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Abstract

Abstract

Medical imaging techniques are a major application of many of the
scienti�c �ndings of the past decades. The interest in these applica-
tions is obvious, since better imaging techniques can both improve
the quality of diagnostics and allow for better understanding of nat-
ural phenomena. One of the most recent innovations in in vivo,
non-invasive imaging is Optical Coherence Tomography. The main
use of this technique in medical imaging is to acquire high resolu-
tion, tri-dimensional images of the eye fundus, allowing for detailed
anatomical characterisation of the retina [5, 14].

The retina is nervous tissue in the eye and the most important
component in our sense of vision. There are many diseases that
a�ect the eye, and whose diagnosis isn't straightforward. The sen-
sitivity of this structure makes medical analysis quite complicated.
Most of the diagnoses are made either by direct observation, with
the possible injection of dyes to enhance certain parts of the organ,
or by numbing the eye and directly measuring its inner pressure or
thickness. Optical coherence tomography, on the other hand, al-
lows for imaging in the histological range without being invasive [7],
which is an incredible improvement relative to the techniques above
described. As it is relatively recent, there are still open possibili-
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x Abstract

ties for this technique � diagnosing di�erent types of pathologies
or acquiring functional information, for instance. In order to study
these possibilities, a mathematical model was suggested. A mathe-
matical model is an incredibly useful tool for exploring and better
understanding many physical phenomena, without spending expen-
sive physical resources.

Since we want to study the impact of the changes at cellular-level
on the �nal image, our model must go back to the cellular-level in-
teractions that culminate in the optical coherence tomography scan
image. This means studying light propagation and di�raction in a
heterogeneous medium. To reach this goal, we will study the funda-
mentals of electromagnetism and use their foundations � Maxwell's
equations � in order to model at a very small scale how an electro-
magnetic wave propagates [24].

The continuous theoretical model that is considered is comple-
mented with a discrete model, built using �nite di�erences and con-
sidering appropriate boundary and initial conditions. The numerical
results obtained show the potential this approach has. The study
presented on this work gave origin to two scienti�c works [3, 24]

Keywords : Maxwell Equations, Optical Coherence Tomography,
Finite Di�erences, Retina, Light Scattering

Resumo

A imagiologia médica é uma das principais aplicações de muitas das
inovações cientí�cas das últimas décadas. O interesse no desenvolvi-
mento desta área é óbvio, visto que melhores técnicas de imagiologia
permitem melhorar a qualidade dos diagnósticos e a compreensão de
fenómenos naturais. Uma das mais recentes inovações em imagiologia
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in vivo não invasiva é Tomogra�a de Coerência Óptica. A principal
utilização desta técnica é para aquisição de imagens tridimensionais
de alta de�nição do fundo do olho, permitindo uma caracterização
anatómica da retina em grande detalhe [5, 14].

A retina é tecido nervoso no olho de extrema importância na nossa
visão. Há muitas doenças que afectam o olho e cujo diagnóstico não é
directo � a sensibilidade desta estrutura torna a análise médica com-
plicada. A maior parte dos diagnósticos é feita ou por observação
directa, com a possível injecção de contrastes que realcem partes do
órgão, ou por entorpecimento do órgão e posteriores medições diretas
de grandezas como a pressão interna ou a espessura. A tomogra�a de
coerência óptica, por outro lado, permite a aquisição de imagens de
qualidade histológica de forma não invasiva [7], o que é uma melho-
ria extrema em comparação com os métodos acima descritos. Visto
ser uma técnica relativamente recente, há variadas possibilidades em
aberto, nomeadamente o diagnóstico de outros tipos de patologias,
ou a aquisição de informação funcional. O estabelecimento de um
modelo matemático para a tomogra�a de coerência óptica revela-se
de extrema importância pois permite explorar e compreender melhor
os fenómenos físicos envolvidos no processo sem que para isso seja
necessário recorrer a experiências físicas dispendiosas.

Nesta dissertação pretendemos estudar o efeito que as alterações
ao nível celular provocam na imagem �nal. O modelo matemático a
considerar deve, por isso, descrever as interacções que ocorrem a essa
escala e que eventualmente levam à imagem de tomogra�a de coerên-
cia óptica. Isto implica estudar a propagação e difracção da luz num
meio heterogéneo. Nesse sentido, vamos estudar os fundamentos de
electromagnetismo e usar as equações de Maxwell para modelar a
uma escala muito pequena a maneira como uma onda electromag-
nética se propaga.
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O modelo teórico contínuo considerado é complementado com um
modelo discreto construído com recurso ao método das diferenças
�nitas onde foram consideradas condições iniciais e de fronteira ad-
equadas. Os resultados numéricos obtidos evidenciam as potenciali-
dades desta abordagem. O estudo apresentado nesta dissertação deu
origem a dois trabalhos cientí�cos [3, 24].

Palavras chave: Equações de Maxwell, Tomogra�a de Coerência
Óptica, Diferenças �nitas, Retina, Dispersão da Luz
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Chapter 1

Introduction

To better understand some of the problems faced when working
towards a mathematical model to describe light scattering in the
human retina, we �nd it important to explain, with some degree of
detail, the anatomy of the human eye. Greater focus will be given
to the cellular components of the retina, and how these parts work
together allowing us to see. We will also identify certain pathologies
that are relatively common and how they relate to cellular alterations
of the retinal tissue. We will also explain the processes that lead to
an optical coherence tomography image.

1.1 The Eye and the Retina

The human eye is a complex structure, vital regarding our sense of
vision. A scheme of its basic structure can be seen on Figure 1.1.
As light enters the eye, it is focused by the cornea. The iris adjusts
its size in order to select the "amount" of light that passes through
the pupil; the crystalline further focuses this light beam, which then
converges on the retina [18].

1



2 Introduction

Figure 1.1: Scheme of the eye.

The retina is one of the three layers that lines the inside of the
eye. The outermost one is the sclera that includes the cornea and is
responsible for the organ's protection; the middle layer is the choroid,
which is a vascular layer, responsible for oxygenation and nourish-
ment of the retina � the innermost layer, and the one of more interest
regarding the sense of vision [20].

The retina is considered part of the central nervous system, as
during embryonic development it originates as an outgrowth of the
brain [19]. Anatomically, it can be split into distinct layers, as seen
on Figure 1.2.

The most internal layer is the inner limiting membrane, ILM. It
is the boundary between the retina and the vitreous body (a clear
gel that �lls the space between the lens and the retina), constituted
by astrocytes and by the feet of Müller cells � glial cells that serve
as support for the neurons in the retina. Between this layer and the
next � the nerve �bre layer, NFL � there is a thin layer of Müller
cells' footplates. At the NFL are the axons of the ganglion cells (that
will form the optic nerve), which are neurons whose nuclei are in the
following layer, appropriately named ganglion cell layer, GCL. The
next layer is where the synapses between the dendrites of the gan-
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Figure 1.2: (a) Histological image of the retina [20]; (b) Scheme of the layers.

glion cells and the axons of the bipolar neurons occur, in a dense
reticulum of �brils � the inner plexiform layer, IPL. Past this layer
is the inner nuclear layer, INL, where the nuclei of the bipolar neu-
rons are located (and some amacrine cells, which are interneurons).
After this layer is the outer plexiform layer, OPL. Here is where
the synapses between the photosensitive cells' axons and the bipo-
lar neurons' dendrites occur. Projections of the photosensitive cells
(spherules for the cones, pedicles for the rods) are in this layer; its
cell bodies are in the following layer, the outer nuclear layer, ONL.
After the ONL there is a membrane, the external limiting membrane,
ELM, which separates the rods' and cones' nuclei from their outer
segments, which are located in the photoreceptor layer, PL. It is the
outer segments of these cells that are photosensitive and initiate the
events that culminate in the formation of an image. The cones are
sensitive to three wavelength bands, corresponding to three colors:
red (long cones), green (medium cones) and blue (short cones). They
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are abundant in the foveal region. The fovea is a part of the retina,
responsible for sharp, central vision, that is located in the macula �
which in turn is an oval-shaped, highly pigmented spot near the cen-
ter of the retina. Rods are more common in the peripheral regions
of the eye, and are especially important in low-light vision. The �nal
layer is a single layer of cuboidal epithelial cells, the retinal pigment
epithelium, RPE, which is attached to the choroid [19, 20].

