.e., faithful 

reconstruction is not fully attained, originating a thinner myelin sheath. As the disease 

progresses, eventually remyelination completely fails. Most of the remyelinating 

oligodendrocytes derive from resident OPCs, a special NG2-positive cell expressing 
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platelet-derived growth factor receptor alpha (PDGFRα), widespread distributed 

throughout the adult brain parenchyma. Upon demyelinating injury, these proliferating 

cells are stimulated to divide faster and to migrate extensively towards the demyelinated 

area; where they mature and reinvest the denuded axons, forming new myelin sheaths 

(Franklin and Ffrench-Constant, 2008). Using genetic fate mapping to trace OPCs 

progeny during CNS demyelination, Zawadzka et al. (2010) have shown that OPCs may 

differentiate as well in Schwann cells, the myelin forming cells of the peripheral 

nervous system (PNS), which also contribute to CNS remyelination (Zawadzka et al., 

2010). In addition, upon demyelination, neural stem cells (NSCs) in the rodent 

subventricular zone (SVZ) niche become activated and provide another source of 

myelinating oligodendrocytes. SVZ-derived cells expand and migrate to the nearby 

corpus callosum, undergo oligodendrogenesis (Nait-Oumesmar et al., 1999; Picard-

Riera et al., 2002), acquiring morphology of myelinating cells and express myelin 

proteins (Menn et al., 2006). Consistently, analysis of post-mortem human tissue from 

MS patients detected more frequent SVZ-derived activated oligodendrocytes in and 

around the SVZ (Nait-Oumesmar et al., 2007). Nonetheless, given the multifocal nature 

of MS and the minor contribution of the endogenous SVZ cells to remyelination, as 

compared to the main effectors, the resident OPCs, the efficiency of SVZ cells to 

promote repair in MS is relatively modest. Therapeutic approaches based on stimulating 

the replenishment by endogenous neural precursor cells (NPCs), OPCs and SVZ cells, 

have been envisaged by several groups. In a different perspective, transplantation of 

cells with myelinogenic potential provided encouraging results in animal models of MS.

2.2 Remyelination decline: a multicausal scenario in chronic MS

The success of cell-based strategies for MS requires a better understanding of 

the causes behind spontaneous remyelination decline. In early phases, and although 

partial, the multilamellar enwrapping of the demyelinated axons seems to efficiently 

recover normal impulse conduction and neurological deficits (Smith et al., 1979, 1981). 

However, it remains elusive whether the new thinner and shorter myelin sheath is more 

vulnerable to the next demyelinating event. Several hypotheses for impairment in 

remyelination across disease progression have been suggested and involve a concerted 

action of elements that appear to act synergistically: 1) depletion of OPCs in the 

lesioned site, 2) impairment of OPCs recruitment (proliferation, migration, 
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differentiation and/or remyelination), 3) presence of inhibitory factors or absence of 

permissive/conducive factors, 5) glial scar, 6) macrophages response, and 7) age.

Exhaustion of the OPCs pool in the demyelinated area have been claimed to be 

the main cause of remyelination failure. Although this process may cause a major 

impact in situations when continuous demyelination occurs in the same area (Armstrong 

et al., 2006; Mason et al., 2004), others have shown a great capacity of OPCs to 

repopulate depleted areas bearing transient episodes of demyelination (Chari and 

Blakemore, 2002; Penderis et al., 2003). In studies using few interspersed 

demyelinating lesions, recolonizing OPCs are able to remyelinate (Penderis et al., 

2003). On the contrary, in experimental models of chronic lesions the recruitment of 

OPCs is insufficient for efficient remyelination. This can be caused by a) impaired 

migration, due to the lack of semaphorins in the chronic MS lesion (Williams et al., 

2007b) – important molecules in OPCs migration during development and in active MS 

lesions; b) quiescence of available OPCs in the lesion site, being unable to differentiate 

