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The Road goes ever on and on 

Down from the door where it began. 

Now far ahead the Road has gone, 

And I must follow, if I can, 

Pursuing it with eager feet, 

Until it joins some larger way 

Where many paths and errands meet. 

And whither then? I cannot say. 

 

J.R.R. Tolkien 
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Abstract 

In the last decades, the rapid advances of semiconductor technologies fostered a large 

development in the field of multimedia systems, mainly due to the continuous increase 

of computational resources and the availability of reliable communication 

infrastructures. Several video compression standards have been developed in this 

period, aiming at reducing transmission bit rates without decreasing the video quality. 

The High Efficiency Video Coding (HEVC) standard, recently launched by the Joint 

Collaborative Team on Video Coding (JCT-VC), is the state of the art in video 

compression and is expected to gradually substitute its predecessor, the H.264/AVC 

standard. HEVC provides improved compression ratios in comparison to previous 

standards, but such gains are associated with large increases in the encoding 

computational complexity and consequently longer processing times, which may 

compromise the encoder operation in portable devices and in real-time systems, 

especially for high-resolution videos. The research work presented in this thesis 

addresses the subject of computational complexity of HEVC encoders with contributions 

extending from the analysis of HEVC compression efficiency and computational 

complexity to the reduction and scaling of its encoding complexity. The first 

contribution of this thesis is an investigation and detailed analysis of the HEVC encoding 

tools which allowed identifying the most computationally demanding operations of the 

encoding process. The second contribution of this thesis comprises a set of five new 

algorithms for reducing and scaling the encoding complexity of HEVC encoders. All of 

them take advantage from the flexibility of the frame partitioning structures allowed by 

the standard, namely the Coding Units and the Prediction Units, which were identified 

as responsible for a large share of the encoding computational complexity. The best 

complexity scaling algorithm proposed in this work allows downscaling the encoding 
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complexity to 50% of its original value with negligible loss of compression efficiency 

and down to 20% with medium to small loss. The third thesis contribution consists of a 

set of early termination methods based on data mining techniques, which are able to 

reduce the computational complexity required to find the best frame partitioning 

structures, namely the Coding Trees, the Prediction Units and the Residual Quadtrees, in 

up to 65% with very small compression efficiency loss. Finally, the fourth contribution 

of this thesis is an encoding time control system that employs the three previous 

contributions of this research to adjust the encoding time whenever necessary and 

maintain it under a specified target. The system uses pre-defined encoding 

configurations created by combining the early termination schemes and by changing the 

parameterisation of the most computationally demanding tools of HEVC. Overall, the 

methods proposed in this thesis are especially useful in power-constrained portable 

multimedia devices to reduce energy consumption and to extend the battery life. 

Besides, they can also be applied to portable and non-portable multimedia devices 

operating in real time with limited computational resources. 

 

  



 
 

iii 
 

 

 

 

 

 

 

 

Resumo 

Nas últimas décadas, os avanços na indústria de semicondutores possibilitaram um 

grande desenvolvimento no campo de sistemas multimédia, principalmente devido ao 

contínuo aumento de poder computacional e à disponibilidade de infraestruturas de 

comunicação confiáveis. Diversos padrões de compressão de vídeo foram desenvolvidos 

neste período com o objetivo de reduzir as taxas de bits sem afetar a qualidade do vídeo 

codificado. O padrão High Efficiency Video Coding (HEVC), recentemente lançado pelo 

Joint Collaborative Team on Video Coding (JCT-VC), tornou-se o estado-da-arte em 

compressão de vídeo e deve gradualmente substituir o seu predecessor, o H.264/AVC, 

dentro de poucos anos. O HEVC provê elevados níveis de compressão em comparação 

com outros padrões, mas tais ganhos são associados a grandes aumentos na 

complexidade computacional e, consequentemente, no tempo da codificação, 

prejudicando ou até mesmo impedindo a operação do codificador em dispositivos 

portáteis e em sistemas de tempo real, especialmente para vídeos de alta resolução. O 

foco desta tese concentra-se na complexidade computacional de codificadores HEVC, 

com contribuições que se estendem desde a análise da eficiência de compressão e da 

complexidade computacional do padrão até a redução e o ajuste dinâmico da sua 

complexidade de codificação. A primeira contribuição desta tese é uma análise 

detalhada das funcionalidades e ferramentas de codificação que compõem o HEVC, a 

qual foi realizada com vistas à identificação das operações mais complexas do processo 

de codificação. Cinco algoritmos para escalonamento dinâmico da complexidade de 

codificação representam a segunda contribuição da tese. Todos eles se baseiam no 

ajuste das novas estruturas de particionamento de trama introduzidas pelo novo 

padrão, nomeadamente as Unidades de Codificação e as Unidades de Predição, as quais 
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foram identificadas como responsáveis por uma grande parcela da complexidade 

computacional do codificador HEVC. O melhor algoritmo de escalonamento 

desenvolvido provê reduções de até 50% na complexidade computacional com perdas 

negligenciáveis na eficiência da compressão e reduções de até 80% com perdas 

pequenas ou médias. A terceira contribuição desta tese consiste em um conjunto de 

esquemas de finalização antecipada baseados em técnicas de mineração de dados, os 

quais procuram reduzir a complexidade computacional demandada pelos processos de 

decisão das melhores estruturas de particionamento de trama, nomeadamente as 

Árvores de Codificação, as Unidades de Predição e as Árvores Residuais Quadráticas. 

Embora os esquemas não permitam escalonamento dinâmico, reduções de até 65% na 

complexidade computacional foram obtidas com perdas muito pequenas na eficiência 

de compressão. Finalmente, a quarta contribuição da tese consiste em um sistema de 

controlo que utiliza as três contribuições anteriores com a finalidade de ajustar o tempo 

de codificação sempre que necessário, com o objetivo de mantê-lo abaixo de um 

determinado alvo. O sistema de controlo utiliza configurações de codificação pré-

definidas, as quais foram criadas a partir de combinações dos esquemas de finalização 

antecipada e de modificações na parametrização das ferramentas com maior 

complexidade computacional no codificador HEVC. Sobretudo, os métodos propostos 

nesta tese são especialmente úteis em dispositivos multimédia portáteis com limitação 

energética, possibilitando a redução do consumo de energia elétrica e um consequente 

prolongamento da duração das suas baterias. Além disso, os métodos também podem 

ser aplicados a dispositivos multimédia portáteis e não-portáteis que operam em tempo 

real com recursos computacionais limitados. 
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Chapter 1 

 

 

1 Introduction 

In the last decades, the rapid advances of semiconductor technologies fostered a 

large expansion in the consumer market of multimedia-ready devices due to the 

continuous increase of computational resources and availability of reliable 

communication infrastructures. Digital video has been available since the beginning of 

the so-called Information Age, but only after the expansion and popularisation of 

personal computers and high-speed networks this type of information became so 

widely present in our daily lives.  

Nowadays, digital televisions, portable computers, personal digital assistants 

(PDA) and even mobile phones are among the most popular consumer equipment able 

to receive and display high-resolution video in real time. Very common are also those 

devices that can capture and transmit digital video through wired and wireless 

channels. Furthermore, the current trend in most portable devices with embedded 

digital cameras is to include the capability of encoding and decoding high-resolution 

digital video streams. 

Despite the recent evolution in portable devices, particularly in terms of 

communications technology and computational power, the limited battery capacity still 

imposes major constraints in multimedia applications demanding high computational 

power, such as those dealing with video encoding. In such cases, the user experience 

might be limited by the reduced battery capacity. Furthermore, even in those cases in 

which battery capacity is not an issue, encoding and decoding high-resolution digital 

video streams in real time is still a challenge, especially when considering the 

computational requirements of the most recent video coding standards. 
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Previous studies which examine typical use scenarios of portable devices have 

shown that a very significant amount of power consumption (from 40% to 60%) is 

related to video encoding and decoding operations, with the encoder typically requiring 

the largest share of computing time and power consumption [1-4]. It has been claimed 

in [5] that more than two-thirds of this computational complexity corresponds to the 

encoding process, whereas the rest is divided between transmission and input/output 

(I/O) operations. Even though the results presented in [5] are just an estimate for low-

resolution video, the recent adoption of higher resolutions increased even more the 

computational needs of the video encoding processes, since greater computational 

efforts are necessary to process the increasingly larger amounts of video information. 

Furthermore, a consequence of current video coding standard evolution is that the use 

of more efficient signal processing tools is significantly augmenting the number of 

operations-per-pixel required in the newest video codecs. 

This is the case of the state-of-the-art coding standard, the High Efficiency Video 

Coding (HEVC) [6], finished in March of 2013 by the Joint Collaborative Team on Video 

Coding (JCT-VC), from the International Telecommunication Union (ITU) [7] and the 

Joint Technical Committee 1 of the International Organisation for Standardisation and 

the International Electrotechnical Commission (ISO/IEC JTC1) [8]. HEVC achieves 40%-

50% bit rate reduction in comparison with its predecessor, the H.264/AVC video coding 

standard [9], at the same subjective image quality. However, to reach such goal, HEVC 

incorporates several new tools, which increased the encoder computational complexity 

in a range from 9% to 502% in comparison to H.264/AVC High Profile [10]. 

Even though several works addressing complexity-aware video coding have 

been proposed in the last years and designed for use in previous video encoding 

standards, none of them can be directly applied to the particular case of HEVC, which is 

based on encoding structures and tools quite different from those of previous standards, 

as shown later in this text. At the beginning of the development of the research work 

described in this thesis, there had been no work published in the technical literature 

focusing on computational complexity analysis, reduction and scaling for HEVC. To the 

authors’ knowledge, the first published work on computational complexity scaling for 

the HEVC standard was a product of this thesis’ research [11]. 

In general terms, the novel contributions of this thesis include a performance 

and computational complexity assessment of HEVC and methods for reducing and 
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scaling the encoding computational complexity while still maintaining a compromise 

with compression efficiency, allowing the encoder’s use in both power- and 

computational-constrained applications.  

 

1.1 Terminology for Computational Complexity 

As complexity does not have a single universal meaning and is sometimes a 

confounding concept, its definition in the context of this thesis is provided in this 

section, as well as the related concepts of complexity reduction and scaling.  

Computational complexity is a term used to describe the amount of calculations 

performed in a task. In the specific case of this research, the computational complexity 

refers to the calculations performed in the whole encoding process or in a specific part 

of it. As the number of computations affects directly the total time of processor usage, 

computational complexity is always measured in terms of processing time in the 

experiments presented in this thesis, unless explicitly stated otherwise. In order to 

simplify the text, the term complexity is sometimes used as a synonym of computational 

complexity throughout the thesis. 

Computational complexity reduction is a term used to describe those methods 

that yield fixed decreases in the computational complexity of a task. Once applied to a 

determined algorithm, a computational complexity reduction technique is able to 

decrease the amount of computational resources required to complete the encoding 

process to a level that is dependent upon the video source characteristics. In this 

context, the amount of complexity reduction achieved is unknown until the 

completeness of the task. 

Computational complexity scaling is the process of adaptively adjusting the 

computational complexity of a task in order to reach a desired target complexity, which 

can be defined by a user or a system (e.g., operating system or transmission equipment). 

Complexity scaling methods are able to decrease or increase the computational effort 

employed in video encoding by adjusting the encoder parameters on the fly until the 

computational complexity is below a given upper limit. A feedback mechanism is 

generally used in such cases to guide the adjustment steps that are applied to reach the 

target complexity. 
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1.2 Research Summary 

In this section, the main contributions of this research are listed and a summary 

of the achievements related to each contribution is presented. Chapters 4, 5, 6 and 7 

present detailed discussions on each topic and their respective results.  

 

1.2.1 Encoding Performance and Complexity Assessment 

When developing complexity-aware video coding systems, one should focus on 

those tools or processes that are the most computationally intensive and look for 

alternatives or adaptations that yield good encoding performance at the cost of a 

smaller computational complexity. As HEVC is a recent standard, there were no works 

related to its complexity analysis when this research started, so that a computational 

complexity assessment was essential for its development.  

An experimental investigation was carried out in order to identify the tools that 

most affect the encoding efficiency and computational complexity of the HEVC encoder. 

A set of encoding configurations was created to investigate the impact of each tool, 

varying the encoding parameters and comparing the results with a baseline encoder. 

The results of this study provided relevant information to implement complexity-

constrained encoders by taking into account the trade-off between complexity and 

coding efficiency. This work was published in [10]. 

A second research study was carried out in order to identify the influence of the 

frame partitioning structures of HEVC in both computational complexity and coding 

efficiency. The results of this work showed that the nature of the partitioning structures 

used in HEVC leads to nested Rate-Distortion Optimisation (RDO) loops, which is the 

main contributing factor to the increased encoding computational complexity. Part of 

this work was published in [11] and served as support to the development of other  

solutions proposed in this thesis. 

 

1.2.2 Algorithms for Computational Complexity Scaling 

A set of algorithms were proposed for computational complexity scaling based 

on dynamic adjustment of frame partitioning structures, namely the Coding Tree Units 
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(CTUs), Coding Units (CUs) and the Prediction Units (PUs). All algorithms aim at 

adjusting the computational effort employed to decide the best frame partitioning 

structures according to a target computational complexity, which is limited by the 

amount of computational resources available in the encoder. Five approaches have been 

proposed: 

 Fixed Depth Complexity Scaling (FDCS) [11]; 

 Variable Depth Complexity Scaling  (VDCS) [12, 13]; 

 Motion-Compensated Tree Depth Limitation (MCTDL) [14]; 

 Coding Tree Depth Estimation (CTDE) [15, 16]; 

 Constrained Coding Units and Prediction Units (CCUPU) [17, 18]. 

  

1.2.3 Data Mining for Computational Complexity Reduction  

A set of procedures were proposed for deciding whether the partition structure 

decision should be terminated early or run to the end of an exhaustive search for the 

best configuration. The proposed methods are all based on decision trees obtained 

through data mining (DM) techniques. By extracting intermediate data from the 

encoding process, three sets of decision trees were devised to avoid running the RDO 

algorithm to its full extent:  

 Early termination for determining Coding Trees [19, 20]; 

 Early termination for determining Prediction Units [20-22]; 

 Early termination for determining Residual Quadtrees. 

These methods were then jointly implemented in order to provide further 

complexity reductions to the encoding process [20]: 

 Early termination for determining Coding Trees and Prediction Units; 

 Early termination for determining Coding Trees and Residual Quadtrees; 

 Early termination for determining Prediction Units and Residual Quadtrees; 

 Early termination for determining Coding Trees, Prediction Units and 

Residual Quadtrees.  
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1.2.4 Complexity Reduction and Scaling Applied to Encoding 

Time Control 

The CCUPU method mentioned in 1.2.2, the techniques for complexity reduction 

mentioned in 1.2.3 and the encoder configurations that most affect the computational 

complexity of HEVC, identified in the analysis mentioned in 1.2.1, were combined and 

applied to the development of a Rate-Distortion-Complexity (R-D-C) optimised system 

that provides encoding time control for HEVC encoders. By adjusting the encoder 

operating point according to the best performing configurations identified in an 

extensive R-D-C efficiency analysis, the system provides encoding time control of 

medium to fine granularity, aiming at maintaining the encoding time per GOP under a 

specified target. 

 

1.3 Thesis Organisation 

This thesis is organised as follows: 

Chapter 2 presents an overview of video coding and decoding technology, 

including the basic concepts of digital video compression, the general operation of a 

video compression system, a detailed description of HEVC, and discussions on RDO and 

computational complexity of video encoding. 

Chapter 3 presents an overview of the state-of-the-art research on 

computational complexity reduction and scaling techniques for video encoding systems. 

A description of current methods for modelling, reducing and scaling the expenditure of 

computational resources on video codecs is presented along with future trends on 

complexity management for video codecs implemented in power-constrained or 

computationally constrained devices. 

Chapter 4 presents a performance evaluation study of coding efficiency versus 

computational complexity for the HEVC standard. Two experimental investigations are 

described: the first one consists in identifying the tools that most affect the encoding 

efficiency and computational complexity of HEVC, while the second one consists in 

analysing the impact of using different frame partitioning structure configurations in 

both encoding efficiency and complexity. 
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Chapter 5 presents a set of heuristic methods for computational complexity 

scaling of HEVC encoders based on dynamic adjustment of the frame partitioning 

structures used in each CTU. The methods rely on spatio-temporal correlation in order 

to decrease the number of encoding possibilities tested in the RDO process. 

Chapter 6 presents a data mining-based approach which reduces the encoding 

computational complexity of HEVC by decreasing the number of partitioning structure 

possibilities tested for each CTU in the RDO process. The chapter describes how the 

obtained decision trees were trained, implemented and validated and finally presents 

experimental results. 

Chapter 7 proposes an encoding time control system that makes use of the 

findings of chapter 4, 5 and 6. A detailed experimental analysis allowed identifying 

encoder operating points that yield high R-D-C efficiency, which were then used to 

dynamically adjust the HEVC encoder operation to meet a given target time per GOP. 

Chapter 8 presents the conclusions of this thesis, summarising the major results, 

identifying some possible extensions of the project and pointing out future research 

directions in the area.  

Appendix A lists the 16 peer-reviewed submissions resulting from the research 

presented in this thesis, which include one book chapter, four journal articles and 11 

conference papers. 

Appendix B presents the Common Test Conditions (CTC) document, which 

describes the experimental setup for most of the tests performed in this work and the 

video sequences that are used in the tests. Additionally, the first frame of each video 

sequence is presented. 

Appendix C lists the decision trees obtained in the work presented in chapter 6, 

showing their graphic representations. 

Appendix D presents an extensive table that describes all the encoder 

configurations tested in the R-D-C analysis of chapter 7 and their respective R-D-C 

efficiency results. A look-up table (LUT) used by the encoding time control algorithm 

proposed in chapter 7 is also presented in the appendix. 
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Chapter 2 

 

 

2 Video Coding Background 

This chapter provides background information about video coding theory and 

practice. Initially, the basic concepts of video coding and the basic model of a hybrid 

video compression system are presented in this chapter. A discussion on the Rate-

Distortion Optimisation (RDO) method is then followed by a description of the High 

Efficiency Video Coding (HEVC) standard. Finally, the chapter presents an introduction 

to the topic of computational complexity of HEVC, which is the focus of this thesis. 

 

2.1 Basic Concepts 

A digital video is a sequence of digital images to be presented sequentially to the 

viewer at a temporal rate high enough to ensure a smooth transition-free visual 

perception. In general, all individual images of a video, known as frames or pictures, 

have the same horizontal and vertical dimensions measured in pixels. Pixel is the name 

given to the numerical value of the picture elements, which are organised in matrix 

form. 

For the purpose of encoding, a frame is usually divided into several M×N blocks 

of pixels, where M is the number of rows and N is the number of columns. Each video 

coding standard defines a different block size or even a variable range for it. Usually, the 

modules that compose a video encoder operate using blocks of pixels as basic 

processing units.  

The frame dimensions, also called as spatial resolution, can assume arbitrary 

values in different video signals, even though there are some pre-defined formats that 

are broadly used in industry, such as the Common Intermediate Format (CIF), the Video 
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Graphics Array (VGA), and the 1080p, with 352×288 pixels, 640×480 pixels and 

1920×1088 pixels, respectively. The higher the spatial resolution, the larger is the 

number of pixels in it and, consequently, more detailed is the perception of the video 

content. 

The temporal rate at which frames are presented also influences the perceived 

video quality. The higher the number of frames shown in a determined period, the 

smoother is the motion noticed and the transition from one frame to another. The 

number of frames per second is called the temporal resolution, sampling rate or frame 

rate. In general, the temporal resolution varies between 15 and 60 frames per second 

(fps) in typical video sequences, although higher frame rates are becoming common. 

Other important aspects to be considered when encoding a video sequence are 

the adopted colour system and sub-sampling pattern. The most used colour systems are 

RGB (Red, Green and Blue) and YCbCr (Luminance, Blue Chrominance and Red 

Chrominance). Thousands of distinct colours can be perceived from the different 

combinations of the elements that compose these systems. In RGB, colours are formed 

through different combination of the R (red), G (green) and B (blue) primary 

components. However, as the human visual system is much more sensible to luminance 

than to colour information, the YCbCr system was created to take advantage of this 

characteristic by allowing a sub-sampling of the chrominance (colour) information [23]. 

The use of sub-sampling patterns is by itself a kind of video compression, since it 

allows simply discarding part of the video data without causing perceptible visual 

impacts. Several spatial sub-sampling configurations can be used, but the most common 

are the 4:2:2 and the 4:2:0. In 4:2:2, there are two blue chrominance (Cb) and two red 

chrominance (Cr) samples for each four luminance (Y) samples. In 4:2:0, there is only 

one Cb and one Cr sample for each four Y samples [24]. The 4:2:0 configuration was 

used in all experiments presented in this thesis. 

 

2.2 Lossless and Lossy Compression 

Image and video compression techniques are generally based on exploiting data 

redundancy and data irrelevance. Lossless compression algorithms aim at reducing 

redundancy in data, representing it with a smaller amount of bits without causing any 

loss of information. In lossless techniques for image and video compression, the 
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compressed data can be completely recovered after the decompression process, so that 

the original and the reconstructed image or video are exactly the same. On the other 

hand, lossy compression techniques incur in some loss of information and the 

compressed data cannot be fully restored during the decompression process. Lossy 

algorithms for image and video compression usually exploit characteristics of the 

human visual system and remove data portions that are not relevant for receivers, 

retaining only information that can be perceived in such a way that the final, decoded 

image seems to have no or small difference to the original one for almost all observers.  

Three basic types of redundancy can be exploited in lossless digital video 

compression: spatial, temporal and entropic. Spatial or intra-frame redundancy arises 

due to correlation between pixels in the same image. If correlation exists in the spatial 

domain (i.e., neighbouring pixels have similar values), redundancy can be reduced 

through intra-frame prediction, a technique present in most current image and video 

coding standards. This type of correlation is visible to the human eye, since the 

neighbouring pixels present similar values [25]. Temporal or inter-frame redundancy 

arises due to similarities between temporally adjacent frames. The values of a set of 

pixels in a determined region of a video might not change from one frame to another or 

might vary a little, as in the case of an image background (sky or wall, for example). In 

other cases, the same pixels might reappear in a frame displaced in relation to a 

previous one, as in the case of an object moving in a scene (a bird, for example). Efficient 

techniques for reducing inter-frame redundancy yield high levels of compression and 

for this reason all current video coding standards exploit such techniques [25]. Entropic 

redundancy is related to the occurrence frequency of the encoded symbols in a video. 

The higher the probability of a symbol occurring, the lower is the amount of information 

associated to it. Entropic redundancy is removed by the entropy coding module in most 

video coding standards [26].  

Even though they provide no loss of information, redundancy reduction 

techniques achieve limited compression ratios. However, in many applications 

information loss is not exactly a problem, as long as the reconstructed data is still 

comprehensible by the receiver. In the specific case of digital images and video 

sequences, some loss of information can be tolerated by the viewer as long as it does not 

incur in annoying visual artefacts. In return for accepting such loss, much higher 

compression ratios can be achieved with lossy methods than with lossless methods. 
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Lossy compression is generally performed with the aid of a quantisation 

process, which aims at representing a large (sometimes infinite) number of possible 

distinct inputs as a much more limited number of codewords, as in a many-to-few 

mapping [25]. In image and video compression, this is achieved by exploiting 

characteristics of the human visual system. The human eye can perceive small 

differences in brightness over a relatively large area (low frequency), but cannot 

perceive very well such variations in small areas (high frequency) [25]. This way, the 

amount of information that represent high frequency components is said to be 

irrelevant and can be reduced in the quantisation process, which is done by simply 

dividing each component in the frequency domain by a constant and then rounding it to 

the nearest integer. As a result, many high frequency components are rounded to small 

integer numbers or to zero, which yields very large compression ratios. Notice, 

however, that the original values cannot be restored after being rounded to the nearest 

integer, which characterises information loss. 

 

2.3 Hybrid Video Compression  

Hybrid video compression is based on the following signal and data processing 

operations: (i) inter and intra-frame prediction, (ii) de-correlating transform, (iii) 

quantisation and (iv) entropy coding. The prediction step is usually followed by the 

transform and quantisation of prediction residues, which is then followed by the 

entropy coding.  

Fig. 2.1 shows the basic components of a generic video encoder. The solid black 

arrows indicate the data flow at the encoder from the input video sequence to the 

generated output bitstream. In intra-frame prediction, each block is predicted from the 

pixels of reconstructed, previously encoded neighbour blocks according to a determined 

prediction mode. In inter-frame prediction, the block is predicted from pixels belonging 

to previously encoded frames.  

Motion Compensation (MC) is used in inter-frame prediction to exploit the fact 

that in most video sequences the only difference between two adjacent frames results 

from camera or object motion. By using MC, the encoder is able to encode only the 

difference between two frames, discarding the redundant information between them. In 

order to better capture the scene motion occurring between adjacent frames, block-
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based Motion Estimation (ME) is usually employed to find in previously encoded frames 

the best matching blocks in comparison to those in the current frame. The location of 

the best match in the reference frame is defined by a (x, y) coordinate, called a Motion 

Vector (MV), which describes the reference block offset relatively to the current block.  

In both intra and inter-frame prediction, the predicted and the current block are 

rarely equal, so that the difference between them must be calculated, encoded and 

transmitted. This difference is called prediction residue or prediction error. If ME is 

used in inter-frame prediction, the corresponding MV has to be encoded and 

transmitted together with the residue (Motion info, in Fig. 2.1). In the case of intra-frame 

prediction, the mode used for prediction is encoded with the residue (Intra prediction 

info, in Fig. 2.1). 

Before being encoded, the residue is processed by a mathematical transform (T 

module, in Fig. 2.1), which converts the values from the spatial domain to the frequency 

domain in order to de-correlate the residue and concentrate the energy in a few 

coefficients. Then, a quantisation step (Q module, in Fig. 2.1) is applied to transformed 

coefficients to eliminate small values associated to spectral components that are not 

perceptually relevant, decreasing the amount of data to be encoded without losing 

important information. Finally, the entropy coding processes the symbols that represent 

quantised transform coefficients to reduce their redundancy. 

 

Fig. 2.1: Generic hybrid video compression system (encoder). 
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Many methods for intra/inter-frame prediction, data transformation, 

quantisation and entropy coding are used in the current video coding standards. The 

General Control module presented in Fig. 2.1 is responsible for deciding which modes 

are tested by each module and which mode results in the best encoding performance. 

These decisions, shown as dashed grey lines in the figure, are performed according to 

the encoder implementation and affect directly its compression efficiency. A frequently 

used solution for this problem is the Rate-Distortion Optimisation (RDO), which is 

explained in section 2.5. The specific operations of the modules present in the HEVC 

standard are explained in section 2.6. 

Since the prediction signal used to compute the residue sent to the decoder must 

be exactly the same signal used at the decoder to reconstruct the decoded images, a 

reconstruction loop must be present at the encoder. Such reconstruction loop is actually 

a decoder operating inside the encoder, which ensures that intra/inter-prediction at the 

encoder use the same sample values as the decoder. The data flow in the reconstruction 

loop is presented with dashed black arrows in Fig. 2.1.  

The decoder is presented in Fig. 2.2. The input bitstream is parsed and decoded 

by the entropy decoder and information such as MVs, reference frame indices, intra 

prediction mode and coding mode are sent to their respective modules. The inverse 

quantisation (IQ module, in Fig. 2.2) and the inverse transform (IT module, in Fig. 2.2) 

process the quantised and transformed coefficients, respectively, generating the 

prediction residue that is added to the predicted samples obtained from the inter-frame 

or intra-frame decoding modules. Finally, the reconstructed samples (i.e., the residue 

added to the predicted samples) are stored and used as references by the intra-frame or 

the inter-frame prediction modules. 

 

Fig. 2.2: Generic hybrid video compression system (decoder). 
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2.4 Distortion Metrics 

Since all video coding standards introduce distortion, it is important to review 

the objective quality measures commonly used in video coding. Quality is a very difficult 

parameter to define and evaluate, because it depends on the viewer and such subjective 

nature of video quality is not easy to measure objectively. Although there are 

computable quality measures that estimate subjective grades, they are not used in this 

work because there is no wide consensus yet on which ones are the best and also 

because they are not commonly used in video codec design and evaluation. Objective 

metrics, on the other hand, are based on direct comparisons between pixels in two 

different images or blocks, such as the original and the reconstructed image, and for this 

reason they are easily computable and widely understood even in regard to their 

limitations. 

The most used and known objective distortion metric is the Peak Signal-to-Noise 

Ratio (PSNR) [24], defined in (Eq. 1), where MAX is the maximum value that a sample 

can assume (2n-1, where n is the number of bits per sample) and MSE is the Mean-

Squared Error (MSE) for the image or block, calculated as in (Eq. 2). In (Eq. 2), m and n 

are the image dimensions and O and R represent the original and reconstructed 

luminance or chrominance samples, respectively. MSE is by itself a distortion metric 

that quantifies the difference between the samples from two images or blocks. Just as 

MSE, there are other metrics with the same purpose, which perform this function with 

larger or smaller computational complexity. This is the case of the Sum of Absolute 

Differences (SAD), a low-complexity distortion metric broadly used in video encoders. 

SAD is computed as shown in (Eq. 3), where O, R, m and n assume the same meaning as 

in (Eq. 2). 
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2.4.1 Bjøntegaard Model 

Based on the PSNR distortion metric, Gisle Bjøntegaard proposed in [27] a 

model that measures the compression efficiency difference between two algorithms. In 

general terms, the Bjøntegaard delta PSNR (BD-PSNR) measure corresponds to the 

average PSNR difference in decibels (dB) for two different encoding algorithms 

considering the same bit rate. Similarly, the Bjøntegaard delta rate (BD-rate) reports the 

average bit rate difference in percent for two different encoding algorithms considering 

the same PSNR. 

A third order logarithmic polynomial fitting is used to approximate a Rate-

Distortion (R-D) curve given by a set of N bit rate values (R1, ..., RN) with their 

corresponding PSNR measurements (D1, ..., DN), as in (Eq. 4), where )(ˆ RD is the fitted 

distortion in PSNR, R is the output bit rate, and a, b, c, d are fitting parameters.  

dRcRbRaRD  logloglog)(ˆ 23  (Eq. 4) 

To simplify notation, (Eq. 4) is rewritten as (Eq. 5), considering r as the 

logarithm of the bit rate (i.e., r = log R). 

drcrbrarD  23)(ˆ  (Eq. 5) 

With four R-D pairs (i.e., four bit rate values and their corresponding PSNR 

measurements) obtained from actual encodings, the four fitting parameters can be 

solved for a curve. Then, the average PSNR difference between two R-D curves 

corresponding to two different algorithms can be approximated by the difference 

between the integrals of the fitted curves divided by the integration interval, as in (Eq. 

6), where ΔD is the BD-PSNR between the two fitted R-D curves )(ˆ
1 rD and )(ˆ

2 rD , and rL 

and rH are the integration bounds obtained as in (Eq. 7) and (Eq. 8), respectively [27]. In 

(Eq. 7) and (Eq. 8), rx,y represents the bit rate value of point y belonging to curve )(ˆ rDx
, 

and N1 and N2 are the number of points in each curve. 
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(Eq. 8) 

The bit rate as a function of the distortion is also expressed in the Bjøntegaard 

model through the third order polynomial given in (Eq. 9). The average bit rate 

difference between two R-D curves is approximated as in (Eq. 10), where ΔR is the 

BD-rate between the two fitted R-D curves )(1̂ Dr and )(2̂ Dr , and DL and DH are the 

integration bounds obtained as in (Eq. 11) and (Eq. 12), respectively [27]. In (Eq. 11) 

and (Eq. 12), Dx,y represents the distortion value of point y belonging to curve )(ˆ Drx
, 

and N1 and N2 are the number of points in each curve. 

dDcDbDaDr  23)(ˆ

 

(Eq. 9) 
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(Eq. 12) 

All methods proposed in this thesis for complexity reduction and scaling are 

compared to the original encoder version and to related works using the Bjøntegaard 

measures.  

 

2.5 Rate-Distortion Optimisation 

In order to achieve optimal R-D efficiency, a video encoder must be able to select 

the best coding modes for any particular video sequence. In other words, given a 

particular bit rate constraint, the encoder must select a coding mode that returns 

minimal image distortion. This constrained optimisation problem can be 

mathematically described as follows: 
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Let S represent all allowable modes and i represent an element of S, (i.e., i ∈ S). Then, 
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(Eq. 13) 

where i* is the optimal mode that minimises the distortion, D(i) is the distortion 

obtained with mode i, R(i) is the number of bits obtained with mode i and RT is the bit 

rate constraint. 

This optimisation problem can be solved using Lagrangian methods, in which 

the distortion term is weighted against the bit rate term giving rise to an unconstrained 

problem [28]. The Lagrangian minimisation is represented in (Eq. 14), where J(i) is the 

R-D cost, D(i) and R(i) are the resulting distortion and bit rate when using mode i, and λ 

is the Lagrange multiplier [9, 29]. The coding mode i* that returns the minimum cost J(i) 

is selected as the solution of the following unconstrained problem. 

)()()(

)(minarg*

iRiDiJwhere

iJi
Si
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
 (Eq. 14) 

As there are no simple models to describe the relationship between the coding 

modes and the R-D cost J, the RDO process implemented in current video encoders tests 

all possible coding modes and selects the one that results in the smallest R-D cost. Fig. 

2.3 shows an example of an R-D space and an optimal R-D curve. In the figure, each 

point corresponds to a different mode tested and those that present the smallest 

distortion (D axis) for a given target bit rate (R axis) are in the optimal R-D curve. 

 

Fig. 2.3: Rate-Distortion (R-D) points and optimal curve. 
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The RDO technique is very effective and yields the best possible choice among 

all the encoding parameter sets. However, if every combination of operating modes is 

tested and evaluated by exhaustive search over the parameter and mode space, the 

computational complexity becomes a limiting factor. In practical applications, a number 

of modes must be ignored in the RDO process to comply with the limitations imposed by 

available computational resources, but the selection of such modes is not a trivial task. 

Understanding the operations of video coding standards is the key to design a video 

coding system that manages efficiently the computational resources consumed by the 

encoding process. 

 

2.6 High Efficiency Video Coding 

The High Efficiency Video Coding (HEVC) standard was finalised in March of 

2013 by the Joint Collaborative Team on Video Coding (JCT-VC), a joint project of the 

ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts 

Group (MPEG). The standard has been designed to address the growing popularity of 

High Definition (HD) video and the emergence of beyond-HD formats, with support to 

encode multiple video views [6]. Currently, the High Efficiency Video Coding (HEVC) 

standard is gradually being introduced in the market and is expected to substitute 

H.264/AVC during the next years as the state-of-the-art video coding standard. This 

new standard is able to reduce bitrates by about 40%-50% over H.264/AVC through the 

use of several new tools and operating modes [9]. Obviously, as more operating modes 

are made available, the computational complexity involved in the encoding process of 

HEVC becomes higher than that of previous standards, as shown later in this thesis. 

Fig. 2.4 presents the block diagram for the HEVC encoder. Initially, each frame of 

the input video is split into equal-sized block-shaped regions. The first frame in the 

video sequence is encoded using only intra-frame prediction, since there are no frames 

previously encoded to be used as reference in inter-frame prediction. The remaining 

frames may use both intra and inter-frame prediction.  

During inter-frame prediction, the encoder predicts each block from previously 

encoded frames by using ME and MC. MVs obtained from the ME process determine the 

relative location of the best prediction block in the reference frame, which are used in 

the MC process. In intra-frame prediction, the Prediction module in Fig. 2.4 uses samples 
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from the original and neighbouring reconstructed blocks from the current frame to 

predict a block according to a particular prediction mode, which is determined by the 

Mode Estimation module in Fig. 2.4 . 

 

Fig. 2.4: Block diagram of a typical HEVC encoder. 

After computing the prediction, the encoder calculates the residual, which is 

transformed by a linear spatial transform (T module, in Fig. 2.4), quantised (Q module, 

in Fig. 2.4), and entropy coded (CABAC module, in Fig. 2.4), generating bits that are 

multiplexed with motion and intra prediction information, mode indication, and other 

encoding information, finally resulting in the compressed bitstream.  

Similarly to the generic hybrid video encoder presented in Fig. 2.1, the HEVC 

encoder also duplicates the decoder processing loop, such that both the decoder and the 

encoder can use the same reference samples for intra/inter-frame prediction. 

Therefore, the quantised residue is fed to the inverse quantisation and inverse 

transform (IQ and IT modules, in Fig. 2.4) in order to reconstruct the residual 

information, which is added to the predicted samples to generate the reconstructed 

samples. The result of the addition is delivered to the Deblocking Filter (DBF module, in 

Fig. 2.4) and the Sample Adaptive Offset (SAO module, in Fig. 2.4) to smooth out 

artefacts caused by block-wise processing and quantisation. The filtered, reconstructed 

samples are finally stored in the decoded picture buffer (DPB, in Fig. 2.4) and used for 

+

-

Prediction
residual T CABAC

DBF
Reconstructed
predicted
samples

Reference
samples

SAO

RefRefRefRef
Original
Frame

Input Video

RefRefRefRef
Reference

Frame

DPB

Inter-frame 

prediction

Motion
Estimation

MVs

Motion
Compensation

Intra-frame 
prediction

Mode
Estimation

Modes

Prediction

Q

Original
samples

Original
samples

Inter-
predicted

block

Output 
bitstream

01010
10111
01110
01110

IT

+
+

Quantised
residual

Predicted
samples

Predicted
samples

Reconstructed 
prediction
residual

GENERAL

CONTROL

Mode 
Decision

Intra 
prediction info

Motion 
info

Intra-
predicted

block

Original
samples

IQ

Mode 
indication 

& other info



21 

 

 
 

prediction in future frames. The decoding loop is presented with dashed black arrows in 

Fig. 2.4. 

After this brief overview of the HEVC encoding process, the next sub-sections 

explain in more detail the new features introduced by the standard. 

 

2.6.1 Encoding Structures 

Even though HEVC is also based on the classic block-based video coding scheme 

of previous standards, significant modifications were introduced to its encoding data 

structures, especially regarding frame partitioning. The research presented in this 

thesis relies heavily on methods for deciding the best frame partitioning structures 

during the encoding process, so that this sub-section provides the necessary 

background for the comprehension of the next chapters. 

2.6.1.1 Video Partitioning Structures  

In HEVC, each video sequence is divided into Groups of Pictures (GOP), which 

are limited by two frames that constitute Random Access Points (RAP) from which the 

decoder can start decoding without needing any previous frames. Fig. 2.5 illustrates a 

video sequence divided into a number of GOPs, where the frames in black represent 

RAPs. 

 

Fig. 2.5: Video sequence divided into a number of GOPs. 

A GOP is composed of a set of pictures, or frames, which may be divided into a 

set of slices. Each slice is a part of the frame that can be decoded independently from 

other slices in the same frame, which is very useful in case of data losses or when 

applying parallel processing strategies, as shown later. Fig. 2.6 illustrates a frame 

divided into two slices. 
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Fig. 2.6: Frame divided into two slices and several CTUs. 

A slice is composed of sequential Coding Tree Units (CTU), which are further 

divided into Coding Units (CU). These structures are explained in detail in the next 

section. All CUs inside each slice are encoded according to the slice type, which may be I, 

P or B. In I slices, all CUs are encoded using only the intra-frame prediction. In a P slice, 

besides the intra-frame prediction used in I slices, the CUs can also be encoded using 

inter-frame prediction with one reference for MC (i.e., uni-directional prediction). In B 

slices, besides intra-frame prediction and uni-directional inter-frame prediction, CUs 

can also be encoded using inter-frame prediction with two references for MC (i.e., bi-

directional prediction). Further details are presented in section 2.6.2.2. 

2.6.1.2 Frame Partitioning Structures 

A slice is partitioned into a number of square blocks of equal size called Coding 

Tree Units (CTU), as shown in Fig. 2.6. Considering the 4:2:0 sub-sampling 

configuration, each CTU is composed of one luminance Coding Tree Block (CTB) of size 

W×W and two chrominance CTBs of size (W/2)×(W/2), where W may be equal to 8, 16, 

32 or 64. The luminance CTB and the two chrominance CTBs form the CTU, which is 

considered the basic processing unit of HEVC.  

Each CTB in a CTU can be divided into smaller blocks, called Coding Blocks (CB), 

in the form of a quadtree structure, called the Coding Tree. The CTB is the root of this 

quadtree, which may assume variable depth, according to the encoder configuration. 

The Largest Coding Block (LCB) size and the Smallest Coding Block (SCB) size used by 

the encoder are defined in its configuration, but the maximum and minimum allowed 

size for a CB in HEVC are 64×64 and 8×8, respectively, so that up to four Coding Tree 

depths are possible. The same tree structure is usually applied to luminance and 

chrominance CTBs, except when the minimum size for chrominance blocks is reached. 

Slice 1

Slice 2
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In the HEVC Model (HM) encoder [30], the Coding Tree structure is defined through a 

iterative splitting process, which evaluates all possibilities in an RDO-based scheme, 

until the minimum CB size, which is usually 8×8 for luminance CTBs, is reached.  

Fig. 2.7 shows an example of a 64×64 CTB divided into several CBs.  The example 

shows the final Coding Tree division chosen after all the possibilities are evaluated. The 

tree leaves (grey blocks) are the final CBs belonging to the encoded quadtree. This 

flexible encoding structure allows the use of large CBs to encode large homogenous 

regions of a frame and small CBs in regions with more detailed texture.  

For intra and inter-frame prediction, each CB may be divided into two or four 

Prediction Blocks (PBs), which are separately predicted. All PBs in a CB are predicted 

with either inter-frame or intra-frame prediction, so that the CB is said to be an inter CB 

or an intra CB. Fig. 2.8 presents all possible PB splittings that can be used for a CB. These 

possibilities are called PB splitting modes from now on in this thesis in order to 

distinguish them from the prediction modes, which will be defined later in this chapter. 

In HM [30], the best PB splitting mode is chosen with recourse to an RDO-based scheme, 

which evaluates the prediction using all PB splitting mode possibilities and compares 

their use in terms of bit rate and distortion. The total number of possibilities varies 

according to the CB size, as specified in Table 2.1. The same PB splitting mode is used 

for luminance and chrominance PBs, which together form the Prediction Unit (PU).  

 

Fig. 2.7: Coding Tree structure of a CTB divided into CBs. 
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Fig. 2.8: Inter-frame and intra-frame PB splitting modes available in HEVC. 

Table 2.1: PB splitting modes available for each CB size in HEVC. 

CB size 

PB splitting modes 

Inter Intra 

Larger than SCB 

2N×2N, 2N×N, 
N×2N, 2N×nU, 
2N×nD, nL×2N, 
nR×2N 

2N×2N 

SCB 
2N×2N, 2N×N, 
N×2N, N×N 

2N×2N, N×N 

 

When transform coding the prediction residual, each CB is assumed to be the 

root of another quadtree-based structure called Residual Quadtree (RQT). Likewise the 

CTBs, each CB is recursively partitioned into Transform Blocks (TB), which are the basic 

units to which both transform and quantisation operations are applied. The leaves of 

the RQT (grey nodes, in Fig. 2.9) are the final TBs, which are chosen in an RDO-based 

scheme in the HM encoder. The maximum and minimum TB sizes used by the encoder 

are defined in its configuration, but the maximum allowed size for a TB is 32×32 and the 

minimum size is 4×4, so that up to four RQT depths are possible. The same RQT 

structure is used for both luminance and chrominance CBs. A Transform Unit (TU) is 

formed by the luminance TB and its two associated chrominance TBs. 

2Nx2N NxN

INTER

INTRA

2NxN Nx2N NxN

2NxnU 2NxnD nLx2N nRx2N
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Fig. 2.9: RQT structure of a CB divided into TBs. 

2.6.1.3 Parallel Processing Structures 

The HEVC standard defines three data partitioning and processing orders 

designed to facilitate parallel processing. The use of these features may be decided 

depending on the encoder application context.  

Tiles are defined as rectangular image regions, which enable a coarse but easy-

to-implement parallel processing without requiring sophisticated thread 

synchronisation. Tiles can be independently decoded and encoded sharing some header 

information. When using tiles, the encoder segments the frame into rectangular regions, 

as shown in the example of Fig. 2.10, encodes and transmits them in raster scan order. 

All data dependencies are broken at the tile boundaries, so that independent encoding is 

performed for each one of them. The only exception is the Deblocking Filter (DBF), 

which can be applied across tile boundaries to reduce visual artefacts. 

 

Fig. 2.10: A frame divided into nine tiles. 