As light enters the eye, it is refracted, as it passes through the
cornea and again through the lens. These refractions result on the
projection of an inverted image on the retina, a result identical to
the refractions that occur when a biconvex lens is employed. In the
retina, proteins that exist on the photoreceptors, called opsines, ab-
sorb a photon and initiate a transduction pathway that culminates
in the hyper-polarization of the cell. The cells then synapse with the
bipolar neurons, which in turn synapse with the ganglion cells. From
there, the information is lead to the brain through the optic nerve.
There are approximately 130 million photoreceptors to 1.2 million
ganglion cells (10% of which are in the foveal region); this is because
the information is processed in the course of the synapses previously
described.

As one can see, the retina is an intricate structure with many dif-
ferent cells, all responsible for di�erent parts in the sensory response
to light. There are a number of pathologies that a�ect the retina
(and therefore one's vision) that trace back to cellular damages in
one or more of the above speci�ed layers. Common examples of these
pathologies are macular edema, diabetic retinopathy, glaucoma and
macular degeneration.

Macular edema occurs when there is some kind of lesion that
causes �uids and proteins to accumulate in the macula. It is a
common condition following cataract surgery. This pathology can
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be classi�ed as cystoid macular edema (CME), which involves �uid
accumulation in the OPL consequent of abnormal permeability of
the capillaries in the perifovea (it should be noted that despite its
name, this edema isn't cystic, as it has no epithelial coating � it's
its appearance that gives it such a name). Another type of macu-
lar edema is the diabetic macular edema, DME, which is similarly
caused by leaking from macular capillaries, usually consequent of di-
abetic retinopathy � and the most common cause for vision loss in
patients who have that condition. It is estimated that 45% of dia-
betics will develop DME at some stage of their lives1.

Diabetic retinopathy, DR, refers to retinal damages following dia-
betes. It a�ects nearly 80% of all patients that have had diabetes for
more than 3 years, and is a leading cause of blindness in american
adults2. DR is the result of micro-vascular changes; the inadequate
concentrations of glucose in the blood plasma lead to alterations in
the blood-retinal barrier and to an increased permeability of the reti-
nal blood vessels. Accumulation of glucose and/or fructose damages
the small blood vessels. If not addressed, as it progresses the disease
enters a di�erent stage: proliferative DR. The damage to the blood
vessels causes low oxygenation, which is a trigger for the start of
angiogenesis (the formation of new blood vessels). These new blood
vessels can grow along the retina and in the vitreous humour; due to
their frailty, they can easily bleed and cloud one's vision, cause reti-
nal detachment (where the eye "peels" from its underlying support
tissue, the sclera) or even lead to glaucoma.

Glaucoma is a disease in which the optic nerve is damaged in a
certain pattern, possibly leading to blindness. It is usually a con-
sequence of increased pressure in the aqueous humour, a gelatinous

1Statistics from http://www.virtualmedicalcentre.com/diseases/diabetic-macular-oedema, accessed
on June 15th, 2013.

2Statistics from the National Eye Institute, http://www.nei.nih.gov/eyedata/diabetic.asp, accessed
on June 15th, 2013.
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�uid located in the space between the lens and the cornea (not to be
confused with vitreous humour). The nerve damage is due to loss of
ganglion cells. It is estimated that over 2.2 million americans have
glaucoma, but only half of these are aware3.

Macular degeneration is a condition related to age (in fact, usu-
ally called age-related macular degeneration, AMD) that results in
loss of vision due to retinal damage in the macula. There are two
forms of this disease: "dry" AMD and "wet" AMD. The �rst results
from atrophy of the cells of the RPE and consequent loss of rods and
cones; the second causes vision loss due to abnormal blood vessel
growth that ultimately leads to leakage of blood and proteins below
the macula. Such aggressions lead to irreversible damage to the pho-
toreceptors. This disease is another of the leading causes for vision
loss4.

These pathologies can all be identi�ed by anatomical analysis of
the retina. Its dimensions, however, are quite small; the retina's
thickness varies between 0.10 mm on its outer parts to 0.24 mm in
the perifoveal region, and again 0.10 mm in the fovea, [19], as seen
on Figure 1.3. These dimensions imply that to obtain an accurate
portrait of the retina, a high-resolution technique must be employed.

3Statistics from http://www.glaucoma.org/, accessed on June 15th, 2013.
4Statistics from the National Eye Institute, http://www.nei.nih.gov/eyedata/amd.asp, accessed on

June 15th, 2013.
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Figure 1.3: Representation of the thickness of the retina, from the temple (Te) to the
nasal (Na) region, in milimeters [19].

1.2 Optical Coherence Tomography

Optical Coherence Tomography, OCT is a recent imaging technique
that is highly advantageous for imaging the eye due to its high res-
olution. With it, we can obtain a tri-dimensional map of the eye
fundus with a high level of detail, which is very useful and impor-
tant for early diagnosis of pathologies as the ones described in the
previous section. Besides this, it has the great advantage of being
a non-invasive technique, which makes it a lot more comfortable for
the patients and of easier access.

OCT is analogous to ultrasound imaging, but using light instead
of sound [14]. In ultrasound imaging, an ultrasound pulse is sent to
an area of interest. Sound travels at di�erent speeds in di�erent ma-
terials, and as it travels from one type of material to another, part is
re�ected back and part continues to travel forward. The portion that
is re�ected back is detected; the echo time delay and intensity of this
signal are used in order to characterise the material that caused the
re�ection. The same principle is applied to electromagnetic waves;



8 Introduction

however, since the speed of light is at least 106 times that of sound,
direct measure of the echo time delays, which are in a very small
scale, isn't possible with today's technology [6]. In order to bypass
this obstacle and acquire this information, more sophisticated meth-
ods are necessary. In OCT, the method used is interferometry.

An electromagnetic beam can be characterised by its coherence.
A coherent beam is one which is highly self-correlated; correlation is
a value that quanti�es the ability to predict the value of a certain
property of the wave � be it intensity, frequency, or any other charac-
teristic value � by knowing the values the wave previously took [13].
A low coherence electromagnetic beam (i.e. one that is self-correlated
in a small space interval) is used in low coherence interferometry, LCI.
This beam is emitted by a source and travels until it reaches a beam
splitter, where it is split in two identical parts. One of the resulting
beams travels to a reference mirror, where it is re�ected back; the
other goes through a sample (the eye, in our case) and there it is
re�ected back by the eye's di�erent structures. As these two beams
reach the splitter again, they are recombined. This is the principle
behind Michelson's interferometer, an experiment done by Michel-
son and Morley in 1887 [13]. Coherent light beams, when combined,
interfere either constructively or destructively, resulting in an inter-
ference pattern. This mechanism will be described in better detail.