(Wolswijk, 1998); c) or failure of the available and mature oligodendrocytes to 

accomplish remyelination of axons (Chang et al., 2002). Importantly, axons in the 

lesion area may no longer consent remyelination, likely due to a decrease in molecular 

signals supporting remyelination, or due to an increase in other negative signaling 

pathways affecting the reparative process (Coman et al., 2005). In general, the cellular 

and molecular environment in chronic lesions drastically differs from the one found in 

active lesions, especially concerning inflammation. Indeed, early lesions display active 

inflammation, which is a positive modulator of differentiation of OPCs and 

remyelination, while chronic lesions are comparatively devoid of active inflammatory 

events. Reactive astrocytes are found in acute lesions and appear to be important 

mediators of remyelination, by releasing growth factors that foster OPCs recruitment 

and differentiation. In contrast, hypertrophic astrocytes of chronic lesions form a glial 

scar that, instead, hampers remyelination (Albrecht et al., 2003; Williams et al., 2007a). 

A key determinant of remyelination decline is ageing. With ageing, a) OPCs become 

intrinsically less capable of undergoing recruitment towards lesions, and become 

specially limited in their differentiation potential (Sim et al., 2002) via, at least partially, 

changes in regulatory epigenetic mechanisms (Shen et al., 2008); b) axons become more 

vulnerable due to repetitive exposures; and 3) the environment itself turns less prompt 

to harbor myelination, namely because macrophage activity is impaired, thus entails 
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poor secretion of inflammatory molecules and allows the accumulation of myelin 

debris.

3. MS: a suitable candidate for cell therapy

Among neurodegenerative diseases, MS seems to be particularly eligible for cell 

therapy. Albeit axonal loss occurs in MS, the disease is a primary demyelinating 

disease, i.e., it targets oligodendrocytes and myelin, and axons are spared until later 

stages of the disease. Therefore, new myelinating cells (engrafted or endogenous NPCs) 

have “only” to re-enwrap the nude axons with their membranes. This is a far simpler 

scenario than that offered by using cell therapy strategies to replace neurons. In this 

case, grafted cells must integrate in pre-existing intricate networks and establish 

functional synapses with the correct counterparts. Moreover, remyelination and 

functional recovery spontaneously take place in the acute injured environment 

supporting the view that, at early stages, new NPCs encounter the proper environmental 

cues to differentiate and remyelinate. Thus, a cell therapy for MS requires procedures to 

sustain endogenous remyelination into chronic stages of the disease – boosting their 

survival, migration, differentiation or maturation – or the implantation of healthy NPCs 

previously amplified and instructed in vitro, to become myelinating oligodendrocytes. 

These strategies should be implemented before axonal loss and consequent 

compromised functional recovery takes places. Moreover, adjuvant strategies to 

manipulate the chronic lesion environment turning it more permissive for remyelination 

are pivotal. These may encompass treatments to confer axonal protection along disease 

progression, and cues to reverse at least some of the age-dependent and/or injury-

mediated effects. It is important to refer that the introduction of healthy myelinating 

cells may be the only feasible strategy to restore neurological function in the case of 

genetic demyelinating diseases, where the endogenous oligodendrocytes are endowed 

with defects in the production of myelin, like leukodystrophies.

3.1. Transplantation of NPCs in MS

Strategies relying on cell transplantation of NPCs in injured areas of the brain 

have been largely explored in the last decade. In the damaged areas, grafted NPCs need 

to 1) survive in a typically hostile environment; 2) differentiate and mature in the 

phenotype of appropriate cell types; and 3) incorporate in the complex network of the 

host tissue, successfully reconstructing the affected circuits. However, as previously 
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mentioned, transplantation strategy in MS focus on adjuvant approaches to enhance and 

sustain the existing repair resources. One cannot exclude, however, partial contribution 

of cell-intrinsic mechanisms regulating the remyelinating capacity.