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9
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By using Wavefront Parallel Processing (WPP), a much finer degree of 

parallelism can be achieved. The slice is divided into rows of CTUs, which are processed 

according to the order presented in Fig. 2.11. The first CTU row of each slice is encoded 

in an ordinary way. The second CTU row starts being encoded after the two first CTUs in 

the first row are encoded, the third CTU row starts being encoded after the two first 

CTUs in the second row are encoded, and so on. The main advantage in the use of WPP 

instead of Tiles is the possibility of performing inter-frame or intra-frame prediction 

across the WPP boundaries, increasing the encoder compression efficiency. 

 

Fig. 2.11: Wavefront Parallel Processing encoding order. 

Dependent Slice Segments allows data associated with a determined WPP or Tile 

to be encoded and assembled in a separate logical data packet for transmission, making 

that data available for fragmented packetisation with lower latency than if it were all 

coded together in one slice. 

2.6.2 Encoding Process 

This section presents a description of the modules that compose the HEVC 

encoder (Fig. 2.4). As the intra/inter-frame prediction, transform (T) and quantisation 

(Q) modules are the most important for the comprehension of the work described in the 

following chapters, they are presented in more detail, while a briefer overview is 

presented for the remaining modules. 

2.6.2.1 Intra-Frame Prediction 

As previously explained, the intra-frame prediction is responsible for decreasing 

spatial redundancy by predicting the samples of the current PB from those of 

neighbouring PBs already encoded in the same slice, i.e., located at the left and above 

the current PB. As previously shown in Fig. 2.8, a CB can be split according to two 

different splitting modes for intra prediction: 2N×2N and N×N. Fig. 2.12 shows an 

CTU row #1

CTU row #2

CTU row #3

CTU row #4

CTU row #1

CTU row #2

CTU row #3

CTU row #4

Slice 1

Slice 2



27 

 

 
 

example of intra-frame prediction in a N×N PB of size 16×16, where the samples within 

the current PB are presented in white, the left neighbouring samples in light grey, the 

top neighbouring samples in dark grey, and the top-left diagonal sample in black. In 

total, 4N+1 samples are used for intra prediction in an N×N PB. If the CB has dimensions 

equal to the SCB, both 2N×2N and N×N splitting modes are available for intra prediction. 

Otherwise, only the 2N×2N splitting mode is available.  

The intra-frame prediction of HEVC is very similar to that of H.264/AVC and is 

essentially extended to allow more prediction modes. As Fig. 2.13 shows, HEVC 

supports a total of 33 angular modes, a DC (flat) mode, and a planar (surface fitting) 

mode [6]. When one of the angular modes is used, the PB is predicted directionally from 

spatially neighbouring samples that were previously reconstructed, but not yet filtered, 

as shown in Fig. 2.4 by the input arrows of the intra-frame prediction module. The 

angular prediction consists of simply copying the neighbouring samples to the predicted 

block [31]. The DC mode computes an average of the neighbouring reference samples 

and uses it for all samples within the PB, building a flat surface for the whole block. 

Alternatively, the Planar mode calculates average values of two linear predictions using 

four corner reference samples, building an amplitude surface with a horizontal and 

vertical slope derived from the boundaries [6]. 

In order to decrease the computational complexity of the intra-frame prediction 

process, the HM reference software implements a Rough Mode Decision (RMD), or intra 

prediction mode estimation, which is followed by the actual prediction with pixel 

estimate computations. The RMD method was proposed in [32] and incorporated into 

the HM encoder as a solution to decrease the number of R-D cost computations for the 

intra mode decision. It consists in constructing a candidate mode list with the three best 

modes for 64×64, 32×32 and 16×16 PBs and the eight best modes in the case of 8×8 and 

4×4 PBs.  

The best modes are those which resulted in the smallest low-complexity R-D 

cost (JLRD), computed as in (Eq. 15), where SATD is the sum of absolute values of the 

Hadamard transformed coefficients of the prediction residue, λPRED is the Lagrangian 

multiplier and RPRED is the number of bits necessary to encode the prediction mode 

information. Besides the best modes determined in this process, the list of candidate 

modes is also composed of the Most Probable Modes (MPM), which are inferred from 

the neighbouring PBs. 
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Fig. 2.12: Neighbouring samples used for intra prediction in an N×N PB of size 16×16. 

 

 

Fig. 2.13: Intra prediction modes tested for each PB. 
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 (Eq. 15) 

After defining the list of candidate modes, the full R-D cost (JFRD) for each of these 

modes is computed using (Eq. 16) [32], where SSELuma and SSEChroma are the sums of 

squared errors between the original block and the predicted block for luminance and 

chrominance signals, respectively. λMODE is the Lagrangian multiplier and RMODE is the 

number of bits to encode the candidate mode. The mode with the smallest JFRD is then 

used in the actual prediction, which precedes the residue computation and transform 

coding. 

  (Eq. 16) 

The Lagrangian multipliers λPRED and λMODE in (Eq. 15) and (Eq. 16), respectively, 

are calculated in the HM encoder as a function of the QP, the number of reference 

frames and the temporal encoding configuration [30].  

By using the RMD method, the computational complexity of the overall intra-

frame prediction is decreased because the full R-D is computed only for those modes 

selected for the candidate list. However, the prediction step is still performed for every 

possible mode for a PB in order to calculate the low-complexity R-D costs. 

2.6.2.2 Inter-Frame Prediction 

The inter-frame prediction of HEVC is based on MC, which allows predicting a 

PB using equal-sized areas from previously encoded frames used as references. The MC 

process forms a block of shifted pixels from the referenced frame by using a Motion 

Vector (MV), which describes the displacement of the PB from the reference to the 

current frame. The predicted block is then subtracted from the current block to 

compute the prediction residues that are inputted to the T and Q modules.  

The process of determining the MV for a PB is the ME, which is the most 

demanding operation of the HEVC encoder in terms of computational complexity, as 

chapter 4 will show. The role of ME is to search within the reference frames for the most 

similar region to the current PB. When the best matching region is found, the ME 

algorithm computes the corresponding MV with a vertical and a horizontal component, 

indicating the relative location of that region with respect to the current PB position. 

PREDPREDLRD RSATDJ  

MODEMODEChromaLumaFRD RSSESSEJ  )57.0(
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Similarly to H.264/AVC, HEVC supports ME with one quarter of pixel accuracy 

for luminance samples and one eighth of pixel accuracy for chrominance samples in the 

case of 4:2:0 format. In order to obtain the fractional-position luminance samples, two 

separable one-dimensional filters (one eight-tap filter and one seven-tap filter) are 

applied horizontally and vertically to generate the half-pixel and quarter-pixel samples, 

respectively. Fig. 2.14 shows two examples of fractional-position samples (a and b, in 

black) that were generated based on the integer position samples (in grey) located in 

the same line or column (dashed rectangles). 

In the example given in Fig. 2.14, samples a and b are calculated as in (Eq. 17) 

and (Eq. 18), respectively, where the >> operator denotes arithmetic right shift, B is the 

bit depth of the reference samples (usually B = 8) and qfilter is the vector with filter 

coefficients for quarter-pixel interpolation, given in Table 2.2. Table 2.2 also presents 

the filter coefficients for half-pixel interpolation (hfilter) [6]. 

  (Eq. 17) 

  (Eq. 18) 

 

Fig. 2.14: Examples of sub-pixel interpolations from full-pixel samples. 
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Table 2.2: Filter coefficients for half-pixel and quarter-pixel luminance sample 

interpolation. 

index -3 -2 -1 0 1 2 3 4 

hfilter -1 4 -11 40 40 -11 4 1 

qfilter -1 4 -10 58 17 -5 1  

 

Fractional chrominance samples are calculated similarly to the luminance 

samples by applying one-dimensional four-tap interpolation filters. A set of four four-

tap filters are available for chrominance interpolation and the applied filter is chosen 

according to the distance between the fractional and the integer pixel. More details on 

luminance and chrominance interpolation filters can be found in [6]. 

Another important aspect of the ME process is the use of multiple reference 

frames. The encoder maintains two lists (List 0 and List 1) of reconstructed images to be 

used as references in the next frames. List 0 contains the indices of past frames in 

display order and List 1 contains the indices to future frames encoded out of order, as 

explained in section 2.6.3.1. P slices allow the use of only one reference picture indexed 

by List 0 and B slices can use up to two references indexed by both List 0 and List 1. 

When bi-prediction is used in B slices, the encoder computes an average of the 

prediction performed from List 0 and the prediction performed from List 1. Fig. 2.15 

presents an example of four PBs in a frame, which are predicted from multiple 

references. 

 

 

Fig. 2.15: Multiple reference frame prediction. 
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 Block matching ME is used to determine the actual MVs representing the 

displacement of PBs in the current frame in relation to the best matching area in the 

reference frame. Several algorithms have been proposed for searching candidate blocks 

and the algorithmically simplest but the most demanding in terms of computation cost 

is the Full Search (FS). In FS, the best match is found by searching all possible candidate 

blocks in the search area (SA), which leads to the optimal result. However, the 

computational complexity involved in this process is very high and faster approaches 

need to be used. 

Several Fast Motion Estimation (FME) techniques have been proposed in the 

literature in order to decrease the number of candidate blocks in the SA. Examples of 

algorithms implemented in the H.264/AVC reference software are the Unsymmetrical-

Cross Multi-Hexagon-Grid Search (UMHexS), the Simple UMHexS (SUMHexS), and the 

Enhanced Predictive Zonal Search (EPZS) [33]. All of them are sub-optimal algorithms 

with R-D performance equal or smaller than that obtained with FS, with the advantage 

of significantly decreasing the ME computational complexity. The HM encoder uses both 

the FS and the sub-optimal Test Zone Search (TZS) algorithm [34] for ME with a fixed 

search range that can be configured before the encoding process starts.  

Besides the MC/ME-based prediction described in the previous paragraphs, the 

inter-frame prediction of HEVC allows the use of a Merge/SKIP Mode (MSM) [35], which 

is conceptually similar to the SKIP mode in H.264/AVC. With MSM, the encoder can 

derive the motion information (i.e., the MV, one or two reference picture indices and the 

list associated to each index) from spatially or temporally neighbouring blocks, forming 

a merged region that shares the same MVs and picture indices. When MSM is selected 

for a CB, the encoder sends an index for a list containing all spatial and temporal 

neighbouring PBs available, known as the merge list. This index identifies which 

neighbouring PB is to be used as the source of motion information for the current PB. 

Besides the merge list index, the encoder also sends the reference picture list number 

and reference picture index to which the neighbour PB belongs. The SKIP mode also 

exists in HEVC, but it is treated as a special case of MSM. The SKIP mode is used when all 

Coded Block Flags (CBF) are equal to zero in a determined CB. In this case, only a SKIP 

flag and its corresponding merge index are transmitted to the decoder. The CBF will be 

explained in section 2.6.2.3. 
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 When MSM is not used, the MV is encoded through the use of a Motion Vector 

Prediction (MVP) method [36]. Similarly to MSM, the encoder chooses a MV predictor 

among a set of multiple candidates derived from spatially neighbouring blocks. Then, 

the difference between the actual MV and the MV predictor, called Differential Motion 

Vector (DMV), is transmitted to the decoder together with the index of the candidate MV 

predictor chosen from the MVP list. When the reference index of the neighbouring PB is 

not the same as the current PB, the MV is scaled according to the temporal distance 

between the current and the reference pictures. 

2.6.2.3 Transform and Quantisation 

The transform module (T block, in Fig. 2.4) receives the prediction residue as 

input and transforms it to the frequency domain. The transformed residues are then 

processed by the quantisation module (Q block, in Fig. 2.4). The HEVC standard uses a 

two-dimensional transform which is computed by applying one-dimensional transforms 

in the horizontal and vertical directions of the block. Transforms are computed for all 

TB tested in an RDO-based scheme. 

HEVC uses integer Discrete Cosine Transform (DCT)-based transforms of sizes 

32×32, 16×16, 8×8 and 4×4, which are applied to the TB, according to its size. In HEVC 

only the 32×32 transform matrix is defined and the remaining transformation matrices 

are derived from it by using part of its entries. For example, the transformation matrix 

for 16×16 TBs is presented in (Eq. 19) [6]. The matrices for 8×8 and 4×4 TBs can be 

derived from it by selecting only the first eight entries of lines 0, 2, 4, 6, 8, 10, 12, 14 and 

the first four entries of lines 0, 4, 8, 12, respectively. 

An alternative 4×4 integer transform based on the Discrete Sine Transform 

(DST) is applied to 4×4 luma residue blocks resulting from intra-frame prediction. The 

reasoning behind the application of such transform is that it better fits the statistical 

property that residue magnitudes tend to increase as the distance from the boundary 

samples that are used for prediction becomes larger. In comparison to the 4×4 DCT-

based transform, the use of DST-based transform to encode intra-predicted blocks 

results in a bit rate reduction of 1%. The 4×4 DST-based transformation matrix is 

presented in (Eq. 20) [6].  



34 
 

 

 

(Eq. 19) 

 

(Eq. 20) 

The quantisation procedure used in HEVC is essentially the same as that used in 

H.264/AVC, basically consisting of a non-linear discrete mapping of the coefficient 

values into integer quantisation indices. It is implemented as a multiplication by a 

constant, an addition of a rounding factor and a right-shift controlled by a Quantisation 

Parameter (QP), which varies from 0 to 51. All transformed coefficients of a TB are 

quantised and inverse-quantised depending on the QP value. Table 2.3 presents the 

constant QQP%6 values used in the quantisation calculation, where % is an operator that 

computes the remainder of the division between QP and 6. The quantisation is done 

according to (Eq. 21), where L is the quantised coefficient (quantisation output), C is the 

transformed coefficient (quantisation input), offset is a rounding factor and N is the TB 

dimension [37].  

   (Eq. 21) 

Table 2.3: QQP%6 values used in the coefficient quantisation. 

 

QP%6 

0 1 2 3 4 5 

QQP%6 26214 23302 20560 18396 16384 14564 

 

Rate-Distortion Optimised Quantisation (RDOQ) [38] has been adopted in HEVC 

as a non-normative quantisation optimisation technique. When the technique is 

enabled, the encoder computes four quantised coefficient candidates for each coefficient 
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in each TB and then selects the best candidate in terms of R-D efficiency through 

repetitive processing.  

After the transform and quantisation are finished, the Coded Block Flag (CBF) 

indicates whether or not the TB includes residual information. If the TB includes residue 

information the CBF value is set to 1; otherwise, it is set to 0. 

2.6.2.4 Inverse Quantisation and Inverse Transform 

The inverse quantisation (IQ) and inverse transform (IT) modules are 

responsible for performing the inverse operations of the quantisation and transform 

modules, as their name suggest.  

The IQ is defined in (Eq. 22), where CQ is the inverse quantised coefficient (IQ 

output), L is the quantised coefficient (IQ input) and N is the TB dimension [37]. The 

possible IQQP%6 values are presented in Table 2.4, where % is an operator that computes 

the division remainder. 

   
(Eq. 22) 

Table 2.4: IQQP%6 values used in the coefficient quantisation. 

 
QP%6 

0 1 2 3 4 5 

IQQP%6 40 45 51 57 64 72 

 

Once the inverse quantised coefficients are calculated, the IT corresponding to 

the TB dimension is applied to them, resulting in the inverse transformed residue 

prediction. The inverse transformation matrices are defined as the transposes of their 

corresponding forward transformation matrices. For example, the inverse 

transformation matrix for 16×16 TBs is the transpose of the matrix presented in (Eq. 

19). Similarly, the inverse transformation matrix of 4×4 DST is the transpose of the 

matrix in (Eq. 20). 

2.6.2.5 Entropy Coding 

The entropy coding process of HEVC uses only one tool, which is also available 

in H.264/AVC: the Context-Adaptive Binary Arithmetic Coding (CABAC). The CABAC 
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receives the quantised coefficients, reorganises them according to one of the three 

available scanning orders (diagonal up-right, horizontal and vertical), selects a 

probability model for each syntactic element according to its context, updates the 

probability models and finally encodes the element. As the CABAC operation is not 

directly affected by any of the complexity reduction and scaling methods proposed in 

this thesis, it will not be described in further detail. More information about this module 

can be found in [6, 39]. 

2.6.2.6 In-Loop Filters 

Two filtering steps are applied to the reconstructed samples (i.e., after adding 

the predicted samples to the reconstructed prediction residue), before writing them 

into the DPB, as shown in Fig. 2.4. The first filter is the Deblocking Filter (DBF), which 

was already present in the H.264/AVC standard, and the second filter is the Sample 

Adaptive Offset (SAO), which is a new tool introduced in HEVC. 

The DBF is applied to boundaries of CBs, PBs, and TBs larger than 4×4 pixels 

[40]. Vertical and horizontal edges are filtered according to a border filtering strength, 

which varies from 0 (no filtering) to 4 (maximum filtering strength) and also depends 

on the border characteristics. The SAO, on the other hand, is applied to all samples of 

the image, classifying the reconstructed pixels into different categories and then 

reducing distortion by adding an offset to the pixels in each category [41]. This 

classification is performed taking into consideration the pixel intensity and edge 

properties, e.g., based on gradient.  

During the HEVC standardisation process, a third filter called Adaptive Loop 

Filter (ALF) was proposed. However, the ALF was not included in the final standard. 

Nevertheless, as part of the work presented in this thesis was done before the HEVC 

standard was finalised, the ALF filter was considered in the study presented in chapter 

4. 

Since the in-loop filter operation is not directly affected by any of the methods 

proposed in this thesis, the DBF and SAO operations will not be further detailed in this 

chapter, but additional information can be found in [40, 41]. 
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2.6.3 Test Conditions, Temporal Configurations and Profiles 

As in the case of previous standards, the HEVC specification [42] describes the 

standard syntax and decoding procedures. The encoder can be freely implemented as 

long as the generated bitstream respects the syntax and decoding rules defined by the 

standard. In order to guide tests and proposals submitted during the standardisation 

process, the JCT-VC group coordinated the development of a reference software encoder 

and decoder, colloquially known as HM, and published the Common Test Conditions 

(CTC) document [43], which defines a set of four temporal configurations to be used 

with the HM reference software for tests and comparisons of competing proposals for 

modification of the standard. Additionally, the standard also specifies three profiles, 

which are conformance points that define a set of tools or algorithms that can be 

implemented in the encoder according to its application (e.g., different profiles can be 

used for different types of device). 

Four temporal configurations which differ in terms of temporal prediction from 

one another are defined in the CTC: All Intra, Low Delay, Low Delay P, and Random 

Access. Furthermore, two profiles are defined for video coding: Main and Main 10. The 

combination of the four temporal configurations and the two profiles constitute the 

eight testing conditions used in the latest versions of HM [43]. The CTC document is 

presented in the Appendix B of this thesis. 

2.6.3.1 Temporal Configurations 

The encoding temporal configuration defines which frames can be used as 

references in the prediction process.  

In the All Intra (AI) configuration, all images in the video sequence are encoded 

as Instantaneous Decoding Refresh (IDR) pictures, which are pictures that contain only I 

slices and therefore may be the first picture in decoding order, since they make no 

reference to others. When encoding video according to this configuration, inter-frame 

prediction is not performed and there are no pictures stored in the reference lists. The 

QP value is held unchanged during the encoding of the entire video sequence. Fig. 2.16 

shows an example of a video sequence encoded with the AI configuration, where the 

encoding order is presented at the top of each picture. In this configuration, the 

encoding and the display order are the same. 
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Fig. 2.16: Graphical presentation of the AI configuration. 

In the Low Delay (LD) configuration, only the first image in the GOP is encoded 

as an IDR picture. The remaining images are encoded as Generalised P and B-pictures 

(GPB), which are B pictures that only allow using reference frames that appear before 

the current frame in display order. In other words, a GPB picture is able to use only 

reference pictures whose encoding order is smaller than the current picture. Both 

reference lists (List 0 and List 1) are identical. Fig. 2.17 shows an example of a GOP 

encoded with the LD configuration. The number associated with each picture represents 

the encoding order. Notice that even though bi-directional prediction is allowed, each 

picture only uses previous frames (in display order) as references. The Low Delay P 

(LDP) configuration is a variation of the LD configuration that functions in a very similar 

way. The only difference is that only uni-directional prediction is allowed. This way, 

only one reference list (List 0) is maintained in the DPB. 

 
Fig. 2.17: Graphical presentation of the LD configuration. 

Finally, the Random Access (RA) configuration is characterised by the utilisation 

of a temporal hierarchical B structure, which is illustrated in Fig. 2.18. The number 

associated to each picture represents the encoding order and the picture display order 

is represented from left to right. The first picture in a video sequence is encoded as an 

IDR and the remaining intra pictures are encoded as non-IDR intra pictures, 
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characterising an open GOP. An open GOP means that frames outside the current GOP 

can be used as references. Every frame between two intra frames is encoded as a B 

picture. In the first temporal layer of Fig. 2.18, a GPB picture is used. In the second and 

third temporal layers, ordinary B pictures are used (i.e., bi-directional inter-frame 

prediction using both reference lists, which are not necessarily identical). Finally, the 

fourth and last temporal layer also uses ordinary B pictures, but these cannot reference 

each other. 

 
Fig. 2.18: Graphical presentation of the RA configuration. 

2.6.3.2 Profiles 

At the beginning of the HEVC standardisation, two profiles were defined: the 

Low Complexity (LC) and the High Efficiency (HE). The two profiles were different from 

each other in terms of coding tools and enabled functionalities, but several changes 

happened until the finalisation of the standard, so that at the end only one difference 

remained between them: the internal bit depth. For this reason, the LC and the HE 

profiles were removed from the standard and two new profiles were defined: Main and 

Main 10. The Main profile uses all tools described in the HEVC specification draft [42], 

most of which were covered in this chapter. The Main 10 profile contains the same tools 

of Main, but the bit depth for both luminance and chrominance samples is set to 10 bits 

instead of 8 bits. 

When the Main profile is used with a 10-bit source, each source sample is scaled 

to an 8-bit value prior to encoding in a process called Internal Bit Depth Decrease 

(IBDD). The scaling is obtained by applying the function y = (x+2)/4 to the input value x 

and clipping the result y to the [0, 255] range. Oppositely, when the Main 10 
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configuration is used with an 8-bit source each sample is scaled to a 10-bit value before 

encoding by applying the y = 4*x function to the input value x. This process is called 

Internal Bit Depth Increase (IBDI) and it allows greater precision in the video codec 

operations (i.e., improved encoding efficiency) at the cost of an increase in memory 

requirements, mainly to store reference pictures in the DPB. 

All experiments presented in this thesis were performed using the Main profile 

(or the Low Complexity profile, in early versions of HM). 

 

2.7 Computational Complexity of HEVC 

As part of the research presented in this thesis, the computational complexity of 

the HM encoder was extensively characterised and quantified through several tests and 

comparisons, as presented in [10]. Such experiments concluded that the HM encoder 

presents a computational complexity increase varying from 9% up to 502% in 

comparison to the H.264/AVC encoder (High Profile), depending on the HEVC encoding 

configuration. Detailed experiments and results are presented in chapter 4.  

The computational complexity and implementation of both HM encoder and 

decoder were also analysed in [44]. It was observed that in the AI encoder configuration 

the most time-consuming modules are the transform and quantisation (24.4%), due to 

the RDOQ technique, the intra prediction (16.6%) and the entropy coding (2.2%). In the 

RA encoder configuration, the ME takes up a significant portion of encoding time 

(38.8% for SAD calculations and 19.8% for fractional pixel search refinement). The 

decoding computational complexity is dominated by the IT (15.9%) and the filters 

(12.9%) in the AI configuration, and by the MC (24.8%) and the filters (12.4%) in the RA 

configuration.  

Besides the encoding modules of HEVC, the encoding structures presented in 

this chapter, especially the frame partitioning structures, are also responsible for the 

high computational complexity involved in the encoding task. With a naïve 

implementation of the RDO process without simplifications, the process of defining the 

optimal combination of CBs, PBs and TBs would involve encoding each CTB using all 

possibilities allowed by the encoder, comparing their R-D costs and finally choosing the 

best one, which characterises a very complex procedure. 
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Also as a part of this research work, an analysis of the computational complexity 

for defining the frame partitioning structures of HEVC was performed. This analysis 

allowed concluding that the nature of such structures leads to nested encoding loops, 

such that CBs at large tree depths are encoded inside CBs at smaller tree depths, 

significantly increasing the encoding computational complexity. Detailed experiments 

and results of this analysis are also presented in chapter 4. 
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Chapter 3 

 

 

3 Computational Complexity of 

Video Encoders – a Review 

This chapter presents an overview of the state-of-the-art research on 

computational complexity of video encoders. First, a description of current methods for 

modelling the computational complexity of state-of-the-art video encoders is presented. 

Then, methods for reducing and scaling the expenditure of computational resources in 

video codecs are presented. Finally, the conclusions of the chapter highlight the 

research challenges and open topics not fully addressed in the available literature. 

 

3.1 Modelling Computational Complexity 

Estimating if the encoding operations will exceed the system’s available 

computational resources is an important problem in the design of complexity-aware 

video coding applications. As the computational resources cannot be retrieved once 

spent, the system must be able to detect such cases without the need of performing the 

actual operations. Therefore, modelling computational complexity of video codecs is 

necessary to allow estimating the computational complexity required by a certain 

operation prior to its execution. Nevertheless, this is not a trivial task because video 

encoders are composed of several interdependent tools with parameterised 

functionalities that can influence significantly the level of computational complexity. 

Furthermore, according to [45], in the case of a complex multimedia system an overall 

view may not be enough for fully understanding inter-related modules as a whole; even 

though detailed information about all the constitutive functional modules and their 
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theoretical complexity may be available, the overall codec behaviour and complexity are 

very difficult to be understood, because they depend on the input data characteristics. 

In the recent past, modelling the computational complexity of video encoders 

and decoders was investigated in several works, some of which are presented in the 

next sub-sections. Even though there are still few works published on the topic aiming 

at the HEVC encoding/decoding process (section 3.1.2), many works for H.264/AVC are 

available in the technical literature (section 3.1.1).  

 

3.1.1 Computational Complexity Modelling for H.264/AVC 

In [46-48], the authors focus on modelling the computational complexity of 

inter-frame prediction operations of the H.264/AVC decoder due to their large share of 

the overall complexity. Since different inter-prediction modes demand different 

computational complexities, this was taken into account to estimate the overall 

decoding complexity in [46]. The number of MVs was used in [47] to estimate the 

decoding complexity of a macroblock (MB). According to the experiments performed, 

the decoding computational complexity is directly proportional to the number of MVs 

used in a MB. In [48], the number of interpolation filter operations was used for the 

complexity estimation. According to the authors, a MB with fewer interpolation filter 

operations has lower decoding complexity.  

The computational complexity of the inter-frame prediction is modelled in [49] 

for the H.264/AVC decoder. The motion compensation (MC) complexity is modelled for 

each inter prediction mode as a linear function of the number of cache misses, the 

number of interpolation filters and the number of MVs per MB. Then, an H.264/AVC 

encoder equipped with the developed model is proposed, aiming at estimating the 

decoding complexity and choosing the mode that best meets a target decoding 

complexity. 

There are also some approaches that deal with the computational complexity of 

video encoders and decoders based on their basic data structures. In H.264/AVC, these 

structures are blocks, MBs, frames and GOPs. In [50], the computational complexity of 

the H.264/AVC encoding process for a frame is estimated based on the computational 

complexity of encoding the previous frame. A frame is divided into multiple groups of 

MBs, which are further used by the complexity scaling algorithm, which assigns 
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different complexity budgets to each group. The complexity of the frame is computed by 

simply adding the complexity of each group of MBs, which in turn is computed by 

summing up the complexity of each MB. 

Some works have also proposed computational complexity models for video 

encoders that are dependent upon configuration parameters used for complexity 

scaling. The H.264/AVC encoder complexity was modelled in [51] by first dividing it 

into three major parts: ME (motion estimation), PRECODING (transforms, quantisation 

and picture reconstruction) and EC (entropy coding). The ME complexity is given by 

(Eq. 23), where CSAD is the computational complexity of a SAD operation and λME is the 

number of SAD calculations per frame, which is the complexity scaling parameter for 

the ME module. The PRECODING complexity is given by (Eq. 24), where CNZMB is the 

PRECODING computational complexity of one nonzero MB and λPRE is the number of 

nonzero MBs in a frame, which is the complexity scaling parameter for the PRECODING 

module. Here, a NZMB is a MB with nonzero DCT coefficients after the quantisation. 

Finally, the EC computational complexity is given by (Eq. 25), and it is proportional to 

the bitrate R. In (Eq. 25), CBIT is the per-bit complexity associated to EC and S is the size 

of the picture, which is needed because R represents the coding bitrate in bits per pixel. 

The total computational complexity C of the video encoder, is given by (Eq. 26), where λF 

is the video frame rate. The model represents a complexity-scalable architecture for 

video encoding, for which the computational complexity is scaled by the parameters λME, 

λPRE and λF. 

 (Eq. 23) 

 (Eq. 24) 

 (Eq. 25) 

 (Eq. 26) 

 

 

Similarly, in [1] the computational complexity of the H.264/AVC encoder is also 

modelled by dividing it into three modules: ME, PRECODING and EC. Two models are 

proposed: the first one considers that the RDO process is enabled, while the second 

considers that the RDO process is off. When RDO is used, the encoder executes the ME, 

transform, quantisation and entropy coding for each mode tested before choosing the 

best option. This is represented by equation (Eq. 27), where CRDOon is the encoding 

SADMEME CC  

NZMBPREPRE CC  

BITENC CRSC 

)(),,;( BITNZMBPRESADMEFFPREME CRSCCRC  



46 
 

 

complexity of the frame, Ci16x16 - CiI4x4 are the complexities associated to each prediction 

mode at the ith MB, CiM is the complexity of the transform, quantisation and entropy 

coding for each mode at the ith MB, and CiPRE and CiEC are the complexities of the 

PRECODING and EC modules after the decision mode is performed at the ith MB. When 

RDO is off, the mode decision is only based on the results of the ME process, so that the 

model in (Eq. 28) does not include the CiM element. In (Eq. 28), CRDOoff represents the 

total encoding complexity of the frame when RDO is off. 

 (Eq. 27) 

 (Eq. 28) 

In [52], the computational complexity of H.264/AVC encoders is modelled based 

on the complexity of each prediction mode (SKIP, Inter 16×16, Inter 16×8, Inter 8×16, 

Inter 8×8, Inter 8×4, Inter 4×8, Inter 4×4, P8×8, I4×4, I16×16). The model for the full 

computational complexity of a P frame is calculated as in (Eq. 29), where WRDi indicates 

the normalised R-D computational cost for mode i, WMEi denotes the factor of single-

reference ME for the inter modes, NMB is the number of MBs in the frame, NR is the 

number of reference frames, and WO is the complexity consumed by the remaining 

encoder modules. The computational complexity of the Inter 16×16 mode with a single 

reference frame was used as basis for the normalisations. 
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The computational complexity of the H.264/AVC decoding process is modelled 

in [53] using an approach where each decoding module (DM) is separately modelled. 

Entropy decoding complexity is modelled as the product of bit decoding complexity and 

the number of bits involved, as shown in (Eq. 30), where Cvld is the DM complexity, kbit is 

the average number of cycles required for decoding one bit and nbit is the number of bits 
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for a frame. Side information preparation, including MB sum/clip and DBF strength 

calculation, is modelled as in (Eq. 31), where Csip is the DM complexity, kMBsip represents 

the average clock cycles for side information preparation per MB and nMB is the number 

of MBs in a frame. Inverse transform complexity is modelled in (Eq. 32), where kMBitrans is 

a constant that describes the complexity of MB de-quantisation and inverse transform 

and nnzMB is the number of nonzero MBs per picture. Intra-frame prediction is modelled 

in (Eq. 33), as the product between the average complexity of intra-frame prediction in 

one intra-coded MB (kintraMB) and nIntraMB is the number of intra MBs per frame. The MC 

computational complexity model is given in (Eq. 34), where khalf is the average 

complexity required to conduct a 6-tap Wiener filtering and nhalf is the number of 

filterings to decode a frame. The DBF is modelled as in (Eq. 35), where k’α and k’β are the 

complexities to perform strong and normal filterings, respectively, and nα and nβ are the 

numbers of strong and normal filterings, respectively. Finally, the total complexity 

required to decode a frame is expressed as in (Eq. 36), where kCU(DM) is the complexity to 

decode a basic coding unit (a MB, for example) in a particular module, NCU(DM) is the 

number of basic coding units to be decoded by that module. 

  (Eq. 30) 

  (Eq. 31) 

  (Eq. 32) 

  (Eq. 33) 

  (Eq. 34) 

  (Eq. 35) 

  
(Eq. 36) 

 

 

 

3.1.2 Computational Complexity Modelling for HEVC 

As HEVC is still a recent standard, only a few works on the modelling of its 

computational complexity are currently available in the technical literature [54, 55].  

In [54], an analysis based on data mining is used to construct a computational 

complexity model for HEVC using linear regression. The model uses encoder 

parameters to determine the time savings provided when using different configurations 

in comparison to a baseline case. The model is shown in (Eq. 37), where G, H, I, J, K, L 
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and M are model parameters, height is the number of pixels lines per frame, BR is the 

target bit rate, LCU is the dimension of the CTU, CUD is the maximum Coding Tree depth 

allowed, TUD is the maximum RQT depth allowed in inter-predicted CUs and TS is the 

time saving obtained when using the current encoding parameters, in comparison to a 

reference configuration. 

  (Eq. 37) 

In [55], the authors propose a load-balancing algorithm for parallel scheduling 

in HEVC. A model is used to predict the complexity of each slice and tile, in order to 

allocate the same amount of work for all cores before the encoding process starts. The 

computational complexity of each slice or tile is computed by summing up the 

complexities of all CTUs, which are individually computed as in (Eq. 38), where CC is the 

computational complexity of encoding a CTU, CEM(s,m) is the normalised complexity of 

each prediction mode m in a CU of size s (measured through offline encodings), and 

CHK(s,m) is the information of whether or not the mode is tested for the CTU. The 

prediction mode m and the CU size s belong to sets S and M, given by (Eq. 39) and (Eq. 

40), respectively. If m is a valid mode for the current CU size s, CHK(s,m) is set to 1; 

otherwise, it is set to 0, as shown in (Eq. 41). 

  (Eq. 38) 

  (Eq. 39) 

  (Eq. 40) 

  

(Eq. 41) 

 

3.2 Computational Complexity Reduction 

Low-complexity algorithms for video encoding and decoding have been 

proposed in the last years as an attempt to enable the use of compressed video in 
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complexity constrained platforms. As the encoder’s computational complexity is much 

higher than the decoder’s, most works focus on its modules and features. 

  

3.2.1 Computational Complexity Reduction for H.264/AVC 

Most works found in the literature focus on the ME and MD tasks because they 

are the most complex operations in the encoding process and so provide ampler room 

for decreasing the encoding computational complexity. As ME and MD are operations 

common to most video coding standards, most of the techniques presented in the next 

sub-sections can be applied not only to H.264/AVC, but also to HEVC with some 

adaptations. 

3.2.1.1  Motion Estimation 

Several algorithms have been proposed for searching candidate blocks and the 

algorithmically simplest but most demanding in terms of computation needs is the Full 

Search (FS). In FS, the best match is found by searching all possible candidate blocks in a 

search area (SA) of the reference frame. However, the computational complexity 

involved in this process is very high and usually faster approaches are used. 

Several Fast Motion Estimation (FME) techniques, which have been widely 

applied to H.264/AVC but were actually designed for use in any video coding standard 

that includes ME, have been proposed in the literature in the last decade. These 

techniques may be classified into two categories: (a) those which decrease the number 

of candidate blocks in the SA and (b) those which decrease the computational 

complexity required to compare such blocks to the current block (i.e., distortion 

measure computation, such as SAD or MSE). 

Examples of the first category are the Three-Step Search (TSS) [56], the Block-

Based Gradient Descent Search [57], the New Three-Step Search [58], the Diamond Search 

[59, 60], the Hexagon-Based Search [61], the One at a Time Search [23], the Dual Cross 

Search [62], and so on. All of them are sub-optimal algorithms with R-D performance 

equal to or smaller than that obtained from FS, with the advantage of significantly 

decreasing the ME computational complexity.  

Methods from the second category include techniques such as sub-sampling 

[63], Partial Distortion Search [64], Normalised Partial Distortion Search [65, 66] and the 
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Successive Elimination Algorithm [67]. Even though these methods are capable of 

maintaining good R-D performance, their complexity reduction factor is limited. 

There are still other works that reduce the ME computational complexity by 

applying different techniques. In [68], the authors propose a strategy based on sorting 

the MVs and coding modes such that the decision process is stopped when the rate 

required to encode a MV or coding mode exceeds the average of any previous MV or 

mode tested, thus skipping the evaluation of some cases. In [69], a controller is added to 

the encoder to extract signal statistics from the motion search and use them to 

dynamically configure the ME parameters, such as the number of reference frames, 

tested block modes and SA for each 16×16 block and its sub-partitions. A method for 

estimating which MBs can be encoded in SKIP mode without trying the other modes is 

proposed in [70]. The authors propose a Bayesian framework using the R-D cost 

difference between coding and skipping a MB as the single decision feature. Savings in 

processing time of more than 80% for low-motion sequences are claimed by the authors 

at a cost of small quality decrease. 

3.2.1.2 Mode Decision 

The MD process involves different operations from various encoder modules. If 

RDO is enabled, then every possible coding mode is tried and the R-D performance 

results obtained using all the modes are compared in order to find and select the best 

mode. Many works based on heuristics have been proposed to decrease the number of 

modes to be tested during both intra-frame and inter-frame prediction. 

In [71-74], the authors propose fast algorithms to select a subset of intra-frame 

prediction modes to be compared in the MD stage. The authors in [75] and [76] claim 

that not all intra modes need to have the R-D performance evaluated, especially those 

with a high Sum of Absolute Transformed Differences (SATD) value, since they tend to 

result in high encoding bit rates. Therefore, only those modes with an SATD value lower 

than a threshold are evaluated and the remaining modes are ignored, reducing the 

volume of computation to be performed. 

In [77], the transforms are applied to the intra-frame prediction residue and the 

transformed coefficients are analysed in order to detect which is the best mode to be 

used. In [78] the low-frequency transformed coefficients for each MB are analysed in 

order to decide the best intra-frame block size (4×4 or 16×16).  



51 

 

 
 

A two-step algorithm for intra-frame MD was proposed in [79] based on 

heuristics. The first step consists in performing intra-frame prediction for every mode 

in both 16×16 and 4×4 prediction block sizes and computing the distortion between the 

original and predicted blocks. The mode leading to the smallest distortion is used as the 

best mode for its corresponding block size. In the second step, the MB homogeneity is 

computed to decide whether a 16×16 or a 4×4 block size should be used. A pruned DCT 

is applied to the original MB in order to compute a subset of coefficients, which are used 

to quantify the homogeneity level of the MB, which will then guide the block size choice. 

Homogeneous areas of the image must be encoded with large blocks, while 

heterogeneous areas must be encoded using small blocks. 

In [80], a hierarchical fast inter-frame MD was proposed based on the evaluation 

of temporal stationarity, texture homogeneity and block border strength. The method is 

divided into three steps. In the first one, stationarity is detected by calculating the 

distortion between a MB and its co-localised MB in the reference frame. If stationarity is 

detected, the MB is encoded as SKIP and the MD process is terminated. Otherwise, the 

second step takes place and the homogeneity of the MB is computed as in [79] in order 

to decide if the ME is performed with large or small blocks. In the third and final step, 

the intensity variation of luminance samples along the edges of possible blocks is 

calculated in order to detect the better block shape for inter-frame prediction, 

eliminating the need of testing all the remaining block shapes. This method was 

integrated with the intra-frame decision heuristics proposed in [79], forming a complete 

MD scheme for H.264/AVC in [81]. 

According to [82], only 3% of the modes chosen in P frames are intra prediction 

modes, on average. This way, the evaluation of inter-frame modes prior to the 

evaluation of intra-frame modes is proposed in [82] as a way of reducing the necessary 

computational resources without significant decreasing image quality or bit rate. In [83] 

a set of heuristics is presented for speeding-up the complete MD process (i.e., both intra 

and inter-frame predictions). The authors observe that homogeneous and static regions 

are mostly encoded with inter 16×16 and SKIP modes, so that a Sobel Operator is used 

to detect homogeneity and the SAD calculation is used to detect stationarity. The 

proposed algorithm reduces the encoding complexity through RDO early termination 

when one of the specific conditions (homogeneity or stationarity) is true. If neither is 

true, all the remaining prediction modes are evaluated. 
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In [84] the inter-frame MD complexity is decreased by analysing the spatial 

continuity of the motion field, which is generated by ME using 4×4 pixel blocks. A set of 

experiments led to the conclusion that video regions with high motion continuity 

present a higher probability of being encoded with inter 16×16, 16×8 and 8×16 modes, 

while regions with low motion continuity are mostly encoded with inter 8×8 and 

smaller block sizes. As in [83], this work also uses the Sobel Operator to identify the 

borders of objects in an image. 

 

Table 3.1 summarises the existing computational resource saving strategies for 

H.264/AVC. Categories “FME Cand.”, “FME Dist.” and “FME Other” correspond to 

approaches that (a) decrease the number of candidate blocks in the SA, (b) decrease the 

computational complexity of distortion calculation, and (c) apply mixed techniques. 

Categories “Intra MD”, “Inter MD” and “Full MD” correspond to FMD algorithms for 

intra-frame prediction, inter-frame prediction and both intra/inter-frame predictions 

respectively. Whenever available in the referenced paper, the amount of computational 

complexity reduction achieved with each approach is shown in the rightmost column of 

Table 3.1. These results are generally computed by comparing the algorithm proposed 

by the authors with the reference software or recommendation model and calculating 

the encoding time reduction. Exceptions are pointed out in the footnotes of Table 3.1. 

It is important to notice that most of the approaches cannot be directly 

compared with one another in terms of complexity reduction because different encoder 

versions, encoding configurations, setups and experimental conditions (e.g., processor, 

memory, etc.) were used. Even so, the table provides useful information to the 

researcher interested in identifying the best computational resource saving strategies. 
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Table 3.1: Computational complexity reduction strategies for H.264/AVC. 

Category Approach Reference 
Complexity 
reduction 

FME 
Cand. 

Three-Step Search [56] ─ 
Block-Based Gradient Descent Search [57] ─ 
New Three-Step Search [58] ─ 
Diamond Search [59, 60] ─ 
Hexagon-Based Search [61] ─ 
One at a Time Search [23] ─ 
Dual Cross Search [62] ─ 
Sub-sampling [63] ─ 

FME  
Dist. 

Partial Distortion Search [64] ─ 
Normalised Partial Distortion Search [65, 66] 45% - 65% 1 
Successive Elimination Algorithm [67] ─ 

FME 
Other 

Sorting MVs and modes [68] 90% 
Dynamic ME configuration [69] 75% 1 
Bayesian early-termination [70] 80% 

Intra MD 

Selective MD [71] 82% 
Selective MD [72] 42% - 52% 
Selective MD [73] ─ 
Selective MD [74] 60% 
Selective SATD-based MD [75] 79% 
Selective SATD-based MD [76] 85% 2  
Transform coefficient analysis [77] 20% 
Transform coefficient analysis [78] 52% 2 
Two-step hierarchical MD [79] 99.3% 3 

Inter MD 
Three-step hierarchical MD [80] 99.4% 3 
Motion field analysis [84] 50% 

Full MD 
Hierarchical MD [81] 99.3% 3 
Inter MD before intra MD [82] 30% 
Homogeneity and stationarity detection [83] 30% 

1 Time reduction for the ME module only; 
2 Time reduction for the intra-frame MD only; 
3 Reduction in the overall number of tests performed under the RDO scheme. 

 

3.2.2 Computational Complexity Reduction for HEVC 

Even though the HEVC standard has been recently launched, there are already 

some works published in the literature presenting methods to reduce the encoder’s 

computational complexity. Most of these works aim at decreasing  the computational  

complexity  involved  in  the  definition  of  the  new  frame partitioning structures, 

especially the Coding Trees, PUs and RQTs, and apply different techniques to determine 

the best configuration without testing all possibilities using an RDO process, as 

described in the next sub-sections. 

3.2.2.1 Coding Tree Structure Determination 

Fast algorithms for determining the Coding Tree structure are the most 

commonly found approaches to reduce the computational complexity of HEVC encoders, 
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since the CU is the basic encoding unit and the Coding Tree determination is one of the 

most complex tasks of the encoding process, as chapter 4 will show in detail.  