The beams used in an OCT apparatus have small coherence lengths,
which means that constructive interference happens only when both
beams have travelled the same optical path, which is the distance the
beam travelled in a certain medium multiplied by the refractive in-
dex of that medium [14]. The result of this constructive interference
is detected by the photodetector [5, 6]. If we change the position
of the mirror, we change the optical path the reference beam trav-
els, and therefore it will constructively interfere with a portion of the
other beam that was re�ected by the sample at a di�erent depth (i.e.
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that travelled the same optical length as the reference beam), which
is the principle behind TD(time-domain)-OCT [5], as described by
Figure 1.4. It is this mode that most interests us, and it's in it that
our work will be based upon.

Figure 1.4: A scheme of time-domain OCT.

We can take di�erent types of images from TD-OCT. When we
change the position of the mirror, we get re�ections from di�erent
depths for the same lateral position � an A-scan. If we take multiple
A-scans along the same axis, all of them parallel between themselves,
we have a bi-dimensional image of the retina � a B-scan. Multiple
parallel B-scans make up a C-scan, a tri-dimensional map of the
retina. Figure 1.5 represents these scans and how they relate to one
another.

The intensity of the detected beam depends on the intensity of the
reference beam and the structure's re�ectivity. Di�erent structures
re�ect the beam back in di�erent proportions, and can therefore be
identi�ed by analysis of this signal.
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Figure 1.5: An OCT A-Scan, B-Scan and C-Scan of a human retina.

The axial resolution of an OCT scan is determined by the co-
herence length of the beam it uses. The transverse resolution is de-
termined by the optics of the system and by the beams waist [12, 14].

OCT has many possible applications, even outside the clinical
context (for instance, characterisation of materials [2]) [12]. However,
its main application is in imaging the eye.



Chapter 2

Mathematical Model

2.1 State of the Art

The problem of light scattering in the human eye has been addressed
in di�erent ways by several research groups. Bulow et al. [8], in 1968,
studied the scattering of light by the RPE granules, showing the ex-
istence of backscattering of light even when the pigment granules are
inside the cells. Si et al. [23] modelled light scattering in retinal
tissue using spherical and non-spherical models restricted to a cell,
including the nucleous and other organelles. In 2001, Hammer et al.
[16] determined absorption and scattering coe�cients in the retina
by modelling light transport in the retina, although not in a local
scale. In 2007, Abdallah et al. [1] published a model for the study
of photoreceptors. Although helpful toward developing what we're
aiming for � that is, a model of light scattering in the whole retina
� these works don't address many of the problems that concern us,
speci�cally integrating the information necessary to produce an OCT
scan in a model for light scattering.

We introduce this chapter to describe and explain the physical
principles behind OCT. Besides, in order to have a model with the
level of precision an OCT scan yields, we will need to go in detail into

11
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the electromagnetic processes that occur at cellular-level scale. To
do so, we will use Maxwell's equations, the cornerstone of classical
electromagnetism, to model light propagation and scattering in the
retina.

2.2 Electromagnetism

Electromagnetism is the branch of physics that deals with the inter-
actions between charged particles. The electromagnetic force is one
of the four fundamental forces (alongside the weak and strong forces
and the gravitational force), and it is responsible for almost all the
phenomena encountered in one's daily life � with an exception for
gravitational phenomena and nuclear scale events [13, 15].

In terms of nomenclature, there are a series of di�erent names
and symbols for a lot of the quantities we are going to deal with.
With the goal of minimizing confusion, we attempt to describe the
di�erent �elds in advance:

• ~B, magnetic �ux density;

• ~H, magnetic �eld intensity;

• ~D, electric �ux density;

• ~E, electric �eld intensity.

The �ux densities and �eld intensities are related by the following
equations:

~B = ~H ∗ µ(ω); ~D = ~E ∗ ε(ω).

In these equations, ∗ indicates convolution in time, µ the medium's
magnetic permeability and ε the medium's electric permittivity, which
in this case are dependent of the wave's frequency; if the medium is
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dispersionless (i.e., the permeability and permittivity are indepen-
dent of the wave's frequency) the relations become ~B = ~Hµ; ~D = ~Eε.

The force an electromagnetic �eld exerts on a charged particle is
characterized by Lorentz' law:

~F = q[ ~E + (~v × ~B)], (2.1)

where × denotes the vector cross product, ~F is the force, q is the
particle's charge and ~v is the particle's instantaneous velocity, which
is in vector form since it carries information regarding the direction
of the particle's motion. The term q ~E is referenced as the electric
force and q(~v × ~B) as the magnetic force.

There are two types of charges: negative, as in electrons, and pos-
itive, as in protons. Opposite charges are attracted towards one an-
other, while equal ones repel each other. The interactions between
charges are usually described in terms of electric �elds, a concept
which was introduced by Michael Faraday, who also determined the
relationship between a changing magnetic �eld and an electric one
[13, 15], and that will be detailed ahead. Electric �elds are vec-
tor �elds that describe the force exerted on a single positive charge.
They are usually depicted as lines that leave positively charged par-
ticles (as they repel positive charges) and enter negatively charged
particles (which attract positive charges). Similarly, a magnetic �eld
is a vector �eld that mathematically describes the magnetic in�u-
ence of electric currents and magnetic materials over charged par-
ticles. These two quantities are intimately related, and we usually
talk about electromagnetic �elds and the electromagnetic force. The
relations between electric and magnetic �elds are described further
on.

The concept of electromagnetic �elds can be expanded beyond
the description of a force acting on a positively charged particle to
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a certain physical quantity that exists at a certain point of space
(x, y, z) at a certain instant t, regardless there being any charged
particle there at that time or not. We will then have two vectors, ~E
(electric), with components Ex, Ey and Ez, which in turn vary with
position and time � Ex(x, y, z, t), Ey(x, y, z, t), Ez(x, y, z, t) � and ~H
(magnetic), with components Hx, Hy, Hz that vary with position
and time � Hx(x, y, z, t), Hy(x, y, z, t), Hz(x, y, z, t).

2.3 Maxwell's Equations

The relations between charged particles and �elds are comprised in a
set of �ve equations � Lorentz' force law, (2.1), and Maxwell's four
equations. Lorentz' law, (2.1), describes how the electromagnetic
�eld in�uences a charged particle in its range; Maxwell's equations
characterize how charged particles in�uence �elds and how �elds in-
�uence each other.

The �rst of these equations is Gauss's law for electric �elds, and it
describes the relationship between an electrically charged particle(s)
and the electric �eld it creates:

∇ · ~E =
ρ

ε0
, (2.2)

Figure 2.1: Electric �eld lines, entering a negative charge and leaving a positive one.
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where ρ is the electric charge density, ε0 is the vacuum permittivity
and "∇·" denotes the divergence operator. From this we understand
that positively charged particles are sources of electric �eld lines and
negatively charged ones are sinks for these same lines, as seen on
Figure 2.1. Gauss's law for magnetic �elds eliminates the possibility
of any analogous particle for the magnetic case:

∇ · ~B = 0. (2.3)

In fact there are no known magnetic monopoles: magnets always
have a north and south pole, and magnetic �eld lines don't begin
at neither of these, but rather loop around and through them (from
north to south) or extend to/from in�nity, as depicted on Figure 2.2.
These two equations are often referred to as the divergence equa-
tions.