Pioneering transplantation assays performed in the 80s, using myelinogenic cells 

namely OPCs, Schwann cells and NSCs (Blakemore and Crang, 1985, 1988; Crang and 

Blakemore, 1989) raised important expectations by showing evidences of grafted cells-

induced remyelination of demyelinated areas. The loss of glial cells occurring in MS 

may thus be counteracted by the introduction of new precursor-derived oligodendroglial 

cells that are previously expanded in vitro. NPCs from SVZ or OPCs pools can be 

propagated in culture, providing cellular resources for transplantation, in order to 

generate myelinating oligodendrocytes. Although in spite of evidences that, in 

demyelinated conditions, implanted OPCs elicit remyelination and promote functional 

recovery (Groves et al., 1993; Lachapelle et al., 1983; Utzschneider et al., 1994), in the 

healthy brain supranumerary OPCs are not able to migrate and to survive (Franklin et 

al., 1996; Franklin and Blakemore, 1997). Given the multifocality of MS, this could be 

a major limitation since therapeutic approaches would require multiple local injections 

to deliver OPCs in a number of lesion areas. On the other hand, SVZ cells are endowed 

with a remarkable capacity to migrate and homing into demyelinated parenchyma even 

when implanted systemically (intravenous or intrathecal). In fact, systemic 

administration of SVZ-derived NPCs exerts anti-inflammatory action in models of 

multifocal CNS disorders, including in experimental autoimmune encephalomyelitis

(EAE) (Pluchino et al., 2003; Pluchino et al., 2005).

 A major requirement for MS cell therapy regards proper cell differentiation of 

the transplanted cells. Upon grating, cells need to be highly migratory in order to reach 

the multiple lesion sites, a characteristic of the round and bipolar early OPCs. 

Nonetheless, the engrafted reparative cells should then be able to further differentiate 

and mature in the host tissue, ultimately giving rise to myelinating oligodendrocytes. 

Importantly, SVZ-derived oligodendrocytes undergo all the developmental stages from 

the early OPCs to the mature myelinating oligodendrocytes recapitulating the 

developmental process (Levison and Goldman, 1993; Menn et al., 2006) and are able to 

remyelinate axons in animal models of demyelinating injuries (Akiyama et al., 2001; 

Cayre et al., 2006; Keirstead et al., 1999; Pluchino et al., 2003; Smith and Blakemore, 

2000). Progressive restriction of the cell fate in SVZ cells is specified by extrinsic and 

intrinsic factors. Accordingly, extracellular soluble factors or genetic manipulation may 
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be used to drive differentiation of SVZ cells in culture towards a certain phenotype. 

Efforts are being brought together to optimize the in vitro fate specification for 

induction into the oligodendrocyte cell lineage, a strategy that may substantially 

increase the outcome from SVZ cells transplantation in MS. Likewise, treatment of the 

reparative cells with factors that promote their survival can be an adjuvant approach to 

achieve better results, since the cells are engrafted in a highly hostile environment. As 

aforementioned it is advantageous to graft cells in early stages of differentiation, when 

they are migratory and plastic enough to accommodate in the host tissue. Treatment of 

the engrafted cells in locus, even if the cells are pre-specified in vitro, can be critical to 

sustain survival and promote the full differentiation along the oligodendrocytic lineage, 

namely the expression of myelin proteins and potentiation of remyelination.

Functional improvements due to transplantation may derive from a 

neuroprotective effect of the grafted cells over the host tissue. Accordingly, transplants 

of SVZ-derived NPCs improved the outcome in the EAE model of MS by releasing a 

plethora of factors with immunomodulatory or neuroprotective properties (Martino and 

Pluchino, 2006). 