A fast splitting and pruning method for intra coding is proposed in [85]. It was 

found that the main contributor to the computational complexity of intra prediction in 

HM is the calculation of R-D costs for deciding intra prediction modes of CUs at all 

possible Coding Tree depths using RDO. In order to reduce these computational costs, 

the method uses a low-complexity R-D cost calculation, which result is tested to decide 

whether or not the CU splitting and pruning processes must be performed. The 

statistical parameters used in the Bayes-based choice of the best mode are periodically 

updated online so as to adapt to the changing characteristics of the video sequence. 

Experimental results have shown that the method is able to decrease the intra coding 

computational complexity by 50% with a BD-rate increase of 0.6%. However, the 

method is only applicable to intra-predicted CUs, which are a minority in the 

configurations that use inter-frame prediction. 

Two fast RDO techniques for HEVC are proposed in [86] aiming at saving 

computational resources at small R-D performance loss. The first method, the Top Skip, 

avoids checking the R-D cost for large block partitions when they are unlikely to be 

chosen. A starting CTU depth is selected based on the minimum depth of the co-

localised CTU in the reference frame. The second method, the Early Termination, avoids 

checking smaller blocks unlikely to be selected. The algorithm stops the CU splitting 

process if the best R-D cost is already lower than a given threshold. The threshold is 

adaptively computed based on the standard deviation of R-D costs relative to the CUs at 

spatially and temporally neighbouring CTBs. When both methods are integrated in the 

RDO process, a computational complexity reduction of 40% is achieved for the whole 

encoding process with an average BD-rate increase of 1.9%. 

The methods proposed in [87] and [88] use information obtained from 

intermediate encoding steps to determine if a CU is split into smaller CUs. In [87], a 

depth range selection mechanism is proposed. If the best prediction mode found for a 

determined CU is the SKIP, the splitting process is terminated. In [88], the ratio between 

the R-D costs in the current and upper-depth CUs is calculated and compared to 

thresholds in order to early terminate the CU-splitting process. The methods [87] and 

[88] provide a computational complexity reduction of 48% and 38%, respectively, and 

average BD-rate increases of 1.7% and 1.2%, respectively. 
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A method based on motion divergence analysis is proposed in [89] to early 

terminate the splitting process of CUs. Before being encoded, each frame is 

downsampled and the optical flow of it is estimated based on the frame MVs in order to 

determine the motion divergence features. Then, for each CU, the motion divergence is 

evaluated as the variance of the optical flows of the current CU and its sub-CUs. The 

method yielded a computational complexity reduction of 43% at the cost of a BD-rate 

increase of 1.9%. 

Temporal correlation in neighbouring frames is exploited in [90] to reduce the 

number of quadtree splitting decisions. Based on the tree depth used in the co-localised 

CU in the previous frame and its neighbouring CUs, the encoder decides whether or not 

to split the current CU into sub-CUs. Additionally, an early SKIP mode decision at the 

prediction stage is performed to further reduce the computational complexity. 

Experimental results show that the method achieves a computational complexity 

reduction varying from 20% to 33%, depending on the encoder configuration. BD-rate 

increases varied from 0.1% to 0.47%. 

A fast Coding Tree depth decision based on spatial and temporal correlation is 

proposed in [91]. The authors claim that since successive frames are strongly 

correlated, especially with the high frame rates lately used in video sequences, the final 

depth information or split structure of co-localised Coding Trees in neighbouring frames 

is also highly correlated. The algorithm first determines the depth search range 

according to the similarity degree between neighbouring CTBs. Three classes of 

similarity are defined (high, medium, low). Then, once the depth range is settled, the 

depth levels at which spatial partitioning will be tried can be derived by selecting 

depths with high probability of occurrence and excluding low probability depths. 

Experiments have shown that the method is able to reduce the encoding computational 

complexity in 25% with an increase of 0.16% in bit rate. No results in terms of BD 

measures were made available. 

In [92], a fast Coding Tree depth decision algorithm which operates in both 

frame level and CU level is proposed for computational complexity reduction of  HEVC 

encoding. The algorithm focuses only on the inter mode early determination, since, 

according to the authors, mismatches in intra CU sizes would result in too large PSNR 

drops or bit rate increases. At frame level, the main idea of the method is to skip those 

depths which are rarely used in the reference frames. The number of CUs encoded at a 
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certain tree depth in a frame is compared to a threshold in order to detect its level of 

usage. The CU part of the method relies on the fact that motion and texture detail of one 

particular part of the image tends to stay the same from one frame to another. By 

checking the spatial and temporal neighbouring CUs of a certain CU, the candidate CU 

depth can be predetermined. An average decrease of 45% in the ME computational 

complexity was achieved with this method. Bit rate increases remained under 0.3%. No 

results using BD measures were made available. 

3.2.2.2 Prediction Unit Structure Determination 

Some methods to decide or early terminate the decision of the best PU structure 

have also been proposed in the last few years for HEVC. The next paragraphs summarise 

the most relevant works in this category up to date. 

In [93], the authors propose optimised schemes that conditionally evaluate 

certain sets of modes according to intermediate encoding decisions. The method 

maintains square, intra and SKIP PU splitting modes unchanged and proposes a 

conditional evaluation for Symmetric Motion Partition (SMP) and Asymmetric Motion 

Partition (AMP) modes, which allegedly correspond to 60% of the computational 

complexity of the HM encoder (Main profile). Overall, a computational complexity 

reduction of 51% was achieved with the method, at the cost of a BD-rate increase of 

1.3%.  

In [94], a heuristic method aims at merging N×N PUs to form larger ones instead 

of performing ME for every possible PU partition. The method is applied to decide all PU 

sizes larger than N×N. When certain conditions are met, N×N partitions are merged into 

2N×N, N×2N or 2N×2N partitions without performing the ME operations for each one of 

them. Initially, ME is performed only for the four N×N partitions in a CU. If the MVs for 

the four partitions are identical, they are merged into one single 2N×2N PU. If the MVs 

are distinct, the rectangular shapes are tested in a similar manner. Experimental results 

point out an average computational complexity reduction of 34% with an average bit 

rate increase of 1.37% and a PSNR drop of 0.08 dB. No results using BD measures were 

made available. 

In [95], a two-stage PU size decision algorithm is proposed to speed up the intra 

coding process in HEVC. In the first stage, before intra-frame prediction starts, texture 

complexity of CTUs and its sub-blocks are measured in order to filter out unnecessary 
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PU sizes. The threshold for filtering PU sizes is calculated dynamically according to the 

content of the video sequence and to pre-defined coding parameters. The frame texture 

complexity is calculated by downsampling each 64×64 CTU to a 16×16 block and then 

computing its variance. In the second stage, which takes place during the intra-frame 

prediction, the PU sizes of neighbouring 32×32 blocks are analysed in order to skip 

small PU sizes. The average computational complexity reduction for the intra coding 

process achieved in this work varies from 28.8% to 44.9%, depending on the video 

resolution. Average bit rate increases and PSNR decreases stayed under 0.47% and 

0.02 dB, respectively. The authors do not present results using BD measures. 

An early SKIP mode detection scheme is proposed in [96] for complexity 

reduction of the HEVC encoding process. According to the authors, SKIP mode is chosen 

in about 83% of CUs and detecting its occurrence would allow ignoring all the 

remaining modes in the RDO process. The proposed method pre-detects SKIP mode 

using the DMV and CBF information of inter 2N×2N mode. The encoder first searches 

the best inter 2N×2N mode (i.e., chooses between competition mode and merging mode) 

and after selecting the one with the minimum R-D cost, it checks the DMV and the CBF of 

it. If they are both equal to zero, then the best mode is determined as the SKIP mode and 

the remaining PU modes are not tested. The method reduced computational complexity 

by about 35% with a BD-rate increase of 0.5%. 

Finally, [97] proposes a method in which small intra PUs are combined into 

larger intra PUs depending on the image characteristics (like texture variance), skipping 

the evaluation of certain modes. An online QP-based adaptive threshold generation is 

used to decide whether the smaller neighbouring PUs are to be combined in order to 

form a larger PU. A complexity reduction of 43.7% was achieved with the method at the 

cost of an average BD-rate increase of 1.26%. 

3.2.2.3 Residual Quadtree Structure Determination 

There are also some works which try to decrease the computational complexity 

demanded in the process of deciding the best RQT structure. However, as the 

computational complexity reductions achieved when constraining RQTs is very limited, 

as chapter 4 will show, not many works exploit simplifications of the RQT 

determination procedure. 
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In [98] and [99], the computational complexity required to decide the RQT 

structure is reduced by early terminating the recursive TU splitting based on the 

number of nonzero transformed coefficients. The method in [98] proposes the concept 

of quasi-zero-blocks (QZB), which are defined by criteria based on the values of two 

quantities: the sum of the absolute values of coefficients and the number of nonzero 

coefficients. According to the authors, subtle differences between nonzero blocks and 

blocks with very small coefficients cannot be perceived by human eyes, so that QZBs can 

be used in an early termination scheme to stop splitting of TUs. An encoding time 

reduction of 22.8% was achieved with the method, at the cost of a PSNR decrease of 

0.04 dB.  No results using BD measures were reported. 

Similarly, in [99] the authors claim that the sizes chosen for the TUs and the 

number of nonzero coefficients are strongly correlated. Accordingly, the number of 

nonzero coefficients is used in this method as a threshold to stop further R-D cost 

evaluation of the RQT. A computational complexity decrease of 61% in the TU 

processing was achieved in this method with small losses of compression efficiency. No 

results were reported regarding the effect on overall encoding complexity. 

3.2.2.4 Other solutions 

Other solutions that reduce computational complexity by combining two or 

more approaches or by using a strategy different from constraining the decision of 

frame partitioning structures have also been proposed.  

Works [100-102] optimise both the Coding Tree and PU structure decision 

processes. In [100], a complexity reduction scheme based on a method proposed in this 

thesis (presented later on, in chapter 5, and published in [11]) introduces a set of 

conditions that rely on spatial and temporal correlation to terminate early the Coding 

Tree splitting process. Simultaneously, the PU modes tested for a determined CU are 

chosen according to the size of neighbouring CUs. The computational complexity 

reduction achieved in [100] is 43% and the BD-rate increase is around 2.2%. The 

authors in [101] determine the CU depth range and the PU modes tested according to 

image characteristics and intermediate encoding results, such as motion homogeneity, 

R-D costs of neighbouring CUs and the PU mode chosen in the upper Coding Tree depth. 

Complexity was decreased by 42% at the cost of a BD-rate increase of 1.49%. 
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In [102], information from intermediate encoding steps is used to avoid 

exhaustive RDO searches over all possible Coding Tree depths and PU modes. Feature 

extraction to assist fast decisions is performed and the CU size decision is performed 

based on a Bayesian decision rule to avoid RDO search on all possible CU sizes and PU 

splitting modes. Predicting the splitting of a CU is formulated as a two-class 

classification problem and the features used for the decision include information such 

as variance of prediction error, SATD between original and predicted pixels, MV 

magnitude, R-D costs and others. An average complexity reduction of 41.4% was 

achieved with this method, in comparison to the original HM encoder. Average BD-rate 

increase is around 1.88%. 

In [103], edge information from the current PU is used to reduce the number of 

candidate intra-frame prediction modes tested. Based on the luminance samples of each 

4×4 PU, five edge strengths are calculated according to five linear filters and the 

orientation of the dominant edge (i.e., the one with the largest strength) is used to 

choose one among five pre-defined sets of modes to be tested in the intra-frame 

prediction. In PUs larger than 4×4, the edges are still calculated for sets of 4×4 samples 

and the edge with the largest number of occurrences among the sets is defined as the 

dominant edge of the PU. The method resulted in a reduction of 32.08% in the intra-

frame prediction complexity and an average BD-rate increase of 1.3%. 

 

Table 3.2 summarises the computational resource saving strategies for HEVC 

surveyed in this section. Categories “CU size/depth”, “PU mode” and “TU size/depth” 

correspond to low-complexity methods for deciding the best CU size or Coding Tree 

structure, the best PU splitting mode, and the best TU size or RQT structure, 

respectively. Category “Other” corresponds to solutions that include more than one 

strategy to reduce the encoding computational complexity or that cannot be classified 

into any of the previous categories. The computational complexity reduction achieved 

with each approach is shown in the rightmost column of Table 3.2. The results are 

computed in comparison to the HM software in terms of encoding time reduction. 

Exceptions are shown as footnotes of Table 3.2. 

As mentioned before in regard to Table 3.1, it is also important to notice that 

most of the approaches presented in Table 3.2 cannot be directly compared with one 

another due to different encoding conditions. However, the table provides useful 
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information for identifying the best computational resource saving strategies for HEVC 

published so far. By comparing the results of Table 3.1 and Table 3.2, it is possible to 

conclude that the research focusing on approaches for HEVC still have room for 

improvement to identify whether and how complexity reduction levels similar to those 

of the best performing methods developed for H.264/AVC can be achieved.  

 

Table 3.2: Computational complexity reduction strategies for HEVC. 

Category Approach Reference 
Complexity 
reduction 

CU size/depth 

Fast splitting for intra coding [85] 50% 
Top Skip + Early Termination [86] 40% 
Early termination  [87] 48% 
Early termination  [88] 38% 
Motion divergence [89] 43% 
Temporal correlation in neighbouring frames [90] 20% ─ 33% 
Spatial/temporal correlation [91] 25% 
Skip rarely used tree depths [92] 45% 1 

PU mode 

Conditional evaluation [93] 51% 
Merge smaller PUs into larger PUs [94] 34% 
Filter out unnecessary intra PU sizes [95] 28.8% ─ 44.9% 2 
Early SKIP mode detection [96] 35% 
Small intra PUs combined into larger PUs [97] 44% 

TU size/depth 
QZB-based early termination [98] 23% 
Nonzero coefficient-based early termination [99] 61% 3 

Other 

Spatial/temporal correlation [100] 43% 
Image characteristics and intermediate results [101] 42% 
Feature extraction [102] 41.4% 
Edge information for intra mode decision [103] 32.08% 2 

1 Time reduction for the ME module only; 
2 Time reduction for the intra-frame MD only; 
3 Time reduction for the RQT processing only. 

 

3.3 Computational Complexity Scaling 

To efficiently manage computational complexity, it is not enough to implement 

low complexity methods. Since these methods usually incur in compression efficiency 

losses, they must be wisely and gradually employed in order to reduce computational 

complexity up to a certain desired target, avoiding unnecessary losses in terms of R-D 

efficiency. This is usually achieved by designing scaling systems in which computational 

complexity can be adaptively adjusted according to specific conditions, such as the 

device’s battery status, time limitations imposed by the transmission environment and 

user preferences. Therefore, such systems generally have multiple operation modes, 
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which can be dynamically chosen by sensing environment changes or even by a user’s 

preference.  

In the last years, dynamic scaling of computational complexity in video encoding 

has been a very active research field. The ideal solution for a complexity management 

system would be to extend the original RDO problem to a third dimension such as Rate-

Distortion-Complexity Optimisation (RDCO) or Power-Rate-Distortion Optimisation 

(PRDO). This solution would find the best encoder configuration leading to the optimal 

visual quality under predefined rate and computational complexity constraints. 

However, joint Rate-Distortion-Complexity (R-D-C) analysis is an extremely complex 

task. Indeed, the lack of analytic models that relate rate, distortion and complexity 

prevents analytic solutions and the empirical solutions are not practical, as they require 

trying a huge number of possible combinations of modes and encoding parameters. As 

exhaustive search is usually infeasible in complexity-constrained environments, several 

heuristic solutions have been proposed to dynamically adjust the computational 

complexity of video encoding in order to manage the use of available computational 

resources. 

 

3.3.1 Computational Complexity Scaling for H.264/AVC 

Due to its high computational complexity, the ME process is used by many 

methods to scale the encoding computational complexity of H.264/AVC and other 

previous standards. A complexity scaling scheme for the MPEG-4 encoder was 

presented in [104] based on adjusting ME parameters and using the search options of 

FS, the TSS and the Spiral Search algorithms. The remaining parameters are the SA size, 

the SAD threshold for early termination of the Spiral Search algorithm, the use of pixel 

sub-sampling and the number of bits used to represent a pixel. 

In [105], a classification-based method is proposed for the ME process. MBs are 

classified into different categories according to their importance in the frame and a 

complexity controlled ME scheme applies different operations to each MB according to 

its class. Initially, a total computation budget for the video sequence is divided into 

computation allowances for each frame. Then, the frame budget is divided into three 

independent sub-budgets, which are assigned to each class of MBs. When performing 

ME, each frame is classified into one of the three classes and a computation budget is 
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allocated to each MB according to its class. Finally, according to the MB computation 

budget, the encoder uses more or less computation to estimate the motion of that MB. 

Three other adjusting parameters for ME are proposed in [50]: partial cost 

evaluation for Fractional Motion Estimation (FRME), block size adjustment for FRME, 

and search range adjustment for Integer Motion Estimation (IME). By combining these 

parameters, 12 configurations presenting different trade-off between compression 

efficiency and computational complexity were defined and used. Based on the 

complexity measure from the previous frames, the complexity scaling algorithm 

allocates a certain budget for each group of MBs in an image and then for each MB 

within the group.  

A two-stage complexity scaling method is proposed in [1] based on adjusting the 

ME operation. In the first stage, an encoding time scaling algorithm is applied. It consists 

of encoding the whole frame only using the inter 16×16 mode and then, based on 

encoding time information for this mode, estimating the total encoding time, the target 

encoding time and the parameters to be used in the second stage for complexity scaling. 

In the second stage, the number of SKIP MBs in the frame is used to adjust the encoder 

computational complexity to a determined target complexity level.  

As in other methods aiming to reduce the computational complexity, many 

complexity scaling methods are based on the adjustment of both MD and ME operations. 

In [106] a scheme to scale complexity is proposed based on adjusting parameters that 

affect the aggressiveness of an early stop criterion for ME, the number of prediction 

modes tested in the MD, and the accuracy of ME steps for inter modes. Before deciding 

the number of modes to test, they are ordered based on the statistical frequency of the 

optimal modes for a given type of video, so that the first modes tested are those which 

most probably yield the best R-D performance. The computational complexity is scaled 

by adjusting one single parameter, which is mapped to the algorithmic parameters 

based on a rule tuned by an offline training process that uses several typical video 

sequences. 

The approach of sorting modes was also used in [107] to scale the MD 

computational complexity. A ranking with the most popular ones, including intra and 

inter modes, compose a subset which is tested in the RDO process, while the remaining 

modes are suppressed from the tests. Initially, a few MBs are randomly selected for the 

frequency distribution analysis. Each mode is then associated with a frequency of 
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occurrence and a computational complexity. Then, based on the target complexity to 

encode a complete image, the dominant mode set is chosen and used to encode the next 

frame. 

In [108], the computational complexity scaling is divided into two problems: 

how to allocate the available computational resources to different frames and encoding 

modules and how to optimally use the allocated computational resources by adjusting 

the encoding parameters. To solve the first problem, a computation allocation model is 

proposed to distribute the available resources among the video frames. The second 

problem is solved by using a complexity-adjustable ME and a complexity-adjustable MD. 

The ME complexity is adjusted by allowing more or less operations (such as FRME, 

searching point refinement, etc.) to be executed, while the MD complexity is adjusted by 

allowing more or less modes to be tested in the RDO process. The list of tested modes is 

sorted according to their occurrence frequency in the spatial and temporal 

neighbouring MBs. 

The MD complexity was scaled in [52, 109] by an adaptive computational 

allocation method at the MB level. The computational cost of ME in 16×16 blocks is 

taken as the basic unit and the computational costs for the remaining modes were 

obtained through empirical simulations and represented as weighting factors of the 

basic unit. A target complexity is calculated based on the total computational complexity 

estimated for a frame, which depends on the number of MBs in the frame and on the 

computational weighting factors previously defined. The computational budget 

allocated for each MB is calculated based on the target complexity, on the complexity 

consumed by the previously encoded MBs in the frame and on the number of MBs 

already coded. The computational budget for a determined MB is then used to 

adaptively choose which modes are to be tested and which are not. 

A MD early termination method is used in [110] to decrease the encoding 

process computational complexity. By calculating the difference between the cost of 

encoding a MB as SKIP and an estimated coding cost, the encoder is able to stop the MD 

evaluation process just after encoding the MB as SKIP. A threshold calculated using 

conditional probability estimates of skipped and not skipped MBs is used in the early 

termination decision. The authors also propose a complexity scaling method which aims 

at maintaining a target level of complexity through a feedback algorithm that updates 

probability models to reduce R-D performance losses. 
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Other parameters which scale the complexity of other operations besides ME 

and MD are explored in some works. In [111], an empirical study on the controllability 

of parameters for complexity scaling on video encoding cloud services is presented. The 

work shows experimental results in terms of encoding time, bit rate and objective 

quality when varying the number of B frames, the level of refinement for sub-pixel ME 

and the operations performed in quantisation. 

In [112], the number of reference frames, the method used for sub-pixel ME, the 

partition sizes allowed for intra-frame and inter-frame prediction and the quantisation 

approach are used as the parameters to adjust computational complexity. Considering 

all possible combinations among these four parameters would result in a total of 3360 

possible parameter settings, a number so large that makes searching the best 

configuration infeasible in real time applications. Two fast algorithms are devised for 

finding the parameter settings which leads to high distortion-complexity performance. 

The algorithms are based on the Generalised Breiman, Friedman, Olshen and Stone 

(GBFOS) algorithm [113] and use training sequences to find the best parameter settings. 

The number of motion search positions and the frame rate were the two 

parameters used in the method proposed in [114]. By using the Adaptive Critic Design 

technique [115], a class of approximate dynamic programming methods, an online 

complexity scaling scheme was developed based on neural networks.  

A two-level method is proposed in [8]. In the frame-level algorithm, the 

encoding process is not changed in order to maintain acceptable image quality, but 

frames are dropped when necessary to decrease the amount of computations. In the 

per-frame algorithm, computational complexity is scaled for each frame in order to 

achieve the target coding time. The frame-level algorithm calculates a target encoding 

time for each frame in the video sequence based on the total delay experienced by the 

frame in the input buffer. The target time is then used by the per-frame algorithm, 

which adjusts computational complexity in a frame by increasing or decreasing the 

number of MBs encoded as SKIP, similarly to [110]. 

A dynamic framework which consists of a set of optimised core components is 

proposed in [116]. The ME, DCT, quantisation and MD processes can be configured to 

achieve a desired computation-performance trade-off in the encoder. These modules 

can all be assembled to form an H.264/AVC encoder with various degrees of 

computational complexity, which is able to adapt itself according to the available 
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computational resources. Eleven parameters are used to adjust the computational effort 

of the different modules, such as the number of ME search points and whether or not 

DCT is applied to the residual MB. As determining the best combination of parameters 

for each video through exhaustive optimisation is quite computationally demanding, a 

simpler, sub-optimal greedy optimisation method is used. 

RDCO and other similar approaches have also been proposed in several works, 

which treat the problem as an extension of RDO. In [51] and [117], a Power-Rate-

Distortion (PRD) analysis framework was developed in order to build a parametric 

video encoding architecture which scales the computational complexity of its modules 

by varying encoding parameters. Based on the R-D behaviour of these parameters and 

on their associated computational complexity, a PRD model was created and used to 

determine the best configuration of parameters according to the available power supply 

level of the device in which the encoding is done and on the target bit rate. The same 

authors propose in [118] an operational approach for offline PRD analysis and 

modelling based on a wide set of training data. Based on the models developed, a 

control database for online resource allocation and energy minimisation is proposed. 

Game theoretical analysis is used in [119] to model the power consumption in 

video encoders. The encoder is divided into modules, which are treated as players 

competing for the use of a computational resource on a limited budget aiming at 

maximising its efficiency. In [120], the complexity dimension was added to the RDO 

strategy. For each particular encoder setup, the total bit rate (R), PSNR (D) and ratio 

between the time spent to encode a training sequence and the time spent by the full-

featured encoder (C) are calculated. The RDC points are then projected into a 2D set of 

points (lying in the D-C plane, for a given constant bit rate) and a lookup table is built 

from the points in the convex hull of the set in order to provide optimal starting RDC 

points. The trellis quantisation, the level of refinement in ME and the number of 

partitions allowed are the parameters adjusted.  

 

Table 3.3 summarises the strategies for computational resource management 

proposed for use in H.264/AVC. Categories “ME” and “MD” correspond, respectively, to 

low-complexity ME and MD methods. Category “FR” corresponds to methods which 

change the output frame rate (i.e., discarding frames) in order to scale the encoding 

computational complexity. Categories “RDCO” and “Combined” correspond to Rate- 
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Distortion-Complexity Optimisation and combined strategies. The computational 

complexity reductions achieved are generally computed with reference to the 

H.264/AVC model encoder in terms of encoding time. Exceptions are shown as 

footnotes of Table 3.3.  

Although most of the approaches presented in Table 3.3 cannot be directly 

compared with one another due to different encoding conditions, the results can still 

serve as guidelines for identifying the best computational resource management 

strategies. 

 

Table 3.3: Computational complexity scaling strategies for H.264/AVC. 

Category Approach Reference 
Complexity 
reduction 

ME 

Adjusting ME parameters and algorithms [104] up to 40% 1 
MB importance classification  [105] up to 60% 
Adjusting ME parameters [50]  ─ 
Encoding time estimation [1]  up to 70% 

MD 
Mode ranking [107] up to 70% 
SKIP early termination [110] up to 50% 

ME, MD 
Adjusting ME parameters and modes [106] up to 80% 
Frame-level resource allocation [108] up to 95% 2 
MB-level resource allocation [52, 109] up to 91.2% 

ME, FR ME and frame rate (FR) adjustment [114] up to 90% 
MD, FR Frame-level and MB-level resource allocation [8] up to 50% 

RDCO 
Power-Rate-Distortion model [117] up to 78.6% 1 
Game theoretical analysis [119] up to 95% 1 
ME, MD and quantisation adjustment [120] up to 85% 

Combined 
ME, MD, quantisation adjustment [111] ─ 

ME, MD, quantisation adjustment [112] up to 94.1% 
ME, MD, transform and quantisation adjustment [116] up to 50% 

1 Power consumption reduction; 
2 Uses a computational complexity measure based on the SAD computation cost. 

 

3.3.2 Computational Complexity Scaling in HEVC 

Even though several solutions for complexity scaling in H.264/AVC have been 

proposed, very few strategies have been published so far for HEVC. As in 3.2.2, the 

related works reviewed in this section were published within the last two years, so that 

they were not available when the research presented in this thesis started.  

The authors in [121] present a complexity scaling scheme based on a method 

proposed in this thesis (explained later in chapter 5 and published in [12]). Their 

approach allows defining maximum Coding Tree depth values independently for each 

encoded frame, so that the computational complexity can be adjusted according to a 
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given complexity budget. The initial frames of a video are normally encoded and then a 

game-theoretic approach is used to choose the depth values for the N next frames to be 

encoded. The maximum complexity reduction achieved by the method is around 40% 

with an average PSNR loss of 0.027 dB in such case. No results were made available 

using BD measures. 

In [122], a complexity scaling scheme allows adjusting the number of evaluated 

PU splitting modes for inter-predicted CUs according to a target computational 

complexity. Through investigations on the MVs correlations, the authors propose a 

mode mapping method for PU splitting mode selection. Linear programming strategies 

are used to allocate the computational complexity and adjust the number of candidate 

modes. The maximum complexity reduction achieved by the method is around 50% 

with an average BD-rate increase of 5.9% in such case. 

 

Table 3.4 summarises the two computational complexity scaling strategies for 

HEVC available so far in the literature. The maximum computational complexity 

reduction achieved with each approach is shown in the rightmost column of the table. 

Results are computed in comparison to the HM software in terms of encoding time 

reduction. By comparing Table 3.3 and Table 3.4, it is possible to conclude that the 

research focusing on approaches for complexity scaling of HEVC is still in its first steps. 

While several works have been proposed for H.264/AVC, only a couple of strategies are 

available for HEVC so far.  

 

Table 3.4: Computational complexity scaling strategies for HEVC. 

Category Approach Reference 
Complexity 
reduction 

CU size/depth Game-theoretic R-D-C optimisation [121] up to 40% 
PU mode Mode mapping-based mode selection [122] up to 50% 

 

3.4 Challenges and Conclusions 

As explained in the previous sections, research on computational complexity 

management for video encoding through reduction and scaling of algorithm complexity 

made significant advances in recent years. However, the fast evolution of electronic 

devices in terms of computational power and display technologies and the development 
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of new and more complex video coding standards, like HEVC, introduce new important 

challenges to be solved. 

The challenges come from different sides. The increasing screen resolution of 

current multimedia-capable electronic devices and cameras allow higher resolution 

video sequences to be played, recorded and transmitted. Video content with higher 

resolutions require greater computational efforts to be processed and transmitted, 

increasing the power consumption in such devices. At the same time, such high-

resolution screens require more energy to work, limiting even more the energy 

available for computational operations. In order to reduce the number of bits and 

decrease the energy spent on transmission, more efficient compression methods must 

be used, which in turn increases even more the computational complexity and power 

consumption. It is easy to perceive that there is no way to avoid or ignore the 

computational complexity increase incurred by the latest technology advances. 

In addition, new video communication paradigms have arisen recently in the 

form of wireless Visual Sensor Networks (VSN), inter-vehicle communication networks 

with video transmission support and other ad-hoc networks which permit hop-to-hop 

video transmission or video diffusion through peer-to-peer (P2P) overlays. Since in 

many cases the nodes of these heterogeneous networks are mobile devices with limited 

energy and computation resources, the support of video encoding requires the use of 

carefully crafted domain-specific computational resource management techniques to 

ensure longer autonomies without significant encoded video quality degradations. 

As discussed in the previous sections, many parameters of current generation 

encoders can be varied to reduce and scale the use of computation and energy resources 

of multimedia systems. This large number of parameters makes the analysis of the 

encoder’s R-D-C efficiency a very complex task, but also allows finding better ways of 

reducing and scaling computational complexity. It is worth noting, however, that the 

HEVC reference software includes less encoding parameters than H.264/AVC, which on 

one side simplifies the analysis of the encoder R-D-C surface but on the other side 

reduces the number of encoding possibilities to be considered when developing a 

complexity scaling system. This is a challenge to be overcome by identifying in the HEVC 

standard which tasks should be parameterised in order to allow complexity scaling at a 

finer grain. Also, as different video sequences with different contents have different R-
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D-C characteristics, developing efficient and accurate content-aware models is also 

another important open issue to be solved. 

This chapter has presented a study on the main works published so far, focusing 

on computational complexity modelling, reduction and scaling for H.264/AVC and 

HEVC. As the HEVC standard draft has just been completed, most of the presented 

approaches focus on the computational complexity demanded by the ME and the MD 

processes of H.264/AVC. Some works aiming at complexity reduction based on fast 

decisions for the frame partitioning structures have also been exploited lately for HEVC. 

However, such methods for HEVC are still rare and do not achieve complexity scalability 

levels as large as the methods designed for H.264/AVC.  

When comparing the tables presented in previous sections, it becomes clear 

that, due to the intrinsic lower computational complexity of H.264/AVC in comparison 

to HEVC and due to the fact that it has been available for a longer period for researchers, 

engineers and system designers, the approaches focusing on the former encoder 

achieve much higher computational complexity reduction levels than those focusing on 

the latter.  
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Chapter 4 

 

 

4 Performance and Computational 

Complexity Assessment of HEVC  

This chapter presents an experimental study performed with the research goal 

of characterising and evaluating the behaviour and performance of the HEVC encoder. A 

first set of experiments was carried out in order to identify which tools most affect the 

HEVC encoding process in terms of encoding efficiency and computational complexity. 

Then, a second set of experiments was defined to analyse the impact of using different 

frame partitioning structures in both the compression ratio and encoding 

computational complexity.  

The results of this study provided relevant insight for developing the novel 

complexity reduction and scaling methods presented in the following chapters of this 

thesis. Part of the experiments and results presented in this chapter were published in 

[10]. 

 

4.1 Analysis of HEVC Encoding Tools 

As explained in chapter 2, the HEVC encoder includes a large number of tools, 

each one having a different contribution to the overall encoding efficiency and 

complexity. The operation of each tool and their functional modes are determined by 

configuration parameters that may be set to several different values during the 

encoding process.  

This section presents an analysis on the impact in both the R-D efficiency and 

the encoding computational complexity when enabling and disabling each tool, as well 
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as employing different parameter values whenever possible. By doing so, it is possible 

to identify which tools present the best trade-off between compression efficiency and 

computational complexity and thus should have enabling priority in a complexity-

constrained system. 

 

4.1.1 Experimental Setup and Methodology 

The methodology defined for the experimental study presented in this section 

comprised two main steps. Firstly, the coding tools that present stronger impact in both 

coding efficiency and computational complexity were identified. To that end, the 

individual contribution of each and every encoding tool to such performance indicators 

was experimentally evaluated. Secondly, those tools identified in the first step and 

ordered according to encoding gain per complexity increase were selected for further 

analysis, which consisted in evaluating the impact of these tools when enabled in a 

cumulative sequence (i.e. first enabling tool A, then tools A and B, and so on).  

To conduct the experiments, 12 video sequences that differ broadly from one 

another in terms of frame rate, bit depth, motion and texture characteristics as well as 

spatial resolution were used. The 12 selected sequences are the BlowingBubbles, 

RaceHorses1, BasketballDrillText, PartyScene, BQMall, SlideShow, vidyo1, vidyo4, 

ParkScene, BasketballDrive, NebutaFestival, and Traffic, which are all detailed in the 

Appendix B of this thesis.  

The reference software used was the HM – version 7.0 (HM7) [123], which was 

compiled using Microsoft Visual Studio C++ Compiler under the Release compilation 

mode (i.e., allowing compiling optimisations). All tests were performed in a single core 

of a clustered computer based on Intel® Xeon® E5520 (2.27 GHz) processors running 

the Windows Server 2008 HPC operating system. The computational complexity was 

measured in terms of processing time, reported by the Intel® VTune™ Amplifier XE 2011 

software profiler [124]. The Low Delay temporal configuration was used in all the tests. 

 

4.1.2 Identification of Relevant Parameters 

As revealed by experiments carried out in the scope of this chapter, as well as in 

other works conducted by the JCT-VC group, the impact of different HEVC tools on 
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encoding efficiency and computational complexity is highly variable [125]. Since testing 

all possible combinations of coding tools and functional modes for all video sequences 

would require an inordinate amount of time to the point of being unfeasible and 

produce a huge amount of data, a preliminary exploration was first conducted to 

identify the configuration parameters that would be more important to this study. 

These exploratory experiments were performed by varying one parameter at a time, in 

the multidimensional encoder configuration parameter set, such that the impact of 

enabling each tool could be separately analysed. Starting with a baseline encoder 

configuration, each tool was enabled (and then reset to the default value), one after the 

other, and the resulting image quality, bit rate and encoding computational complexity 

were recorded for comparison with the reference baseline configuration. In every case, 

including the baseline configuration, the encoding structure was set to support CUs of 

up to 64×64 pixels, Coding Tree depths of up to 4 levels (i.e., minimum CU size is 8×8) 

and TUs varying from 4×4 to 32×32 pixels.  

Table 4.1 shows all test cases corresponding to 17 encoding configurations. The 

baseline encoder configuration is defined as TEST 1 while the other 16 configurations 

correspond to TEST 2 through TEST 17. The table lists the parameter values used in 

active coding tools, while D and E represent a disabled or enabled tool/functional mode, 

respectively. Although a larger number of tests were performed using a broader 

spectrum of configuration parameters, only the 16 most representative ones in terms of 

PSNR, bit rate and computational complexity were selected and included in Table 4.1. 

Every test was performed using five different QPs: 22, 27, 32, 37, and 42. 

Fig. 4.1 shows the computational complexity results obtained from encoding the 

12 video sequences using the 17 test encoding configurations listed in Table 4.1. In Fig. 

4.1, the computational complexity values were normalised with respect to TEST 1 

(reference configuration). For all cases, except TEST 3, one can notice a close similarity 

between the trends of lines in Fig. 4.1, which means that complexity varies fairly 

likewise for all video sequences when a specific tool is enabled. TEST 3, which evaluates 

the effect of increasing the ME search range from 64 to 128, shows different complexity 

values for each sequence most likely due to their very different motion characteristics. It 

is quite evident that video sequences with large motion activity, such as RaceHorses1 

and BasketballDrive, result in higher computational complexities than others with little 

or slow motion, such as vidyo1, vidyo4 and Traffic. Encoding efficiency results, measured 
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in terms of bit rate (also normalised with respect to TEST 1) and luminance PSNR 

(Y-PSNR) variation (using TEST 1 as reference), are shown in Fig. 4.2 and Fig. 4.3, 

respectively, for the same 12 video sequences and 17 test configurations.  

Fig. 4.1-Fig. 4.3 indicate that some configurations do not influence significantly 

any of the three performance metrics. For example, choosing configuration TEST 15 has 

a very small impact on the computational complexity and on bit rate savings in 

comparison to TEST 1, leading to a slight decrease in Y-PSNR for most video sequences. 

Based on these results, those coding tools that were shown to have the largest impact 

on performance and complexity were selected as the basis for the second step of the 

computational complexity analysis process, which is described in the next section. 

 

4.1.3 Relevant Encoding Configurations 

Most studies on complexity analysis of video encoders focus on testing each 

feature independently, by comparing the performance of a baseline configuration 

against the same baseline configuration with only one tool enabled at a time. However, 

current video coding algorithms are characterised by high levels of inter-dependency 

between coding tools, which means that any additional encoding gain obtained by 

enabling a particular coding option may be dependent on the enabled/disabled status of 

other coding tools. Since this is the case of HEVC, the complexity analysis performed in 

this section is based on a sequence of predefined encoder configurations, where the 

coding tools are enabled in a cumulative order along such sequence. The sequence of 

relevant encoding configurations was constructed in two steps, as follows. 

In the first step, 13 configurations from Table 4.1 were identified as those having 

significant impact on Y-PSNR, bit rate and overall computational complexity in 

comparison to the baseline test case (TEST 1). Here, significant impact was defined as 

Y-PSNR variations of at least 0.1 dB, bit rate changes of at least 1.5% and computational 

complexity increases of at least 5%. These 13 configurations correspond to seven 

coding tools – ME, DBF, SAO, ALF, Internal Bit Depth (IBD), Linear Mode (LM) Intra 

Prediction and Non-Square Transforms (NSQT) –, which were then used in the second 

step to create a sequence of 15 relevant encoding configurations. 
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Table 4.1: Encoder configurations for identifying relevant parameters. 
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a Search range increase for ME when bi-prediction is used; b Pulse Code Modulation (PCM) mode allows a 

PU to be encoded with no prediction, no transform, and no entropy coding. 
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Fig. 4.1: Normalised computational complexity for encoding each video sequence under 

all 17 configurations (QP 32). 

 

 

Fig. 4.2: Normalised bit rate for each video sequence encoded under all 17 

configurations (QP 32). 
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Fig. 4.3: Delta Y-PSNR for each video sequence encoded under all 17 configurations 

(QP 32). 
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The set of 16 configurations presented in Table 4.2 was used to encode all the 

test sequences listed in section 4.1.1. For each simulation, bit rate, Y-PSNR and 

complexity results were recorded for use in the performance and complexity trade-off 

analysis presented in the next section, which evaluates the activation of each HEVC 

tool/functional mode. 

 

4.1.4 Encoding Performance and Complexity Trade-off Analysis 

This section presents the performance results in terms of Y-PSNR, bit rate and 

computational complexity for the 16 test cases listed in Table 4.2. The results are 

summarised in Fig. 4.4-Fig. 4.8 and in Table 4.3. 

The computational complexity results for all video sequences under all encoding 

configurations are plotted in Fig. 4.4, normalised with respect to those of CFG 1, as done 

in Fig. 4.1. In Fig. 4.4 all video sequences exhibit a similar monotonic increase of the 

encoding complexity from CFG 1 to CFG 15. However, from CFG 10 to CFG 15 the slope is 

very small and the normalised computational complexity is approximately constant. The 

largest computational complexity increases are observed in the transitions from CFG 4 

to CFG 9. As shown in Table 4.2, these configurations correspond to different functional 

modes of ME according to the specified parameters. The results in Fig. 4.4 show that the 

choice of more accurate ME modes is accountable for most of the computational 

complexity increases observed in the results.  

It is also noticeable in Fig. 4.4 that from CFG 5 and especially from CFG 6 

onwards, the curves pertaining to the different video sequences start to be farther apart 

from each other. This happens due to the fact that these two configurations increase the 

ME search range from 64 to 96 and from 96 to 128, respectively. As explained in section 

4.1.3 in regard to TEST 3 in Fig. 4.1, the video sequences are quite distinct in terms of 

motion activity and for this reason they result in different encoder behaviour when the 

SR used in the ME is increased. The spreading of the curves is even more pronounced in 

the case of the configurations with rank order above CFG 6 due to the cumulative effect 

of the tool activations. This is observed in the last configuration, CFG 15, for which the 

computational complexity is up to 3.2 times larger than that of the baseline 

configuration. Even though Fig. 4.4 presents results for QP 32, other QP values were also 

tested and showed similar behaviour.  
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Table 4.2: Encoder configurations used for complexity and performance analysis. 
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Table 4.3 presents absolute complexity values for the least and most complex 

HM configurations (CFG 1 and CFG 15, respectively) encoded with QPs 22, 27, 32, 37, 

and 42. As a reference for comparison, the complexity obtained by encoding the same 

video sequences with an H.264/AVC High Profile encoder (JM software, version 18.3) is 

also presented (“H.264 HP” lines). The table presents results for the sequences 

RaceHorses1, BasketballDrillText, SlideShow, ParkScene, and NebutaFestival. The 

rightmost column shows the average computational complexity increase of CFG 1 and 

CFG 15 over the H.264/AVC HP encoder. It is noteworthy that even the least complex 

configuration (CFG 1) in HEVC is still more complex than H.264/AVC HP (in a range 

from 9.1% up to 103.6%). Moreover, CFG 15 is at least 1.6 times more complex than 

H.264/AVC HP, reaching an average computational complexity increase of up to 502.2% 

for NebutaFestival, which is the most complex video sequence among those listed in the 

table (high spatial resolution, colourful detailed texture and continuous motion 

activity). 

Fig. 4.6 shows the increase of Y-PSNR for each encoding configuration in 

comparison to the reference. It is possible to notice that the image quality is roughly 

maintained from CFG 4 to CFG 10 and from CFG 13 to CFG 15. Most of the image quality 

gains are obtained in CFG 3, CFG 11 and CFG 12, which enable DBF, SAO and ALF, 

respectively. These results lead to the conclusion that the three filters have significant 

impact on the objective image quality in HEVC. When the three filters are enabled 

(CFG 12), the Y-PSNR is increased by up to 0.94 dB (SlideShow sequence). Nevertheless, 

despite the impact on the image quality, it is important to remark that the activation of 

ALF resulted in a very large bit rate increase, as presented in Fig. 4.5 (see CFG 12). 

Further results for a wider range of QP values (22, 27, 32, and 37) are presented 

in Fig. 4.7 and Fig. 4.8 in terms of BD-rate and BD-PSNR, respectively. Six video 

sequences were used in the tests and the results were computed by taking CFG 1 as the 

reference case. Both figures reveal large differences between H.264/AVC HP (non-

connected points on the right side of the figures) and the remaining HM encoding 

configurations in terms of encoding efficiency. All HM configurations result in a 

significant decrease in the BD-rate value when more encoding tools are activated, as 

shown in Fig. 4.7. The H.264/AVC HP configuration, however, presents a BD-rate 

increase that varies from 23.5% to 43.3%, depending on the video sequence, in 

comparison to HM CFG 1. Similarly, BD-PSNR in Fig. 4.8 is improved when more tools 
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are added to the baseline HM configuration. On the other hand, the H.264/AVC HP 

configuration presents BD-PSNR degradations in a range from 1.3 dB to 2.1 dB in 

comparison to CFG 1. 

 

 

Fig. 4.4: Normalised computational complexity for encoding each video sequence under 

all 16 configurations (QP 32). 

 

 

Fig. 4.5: Normalised bit rate for each video sequence encoded under all 16 

configurations (QP 32). 
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Fig. 4.6: Delta Y-PSNR for each video sequence encoded under all 16 configurations 

(QP 32). 
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functional mode that is not advantageous from the point of view of complexity versus 

performance. More specifically, in CFG 16 only the three first parameters listed in Table 

4.2 are enabled, which are those that presented the highest relative coding efficiency-

complexity gains in the configurations of Table 4.1 (i.e., the ratio between the bit rate 

reduction and the increase in encoding computational). These parameters are the 

Hadamard ME, the DBF and the AMP, respectively. Besides them, the SAO filter was also 
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enabled in CFG 16 because, although it was not classified at the top of the ranking, it 

yielded significant increases in terms of image quality (Y-PSNR), as shown in Fig. 4.6 

and Fig. 4.8 (CFG 11). The remaining ME functional modes, the IBDI, the LM Intra 

Prediction and the use of NSQT were all either disabled or enabled in their lowest 

complexity functional mode, as shown in the last column of Table 4.2.  