Figure 2.2: Magnetic �eld lines looping around and inside a magnet.

The other two, commonly called the curl equations, are the in-
duction laws, which give further insight to the origin of these �elds
and their interaction. Beginning with Faraday's law:

∇× ~E = −∂
~B

∂t
, (2.4)

where "∇×" is the curl operator. The equation shows how the exis-
tence of a time-varying magnetic �eld generates a spatially varying
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electric �eld. To complement this phenomenon, we go to the last of
Maxwell's equation, Ampère's law with Maxwell's correction:

∇× ~H = ~J + ε
∂ ~E

∂t
. (2.5)

In this equation, ~J denotes the free currents present. This shows
that both a temporally varying electric �eld and an electric current
can induce a spatially varying magnetic �eld.

If we look at these two phenomena, we can see that if one �eld
generates another, this generated �eld, as it goes from zero to its ac-
tual value, varies in time. This variation will in turn induce another
�eld � despite no charges or currents being present � and so on. It
is this succession of self-inducing electric and magnetic �elds that is
behind electromagnetic waves, propagating through space. One can
in fact (as Maxwell did) deduce the electromagnetic wave equation
from this set of four equations. It was from this deduction that the
scottish physicist concluded "that light is an electromagnetic dis-
turbance propagated through the �eld according to electromagnetic
laws" in his work A Dynamic Theory of the Electromagnetic Field,
in 1864 [13].

Our goal is to solve Maxwell's curl equations over a domain that
emulates retinal tissue, in order to determine how light scatters when
it propagates through it. Analytical solutions for these equations
are di�cult to obtain and are only available in very simple cases
and for problems possessing a great deal of symmetry. For practical
situations, analytical methods become mostly useless, which is why
the use of numerical methods is so welcome [25]. The �nite-di�erence
time-domain method solves the curl equations numerically [17, 25,
26] and will be introduced and explored in the next chapter.
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2.4 Wave Propagation

The induction phenomena behind electromagnetic waves propaga-
tion are described by Maxwell's equations, as explained above. An
electromagnetic wave propagates in space at a speed that depends on
the medium's permittivity, ε, and permeability, µ. These quantities,
ε and µ, express the measure to which a material is able to support
the formation of an electric or a magnetic �eld, respectively. The
speed at which the electromagnetic wave propagates in the medium

relates to these quantities by v =
1
√
µε

. Another way to charac-

terise the speed of electromagnetic radiation in a certain medium is
through the medium's refractive index, n =

c

v
, where c is the speed

of light in vacuum.

When an electromagnetic �eld is so far from whatever its source
is that its behaviour remains unchanged regardless of alterations in
the source itself, we refer to it as far �eld (otherwise, we say its a
near �eld situation). In this way, changes in charges and currents
that generate �elds a�ect the near �eld, and not directly the far
�eld. In these terms, we can call the far �eld an electromagnetic
wave. An electromagnetic wave, or electromagnetic radiation, carries
energy through space [13, 15]. This form of energy is transmitted and
absorbed by electrically charged particles and exhibits a wave-like
behaviour described by the induction phenomena described in the
previous section. In fact, one can obtain the electromagnetic wave
equation by manipulation of the four equations, (2.2), (2.3), (2.4)
and (2.5).

If we take Faraday's law, (2.4), in a medium where no charges or
currents are present, and take the curl of both sides, we have

∇× (∇× ~E) = ∇×
−∂ ~B

∂t


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and through the curl properties, we get

∇(∇ · ~E)−∇2 ~E = − ∂
∂t

(∇× ~B).

Using Ampère's Law, (2.5), it yields

∇2 ~E =
∂

∂t

µ0ε0
∂ ~E

∂t


and then

∇2 ~E − µ0ε0
∂2

∂t2
~E = 0,

which �nally gives us the wave equation,∇2 − µ0ε0
∂2

∂t2

 ~E = 0.

A similar process yields an identical result for the magnetic �eld.

The fact that electromagnetic �elds travel through space as waves
allows us to understand a series of phenomena that involve light.
Two of them � scattering and interference � are of pivotal importance
when it comes to OCT; as such, we will give special focus to both of
them.

2.4.1 Scattering

Scattering is the general physical phenomenon where a wave is forced
to change its trajectory by inhomogeneities in the medium where it
travels. This change in the medium can result in a re�ection, a re-
fraction or both.

Refraction occurs as light passes between two media with di�erent
refraction indexes. The speed at which light travels is related to the
medium's refractive index; as a wave travels between di�erent me-
dia, the speed at which it travels changes, but the wave's frequency
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doesn't. In order to enforce the principle of conservation of energy
and momentum the wave bends its path. The relation between the in-
cidence angle, θ1, the refraction angle, θ2, and the media's refraction
coe�cients (n1 the incidence medium and n2 the refraction medium)
is described by Snell's law:

sin θ1

sin θ2
=
n2

n1
.

In general, the wave is not only refracted but also partially re-
�ected back. In the context of optical coherence tomography, this
portion that is back-re�ected is the one of interest regarding the out-
put signal. Fresnel's equations give us the fraction of the wave that
is refracted, T , transmittance, and the fraction that is re�ected, R,
re�ectance. These relate to each other, due to the conservation of
energy, by T = 1−R. For a 90 ◦ incidence, the re�ectance is given by

R =
∣∣∣∣n1−n2n1+n2

∣∣∣∣2. From this we can see clearly how the refractive indexes
in�uence the amount of light that is back-re�ected and therefore
detected in the OCT apparatus. Since these refractive indexes are
characteristic each material, it is clearer how this information can
help to identify the structure that re�ects the wave. The backscat-
tered portion of the wave is the one that is going to interfere with
the reference beam and contribute to the OCT image.

2.4.2 Interference

Interference is one of the most important principles behind OCT.
This is related to the fact that electromagnetic �elds follow the su-
perposition principle: at a certain point, the net �eld is the sum
of the �elds generated by di�erent sources at that point. However,
given the oscillatory nature of the electromagnetic wave, at a certain
point, �elds created by di�erent sources may interfere constructively,
i.e., the net result is bigger than the intervening �elds, or destruc-
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tively, when the resulting �eld is smaller than the original �elds. This
phenomenon can be simply visualized graphically, on Figure 2.3.

Figure 2.3: Constructive and destructive interference. In both cases, the wave in the
third plot is the sum of the waves in the previous two. Note that in the �rst set of images,
the crests and valleys of the waves are aligned and as such they are "maximized" in the
resulting wave; in the second set, the crests are aligned with the valleys and they add
up to zero.
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In OCT, as it was described in the previous chapter, the sig-
nal that reaches the detector is the result of two beams interfering
with each other. The detector doesn't directly acquire the value of
the electric �eld, but rather the irradiance (the time average of the
square of the electric �eld), for instance. Before further explanation
about calculating the irradiance, it should be mentioned that an elec-
tromagnetic wave may be expressed in complex form, as Aei(kx−ωt)

(where A is the amplitude, and k and ω are the wave's number and
frequency). Having said this, the relation between the irradiance and
the electric �eld can be described by I ∝< EE∗ >, where E∗ is the
complex conjugate of the electric �eld and < > the time average.
The irradiance at the detector is related to the electric �eld from
the sample, Es, and to the one from the reference arm, Er, by the
following:

ID ∝< EDE
∗
D >=(1/2) < ErE

∗
r > +(1/2) < EsE

∗
s > +

(1/2) < E∗rEs > +(1/2) < E∗sEr >

a few simpli�cations lead to:

ID ∝< EDE
∗
D >= (1/2)IR + (1/2)IS+(1/2) < E∗rEs > +

(1/2) < E∗sEr >

where IR is the irradiance due to the �eld from the reference arm and
IS from the sample. The last terms can be called the interference
terms, and it is them that carry the information needed to build an
OCT image [7].