Additionally, it is important to note that, in humans, cell transplantation 

therapies using adult NPCs should rely on an autologous transplant, requiring firstly 

extraction of NPCs from the patient, and a second surgery for the transplantation of the 

cells, after an intermediate step of cell type conditioning in culture. Alternatively, 

transplantable NPCs from post-mortem human CNS tissue may be an option (Laywell et 

al., 1999), although graft rejection may occur. Also, Schwann cells may be a source for 

autologous transplantation following peripheral nerve biopsies, nevertheless these cells 

poorly contribute to remyelination (Lavdas et al., 2008). Moreover, NSCs from 

embryonic origin (eNSCs), or even pluripotent embryonic stem cells (ESCs) obtained 

from the inner cell mass of the early-stage human blastocyst may be used as a source of 

myelinating oligodendrocyte. However, the use of ESCs/eNSCs comports ethical issues 

and safety concerns, including possible teratoma formation and possible graft rejection. 

Also, skin fibroblasts can be reprogrammed to a pluripotent state by retroviral 

expression of certain transcription factors, generating inducible pluripotent stem cells 

(iPSCs) (Han et al., 2012; Takahashi and Yamanaka, 2006). This approach offers 

minimal ethical concerns and allows unlimited expandability of the cells, broad 

patterning potential and patient DNA match (autologous transplantation). Nevertheless, 
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it entails some concerns related with tumor formation and also genetic and epigenetic 

instability.

In conclusion, to envisage a successful cell transplantation therapy for MS, it is 

mandatory to: 1) harbor a detailed knowledge on the pathology; 2) conclude from 

studies on animal models that faithfully mimic the human disease; 3) optimize the 

differentiation and functional integration of grafted cells; 4) and probably develop 

adjuvant therapies to help sustaining axons and recovery from the disease (for instance, 

by treatment of the cells with pro-survival and pro-myelinating factors, or genetic 

engineering to induce expression of such factors, many of them which are lost in 

chronic stages of the disease). 

4. Enhancing oligodendrocyte differentiation: a bottleneck in MS cell therapy

As previously mentioned, failure to differentiate and myelinate the vulnerable 

axons is a limiting factor to adequate remyelination. On the other hand, induction of the 

oligodendroglial phenotype and differentiation are crucial for effective transplantation 

strategies based on the use of SVZ-derived NPCs. Thus, efforts are being brought 

together to screen soluble factors or to develop genetic tools able to instruct these cells 

into the oligodendrocyte lineage and foster their differentiation. Such a treatment could 

be used to assist endogenous remyelination or to guide transplanted cells differentiation. 

In this context, our group developed a method that rapidly evaluates cell differentiation 

in SVZ cell cultures. This tool may be applied to screen multiple factors in order to 

enrich the progeny of SVZ cells in a given phenotype (Agasse et al., 2008; Grade et al., 

2010; Grade et al., 2012). The method consists in measuring the intracellular Ca2+

changes evoked by KCl, histamine, and thrombin on single cells in SVZ cultures, and is 

based on the observation that each cell type displays a distinguishable profile of [Ca2+]i

oscillations during the stimulation protocol: neurons respond to KCl, precursor cells to 

histamine, oligodendrocytes to thrombin, and astrocytes are non-responsive to the three 

compounds (Fig. 1).

4.1. Oligodendrogenesis by triiodothyronine (T3) hormone

Several factors have been pinpointed as inducers of oligodendrocyte 

specification and differentiation from rodent NSCs. Among those, fibroblast growth 

factor-2 (FGF-2), platelet-derived growth factor (PDGF) and the thyroid hormone T3 

seem to be central. Indeed, intraventricular infusion of FGF-2 stimulates the 
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proliferation of OPCs from SVZ cells and their terminal differentiation in 

oligodendrocytes, in the postnatal and adult brain (Azim et al., 2012). Nevertheless, the 

growth factor inhibits myelination in the intact (Azim et al., 2012) or demyelinated 

brain (Butt and Dinsdale, 2005) therefore attenuating repair capacity, likely via FGFR1 

(Zhou et al., 2012). The soluble factor PDGF has a potent mitogenic effect on the OPCs 

population, regulating their numbers and oligodendrocyte generation during 

development and in the adulthood (Calver et al., 1998; Woodruff et al., 2004). 