 
Table 4.3: Computational complexities (in seconds) for HEVC and H.264/AVC 

configurations under QPs 22, 27, 32, 37, and 42 
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Fig. 4.7: BD-rate values for each configuration using CFG 1 as reference. 

 

 

Fig. 4.8: BD-PSNR values for each encoding configuration using CFG 1 as reference. 

 
The results in Fig. 4.4-Fig. 4.8 show that, even though the encoding efficiency of 

CFG 16 is similar to that achieved by high-complexity configurations, its computational 

complexity is much smaller. For instance, CFG 16 provides roughly the same coding 

efficiency as CFG 12 but its complexity is up to 2.5 times smaller (see Fig. 4.4). This 

optimisation exercise shows that a wise selection of coding parameters can be used to 

define a low complexity configuration which is capable of achieving roughly the same 

coding efficiency as a more complex one. In other words, higher levels of compression 

efficiency are not necessarily obtained using the most complex coding configurations. 
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4.1.5 Performance and Complexity as a Function of QP 

This section presents an analysis of the encoding performance and 

computational complexity for different bit rates. In order to decouple the results from 

the effects of rate control algorithms, a set of fixed QP values (22, 27, 32, 37) was used in 

each experiment. 

Fig. 4.9 shows the R-D encoding efficiency of the HM encoder under different 

configurations for the BQMall, vidyo4, ParkScene and Traffic video sequences. The 

H.264/AVC HP encoder was also included in this evaluation to provide an anchor for 

comparison. Even though all HM configurations presented in section 4.1.3 were 

analysed, only four of them (1, 12, 15 and 16) are presented in the charts of Fig. 4.9 for 

clarity. The results confirm that the encoding efficiency of HM configurations is much 

higher than the encoding efficiency of H.264/AVC HP, since the bit rates are reduced by 

approximately 50% while maintaining roughly the same Y-PSNR. As CFG 1 and CFG 15 

are the configurations which present the worst and the best R-D efficiency results, 

respectively, the performance curves for the remaining HM configurations fall between 

those of CFG 1 and CFG 15. For this reason, they are omitted from the charts in Fig. 4.9 

for clarity. The curves corresponding to CFG 12 and the optimised configuration CFG 16 

are overlapped in all charts of Fig. 4.9, confirming that their R-D efficiency is 

approximately the same for all tested QPs. 

Fig. 4.10 shows the encoding time as a function of QP for the same video 

sequences and the same configurations presented in Fig. 4.9. Fig. 4.10 shows that, 

although CFG 16 achieves R-D efficiency close to that of CFG 12 in Fig. 4.9, its 

computational complexity is much more similar to that of the baseline configuration 

(CFG 1) for all QPs and all video sequences analysed. In fact, the computational 

complexity of CFG 16 is closer to that observed in the H.264/AVC HP encoder than to the 

observed in CFG 12, even though its R-D efficiency is almost as high as in CFG 12. 

Therefore, the previous conclusions can be extended for a wide range of bit rates, 

meaning that coding complexity and efficiency are not necessarily correlated. Thus, in 

complexity-constrained encoder implementations it is worthwhile to take these findings 

into account. 
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Fig. 4.9: R-D efficiency of HEVC with CFG 1, CFG 12, CFG 15, and CFG 16 and H.264 HP for 

the (a) BQMall, (b) vidyo4, (c) ParkScene and (d) Traffic videos (QPs 22, 27, 32, 37). 

 
Concerning the effect of QP on the encoding complexity, it was further observed 

from Fig. 4.10 that the overall complexity decreases slightly when the QP increases. This 

effect is more prominent in the cases with larger complexity values, which allow such 

difference to be more easily noticed (CFG 12 and CFG 15). This effect might result from 

the smaller amount of processed data in the case of higher QP (e.g., more zero 

coefficients). 

 

4.1.6 Experiment Conclusions 

The trade-off between computational complexity and encoding performance of 

the HEVC encoder was evaluated in the previous sections using a broad range of 

encoding configuration cases over a wide variety of video contents. The experimental 

study analysis shows that maximum HEVC complexity can be reduced at practically no 

coding efficiency cost, if the coding tools are wisely chosen, combined and configured.  
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Fig. 4.10: Encoding time of HEVC with CFG 1, CFG 12, CFG 15, and CFG 16 and H.264 HP 

for the (a) BQMall, (b) vidyo4, (c) ParkScene and (d) Traffic videos (QPs 22, 27, 32, 37). 

 

The experimental results show that when the number of tools and functional 

modes increase in a cumulative progression, the computational complexity grows in a 

similar way, even though the encoding performance does not increase at the same pace. 

Therefore, it is advisable to enable first those tools which provide most gains for the 

least cost. Such a strategy for enabling tools and choosing encoding parameter values 

lead to a good trade-off between computational complexity and encoding efficiency, 

making it possible to achieve high encoding performance while still reducing the 

computational complexity in comparison to the case in which all tools are enabled.  

The results demonstrate that a good trade-off between coding efficiency and 

computational complexity can be achieved by enabling the Hadamard ME, the AMP, and 

the use of filters (DBF and SAO), instead of enhancing the performance of other 

computationally demanding but not so efficient tools. Our conclusions about the 

usefulness of some tools such as Inter 4×4, LM Intra Prediction, ALF, and NSQT were 

confirmed later when JCT-VC removed them from HM versions later than 7. Our 

experiments performed with HM7 had shown that these tools should be disabled (see 
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our proposed CFG 16 in Table 4.2), since they did not offer significant encoding 

efficiency when considering their associated computational complexity increases. 

The study presented in this section provided an important basis to devise the 

R-D-C optimised control system presented in chapter 7 of this thesis. As it will explained 

later on, an R-D-C analysis was performed on a set of encoding configurations, which 

varied the value of those parameters identified in the previous sections as those that 

most affect the computational complexity of an HEVC encoder. As shown in Fig. 4.4, the 

largest computational complexity increases are observed in the transition from CFG 1 to 

CFG 2 and from CFG 4 to CFG 9, which correspond to the Hadamard ME, the AMP, the 

Search Range, the Bi-prediction Refinement, the Inter 4×4 and the Fast Encoding 

parameters. For this reason, some of them were selected for the analysis that led to the 

development of an encoding time control system presented later on in chapter 7. 

 

4.2 Analysis of HEVC Frame Partitioning Structures 

As presented in chapter 3, complexity-aware solutions for HEVC have focused 

mainly on the decision process of frame partitioning structures such as CUs, PUs and 

TUs. However, a systematic analysis on the impact of constraining the decision of such 

structures in both the R-D efficiency and the encoding computational complexity is still 

missing. The analysis presented in this section was important for identifying research 

directions and lead the studies presented in this thesis to focus mainly on those 

partitioning structures that would most probably yield the largest complexity 

reductions and the best trade-offs between encoding efficiency and computational 

complexity when constrained. 

 

4.2.1 Experimental Setup and Methodology 

The experiments were performed using a setup similar to that described in 

section 4.1, using the same 12 test video sequences presented in section 4.1.1 and the 

HM encoder – version 13 (HM13) [30]. As before, the Microsoft Visual Studio C++ 

Compiler was used to compile the encoder with the Release mode and the tests were run 

on Intel® Xeon® E5520 (2.27 GHz) processors running the Windows Server 2008 HPC 

operating system. The computational complexity was measured in terms of processing 
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time, reported by the Intel® VTune™ Amplifier XE 2011 software profiler [124]. The 

experimental study was carried out by changing the configuration of the frame 

partitioning structures, one parameter at a time, such that the impact of each one could 

be independently analysed. Every test was performed using five different QPs: 22, 27, 

32, 37, and 42. 

 

4.2.2 Frame Partitioning Configurations Tested 

As explained in section 2.6.1.2, the main frame partitioning structures of HEVC 

are CUs, PUs and TUs, which size and format can vary broadly following a quadtree-

structured partitioning scheme. There are three frame partitioning parameters in the 

HEVC encoder that can control directly these structures: Max CU Depth, Max TU Depth 

and AMP, which define, respectively, the maximum quadtree depth allowed for a CU in 

each CTU, the maximum quadtree depth allowed for a TU in each RQT, and the 

possibility of using Asymmetric Motion Partitions in the PU format decision. 

Starting with a baseline encoder configuration using the Random Access1 

temporal configuration, new configurations were created by modifying the value of each 

partitioning parameter, one at a time in a non-cumulative way (i.e., a parameter was 

changed in one configuration and then set to its original value in the following 

configuration). The resulting image quality, bit rate and encoding computational 

complexity were recorded for comparison with the reference baseline configuration.  

The seven configurations tested are presented in Table 4.4. The baseline 

encoder configuration is defined as PAR 1, while the other six configurations correspond 

to PAR 2 through PAR 7. In PAR 1, the maximum CU depth allowed is 4 (Max CU Depth), 

the maximum TU depth allowed is 3 (Max TU Depth) and the use of AMP is enabled. 

From PAR 2 to PAR 4, the only parameter changed is Max CU Depth. In PAR 5 and PAR 6, 

the effect of changing only the Max TU Depth parameter is tested. Finally, in PAR 7 the 

activation of AMP is evaluated. The values D and E represent the disabled and enabled 

states of AMP, respectively.  

                                                           
1 During the development of the research work presented in this thesis, it was noticed that most works 

published in the literature presented results for the Random Access temporal configuration. For this reason, 

aiming at providing comparable results with these related works, at some point of this work the Low Delay 

configuration was not used anymore and the Random Access configuration was used for all tests. 
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All test sequences listed in section 4.1.1 were encoded with the seven 

configurations presented in Table 4.4. For each simulation, bit rate, Y-PSNR and 

complexity results were recorded in order to allow the performance and complexity 

trade-off analysis presented in the next section. 

 
Table 4.4: Frame partitioning structure configurations tested in the experiments. 

Parameter 

Frame Partitioning Configuration 
(PAR) 

1 2 3 4 5 6 7 

Max CU Depth 4 3 2 1 4 4 4 

Max TU Depth 3 3 3 3 2 1 3 

AMP E E E E E E D 

 

4.2.3 Encoding Performance and Complexity Trade-off Analysis 

This section presents the performance results in terms of PSNR, bit rate and 

computational complexity for the seven test cases listed in Table 4.4. The results are 

summarised in Table 4.7 and Fig. 4.11-Fig. 4.15. Even though Fig. 4.11-Fig. 4.13 present 

results for QP 32, other QPs were also tested and have shown similar behaviour. General 

results for QPs 22, 27, 32 and 37 are shown in Fig. 4.14-Fig. 4.15. 

Results in terms of computational complexity for all video sequences encoded 

under all tested configurations are plotted in Fig. 4.11, normalised with respect to 

PAR 1. In Fig. 4.11, all video sequences exhibit a similar variation in the encoding 

complexity from PAR 1 to PAR 7. The largest complexity decreases are noticed from 

PAR 1 to PAR 4, which represent the cases when the value of Max CU Depth was 

modified. In PAR 5 and PAR 6 the computational complexity has also decreased in 

comparison to PAR 1, even though in a much smaller extent. Finally, with PAR 7 the 

encoding computational complexity experiences a small decrease varying from 1% to 

19% in comparison to PAR 1. It is also noticeable that, differently from the first six 

configurations, the curves in PAR 7 are more distant from each other. This happens due 

to the fact that this configuration affects directly the ME operation and as the video 

sequences are quite distinct in terms of motion activity, they result in different encoder 

behaviour when AMP is disabled. A similar effect has been previously noticed in Fig. 4.4.  
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Normalised bit rate results are presented in Fig. 4.12. It is noticeable that PAR 2, 

PAR 3 and PAR 4, which are also those configurations which resulted in the largest 

decreases in computational complexity, are also responsible for the largest bit rate 

increases. However, even though the computational complexity is affected in a similar 

way for all video sequences in such cases, the compression efficiency varies differently 

from one video to another, depending on its characteristics. This happens because when 

Max CU Depth is decreased the number of tested coding tree possibilities decreases 

exponentially in all video sequences, but the effect on the compression efficiency is 

much more noticeable in low-resolution video sequences, which use smaller CU sizes in 

the encoding process, than in high-resolution video sequences, which are generally 

encoded with larger CU sizes. This is visible in Fig. 4.12, which shows that the largest bit 

rate increases appear for the SlideShow (1280×720), RaceHorses1 (416×240), and 

BQMall (832×480) sequences, while the smallest increases appear for NebutaFestival 

(2560×1600), ParkScene (1920×1080) and Traffic (2560×1600) sequences. The bit rate 

remains practically the same in PAR 5, PAR 6 and PAR 7, in comparison to PAR 1. 

Fig. 4.13 shows the image quality variation in terms of Y-PSNR for each 

configuration in comparison to PAR 1. It is possible to notice that the quality is 

maintained almost unchanged from PAR 5 to PAR 7. Most of the image quality drops are 

noticed in PAR 2, PAR 3 and PAR 4, respectively, due to the same reasons explained for 

Fig. 4.12.  

Further results in terms of BD-rate and BD-PSNR are presented in Fig. 4.14 and 

Fig. 4.15, respectively. The BD values were computed using QPs 22, 27, 32, and 37. Six 

video sequences were used in the tests and the results were computed by taking PAR 1 

as the reference case. Confirming the results discussed previously for QP 32, the 

configurations PAR 2, PAR 3 and PAR 4 are those which reveal the largest decreases in 

compression efficiency in comparison to PAR 1, while PAR 5, PAR 6 and PAR 7 

maintained BD-rate and BD-PSNR results close to zero. In fact, when Max CU Depth is set 

to 1 (PAR 4), the BD-rate increases reach values above 24% and up to 52% in the worst 

case, which shows that the indiscriminate decrease of Max CU Depth is an extremely 

inefficient way of reducing the computational complexity of HEVC encoders.  
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Fig. 4.11: Normalised computational complexity for encoding each video sequence 

under the seven frame partitioning configurations (QP 32). 

 

 

Fig. 4.12: Normalised bit rate for each video sequence encoded under the seven frame 

partitioning configurations (QP 32). 
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Fig. 4.13: Delta Y-PSNR for each video sequence encoded under the seven frame 

partitioning configurations (QP 32). 

 

 

Fig. 4.14: BD-rate values for each configuration using PAR 1 as reference. 
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Fig. 4.15: BD-PSNR values for each configuration using PAR 1 as reference. 

 

Table 4.5 and Table 4.6 present results in terms of BD-rate increase and average 

computational complexity decrease per configuration tested, while Table 4.7 shows the 

ratio between the two values presented in Table 4.5 and Table 4.6. On the one hand, 

according to Table 4.7 the best trade-off between computational complexity reduction 

and compression efficiency would be achieved by first using PAR 5, PAR 6 and PAR 7 

and, as last resource, PAR 2, PAR 3 and PAR 4. On the other hand, choosing PAR 5, PAR 6 

or PAR 7 would allow a maximum computational complexity decrease of only 15.3%, 

which is not sufficient when the large computational complexity of HEVC is taken into 

account. 

 

Table 4.5: BD-rate increase (%) per configuration. 

Video 
Sequence 

Frame Partitioning Configuration (PAR) 

2 3 4 5 6 7 

PartyScene 6.9 19.1 35.9 0.3 1.1 0.5 

BQMall 7.2 23.0 45.3 0.3 1.1 1.2 

SlideShow 12.8 29.5 52.1 0.5 1.2 1.2 

ParkScene 3.5 11.4 24.4 0.4 1.1 0.8 

Traffic 3.1 11.9 27.3 0.2 0.7 0.9 

vidyo4 2.2 13.6 30.7 0.2 0.7 0.5 

Average 5.9 18.1 36.0 0.3 1.0 0.9 
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Table 4.6: Average computational complexity reduction (%) per configuration. 

Video 
Sequence 

Frame Partitioning Configuration (PAR) 

2 3 4 5 6 7 

PartyScene 23.4 54.7 74.30 9.9 17.6 9.7 

BQMall 23.2 55.1 73.4 10.0 17.1 11.8 

SlideShow 22.4 52.6 73.1 7.8 13.8 5.2 

ParkScene 20.1 52.5 75.0 8.5 15.0 8.5 

Traffic 22.1 53.7 75.6 8.3 14.7 7.4 

vidyo4 22.2 52.7 73.1 7.6 13.6 5.1 

Average 22.2 53.5 74.1 8.7 15.3 8.0 

 

Table 4.7: Ratio between BD-rate increase (%) and computational complexity reduction. 

Video 
Sequence 

Frame Partitioning Configuration (PAR) 

2 3 4 5 6 7 

PartyScene 29.5 35.0 48.3 2.8 6.3 5.5 

BQMall 30.9 41.8 61.7 2.9 6.4 10.2 

SlideShow 57.1 56.1 71.3 6.9 8.9 23.7 

ParkScene 17.2 21.6 32.6 5.1 7.4 9.7 

Traffic 14.0 22.2 36.2 2.4 5.0 12.1 

vidyo4 9.8 25.7 42.0 2.2 5.2 9.3 

Average 26.4 33.7 48.7 3.7 6.5 11.8 

 

4.2.4 Experiment Conclusions 

The previous section presented an analysis on the trade-off between 

computational complexity and encoding performance of HEVC when different 

constraints are applied to the decision of the frame partitioning structures. Seven 

configurations and 12 video sequences were used in the tests. The analysis shows that 

the encoding computational complexity can be thoroughly reduced by managing the 

frame partitioning structures, but some configurations incur in much larger costs in 

terms of compression efficiency than others. 

By changing the maximum RQT depth allowed and the possibility of using AMP 

(i.e., PAR 5, PAR 6, PAR 7), the HEVC encoding complexity can be reduced at very small 

compression efficiency costs. The costs of modifying such structures varied between 3.7 

and 11.8, while the costs of decreasing complexity by changing the maximum CU depth 

(i.e., PAR 2, PAR 3, PAR 4) varied between 26.4 and 48.7, as presented in Table 4.7. 
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However, as previously noticed, the computational complexity decrease achieved when 

changing the first structures mentioned varied between 8.0% and 15.3%, which is still 

modest when considering the enormous computational complexity of HEVC (up to 

502% more complex than H.264/AVC HP, as we have shown in Table 4.3).  

In order to achieve larger complexity reductions levels minimising the 

compression efficiency loss, the encoder should be able to choose wisely their 

parameters according to the video characteristics, so that a positive trade-off between 

computational complexity and compression efficiency is achieved. Instead of simply 

removing indiscriminately the possibility of using certain frame partitioning structures 

in the whole video sequence, as done in the experiments described in the previous 

sections, the encoder must be able to decide the constrained structure at a finer scale, 

such as in a per-frame or per-CU frequency, in response to the time and space varying 

characteristics of the video signal.  

The next chapters of this thesis propose methods for efficiently reducing and 

scaling the computational complexity of the HEVC encoder that possess these desirable 

adaptation properties. 

 

 

  



 

 

Chapter 5 

 

 

5 Computational Complexity Scaling 

Using Adaptive Frame Partitioning 

Structures 

This chapter presents a set of methods which were developed with the goal of 

dynamically scaling the computational complexity required by HEVC in the encoding 

process. All of them rely on constraining the frame partitioning structures introduced 

by the standard, namely the CUs and the PUs, in order to adjust the number of R-D 

evaluations performed in the optimisation process and consequently the encoding 

computational complexity2.  

By using the proposed algorithms, the encoder computational complexity can be 

downscaled by up to 50% with negligible R-D performance losses and down to 20% of 

the unconstrained complexity with larger losses3. The levels of performance 

degradation observed when applying these complexity scaling methods are acceptable 

in many applications and in power constrained devices where some sort of encoding 

complexity reduction methods have to be applied. Part of the methods and results 

presented in this chapter were published in [11-18]. 

 

                                                           
2 The experiments presented in this chapter were performed using HM versions from 2 to 9. However, 

since the results for each proposed algorithm are compared against the unmodified HEVC encoder of the 

same version, the differences between encoder versions can be disregarded. Besides, the frame partitioning 

structures did not suffer significant modifications during the standardisation process. 

3 As in chapter 4, computational complexity was measured in terms of processing time by the Intel® 

VTune™ Amplifier XE 2011 software profiler [124], which was executed on the HM software compiled for a 

64-bit architecture running on a 2.27 GHz processor. 
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5.1 Introduction and Motivation 

The study carried out in chapter 4 has shown that the computational complexity 

of HEVC is a direct consequence of the frame partitioning structures that lead to nested 

encoding loops, such that the encoding of CUs at deeper Coding Tree depths is a process 

invoked during the encoding of CUs at lower depths. For each CU in each possible 

Coding Tree configuration, all possible PU divisions and all possible RQT formations are 

tested in an RDO process, which considers every encoding possibility and compares all 

of them in terms of R-D efficiency. As the R-D cost for each encoding possibility is 

computed only after intra/inter-prediction, direct and inverse transform and 

quantisation, entropy coding and filtering operations, the complexity of defining the 

best combination of CU, PU and TU structures is the bottleneck of the HEVC encoder. 

Chapter 4 has also shown that CUs are the most suitable frame partitioning 

structures to be adjusted when large amounts of computational complexity reductions 

are sought, even though with potentially large costs in terms of compression efficiency 

reduction. Fig. 5.1 shows the distribution of average computational complexity of CU 

encoding as a function of tree depth for HM – version 4 (HM4). Coding Tree depths are 

presented in the y-axis and the computational complexity is presented in the x-axis. The 

figure reflects explicitly the nested nature of the HEVC encoding process, with CUs at 

higher tree depths encoded inside CUs at smaller tree depths. For each CU depth (y-

axis), the computational complexity is divided into three components: (a) the 

complexity of performing inter-frame prediction for CUs at the current depth (in grey); 

(b) the complexity of coding the same image area as CUs at a higher depth (in white); 

and (c) the complexity of other operations (in black).  

Due to this nested encoding structure, the percentage of computational 

complexity for encoding CUs at the first tree depth indicated as 100% in Fig. 5.1, is 

divided into the complexity of coding CUs at the second tree depth (84.5%, in white), 

the complexity of inter prediction for 64×64 CUs (IP 64×64, 14.6%, in grey) and the 

complexity of other small operations (0.9 %, in black). Similarly, the complexity of 

encoding CUs in the second tree depth includes the complexity of encoding CUs at the 

third tree depth (in white), the complexity of inter prediction for 32×32 CUs (IP 32×32, 

in grey) and the complexity of other various operations (in black). The same structure 

applies to the third depth. Finally, for CU depth = 4, the complexity includes only the 
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inter prediction for 8×8 CUs (IP 8×8, in grey) and the complexity associated with other 

small operations (in black), since no further tree depths are allowed.  

Notice that although the smallest CU depths show the largest total percentages 

of computational complexity in Fig. 5.1, the highest CU depths are the actual responsible 

for most of the encoding computational complexity (IP 8×8). For example, although 

compressing CUs in the third depth (composed by 16×16 CUs) represents 68.3% of the 

overall computational complexity, in fact only 17.4% is the real complexity associated to 

this CU size, whereas almost all the remaining complexity (49.5%) is dedicated to inter 

prediction for 8×8 CUs (IP 8×8) and other operations in the fourth depth.  

The behaviour of CU coding along the temporal domain was also investigated. 

Based on the concept of temporal stationarity (also called stillness), defined as the 

tendency of a video sequence to comprise large image areas with either no or low 

motion between frames, an experimental study was carried out in order to characterise 

coding tree depth variations in co-localised areas of neighbouring frames. Fig. 5.2 

represents the maximum Coding Tree depth variation used in random co-localised 

64×64 areas for 50 frames of the (a) BQTerrace, (b) BasketballDrive and (c) Cactus video 

sequences, which were encoded with QPs 27, 32 and 37 in HM4, respectively. The figure 

shows that the maximum Coding Tree depth does not change very often in the video 

sequences, which means that once a depth is used in a determined area of the video, the 

same depth tends to be used in co-localised areas of temporally adjacent frames before 

it changes to a different value. Based on this observation, the first methods proposed in 

this chapter were developed assuming that maintaining the maximum Coding Tree 

depth for a relatively long period and skipping all the R-D tests at deeper tree levels 

would incur in a small decrease in terms of R-D performance. 

 

Fig. 5.1: Computational complexity of encoding CUs in each Coding Tree depth. 
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Fig. 5.2: Maximum Coding Tree depth of random co-localised 64×64 areas for sequences 

(a) BQTerrace (QP 27), (b) BasketballDrive (QP 32), and (c) Cactus (QP 37).  

 

5.2 Fixed Depth Complexity Scaling  

The Fixed Depth Complexity Scaling (FDCS) method [13] is proposed here as the 

simplest way of adjusting the maximum Coding Tree depth used in a frame according to 

the system’s computational limitations. Initially, the encoding process is performed 

normally using the maximum Coding Tree depth possible for all CTUs in a frame. Then, 

whenever the computational complexity increases beyond an upper bound, the 

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

M
ax

im
u

m
 C

U
 D

e
p

th

Frame index

13

43

147

230

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

M
ax

im
u

m
 C

U
 D

e
p

th

Frame index

3

35

134

210

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

M
ax

im
u

m
 C

U
 D

e
p

th

Frame index

26

43

135

223

(a)

(b)

(c)

CTU index

CTU index

CTU index



101 

 

 
 

maximum depth allowed for CTUs in the next frame is decremented in one unit. 

Oppositely, when the complexity decreases to a value under the upper bound, the 

maximum depth allowed is incremented by one unit. The process is repeated if 

necessary until the minimum or the maximum depth allowed by the standard is reached 

or the target computational complexity is achieved. 

 

5.2.1 Algorithm Overview 

In this section, the method is explained in more detail with the help of the high-

level diagram presented in Fig. 5.3. Initially, the video sequence is partitioned into 

temporal video segments composed of N consecutive frames. Then, the first three 

frames at the beginning of each video segment are encoded using the maximum possible 

Coding Tree depth. These are called unconstrained frames (Fu). The time spent to 

encode each Fu is used to estimate the maximum overall computational complexity for 

the video segment, as shown in (Eq. 42), where CEMax is the estimated maximum 

complexity, CSFi is the computational complexity spent to encode the ith frame and N is 

the number of frames in the video segment to be encoded. The average complexity of 

the first three frames was used in the calculation of CEMax in order to take into account 

possible computational complexity variations caused by the use of a different number of 

reference frames in each image in a GOP. 

 (Eq. 42) 

The value of CEMax is then used to set the maximum target complexity CET 

available to encode the whole video segment, as defined in (Eq. 43), where αT ∈ [0%, 

100%] is the complexity reduction ratio defined either as a user parameter or computed 

from system parameters (e.g., remaining battery life). In this case, 100% represents the 

maximum possible encoding complexity when no reduction is imposed. 

 (Eq. 43) 

After defining the target complexity CET, the algorithm keeps encoding Fu 

frames and maintains a record of the computational expenditure while encoding the 

video segment. The record is used to estimate the complexity for the whole segment 

(CPN), which is calculated after encoding each frame. The CPN calculation assumes that 
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the complexity of encoding the next frames in the segment is similar to the complexity 

of the most recently encoded frame. CPN is computed as shown in (Eq. 44), where CSFi is 

the computational complexity spent to encode the ith frame of the segment, CSFNE is the 

complexity spent to encode the last frame, and NE is the number of frames already 

encoded in the video segment. 

 (Eq. 44) 

While encoding the video segment, if CPN is lower than the limit imposed by CET, 

the next frame is encoded as Fu. However, when CPN increases beyond the limit imposed 

by CET, the maximum depth allowed in the next frame (MD, in Fig. 5.3) is decremented 

in one unit (if the minimum depth has not been achieved yet). In such case, the frame is 

called a constrained frame (Fc). When CPN decreases to a value under the limit imposed 

by CET, the maximum depth allowed in the next frame is incremented by one unit with 

possible saturation at the maximum depth allowable by the standard. The maximum 

depth value is maintained if CPN is equal (or very close) to CET. To avoid adjustments 

caused by small computational complexity differences between adjacent frames (which 

occur naturally in video sequences due to their intrinsic changing characteristics), a 

difference of 2% is accepted between CPN and CET without triggering a change in the MD 

value, as shown in Fig. 5.3. This value was defined after experimental observations. 

  

Fig. 5.3: Diagram for the FDCS algorithm. 
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5.2.2 Results for FDCS and Performance Evaluation 

The FDCS method was evaluated by measuring the encoding computational 

complexity reduction accuracy under specific targets and its influence on the R-D 

performance of the HM encoder (HM4). Three video sequences comprising 500 frames 

(BasketballDrive, BQTerrace, Cactus) and a concatenation of two of them 

(BasketballDrive and Cactus, from now on referenced as BasketballCactus) were used in 

the experiments. The Low Delay P temporal configuration was used in all tests. The 

encoder performance was evaluated under five complexities reduction ratios (from 

60% to 100% with 10% steps) and four different QP values (27, 32, 37, and 42). 

The R-D efficiency as a function of the target computational complexity is shown 

in Fig. 5.4. Average values for bit rate (kbps) and luminance PSNR (dB) for the four test 

sequences are presented. Table 5.1 shows the average performance results in terms of 

running complexity, BD-rate and BD-PSNR for the five target complexities tested. The 

relative bit rate increases and the Y-PSNR reductions are calculated with reference to 

the maximum complexity (100%) results, which correspond to the case in which no 

complexity scaling is applied. 

As expected, the bit rate increases when small target complexities are used. In 

the worst case (αT set to 60%), a BD-rate increase of 12.02% was noticed. This happens 

due to the fact that limiting the coding tree depth to decrease the computational 

complexity leads to a smaller number of small-sized CUs, which results in prediction 

residues with more spatial structure and larger magnitudes, which are more difficult to 

encode, leading to higher bit rates. As small blocks are not allowed in such cases, a 

coarser prediction is performed, which also results in a lower image quality. The 

running complexity results show that the method is quite accurate and can maintain the 

actual complexity near the target values, with maximum variations around 3%. 

The results show that FDCS is capable of adjusting the number of tested Coding 

Tree possibilities by increasing or decreasing the maximum Coding Tree depth used in 

all treeblocks belonging to a frame. Nevertheless, using a unique, fixed maximum Coding 

Tree depth for all treeblocks in the frame harms the R-D efficiency in some cases, 

especially when the target complexity is set to the lowest value tested (αT=60%). In 

such case, the actual computational complexity reduction achieved is around 37% and 

the BD-rate increase is 12.02%. Aiming at finding solutions to improve the R-D 
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efficiency of this simple method, the approaches presented in the next sections are 

proposed. 

 

Fig. 5.4: Average R-D performance of the FDCS method. 
 

Table 5.1: Average results obtained for the FDCS algorithm. 

Target 
Complexity (αT) 

Running 
Complexity 

BD-rate (%) BD-PSNR (dB) 

100% 100% ─ ─ 

90% 89% +1.24 -0.03 

80% 77% +3.15 -0.09 

70% 69% +7.59 -0.21 

60% 63% +12.02 -0.33 

 

5.3 Variable Depth Complexity Scaling 

The Variable Depth Complexity Scaling (VDCS) method [11-13] is based on 

dynamic constraining of the maximum Coding Tree depth according to the depth used 

in previously encoded frames. This method is motivated by the results presented in Fig. 

5.2 of section 5.1, which shows the evolution of the maximum Coding Tree depth used in 

random co-localised treeblocks of neighbouring frames. Based on those observations 

and on the strategy presented in section 5.2, a Variable Depth Complexity Scaling 

method was developed.  

As in the FDCS method, two types of frames are used in VDCS: unconstrained 

(Fu) and constrained frames (Fc). Fu frames are also defined as those encoded through 

the usual process in which all possible Coding Tree structures are tested. However, 

differently from FDCS, in VDCS the Fc frames are encoded with maximum Coding Tree 
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depths bound to those used in the most recently encoded Fu frame, taking advantage of 

the temporal stationarity characteristic of video sequences. 

 

5.3.1 Algorithm Overview 

As the computational complexity required to encode an Fc frame is smaller than 

that of an Fu frame, the number of consecutive Fc frames (called here as Nc) is 

dynamically adjusted as a function of the target computational complexity4, as 

illustrated in the example of Fig. 5.5. Naturally, the larger the value of Nc, the smaller is 

the computational complexity required to encode the video sequence. 

 

Fig. 5.5: Example of operation of the VDCS strategy. 

The high-level diagram of the VDCS algorithm is presented in Fig. 5.6. The 

number of frames which compose the video segment (N) and the complexity reduction 

ratio (0% < αT < 100%) are the two input parameters of the algorithm. Just as in the 

FDCS method, in the starting phase, CEMax and CET are computed according to (Eq. 42) 

and (Eq. 43), respectively. While CPN is within the limit imposed by CET, all frames are 

encoded as Fu (i.e., Nc = 0). Whenever CPN increases beyond CET, the complexity 

adjusting phase is activated and frames start being encoded as Fu or Fc, according to the 

algorithm’s decisions (dashed line box in Fig. 5.6).  

The first step in the complexity adjustment phase of the algorithm is the 

calculation of a new Nc value, which is updated using a proportional control loop. The 

value of Nc depends on the normalised difference β between CPN and CET, calculated as 

in (Eq. 45). Fig. 5.7 shows how Nc is adjusted as a non-linear function of β. The larger 

the normalised difference between CPN and CET (horizontal axis), the larger is the 

decrease or increase of Nc (vertical axis). If the Nc saturation value is reached, the 

algorithm keeps it constant until a computational complexity increase is allowed.  

                                                           
4 The VDCS method presented in [11] adjusts the Nc value through unitary increments and decrements, 

differently from the algorithm version presented in this section and published in [12, 13]. 
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Fig. 5.6: Diagram for the VDCS algorithm. 

 
After the new Nc value is defined, a new Fu frame is encoded and the maximum 

Coding Tree depth used for each treeblock of that frame is stored for future use in a 

matrix called Maximum Tree Depth Map (MTDM). Then, the next Nc constrained frames 

Fc are encoded with the RDO process limited to the values saved in the MTDM, which 

means that the maximum depths used are upper-bounded by the depths used in the co-

localised treeblocks of the most recent Fu frame. CPN is then once again calculated and 

Nc is re-adjusted, if necessary. The CPN value is computed differently from FDCR, 

according to (Eq. 46), where CSFi is the computational complexity spent to encode the ith 

frame of the segment, CSFu is the complexity used to encode the last Fu frame, CSFcj is the 

computational complexity used in the jth frame of the last group of constrained frames 

and NE is the number of frames already encoded in the video segment.  
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(Eq. 46) 

 

 

Fig. 5.7: Adjustment of Nc value according to β. 

 

5.3.2 Results for VDCS and Performance Evaluation 

The VDCS method was evaluated using the same experimental setup as that of  

FDCS, based on HM4, three video sequences comprising 500 frames (BasketballDrive, 

BQTerrace, Cactus) plus a concatenation of two of them (BasketballCactus), the Low 

Delay P temporal configuration, five target complexities (from 60% to 100%) and four 

different QPs (27, 32, 37, and 42). An upper limit (i.e., a saturation value) of 10 frames 

was used for Nc in all experiments. Even though this value can be increased or 

decreased depending on the system/user requirements, it was found experimentally 

that larger maximum values for Nc would lead to higher unacceptable RD-efficiency 

losses.  

To illustrate the operation of the algorithm, Fig. 5.8 shows the evolution of the 

Nc and CPN values along the encoding of the BasketballDrive sequence with QP 32. Fig. 

5.8(a) shows that large Nc values are used with small target complexities, reaching the 

saturation value (Nc = 10) when the target is set to 60%. With a target complexity of 

90%, the maximum Nc value used is 3. It is possible to notice that variations on the CPN 

value shown in Fig. 5.8(b) are followed by increases or decreases in the Nc value in Fig. 
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5.8(a). For example, for a target complexity of 60%, the increase of CPN from frames 20 

to 60 caused successive increments on the Nc value for the same frames. Oppositely, in 

frame 180 the CPN value decreased to a value under the target (dashed line in the chart), 

which means that more computational resources could be employed in the encoding 

process. This reflected in a decrease of the Nc value from 10 to 8 in frame 180. 

Fig. 5.9 shows the relationship between the target complexities defined at the 

beginning of the encoding process and the actual complexities measured while encoding 

the video sequences. The dashed line in the graph represents the ideal behaviour of a 

complexity scaling method. As running complexity results for each tested sequence are 

around this ideal case, the proposed method is considered quite accurate and capable of 

scaling computational complexity. 

 

 
Fig. 5.8: Nc and CPN variations when encoding sequence BasketballDrive, QP32. 
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Fig. 5.9: Accuracy of the VDCS complexity scaling method. 

 

The encoder R-D efficiency as a function of the computational complexity under 

different bit rates is presented in Fig. 5.10. As expected, the best results are obtained 

when no complexity scaling is applied (i.e., αT = 100%). However, when compared to the 

curves obtained for FDCS (see Fig. 5.4), the results for VDCS are represented by Y-PSNR 

versus bit rate curves that are much closer to each other, which means that the 

complexity scaling algorithm does not affect the compression efficiency significantly, or 

at least not as much as FDCS, even when small target complexities are set (e.g., αT = 

60%).  

Table 5.2 shows average performance results for the VDCS algorithm. The table 

shows, for each target complexity tested, the average running complexity, the BD-rate 

and the BD-PSNR values in comparison to the maximum complexity case (100%). The 

results show that VDCS is twice more efficient than FDCS, since it achieves similar 

computational complexity decreases (up to 38%) at the cost of almost half the BD-rate 

increase (up to +6.29%).  

Even though to a smaller extent than FDCS, the use of VDCS also incurs in R-D 

efficiency losses, which also happens mostly in the low target complexities. This is 

because in such cases the complexity scaling algorithm uses large Nc values, which leads 

to the use of maximum Coding Tree depth values that may not match very well the 

actual image characteristics due to temporal changes accumulated since the last Fu 

frame encoded. To solve this problem a new method is presented in the next section, 
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which considers the average motion of each treeblock in the decision of the maximum 

Coding Tree depth.  

 

 

Fig. 5.10: Average R-D performance of the VDCS method. 

 

Table 5.2: Average results obtained for the VDCS algorithm. 

Target 
Complexity (αT) 

Running 
Complexity 

BD-rate (%) 
BD-PSNR 

(dB) 

100% 100% ─ ─ 

90% 90% +0.58 -0.02 

80% 80% +1.55 -0.04 

70% 71% +3.10 -0.09 

60% 62% +6.29 -0.18 

 

5.4 Motion-Compensated Tree Depth Limitation  

Just as FDCS and VDCS, the Motion-Compensated Tree Depth Limitation 

(MCTDL) method [14] is based on dynamic constraining the maximum Coding Tree 

depth allowed in order to adjust the encoding computational complexity. As previously 

explained, in VDCS the maximum Coding Tree depths of Fc frames are constrained 

according to the MTDM saved while encoding the last Fu frame. However, in videos 

sequences with fast motion segments this method may decrease the encoding 

performance, partly due to the fact that in such cases image areas may move away from 

the position where they were in the last Fu frame before another Fu frame is encoded 

and the MTDM is updated. As a result, the Fc frames occurring between two consecutive 
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Fu frames are encoded using a MTDM that may not be well matched to the current 

frame content, with the mismatch becoming worse towards the end of the group of Fc 

frames. This problem is more severe in cases where the target complexity is small and 

thus Nc large. 

To solve this problem, MCTDL adds a new step to the complexity adjustment 

phase of VDCS, updating the MTDM after encoding each Fc frame according to the 

average motion of each treeblock, effectively motion-compensating the MTDM. This 

compensation of the motion effect is performed using motion information from the 

previous frame in order to predict the most probable displacement from frame k−1 to 

frame k for the image region corresponding to each CTU. 

 

5.4.1 Algorithm Overview 

As in VDCS, the maximum depths saved when encoding an Fu frame are stored 

in an n × m matrix (referred from now on as MTDM[n][m]), where n is the number of 

CTUs in the horizontal dimension and m is the number of CTUs in the vertical dimension 

of a frame. Simultaneously, a weighted average motion vector (MV) for each CTU is 

computed and stored in another n × m matrix (referred from now on as MV[n][m]), 

where the weights are proportional to the size of each PU inside the CTU, as detailed 

later in this section. When the first Fc frame which follows an Fu frame is encoded, the 

values stored in MTDM[n][m] are motion compensated according to the MVs stored in 

MV[n][m]. Each treeblock in Fc is then encoded with this motion compensated map of 

maximum depths. While encoding each Fc frame, new average MVs for each CTU are 

computed and stored in MV[n][m] in order to update the MTDM to be used in the next 

Fc frame. 

To fully understand the maximum depth map construction procedure, let us 

explain as an example how the maximum depth to be applied to a certain CTUk−1(o,p) 

belonging to a frame Fk−1 is derived. Consider that this CTU average MV is MVk−1
(o,p) = (x, y), 

the reference frame is Fr, the coordinates (o,p) are the CTU line and column in frame Fk−1, 

and the coordinates (x, y) are the CTU line and column displacement from frame Fr to 

frame Fk−1. These elements are all shown in Fig. 5.11 for better comprehension. Now, let 

us assume that the motion speed of the group of pixels constituting the CTU is 

approximately constant. The displacement of the pixels belonging to the example CTU, 
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from frame Fk−2 to frame Fk−1 can be computed by dividing MVk−1(o,p) components m and n 

by the number of frames between frame Fk−1 and Fr. Still assuming constant motion speed, 

we can predict where the pixels of CTUk−1(o,p) may be located in frame Fk. The solid line 

arrow in Fig. 5.11 shows the estimated motion displacement from frame Fk−1 to frame Fk−2 

and the pointed line arrow shows the predicted motion displacement from frame Fk−1 to 

frame Fk. The maximum Coding Tree depth for each CTUki,j in frame Fk is then copied from 

the corresponding position in MTDMk−1 and stored into a motion compensated MTDM for 

frame Fk, named MTDMk. 

 

Fig. 5.11: Example of MTDM motion compensation. 

Fig. 5.12 shows the high-level diagram of the MCTDL algorithm. The operation of 

this algorithm is very similar to that of VDCS, which was explained in details in section 

5.3.1. The starting phase is exactly the same as in VDCS, with the computations of CEMax, 

CET and CPN performed accordingly to (Eq. 42), (Eq. 43) and (Eq. 46), respectively. While 

CPN is smaller than CET, all frames are encoded as Fu. When this condition ceases to 

hold, the complexity adjustment phase is activated (portion inside the dashed line in Fig. 

5.12) and frames start being encoded as Fu or Fc, according to the algorithm’s decisions.  

The new operations introduced in MCTDL executed during the complexity 

adjusting phase are underlined in the diagram of Fig. 5.12. Initially, the calculation of Nc 

is done as in VDCS, according to the normalised difference between CPN and CET, as in 

(Eq. 45). After that, a new Fu frame is encoded and the maximum Coding Tree depths 

are saved in the MTDM. Simultaneously, the encoder records the average weighted MVs 

belonging to each CTU, so that the MTDM can be motion compensated in the next step. 
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Fig. 5.12: Diagram for the MCTDL algorithm. 

 

The average MV is computed as a weighted average of all MVs belonging to the PUs 

in the CTU. The weights applied to each MV depend on the PU size relatively to the CTU 

size, as shown in Table 5.3. For example, a 64×64 PU has a weight equals to 1, since the 

number of samples in the PU and in a 64×64 CTU is the same. A 32×32 PU has a weight 

equals to 1024 / 4096 = 0.25, where 1024 is the number of samples in the PU and 4096 

is the number of samples in the 64×64 CTU.  

If Nc is zero (i.e., no complexity reduction is necessary), the algorithm keeps 

encoding Fu frames, but still computes a new CPN and a new Nc after each Fu frame is 

encoded in order to detect whenever complexity reduction is required. In this case, Nc 

becomes larger than zero and Fc frames start being encoded with the maximum depth 

used in the RDO process limited to the values saved in the MTDM, which are reordered 

according to the average MVs for each CTU after encoding each Fc frame. By doing that, 
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the encoder keeps an updated estimation of the location where is the CTU 

corresponding to a determined value in the MTDM.  

Differently from the VDCS method, in which the MTDM data becomes out-of-date 

when large Nc values are used, in this new method the encoder is able apply a Coding 

Tree depth limitation that fits better the characteristics of each image region. This is 

illustrated in the example presented in Fig. 5.13, which shows a fragment of the 58th and 

59th frames of the BasketballDrive video sequence. The maximum Coding Tree depth is 

shown for each CTU in the fragments (i.e., the information recorded in the MTDM) and 

the average MVs calculated as explained before are shown in Fig. 5.13(b) for each inter-

predicted CTU. It is possible to notice in the figure that motion compensating the MTDM 

according to the average MV yields a good estimation of the maximum Coding Tree 

depth for the next frame.  