2.5 Model

When building our model, we must start by de�ning what our domain
will be. Our domain is going to emulate a portion of the retina that
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corresponds to one pixel in the OCT scan; this translates in rectan-
gle with dimensions 5µm× 15µm. We will then have a rectangular
domain, Ω, which is related to the retina as shown in Figure 2.4,
(a). On Figure 2.4 (b) we have a better representation of our com-
putational domain; the empty area will be necessary to include our
source term, but such details are to be explained ahead.

Figure 2.4: (a) Representation of the computational domain; (b) the square limits of the
computational domain. The arrow indicates the direction of propagation of light.

If we take Maxwell's curl equations, (2.4) and (2.5), and expand
the curls in cartesian coordinates, we get:

∂ ~H

∂t
= −1

µ
∇× ~E ⇒



∂Hx

∂t
= −1

µ

(
∂Ez

∂y
− ∂Ey

∂z

)

∂Hy

∂t
= −1

µ

(
∂Ex

∂z
− ∂Ez

∂x

)

∂Hz

∂t
= −1

µ

(
∂Ey

∂x
− ∂Ex

∂y

)
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and

∂ ~E

∂t
=

1

ε
∇× ~H ⇒



∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
.

Computing all six resulting equations would result in a time consum-
ing process that isn't practical. To avoid this issue, we decompose the
�elds into two modes: a "transverse electric", TE, and "transverse
magnetic", TM [26]. The reduction to any of these modes implies
that the wave is uniform in the z-direction, and extends to in�nity
� and so all the partial derivatives with respect to z are 0. This two
modes are characterized in the following way:

1. TE mode:

Hx = Hy = 0, Ez = 0,

∂Ex

∂t
=

1

ε

(
∂Hz

∂y

)
,

∂Ey

∂t
=

1

ε

(
∂Hz

∂x

)
,

∂Hz

∂t
= −1

µ

(
∂Ey

∂x
− ∂Ex

∂y

)
. (2.6)

2. TM mode:

Hz = 0, Ex = Ey = 0,

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
,

∂Hx

∂t
= −1

µ

(
∂Ez

∂y

)
,

∂Hy

∂t
= −1

µ

(
∂Ez

∂x

)
.
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In this way, we can solve for only one of the modes and still have
an accurate portrayal of reality [25]. With this, we have reduced the
number of equations we have to solve by half without compromising
our results. Our model will then consist of the transverse electric
mode equations for the electromagnetic �elds, (2.6).

To complement our model, we need to consider boundary and ini-
tial conditions. As visible on Figure 2.4, our area of interest isn't
physically bounded in the real case; as such, arti�cial boundary con-
ditions that mimic a lack of physical boundary will be necessary. In
the next chapter di�erent options will be discussed. As for initial
conditions, our �elds' initial values will be zero, except for Hz, where
we will start with a term that will act as a source for the electromag-
netic wave:

Ex(x, y, 0) = 0;

Ey(x, y, 0) = 0;

Hz(x, y, 0) = F (x, y, 0).

(2.7)

In this work we will consider the function F as the gaussian func-
tion with amplitude A, centred in the point (x0, y0) ∈ Ω and scale
parameters σx and σy that represent the spreads of the curve along
the s an y directions. We take in consideration that its width must
be small enough that its value on the borders of our domain is zero,
as depicted on Figure 2.5.
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Figure 2.5: Gaussian curve in our computational domain; A = 0.005, (x0, y0) = (75, 175)
(in a domain Ω = [0, 350]× [0, 350]), and σx = σy = 2.





Chapter 3

Numerical Method

3.1 State of the Art

The �nite di�erences method has been used to calculate the numer-
ical solution of Maxwell's equations for many years. In 1966, Kane
Yee published a paper [26] where he described the numerical basis
for solving Maxwell's curl equations (Faraday's and Ampère's law)
directly in time, in a spatial domain. However, despite the sim-
plicity of the method, its computational charge and storage costs
were considerable for the computers of those days; only later, in
the late seventies/eighties, was the method more generally applied.
The term "�nite di�erence time domain" (FDTD) was coined by
Ta�ove in 1980, in a paper where he published the �rst validated
models of a sinusoidal wave propagating in a tridimensional cavity.
In 1977, Engquist and Majda developed absorbing boundary condi-
tions (ABC) for numerical simulations of waves [11], and the �nite
di�erence scheme for those boundary conditions was developed by
Mur in 1981 [21]. In 1988, Kriegsmann et al. and Moore et al. pub-
lished the �rst papers on ABC theory. In 1994, Berenger published a
paper introducing the highly e�ective perfectly matched layer (PML)
boundary conditions [4] for bidimensional domains; in the same year,
Katz et al. extended these boundary conditions for tridimensional

27
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domains. From then on, there have been numerous improvements
to this numerical method, including an alternating-direction implicit
(ADI) FDTD algorithm, proven to be unconditionally numerically
stable [25].

3.2 Finite Di�erence Time Domain

The exact solution for Maxwell's curl equations is very hard to de-
termine, and this is why the use of numerical methods is so welcome.
The �nite-di�erence time-domain method solves the curl equations
numerically. One of the most important parts of this method, con-
structed by Kane Yee in 1966 [26], is the development of an appro-
priate spatial grid. Since we will work in a bi-dimensional domain,
we will focus on this type of domains. It should be said that this
method is also of possible application for tridimensional domains.
The particularity of Yee's grid is that rather than being computed
at the same point, there are speci�c points in which we compute
each �eld component, arranged between themselves as illustrated on
Figure 3.1.

Let Ω = [0, X] × [0, Y ], ∆x = X
Nx
, ∆y = Y

Ny
, Nx, Ny positive

integers. We de�ne the subsets:

Ω1 = {(i∆x, j∆y) ∈ Ω, i = 0, ... , Nx, j = 0, ... , Ny};
Ω2 = {((i+ 1/2)∆x, j∆y) ∈ Ω, i = 0, ... , Nx − 1, j = 0, ... , Ny};
Ω3 = {(i∆x, (j + 1/2)∆y) ∈ Ω, i = 0, ... , Nx, j = 0, ... , Ny − 1}.

Following the nomenclature above, Ω1 includes the points where
Hz is computed, Ω2 is where Ey is computed, and Ω3 is where Ex is
computed. Since our spatial domain is to mimic the retina, speci�-
cally at a cellular level, we must choose a spatial step small enough.
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Figure 3.1: Scheme of the spatial grid for the TE mode.

Also, it is said in the literature [25] that in these simulations, at
least 10 samples per wavelength should be taken. Since in OCT
λ = 10−6m, and for the dimensions we're aiming for, we choose
∆x = ∆y = ∆s = 10−7m. Temporally, we will run our simulation
from t = 0 until t = Tfinal, with intermediate values tn = n∆t, where
∆t = Tfinal

Nt
, n = 0, . . . , Nt and Nt a positive integer.