However, excessive PDGFRα activation in the rodent SVZ leads to the appearance of 

glioma-like hyperplasias (Jackson et al., 2006). In agreement, PDGF has been 

implicated in tumour initiation and tumorigenicity (Jiang et al., 2011; Varela et al., 

2004) therefore cancelling any prospect of usage in a cell therapy for demyelinating 

diseases by direct application. On the other hand, a cohort of evidences supports a role 

for thyroid hormone T3 in inducing oligodendrocyte differentiation and no apparent 

drawbacks. Consistent evidences were obtained  in cultures, from human embryonic and 

fetal stem/progenitor cells (Fritsche et al., 2005; Kang et al., 2007; Murray and Dubois-

Dalcq, 1997), in rodent embryonic and adult NSCs (Johe et al., 1996; Whittemore et al., 

1999), but also in vivo in demyelinated SVZ of young adult rats (Franco et al., 2008). 

Moreover, the hormone accelerates oligodendrocyte development from the early stage 

of OPCs into more differentiated stages, an effect observed both in vitro, in OPC 

cultures (Barres et al., 1994; Billon et al., 2002; Tokumoto et al., 1999) and in vivo, in 

resident OPCs that are activated upon demyelination (Baas et al., 2002; Calza et al., 

2002). Besides, T3 has been shown to promote the synthesis of myelin-specific proteins

(Jeannin et al., 1998; Strait et al., 1997) by a direct action on oligodendrocytes, which 

express T3 receptors (Puymirat, 1992). In agreement, T3 administration enhances 

remyelination in animal models of demyelinating disease (Fernandez et al., 2004; 

Franco et al., 2008).

Remyelination may be a recapitulation of the developmental myelination. In 

fact, thyroid hormones have a crucial role in the neurodevelopment of vertebrates. 

Thyroid hormones deficiency during development, leads to structural abnormalities of 

the brain by affecting cell migration, differentiation, synaptogenesis and myelination. 

Hypothyroidism delays the deposition of myelin, causing hypomyelination, whereas 

hyperthyroidism accelerates it (Dussault and Ruel, 1987; Legrand, 1986; Walters and 

Morell, 1981). Thus, T3 acts on several stages of the oligodendrocyte development, 

since cell-cycle exit and terminal differentiation until myelinogenesis. T3 acts directly at 
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the transcription level by binding to nuclear thyroid hormone receptors (TRs: TRα1, 

TRα2, TRβ1 and TRβ2) encoded by TRα and TRβ genes (Rogister et al., 1999). As a 

result, the hormone activates or represses the transcription of specific target genes, 

which include genes encoding: the major myelin proteins such as myelin basic protein 

(MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2'3'-

cyclic nucleotide-3'-phosphohydrolase (CNP) (Tosic et al., 1992), neurotrophins and 

their receptors, components of the cytoskeleton and co-activators of TR (Konig and 

Moura Neto, 2002).

In addition to the oligodendrogenic effect, T3 may exert a protective action on 

oligodendrocytes via nerve growth factor (NGF). In fact, the gene encoding NGF is 

among the target genes of T3 and, under physiological conditions, T3 regulates the

endogenous synthesis of NGF in CNS (Calza et al., 1997). A study in marmosets has 

shown that NGF administration protects oligodendrocytes from cell death and 

ameliorates the pathological scenario in EAE model of MS, likely through 

immunomodulatory activity (Villoslada et al., 2000). Furthermore, neurotrophins can 

improve remyelination by directly influencing proliferation, differentiation, survival and 

turnover of oligodendrocytes in the demyelinated lesions (Althaus, 2004). In 

conclusion, T3 hormone may be a physiologically relevant promoter of oligodendrocyte 

cell specification, maturation and myelinogenesis of SVZ cells to be grafted in 

demyelinated lesions.