 

Table 5.3: Weights for average MV calculation. 

PU size 
Number of 

Samples 
Weight 

64×64 4096 1 

64×32 2048 0.5 

32×64 2048 0.5 

64×16 1024 0.25 

16×64 1024 0.25 

32×32 1024 0.25 

32×16 512 0.125 

16×32 512 0.125 

32×8 256 0.0625 

8×32 256 0.0625 

16×16 256 0.0625 

16×8 128 0.03125 

8×16 128 0.03125 

16×4 64 0.015625 

4×16 64 0.015625 

8×8 64 0.015625 

8×4 32 0.0078125 

4×8 32 0.0078125 
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Fig. 5.13: MTDM fragment and average MVs for the (a) 58th and (b) 59th frames of the 

BasketballDrive sequence (QP 32). 

 

5.4.2 Results for MCTDL and Performance Evaluation 

The same setup used in the evaluation of FDCS and VDCS was used for 

performance assessment of the MCTDL method.  

Fig. 5.14 shows a graph with the actual complexities obtained after encoding the 

video sequences as a function of the target complexities. The figure presents results for 

QP 32, but other values were also tested and show similar behaviour. The dashed line 

represents the target complexity and the solid lines represent each video tested. As each 

video sequence presents results that are close to the ideal, it is possible to conclude that 

the proposed method is accurate and capable of scaling computational complexity.  

Table 5.4 presents average results for MCTDL in terms of running complexity, 

BD-rate and BD-PSNR differences for all target complexities tested in comparison to the 

case in which no complexity scaling is applied, i.e., when target complexity is 100%. An 

increase in the bit rate was observed in all cases, but especially when the target 

complexity (αT) is set to 60%. However, in comparison to VDCS and FDCS, the MCTDL 

method yields better R-D results for all target complexities. In the lowest target 

complexity case (αT = 60%), an average complexity reduction of 39% is achieved at the 

cost of a BD-rate increase of 5.42%. 
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Fig. 5.14: Accuracy of the MCTDL complexity scaling method. 

Table 5.4: Average results obtained for the MCTDL algorithm. 

Target 
Complexity (αT) 

Running 
Complexity 

BD-rate (%) 
BD-PSNR 

(dB) 

100% 100% ─ ─ 

90% 90% +0.54 -0.02 

80% 80% +1.46 -0.05 

70% 71% +3.22 -0.10 

60% 61% +5.42 -0.16 

 

5.5 Coding Tree Depth Estimation 

Despite providing a fair complexity scaling without significantly decreasing 

compression efficiency, the MCTDL method (as well as VDCS) uses only the temporal 

correlation between neighbouring frames in order to determine the maximum Coding 

Tree depth tested for each CTU. If spatial correlation was also used combined with 

temporal data, the R-D performance achieved when complexity scaling is enabled could 

be potentially improved. 

This section presents a Coding Tree Depth Estimation (CTDE) method [15, 16], 

which is based on the method presented in 5.4 and allows estimating the best maximum 

Coding Tree depth for a CTU based on both spatial and temporal correlations observed 

in neighbouring CTUs located in the same and previous frames. As explained before, the 

computational complexity scaling approaches used in the previously presented methods 

rely on the fact that the maximum Coding Tree depth tends to be constant in co-
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localised areas of adjacent frames, as experimentally verified. For the CTDE method, a 

set of experiments were conducted in order to analyse how frequently a certain CTU is 

encoded with the same or smaller maximum Coding Tree depth than its spatially 

neighbouring CTUs (top, left and top-left CTUs). The results of such experiments are 

presented in Table 5.5 and show that in most cases the CTUs surrounding a given CTU 

are encoded with maximum depths that are equal to or exceed the maximum depth of 

that CTU. As all Coding Tree depths from 0 to n are tested through RDO when a depth n 

is selected as maximum, no R-D efficiency losses would be observed if a depth greater 

than the one that should be used for encoding that CTU was selected as maximum. 

Table 5.5: Maximum depths used in neighbouring CTUs. 

Spatially 
Neighbouring CTU 

Greater or equal 
depth (%) 

Smaller depth (%) 

Top 83.47 16.53 

Left 82.24 17.76 

Top-left 91.84 8.16 

 
Based on these observations and considering the complexity scaling scheme of 

VDCS and MCTDL, in CTDE the maximum Coding Tree depth allowed for each CTU is 

decided taking into consideration the type of frame (Fc or Fu), as well as the maximum 

depths used in the temporally and spatially neighbouring CTUs. 

 

5.5.1 Algorithm Overview 

Let CTUki,j be a Coding Tree block located at position i, j of a frame with index k. If 

k is an Fu frame, the CTU is encoded with no complexity limitation, which means that 

the maximum Coding Tree depth possible is allowed. If k is an Fc frame, the maximum 

Coding Tree depth allowed is defined to be the largest of the maximum Coding Tree 

depths used at the: 

i. Left side neighbouring CTU – i.e., CTUk(i,j−1); 

ii. Top neighbouring CTU – i.e., CTUk(i−1,j); 

iii. Top-left neighbouring CTU – i.e., CTUk
(i−1,j−1); 

iv. Co-localised CTU from the previous frame – i.e., CTUk−1(i,j); 

v. Motion-compensated CTU from previous frame – i.e., CTUk−1(o,p). 
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Except for the last value listed above, which requires some processing to be 

obtained, all values are straightforward to obtain by simply storing Coding Tree depths 

used in each CTU. Two MTDMs are used to store values corresponding to CTUs in the 

current and previous frames (k and k−1 in display order): MTDMk and MTDMk−1, 

respectively. A third MTDM is used to store values of the motion-compensated CTUs 

from the previous frame: CMTDMk.  

The CTDE method follows a complexity scaling scheme very similar to MCTDL, 

so that the high-level diagram previously presented in Fig. 5.12 is slightly modified for 

CTDE, as shown in Fig. 5.15. In Fig. 5.15, the steps which are incorporated into CTDE or 

modified from MCTDL are underlined. While a frame is encoded (both Fu and Fc) in the 

complexity adjustment phase, the maximum Coding Tree depths are stored in MTDMk 

and the average MVs are computed and saved. Then, after encoding the whole frame, 

CMTDMk is created by motion-compensating the values in MTDMk (as explained in 5.4), 

which is finally copied to MTDMk−1.  

The main difference between the CTDE and MCTDL consists in the way the 

maximum Coding Tree depth allowed for each CTU is computed. As this process is not 

depicted in Fig. 5.15, since it is a part of the instruction to encode a new frame (“Encode 

new Fu frame” and “Encode new Fci frame” lines in Fig. 5.15), it is detailed in the 

pseudo-code presented in Fig. 5.16, which is executed for each frame (both Fu and Fc). 

In an Fu frame, all Coding Tree depths are allowed, so that the encoder sets the 

variable max_depth_allowed to the maximum Coding Tree depth possible (lines 04-05, in 

Fig. 5.16), which varies from 1 to 4, according to the encoder configuration used. In an 

Fc frame, the max_depth_allowed value is decided for each CTU by taking the maximum 

value among MTDMk(i,j−1), MTDMk(i−1,j), MTDMk(i−1,j−1), MTDMk−1(i,j), and CMTDMk(i,j) (lines 

06-08), which correspond to the five depths listed in the first paragraphs of this section. 

To allow further computational complexity reduction, in cases with very small 

target complexities the CTDE method allows decreasing the maximum Coding Tree 

depth by one additional unit if the maximum value for Nc is already achieved but 

complexity is still above the target. This is shown in lines 09-10 in Fig. 5.16. If Nc 

reaches its maximum value (MAX_Nc), the computational complexity can be further 

reduced by decreasing max_depth_allowed in one unit. Even though MAX_Nc can be 

theoretically set to any value, increasing it too much leads to large long term R-D 

efficiency losses. To avoid this problem, and following the results of empirical tests, the 
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value of MAX_Nc used in the experiments presented in the next section was set to half 

the video frame rate. 

The CTU is finally encoded according to max_depth_allowed (line 11) and the 

maximum Coding Tree depth used to encode it after testing all tree possibilities is 

stored in MTDMk (line 12) for use in the decision of maximum depths for the next CTUs.  

 

 

Fig. 5.15: Diagram for the CTDE algorithm. 

 

Calculate CEMax

Calculate CET

Encode 3 Fu frames

N

Encode new Fu frame

CPN

<
CET

Yes No

Complexity Adjustment

Calculate CPN

Adjust Nc

Calculate CPN

Yes

No

Nc
>
0

No

Yes

αT

Encode new Fu frame,
Store maximum depths in MTDM,
Compute and store average MVs

i
< 

Nc

Motion compensate the
MTDM and save into CMTDM

Encode new Fci frame,
Store maximum depths in MTDM,
Compute and store average MVs

Motion compensate the
MTDM and save into CMTDM



120 
 

 

 

Fig. 5.16: Pseudo-code for the maximum Coding Tree depth decision in CTDE. 

 

5.5.2 Results for CTDE and Performance Evaluation 

The CTDE method was evaluated by having its complexity scaling accuracy and 

R-D efficiency measured under specific target complexities. The algorithm was 

implemented in the HM encoder – version 8.2 (HM8.2) – and evaluated with six video 

sequences (BQMall, BQTerrace, Cactus, vidyo1, BasketballDrive, Traffic), all of which are 

detailed in Appendix B. The encoder performance was evaluated under five target 

complexities: 60%, 70%, 80%, 90%, and 100%. The Low Delay P temporal configuration 

[43] was used in all tests (see Appendix B for details). 

Fig. 5.17 shows a chart with the average complexities obtained after encoding 

the video sequences as a function of the target complexities. The dashed line in the 

graph represents the target complexity, while the other lines represent the actual 

running complexity for various test video sequences. As it can be seen, the actual 

running complexity for each tested sequence is close to the target, thus showing that 

CTDE is accurate and capable of scaling computational complexity to within a tight 

interval around the desired value. In the worst case (αT = 60%), the difference between 

target and actual running computational complexity was around 3%. 

Concerning the video encoding performance, Table 5.6 presents average results 

when the CTDE method is used. Besides the coding performance indicators variations 

(i.e., BD-rate increases and BD-PSNR decreases), the table also shows average results for 

01 for each CTU in a frame k

02 i  CTU line position

03 j  CTU column position

04 if k is an Fu frame

05 max_depth_allowed  maximum depth possible

06 else

07 max_depth_allowed  max(MTDMk
(i-1,j)

, MTDMk
(i,j-1)

,

08 MTDMk
(i-1,j-1)

, MTDMk-1
(i,j)

, CMTDMk
(i,j)

)

09 if Nc = MAX_Nc

10 max_depth_allowed  max_depth_allowed - 1

11 encode CTU limiting depth to max_depth_allowed

12 MTDMk
i,j

 maximum depth used to encode current CTU

13 end for
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running complexity, considering all videos and QPs tested. An increase in the bit rate 

was observed in all sequences coded at low complexity points, especially when the 

target complexity is set to 60%. However, in comparison to all methods presented so far 

in this thesis, CTDE produced the best R-D efficiency results for all target complexities, 

with encoding efficiency closer to the values obtained when no complexity scaling is 

applied. In the worst case (αT = 60%), the BD-rate increase was 4.74% and the decrease 

in BD-PSNR was 0.13 dB. 

 

 

Fig. 5.17: Accuracy of the CTDE complexity scaling method. 

 
Table 5.6: Average results obtained for the CTDE algorithm. 

Target 
Complexity 

(αT) 

Running 
Complexity 

BD-rate (%) 
BD-PSNR 

(dB) 

100% 100% ─ ─ 

90% 89% +1.05 −0.03 

80% 80% +1.62 −0.04 

70% 72% +3.84 −0.10 

60% 63% +4.74 −0.13 
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5.6 Constrained Coding Units and Prediction Units 

As the experiments presented in chapter 4 have shown, CUs are the frame 

partitioning structures which allow the largest reductions in computational complexity 

when constrained partition definition procedures are used. However, the same 

experiments have also exposed that constraining CUs in order to decrease 

computational complexity incurs in the largest costs in terms of R-D efficiency loss in 

comparison to PUs and TUs (see Table 4.6 and Table 4.7). 

According to the experiments presented in chapter 4, the frame partitioning 

structure that yields the second largest reductions in computational complexity when 

constrained are PUs (see Table 4.6). They are also the structures which presented the 

second smallest ratios between BD-rate and computational complexity decrease (see 

Table 4.7), which means that constraining PUs is more advisable than constraining CUs 

if maintaining the R-D efficiency is a crucial preoccupation in the system 

implementation. 

Based on that analysis and on the methods for computational complexity scaling 

previously presented, a method based on Constrained Coding Units and Prediction Units 

(CCUPU) [17, 18] is proposed in this section. The goal of this method is to allow 

adjusting the HEVC encoding structures in order to achieve a dynamic scaling of the 

computational complexity beyond levels achieved by the previous approaches.  

 

5.6.1 Rate-Distortion-Complexity Relationship in CUs and PUs 

A more extensive analysis of the R-D-C efficiency of different CU and PU 

configurations was performed in order to assist the development of the CCUPU method. 

This analysis was necessary mainly because the constraining of PUs performed in the 

experiments of chapter 4 was based on simply enabling or disabling the use of AMP, 

which is the only parameter regarding the configuration of PUs available in the HM 

configuration. For the experiments described in this section, a configuration in which PU 

sizes smaller than 2N×2N are disabled was created through modifications of the HM 

code. This 2N×2N-only configuration was used in the experiments and compared with 

the unmodified HM encoder. A subset of 10 video sequences (BlowingBubbles, 

RaceHorses1, BasketballDrillText, PartyScene, SlideShow, vidyo1, ParkScene, 
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BasketballDrive, NebutaFestival, and Traffic) was selected for tests from the CTC 

document. Their characteristics are detailed in Appendix B. 

The 10 video sequences were encoded using four different QPs (27, 32, 37, and 

42) and the Low Delay P temporal encoder configuration while varying two parameters: 

the maximum Coding Tree depth allowed for the CTUs and the possibility of splitting a 

CU into PUs smaller than 2N×2N for inter-frame prediction. Table 5.7 presents the eight 

configurations tested. Table 5.8 shows comparative results in terms of BD-rate and 

computational complexity for the different configurations presented in Table 5.7. In the 

first three rows of Table 5.8, those configurations in which only the maximum Coding 

Tree depth varies (Cfg. 1 to Cfg. 4) are compared, while the remaining four rows 

compare results when only the possibility of using PUs smaller than 2N×2N varies. 

 
Table 5.7: CU and PU configurations tested. 

Configuration 
Max. Coding 
Tree Depth 

PU smaller than 
2N×2N 

Cfg. 1 4 

Yes 
Cfg. 2 3 

Cfg. 3 2 

Cfg. 4 1 

Cfg. 5 4 

No 
Cfg. 6 3 

Cfg. 7 2 

Cfg. 8 1 

 

 Table 5.8: Comparison between encoding configurations. 

Comparison BD-BR (%) ΔComp (%) 
BD-BR/ΔComp 

(Ri,j) 
Avg.  

BD-BR (%) 
Avg.  

ΔComp (%) 

Cfg. 2 vs Cfg. 1 +1.10 -28.4 0.0373 

+3.33 -41.3 Cfg. 3 vs Cfg. 2 +2.05 -45.5 0.0451 

Cfg. 4 vs Cfg. 3 +6.84 -49.9 0.1371 

Cfg. 5 vs Cfg. 1 +1.13 -44.1 

 +0.93 -43.5 
Cfg. 6 vs Cfg. 2 +1.09 -49.3 

Cfg. 7 vs Cfg. 3 +0.68 -43.4 

Cfg. 8 vs Cfg. 4 +0.81 -37.1 
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The results in Table 5.8 show that when the maximum Coding Tree depth 

allowed is reduced by one unit, an average increase of 3.33% in the BD-rate and a 

computational complexity decrease of 41.3% are observed. On the other hand, turning 

off the possibility of using PUs smaller than 2N×2N in inter-frame prediction results in 

an average BD-rate increase of 0.93% and a computational complexity decrease of 

43.5%, which seems much more profitable from the point of view of R-D-C trade-offs.  

R-D costs and computational complexity were jointly analysed by computing the 

ratio Ri,j between the BD-rate increase and the decrease in computational complexity 

ΔComp when the maximum Coding Tree depth is reduced from i to j (without changing 

the possibility of using PUs smaller than 2N×2N). By calculating the ratio, it is possible 

to compare the configurations in order to detect which one incurs in the largest impact 

on compression efficiency per computational complexity saving. The results are 

presented in the fourth column of Table 5.8 and show that the ratio Ri,j is smaller when 

decreasing Coding Tree depths of higher values (from Cfg. 1 to Cfg. 2 and from Cfg. 2 to 

Cfg. 3), even though ΔComp is moderate in such cases. On the other hand, when 

decreasing the Coding Tree depth of lower values (from Cfg. 3 to Cfg. 4), the ratio Ri,j 

increases significantly (0.1371), but ΔComp also increases. These results show that, 

after constraining the PU size, the best option for decreasing computational complexity 

is to restrict the use of large Coding Tree depths.  

 

5.6.2 Encoding Constrained CTUs  

The CCUPU method scales the computational complexity by using a two-level 

constraining scheme. As suggested by the experiments presented in the previous 

section, a better R-D efficiency is achieved by the encoder if limiting PU shapes is 

performed prior to limiting Coding Tree depths. Thus, in the first constraining level the 

number of CUs that are split into PUs smaller than 2N×2N for inter prediction is 

adjusted to scale the computational complexity. Then, if the first constraining level is 

not enough to achieve the target complexity, the number of CTUs that can be encoded at 

any Coding Tree depth is also adjusted. The amount of CTUs constrained in the first and 

second levels is controlled by two parameters: Nc1 and Nc2, respectively. 

CTUs constrained with the first parameter (Nc
1) are called PU-constrained CTUs, 

while CTUs constrained with the second parameter (Nc
2) are called CU-constrained 
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CTUs. Notice, however, that CU-constrained CTUs are also PU-constrained CTUs, since 

both parameters are used for complexity scalability in these cases.  

When the first parameter is used for complexity constraining, the encoder 

disables PU shapes smaller than 2N×2N in those CTUs that most probably yield low R-D 

costs according to information of their co-localised CTUs in the previous frame, as 

explained in the next section. Once the number of PU-constrained CTUs reaches the 

number of CTUs in a frame, the second constraining parameter is changed to further 

reduce computational complexity. In this case, the method adjusts the number of CTUs 

in which the maximum Coding Tree depth is decided by taking into account previous 

encoding decisions, based on the fact that spatial and temporal neighbouring CTUs tend 

to present the same or similar maximum Coding Tree depths, as discussed in the 

previous methods presented in this chapter.  

For the CCUPU method, these characteristics were further exploited by 

analysing additional spatial neighbouring CTUs of a certain CTU. Besides the top, left 

and top-left CTUs, which were already analysed in Table 5.5, statistics for the top-right 

CTU and the co-localised CTU in the previous frame are shown in Table 5.9. The results 

show that in most cases the CTUs surrounding the CTU to be encoded and its co-

localised CTU in the previous frame are encoded with maximum depths that are equal to 

or exceed the maximum depth of the CTU under consideration. 

 
Table 5.9: Maximum depths used in neighbouring CTUs. 

Spatially 
Neighbouring CTU 

Greater or 

equal depth (%) 
Smaller depth (%) 

Co-localised 93.14 6.86 

Top 83.47 16.53 

Left 82.24 17.76 

Diagonal top-left 91.84 8.16 

Diagonal top-right 86.33 13.67 

 

As in the case of unconstrained CTUs, the proposed method also uses RDO to 

decide the best Coding Tree configuration in CU-constrained CTUs. However, instead of 

using a fixed maximum depth for every CTU, this value varies from one CTU to another 

according to spatio-temporal correlation. In CTUs with smaller maximum depths, the 
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number of Coding Tree possibilities is smaller and thus the computational cost of 

finding the best tree configuration is reduced.  

Based on this analysis, the maximum Coding Tree depth max_depth used to 

encode a CU-constrained CTUk(i,j) located at position (i, j) of frame k is defined as the 

largest of the maximum coding tree depths used at the:  

i. Left side neighbouring CTU – i.e., CTUk
(i,j−1); 

ii. Top neighbouring CTU – i.e., CTUk(i−1,j); 

iii. Top-left neighbouring CTU – i.e., CTUk
(i−1,j−1); 

iv. Top-right neighbouring CTU – i.e., CTUk(i−1,j+1); 

v. Co-localised CTU from the previous frame – i.e., CTUk−1(i,j); 

The five values above are obtained directly from stored information of CTUs 

already encoded in the current and previous frame and saved in the MTDM structures 

used in VDCS, MCTDL and CTDE methods. Since all tree depths, from 1 to max_depth, are 

evaluated when the RDO process is active, no loss of R-D efficiency is observed if a depth 

greater than the one that should be used for encoding the current CTU is selected as 

maximum.  

 

5.6.3 Algorithm Overview  

The pseudo-code for the CCUPU method is presented in Fig. 5.18. The method 

starts by calculating the target time TtGOP for a GOP, which is needed throughout the 

encoding process to adjust the number of constrained CTUs at each level of the 

constraining scheme. This adjustment is performed according to the difference between 

the time used to encode the previous GOP and the target encoding time for a GOP. For 

real-time encoding and typical GOP sizes (e.g., 16 frames or smaller) and frame rates 

(e.g., 50 frames per second), adjustments at GOP granularity are at sub-second scale.  

The target time TtGOP for a GOP is calculated following (Eq. 47), where nFR is the 

number of frames in a GOP and Tt is the target time to encode a frame, both of which are 

inputs to the complexity scaling algorithm. The parameter Tt is specified by the user or 

given by the encoding system according to the current load level of the processing 

elements (e.g., percentage of CPU in use) or the device battery status, and it represents 

the average maximum time per frame that the encoder is expected to use. As the GOP 
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encoding time depends on the number of frames composing it, Tt is used as an input for 

further calculation of TtGOP. The calculation of TtGOP is shown in line 02 in the pseudo-

code for the complexity scalability method presented in Fig. 5.18. 

 
(Eq. 47) 

At least one GOP in a sequence must be encoded without any restriction in order 

to allow the encoder to detect if complexity adjustment is needed or not. The first GOP is 

encoded with only unconstrained CTUs (i.e., the full RDO process is applied to all CTUs 

in its frames), as shown in lines 03-08 in Fig. 5.18, and the time spent to encode each 

frame is saved. Based on the encoding time of the first GOP, the method starts adjusting 

(if necessary) the computational complexity in order to achieve the target processing 

time. If the time spent to encode the frames of the previous GOP is larger than the target, 

then the number of complexity-constrained CTUs in each frame is increased in the next 

GOP. Otherwise, it is decreased. This process is repeated for every GOP.  

The ratio αGOP between the encoding time of the previous GOP and the target 

time is computed as shown in (Eq. 48), where TeGOP is the actual time elapsed when 

encoding the previous GOP. The value of αGOP is used as a parameter in the proportional 

control loop shown in (Eq. 49), which adjusts the number Nck of constrained CTUs per 

frame in the next GOP. In Nck, k represents which of the two complexity constraining 

levels is used. The method starts scaling computational complexity by adjusting the 

number of CTUs which allow PUs smaller than 2N×2N. This number is represented as 

Nc1 in the pseudo-code of Fig. 5.18. Once Nc1 reaches its limit (i.e., the number of CTUs in 

a frame), the second parameter in the scheme is used, which is the number of CTUs with 

constrained maximum coding tree depth, represented as Nc
2. This step is shown in lines 

09-14 of Fig. 5.18.  

Constrained CTUs are distributed according to the R-D costs of co-localised CTUs 

in the previous frame as follows. After encoding each CTU, the R-D costs of their CUs are 

summed up to obtain the CTU R-D cost. When every CTU is finally encoded, the CTU R-D 

costs are sorted in ascending order (line 17 of Fig. 5.18). CTUs at the beginning of the 

sorted list are those with lowest R-D cost and are thus less probable to yield high bit 

rates or distortions if constrained encoding is applied to them in the next frame. On the 

contrary, CTUs at the end of the list are those with highest bit rates and/or distortions, 

requiring an unconstrained encoding process to improve R-D performance. Therefore, 

nFRTT t

GOP

t 
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in the proposed method, the Nck CTBs with smallest R-D cost in the sorted list are 

encoded as constrained, while the remaining CTUs are encoded as unconstrained.  This 

process is described in lines 18-23 of Fig. 5.18. 

 

  

(Eq. 48) 

  
(Eq. 49) 

 

 

Fig. 5.18: Pseudo-code for the CCUPU method. 

 

 

GOP

t

GOP

eGOP

T

T


k

c

GOPk

c NN 

01 start

02 calculate Tt
GOP

03 start a new GOP

04 for each j from 0 to nFR

05 for each i from 0 to nCTU

06 mark CTU i as unconstrained

07 encode CTU i

08 if last frame go to line 01

09 calculate Te
GOP

10 calculate αGOP

11 if Nc
1 < nCTU

12 calculate new Nc
1

13 else

14 calculate new Nc
2

15 start a new GOP

16 for each j from 0 to nFR

17 sort CTUs in ascending order of R-D cost

18 for each i from 0 to nCTU

19 if i < Nc
k

20 mark CTU i as constrained

21 else

22 mark CTU i as unconstrained

23 encode CTU i

24 if last frame go to line 01

25 go to line 09
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5.6.4 Results for CCUPU and Performance Evaluation 

The performance of the CCUPU method was evaluated by measuring the trade-

off between processing time and R-D efficiency. The same video sequences listed in 

section 5.6.1 were used in the tests, as well as the Low Delay P temporal encoder 

configuration, HM – version 9.2 (HM9.2), and QPs 27, 32, 37, and 42. For simulation 

purposes, the target processing times are defined as a percentage of the fully 

unconstrained case, i.e., when complexity scalability is not used. The tested target times 

were calculated corresponding to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 

90% of the average processing time per frame when no complexity constraint is used 

for a sequence. 

Complexity scalability accuracy was measured by comparing the target 

processing times to the actual times spent for encoding the video sequences. Table 5.10 

shows average results for the sequences with different spatial resolutions, encoded 

under the different target complexities. In Table 5.10, TT corresponds to the target time 

per frame and ET is the average elapsed time per frame, both of which are presented as 

percentages of the time when no complexity scaling is applied. Both BD-BR (which 

stands for the BD-rate) and BD-PSNR values were calculated using the original HM 

encoder with no complexity constraining as reference. Average results considering the 

five resolutions tested are presented in Table 5.11.  

A comparison between the values at the TT and ET columns in Table 5.10 and 

Table 5.11 leads to the conclusion that the algorithm is capable of scaling computational 

complexity quite accurately, since the target and elapsed time are very close in most 

cases. This is clearer in Fig. 5.19, which presents charts with TT values on the horizontal 

axis and ET results on the vertical axis for all the video sequences with four different 

QPs and nine target times. These figures show that for almost all the 360 tests executed 

in these experiments, the proposed method was able to scale processing times with high 

accuracy, i.e., with small differences between TT and ET. The only TT value which was 

not achieved for all video sequences was the 10% case, setting the lower limit of the 

achievable computational complexity to values between 10% and 20% of the 

unconstrained case. For this reason, the discussion presented in the next paragraphs 

will focus on the results obtained when TT is set between 20% and 90%. 
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Table 5.10: Average complexity and R-D results for CCUPU considering five different 

spatial resolutions. 

TT 
(%) 

416×240 832×480 1280×720 1920×1080 2560×1600 

ET 
(%) 

BD-
BR 

(%) 

BD-
PSNR 
(dB) 

ET 
(%) 

BD-
BR 

(%) 

BD-
PSNR 
(dB) 

ET 
(%) 

BD-
BR 

(%) 

BD-
PSNR 
(dB) 

ET 
(%) 

BD-
BR 

(%) 

BD-
PSNR 
(dB) 

ET 
(%) 

BD-
BR 

(%) 

BD-
PSNR 
(dB) 

90 96 0.04 0.00 95 0.05 0.00 92 0.01 0.00 91 0.02 0.00 91 0.04 0.00 

80 86 0.40 -0.02 82 0.21 -0.01 82 0.06 0.00 81 0.10 0.00 82 0.41 -0.02 

70 73 0.95 -0.04 71 0.47 -0.02 71 0.34 -0.03 71 0.24 -0.01 71 0.27 -0.01 

60 62 1.49 -0.06 61 0.79 -0.04 59 0.81 -0.07 61 0.45 -0.01 61 0.44 -0.02 

50 53 2.12 -0.09 51 1.57 -0.07 50 1.28 -0.10 51 0.79 -0.03 51 0.64 -0.02 

40 45 6.83 -0.27 41 7.48 -0.33 42 2.00 -0.15 41 1.79 -0.06 42 1.82 -0.06 

30 35 19.9 -0.75 31 19.2 -0.81 32 7.47 -0.53 31 6.00 -0.19 32 5.22 -0.18 

20 27 33.5 -1.23 22 32.6 -1.30 23 22.5 -1.41 21 14.5 -0.43 22 10.1 -0.35 

10 24 40.7 -1.47 15 51.8 -1.92 14 55.9 -2.94 13 31.4 -0.86 14 17.6 -0.61 

 

According to the results presented in Table 5.10 and Fig. 5.19, the only cases 

which do not accurately scale computational complexity are the 416×240 video 

sequences. More specifically, the method was not able to scale computational 

complexity for the RaceHorses1 sequence under 43% for QP 27, 28% for QP 32, and 

22% for QP 37, as shown in Fig. 5.19 (a-c). This happens most likely because this 

sequence is the one with smallest spatial and temporal resolution among all the video 

sequences tested, resulting on an encoding process which is much faster in comparison 

to the other video sequences. As the encoding time is already small for the RaceHorses1 

sequence, the proposed method is not able to scale it down to values around 15%, as in 

the other sequences. As Table 5.10 shows, the average ET results for 416×240 

sequences do not scale under 24% and only when TT is set to values above 40% the 

method yields appropriate ET results. We can conclude from this analysis that the 

proposed method is more accurate for scaling the complexity of high-resolution video, 

which is in fact the target of the HEVC standard and the case where it is more important 

to reduce and scale encoding complexity due to its larger absolute value. 

Concerning the effect of the complexity scaling on encoding efficiency, Table 

5.11 shows that the R-D performance tends to decrease significantly only when small 

target times are set. This happens because small target times incur in the use of a larger 

number of constrained CTUs, which are not optimally encoded through full RDO. On the 

one hand, for most target times these variations are negligible, more specifically from 
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the 90% to the 50% case, which presented a BD-PSNR varying between 0 and 0.06 dB 

and a BD-rate increase between 0.03% and 1.28%. On the other hand, when the target 

time is set to values from 40% to 20%, the computational complexity savings cause a 

BD-PSNR decrease between 0.18 and 0.94 dB and a BD-rate increase between 3.98% 

and 22.64%. 

 

 
Fig. 5.19: Complexity scalability accuracy for 10 video sequences using QP 27 (a), QP 32 

(b), QP 37 (c), and QP 42 (d). 

 
Table 5.11: Average complexity and R-D results for CCUPU. 

TT (%) ET (%) BD-BR (%) BD-PSNR (dB) 

90 93 0.03 0.00 

80 83 0.23 -0.01 

70 72 0.46 -0.02 

60 61 0.80 -0.04 

50 51 1.28 -0.06 

40 42 3.98 -0.18 

30 32 11.55 -0.49 

20 23 22.64 -0.94 

10 16 39.47 -1.56 
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These two operational regions are clearly defined in Fig. 5.20, which shows the 

effect of the computational complexity scalability on the encoder R-D performance. Just 

as in Table 5.10, the figure shows separate results for the different spatial resolutions. 

The first operational region, at the right side of the vertical dashed line, presents 

computational complexities ranging from 50% to 100% and provides an encoding 

process in which the R-D performance is minimally affected by the complexity 

constraining algorithm. The second region, at the left side of the vertical dashed line, 

allows further scaling of the computational complexity (down to 20%) at the cost of 

higher R-D performance losses. Notice, however, that even though these losses are not 

negligible, they are acceptable in many applications and situations that require video 

encoding with very low computational complexity and tolerate some image quality 

decrease as a trade-off. Fig. 5.20 also shows that the proposed method yields better R-D 

performance when scaling computational complexity of high-resolution video encoding. 

 

 
Fig. 5.20: Effect of computational complexity scalability over the R-D performance. 

 
The R-D performance for each target complexity tested is presented in Fig. 5.21 

for the best and worst cases, which correspond to the Traffic (Fig. 5.21(a)) and 

RaceHorses1 (Fig. 5.21(b)) sequences, respectively. In both cases, it is possible to notice 

that the difference between results for target complexities between 50% and 100% is 

very small, especially in Fig. 5.21(a). In fact, the R-D results are so similar that these 
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curves are only visible individually when a zoom is applied to the chart, as shown in the 

dotted box in both charts. When smaller target complexities are used (20%, 30% and 

40%), the corresponding curves are more distant from each other due to larger R-D 

performances losses. 

 

 
Fig. 5.21: R-D performance for each target complexity for videos (a) Traffic and 

(b) RaceHorses1 encoded with QPs 27, 32, 37, 42. 

 
Fig. 5.22 (a-d) presents the average encoding time per frame in each GOP for 

four video sequences (PartyScene, vidyo1, BasketballDrive, Traffic, respectively), each 

one encoded with a different QP (27, 32, 37, and 42, respectively). Besides the case in 
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which no complexity scalability is applied (continuous black line at the top, labelled as 

“100%”), the 20% (red), 40% (green), 60% (blue) and 80% (grey) cases are presented 

in the charts together with their respective target times (dashed lines in the same 

colour). The remaining target times tested are not shown in these figures for the sake of 

clarity, but they exhibit similar behaviour. As it can be seen, in all cases the actual 

encoding times vary a little around the target times from GOP to GOP. This is a normal 

effect caused by the variation of the video signal characteristics over time, which 

requires different encoding operations and different computational resources. 

Variations in encoding time can also be noticed when no complexity scalability is used 

(100% case). The other video sequences presented behaviour similar to that shown in 

Fig. 5.22. The average difference between encoding time and target time for the four 

sequences presented in Fig. 5.22 are 4.6%, 1.3%, 2.3%, and 0.94%, respectively. 

 

 
Fig. 5.22: Average encoding time per frame in each GOP for different target 

complexities: (a) PartyScene, QP 27; (b) vidyo1, QP 32; (c) BasketballDrive, QP 37; (d) 

Traffic, QP 42. 

The specific case of the RaceHorses1 sequence, which was the only exception in 

the results presented in Table 5.10 and Fig. 5.19, is shown in Fig. 5.23 for QP 32. It is 

possible to perceive that even though the encoding times do not scale down to values as 

close to the target times as in the other sequences, the method is still capable of 
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decreasing the encoding time to levels not too far from the target. The average 

difference between encoding and target time for such sequence was 15%. 

 

 
Fig. 5.23: Average encoding time per frame in each GOP for different target complexities, 

considering video RaceHorses1 and QP 32. 

 

5.7 Conclusions  

The contribution of this chapter consists in a set of algorithms for scaling the 

computational complexity of an HEVC encoder. The R-D efficiency as well as the 

complexity scaling accuracy of each method was separately presented and discussed in 

their corresponding sections. In this section, the five methods are compared and their 

results are jointly discussed. The average results presented in Table 5.1, Table 5.2, Table 

5.4, Table 5.6, and Table 5.11 for the FDCS, VDCS, MCTDL, CTDE and CCUPU methods, 

respectively, were all combined in the charts presented in Fig. 5.24, Fig. 5.25 and Fig. 

5.26 in terms of complexity scaling accuracy, BD-rate increase and BD-PSNR decrease, 

respectively.  

Fig. 5.24 shows that, in general, the complexity scaling accuracy of the five 

methods is quite similar, since the resulting running complexity is always close to the 

ideal case (dotted grey line). The figure also shows that the computational complexity 

can be scaled down to targets lower than 60% with the CCUPU method (dashed portion 

of the black curve), which is not possible with the remaining algorithms. The largest 
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difference between target and running complexity appears, as already mentioned, when 

a target complexity of 10% is set for the CCUPU method. In that case, the complexity 

achieved is around 16%, which is still close to the target.  

 

 

Fig. 5.24: Target complexity versus running complexity for the complexity scaling 

methods. 

 

 

Fig. 5.25: BD-rate increase for the five complexity scaling methods. 
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Fig. 5.26: BD-PSNR for the five complexity scaling methods. 

 
Fig. 5.25 presents the BD-rate increase caused by applying different target 

complexities to the five methods. It is possible to notice from the first method developed 

(FDCS) to the last one (CCUPU) an increasing R-D efficiency, which is an outcome 

obtained by adding up more intelligent ways of constraining the frame partitioning 

structures of HEVC. In FDCS the maximum Coding Tree depth was constrained for the 

whole frame, which is a rather crude way of scaling the computational complexity. In 

contrast, in CCUPU the encoding of each CTU is independently adjusted and up to two 

levels of constraining can be performed per CTU. This reflects directly in the BD-rate 

and BD-PSNR results presented in Fig. 5.25 and Fig. 5.26. For example, when the target 

complexity is set to 50%, the BD-rate increase caused by the CCUPU method is smaller 

than the BD-rate increase caused by FDCS with target complexity set to 90%. Similarly, 

the CCUPU method is able to reduce complexity to 30% at a smaller BD-rate cost than 

FDCS in 60%. 

The results compared in this section indicate that considering spatial and 

temporal correlation of video sequences in the complexity scaling algorithms (as done 

in VDCS, MCTDL and CTDE) decreases the R-D efficiency loss caused by FDCS. 

Furthermore, when constraining the PU splitting mode decision process before 

constraining the Coding Tree decision (as done in CCUPU), the computational 

complexity was further reduced at a much smaller R-D efficiency loss. These results 

show that the HEVC encoding complexity can be efficiently adjusted at small or 
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negligible R-D losses if smart approaches are employed in the constraining process. If 

more information about the original video sequence characteristics, such as motion 

activity profile and texture complexity, as well as intermediate results obtained during 

the encoding process, were considered when adjusting the encoder complexity, R-D 

efficiency losses even smaller than those of CCUPU could be achieved. The research 

work presented in the next chapter 6 furthers these ideas by developing a new 

complexity reduction approach, which achieves even better results.   

 

 

  



 

 

Chapter 6 

 

 

6 Computational Complexity 

Reduction Using Data Mining  

As the experiments presented in chapter 4 have shown and the complexity 

scaling methods proposed in chapter 5 have confirmed, an important share of the high 

computational complexity of HEVC comes from the use of very flexible partitioning 

structures, such as the CUs, the PUs and the TUs. This chapter describes the process of 

using data mining (DM) techniques to build a set of decision trees that are used to 

decide if the RDO-based partitioning structure decision process should be terminated 

early or run to its full extent. By using information from intermediate encoding 

variables collected during the encoding of a set of video sequences, a set of decision 

trees were built and implemented in the HM encoder. When using this modified 

encoder, the operation of the decision trees sidesteps the encoder from having to run 

the full RDO process to find the best partitioning structures. The study of correlations 

and information gains associated with each variable, recorded while encoding test 

videos with the original HM encoder, was essential to the development of the early 

termination schemes presented in this chapter.  

As explained in previous chapters, among the three main partitioning structures 

of HEVC, CUs have a central role due to their interdependence with the remaining 

partitioning structures. This means that by changing the number of Coding Tree 

configurations tested for a CTU, the overall number of tests performed to define PUs and 

RQTs is also affected. For this reason, the first early termination investigated in this 

chapter focuses on the Coding Tree determination process. The second early 

termination method proposed focuses on the PU splitting mode decision, since the 

experiments presented in section 5.6.1 have shown that limiting the PU splitting mode 
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decision results in significant computational complexity decreases with small 

compression efficiency losses. Finally, the third early termination focuses on the RQT 

decision, which is the partitioning structure that presents the smallest impacts on the 

encoding computational complexity. 

When separately implemented, the early termination schemes achieved an 

average computational complexity reduction varying from 7.2% up to 50% for a 

negligible encoding performance reduction ranging from 0.05% up to 0.56% in terms of 

BD-rate increase. When jointly implemented, they permitted an average computational 

complexity reduction of up to 65% is achieved, with a small BD-rate increase of 1.36%. 

Extensive experiments and comparisons demonstrate that the proposed schemes 

achieve the best R-D-C trade-offs among all comparable works.  

Part of the work presented in this chapter was published in [19-22]. 

 

6.1 Introduction to Data Mining and Decision Trees 

Knowledge Discovery from Data (KDD) is an interdisciplinary subfield of 

computer science currently applied to several areas, such as medicine, market 

management, biology and image processing. The goal of KDD systems is to extract 

information from both structured and unstructured sources by using DM and machine 

learning algorithms. In the work presented in this chapter, a predictive DM approach is 

used.  

Predictive DM techniques are used to determine the value of dependent 

variables by looking at the value of some attributes in the data set, identifying 

regularities and building generalisation rules that can be expressed as models. There 

are several methods of predictive DM currently available, which vary broadly from one 

another in terms of efficiency, complexity and applicability. Decision trees [126] are a 

type of commonly used predictive DM, in which a dependent variable can assume one 

among a finite number of outcomes. In classification trees, which are a specific type of 

decision trees used in the work presented in this chapter, the dependent variable is 

called the class attribute and it can take a finite number of outcomes. 

When building decision trees, observations on a set of training data are mapped 

into arcs and nodes, as shown in the example given in Fig. 6.1. The inner nodes (A, B, C, 
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D, in Fig. 6.1) represent the variables (attributes) tested, while the arcs are the possible 

values that the attributes can assume. In a binary classification tree, such as those 

designed and used in this work, the attributes can assume two results (x1 and y1 for 

attribute A in the example of Fig. 6.1). Finally, the leaves of decision trees are the values 

that the class attribute can assume and represent the possible outcomes of the whole 

decision process. In the example given in Fig. 6.1, the possible outcomes are L and R. 

When the decision tree is implemented, in order to classify a determined 

instance into one of the possible outcomes the algorithm starts at its root (A, in Fig. 6.1), 

tests the corresponding attribute value and descends to the next node through the 

appropriate branch, depending on the test result. For example, a data instance with 

feature vector (A = x1, B = x2, C = y3, D = y4) would be classified as R in the decision tree 

of Fig. 6.1. 

 

Fig. 6.1: Example of a binary classification tree. 

Decision trees are commonly used mainly because of the following 

characteristics: 

1) They usually achieve high prediction accuracy after trained; 

2) They are easily understood by human beings and therefore simple to be 

implemented; 

3) There are many efficient algorithms to build them from training data; 

4) They can deal with both categorical and numerical values and 

5) Once implemented, they execute predictions very fast. 

The first and the fifth characteristics above are extremely important for the 

research work presented in this chapter, which aims at reducing the computational 
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complexity of HEVC encoders without harming its R-D efficiency. This can only be 

performed if good prediction accuracy is achieved with the obtained decision trees and 

if the prediction process adds negligible extra computational complexity to the encoder. 

 

6.2 Methodology 

The Waikato Environment for Knowledge Analysis (WEKA) [127], version 3.6, 

was used to aid the DM process described in this chapter. WEKA is a free, open-source 

DM tool that includes several machine learning algorithms for pre-processing, 

classifying, clustering, and visualising the data set, supporting statistical evaluation of 

learning schemes. Data fed to WEKA was obtained through offline encodings of the 

following 10 video sequences, which characteristics can be found in Appendix B: 

BlowingBubbles, RaceHorses1, PartyScene, BQMall, SlideShow, vidyo1, BasketballDrive, 

ParkScene, NebutaFestival, and Traffic. All video sequences were encoded with QPs 22, 

27, 32, 37, and 42, using the Random Access temporal configuration [43]. The HM 

software – version 12 (HM12) – was modified to save internal variables with 

intermediate encoding results into files that were used to create the training files used 

by WEKA.  

The input for WEKA are ARFF (Attribute-Relation File Format) files, containing 

plain text describing a list of instances sharing a set of attributes. Fig. 6.2 shows an ARFF 

file example, with its two major sections separated by dashed boxes. The first section 

consists of a header with the name of the relation and the attributes declaration (i.e., 

name and type of values of that attribute). The second section contains the training data 

with one instance per line and one attribute value per column. In the specific case of 

building decision trees, the last line of the first section identifies the class attribute, for 

which the machine learning algorithms try to find a general (prediction) rule. In the 

example of Fig. 6.2, SplitCU is a class attribute that can assume a binary value (i.e., either 

0 or 1). This is also the case of all decision trees proposed in this chapter. 