By choosing the spatial step, we impose a certain upper limit on
the possibilities of our time step; following the Courant-Friedrichs-
Lewy (CFL) stability condition [10, 25]:

∆t ≤ C∆s

2c
,

where C is the CFL stability factor, which for this method, fol-
lowing the literature, is C = 1√

2
. This condition imposes that the

maximum possible value for ∆t is 1.178511301977579−16 s, a value
that despite being so small allows for the stable computation of the
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electric �eld values.

Having our choice of time and spatial steps, we must now set up
our equations over the grid previously de�ned. We take the TE equa-
tions, (2.6), and set them in our grid:

∂Ex

∂t
(i∆s, (j + 1/2)∆s, (n+ 1/2)∆t) =

1

ε(i∆s, (j + 1/2)∆s)(
∂Hz

∂y
(i∆s, (j + 1/2)∆s, (n+ 1/2)∆t)

)
,

∂Ey

∂t
((i+ 1/2)∆s, j∆s, (n+ 1/2)∆t) =

1

ε((i+ 1/2)∆s, j∆s)(
∂Hz

∂x
((i+ 1/2)∆s, j∆s, (n+ 1/2)∆t)

)
,

∂Hz

∂t
(i∆s, j∆s, n∆t) = − 1

µ(i∆s, j∆s)

(
∂Ey

∂x
(i∆s, j∆s, n∆t)−

∂Ex

∂y
(i∆s, j∆s, n∆t)

)
.

Next, we discretize our set of equations using central di�erences
as follows:

Ex(i∆s, (j + 1/2)∆s, (n+ 1)∆t)− Ex(i∆s, (j + 1/2)∆s, n∆t)

∆t
=

1

ε(i∆s, (j + 1/2)∆s)

Hz(i∆s, (j + 1)∆s, (n+ 1/2)∆t)

∆s
−

Hz(i∆s, j∆s, (n+ 1/2)∆t)

∆s

 +O(∆s2) +O(∆t2);
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Ey((i+ 1/2)∆s, j∆s, (n+ 1)∆t)− Ey((i+ 1/2)∆s, j∆s, n∆t)

∆t
=

1

ε((i+ 1/2)∆s, j∆s)

Hz((i+ 1)∆s, j∆s, (n+ 1/2)∆t)

∆s
−

Hz(i∆s, j∆s, (n+ 1/2)∆t)

∆s

 +O(∆s2) +O(∆t2);

Hz(i∆s, j∆s, (n+ 1/2)∆t)−Hz(i∆s, j∆s, (n− 1/2)∆t)

∆t
=

1

µ(i∆s, j∆s)

Ey((i+ 1/2)∆s, j∆s, n∆t)

∆s
−

Ey((i− 1/2)∆s, j∆s, n∆t)

∆s
− Ex(i∆s, (j + 1/2)∆s, n∆t)∆s

∆s
−

Ex(i∆s, (j − 1/2)∆s, n∆t)

∆s

 +O(∆s2) +O(∆t2).

At this point, we introduce the notationHn+1/2
z(i,j) for the approxima-

tion of the z component of the magnetic �eld at the point (i∆s, j∆s)
of our grid at the instant (n+ 1/2)∆t, En

x(i,j+1/2) for the approxima-
tion of the x component of the electric �eld at the point (i∆s, (j +
1/2)∆s), En

y(i+1/2,j) for the approximation of the y component of the
electric �eld at the point ((i+1/2)∆s, j∆s), at the instant n∆t. This
way, we get the set of equations:
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

H
n+1/2
z(i,j) −H

n−1/2
z(i,j)

∆t
= − 1

µ(i,j)

En
y(i+1/2,j) − En

y(i−1/2,j)

∆s

−
En
x(i,j+1/2) − En

x(i,j−1/2)

∆s

 ,

En+1
x(i,j+1/2) − En

x(i,j+1/2)

∆t
=

1

ε(i,j+1/2)

H
n+1/2
z(i,j+1) −H

n+1/2
z(i,j)

∆s

 ,

En+1
y(i+1/2,j) − En

y(i+1/2,j)

∆t
= − 1

ε(i+1/2,j)

−H
n+1/2
z(i+1,j) −H

n+1/2
z(i,j)

∆s

.
(3.1)

And so we have the �eld update equations to be used when solving
the electromagnetic �eld values as described in the Yee algorithm.
There are several things that make this algorithm a robust choice
for dealing with these kind of problems. First, the fact that it solves
both the electric and the magnetic �eld in time and space, rather than
solving either one of the �elds individually using a wave equation.
Second, the grid in itself is constructed in such a way that illustrates
Faraday's and Ampère's laws: the fact that each �eld component is
surrounded by the �eld components that in�uence it, makes it sim-
pler to identify the components associated with displacement cur-
rents or magnetic �uxes, and implicitly enforces Gauss's laws, (2.2)
and (2.3), (as the mesh is divergence-free).

3.3 Initial Conditions

Our initial conditions, described in the previous chapter, will
translate into initial values forH−1/2

z(i,j) and for E
0
x(i+1/2,j) and E

0
y(i,j+1/2).

In (2.7), F (x, y) can be any kind of impulse. We will use a gaussian
impulse, such as
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F (x, y) = Ae
− (x−x0)

2

2σ2x
− (y−y0)

2

2σ2y

where A is the amplitude, (x0, y0) is the center of the gaussian and
σx and σy are the spread of the curve along the x and y directions,
respectively. In our speci�c case, we will have A = 0.005, (x0, y0) =
(75, 175) (in a domain Ω = [0, 350]× [0, 350]), and σx = σy = 2. This
is graphically shown in Figure 3.2.

Figure 3.2: Initial Conditions. (a) shows Ex, (b) shows Ey and (c) shows Hz.

Note that at the boundaries, all the �elds are equal to 0.

3.4 Boundary Conditions

For wave propagation simulations, there is always the boundary con-
dition issue. In the real case, an electromagnetic wave keeps propa-
gating until it eventually dies o�, or is absorbed by a certain obstacle.
Simulating a domain large enough for the wave to die o� by itself
would be far too computationally heavy and of no interest; as such,
we need to choose an appropriate boundary condition in order to
simulate the real life situation.
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3.4.1 Dirichlet Boundary Condition

The Dirichlet boundary conditions are of no use to solve the problem
presented above, but a mention to them is necessary as they are sort
of our base for comparisons. As seen in the previous section, the
value of all the �elds ate the boundaries will initially be 0. Since
the �eld update equations need values for the electric/magnetic �eld
above/below/right/left of the cell in which we are calculating the
�eld (which value is needed depends on the �eld being calculated),
the electromagnetic �elds at the borders won't be updated. This
means that at the borders, the value of the �elds is always zero. This
value, despite not being updated, is needed in order to update the
�elds in the adjacent cells; since it is always 0, it will interfere with
the �elds inside the domain, causing a re�ection e�ect (which can
be seen in the Numerical Results chapter ahead on Figures 4.4, 4.5
and 4.6). It is to prevent this unwanted re�ection that we will need
an appropriate boundary condition.

3.4.2 Mur's Absorbing Boundary Condition

In 1977, Engquist and Majda proposed a theoretical boundary condi-
tion that would absorb outgoing waves at the border of the computa-
tional domain [11]. In short, we would have what would be equivalent
to a one-way wave equation that, when applied at the outer bound-
aries of the domain, absorbs outgoing waves. If we de�ne the partial
di�erential operator

G ≡ ∂2

∂x2
+

∂2

∂y2
− 1

c2

∂2

∂t2
,

we can write the bidimensional wave equation, ∂
2U
∂x2 + ∂2U

∂y2 −
1
c2
∂2U
∂t2 = 0,

simply as GU = 0. We can factorize this operator as follows:

G+ ≡ ∂

∂x
+
∂

∂t

1

c

√√√√√√1−
∂
∂y
∂
∂tc
, G− ≡ ∂

∂x
− ∂

∂t

1

c

√√√√√√1−
∂
∂y
∂
∂tc
,
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where
G = G+G−.