5. Effect of demyelinated environment in oligodendrogenesis by transplanted 

NPCs

In vitro pre-commitment of SVZ cells to differentiate into the appropriate 

phenotype has been seen as a pivotal step in the development of cell-based 

transplantation therapies for CNS disorders. Nevertheless, cell differentiation triggered 

by oligodendrogenic factors treatment in vitro might be affected by experimental 

conditions and not recapitulate the same differentiation program when cells are 

engrafted in the injured tissue. To address this issue, we used an ex vivo model of 

cuprizone (CPZ)-induced toxicity in organotypic hippocampal slices and monitored the 

differentiation of grafted eGFP-labeled SVZ cells (Fig. 2). Administration of CPZ in the 

diet is widely used as a demyelinating protocol in in vivo studies, causing demyelination 

of the fiber tracts in the corpus callosum (Matsushima and Morell, 2001), cortex 

(Skripuletz et al., 2008) and hippocampus (Hoffmann et al., 2008; Koutsoudaki et al., 
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2009; Norkute et al., 2009). Interestingly, in vitro studies by Cammer (1999) have 

shown a detrimental effect of 1 h of CPZ treatment (25 µM) in oligodendrocytes, and 

reported the presence of swollen or enlarged mitochondria in these cells, recalling the 

mitochondrial hyperplasia observed in the brains of CPZ-treated mice. Mitochondrial 

dysfunction is believed to be an early event leading to apoptotic colapse of 

oligodendrocytes and consequent myelin sheath degeneration (reviewed in Matsushima 

and Morell, 2001). Moreover, although in vivo studies show that the peak of 

myelination in rodents occurs between P10 and P60, Haber et al. (2009) have shown 

that hippocampal slice cultures obtained from P6-7 mice are able to develop myelin. 

The authors observed a progressive increase of MBP immunoreactivity over the course 

of 60 days in vitro (DIV), being that, at 10 DIV many MBP fibers were present in 

Ammon’s Horn subregions. In addition, using electron microscopy the same authors 

detected myelinated axons as early as at 7 DIV. Herein, we used hippocampal slices 

obtained from P6-8 mice and further grown in culture for 15 DIV, thus harboring many 

myelinated axons. Experimentally, we incubated the 15 DIV-hippocampal slices with 

25 µM CPZ, for 24 h. After this step, we expose the cultures to fresh medium and then 

grafted eGFP-SVZ neurospheres, into the intact or injured slices, nearby dentate gyrus 

(DG) (Fig. 3A; one neurosphere per slice). Following 1 week we investigated 

oligodendrocytic differentiation emerging from SVZ cells exposed to the host 

environment.

We observed that grafted SVZ cells maintain the capability to generate 

oligodendrocytes, including cells with NG2 and O4 immunoreactivity and a typical 

ramified morphology (Fig. 3B). Interestingly, quantification of the percentage of NG2+

and O4+ cells among the total of eGFP cells, revealed that differentiation of SVZ 

grafted cells in O4+ or NG2+ cells is promoted by the injured environment (NG2+ cells: 

CTRL, 13.60 ± 2.99% vs. CPZ, 33.09 ± 1.44%; O4+ cells: CTRL, 16.40 ± 0.74% vs. 