 



143 

 

 
 

 

Fig. 6.2: Example of an ARFF file. 

To reduce the problem of the class data imbalance, which occurs when there are 

significantly more training instances belonging to one class than to the other(s), 

following common practice [128], the ARFF files used in the evaluation are composed of 

data sets with half the instances classified into each class (e.g., 50% classified as 0 and 

50% classified as 1 in the example of Fig. 6.2). This was accomplished by resampling the 

training data instances when building the final ARFF files, which are composed of equal 

numbers of random samples of the data collected during the encoding of the 10 video 

sequences encoded with the five QPs used.  

For each early termination scheme proposed in this chapter, several variables 

were recorded during execution of the HM encoder, such as the sum and the variance of 

luminance samples in a CU, the absolute sum and variance of prediction residues in a 

PU, the horizontal and vertical gradients in a possible PU edge, and the R-D cost of each 

PU splitting mode. The usefulness of each of these variables for the decision tree was 

assessed through the Information Gain Attribute Evaluation (IGAE) method in WEKA, 

which measures the information gain [129] achievable by using a variable to classify the 

data into the different classes represented in the data. This gain equates to the 

difference between the number of bits per data item necessary to convey its class 

identity before and after classification of the data set using decision rules based on the 

variable in question [126]. Therefore, the information gain of a variable indicates how 

relevant it is for the process of constructing a decision tree that correctly decides to 

which class each data item belongs. In the case of the WEKA software, this information 

@RELATION CodingTreeEarlyTermination

@ATTRIBUTE RDcost_MSM NUMERIC

@ATTRIBUTE RDcost_2Nx2N NUMERIC

@ATTRIBUTE RDcost_2NxN NUMERIC

@ATTRIBUTE RDcost_Nx2N NUMERIC

@ATTRIBUTE part {0,1,2,3,4,5,6,7}

@ATTRIBUTE MergeFlag {0,1}

@ATTRIBUTE SkipMergeFlag {0,1}

@ATTRIBUTE neighDepth NUMERIC

@ATTRIBUTE SplitCU {0,1}

@DATA

839 3214 2801 2801 0 1 1 0.25 1.75 0

3920 5055 4421 4421 0 0 0 2.13542 0.13541 1

990 2617 2687 2148 0 1 1 0.875 1.125 0

...

5505 5001 5307 4895 7 1 1 1.95833 0.041667 1

Header

Raw Data
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gain is measured by the Kullback-Leibler Divergence (KLD) [130] of the pre and post-

classification probability distributions. Based on this measure (IGAE), a manual analysis 

procedure was followed to identify the most useful variables for the (tree) decision 

processes. Then, the variables with higher information gain were selected as attributes 

for the tree training processes, as explained later in this chapter.  

The training of the decision trees was performed with the C4.5 algorithm [126], 

which also uses KLD to choose the best attribute for each decision step and the 

thresholds corresponding to each decision step. The C4.5 algorithm starts by taking all 

instances fed to it as inputs and calculates the information gain of using each attribute 

to perform the classification using a determined threshold. By iterating among all 

attributes and adjusting the thresholds, C4.5 measures the information gain of each 

variable and threshold pair. Then, the attribute (and its corresponding threshold) with 

the largest information gain is chosen to divide the training data into two sub-sets. The 

same process is applied recursively to the two sub-sets. More details on C4.5 can be 

found in [126]. 

The accuracy of all obtained trees was measured with WEKA by applying a 10-

fold cross-validation process. The level of accuracy was measured by the percentage of 

correct decisions in the total amount of instances used in the training process. Then, all 

trees obtained in the training phase were implemented in the HM software following a 

scheme of tests designed to allow a clear evaluation of each decision tree performance 

either individually or combined with others. A total of seven low-complexity schemes 

were implemented and the encoding R-D efficiency was measured using sequences 

different from those used in the training phase. The seven schemes and their respective 

acronyms are: 

1) Early termination for determining Coding Trees (CT ET) [19, 20]; 

2) Early termination for determining Prediction Units (PU ET) [20-22]; 

3) Early termination for determining Residual Quadtrees (RQT ET); 

4) Joint early terminations for determining Coding Trees and Prediction Units 

(CT+PU ET) [20]; 

5) Joint early terminations for determining Prediction Units and Residual 

Quadtrees (PU+RQT ET) [20]; 

6) Joint early terminations for determining Coding Trees and Residual 

Quadtrees (CT+RQT ET) [20] and 
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7) Joint early terminations for determining Coding Trees, Prediction Units and 

Residual Quadtrees (CT+PU+RQT ET) [20]. 

 

6.3 Early Termination for Determining Coding Trees 

The proposed Coding Tree early termination [19, 20] consists in deciding 

whether or not the splitting of CUs into four smaller CUs should be tested. If the decision 

tree outcome is yes (i.e., SplitCU = 1), the current CU is split into four smaller CUs and the 

next Coding Tree depth is tested. Otherwise (i.e., SplitCU = 0), the Coding Tree splitting 

process is halted in the current CU. 

As the HEVC standard allows up to four Coding Tree depths, three different 

decision trees were created for the cases that allow splitting into smaller CUs: 64×64, 

32×32, and 16×16.  Table 6.1 shows the HM variables that provided best performance 

as measured by the information gain with respect to the decision of splitting or not 

splitting a CU (i.e., those that were selected as attributes for the decision trees). 

Information gain values are presented separately for each CU size in the table and the 

attributes are described in detail in the following paragraphs. 

The Partition attribute corresponds to which PU splitting mode was chosen for 

the current CU (i.e., 2N×2N, 2N×N, N×2N, N×N, 2N×nU, 2N×nD, nL×2N, or nR×2N), 

independently of whether inter or intra-frame prediction was applied. The idea behind 

saving this information is that when a large PU (e.g., 2N×2N) is chosen as the best option 

to predict a determined CU, further tests to determine the Coding Tree configuration are 

probably not necessary, so that this CU does not need being split into smaller sub-CUs. 

Statistics that support this claim are presented in Fig. 6.3. The chart shows that most of 

the CUs predicted as a 2N×2N PU were not split into sub-CUs. For example, 83% of 

64×64 CUs predicted as a 2N×2N PU did not need being split into four 32×32 CUs, as the 

leftmost black bar of Fig. 6.3(a) shows. Conversely, an average of 83.3% of 64×64 CUs 

encoded with the remaining modes were split into four 32×32 CUs (average of all grey 

bars of Fig. 6.3(a), except for the 2N×2N case). By analysing the three charts of Fig. 6.3, it 

is possible to notice that, on the one hand, the correlation between using 2N×2N PUs 

and not splitting the CU decreases in smaller CUs (70% for 16×16 CUs, as shows Fig. 

6.3(c)). On the other hand, in smaller CUs the correlation between choosing the 

remaining PU modes and splitting the CU increases (on average, 90% for 16×16 CUs). 
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Table 6.1: Information Gain Attribute Evaluation for the Coding Tree early termination. 

Attribute 
Information Gain 

64×64 32×32 16×16 

Partition 0.352 0.336 0.269 

ΔNeighDepth 0.311 0.262 0.249 

Ratio(2N×2N, MSM) 0.112 0.168 0.255 

NormDiffRD(2N×2N, MSM) 0.109 0.163 0.249 

RD(2N×2N) 0.035 0.042 0.053 

RD(MSM) 0.034 0.061 0.108 

RD(2N×N) 0.033 0.036 0.044 

RD(N×2N) 0.031 0.032 0.042 

SkipMergeFlag 0.046 0.066 0.065 

MergeFlag 0.020 0.035 0.046 

 

 
Fig. 6.3: Occurrence of (a) 64×64 CUs, (b) 32×32 CUs, and (c) 16×16 CUs split and not 

split into smaller CUs according to the PU mode chosen (i.e., Partition). 

The ΔNeighDepth attribute is computed based on the difference between the 

Coding Tree depths used in neighbouring CTUs and the depth of the current CU. The 

rationale of considering such variable is that there exists a correlation among maximum 
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depths of spatially and temporally neighbouring CTUs, as previously shown in chapter 5 

(see Table 5.9). The attribute ΔNeighDepth is calculated as follows. First, for each 

neighbouring CTU, the average depth among all its composing CUs is computed. The 

top-left, top, top-right and left CTUs in the current frame, as well as the co-localised 

CTUs in the first frames of both reference lists (List 0 and List 1) are considered as 

neighbours, so that up to six average depths are calculated. Fig. 6.4 shows the four 

neighbouring CTUs in the current frame and the co-localised CTUs in the reference 

frames, with the variables representing the average CU depths assigned to them. Let us 

call these averages as A1 to AN, where N is the number of neighbouring CTUs available 

for the current CTU. The CTU assigned with label C in Fig. 6.4 represents the current 

CTU. Finally, the value of ΔNeighDepth is calculated as an average of the averages A1 to 

AN, minus the depth of the CU currently being encoded, as shown in (Eq. 50). If the 

current CU depth is much smaller than the average of average depths of neighbouring 

CTUs, the splitting process should probably continue due to spatio-temporal correlation 

among neighbouring CTUs. 

 
 

(Eq. 50) 

 

Fig. 6.4: Neighbouring CTUs used in the calculation of ΔNeighDepth. 

Fig. 6.5 shows the distribution of ΔNeighDepth for different CU sizes. The curves 

show that there is a clear relationship between the distribution of ΔNeighDepth and the 

CU splitting decision. CUs that are not split into smaller CUs have ΔNeighDepth values 

that cluster towards low magnitudes, while the opposite occurs for those CUs that are 
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split into smaller CUs. Since the two distributions do not fully overlap it is possible to 

determine an optimal decision threshold that minimises the classification error rate. 

WEKA computes these thresholds during the process of training the decision trees. 

 
Fig. 6.5: Occurrence of (a) 64×64 CUs, (b) 32×32 CUs, and (c) 16×16 CUs split and not 

split into smaller CUs according to the average of CU depths in neighbouring CTUs. 

The Ratio(2N×2N, MSM) shown in Table 6.1 is calculated as a simple division 

between the R-D costs of encoding the current CU as an inter-predicted 2N×2N PU and 

as an MSM PU, as shown in (Eq. 51). The NormDiffRD(2N×2N, MSM) value is the 

normalised difference between the RD(2N×2N) and RD(MSM) costs, calculated as per 

(Eq. 52). The reason for considering these values in the IGAE analysis is that when a 

compression gain (i.e., a drop in R-D cost) is observed due to the use of motion-

compensated prediction in a CU instead of encoding it with MSM, the block probably 

belongs to a medium/high-motion or complex-textured image region and usually in this 

type of situation it is advisable to split a CU into smaller CUs. Fig. 6.6 shows the 

distribution of Ratio(2N×2N, MSM) for different CU sizes. The smaller information gain 

level of this parameter in comparison to the two previously analysed cases is also clear 
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in the charts, which shows the Split and Not Split areas more overlapped than in the 

charts of Fig. 6.3 and Fig. 6.5. 

 (Eq. 51) 

 (Eq. 52) 

 
Fig. 6.6: Occurrence of (a) 64×64 CUs, (b) 32×32 CUs, and (c) 16×16 CUs split and not 

split into smaller CUs according to the ratio between the 2N×2N and MSM R-D costs. 

The decision trees were trained with the attributes shown in Table 6.1 and their 

most important characteristics are detailed in Table 6.2. The table presents the decision 

accuracy of each tree, as well as their depth (i.e., number of sequential tests), number of 

test nodes and number of leaves. As Table 6.2 shows, the three obtained trees achieve a 

decision accuracy slightly above 84%. The accuracies are measured by the ratio of the 

number of splitting decisions which agree with the splitting decision that would have 

been taken by the unmodified coder (both Split and Not Split) and the total number of 

CUs analysed in each case. However, these results count the case of splitting a CU that 
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should not be split into smaller CUs as a decision error, even though it does not harm 

the encoding R-D efficiency, having as only deleterious effect an increase of the 

encoding complexity. In fact, the R-D efficiency is negatively affected by decision errors 

only when a CU that should be split is not split due to the early termination provided by 

the decision trees and so the CU is not as efficiently coded as it could be. The sixth 

column of Table 6.2 shows the percentage of such incorrect early terminations that 

could actually cause R-D efficiency losses due to inaccurate Coding Tree depth decisions. 

Regarding the topological characteristics of the decision trees, it is important to notice 

that all of them are composed of less than 10 decision levels (Depth column in Table 

6.2), which means that the computational complexity added to the encoder due to 

implementing such trees is negligible. Detailed descriptions of the trees obtained after 

training are available in the Appendix C of this thesis. 

 
Table 6.2: Characteristics and performance of trees trained for the Coding Tree early 

termination. 

CU size Depth 
Test 

Nodes 
Leaves 

Decision 
Accuracy 

Inaccurate 
Depth  

64×64 5 6 19 84.2% 7.1% 

32×32 8 20 33 84.5% 7.5% 

16×16 9 23 44 84.6% 6.9% 

 
Finally, to illustrate the effectiveness of the proposed method, Fig. 6.7 presents 

the 100th frame of the BasketballDrill video sequence and its corresponding CU 

boundaries according to the Coding Tree defined for each CTU. The sequence was 

encoded with QP 32 and the Random Access temporal configuration. Notice that the 

BasketballDrill video was not used in the training of the decision trees. The frame in Fig. 

6.7(a) was encoded using the original HM encoder, while the frame in Fig. 6.7(b) was 

encoded with an HM encoder modified to include the Coding Tree early termination 

algorithm. It is possible to perceive that the differences between the boundaries in Fig. 

6.7(a) and Fig. 6.7(b) are not expressive, which confirms that the early termination 

performs a correct Coding Tree determination in most cases.  
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(a) 

 
 (b) 

Fig. 6.7: CTUs divided into CUs in the 100th frame of the BasketballDrill video sequence 

encoded with QP 32 by (a) the original HM encoder and the (b) HM encoder with the 

Coding Tree early termination. 
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6.4 Early Termination for Determining Prediction Units 

The second early termination proposed [20-22] is motivated by the statistics 

presented in Fig. 6.8, which shows the average occurrence probability of each PU 

splitting mode in inter-predicted CUs. The statistics in the charts are for the 

BasketballDrive video sequence encoded with QPs 27, 32, 37, and 42. The remaining 

sequences presented similar behaviour. In Fig. 6.8, it is clear that most inter-predicted 

CUs are encoded without being split into smaller PUs and employ mainly the MSM 

mode. On average, 58%, 76%, 89% and 95% of 64×64, 32×32, 16×16 and 8×8 CUs, 

respectively, are encoded with the MSM mode. However, even though the remaining 

modes are not so frequently used as MSM, especially in small CUs, they are still always 

tested in a full RDO-based decision, which is not ideal when trading off compression 

efficiency and computational complexity.  

As in the case of early termination for Coding Trees presented in section 6.3, the 

decision trees for early terminating the PU splitting mode decision were designed to 

decide whether or not the search for the best PU structure should continue after some 

PU splitting modes have been tested. As most inter-predicted CUs are encoded as a 

single PU, the decision trees are used after testing the MSM and 2N×2N modes, so that 

these two modes are always tested for every CU, as shown in the diagram of Fig. 6.9. In 

case of early termination (decision labelled as E.T. in Fig. 6.9), the mode with smallest 

R-D cost between MSM and 2N×2N is chosen for the CU. Otherwise (decision labelled as 

keep in Fig. 6.9), the remaining modes are tested.  

As in the case presented in section 6.3, 50% of the training data come from inter-

predicted CUs that have been split into PUs smaller than 2N×2N and 50% come from 

inter-predicted CUs that have not been split into PUs smaller than 2N×2N. Four different 

decision trees were built, each one for a different CU size (64×64, 32×32, 16×16, and 

8×8). 
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Fig. 6.8: Frequency of occurrence of each inter PU splitting mode in the BasketballDrive 

sequence encoded with (a) QP 27, (b) QP 32, (c) QP 37, and (d) QP 42. 

 

 

Fig. 6.9: Inter-frame PU splitting mode decision with the proposed early termination. 

In this early termination, the class attribute is the information of whether or not 

a CU should be split into PUs smaller than 2N×2N. After an extensive observation on the 

collected data, the variables that provided the largest information gains were used for 

training the decision trees. These attributes are listed in Table 6.3, where information 

gain results are presented separately for each CU size.  
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Table 6.3: Information Gain Attribute Evaluation for the PU early termination. 

Attribute 
Information Gain 

64×64 32×32 16×16 8×8 

Ratio(2N×2N, MSM) 0.245 0.390 0.475 0.572 

NormDiffRD(2N×2N, MSM) 0.129 0.245 0.341 0.433 

RD(MSM) 0.224 0.306 0.383 0.422 

RD(2N×2N) 0.165 0.139 0.101 0.135 

RD(best) 0.208 0.284 0.364 0.407 

UpperCU_div ─ 0.223 0.297 0.240 

Ratio(best, MSM) 0.195 0.266 0.229 0.208 

NormDiffRD(best, MSM) 0.146 0.207 0.203 0.186 

 
The attributes Ratio(2N×2N, MSM), NormDiffRD(2N×2N, MSM), RD(MSM), and 

RD(2N×2N) have the same meaning as in section 6.3. Attribute RD(best) is the lowest 

R-D cost among the MSM and the 2N×2N modes and UpperCU_div is the information of 

whether or not the CU in the upper Coding Tree depth was split into PUs smaller than 

2N×2N. Finally, the attributes Ratio(best, MSM) and NormDiffRD(best, MSM) correspond 

to the ratio and normalised difference (computed as in (Eq. 53) and (Eq. 54), 

respectively), between RD(best) and RD(2N×2N). 

 (Eq. 53) 

 (Eq. 54) 

The attribute that yields the highest information gain, on average, is the 

Ratio(2N×2N, MSM). An explanation similar to the one exposed in the previous section 

applies to justify the use of such attribute: when a compression gain is noticed due to 

performing ME/MC for a CU instead of encoding it with MSM, there is a chance of the 

block belonging to an image region with some motion activity or texture heterogeneity. 

In such cases, it is advisable to test smaller PU sizes to verify if they yield additional 

compression gains. Fig. 6.10 presents statistical results in the form of distribution of the 

values of this attribute considering the four CU sizes. The statistics correspond to values 

obtained from all video sequences and QPs mentioned in section 6.2. Fig. 6.10 shows 

that the ratio between the 2N×2N and MSM R-D costs is a relevant indicator of the 

necessity of testing the remaining modes. It is possible to see that most CUs with a small 
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ratio were split into PUs smaller than 2N×2N, while CUs with larger ratio values are 

mostly encoded with 2N×2N or MSM.   

 

Fig. 6.10: Occurrence of (a) 64×64 CUs, (b) 32×32 CUs, (c) 16×16 CUs, and (d) 8×8 CUs 

split and not split into PUs smaller than 2N×2N according to the ratio between the R-D 

costs of 2N×2N and MSM modes. 

The relevance of the UpperCU_div attribute is illustrated in Fig. 6.11, which 

shows three charts for the attribute considering 32×32, 16×16, and 8×8 CUs. As 64×64 

CUs do not have a parent CU, since they are the largest CUs allowed in HEVC, the 

UpperCU_div attribute is not used in their corresponding decision trees. The charts show 

that there is a strong correlation between the PU splitting in the upper and current CU 

depths. For example, Fig. 6.11(b) shows that in 82.22% of the cases when a 16×16 CU 

was split into smaller PUs, its upper 32×32 CU was also split. Analogously, in 79.64% of 

the cases when a 16×16 CU was not split into smaller PUs, its corresponding parent 

32×32 CU was also not split. The charts also show that the correlation increases for the 

Split case in small CUs (8×8) and increases for the Not Split case in large CUs (32×32). 
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Fig. 6.11: Occurrence of (a) 32×32 CUs, (b) 16×16 CUs, and (c) 8×8 CUs split and not 

split into PUs smaller than 2N×2N according to the splitting decision at the upper 

Coding Tree depth. 

The decision trees were trained with the attributes shown in Table 6.3 and their 

characteristics are detailed in Table 6.4, which shows that their decision accuracy varies 

between 79.6% and 91.2%. Accuracy values are measured by dividing the number of 

correct splitting decisions by the total number of CUs analysed.  However, regarding 

inaccurate decisions, it is important to notice that R-D efficiency losses would occur only 

when a CU should be predicted with PUs smaller than 2N×2N but the decision process is 

early terminated, leading a non-optimal PU splitting mode to be chosen. In the 

remaining inaccurate decisions (i.e., when the CU should be predicted with MSM or 

2N×2N and the decision process is not early terminated), the encoder still chooses an 

optimal mode through RDO, since all modes are tested. The sixth column of Table 6.4 

shows statistics only for the case that incurs in R-D losses, which varies between 2.1% 

and 8.6%.  
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Table 6.4: Characteristics and performance of trees trained for the Prediction Unit early 

termination. 

CU size Depth 
Test 

Nodes 
Leaves 

Decision 
Accuracy 

Inaccurate 
Depth  

64×64 5 8 9 79.6% 8.6% 

32×32 7 9 10 86.0% 5.0% 

16×16 5 9 10 89.2% 4.0% 

8×8 4 5 6 91.2% 2.1% 

 
Table 6.4 also shows that all the trained trees are very short, with a maximum 

depth of 7 in the case of 32×32 CUs. This means that the complexity added to the 

encoder due to implementing such trees is negligible, especially when considering that 

all attributes are already calculated by the HM encoder during its normal operation, 

except for the R-D cost ratios and normalised differences, which calculations represent 

an insignificant computational overhead in comparison to the whole encoding process. 

Detailed descriptions of the four decision trees are presented in Appendix C. 

To illustrate the effectiveness of the proposed method, Fig. 6.12 presents the 

100th frame of the BasketballDrill video sequence, which was not used in the training of 

the decision trees, and its corresponding PU boundaries for each CU. The sequence was 

encoded with QP 32 and the Random Access temporal configuration. The frame shown in 

Fig. 6.12(a) was encoded by the original HM encoder, while the frame in Fig. 6.12(b) 

was encoded by the HM encoder with the PU early termination implemented. It is 

possible to perceive that there are few differences between the boundaries in Fig. 

6.12(a) and Fig. 6.12(b), which confirms that the early termination is capable of 

performing a correct PU determination in most cases.  

 

6.5 Early Termination for Determining the RQT 

As previously shown in chapter 4, even though restricting the maximum TU size 

does not provide substantial computational complexity reductions, it only affects the 

encoding R-D efficiency marginally. If these restrictions are carefully performed by a 

trained early termination scheme, R-D efficiency losses would most probably be 

insignificant and some complexity reduction could still be achieved. For this reason, the 

last early termination presented in this chapter focuses on halting the process for 

determining the best RQT structure, as described in this section. 
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(a) 

 
 (b) 

Fig. 6.12: PU boundaries in the 100th frame of the BasketballDrill video sequence 

encoded with QP 32 by (a) the original HM encoder and the (b) HM encoder with the PU 

early termination. 
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Similarly to the Coding Tree early termination scheme (section 6.3), the RQT 

early termination consists in deciding whether or not the splitting of TUs into four 

smaller TUs should be tried. If the tests return yes, the current TU is divided into four 

smaller TUs and the next RQT depth is tested. Otherwise, the process is finished for the 

current TU and its sub-TUs are not considered in the RDO-based decision.  

As in the cases of the previously presented early terminations, the ARFF files 

used in the training process are 50% composed of data from TUs that have been split 

into four smaller TUs and 50% from TUs that have not been split. Given that TUs can 

assume three different dimensions in the Main encoder configuration used throughout 

this work (32×32, 16×16 and 8×8), two of which can be split into smaller TUs (32×32 

and 16×16), only two different decision trees were designed for this early termination 

scheme.  

In each training data set, the class attribute is the information of whether or not 

a TU should be split into four TUs. The remaining variables obtained from HM were 

analysed with IGAE and those selected as attributes to be used in the training of the 

decision trees are presented in Table 6.5, with their respective results in terms of 

information gain. 

In Table 6.5, the attributes AbsSumY, AbsSumU, and AbsSumV are the sum of 

absolute values from the luminance, blue chrominance and red chrominance residues, 

respectively, and the nonZeroCoeffY, nonZeroCoeffU, and nonZeroCoeffV attributes 

represent the number of non-zero coefficients obtained after transforming the TU as a 

whole block (i.e., before splitting it). Finally, the SingleCost attribute is the R-D cost of 

encoding a TU as a whole block instead of splitting it. 

Table 6.5: Information Gain Attribute Evaluation for the RQT early termination. 

Attribute 
Information Gain 

32×32 16×16 

AbsSumY 0.342 0.279 

AbsSumU 0.057 0.033 

AbsSumV 0.055 0.031 

SingleCost 0.145 0.140 

nonZeroCoeffY 0.348 0.284 

nonZeroCoeffU 0.342 0.280 

nonZeroCoeffV 0.342 0.280 
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As the residue samples are the inputs to the transform modules, we have 

investigated their probability of being encoded with small-sized TUs according to the 

intensity of its values. The values of AbsSumY, AbsSumU and AbsSumV attributes were 

analysed in order to check if the number of split TUs tend to increase with the sum of 

the residue samples. Fig. 6.13 shows that the high information gain associated to the 

AbsSumY attribute is due to the high correlation between its value and the splitting 

decision when the absolute sum of residues is null. Fig. 6.13(a) shows that 82.24% of 

the 32×32 TUs with AbsSumY value equals to zero were not split into smaller TUs. The 

charts also show that this correlation decreases significantly when AbsSumY is larger 

than zero. Notice, however, that in typical video sequences the value of AbsSumY will 

rarely be exactly equal to zero due to the presence of noisy source signals that generate 

residue information to be coded. Nevertheless, as the C4.5 algorithm tries to find a 

threshold for the attribute that minimises the overall classification error of the tree, a 

value different from zero can be selected for the attribute if such choice yields a smaller 

error. Fig. C.8 and Fig. C.9 of Appendix C show that the thresholds chosen for the 

AbsSumY attribute in the decision trees corresponding to 16×16 and 32×32 CUs are 81 

and 41, respectively, which are small numbers in comparison to their maximum values 

present in the training set (1149 and 3334 for 16×16 and 32×32 TUs, respectively). 

 

Fig. 6.13: Occurrence of (a) 32×32 and (b) 16×16 TUs split and not split into smaller TUs 

according to the absolute sum of luminance residues. 

Differently from AbsSumY, which presents one of the largest information gain 

levels among all attributes, AbsSumU and AbsSumV add little information to the decision 

trees. However, as using them does not incur in any extra computational complexity, 

since these are variables already computed and available during the encoding process, 

they are considered in the training of the decision trees. 
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Statistics for the nonZeroCoeffY attribute are shown in Fig. 6.14. The 

nonZeroCoeffU and nonZeroCoeffV attributes presented very similar statistics. Notice 

that the statistics for the cases when a TU has only zero-valued coefficients (i.e., 

nonZeroCoeffY = 0) are identical to the statistics presented in Fig. 6.13 for the case when 

the sum of absolute luminance residues is equal to zero (i.e., AbsSumY = 0). This 

happens because when the transform receives only zero values as input, it yields only 

zero-valued coefficients. Although nonZeroCoeffY is redundant with the AbsSumY 

attribute in this case, it still yields relevant information when its value is larger than 

zero. For example, Fig. 6.14(a) shows that when nonZeroCoeffY is larger than zero, 

82.58% of the 32×32 TUs are split into four 16×16 TUs and this information cannot be 

obtained with the AbsSumY attribute. 

 

Fig. 6.14: Occurrence of (a) 32×32 and (b) 16×16 TUs split and not split into smaller TUs 

according to the number of non-zero luminance coefficients after the transform. 

The SingleCost attribute is the R-D cost of encoding a TU as a whole block, i.e., 

without splitting it into four smaller TUs. Statistics for this attribute are presented in 

Fig. 6.15(a) for the specific case of 32×32 TUs and in Fig. 6.15(b) for 16×16 TUs. The 

figures show that there is a correlation between the TU splitting decision and the 

SingleCost value, since most of the non-split cases present very small R-D costs. 

Oppositely, for larger SingleCost values the number of non-split TUs decreases and the 

split cases become the majority, although by a small amount.  
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Fig. 6.15: Occurrence of (a) 32×32 and (b) 16×16 TUs split and not split into smaller TUs 

according to the R-D cost for the current TU depth. 

The decision trees for 32×32 and 16×16 TUs are detailed in Table 6.6, which 

shows that their decision accuracy are 83.4% and 80.7%, respectively. As explained 

before in relation to the previous schemes, these decision accuracy results consider that 

splitting a TU when there is no need to do so is an error. However, the R-D efficiency is 

not harmed in such cases, since the best splitting option will be chosen through the 

exhaustive RDO evaluation procedure. Incorrect TU depth decisions occur only in the 

cases when the TU should be split into smaller TUs but the process is early terminated 

after the whole TU is evaluated. The sixth column of Table 6.6 shows statistics regarding 

the incorrect depth decisions caused by incorrect early termination, which varies 

between 8.9% and 12.1%. The two decision trees are detailed in the Appendix C of this 

thesis. 

Fig. 6.16 shows the 100th frame of the BasketballDrill video sequence, which was 

not used in the training of the decision trees, and its corresponding TUs for each CU. 

Large, medium and small circles represent 32×32, 16×16 and 8×8 TUs, respectively. 

Grey, blue and red circles represent the luminance, blue chrominance and red 

chrominance TUs, respectively. In areas where the TUs are not shown, no prediction 

residue was generated to be encoded. The sequence was encoded with QP 32 and the 

Random Access temporal configuration. The frame shown in Fig. 6.16(a) was encoded by 

the original HM encoder, while the frame in Fig. 6.16(b) was encoded by the HM 

encoder with the RQT early termination implemented.  It is possible to perceive that 

there are few differences between the circles shown in Fig. 6.16(a) and Fig. 6.16(b), 
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which confirms that the early termination is capable of performing a correct RQT 

determination in most cases.  

Table 6.6: Characteristics of trees trained for the RQT early termination. 

CU size Depth 
Test 

Nodes 
Leaves 

Decision 
Accuracy 

Incorrect 
Depth 

32×32 10 15 16 83.4% 8.9% 

16×16 8 17 18 80.7% 12.1% 

 

6.6 Experimental Results 

6.6.1 Experimental Setup and Methodology 

In order to evaluate the performance of the three early termination methods 

proposed in this chapter, the respective decision trees were implemented in the HM 

encoder so as to build the seven schemes listed in section 6.2. The HM encoder – version 

12 (HM12) – was compiled with the Microsoft Visual Studio C++ Compiler and run on a 

clustered computer based on Intel® Xeon® E5520 (2.27 GHz) processors running the 

Windows Server 2008 HPC operating system. Ten video sequences (BasketballPass, 

BQSquare, BasketballDrill, ChinaSpeed, Kimono1, SlideEditing, BQTerrace, Cactus, 

PeopleOnStreet, and SteamLocomotive), which are described in detail in Appendix B, 

were used to validate the early termination schemes and measure their R-D-C efficiency. 

As shown in Appendix B, these sequences differ from one another in terms of frame 

rate, bit depth, and spatial resolution. It is important to highlight that, in order to 

properly validate the early terminations, none of these test sequences was used in the 

training of the decision trees. 

Compression efficiency was measured in terms of BD-rate and BD-PSNR and the 

encoding times were obtained with the Intel VTune Amplifier XE software profiler [124]. 

BD-rate, BD-PSNR and encoding time variations were computed using the 

corresponding values obtained with the unmodified HM encoder as reference. All video 

sequences were encoded with QPs 22, 27, 32, and 37, using the Random Access temporal 

configuration.  
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(a) 

 
 (b) 

Fig. 6.16: TUs in the 100th frame of the BasketballDrill video sequence encoded with 

QP 32 by (a) the original HM encoder and the (b) HM encoder with the RQT early 

termination.  
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It should be pointed out that the HM encoder is a software implementation of 

HEVC developed during the standardisation process for tests and documentation 

purposes, so that it is not optimised for real-time operation. Still, as the definition of the 

partitioning structures is a high-level decision which does not directly affect the 

operation performed at any particular HEVC encoder module (though it influences the 

number of encoding iterations performed in the RDO process), similar complexity 

reduction factors are expected to be achieved in other encoder implementations more 

efficient than HM. It is also important to notice that the current version of the HM 

encoder already includes several complexity reduction techniques, such as RMD for 

intra-frame prediction, the CBF-based early termination, an early CU termination 

algorithm, and the early SKIP mode decision algorithm. The schemes presented in this 

chapter were implemented on top of all these methods, providing additional 

computational complexity reductions, and they were compared to the original HM 

encoder with all its built-in early terminations enabled.  

The early terminations were first separately and then jointly implemented and 

evaluated. The next sub-sections present R-D-C results for the seven implementations 

listed in section 6.2. 

 

6.6.2 Rate-Distortion-Complexity Results for Single Schemes 

Table 6.7-Table 6.9 present R-D-C results for the three proposed schemes 

implemented separately. The results show that the PU early termination (Table 6.8) 

yields the largest reductions in computational complexity (CCR column), decreasing the 

total encoding time in a range from 37.4% to 68.1% (on average, 49.6%). These large 

reductions are explained by the fact that the scheme is applied to inter-predicted CUs 

and as inter-frame prediction is the most time-consuming task in the HEVC encoder, the 

complexity reductions achieved with early-terminated inter-predicted CUs have an 

important impact in the overall encoding complexity. The Coding Tree early termination 

scheme (Table 6.7) reduces the computational complexity in a range from 16.1% to 

71.3% (on average, 36.7%), while the RQT early termination (Table 6.9) yields a 

computational complexity reduction varying from 5.6% to 8.9% (on average, 7.2%).   

It is possible to notice from the results shown in Table 6.7 that the CCR values 

provided by the Coding Tree early termination are correlated with the texture 
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characteristics of the videos. Sequences with large homogeneous areas (SlideEditing and 

SteamLocomotiveTrain, for example) are those which present the largest complexity 

reductions, because such areas are usually encoded with large CU sizes, allowing the 

early termination to halt the decision process in the first Coding Tree depths without 

significant loss of encoding performance and saving a significant amount of 

computation. High-resolution videos usually have larger numbers of homogeneous 

areas, but this is not always the case. For example, BQTerrace and PeopleOnStreet are 

examples of high-resolution videos that do not present very large complexity reductions 

because they are composed of detailed texture. Videos with small spatial resolution 

(e.g., BQSquare, BasketballDrill, BasketballPass) also present smaller complexity 

reductions, since they are mostly encoded with small-sized CUs. 

The largest complexity reductions achieved with the PU early termination 

(Table 6.8) are also observed in those videos with large homogeneous areas, since in 

these cases the decision process is halted more frequently after testing the largest PU 

size (2N×2N). However, differently from the Coding Tree early termination, the 

complexity reductions achieved with the PU early termination also depend on the 

motion characteristics of the video. For example, the BQTerrace video sequence 

presents a larger complexity reduction with the PU early termination than with the 

Coding Tree early termination because it shows a scene in slow motion (mostly camera 

movement), which means that testing MSM or large PUs in reference frames is usually 

enough to find a good prediction. On the other hand, fast-motion scenes with non-

continuous movement (e.g., BasketballDrill, BasketballPass) are those that present the 

smallest complexity reductions, since more modes need to be tested. 

Notice that in some video sequences a small BD-rate decrease was noticed 

instead of the expected increase. This is the case of the BQSquare and BQTerrace 

sequences in Table 6.7, and the BQTerrace and SlideEditing sequences in Table 6.9. A 

careful analysis of the encoding results for these sequences showed that in some areas 

of some frames the early terminations lead to the use of larger partitioning structures 

than those chosen by the original HM encoder. This is the case of the 11th frame in the 

SlideEditing sequence. The analysis also showed that the motion fields for this frame 

and following ones, obtained when using the early termination procedures, were more 

coherent than those obtained when using the original encoder.  Even though these early 

decisions do not yield the best R-D efficiency possible for the current CTU, it appears 
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that the bits saved through the increased use of large partitions, especially with MSM 

and SKIP modes, result in lower BD-rates. As these particular video sequences present 

very homogeneous and moderate-motion characteristics, small or no image quality 

decreases are noticed due to these decisions, which, associated to the bit rate decrease, 

leads to the negative BD-rate values shown in the tables.  

 
Table 6.7: R-D-C results for the Coding Tree early termination. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare -0.007 0.000 23.0 -0.030 

BQTerrace -0.008 0.000 28.4 -0.027 

BasketballDrill +0.425 -0.017 30.1 1.414 

BasketballPass +0.128 -0.006 23.9 0.534 

Cactus +0.207 -0.007 41.0 0.506 

ChinaSpeed +0.131 -0.007 29.2 0.449 

Kimono1 +0.552 -0.020 44.0 1.253 

PeopleOnStreet +0.089 -0.004 16.1 0.556 

SlideEditing +0.353 -0.057 71.3 0.495 

SteamLocomotiveTrain +0.971 -0.022 60.3 1.608 

Average +0.284 -0.014 36.7 0.774 

 

Table 6.8: R-D-C results for the Prediction Unit early termination. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.299 -0.014 45.7 0.655 

BQTerrace +0.091 -0.002 54.4 0.168 

BasketballDrill +0.491 -0.020 44.6 1.101 

BasketballPass +0.449 -0.020 42.5 1.055 

Cactus +0.401 -0.012 48.6 0.827 

ChinaSpeed +1.001 -0.051 47.1 2.127 

Kimono1 +0.689 -0.024 50.9 1.353 

PeopleOnStreet +1.021 -0.048 37.4 2.733 

SlideEditing +0.206 -0.030 68.1 0.302 

SteamLocomotiveTrain +0.969 -0.022 57.2 1.694 

Average +0.562 -0.024 49.6 1.132 
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Table 6.9: R-D-C results for the RQT early termination. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.073 -0.003 8.9 0.820 

BQTerrace -0.086 +0.001 7.9 -1.093 

BasketballDrill +0.049 -0.002 6.5 0.753 

BasketballPass +0.033 -0.002 6.8 0.482 

Cactus +0.042 -0.001 7.2 0.575 

ChinaSpeed +0.131 -0.006 6.7 1.959 

Kimono1 +0.169 -0.006 5.6 2.988 

PeopleOnStreet +0.249 -0.012 6.2 4.022 

SlideEditing -0.244 +0.036 8.9 -2.739 

SteamLocomotiveTrain +0.132 -0.004 7.3 1.806 

Average +0.055 0.000 7.2 0.758 

 
To illustrate this explanation, the chart in Fig. 6.17 shows the number of bits per 

frame obtained when encoding the SlideEditing video (QP 32) with the original and the 

modified (RQT ET) HM encoders. The data shows that no differences are noticed in the 

number of bits between the two encoder versions, except for frame 11, where the 

modified encoder shows a much smaller number of bits than the original one. When 

analysing the whole video sequence, it was noticed that frame 11 is the one with the 

largest motion activity. A detailed analysis of this frame was then performed in order to 

understand the effect and its causes.  

 

Fig. 6.17: Number of bits per frame in the SlideEditing sequence (QP 32) encoded with 

the original HM and the modified HM with the RQT early termination. 
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Fig. 6.18 shows the fragment of the 11th frame in which most of the motion 

activity occurs. In Fig. 6.18(a), the PU borders and MVs are shown for the fragment 

encoded with the original HM, while in Fig. 6.18(b) such information is omitted. 

Similarly, Fig. 6.18(c) and Fig. 6.18(d) show the same area encoded the modified HM. 

Blue and violet lines represent MVs referring to frames in List 0 and List 1, respectively. 

By comparing Fig. 6.18(a) and Fig. 6.18(c), it is possible to notice that the number of 

MVs and PUs in the fragment encoded with the original HM is much larger than in the 

modified version. In the specific case of this video, and especially in this region where 

most of the motion activity occurs, the early termination led to the choice of larger 

partitioning structures and MVs than in the original encoder, which finally resulted in a 

much smaller bit rate. As this is a very homogeneous video (computer-generated 

imagery), such larger partitioning structures and MVs led to the choice of more 

coherent motion fields than in the original encoder, which can be noticed in Fig. 6.18(b) 

and Fig. 6.18(d) by the quality of the encoded images. The circled area in Fig. 6.18(b), 

for example, shows that the original encoder predicted the image area corresponding to 

the word “minor” by dividing it into several small PUs (see Fig. 6.18(a)), which were 

predicted from different areas of reference frames, resulting in something that reads as 

“mind”. Oppositely, the same circled area in Fig. 6.18(d), shows that the modified 

encoder predicted the area as a single large PU with a MV pointing to a vertically offset 

position in a previous frame (List 0), resulting in the correct word “minor”.  

When compared to the six alternative partitioning structure configurations 

tested in section 4.2, the three schemes proposed here achieve much better R-D-C 

efficiency. The alternative partitioning structure configuration of section 4.2 that 

provided a complexity reduction closer to an early termination scheme proposed in this 

chapter, namely the PU early termination, is PAR 3. While that configuration provides a 

complexity reduction of 53.5% in comparison to the original HM encoder (see Table 

4.6), the PU early termination achieves a slightly smaller complexity reduction of 49.6% 

(see Table 6.8). However, the BD-rate increase observed with PAR 3 is 18.1% (see Table 

4.5), while the increase for the PU early termination is only 0.56% (see Table 6.8). 

Clearly, the R-D-C efficiency of the method proposed in this chapter is much better. In 

fact, while the BD-rate/CCR ratio for those configurations in section 4.2 varied between 

3.2 and 44.2 (see Table 4.7), the three early terminations proposed in this chapter 

resulted in average ratios between 0.76 and 1.13, when implemented separately.  
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Fig. 6.18: Fragment of the 11th frame in the SlideEditing sequence (QP 32) encoded with 

(a, b) the original HM and (c, d) the modified HM with the RQT early termination. 

 
Fig. 6.19 shows the R-D efficiency of the three proposed schemes for four video 

sequences encoded with four different QPs (22, 27, 32, and 37). In all charts of Fig. 6.19, 

the curves represent R-D results for the original encoder (HM12), the Coding Tree early 

termination (CT ET), the PU early termination (PU ET), and the RQT early termination 

(RQT ET) implementations, respectively. The charts of Fig. 6.19(a) and Fig. 6.19(b) show 

results for the SlideEditing and BQTerrace video sequences, which are those that 

presented the best R-D-C efficiency considering the three early terminations. The two 

remaining charts (Fig. 6.19(c) and Fig. 6.19(d)) are for the Kimono1 and PeopleOnStreet 

sequences, which are those that presented the worst R-D-C efficiency results. It is 

perceptible that the R-D efficiency achieved with the three proposed early terminations 

is very close to that of the original encoder, since the curves overlap in all charts 

presented in Fig. 6.19. A closer detailed look (300% zoom boxes) shows that the curves 

overlap even in the worst-case video sequences.  

(c) (d)

(a) (b)
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Fig. 6.19: Rate-Distortion efficiency for the (a) SlideEditing, (b) BQTerrace, (c) Kimono1, 

and (d) PeopleOnStreet video sequences encoded with the original HM and the three 

early terminations implemented separately. 

 

6.6.3 Rate-Distortion-Complexity Results for Joint Schemes 

The early terminations were jointly implemented in HM to investigate if by 

combining the different methods the individual complexity reductions added or if the 

use of some methods hindered the operation of the others, resulting in a total 

complexity reduction smaller than the sum of the partial reductions [20]. 

Table 6.10-Table 6.12 present results for three schemes that use two early 

terminations in conjunction: Coding Tree and PU early terminations, PU and RQT early 

terminations, and Coding Tree and RQT early terminations, respectively. Finally, results 

for an implementation that aggregates the three early terminations are presented in 

Table 6.13. As expected, the largest computational complexity reductions are achieved 

when all the early termination schemes are jointly implemented in HM. In this case, the 
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computational complexity reductions vary from 46.4% up to 87.6% (65.3%, on average, 

as shown in Table 6.13). Notice that the reduction achieved is not equivalent to the sum 

of the reductions achieved with each scheme separately. This happens due to the nature 

of the partitioning structures used in HEVC. For example, when constraining the 

number of R-D evaluations performed to decide the best Coding Tree structure, the 

overall number of PU partitioning evaluations is also decreased, since PUs are defined 

within CUs. Similarly, the number of RQT evaluations also decreases because CUs are 

used as roots for RQTs and so if there are less CUs with residues to be coded, there will 

be less RQTs whose optimal partition structure needs to be found. 