Engquist and Majda showed that if we apply G− at the left bound-
ary, it will absorb an outgoing plane wave in that direction. However,
this term includes a square root, making this a "pseudo-di�erential"
operator. It was in 1981 that Mur showed how one can approximate
this square root to di�erent orders so that the boundary condition
can be implemented [21]. The approximations, however, are not ex-
act, and some amount of re�ection can occur as the waves cross the
boundary; this e�ect can be minimised while designing the boundary
condition by, for instance, increasing the order to which the square
root approximation is exact.

The second order absorbing boundary condition (ABC) for a do-
main with dimensions [0, X]× [0, Y ] is as follows:

∂2U

∂x∂t
− 1

c

∂2U

∂t2
+
c

2

∂2U

∂y2
= 0 for x = 0, y ∈ [0, Y ]

∂2U

∂x∂t
+

1

c

∂2U

∂t2
− c

2

∂2U

∂y2
= 0 for x = X, y ∈ [0, Y ]

∂2U

∂y∂t
− 1

c

∂2U

∂t2
+
c

2

∂2U

∂x2
= 0 for x ∈ [0, X], y = 0

∂2U

∂y∂t
+

1

c

∂2U

∂t2
− c

2

∂2U

∂x2
= 0 for x ∈ [0, X], y = Y

3.4.3 Perfectly Matched Layer

The perfectly matched layer (PML) boundary condition is considered
state of the art in these type of works. It was originally proposed
by Bérenger in 1994 [4]. Essentially, a PML is a lossy layer in which
electromagnetic waves are absorbed gradually; this is achieved by
surrounding our domain of interest with a region where there is a
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certain value of what can be called conductivity, even though it is
more of a numerical construct to have the absorption e�ect we're
looking for, that causes the wave to be absorbed gradually. This
term enters our equations (2.4) and (2.5) associated with the free
currents term and with an equivalent term for the magnetic case, the
equivalent magnetic current density, that despite having no physical
realization, has numerical interest for this study. These "currents"
can act as independent sources of energy for the electric and magnetic
�elds, as σ ~E and σ∗ ~H. This way, the curl equations become:

∇× ~E = −µ∂
~H

∂t
− (σ∗ ~H),

∇× ~H = ε
∂ ~E

∂t
+ (σ ~E).

(3.2)

If we give a certain value to σ and σ∗ in a layer that surrounds
our domain, and make them zero in our area of interest, we will
have created a lossy layer that absorbs outgoing waves. However,
for obliquely incident waves, this formulation doesn't quite work,
leaving a certain amount of re�ection behind. To address this issue,
Bérenger proposed what is called a split �eld formulation � he split
the equation that governs the evolution of Hz in two, as follows:

∂Hz

∂t
= −1

µ

((
∂Ey

∂x
− ∂Ex

∂y

)
− σ∗Hz

)

is split in
∂Hzx

∂t
= −1

µ

(
∂Ey

∂x
− σ∗xHz

)

and
∂Hzy

∂t
= −1

µ

(
−∂Ex

∂y
− σ∗yHz

)
.

In this way, we can write Hz = Hzx +Hzy. Now, using the modi-
�ed curl equations and the split-�eld formulation for Hz, we get the
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following �eld update equations:

H
n+1/2
zx(i,j) =

µ(i,j) − 0.5∆tσ∗x
µ(i,j) + 0.5∆tσ∗x

Hn
zx(i,j)

+
∆t

∆s(µ(i,j) + 0.5∆tσ∗x)
(−En

x(i,j+1/2) + En
x(i,j−1/2)),

H
n+1/2
zy(i,j) =

µ(i,j) − 0.5∆tσ∗y
µ(i,j) + 0.5∆tσ∗y

Hn
zy(i,j)

+
∆t

∆s(µ(i,j) + 0.5∆tσ∗y)
(En

y(i+1/2,j) − En
y(i−1/2,j)),

En+1
x(i,j+1/2) =

ε(i,j) − 0.5∆tσx
ε(i,j) + 0.5∆tσx

En
x(i,j+1/2)

+
∆t

∆s(ε(i,j) − 0.5∆tσx)
(H

n+1/2
z(i,j+1) −H

n+1/2
z(i,j) ),

En+1
y(i+1/2,j) =

ε(i,j) − 0.5∆tσy
ε(i,j) + 0.5∆tσy

En
y(i+1/2,j)

− ∆t

∆s(ε(i,j) − 0.5∆tσy)
(H

n+1/2
z(i+1,j) −H

n+1/2
z(i,j) ).

The indexes x and y in the conductivity and magnetic loss con-
stants refer not to the �eld components, but to propagation direction.
Looking at the �nal set of equations, we see we have all our �elds
in these two directions, which are normal to the interface between
the lossy layer and the domain of interest; as such, the unwanted
re�ections are avoided.
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Another consideration is that this lossy layer has to be perfectly
matched with our domain of interest, or else undesired re�ections
may occur when the wave goes from one to the other. In a medium
with a certain constant permittivity and permeability, if σ = σx = σy,

σ∗ = σ∗x = σ∗y, and if these values are related by σ∗ = σ
µ

ε
, we have

an absorbing medium that is impedance-matched to our domain of
interest [22, 25].
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Numerical Results

Before introducing the results obtained, some considerations that
were needed regarding implementation will be mentioned. First, if
we look at equations (3.1), we note that many of the indexes have
half-integer values; this comes from the staggered mesh arrangement
previously described. When implementing the equations, such in-
dexes aren't possible; because of this, we will slightly change our
equations in a way that all the indexes are integers - quite simply we
just change our reference point, in such a way that the index ±1/2
when respecting to the magnetic �eld update equations, becomes 1
or 0, and when respecting to the electric �eld update equations be-
comes 0 or -1. This translates a simple change in referential that
makes implementation a lot simpler. We now present the �eld up-
date equations, ready for implementation:

Hn+1
z(i,j) = Hn

z(i,j) +
∆t

∆sµ(i,j)
(En

y(i,j) − En
y(i−1,j) − En

x(i,j) + En
x(i,j−1)),

En+1
x(i,j) = En

x(i,j) +
∆t

∆sε(i,j)
(Hn+1

z(i,j+1) −H
n+1
z(i,j)),

En+1
y(i,j) = En

y(i,j) −
∆t

∆sε(i,j)
(Hn+1

z(i+1,j) −H
n+1
z(i,j)).

It is important to emphasize that despite the points having the same
indexes, the logic behind the staggered meshes is maintained and

39
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that this change is purely for implementation simplicity.

We will �rst simulate the temporal evolution of the electromag-
netic �elds over the domain Ω = [0, 350] × [0, 350], where at every
point ε = ε0, with initial conditions

Ex(x, y, 0) = 0;

Ey(x, y, 0) = 0;

Hz(x, y, 0) = 0.005e−
(x−175)2

8 − (y−175)2

8 .

The result of this simulation is presented in Figures 4.1, 4.2 and 4.3.

Figure 4.1: Temporal evolution of Ex. (a) t = 10∆t; (b) t = 60∆t; (c) t = 300∆t.