CPZ, 29.72 ± 1.67%; n=9-12 slices and more than 3000 cells per condition; 2 

independent cultures; Fig. 3C,D). Indeed, we observed a higher number of 

oligodendrocytes generated by neurospheres grafted into demyelinated organotypic 

hippocampal slices, as compared to those grafted in intact slices. These findings 

indicate that the environment provided by the demyelinated host tissue instructs or 

favors SVZ cells differentiation towards the phenotype of the lost cells. Thus, this 

finding highlights the importance of the disease environment dictating the fate choice of 

the transplanted uncommitted SVZ cells.
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We detected an instructive role of the demyelinated tissue environment on the 

differentiation of SVZ cells toward the oligodendrocytic phenotype. This effect may 

result from a number of secreted or cell-contact cues that are present in the 

demyelinated but not in the intact host tissue. CPZ toxicity leads to the degeneration of 

oligodendrocytes, and consequent disruption of myelin, followed by microgliosis and 

astrogliosis in the demyelinated tracts (Hiremath et al., 1998; Koutsoudaki et al., 2009; 

Matsushima and Morell, 2001; Skripuletz et al., 2008). Typically, activated glial cells 

secrete pro-inflammatory molecules, like cytokines and chemokines, which may guide 

the differentiation of SVZ cells. One cannot exclude, however, a possible effect of other 

players in the toxicity microenvironment, like cell debris and death signals, on the 

differentiation of SVZ cells. Rivera et al. (2009) have shown a robust oligodendroglial 

differentiation from NPCs when these were co-transplanted with mesenchymal stem 

cells (MSCs) in postnatal intact organotypic hippocampal slices, but extremely weak if 

NPCs were transplanted alone. In our model, even intact slices supported some degree 

of oligodendrogenesis from transplanted NPCs. Nevertheless, we used NPCs obtained 

from postnatal mouse SVZ while in Rivera et al. (2009) the authors transplanted NPCs 

derived from adult rat SVZ and DG, therefore with different properties. More 

importantly, we treated the cells with T3 hormone during the period of differentiation 

which, as aforementioned, is known to foster oligodendrogenesis. Indeed, while an 

injured environment may likely support small levels of oligodendrogenesis from non-

treated NPCs, an intact slice would probably display non-appreciable levels.

Importantly, hippocampal demyelination has been observed in the brains of MS 

patients, in parallel with microglial accumulation and cognitive deficits (Geurts et al., 

2007). Our ex vivo model of demyelination allowed us to detect an important effect of 

the demyelinated host tissue favoring the differentiation of grafted SVZ cells into 

oligodendroglia. In agreement, other studies reported that SVZ cells transplanted into 

demyelinated areas show a tendency to undergo differentiation in oligodendrocytes, and 

often myelinate nude axons (Akiyama et al., 2001; Cayre et al., 2006; Keirstead et al., 

1999; Smith and Blakemore, 2000). However these studies were based on 

transplantations approaches in the large white matter tracts of the corpus callosum and 

spinal cord, where the intact local environment per se is known to trigger 

oligodendrogenesis of transplanted SVZ cells (Cayre et al., 2006).

Although in vivo studies provide the ultimate integrative scenario devoid of cell 

culture artifacts, many aspects of the biology of remyelination can be addressed in ex 
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vivo models. Accordingly, grafting of myelinogenic cells and/or pharmacological 

treatments, aiming at the amelioration of oligodendrocyte differentiation or 

remyelination, can be tested in slice cultures. Recently, others have been developing 

various ex vivo models to study remyelination of endogenous or transplanted NPCs. 

Indeed, transplantation of OPCs into organotypic cerebellar slice cultures, derived from 

demyelinated shiverer mice (Mbp mutant), resulted in the enwrapping of compact 

myelin sheaths with proper formation of the specialized domains, including nodes, 

internodes, juxtaparanodes and paranodes (Bin et al., 2012). Moreover, using 

lysolecithin-induced demyelination in cerebellar, brain stem or spinal cord slices, Zhang 

et al. (2011) have shown that endogenous OPCs proliferate and the axons re-acquire a 

myelin sheath, which is thinner and shorter, partially recapitulating the mechanism of 

remyelination in vivo. Interestingly, a recent study monitored the dynamics of 

myelination by using time-lapse imaging of GFP-labelled murine NPCs transplanted in 

spinal cord explants derived from shiverer mice (Ioannidou et al., 2012). Evaluation of 

survival, differentiation, dynamics of remyelination, and impulse conduction in ex vivo

models of demyelination may offer a powerful strategy to test a wide range of 

potentially protective or instructive compounds, envisioning efficient remyelination in 

future cell therapy for MS.