In terms of R-D efficiency, the scheme with all early terminations presented the 

largest losses in comparison to the remaining versions, as expected. However, the 

average BD-rate increase of 1.36% is still negligible in face of the considerable 

computational complexity reduction achieved, 65.3%. For this reason, this configuration 

would be the most advisable solution for an implementation that admits a small loss in 

R-D efficiency. When compared to the alternative partitioning structure configurations 

tested in section 4.2, the scheme presents much better R-D-C efficiency. PAR 3 and PAR 4 

of section 4.2 are the configurations that provided a complexity reduction closer to the 

achieved with the scheme that implements all early terminations. The two 

configurations provide a complexity reduction of 53.5% and 74.1%, respectively (see 

Table 4.6), while the joint early terminations achieve a reduction of 65.3% (see Table 

6.13). Nevertheless, the BD-rate increases of PAR 3 and PAR 4 are 18.1% and 36% (see 

Table 4.5), respectively, while the increase for the joint early terminations scheme is 

only 1.36% (see Table 6.13). 

Fig. 6.20 shows R-D efficiency results for the four joint implementations 

described above. In all charts of Fig. 6.20, the curve labelled as HM12 represents R-D 

results for the original encoder, while the curves labelled as CT+PU ET, PU+RQT ET, 

CT+RQT ET, and CT+PU+RQT ET represent R-D results for the joint Coding Tree and PU 

early terminations, the joint PU and RQT early terminations, the joint Coding Tree and 

RQT early terminations, and the joint implementation with the three early terminations, 

respectively. The charts in Fig. 6.20(a) and Fig. 6.20(b) show results for the BQTerrace 

and BQsquare sequences, respectively, which presented the best R-D-C results in the 

four joint schemes. Fig. 6.20(c) and Fig. 6.20(d) show results for the Kimono1 and 

PeopleOnStreet sequences, respectively, which presented the worst R-D-C efficiency 



173 

 

 
 

results. As in the previous comparisons for the schemes implemented separately, the R-

D efficiency achieved in the joint cases is also very close to that of the original encoder. 

Even in the worst-case videos, a detailed look (300% zoom) shows that the curves are 

very close. 

 
Table 6.10: R-D-C results for joint Coding Tree and PU early terminations. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.378 -0.017 54.3 0.697 

BQTerrace +0.283 -0.006 72.1 0.393 

BasketballDrill +1.295 -0.052 55.7 2.324 

BasketballPass +0.873 -0.038 50.9 1.717 

Cactus +0.999 -0.031 64.0 1.561 

ChinaSpeed +1.410 -0.072 56.3 2.505 

Kimono1 +2.745 -0.096 67.7 4.052 

PeopleOnStreet +1.463 -0.068 43.3 3.382 

SlideEditing +1.293 -0.190 86.6 1.493 

SteamLocomotiveTrain +2.573 -0.059 77.8 3.305 

Average +1.331 -0.063 62.9 2.118 

 
Table 6.11: R-D-C results for joint PU and RQT early terminations. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.378 -0.018 51.3 0.737 

BQTerrace +0.188 -0.005 58.9 0.320 

BasketballDrill +0.446 -0.018 48.2 0.925 

BasketballPass +0.735 -0.032 46.6 1.580 

Cactus +0.442 -0.013 52.7 0.839 

ChinaSpeed +1.206 -0.061 50.5 2.388 

Kimono1 +0.876 -0.031 53.9 1.627 

PeopleOnStreet +1.269 -0.059 40.8 3.113 

SlideEditing +0.075 -0.011 72.1 0.104 

SteamLocomotiveTrain +1.408 -0.032 60.9 2.311 

Average +0.702 -0.028 53.6 1.311 
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Table 6.12: R-D-C results for joint Coding Tree and RQT early terminations. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.091 -0.004 30.3 0.301 

BQTerrace -0.028 0.000 56.4 -0.050 

BasketballDrill +0.453 -0.018 33.6 1.349 

BasketballPass +0.074 -0.003 29.0 0.255 

Cactus +0.284 -0.009 44.5 0.637 

ChinaSpeed +0.242 -0.012 33.1 0.733 

Kimono1 +0.839 -0.030 46.7 1.796 

PeopleOnStreet +0.396 -0.018 20.9 1.895 

SlideEditing +0.544 -0.072 73.2 0.744 

SteamLocomotiveTrain +0.553 -0.015 62.6 0.884 

Average +0.345 -0.018 43.0 0.802 

 
Table 6.13: R-D-C results for joint Coding Tree, PU and RQT early terminations. 

Video Sequence 
BD-rate  

(%) 
BD-PSNR  

(dB) 
CCR (%) 

Ratio  
BD-rate/CCR 

BQSquare +0.406 -0.019 59.0 0.689 

BQTerrace +0.282 -0.007 74.4 0.379 

BasketballDrill +1.182 -0.048 58.3 2.029 

BasketballPass +0.958 -0.042 54.1 1.773 

Cactus +1.006 -0.031 66.3 1.517 

ChinaSpeed +1.547 -0.078 58.8 2.629 

Kimono1 +3.013 -0.105 69.2 4.355 

PeopleOnStreet +1.740 -0.081 46.4 3.752 

SlideEditing +0.920 -0.134 87.6 1.050 

SteamLocomotiveTrain +2.493 -0.058 79.1 3.154 

Average +1.355 -0.060 65.3 2.075 



175 

 

 
 

 

Fig. 6.20: Rate-Distortion efficiency for the (a) BQTerrace, (b) BQSquare, (c) Kimono1, 

and (d) PeopleOnStreet video sequences encoded with the original HM and the four joint 

early termination schemes implemented. 

 

6.7 Results Discussion 

To quantify the quality of the methods proposed in this section, we compared 

their performance with those of the best performing HEVC complexity reduction 

methods reviewed in chapter 3, which also operate through modifications in the 

partitioning structure decision process. Only those works that provide comparable 

results (i.e., BD-rate and complexity reduction values using the original HM encoder as 

reference) were considered in the analysis. All the compared works were also tested 

with the Random Access configuration, QPs 22, 27, 32, 37, and were tested for at least 

seven video sequences with at least four different spatial resolutions, except for [98], 

which was kept in the comparisons because it was the only comparable work in its 

category. 
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Table 6.14 presents the results of these experiments in terms of BD-rate, 

computational complexity reduction (CCR column) and the ratio between the two values 

for all compared works. Since each method under evaluation presents different values 

for BD-rate and complexity reduction, the ratio between these two quantities 

(BD-rate/CCR) was used to permit comparisons of the competing complexity reduction 

methods in terms of R-D efficiency loss per computational complexity saved. Using this 

performance indicator, a method which presents a given BD-rate and CCR is ranked 

higher than some other method with higher BD-rate but equal (or smaller) CCR (i.e., 

higher BD-rate/CCR ratio). The methods are grouped according to the partitioning 

structure that is constrained to achieve the desired complexity reduction. To ease the 

comparisons, the average results for the schemes proposed in this chapter are also 

reproduced at the end of each group. We can conclude from the data in Table 6.14 that 

all the schemes proposed in this chapter achieve better BD-rate/CCR ratios than the 

competing methods in their corresponding category. Even though an extensive research 

has been done in the available literature, no works have been found for comparisons in 

the categories PU+RQT ET, CT+RQT ET and CT+PU+RQT ET. 

In the Coding Tree early termination category, the best related work [85] has a 

BD-rate/CCR ratio equals to 1.2, which is still larger than the ratio of the scheme 

proposed in section 6.3 (0.77). Besides, the method in [85] is only applicable to intra-

predicted CUs, which means that its complexity reductions are only achieved in All Intra 

temporal configurations. In the PU early termination category, all related works present 

a ratio at least twice larger the obtained with the PU early termination scheme proposed 

in this chapter. Moreover, the PU early termination scheme presented in this thesis 

achieves a computational complexity reduction equal to or greater than that obtained in 

the related works. Finally, although the only comparable RQT early termination work 

achieves complexity reduction levels larger than those of the proposed RQT early 

termination, the cost of such reductions in terms of R-D efficiency loss is too large, 

producing a BD-rate/CCR ratio equals to 6.36, which is 8.4 times larger than the ratio of 

scheme proposed in section 6.5 (0.76). 

The four joint early termination schemes proposed in this chapter are listed in 

the last lines of Table 6.14 and compared to joint Coding Tree and PU early termination 

methods found in the literature. We can observe that all joint schemes proposed in this 

chapter achieve better results in both terms of R-D efficiency and computational 
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complexity reduction. The proposed joint scheme that integrates the three early 

terminations achieves complexity reductions that largely exceed those obtained in other 

related works, while still maintaining a low BD-rate increase and, consequently, BD-

rate/CCR ratios smaller (i.e., better) than those achieved by the comparable joint 

implementations. 

 
Table 6.14: Comparisons with related works. 

Category Reference BD-rate (%) CCR (%) 
Ratio  

BD-rate/CCR 

 
CT ET 

Seunghyun [85] +0.6 50 1.20 

J.-Hyeok [87] +1.2 48 2.50 

Goswami [88]  +1.7 38 4.42 

Jian [89] +1.9 43 4.42 

Proposed +0.28 37 0.77 

PU ET 

Vanne [93]  +1.3 51 2.55 

Zhao [122] +5.9 50 11.8 

Khan [97] +1.3 44 2.88 

Proposed +0.56 50 1.13 

RQT ET 
Yunyu [98] +1.4 22 6.36 

Proposed +0.05 7.2 0.76 

CT+PU ET 

Wei-Jhe [100]  +5.1 43 5.11 

Liquan [101] +1.5 42 3.55 

Xiaolin[102]  +1.9 41 4.54 

Xiaolin [131] +1.4 45 3.11 

Proposed +1.33 63 2.12 

PU+RQT ET Proposed +0.7 54 1.31 

CT+RQT ET  Proposed +0.34 43 0.80 

CT+PU+RQT ET Proposed +1.36 65 2.07 

 

6.8 Conclusions 

This chapter presented a set of early termination schemes that reduce the 

computational complexity of the HEVC encoding process. All the schemes were 

developed making use of DM tools for the construction of decision trees that exploit 

intermediate encoding results to decrease the computational complexity involved in the 

decision of the best Coding Tree, PU and RQT structures. One single early termination 

scheme was separately developed and implemented in the HM software for each 
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partitioning structure decision after performing an extensive analysis on the 

information gain yield by each possible attribute. The three implementations were then 

combined in pairs and finally all together in joint schemes, aiming at further reducing 

the HEVC computational complexity. 

The effectiveness of the approach and the performance of the decision trees was 

validated through extensive experiments using a set of video sequences different from 

those used in the training phase. Experimental results have shown that an average 

complexity reduction of 65% can be achieved when the three early termination schemes 

are jointly implemented, with a compression efficiency loss of only 1.36% (BD-rate). 

Complexity reductions that go beyond those achieved in any other previously published 

comparable works were achieved through the proposed early termination methods, 

with smaller losses in terms of compression efficiency. 

The proposed schemes do not require any computationally intensive operations 

to be added to the HEVC encoding process and the decision trees use only intermediate 

encoding results computed during normal HEVC encoding. Therefore, these early 

termination schemes can be seamlessly incorporated to any other HEVC encoder 

implementation with very small increase in the computational burden of the encoding. 

For reference, all trained decision trees were made available in Appendix C as 

supplemental material to this chapter. 

 

 

  



 

 

Chapter 7 

 

 

7 Complexity Scaling and Reduction 

Applied to Encoding Time Control 

The main goal of this chapter is to combine the findings and methods proposed 

in chapters 4, 5 and 6, to build a control system that dynamically adjusts the encoder 

operation to keep the encoding time under a specific target. This system will be used as 

a showcase for the applicability of this thesis’ major contributions described in the 

previous chapters.  

Chapter 4 presented an R-D-C analysis that identified a set of tools and 

parameter settings that have a large influence in the overall encoding computational 

complexity and showed that large complexity reductions can be achieved with small 

compression efficiency loss by choosing judiciously those settings. Chapter 4 has also 

shown that the HEVC frame partitioning structures are responsible for a very large 

share of its encoding complexity. These observations motivated the introduction of a set 

of complexity scaling and reduction methods described in chapters 5 and 6 that operate 

by constraining the decision process followed to arrive at the optimal topology of these 

structures in R-D sense. 

However, there is a remaining important problem of practical nature related to 

the subject of this dissertation: how can we combine the best low-complexity encoding 

tool configurations and the proposed complexity scaling and reduction algorithms to 

guarantee that encoding times are kept below a pre-defined target? This problem is 

addressed in this chapter, which presents an example of a system designed to control 

the encoding time per GOP based on the computational complexity reduction and 

scaling methods proposed in previous chapters.  
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The design of this encoder control system starts by the definition of a set of 

encoder operational configurations that combine different arrangements of encoding 

tools (based on the findings of chapter 4) and different schemes for early terminating 

the partitioning structure decision process (based on the decision trees of chapter 6). 

Then, each possible configuration is tested in an offline training process that is 

performed to derive the best configuration options in terms of R-D-C efficiency. These 

configurations are then sorted in descending order of encoding time. The encoding time 

control algorithm is then implemented using these configurations to adjust, at a medium 

granularity level, the time spent by the HEVC encoder to process each GOP. Once an 

operational configuration is chosen, a finer adjustment of the encoding time control is 

performed based on the CCUPU method proposed in chapter 5. This finer control is 

done by changing the number of constrained CTUs per frame, which allows achieving 

encoding times per GOP closer to the target time. 

The high-level diagram of the encoding time control system proposed in this 

chapter is presented in Fig. 7.1. The inputs of the encoding time control are a target time 

per GOP, which might be specified from an external entity like an operation system 

process scheduler, and the encoding time of previously encoded GOPs (or a function of 

previous GOPs encoding times). The necessary complexity reduction factor is calculated 

according to the difference or ratio of these two input values. Based on this factor, an 

encoder operating point is chosen in such a way that the encoding time is adjusted 

towards the desired value.  

Section 7.1 explains how the encoder operating points were obtained and 

section 7.2 presents the proposed encoding time controller. Experimental results that 

illustrate the control system operation and quantify its performance are presented and 

analysed in section 7.3.  

 

Fig. 7.1: Encoding time control system integrated with the HEVC encoder. 
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7.1 Finding the Encoder Operating Points  

As previously explained, improved R-D efficiency was achieved through the 

addition of new tools and encoding features, so that the resulting encoder supports 

several configurations at the cost of different levels of computational complexity, as 

shown in chapter 4. If computational complexity is to be considered in the selection of 

encoding parameters, a new dimension must be added to the RDO problem, resulting in 

an R-D-C optimisation (RDCO). However, RDCO is a very difficult task to be performed 

in real-time encoding, mainly because, differently from the rate (R) and distortion (D) 

variables, computational complexity cannot be retrieved once spent, so that it is not 

possible to go back and try another parameterisation without incurring in more 

computational cost. On the other hand, not testing all possibilities can lead to a 

significant decrease in the compression efficiency if a careful selection of tested 

configurations is not performed. 

Fig. 7.2 shows the R-D-C space obtained when encoding a certain video sequence 

using a set of 240 different configurations. Each point in the chart represents the R, D, 

and C values of a given configuration in terms of bit rate (kbps), distortion (MSE) and 

encoding time (seconds), respectively. If a point is not outscored by any other in the 

three terms (R, D, and C) it is said to be a non-dominated point. For example, take the 

point labelled as P in Fig. 7.2. There is no other point in the chart that possesses, 

simultaneously, a smaller distortion, a smaller bit rate, and a smaller encoding time than 

P and for this reason it is called a non-dominated point. All non-dominated points in Fig. 

7.2 are shown as red points and they correspond to the so-called Pareto frontier5, which 

means that they are those that present the best R-D-C efficiency among all tested cases 

and thus should be selected for use in an R-D-C optimised encoding time control system. 

The next sub-sections explain how these best-performing points were obtained and 

utilised in the control system proposed in this chapter to adjust the encoding time per 

GOP.  

                                                           
5 The Pareto frontier is composed of every point that is Pareto-efficient (i.e., not dominated by any other 

alternative). A point A is said to dominate B if A outscores B regardless of the trade-off between A and B. In 

other words, if A is better and cheaper than B, A dominates B. In the specific case of Fig. 7.2, a configuration 

A dominates another configuration B if it results in a smaller distortion, in a smaller bit rate and in a smaller 

encoding time than B. All configurations that are not dominated by any other are thus called Pareto-efficient 

configurations. 
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Fig. 7.2: Example of R-D-C space and 3-D Pareto frontier for a set of 240 encoding 

parameter configurations. 

 

7.1.1 Parameters Selection for R-D-C Analysis 

In order to implement the encoding time control system presented in this 

chapter, the encoding configurations that yield the best R-D efficiency for a given 

computational complexity were selected through an extensive set of offline evaluations. 

Even though the HM encoder presents a large number of configuration parameters, only 

those identified in chapter 4 as having the largest computational complexity impact 

were selected for the experimental study described in this section. Besides those 

parameters, the three single early termination schemes proposed in chapter 6 were also 

included in the R-D-C analysis, so that three parameters were added to the HM encoder 

representing the activation or deactivation state of each early termination scheme. The 

R-D-C analysis could include several other encoding parameters of HM, but, as shown 

later in this chapter, a limited subset of them had to be chosen with care to make this 

experimental analysis feasible in a reasonable time. Expanding the set of parameter to 

larger numbers would call for a very large number of experimental evaluations of 

encoder performance due to the rapid growth of the number of configuration 

possibilities with the number of parameters.  
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Section 4.1.2 examined 17 configurations and identified seven which, when 

used, resulted in an increase of the encoding computational complexity in a range from 

5% to 53%, depending on the video sequence used (see Fig. 4.1). The remaining 

configurations did not alter the encoding computational complexity significantly. The 

seven most complex configurations in section 4.1.2 are identified as TEST 2 – TEST 7 

and TEST 14 and they correspond, respectively, to modifications in the Inter 4×4, Search 

Range, Bi-prediction Refinement, Hadamard ME, Fast Encoding, Fast Merge Decision, and 

AMP encoding parameters. In section 4.1.4 the accumulated effect of enabling each tool 

was also analysed and it was concluded that the same seven parameters were 

responsible for the largest increases in computational complexity when compared to a 

baseline configuration (see Fig. 4.4).  

Due to their large impact in computational complexity, these seven parameters 

are the best candidates for use in the construction (by combinations and variations of 

their values) of the configurations to be used in the R-D-C analysis presented in this 

section. However, only three of them could actually be analysed6: the Search Range (SR), 

the Bi-prediction Refinement (BPR) and the Hadamard ME (HME). They are respectively 

referred as SR, BPR and HME from now on in this chapter. Similarly, the three early 

termination schemes described in chapter 6, namely the Coding Tree Early Termination 

(CTET), the Prediction Unit Early Termination (PUET) and the Residual Quadtree Early 

Termination (RQTET), were used to define the configurations. In the experiments that 

will be described shortly, these six parameters can take values from the following sets: 

 SR  {64, 32, 16, 8, 4}; 

 BPR  {4, 2, 1}; 

 HME  {on, off}; 

 CTET  {on, off}; 

 PUET  {on, off}; 

 RQTET  {on, off}. 

                                                           
6 The Inter 4×4 parameter was not included in the R-D-C analysis because it is not supported in current HM 

versions. The configurations modifying the Fast Encoding and the Fast Merge Decision parameters in 

chapter 4 actually disabled them (thus increasing the computational complexity and decreasing R-D 

efficiency), so that they are always enabled in the CTC-based configurations used in the R-D-C analysis 

presented in this chapter. The AMP parameter controls the use of Asymmetric Motion Partitions, which is 

already controlled by the Prediction Unit Early Termination (PUET). 
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Table 7.1 shows part of the encoding configurations that were created by 

modifying the value of each parameter, one at a time. Every parameter value was tested 

with all possible combinations of values of the remaining parameters, totalising 240 

encoding configurations, all of which are detailed in Appendix D.  

 
Table 7.1: Encoding configurations tested in the R-D-C analysis. 

Config. SR BPR HME CTET PUET RQTET 

1 64 4 on off off off 

2 32 4 on off off off 

3 16 4 on off off off 

4 8 4 on off off off 

... ... ... ... ... ... ... 

31 64 4 on on off off 

... ... ... ... ... ... ... 

240 4 1 off on on on 

 

7.1.2 Operating Points at the Pareto Frontier 

Each one of the 240 configurations mentioned in the previous section was used 

to encode four high-resolution test video sequences (BQTerrace, Cactus, PeopleOnStreet, 

SteamLocomotiveTrain), with QPs 22, 27, 32, 37, and the Random Access temporal 

configuration, totalising 3,840 encodings. Bit rate, PSNR and encoding time 

corresponding to each encoding run and each video sequence were saved and used to 

calculate the average BD-rate, BD-PSNR and computational complexity for each 

configuration, using the base configuration 1 of Table 7.1 as the reference. Detailed 

results for each configuration are presented in Appendix D. 

In a real-case encoder implementation, either constant bit rate (with variable 

video quality) or constant video quality (with variable bit rate) are used, so that not all 

points in the R-D-C space must be considered simultaneously in the analysis to find the 

best-performing configurations. The R-D-C analysis was thus simplified by eliminating 

either the rate or the distortion term by comparing BD results in two separate analyses. 

The first analysis considers a constant bit rate scenario, thus providing a Distortion-

Complexity (D-C) space, while the second analysis considers variable bit rate with 

constant quality, which characterises a Rate-Complexity (R-C) space. 
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Fig. 7.3 shows a chart in which the 240 configurations are plotted as blue points 

in a D-C space. As configuration 1 was used as reference to compute both the BD-PSNR 

and the normalised computational complexity for each case, it appears in the rightmost 

corner of the plot, with minimum encoding performance reduction and maximum 

computational complexity. In other words, configuration 1 yields the best image quality 

and the largest computational complexity among all cases. Configuration 240 is in the 

other extreme of the chart, with the largest loss of encoding performance (-0.15 dB) and 

the smallest normalised computational complexity (0.37). The points connected by the 

dashed line in Fig. 7.3 represent the configurations in the upper convex hull of the D-C 

space, which are those with the best trade-off between quality and complexity. Red-

circled configurations (1, 31, 32, 97, 212, 222, and 237) are those selected as best 

options in a possible D-C optimised system. This is because although configurations 238, 

239 and 240 are in the upper convex hull, they incur in a very large increase in 

distortion, so that there is no advantage in including them in a D-C optimised scheme. 

Fig. 7.4 presents a chart similar to the one in Fig. 7.3, but shows BD-rate results 

and the lower convex hull of the R-C space. Similarly, configuration 1 is the one that 

yields that best compression rates and the largest computational complexity. On the 

other hand, configuration 240 presents the largest BD-rate increase (4.6%) and the 

smallest normalised computational complexity (0.37). Notice that most of the points 

(i.e., encoding configurations) that compose the lower convex hull in Fig. 7.4 also belong 

to the upper convex hull in Fig. 7.3. The only exception is configuration 217, which 

appears only in the lower convex hull of Fig. 7.4. The coincidence of points happens 

because each BD measure takes into consideration the variation of both bit rate and 

image quality in its calculation (i.e., a variation in bit rate will affect both BD-PSNR and 

BD-rate values), which reveals that the convex hull configurations in both charts yield 

the best R-D-C results among all cases. 

Notice that configuration 31 incurs in almost no efficiency loss in both Fig. 7.3 

and Fig. 7.4. In a complexity-constrained encoder, there would be no reason to select 

configuration 1 instead of 31, since the latter results in virtually the same R-D efficiency 

at a much smaller computational complexity. Configuration 31 is an alternative, less 

complex configuration that does not introduce R-D efficiency loss with respect to 

configuration 1. Table 7.1 shows that configurations 1 and 31 only differ in the 

activation of CTET.  
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Fig. 7.3: Upper convex hull of the D-C space for the 240 encoder configurations tested. 

 

Fig. 7.4: Lower convex hull of the R-C space for the 240 encoder configurations tested. 
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It is possible to perceive that as we traverse the frontier line increasing the 

configuration number in the convex hulls, the normalised computational complexity 

decreases and the encoding performance diminishes. This can be used to allow 

complexity scaling for encoding time control in a system that admits some R-D 

efficiency loss by adaptively selecting an encoder configuration among those belonging 

to the convex hulls of Fig. 7.3 and Fig. 7.4 (i.e., configurations 31, 32, 97, 212, 217, 222, 

and 237). However, as one can notice in both charts, there are not too many points 

sufficiently close to each other to permit controlling the encoding time with at least 

medium granularity. For example, the average computational complexity difference 

between configurations 32 and 97 is 25%, which is a rather large value.  

This problem was solved by selecting the configurations belonging to the Pareto 

frontier, which was previously defined. In the specific case of Fig. 7.3, a configuration A 

dominates another configuration B if it results in a smaller BD-PSNR and in a smaller 

computational complexity than B. In the case of Fig. 7.4, a configuration A dominates a 

configuration B if it yields a smaller BD-rate and a smaller computational complexity 

than B. By selecting the points that belong to the Pareto frontier (i.e., non-dominated 

points), we can increase the amount of configurations selected for complexity scaling 

through the inclusion of points that are close to the convex hull frontier line (dashed 

lines in Fig. 7.3 and Fig. 7.4). 

Fig. 7.5 and Fig. 7.6 show the Pareto frontier corresponding to the D-C and the 

R-C charts, respectively. All points that belong to the frontier are circled in red. Except 

for the configuration that incurs in virtually no R-D efficiency loss (configuration 31), 

the remaining selected configurations are close enough to be used in a medium-

granularity encoding time control system. Configurations 238, 233, 234, and 239 would 

not be useful, since they present almost the same computational complexity as 

configuration 232 and result in a much larger R-D efficiency loss. For this reason, they 

were not included in the set of encoder configurations selected for use in the encoding 

time control system presented in the next section.  

Table 7.2 shows the 27 selected configurations that belong to the Pareto frontier 

of the plots shown in Fig. 7.5 and Fig. 7.6. The table shows the value for each parameter 

and the resulting normalised computational complexity, BD-PSNR and BD-rate for the 

configurations, which are listed in descending  order  of  computational  complexity  and  
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Fig. 7.5: Pareto frontier of the D-C space for the 240 encoder configurations tested. 

 

Fig. 7.6: Pareto frontier of the R-C space for the 240 encoder configurations tested. 



189 

 

 
 

Table 7.2: Parameters, normalised computational complexity, BD-PSNR and BD-rate for 

the configurations belonging to the Pareto frontier. 

p Conf. SR BPR HME CTET PUET RQTET 
Normal. 

Complex. 
BD-PSNR 

(dB) 
BD-rate 

(%) 

1 1 64 4 on off off off 1 0 0 

2 31 64 4 on on off off 0.723 -0.002 0.086 

3 32 32 4 on on off off 0.698 -0.003 0.124 

4 37 32 2 on on off off 0.680 -0.007 0.239 

5 42 32 1 on on off off 0.673 -0.006 0.256 

6 156 64 2 on on off on 0.656 -0.010 0.338 

7 152 32 4 on on off on 0.648 -0.011 0.369 

8 157 32 2 on on off on 0.628 -0.012 0.424 

9 162 32 1 on on off on 0.625 -0.014 0.482 

10 61 64 4 on off on off 0.586 -0.018 0.572 

11 72 32 1 on off on off 0.551 -0.018 0.600 

12 181 64 4 on off on on 0.539 -0.022 0.659 

13 187 32 2 on off on on 0.508 -0.023 0.734 

14 91 64 4 on on on off 0.481 -0.026 0.823 

15 96 64 2 on on on off 0.471 -0.026 0.832 

16 92 32 4 on on on off 0.465 -0.027 0.865 

17 97 32 2 on on on off 0.455 -0.027 0.879 

18 102 64 1 on on on off 0.451 -0.029 0.939 

19 211 64 4 on on on on 0.447 -0.031 0.969 

20 212 32 4 on on on on 0.431 -0.032 1.018 

21 217 32 2 on on on on 0.420 -0.034 1.091 

22 222 32 1 on on on on 0.417 -0.034 1.133 

23 218 16 2 on on on on 0.415 -0.045 1.425 

24 223 16 1 on on on on 0.412 -0.047 1.472 

25 231 64 2 off on on on 0.400 -0.048 1.563 

26 232 32 2 off on on on 0.384 -0.049 1.601 

27 237 32 1 off on on on 0.380 -0.049 1.616 

 

indexed by the p column. Notice that the BD-PSNR and BD-rate values of configuration 

31 are very small and provide average computational complexity reduction of 

approximately 28%. The remaining configurations yield computational complexity 

reductions varying from 30% to 62% and incur in BD-PSNR decreases and BD-rate 

increases of up to 0.049 dB and 1.616%, respectively. 
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7.2 Encoding Time Control System 

As Fig. 7.5, Fig. 7.6 and Table 7.2 have shown, there is a very small compression 

efficiency loss associated to configuration 31, so that if any level of computational 

complexity reduction is required to maintain encoding times below a determined target, 

the first encoder operating point should be configuration 31. From configuration 31 

onwards, larger encoding time reduction levels can be achieved, but more expressive 

losses in compression efficiency are noticed. This way, the implementation presented in 

this section was designed to operate in two modes: the first one, called high-efficiency 

encoding time reduction (HETR), sets the encoder to operate at a fixed configuration 

(31), providing a non-adjustable computational complexity reduction; the second, called 

low-complexity encoding time control (LCTC) mode, adjusts the encoder to operate with 

configurations that present smaller computational complexity than configuration 31, 

utilising the encoding time control system described in this section. 

Fig. 7.7 presents the detailed diagram of the encoding time control system used 

in the LCTC mode. All blocks within the controller will be explained in the next sub-

sections, using this figure as reference. Section 7.2.1 explains how the system chooses 

the encoder operating configuration (Medium-granularity encoding time control block, 

in Fig. 7.7) and section 7.2.2 shows how the CCUPU method was combined with it (Fine-

granularity encoding time control block, in Fig. 7.7). The operations of the Complexity 

reduction factor computation block are explained in both sections 7.2.1 and 7.2.2.  

 

7.2.1 Medium-Granularity Time Control 

The encoding process starts at full computational complexity and the first GOP is 

encoded with configuration 1 (p(i) = 1, where i is the current GOP index). Then, its 

encoding time is compared to the target time, which is an input to the algorithm. If there 

is need for complexity reduction (i.e., the encoding time is larger than the target), the 

HETR mode is activated and the next configuration in Table 7.2 is chosen for the next 

GOP (i.e., p(i) = 2, configuration 31). The time spent encoding the following GOPs is 

continuously observed and if further reductions are necessary to reach the target, the 

LCTC mode is activated and the encoding time control starts.  
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Fig. 7.7: Detailed encoding time control system integrated with the HEVC encoder. 

 

The encoder operating point to be used while encoding the next GOP is chosen in 

the block named as Medium granularity encoding time control in Fig. 7.7, based on the 

ratio RT(i-1) between the target time (TT) and the observed time (TW(i-1)), a weighted 

average of the encoding times of the last two GOPs, calculated as shown in (Eq. 55) and 

as illustrated in the block Complexity reduction factor computation of Fig. 7.7. The 

weighted average TW(i-1) is calculated as in (Eq. 56), where TA(i-1) and TA(i-2) are the 

encoding times of GOPs i-1 and i-2 (i is the current GOP index). The dark grey, dashed 

boxes corresponding to TA(i-1) and TA(i-2) in Fig. 7.7 are memory elements that store the 

two most recent GOP encoding times. The weights 2 and 1 applied to TA(i-1) and TA(i-2) in 

the average calculation were manually chosen through experimentation. If the 

calculated value of RT(i-1) is larger than 1, the encoding time is below the target, so that 

more computational resources can be employed in the encoding process of the current 

GOP. On the other hand, if RT(i-1)  is smaller than 1, the encoding time must be decreased 

when encoding the current GOP to achieve the target.  
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Once RT(i-1) is computed, it is used to index a look-up table (LUT) containing the 

pre-calculated ratios between the normalised computational complexities of the 

configurations presented in Table 7.2 (Normal. Complex. column in the table) to 

determine which one should be used in the current GOP to adjust the encoding time. 

The pre-computed LUT is presented in Table D.2 of Appendix D and is illustrated as 

Update Table in Fig. 7.7. In Table D.2, the value of each cell is calculated as the ratio 

between the normalised computational complexity (shown in Table 7.2) of those 

configurations with p index indicated by the column and the line number in Table D.2. 

For example, the ratio between configurations with p index 3 and 2 in Table 7.2 is 0.965 

and this value is shown in the cell located at the intersection of column 3 and line 2 in 

the LUT. This ratio means that configuration 3 is 3.5% less complex than configuration 

2, and this information is used for complexity scaling. Both the values of RT(i-1) and the 

encoder operating point used in the previous GOP (p(i-1)) are used to index the LUT. The 

p(i-1) value indicates the line where the closest value to RT(i-1) must be searched. Once it is 

found, the column number where it is located indicates the p(i) operating point to be 

used in the current GOP. 

As an example of operation, let us consider that the encoder operated in 

configuration 72 (Normal. Complex. = 0.551, according to Table 7.2) in the previous GOP, 

which is indexed by p(i-1) = 11. If (Eq. 55) returns, for example, an RT(i-1) value equals to 

0.9, it means that the encoding time was about 11% above the target. By looking at line 

11 (p(i-1) = 11) in Table D.2, it is possible to see that the closest value to 0.9 in that line is 

0.922, which is located in column 13. This means that configuration 13 yields a 

computational complexity reduction of 7.8% in relation to configuration 11, as can be 

confirmed in Table 7.2 (p = 13 yields a normalised computational complexity of 0.508, 

which is 7.8% smaller than 0.551). The value of p(i) is thus set to 13. 

With the new configuration index p(i), a second LUT called Configuration Table in 

Fig. 7.7 is accessed to find the encoding parameters to be used in the current GOP. The 

Configuration Table is simply composed of the p, SR, BPR, HME, CTET, PUET and RQTET 

columns of Table 7.2. The value of p(i) is then used to index the table in the p column and 
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the parameter values are retrieved and used to reconfigure the HEVC encoder (SRp(i), 

BPRp(i), HMEp(i), CTETp(i), PUETp(i) and RQTETp(i), in Fig. 7.7). 

Fig. 7.8 presents the pseudo-code for the algorithm implemented in HM to allow 

medium-granularity encoding time control. From lines 01 to 12, the algorithm monitors 

whether any encoding time reduction is needed. In line 01, the configuration index p(i)  is 

set to 1, so that no encoding time reduction is applied to the first GOP. If encoding time 

reduction is never required (i.e., the test in line 05 always returns false), the p(i)  index 

will keep set to 1 during all the encoding process, so that the unmodified encoding 

process will always take place. Otherwise, whenever the algorithm detects that an 

encoding time reduction is required (i.e., the test in line 05 returns true), the HETR 

mode is activated and p(i) is set to 2 (line 07), which means that configuration 31 of 

Table 7.2 is used to encode the next GOP. 

 

 

Fig. 7.8: Pseudo-code for the medium-granularity encoding time control. 

encode(video, TT):

01 i ← 1, p(i) ← 1

02 encode GOP(i) with SRp(i), BPRp(i), HMEp(i),

CTETp(i), PUETp(i), RQTETp(i)

03 TA(i) ← time spent to encode GOP(i)

04 i ← i + 1

05 if(TA(i-1) > TT)

06 if(p(i-1) = 1) // HETR mode

07 p(i) ← 2

08 go to line 02

09 else // LCTC mode

10 go to line 13

11 else

12 go to line 02

13 calculate RT(i-1)

14 p(i) ← the p configuration indexed by RT(i-1)

15 encode GOP(i) with SRp(i), BPRp(i), HMEp(i),

CTETp(i), PUETp(i), RQTETp(i)

16 TA(i) ← time spent to encode GOP(i)

17 i ← i + 1

18 go to line 13
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If further complexity reductions are required after the HETR mode is already 

active (i.e., the test in line 05 returns true and p(i-1) is set to 2), the LCTC mode is enabled 

and a new configuration p(i) is chosen from the Update Table based on the ratio RT(i-1) 

between the target time and the average encoding time of the two previous GOPs, 

calculated as per (Eq. 55) and (Eq. 56) (see lines 13-14). The new p(i) index is then used 

to access the parameters corresponding to its corresponding configuration, which are 

used to reconfigure the HEVC encoder for the next GOP (line 15). The encoding time 

keeps being monitored for further adjustments in the encoder operating point (line 16) 

and the process is repeated at the beginning of the next GOP. 

The encoding time control was evaluated using four different target times, 

defined with reference to an average encoding time per GOP computed for four high-

resolution test video sequences (Kimono1, PoznanStreet, Shark, Tennis7, detailed in 

Appendix B) that were encoded with four QPs 22, 27, 32, and 37, utilising the HETR 

mode. Based on the average encoding time per GOP of these 16 encodings (333s), four 

target times per GOP were defined: 66s (20% of 333s), 133s (40%), 200s (60%), and 

266s (80%). Notice that these encoding time limits were computed with reference to 

the encoding time measured when using the HETR mode only for test purposes. The 

only requirement observed during their choice was that their values should be of about 

the same order of magnitude or one order of magnitude below the times for the HETR 

mode. In a real-case implementation of an HEVC encoder, the time constraints will be 

imposed, for example, by computational resources constraints, transmission and/or 

memory limitations, user preferences and real-time encoding requirements.  

Fig. 7.9 shows, as an example of operation of the algorithm, the encoding time 

per GOP for the Kimono1 sequence (QP 32). Target times are presented as dotted lines 

and actual encoding times are presented as solid lines. Besides the encoding times 

observed for each of the four target times, encoding times corresponding to the original 

encoder and the encoder operation with the HETR mode are also presented for 

comparison. The Kimono1 sequence was chosen for this analysis because it contains a 

scene change at GOP 34, providing a more complete analysis on the operation of the 

                                                           
7 Video sequence Tennis is not included in the most recent version of the CTC document [43]. However, 

in order to allow tests with high-resolution sequences that were not used in the training of the decision 

trees and in the parameter selection presented in section 7.1, it has been used in these evaluations. Details 

on the Tennis sequence are available in Appendix B. 
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algorithm. It is possible to notice in the figure that the smallest target time (66s) cannot 

be achieved between GOPs 1 and 36. In fact, the smallest encoding times achieved for 

these GOPs are around 110s. This limitation happens because the 27 configurations 

listed in Table 7.2 do not allow reducing encoding times to values below 110s for that 

particular video segment. However, when a scene change occurs and the video encoding 

process becomes less complex due to characteristics of the video sequence, encoding 

times below 110s can be achieved.  

This effect can be better observed in Fig. 7.10, which shows the evolution of the 

p(i) index (i.e., the encoding configuration index) for the same sequence presented in Fig. 

7.9. The curve corresponding to the 66s target time saturates with p(i) = 27 in most of 

the chart of Fig. 7.10, which means that the maximum computational complexity 

downscaling was applied, but even so the target time could not be reached, at least until 

GOP 36, as shown in Fig. 7.9. Further complexity reduction ratios are achieved with the 

fine-granularity encoding time control introduced in the next section. 

Fig. 7.9 also shows a ripple effect for the 266s target time case. The effect is also 

visible Fig. 7.10 for the same target time. This happens because the controller is not able 

to find a configuration among the 27 in the LUT that yields an encoding time close 

enough to the target. In such cases, the encoder alternates between two configurations: 

one that yields an encoding time above the target and another that yields an encoding 

time under the target. The fine-granularity encoding time control presented in the next 

section also attenuated this problem. 

 

7.2.2 Fine-Granularity Time Control 

Section 5.6 of chapter 5 presented the CCUPU method, which yielded the best 

complexity scaling accuracy among all methods proposed in that chapter, as well as the 

best R-D efficiency results. Now, this section describes how the CCUPU method was 

integrated with the encoding time control system presented in section 7.1.2, aiming at 

providing a finer granularity level to the control algorithm and a wider range of 

achievable target times. 
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Fig. 7.9: Encoding times per GOP for the Kimono1 sequence (QP 32) encoded with 

different target times using the medium-granularity encoding time control. 

 

 

Fig. 7.10: Encoder configurations used to encode the Kimono1 sequence (QP 32) with 

different target times using the medium-granularity encoding time control. 

 
As shown in Fig. 7.7, the Fine-granularity encoding time control block receives as 

input the αGOP
(i-1) parameter, which was calculated in the Complexity reduction factor 

0

40

80

120

160

200

240

280

320

360

400

440

480

520

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

En
co

d
in

g 
Ti

m
e

 p
e

r 
G

O
P

 (
s)

GOP Index 

Original HETR

266s 200s

133s 66s

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

C
o

n
fi

gu
ra

ti
o

n
 in

d
ex

 (
p

(i
))

GOP Index 

Original
HETR
266s
200s
133s
66s



197 

 

 
 

computation block. The αGOP(i-1) parameter is based on the αGOP adjusting parameter used 

in CCUPU (see section 5.6), which is the ratio between the encoding time of the previous 

GOP (TA(i-1)) and the target time (TT), as shown in (Eq. 57). The value of αGOP(i-1) is then 

used to adjust the number Nck(i) of constrained CTUs per frame in the current GOP i, as 

shown in (Eq. 58), where k indicates which of the two CCUPU complexity constraining 

parameters is used8. Once Nc1(i) reaches its limit (i.e., the number of CTUs in a frame), the 

second parameter in the scheme is used, represented as Nc2(i).  

The algorithm presented in Fig. 7.8 for medium-granularity encoding time 

control was extended as shown in Fig. 7.11 to operate in two adjustment phases 

(dashed boxes). The first lines of the algorithm are identical to those of Fig. 7.8, except 

for the initialization of the Nc1(i) and Nc2(i) variables, which represent the two complexity 

adjusting parameters of the CCUPU algorithm, as explained in section 5.6. In line 13, the 

ratio RT(i-1) is calculated as in (Eq. 55) and its value is used to trigger either the medium 

or the fine-granularity encoding time control. If the RT(i-1) ratio shows that an adjustment 

larger than 15% (either positive or negative) is required, the medium-granularity 

control described in section 7.2.1 takes place. Otherwise, the fine-granularity control 

based on the CCUPU algorithm starts. The 15% threshold was defined through 

experimental tests. As the value of RT(i-1) is used to trigger the operation of either the 

medium or the fine-granularity encoding time control, it is shown as an input of both 

blocks in Fig. 7.7.  

As detailed in section 5.6, in the fine-granularity control, constrained CTUs are 

distributed according to the R-D costs of co-localised CTUs in the previous frame (lines 

23-30 in Fig. 7.11). Notice that when the fine-granularity control is applied, the 

encoding operating point chosen in the last execution of the medium-granularity control 

is used, so that the parameter values are still retrieved and used to reconfigure the 

HEVC encoder according to the p(i) index, as shown in line 30. 

                                                           
8 Recall that in the CCUPU method, Nc1 represents the number of CTUs that allow using PUs smaller than 

2N×2N and Nc2 is the number of CTUs with maximum coding tree depth constrained according to the depth 

used in spatially and temporally neighbouring CTUs. 
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Fig. 7.11: Pseudo-code for the fine-granularity encoding time control. 

 

encode(video, TT):

01 i ← 1, p(i) ← 1, Nc
1
(i) ← 0, Nc

2
(i) ← 0

02 encode GOP(i) with SRp(i), BPRp(i), HMEp(i), CTETp(i), PUETp(i), RQTETp(i)

03 TA(i) ← time spent to encode GOP(i)

04 i ← i + 1

05 if(TA(i-1) > TT)

06 if(p(i-1) = 1) // HETR mode

07 p(i) ← 2

08 go to line 02

09 else // LCTC mode

10 go to line 13

11 else

12 go to line 02

13 calculate RT(i-1)

14   if((RT(i-1) > 1.15) OR (RT(i-1) < 0.85))

15 p(i) ← the p configuration indexed by RT(i-1)

16 Nc
1
(i) ← 0, Nc

2
(i) ← 0

17   else

18      calculate αGOP(i-1)

19      if(Nc
1
(i-1) < nCTU)

20         calculate Nc
1
(i)

21      else

22         calculate new Nc
2
(i)

23   for each i from 0 to nFR

24     sort CTUs in ascending order of R-D cost

25     for each j from 0 to nCTU

26       if(j < Nc
k)

27         mark CTU j as constrained

28       else

29         mark CTU j as unconstrained

30       encode CTU j with SRp(i), BPRp(i), HMEp(i), CTETp(i), PUETp(i), RQTETp(i)

31     if last frame go to line 01

32   TA(i) ← time spent to encode GOP(i)

33   i ← i + 1

34   go to line 13

medium-granularity
complexity scaling

fine-granularity
complexity scaling



199 

 

 
 

7.3 Experimental Results 

The encoding time control accuracy was evaluated as previously described in 

section 7.2.1 by testing its behaviour with four different target times (66s, 133s, 200s, 

266s) and the same four video sequences (Kimono1, PoznanStreet, Shark, Tennis) with 

QPs 22, 27, 32, and 37.  

Table 7.3-Table 7.6 show results in terms of average encoding time control 

accuracy, R-D efficiency and encoding time reduction for the four video sequences and 

the four target times tested. R-D efficiency and average encoding time reductions were 

measured in terms of BD-rate and BD-PSNR using the original HM encoder as reference. 