Figure 4.2: Temporal evolution of Ey. (a) t = 10∆t; (b) t = 60∆t; (c) t = 300∆t.

As we can see, the mechanism of induction causes the �elds to
propagate spherically across our domain. At approximately t =
500∆t, the wave reaches the borders of our domain. Our "default"
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Figure 4.3: Temporal evolution of Hz. (a) t = 10∆t; (b) t = 60∆t; (c) t = 300∆t.

boundary conditions, as explained previously, are Dirichlet bound-
ary conditions. In Figures 4.4, 4.5 and 4.6 we see the e�ect this
boundary condition has on our �elds.

Figure 4.4: Temporal evolution of Ex. (a) t = 520∆t; (b) t = 550∆t; (c) t = 800∆t.

Figure 4.5: Temporal evolution of Ey. (a) t = 520∆t; (b) t = 550∆t; (c) t = 800∆t.
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Figure 4.6: Temporal evolution of Hz. (a) t = 520∆t; (b) t = 550∆t; (c) t = 800∆t.

In the previous �gures, the re�ection e�ect that the Dirichlet
boundary conditions have is quite clear.

Following these results, we present now the obtained �eld compo-
nents when we run a simulation with the same initial conditions but
with Mur's second order ABC in Figure 4.7.
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Figure 4.7: Temporal evolution of Ex, Ey and Hz. (a) and (b) show Ex at instants
t = 550∆t and t = 800∆t, respectively; (c) and (d) show Ey, and (e) and (f) show Hz,
for the same instants as the �rst two.

It is clear when comparing Figure 4.4 (e) and (f) with Figure 4.7 (a)
and (b) that most of the �eld is absorbed at the boundary (equiva-
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lent remarks can be made between the other �eld components). It is
also clear that at the corners there are artefacts that would require
further care. However, in this work, we preferred implementing the
PML boundary condition rather than further improving Mur's ABC.
Before showing the results for this boundary, a brief mention to the
choice of values for σx, σy, σ∗x and σ

∗
y will be made.

There are several examples in the literature of ways of choosing
gradually crescent values for the conductivity and magnetic loss. For
our work, we chose to do an adaptation of the code provided by Dr.
Susan Hagness [25]. In Figure 4.8 we present our obtained results
for a PML that is 50 cells wide.
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Figure 4.8: Temporal evolution of Ex, Ey and Hz. (a) and (b) show Ex at instants
t = 550∆t and t = 800∆t, respectively; (c) and (d) show Ey, and (e) and (f) show Hz,
for the same instants as the �rst two.

Comparing with Figures 4.4, 4.5 and 4.6, it is obvious how much
more e�ective this boundary condition is in preventing undesired re-
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�ections at the borders. If we compare, image by image, Figures 4.7
and 4.8, we see that in (a), (c) and (d), in the PML case the ab-
sorption is more evident at this instant, and in (b), (d) and (f), we
can see that in the PML case there are no artefacts in the corners
and the �elds are practically zero at this instant. This lead us to
the decision, which is supported by the literature [4, 25], that the
PML boundary condition serves our purposes on this work better
than Mur's ABC, and as such we will use it for further simulations.

We will now introduce a change in the medium's permittivity ε,
in order to observe the re�ection and refraction e�ects that were
described in a previous chapter. This way, our domain will look like
the scheme on Figure 4.9.

Figure 4.9: Domain for the single interface simulation. Note the values for ε: ε = 2εo
(top); ε = εo (bottom).

In order to have our source factor farther away from the interface
our initial conditions will also slightly change to:

Ex(x, y, 0) = 0;

Ey(x, y, 0) = 0;

Hz(x, y, 0) = 0.005e−
(x−175)2

8 − (y−75)2

8 .
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This way, when our electromagnetic wave reaches our area of in-
terest, it has approximately a plane wave shape.

For boundary condition we will use a PML identical to the one
described above. From now on, rather than plotting the values of
the �elds, we will plot the intensity of the wave, calculated as I =√
E2
x + E2

y , which is our approximation to the irradiance mentioned
in a previous chapter.

Figure 4.10: Evolution of the intensity of the wave over a single interface (a) t = 100∆t;
(b) t = 250∆t; (c) t = 320∆t; (d) t = 500∆t.

In Figure 4.10, we can see clearly a part of the beam transmitted
through the interface, with a slightly bent trajectory compared to
the one in the �rst medium, and a part that is back-re�ected.
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In order to get closer to our initial goal of simulating the evolution
of the �elds over a domain that mimics a section of the retina that
corresponds to an OCT scan, we now move on to a domain where
we have a single cell where ε = 1.8769ε0, which is approximately the
value of permittivity in the INL of mice [9]. Besides this change, we
will also change the width of our PML layer; rather than being 50
cells wide all around the domain, it will be as depicted on Figure 4.11.

Figure 4.11: Domain for the single cell simulation.

The PML region is outside the yellow rectangle. Our initial condi-
tions will be the same as in the previous example.

We can see on Figure 4.12 (d) the two re�ections that correspond
to the two interfaces that the wave passes through. These back-
re�ections will be what the OCT apparatus detects in order to build
the �nal image.

For our �nal simulation, we will have a domain that aims to mimic
Figure 2.4. In this simulation, the initial conditions are the same as
in the previous simulations. The source factor is far away from our
domain of interest so that when the wave reaches the cells, its con�g-
uration is nearly plane (hence the empty area depicted on Figure 2.4).
The results are shown in Figure 4.14.
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Figure 4.12: Simulation with a single cell. Plot of the intensity at di�erent instants: (a)
t = 100∆t; (b) t = 350∆t; (c) t = 550∆t; (d) t = 800∆t.

Figure 4.13: Domain for the OCT pixel simulation.



50 Numerical Results

Figure 4.14: Simulation in an OCT pixel. Plot of the intensity at di�erent instants: (a)
t = 100∆t; (b) t = 350∆t; (c) t = 550∆t; (d) t = 800∆t.

Note that in Figure 4.14 (d) we can see the back-re�ections that cor-
respond to each cell. This signal is detected by the photodetector
in the OCT apparatus, and will correspond to one pixel in the OCT
scan. Our research group, at AIBILI, is working with other numeri-
cal methods that have di�erent strengths compared with FDTD. A
discontinuous Galerkin, DG , method has been used frequently [3].
In order to cross-validate the results obtained with FDTD and with
DG, we ran a simulation for the same domain and with the same
boundary and initial conditions. In Figure 4.15 we present the ob-
tained results.

The clear similarities between Figures 4.15 and 4.14 encourage our
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Figure 4.15: Simulation in an OCT pixel with DG. Plot of the intensity at di�erent
instants: (a), t = 100∆t; (b), t = 350∆t; (c), t = 550∆t; (d), t = 800∆t.

belief that our model provides accurate results for this problem.
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Chapter 5

Conclusions and Future Work

In this work, we have successfully described a mathematical model
for light scattering problems that is based on Maxwell's equations.
We have also described a domain analogous to the equivalent of an
OCT pixel in the retina. The results obtained with FDTD and with
the DG method are coherent between each other; this works as some
sort of validation for both methods. A more in-depth study into
the correlation between the results can be useful for futher studies.
However, by visual inspection alone, we can say that both methods
give identical results. We can, through statistical methods, build the
equivalent results for a complete layer and even a full OCT scan.

This is one of the future works for our research group. To validate
the results obtained in this way, we will need to run simulations (with
FDTD or DG) over the complete layer; this is another task for us in
the near future.
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