6. Conclusion

In early phases of MS, the CNS displays a remarkable regenerative capacity 

upon transient demyelinating episodes. Disease progression is, however, accompanied 

by a gradual change in multiple and synergistic factors that overturn the outcome of this 

scenario, from a permissive to an inhibitory remyelination environment. A major 

roadblock found in chronic MS lesions is the impairment of differentiation of OPCs and 

remyelination. Therefore, identification of key molecules that dictate differentiation of

OPCs may be important to help sustaining endogenous remyelination in the chronic 

lesions. Alternatively, an efficient cocktail of oligodendrogenic factors is pivotal for the 

success of SVZ transplantation therapies in MS. We believe that new tools to screen 

oligodendrogenic factors or to study and sculpt the processes of differentiation and 

remyelination upon injury, in a shorter time window provided by ex vivo models, are 

required for a comprehensive strategy to repair brain lesions in MS. Although research 

on the field has been witnessing great expansion, still translation to the clinical arenas 

requires many hurdles to be overcome.
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Figure legends

Figure 1 – Single-cell calcium imaging (SCCI) as a method to assess functional cell 

differentiation in SVZ cultures. Experimental protocol implemented to functionally

identify SVZ-derived cells. SVZ cells loaded with the calcium probe Fura-2 AM are 

continuously perfused in Krebs solution and stimulated at different time intervals as 

shown by the time sequences. Cell-specific responses are observed when applying the 

sequence depicted on top: neurons respond to KCl, immature cells respond to histamine, 

oligodendrocytes respond to thrombin and astrocytes are non-responsive to any of these

compounds.

Figure 2 – Schematic representation of the co-cultures protocol developed to

explore whether the ex vivo grafting of SVZ cells in a injured tissue alters the SVZ 

cells fate. Organotypic hippocampal slices were prepared from wild type (WT) mice 

brains and injured by exposure to 25 µM CPZ, for 24 h (black dashed line). The toxin 

was then removed and eGFP-labelled SVZ neurospheres were individually grafted in 

the intact or injured hippocampal slices (one sphere per slice). Following 1 week under,

30 nM T3 treatment (blue dashed line), evaluation of SVZ cell differentiation was 

performed.

Figure 3 – Differentiation of eGFP-SVZ grafted cells in CPZ-treated organotypic 

hippocampal slices. A, Representative image of an organotypic hippocampal slice 

grafted with an eGFP-SVZ neurosphere. The co-culture was allowed to develop during 

1 week, under T3 treatment (BF, bright field). B, 1 week upon grafting, NG2+ and O4+

cells were found among the progeny of SVZ transplanted cells, either implanted in 

intact or injured slices. C, Quantification of the number of NG2+ and O4+ cells among 

the grafted eGFP-SVZ cells in intact or injured paradigm. D, Representative images of 

NG2 (left panel) or O4 (right panel) immunostaining on the co-cultures, counterstained 

with Hoechst 33342 (blue nuclei). Arrows indicate cells where colocalization of eGFP 

signal with the cell type markers was found. Scale bars: A, 500 µm; B, 20 µm; D, 50 

µm.
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Figure 1

http://ees.elsevier.com/dn/download.aspx?id=36064&guid=0e91c1ab-6e5b-4c1f-aa44-2cb2807b5151&scheme=1
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Figure 2

http://ees.elsevier.com/dn/download.aspx?id=36065&guid=4cac4417-a590-4d45-a546-707bcf4f305d&scheme=1
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Figure 3

http://ees.elsevier.com/dn/download.aspx?id=36066&guid=8b477a9c-aeef-45b9-8141-ababeefc9f44&scheme=1