Encoding time control accuracy was measured in two ways: the first one (TEALL) 

calculates the average difference between encoding time and target time considering all 

GOPs in a video sequence after the settling phase of the control, while the second 

measure (TELTT) calculates the average difference between encoding and target times 

considering only those GOPs that yielded an encoding time larger than the target. In 

both cases, the differences are normalised with reference to the target time. Although 

TEALL shows smaller errors, TELTT provides a fairer measure between target and 

encoding time, since we are only taking into account the undesirable cases where the 

actual encoding time was larger than the target time. On average, the TEALL and TELTT 

errors are 4.1% and 8.9%, respectively. 

Notice that the four tables also present results for the HETR case, which is not 

associated to any target. In this case, the TEALL and TELTT values were calculated as the 

average absolute differences between the encoding time per GOP and the average 

encoding time among all GOPs in the sequence (in other words, TEALL and TELTT are 

encoding time absolute deviations in the case of HETR). In all tables, the deviations 

noticed for HETR are larger than the TEALL and TELTT errors for the LCTC cases tested, 

which means that the system is capable of controlling the encoding time with reduced 

variation around the target. In the worst case (Tennis sequence, 66s, in Table 7.6), the 

errors TEALL and TELTT for LCTC are 8.27% and 20.01%, which are still smaller than the 

deviations observed with HETR (10.84% and 29.96%).  
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Table 7.3: Encoding time errors, BD-rate, and BD-PSNR for the HETR and the LCTC 

modes (four target times) for the Kimono1 sequence. 

Mode and 
Target Time 

Average  
TEALL (%) 

Average 
TELTT (%) 

BD-rate 
(%) 

BD-PSNR 
(dB) 

HETR 10.17 24.57 +0.87 -0.028 

LCTC@266s 1.59 4.40 +0.90 -0.028 

LCTC@200s 0.45 2.40 +2.00 -0.066 

LCTC@133s 2.82 7.43 +4.03 -0.123 

LCTC@66s 6.14 10.95 +10.39 -0.310 

 
Table 7.4: Encoding time errors, BD-rate, and BD-PSNR for the HETR and the LCTC 

modes (four target times) for the PoznanStreet sequence. 

Mode and 
Target Time 

Average  
TEALL (%) 

Average 
TELTT (%) 

BD-rate 
(%) 

BD-PSNR 
(dB) 

HETR 6.30 14.79 +1.35 -0.049 

LCTC@266s 0 0 +1.35 -0.049 

LCTC@200s 0.91 4.10 +2.93 -0.107 

LCTC@133s 3.39 7.85 +3.09 -0.112 

LCTC@66s 4.89 8.63 +5.71 -0.201 

 
Table 7.5: Encoding time errors, BD-rate, and BD-PSNR for the HETR and the LCTC 

modes (four target times) for the Shark sequence. 

Mode and 
Target Time 

Average  
TEALL (%) 

Average 
TELTT (%) 

BD-rate 
(%) 

BD-PSNR 
(dB) 

HETR 8.09 15.15 +0.26 -0.012 

LCTC@266s 7.70 13.53 +1.87 -0.085 

LCTC@200s 6.01 10.03 +2.97 -0.134 

LCTC@133s 5.20 9.74 +6.48 -0.282 

LCTC@66s 4.98 9.34 +15.12 -0.622 

 
Table 7.6: Encoding time errors, BD-rate, and BD-PSNR for the HETR and the LCTC 

modes (four target times) for the Tennis sequence. 

Mode and 
Target Time 

Average  
TEALL (%) 

Average 
TELTT (%) 

BD-rate 
(%) 

BD-PSNR 
(dB) 

HETR 10.84 29.96 +0.77 -0.024 

LCTC@266s 3.74 9.87 +2.64 -0.073 

LCTC@200s 3.69 9.31 +4.88 -0.138 

LCTC@133s 5.72 15.09 +7.67 -0.216 

LCTC@66s 8.27 20.01 +18.64 -0.505 
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It is also necessary to comment on the result for target 266s in Table 7.4, which 

shows both errors equal to zero. This happens because in that case the target time of 

266s is larger than the encoding time observed with the HETR mode in all GOPs, so that 

the LCTC mode is never actually activated and no encoding time control is performed. 

For the same reason, both LCTC@266s and HETR cases present the same BD-rate and 

BD-PSNR results, since they performed exactly the same encoding operations.  

As expected, in the remaining cases from Table 7.3 to Table 7.6, larger encoding 

times incurred in larger decreases in R-D efficiency: overall, the HETR mode yielded BD-

rate increases from 0.26% to 1.35% only, while the LCTC mode presented BD-rate 

increases varying from 0.9% to 18.64%, depending on the target time. 

Fig. 7.12 shows, as a comparison to Fig. 7.9, the encoding time per GOP for the 

Kimono1 sequence (QP 32). It is possible to perceive in Fig. 7.12 that the smallest target 

time tested (66s) can be achieved now, differently from Fig. 7.9. This is only possible 

because, differently from the medium-granularity encoding time control, the fine-

granularity control allows further encoding time reductions by increasing the number 

of constrained CTUs per frame with the Nc1(i) and Nc2(i) parameters. Fig. 7.12 also shows 

that the ripple effect noticed in Fig. 7.9 was decreased with the fine-granularity control.  

The algorithm operation for the given example can be observed in Fig. 7.13 and 

Fig. 7.14, which show the evolution of the p(i) index and the Nc1(i) and Nc2(i) parameters, 

respectively. Notice that even though the curve corresponding to the 66s target time 

still saturates with p(i) = 27 in most of the chart of Fig. 7.13, the encoding time per GOP 

can be further reduced by adjusting the Nc
1

(i) and Nc
2

(i) parameters, as shown in Fig. 7.14. 

Fig. 7.14(b) shows a very small increase of Nc2(i) in GOP 36, which happens when the 

saturation of Nc1(i) occurs in Fig. 7.14(a). In the remaining target time cases, only the 

Nc1(i) parameter is used to adjust the encoding time at a fine level of granularity. 

 

7.4 Conclusions 

This chapter presented an encoding time control system for HEVC encoders that 

was designed with the aim of maintaining the encoding time per GOP below a target 

limit. As previously explained, the main goal of this chapter was to integrate the 

methods and results described in the previous chapters of this dissertation into an 

encoder control system in order to exemplify their applicability.  
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Fig. 7.12: Encoding times per GOP for the Kimono1 sequence (QP 32) encoded with the 

fine-granularity encoding time control. 

 

Fig. 7.13: Encoder configurations used to encode the Kimono1 sequence (QP 32) with 

different target times with the fine-granularity control. 
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(a) 

 

 
(b) 

Fig. 7.14: Variation of the (a) Nc1(i) and (b) Nc2(i) parameters when encoding the Kimono1 

sequence (QP 32) with the fine-granularity control. 

 

The proposed system was designed based on the findings of chapter 4 and the 

methods proposed for complexity scaling and reduction in chapters 5 and 6. An offline 

training process was performed to determine the points that compose the Pareto 

frontier belonging to the R-C and D-C spaces of a set of encoding configurations, with the 

goal of providing high R-D-C efficiency when computational complexity restrictions are 

required. The encoding configurations tested make use of the parameters identified in 

chapter 4 as those related to the most complexity-demanding tools and the schemes 

proposed in chapter 6 for complexity reduction of HEVC encoders. By selecting the 

configurations that yield the smallest R-D efficiency losses among all those analysed, it 

was possible to implement a system with two R-D efficiency operating modes: one with 

high encoding efficiency but limited complexity reduction ratio (HETR) and another 

with low computational complexity but increased R-D efficiency loss (LCTC), which 

made use of a medium-granularity encoding time control. Finer encoding time control 

granularity was obtained by integrating the CCUPU method proposed in chapter 5. 
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Experimental results have shown that the encoding time per GOP can be 

controlled at a medium to fine granularity level, providing an average error between 

encoding time and target time of 4.1% or 8.9%, depending on the measure adopted for 

comparison.  

 

 

 

 



 

 

Chapter 8 

 

 

8 Conclusions 

The research work developed in the scope of this thesis contributed with novel 

solutions for reducing and scaling the computational complexity of high efficiency video 

encoders. The study included extensive simulations and experiments focused on the 

study and critical analysis of computational complexity for HEVC. In this chapter, this 

thesis is concluded with a summary of the main achievements, as well as some 

directions for future research. 

 

8.1 Final Remarks 

The HEVC standardisation process, which started in early 2010 and was 

finalised in 2013, incorporated a series of encoding tools and functionalities to the basic 

hybrid video compression system used in the most recent previous standards. By 

employing such tools and functionalities, HEVC is currently able to achieve average bit 

rate reductions of 40%-50% in comparison with H.264/AVC, at the same subjective 

image quality. However, as chapter 4 has shown, these improvements came with 

associated increases in the encoder computational complexity.  

At the beginning of the research work presented in this thesis, there was no 

work published in the technical literature focusing on computational complexity 

analysis, reduction or scaling for HEVC. This motivated the study and analysis of the 

compression efficiency and computational complexity required by each encoding tool 

and functionality, as presented in chapter 4, in order to identify which are the most 

computationally demanding operations in the encoding process. Based on the results of 

such analysis, a set of methods for complexity reduction and scaling were proposed in 

chapters 5, 6 and 7. 
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8.2 Research Contributions 

The first main contribution of this thesis is presented in chapter 4 and consists 

of an experimental investigation and analysis of the R-D efficiency and computational 

complexity of HEVC encoders. Two separate analyses were performed to evaluate the 

encoding tools and the frame partitioning structures introduced by the HEVC standard. 

A set of encoding configurations was created to investigate the impact of each tool or 

frame partitioning structure, varying the encoding parameter set and comparing the 

results with a baseline encoder.  

The results obtained in chapter 4 allowed concluding that HEVC complexity can 

be largely decreased at practically no coding efficiency cost, if the coding tools are 

wisely combined and configured. It was observed that by first enabling those tools 

which provide higher R-D efficiency gains for the least computational complexity costs, 

a near-optimal trade-off between computational complexity and encoding efficiency can 

be achieved. An encoder configuration with high R-D efficiency and low computational 

complexity levels was proposed. Besides, a set of configurations which resulted in the 

largest computational complexity increases were identified for use in the R-D-C 

optimised scheme presented in chapter 7. Still in chapter 4, it was also found that the 

encoding computational complexity can be thoroughly reduced by managing the frame 

partitioning structures of HEVC, even though some configurations incur in much larger 

losses in R-D efficiency than others. The frame partitioning structures that produce the 

largest impact in the computational complexity and the best trade-off between 

complexity and R-D efficiency were selected for the development of the complexity 

reduction and scaling strategies presented in chapters 5 and 6. 

The complexity scaling algorithms proposed in chapter 5 represent the second 

main contribution of this thesis. All developed methods aim at dynamically adjusting the 

frame partitioning structures (CTUs, CUs and PUs) in order to adapt the encoding 

process according to the available computational complexity in the encoder. Five 

algorithms were proposed in this chapter (FDCR, VDCR, MCTDL, CTDE, and CCUPU) and 

each one overcame the previous in terms of R-D efficiency for the same target 

complexities, which is an outcome obtained by adding up more intelligent ways of 

constraining the frame partitioning structures of HEVC. In general, the complexity 

scaling accuracy of the five algorithms is quite similar and all of them achieve running 

complexities very close to the targets, even though the last method (CCUPU) provides 
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much larger computational complexity reduction levels than the previous ones. While 

FDCR, VDCR, MCTDL and CTDE provide computational complexity reductions of up to 

40%, the CCUPU method is able to reduce it in up to 80%. In terms of R-D efficiency, 

CCUPU operates in two regions: a near-lossless encoding, where complexity reductions 

of up to 50% are achieved at the cost of small BD-rate increases (from 0.03% to 1.28%), 

and a lossy region, where a complexity reduction of up to 80% is achieved with a BD-

rate increase between 3.98% and 22.64%. From the results obtained in chapter 5, it was 

possible to notice that adding up information related to spatial and temporal correlation 

to the last complexity scaling algorithms decreased the R-D efficiency losses noticed in 

the first ones. This lead to the conclusion that if more information from the original 

video, as well as intermediate information computed during the encoding process, were 

taken into account in the development of complexity reduction and scaling methods, 

R-D efficiency losses even smaller than those observed with CCUPU could be achieved.  

The third major contribution of this thesis was presented in chapter 6. A set of 

classification trees obtained through data mining techniques was developed and 

implemented in the HM encoder to early terminate the exhaustive search for the best 

frame partitioning structure configuration. The three sets of decision trees were created 

to make use of intermediate encoding results for early terminating the determination of 

Coding Trees, PUs and RQTs. They were separately and jointly implemented to provide 

further complexity reduction levels. On average, a complexity reduction of 65% was 

achieved when the three early terminations are jointly implemented, with a BD-rate 

increase of only 1.36%. 

However, the early termination methods proposed in chapter 6 provide fixed 

complexity reductions, differently from the dynamic complexity scaling methods 

presented in chapter 5. Besides, they do not guarantee that the encoding process is 

performed within a determined time budget. In order to solve this issue, chapter 7 

presents the fourth contribution of this thesis: an encoding time control system that 

combines the findings of chapter 4, the best-performing complexity scaling method of 

chapter 5 and the complexity reduction algorithms of chapter 6, aiming at adjusting the 

encoder operating point whenever necessary so that the encoding time per GOP is kept 

under a specified target.  
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8.3 Future Work 

Several research directions can be thought for the future, departing from the 

work presented in this thesis. One of the most important and immediate works to be 

done as a continuation of this research is the implementation of the best proposed 

methods (for example, the CCUPU algorithm, the decision trees and the encoding time 

control system) in an optimised encoder developed for real time applications. As 

previously explained, all the algorithms presented in this thesis were tested in the HM 

encoder, which was developed during the standardisation process for testing purposes 

only. However, the proposed methods are expected to provide similar complexity 

reduction rates in other optimised solutions that employ the RDO process to take 

decisions.  

Another possible solution to be explored in future work is the exploration of 

parallel computing strategies aiming at the achievement of real-time video coding. It is 

now common to find handheld devices equipped with multicore general processors and 

graphics processing units (GPUs), which can be used to increase encoding speed 

through the divide-and-conquer approach. As explained in chapter 2, the HEVC 

standard includes a set of parallel processing structures (Dependent Slice Segments, 

Tiles, WPP) which can be explored to solve such issues. The algorithms proposed in this 

thesis, mostly based on the management of the HEVC frame partitioning structures, can 

be extended in future works to support the parallel processing structures, so that 

computational complexity could be reduced or scaled separately in each core. 

All the analyses, algorithms and methods proposed in this thesis focused on the 

encoding process, which is the most critical issue in terms of computational complexity 

in HEVC-based codec systems. However, the use of computational resources on the 

decoder side will also become more important with the introduction of higher spatial 

resolution, such as ultra-HD. Techniques for computational complexity reduction and 

scaling on video decoders will need to be further investigated, especially for devices 

with fewer computational capabilities. Furthermore, the heterogeneity of mobile 

devices, varying from those with fast multicore processors and GPUs to those with 

slower single-core processors, will also call for methods that allow scaling 

computational complexity on the decoder side according to the target platform 

constraints. In [132], the authors propose a model that allows an encoder to perform 

different encoding operations, so that the generated bitstream is suitable for a 
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determined receiver platform with a certain constraint in terms of computational 

resources. However, solutions on this range aiming at HEVC decoders are still absent. 
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submissions (13 accepted and three currently under evaluation), which are listed in the 

following lines. They include one book chapter, four journal articles and 11 conference 

papers. 

 

Book Chapter 

I. CORREA, G.; ASSUNCAO, P. A.; AGOSTINI, L. V.; CRUZ, L. A.. “Computational 

Resource Management for Video Coding in Mobile Environments,” in Modeling 

and Optimization in Science and Technologies (Resource Management in Mobile 

Computing Environment), 1st ed., vol. 3, Berlin, Germany: Springer International 

Publishing, chapter 24, pp. 515-549, 2014. 
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Appendix B 

 

 

B. Common Test Conditions and  

Video Sequences  

This appendix presents in section B.1 the Common Test Conditions (CTC) 

document [43], which describes the experimental setup for most of the tests performed 

in this work. The CTC document also lists the 24 video sequences used in the 

experiments and presents some of their characteristics, such as the number of frames, 

the frame rate and the number of bits used to represent each pixel.  

Section B.2 presents the spatial resolution for each video sequence, since this 

information is not included in the CTC document.  

Finally, section B.3 shows one frame belonging to each video sequence listed in 

this appendix. 
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B.1 Common Test Conditions 

 

 

Joint Collaborative Team on Video Coding (JCT-VC) 

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 

10th Meeting: Stockholm, SE, 11 – 20 July 2012 

Document: JCTVC-J1100 

WG11 Number: m26383 

 

Title: Common test conditions and software reference configurations 

Status: Output document 

Purpose: Information 

Author(s) or 

Contact(s): 

Frank Bossen  

Tel: 

Email: 

 

+1 650 496 4742 
bossen@docomoinnovations.com 

Source: JCT-VC 

_____________________________ 

Abstract 

This document defines common test conditions and software reference configurations to be 

used in the context of core experiments (CE) conducted between the 10
th
 and the 11

th
 JCT-VC 

meetings. These common test conditions are also recommended for use in technical 

contributions to the 11
th
 JCT-VC meeting, if applicable. 

1. Introduction 

Common test conditions are desirable to conduct experiments in a well-defined environment 

and ease the comparison of the outcome of experiments. 

This document defines 8 test conditions, reflecting a combination of high efficiency and low 

complexity, and of intra-only, random-access, and low-delay settings: 

 Intra, main 

 Intra, high efficiency, 10 bit 

 Random access, main 

 Random access, high efficiency, 10 bit 

 Low delay, main 

 Low delay, high efficiency, 10 bit 

 Low delay, main, P slices only (optional) 

 Low delay, high efficiency, P slices only, 10 bit (optional) 

A subset of these test conditions might be used for a particular experiment. For example, 

when testing an intra coding tool, only intra configurations might be used. Also, when testing 

variations of a tool such as adaptive loop filtering (ALF), low-complexity configurations 

might be skipped as this tool is not enabled therein. 

Version 8.0 of the common software is expected to be used for most experiments. More 

recent versions are encouraged where applicable. Availability of the software will be 

announced on the JCT-VC email reflector by August 7, 2012. 
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A version 8.1 of the common software will be provided roughly 3 weeks after version 8.0. It 

will additionally include tools that do not affect common conditions. 

The following sections define test sequences, quantization parameter values, encoder 

configuration files, and compile-time options to be used. 

People bringing input contributions should provide a set of results as complete as possible 

that apply to the proposal. Results should be reported using the attached Excel sheets. 

2. Test sequences 

Table 1 defines the set of test sequences to be used for intra, random-access, and low-delay 

conditions. All frames (as defined by frame count in the table) shall be encoded for all 

sequences and test cases described below (see Section 4 for definitions of Main and HE10). 

Test sequences are available on ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/ (please 

contact the JCT-VC chairs for login information). 

Table 1: Test sequences 

Class Sequence name Frame 

count 

Frame 

rate 

Bit 

depth 

Intra Random 

access 

Low-delay 

A Traffic 150 30fps 8 Main/HE10 Main/HE10  

A PeopleOnStreet 150 30fps 8 Main/HE10 Main/HE10  

A Nebuta 300 60fps 10 Main/HE10 Main/HE10  

A SteamLocomotive 300 60fps 10 Main/HE10 Main/HE10  

B Kimono 240 24fps 8 Main/HE10 Main/HE10 Main/HE10 

B ParkScene 240 24fps 8 Main/HE10 Main/HE10 Main/HE10 

B Cactus 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

B BQTerrace 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

B BasketballDrive 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

C RaceHorses1 300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

C BQMall 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

C PartyScene 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

C BasketballDrill 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

D RaceHorses2 300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

D BQSquare 600 60fps 8 Main/HE10 Main/HE10 Main/HE10 

D BlowingBubbles 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

D BasketballPass 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

E FourPeople 600 60fps 8 Main/HE10  Main/HE10 

E Johnny 600 60fps 8 Main/HE10  Main/HE10 

E KristenAndSara 600 60fps 8 Main/HE10  Main/HE10 

F BaskeballDrillText 500 50fps 8 Main/HE10 Main/HE10 Main/HE10 

F ChinaSpeed 500 30fps 8 Main/HE10 Main/HE10 Main/HE10 

ftp://hevc@ftp.tnt.uni-hannover.de/orig-cfp/
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F SlideEditing 300 30fps 8 Main/HE10 Main/HE10 Main/HE10 

F SlideShow 500 20fps 8 Main/HE10 Main/HE10 Main/HE10 

Note: When the encoder operates in 8-bit mode (InternalBitDepth=8) for a 10-bit source, 

each 10-bit source sample x is converted prior to encoding to an 8-bit value (x+2) / 4 clipped 

to the [0,255] range. Similarly when the encoder operates in 10-bit mode 

(InternalBitDepth=10) for an 8-bit source, each 8-bit source sample x is converted prior to 

encoding to a 10-bit value 4*x. This behavior is built into the reference encoder and no 

external conversion program is required. 

3. Quantization parameter values 

For each video sequence four quantization parameter values are to be used: 22, 27, 32 and 37. 

These values define the QP values used for the I-frames in a sequence (configuration files 

further define QP values used for other frames). 

4. Configuration files 

The following sections define encoder configuration files to be used for each test case. 

Parameters to be changed for each test point are: 

 InputFile to reflect the location of the source video sequence on the test system 

 FrameRate to reflect the frame rate of a given sequence as per Table 1 

 SourceWidth to reflect the width of the source video sequence 

 SourceHeight to reflect the height of the source video sequence 

 FramesToBeEncoded to reflect the frame count of a given sequence as per Table 1 

 IntraPeriod to reflect the intra refresh period in the random access test cases. The intra 

refresh period is dependent on the frame rate of the source: a value 16 shall be used for 

sequences with a frame rate equal to 20fps, 24 for 24fps, 32 for 30fps, 48 for 50fps, and 

64 for 60fps. 

 QP to reflect the quantization parameter values defined in section 3. 

 InputBitDepth to reflect the bit depth of a given sequence as per Table 1 

These configuration files are provided in the cfg/ folder of version 8.0 of the common 

software package (available at 

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-8.0). There are 8 

configurations provided as follows: 

 “All Intra – Main” (AI-Main): encoder_intra_main.cfg 

 “Random access – Main” (RA-Main): encoder_randomaccess_main.cfg 

 “Low-delay B – Main” (LB-Main): encoder_lowdelay_main.cfg 

 “Low-delay P – Main” (LP-Main, optional): encoder_lowdelay_P_main.cfg 

  “All Intra – High efficiency” (AI-HE10): encoder_intra_he10.cfg 

 “Random access – High efficiency” (RA-HE10): encoder_randomaccess_he10.cfg 

 “Low-delay B – High efficiency” (LB-HE10): encoder_lowdelay_he10.cfg 

 “Low-delay P – High efficiency” (LP-HE10, optional): encoder_lowdelay_P_he10.cfg 

Sequence-specific parameters are to be found in the cfg/per-sequence/ folder. 

5. Compile-time settings 

Compile-time settings are defined mostly in the TypeDef.h file located in the 

source/Lib/TLibCommon folder of the common software. The default settings provided in the 

source code should be used.  
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B.2 Spatial Resolutions 

As the CTC document presented in section B.1 does not include the spatial 

resolution of each video sequence, this information is shown in Table B.1 of this section. 

Besides the 24 video sequences listed in the CTC, one supplementary video sequence 

(Tennis) was used in the experiments in order to allow tests with high-resolution 

sequences not used in the training of the decision trees and in the parameter selection 

presented in section 7.1. The Tennis sequence is composed of 240 frames, presents a 

rate of 24 frames per second and a bit depth of 8 bits per pixel.  

 
Table B.1: Video sequence spatial resolutions. 

Name Spatial Resolution 

BaskeballDrillText 832×480 

BasketballDrill 832×480 

BasketballDrive 1920×1080 

BasketballPass 416×240 

BlowingBubbles 416×240 

BQMall 832×480 

BQSquare 416×240 

BQTerrace 1920×1080 

Cactus 1920×1080 

ChinaSpeed 1024×768 

FourPeople 1280×720 

Johnny 1280×720 

Kimono 1920×1080 

KristenAndSara 1280×720 

NebutaFestival 2560×1600 

ParkScene 1920×1080 

PartyScene 832×480 

PeopleOnStreet 2560×1600 

RaceHorses1 416×240 

RaceHorses2 832×480 

SlideEditing 1280×720 

SlideShow 1280×720 

SteamLocomotive 2560×1600 

Tennis 1920×1080 

Traffic 2560×1600 
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B.3 Video Sequences 

Trying to illustrate the characteristics of the 25 video sequences listed in Table 

B.1, the frame positioned exactly in the middle of each one is presented in this section. 

Fig. B.1 to Fig. B.25 show each middle frame, which are all pictured here in the same size 

(i.e., they are not resized in the same proportions). 

 

 
Fig. B.1: BaskeballDrillText. 

 
Fig. B.2: BaskeballDrill. 

 

 
Fig. B.3: BasketballDrive. 

 

 
Fig. B.4: BasketballPass. 

 

 
Fig. B.5: BlowingBubbles. 

 

 
Fig. B.6: BQMall. 
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Fig. B.7: BQSquare. 

 
Fig. B.8: BQTerrace. 

 

 
Fig. B.9: Cactus. 

 

 
Fig. B.10: ChinaSpeed. 

 

 
Fig. B.11: FourPeople. 

 

 
Fig. B.12: Johnny. 

 

Fig. B.13: Kimono. 

 

Fig. B.14: KristenAndSara. 
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Fig. B.15: NebutaFestival. 

 
Fig. B.16: ParkScene. 

 

 
Fig. B.17: PartyScene. 

 

 
Fig. B.18: PeopleOnStreet. 

 

 
Fig. B.19: RaceHorses1. 

 

 
Fig. B.20: RaceHorses2. 

 

 
Fig. B.21: SlideEditing. 

 

 
Fig. B.22: SlideShow. 
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Fig. B.23: SteamLocomotive. 

 
Fig. B.24: Tennis. 

 

 
Fig. B.25: Traffic. 
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Appendix C 

 

 

C. Obtained Decision Trees 

This appendix presents the decision trees obtained with the methodology 

described in chapter 6. The graphic representation of each tree, obtained with the 

WEKA tool [127], is presented in sections C.1, C.2 and C.3 for the Coding Tree early 

termination, the PU early termination and the RQT early termination, respectively. 

 

C.1 Decision Trees for Coding Tree Early Termination 

As explained in section 6.3, three decision trees were trained and implemented 

for the Coding Tree early termination, one for each CU size that allows splitting into 

smaller CUs (i.e., 16×16, 32×32 and 64×64). The three trees are presented from Fig. C.1 

to Fig. C.3, where C and T correspond to the decisions of continuing and terminating the 

CU splitting process, respectively.  

 

C.2 Decision Trees for PU Early Termination 

The four decision trees introduced in section 6.4 for the PU early termination 

are presented from Fig. C.4 to Fig. C.7, one for each CU size possible (i.e., 8×8, 16×16, 

32×32 and 64×64). In the figures, C and T correspond to the decisions of continuing and 

terminating the process of choosing the best PU splitting mode, respectively. 
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C.3 Decision Trees for RQT Early Termination 

Two decision trees for the RQT early termination were trained and 

implemented, as explained in section 6.5. Fig. C.8 presents the decision tree obtained for 

16×16 TUs and Fig. C.9 shows the decision tree for 32×32 TUs. In both figures, C and T 

correspond to the decisions of continuing and terminating the TU splitting process, 

respectively. 

 

Fig. C.1: Coding Tree early termination decision tree for 16×16 CUs. 
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Fig. C.2: Coding Tree early termination decision tree for 32×32 CUs. 
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 Fig. C.3: Coding Tree early termination decision tree for 64×64 CUs. 

 

 

Fig. C.4: PU early termination decision tree for 8×8 CUs. 
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Fig. C.5: PU early termination decision tree for 16×16 CUs. 

 

 

 Fig. C.6: PU early termination decision tree for 32×32 CUs.  
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 Fig. C.7: PU early termination decision tree for 64×64 CUs. 

 

 
Fig. C.8: RQT early termination decision tree for 16×16 TUs. 
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 Fig. C.9: RQT early termination decision tree for 32×32 TUs. 
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Appendix D 

 

 

D. Encoder Configurations Tested in 

the R-D-C Analysis 

In section 7.1 it was explained that the encoding configurations considered in 

the R-D-C analysis were created by modifying the value of each parameter, one at a time, 

so that every parameter value could be tested with all possible values of the remaining 

ones, totalising 240 encoding configurations. As described in that section, the R-D 

efficiency and the computational complexity associated to each configuration was 

assessed with four high-resolution video sequences, QPs 22, 27, 32, 37, and the Random 

Access temporal configuration, totalising 3,840 encodings. Average BD-rate, BD-PSNR 

and computational complexity reduction for each configuration, using the unmodified 

encoder as reference (configuration 1), were calculated. Each configuration tested and 

their respective results are presented in this appendix, in Table D.1, since only those 

corresponding to the points that compose the Pareto frontier were presented in Table 

7.2 of chapter 7. 

Table D.2 shows the look-up table (LUT) used to determine the encoding 

configuration that best suits a given RT(i-1) ratio between the target time (TT) and the 

weighted average encoding time (TW(i-1)) of the last two GOPs, as explained in section 

7.2.1 of chapter 7 (see (Eq. 55)). The encoding configuration p(i-1) used in the previous 

GOP is used to select a line in the LUT where the closest value to RT(i-1) is searched. Once 

it is found, the index indicated by the column where the found value belongs is chosen 

as the new encoding configuration p(i) to be used in the current GOP i. 
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Table D.1: Parameters, computational complexity, BD-PSNR and BD-rate for the 240 

encoder configurations considered in the R-D-C analysis. 

Config. SR BPR HME CTET PUET RQTET 
Normal. 

Complex. 
BD-PSNR 

(dB) 
BD-rate 

(%) 

1 64 4 on off off off 1.000 0.000 0.000 

2 32 4 on off off off 0.969 0.000 0.016 

3 16 4 on off off off 0.958 -0.014 0.426 

4 8 4 on off off off 0.950 -0.043 1.276 

5 4 4 on off off off 0.945 -0.082 2.469 

6 64 2 on off off off 0.973 -0.001 0.038 

7 32 2 on off off off 0.941 -0.004 0.150 

8 16 2 on off off off 0.930 -0.015 0.426 

9 8 2 on off off off 0.923 -0.049 1.498 

10 4 2 on off off off 0.917 -0.096 2.845 

11 64 1 on off off off 0.964 -0.002 0.089 

12 32 1 on off off off 0.933 -0.006 0.221 

13 16 1 on off off off 0.922 -0.019 0.588 

14 8 1 on off off off 0.915 -0.048 1.481 

15 4 1 on off off off 0.910 -0.104 3.093 

16 64 4 off off off off 0.899 -0.018 0.595 

17 32 4 off off off off 0.868 -0.019 0.637 

18 16 4 off off off off 0.857 -0.029 0.886 

19 8 4 off off off off 0.849 -0.056 1.727 

20 4 4 off off off off 0.845 -0.100 3.045 

21 64 2 off off off off 0.872 -0.019 0.648 

22 32 2 off off off off 0.841 -0.019 0.651 

23 16 2 off off off off 0.829 -0.031 0.990 

24 8 2 off off off off 0.822 -0.059 1.839 

25 4 2 off off off off 0.817 -0.112 3.386 

26 64 1 off off off off 0.863 -0.020 0.697 

27 32 1 off off off off 0.832 -0.021 0.735 

28 16 1 off off off off 0.821 -0.033 1.067 

29 8 1 off off off off 0.814 -0.062 1.956 

30 4 1 off off off off 0.809 -0.120 3.690 

31 64 4 on on off off 0.723 -0.002 0.086 

32 32 4 on on off off 0.698 -0.003 0.124 

33 16 4 on on off off 0.688 -0.017 0.527 

34 8 4 on on off off 0.683 -0.045 1.337 

35 4 4 on on off off 0.680 -0.085 2.495 
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36 64 2 on on off off 0.706 -0.004 0.145 

37 32 2 on on off off 0.680 -0.007 0.239 

38 16 2 on on off off 0.669 -0.017 0.550 

39 8 2 on on off off 0.664 -0.047 1.457 

40 4 2 on on off off 0.662 -0.102 3.051 

41 64 1 on on off off 0.700 -0.007 0.255 

42 32 1 on on off off 0.673 -0.006 0.256 

43 16 1 on on off off 0.666 -0.021 0.692 

44 8 1 on on off off 0.659 -0.052 1.633 

45 4 1 on on off off 0.657 -0.108 3.211 

46 64 4 off on off off 0.660 -0.020 0.678 

47 32 4 off on off off 0.634 -0.019 0.674 

48 16 4 off on off off 0.625 -0.032 1.018 

49 8 4 off on off off 0.618 -0.059 1.846 

50 4 4 off on off off 0.616 -0.104 3.175 

51 64 2 off on off off 0.643 -0.021 0.730 

52 32 2 off on off off 0.616 -0.020 0.715 

53 16 2 off on off off 0.607 -0.034 1.113 

54 8 2 off on off off 0.601 -0.063 1.979 

55 4 2 off on off off 0.598 -0.112 3.392 

56 64 1 off on off off 0.637 -0.022 0.761 

57 32 1 off on off off 0.610 -0.022 0.796 

58 16 1 off on off off 0.601 -0.035 1.159 

59 8 1 off on off off 0.596 -0.065 2.062 

60 4 1 off on off off 0.594 -0.122 3.833 

61 64 4 on off on off 0.586 -0.018 0.572 

62 32 4 on off on off 0.569 -0.019 0.603 

63 16 4 on off on off 0.563 -0.029 0.847 

64 8 4 on off on off 0.559 -0.059 1.782 

65 4 4 on off on off 0.558 -0.099 2.946 

66 64 2 on off on off 0.572 -0.019 0.625 

67 32 2 on off on off 0.554 -0.019 0.620 

68 16 2 on off on off 0.548 -0.030 0.923 

69 8 2 on off on off 0.545 -0.061 1.916 

70 4 2 on off on off 0.545 -0.115 3.470 

71 64 1 on off on off 0.567 -0.019 0.611 

72 32 1 on off on off 0.551 -0.018 0.600 

73 16 1 on off on off 0.544 -0.034 1.044 

74 8 1 on off on off 0.541 -0.065 1.985 
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75 4 1 on off on off 0.540 -0.118 3.534 

76 64 4 off off on off 0.538 -0.032 1.001 

77 32 4 off off on off 0.521 -0.033 1.074 

78 16 4 off off on off 0.514 -0.044 1.392 

79 8 4 off off on off 0.511 -0.071 2.205 

80 4 4 off off on off 0.511 -0.115 3.484 

81 64 2 off off on off 0.525 -0.035 1.122 

82 32 2 off off on off 0.507 -0.034 1.094 

83 16 2 off off on off 0.501 -0.048 1.545 

84 8 2 off off on off 0.497 -0.075 2.322 

85 4 2 off off on off 0.496 -0.124 3.757 

86 64 1 off off on off 0.520 -0.035 1.171 

87 32 1 off off on off 0.503 -0.037 1.242 

88 16 1 off off on off 0.497 -0.047 1.507 

89 8 1 off off on off 0.493 -0.077 2.446 

90 4 1 off off on off 0.493 -0.134 4.179 

91 64 4 on on on off 0.481 -0.026 0.823 

92 32 4 on on on off 0.465 -0.027 0.865 

93 16 4 on on on off 0.460 -0.039 1.186 

94 8 4 on on on off 0.456 -0.066 2.013 

95 4 4 on on on off 0.455 -0.108 3.305 

96 64 2 on on on off 0.471 -0.026 0.832 

97 32 2 on on on off 0.455 -0.027 0.879 

98 16 2 on on on off 0.449 -0.042 1.291 

99 8 2 on on on off 0.447 -0.071 2.219 

100 4 2 on on on off 0.446 -0.122 3.708 

101 64 1 on on on off 0.468 -0.029 0.958 

102 32 1 on on on off 0.451 -0.029 0.939 

103 16 1 on on on off 0.447 -0.041 1.294 

104 8 1 on on on off 0.443 -0.073 2.305 

105 4 1 on on on off 0.443 -0.128 3.910 

106 64 4 off on on off 0.445 -0.041 1.330 

107 32 4 off on on off 0.428 -0.041 1.339 

108 16 4 off on on off 0.422 -0.054 1.698 

109 8 4 off on on off 0.419 -0.081 2.553 

110 4 4 off on on off 0.419 -0.123 3.746 

111 64 2 off on on off 0.434 -0.043 1.408 

112 32 2 off on on off 0.419 -0.044 1.422 

113 16 2 off on on off 0.412 -0.056 1.821 
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114 8 2 off on on off 0.409 -0.087 2.700 

115 4 2 off on on off 0.409 -0.136 4.217 

116 64 1 off on on off 0.432 -0.045 1.460 

117 32 1 off on on off 0.415 -0.044 1.443 

118 16 1 off on on off 0.409 -0.057 1.828 

119 8 1 off on on off 0.405 -0.088 2.795 

120 4 1 off on on off 0.405 -0.142 4.460 

121 64 4 on off off on 0.925 -0.006 0.187 

122 32 4 on off off on 0.894 -0.008 0.275 

123 16 4 on off off on 0.884 -0.018 0.527 

124 8 4 on off off on 0.877 -0.045 1.307 

125 4 4 on off off on 0.872 -0.087 2.592 

126 64 2 on off off on 0.897 -0.008 0.252 

127 32 2 on off off on 0.867 -0.009 0.312 

128 16 2 on off off on 0.856 -0.021 0.649 

129 8 2 on off off on 0.849 -0.050 1.514 

130 4 2 on off off on 0.844 -0.101 3.052 

131 64 1 on off off on 0.890 -0.008 0.291 

132 32 1 on off off on 0.859 -0.009 0.350 

133 16 1 on off off on 0.848 -0.022 0.690 

134 8 1 on off off on 0.841 -0.054 1.650 

135 4 1 on off off on 0.837 -0.109 3.331 

136 64 4 off off off on 0.824 -0.022 0.722 

137 32 4 off off off on 0.793 -0.023 0.770 

138 16 4 off off off on 0.782 -0.037 1.198 

139 8 4 off off off on 0.775 -0.064 1.972 

140 4 4 off off off on 0.771 -0.107 3.286 

141 64 2 off off off on 0.797 -0.023 0.762 

142 32 2 off off off on 0.766 -0.024 0.796 

143 16 2 off off off on 0.754 -0.037 1.250 

144 8 2 off off off on 0.748 -0.067 2.131 

145 4 2 off off off on 0.744 -0.118 3.669 

146 64 1 off off off on 0.788 -0.025 0.835 

147 32 1 off off off on 0.758 -0.026 0.898 

148 16 1 off off off on 0.746 -0.040 1.340 

149 8 1 off off off on 0.740 -0.069 2.215 

150 4 1 off off off on 0.736 -0.123 3.787 

151 64 4 on on off on 0.674 -0.009 0.283 

152 32 4 on on off on 0.648 -0.011 0.369 
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153 16 4 on on off on 0.638 -0.022 0.716 

154 8 4 on on off on 0.632 -0.051 1.539 

155 4 4 on on off on 0.631 -0.093 2.747 

156 64 2 on on off on 0.656 -0.010 0.338 

157 32 2 on on off on 0.628 -0.012 0.424 

158 16 2 on on off on 0.620 -0.024 0.745 

159 8 2 on on off on 0.614 -0.058 1.806 

160 4 2 on on off on 0.613 -0.105 3.148 

161 64 1 on on off on 0.650 -0.012 0.415 

162 32 1 on on off on 0.625 -0.014 0.482 

163 16 1 on on off on 0.615 -0.026 0.871 

164 8 1 on on off on 0.609 -0.055 1.747 

165 4 1 on on off on 0.608 -0.115 3.493 

166 64 4 off on off on 0.610 -0.025 0.849 

167 32 4 off on off on 0.584 -0.027 0.924 

168 16 4 off on off on 0.574 -0.036 1.169 

169 8 4 off on off on 0.568 -0.066 2.062 

170 4 4 off on off on 0.566 -0.109 3.307 

171 64 2 off on off on 0.591 -0.026 0.900 

172 32 2 off on off on 0.565 -0.028 0.954 

173 16 2 off on off on 0.556 -0.040 1.329 

174 8 2 off on off on 0.550 -0.068 2.149 

175 4 2 off on off on 0.550 -0.121 3.662 

176 64 1 off on off on 0.586 -0.028 0.944 

177 32 1 off on off on 0.560 -0.027 0.939 

178 16 1 off on off on 0.551 -0.042 1.402 

179 8 1 off on off on 0.545 -0.071 2.292 

180 4 1 off on off on 0.544 -0.129 3.993 

181 64 4 on off on on 0.539 -0.022 0.659 

182 32 4 on off on on 0.522 -0.024 0.737 

183 16 4 on off on on 0.516 -0.036 1.054 

184 8 4 on off on on 0.512 -0.066 1.979 

185 4 4 on off on on 0.512 -0.104 3.174 

186 64 2 on off on on 0.525 -0.024 0.770 

187 32 2 on off on on 0.508 -0.023 0.734 

188 16 2 on off on on 0.502 -0.038 1.142 

189 8 2 on off on on 0.499 -0.070 2.163 

190 4 2 on off on on 0.498 -0.117 3.472 

191 64 1 on off on on 0.521 -0.026 0.857 
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192 32 1 on off on on 0.504 -0.026 0.844 

193 16 1 on off on on 0.497 -0.038 1.127 

194 8 1 on off on on 0.494 -0.067 2.082 

195 4 1 on off on on 0.494 -0.125 3.799 

196 64 4 off off on on 0.491 -0.038 1.256 

197 32 4 off off on on 0.474 -0.039 1.277 

198 16 4 off off on on 0.468 -0.052 1.673 

199 8 4 off off on on 0.465 -0.078 2.451 

200 4 4 off off on on 0.464 -0.123 3.742 

201 64 2 off off on on 0.477 -0.040 1.297 

202 32 2 off off on on 0.460 -0.039 1.278 

203 16 2 off off on on 0.454 -0.053 1.676 

204 8 2 off off on on 0.451 -0.082 2.582 

205 4 2 off off on on 0.450 -0.133 4.072 

206 64 1 off off on on 0.473 -0.043 1.387 

207 32 1 off off on on 0.456 -0.041 1.349 

208 16 1 off off on on 0.450 -0.053 1.711 

209 8 1 off off on on 0.447 -0.083 2.632 

210 4 1 off off on on 0.446 -0.141 4.372 

211 64 4 on on on on 0.447 -0.031 0.969 

212 32 4 on on on on 0.431 -0.032 1.018 

213 16 4 on on on on 0.425 -0.045 1.391 

214 8 4 on on on on 0.422 -0.072 2.214 

215 4 4 on on on on 0.422 -0.112 3.432 

216 64 2 on on on on 0.437 -0.034 1.092 

217 32 2 on on on on 0.420 -0.034 1.091 

218 16 2 on on on on 0.415 -0.045 1.425 

219 8 2 on on on on 0.412 -0.076 2.366 

220 4 2 on on on on 0.413 -0.125 3.762 

221 64 1 on on on on 0.434 -0.036 1.187 

222 32 1 on on on on 0.417 -0.034 1.133 

223 16 1 on on on on 0.412 -0.047 1.472 

224 8 1 on on on on 0.410 -0.078 2.439 

225 4 1 on on on on 0.409 -0.135 4.151 

226 64 4 off on on on 0.411 -0.048 1.566 

227 32 4 off on on on 0.394 -0.049 1.612 

228 16 4 off on on on 0.389 -0.059 1.890 

229 8 4 off on on on 0.385 -0.087 2.734 

230 4 4 off on on on 0.385 -0.130 3.998 
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231 64 2 off on on on 0.400 -0.048 1.563 

232 32 2 off on on on 0.384 -0.049 1.601 

233 16 2 off on on on 0.379 -0.061 1.956 

234 8 2 off on on on 0.375 -0.091 2.851 

235 4 2 off on on on 0.374 -0.140 4.326 

236 64 1 off on on on 0.397 -0.050 1.654 

237 32 1 off on on on 0.380 -0.049 1.616 

238 16 1 off on on on 0.375 -0.062 2.032 

239 8 1 off on on on 0.372 -0.093 2.923 

240 4 1 off on on on 0.372 -0.148 4.585 
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Table D.2: LUT used for determination of the new p(i) encoding configuration. 
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