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Abstract 

 

Neuropeptide Y (NPY) is a neuromodulator in central nervous system (CNS) that can 

exert neuroprotective effects. NPY is expressed in mammalian retina but the location and 

potential modulatory effects of NPY receptor activation remains largely unknown. Retinal 

ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly 

glaucoma. In purified RGCs, we detected immunoreactivity and mRNA for NPY and NPY 

receptors in these cells. Using cultured purified RGCs and ex vivo retinal preparations we have 

evaluated the effect of NPY receptor activation on changes in RGC intracellular free calcium 

concentration – [Ca2+]i and RGC spiking activity. RGC spike recordings were performed by a 

multi-electrode array (MEA). We found that NPY application attenuated the increase in the 

[Ca2+]i triggered by glutamate in purified RGCs, possibly via Y1 receptor activation. Moreover, 

Y1/Y5 receptor activation increased the initial burst response of OFF-type RGCs, though no 

effect was observed in the RGC spontaneous spiking activity. The Y1 receptor activation was 

able to modulate directly RGC responses by attenuating the N-Methyl-D-aspartic acid 

(NMDA)-induced increase in RGC spiking activity. These results suggest that Y1 receptor 

activation at the level of inner or outer plexiform layers leads to modulation of RGC receptive 

field properties. Using in vitro culture of retinal explants exposed to NMDA, we found that 

NPY pre-treatment prevented NMDA-induced cell death through activation of Y1 and Y5 

receptors. In an animal model of retinal ischemia-reperfusion (I-R) injury, pre-treatment with 

NPY was not able to prevent cell death or rescue RGCs. In summary, we found clear 

modulatory effects of NPY at the level of RGCs, and Y1 receptor appears to have a predominant 

role. However, further studies are needed to evaluate whether NPY neuroprotective action 

translates to in vivo models of retinal degenerative diseases. 

Sildenafil (ViagraTM), a cyclic guanosine monophosphate (cGMP)-specific 

phosphodiesterase type 5 inhibitor, is widely used for the treatment of erectile dysfunction 

and pulmonary arterial hypertension. Clinical studies reported transient visual impairments in 

patients after a single dose sildenafil ingestion, suggesting the implication of RGCs, since these 

cells convey visual information to the brain centres of visual processing. However, the effect 

of sildenafil on the RGC light responses is not fully understood. Using a MEA technique, in the 

second part of this study, we evaluated the effect of sildenafil on RGC light responses in ex 

vivo retinas. Under continuous perfusion, sildenafil citrate (0.3 to 30 µM) was applied to 
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retinal preparations during 10 to 60 min followed by sildenafil washout. High concentration 

(30 µM) of sildenafil reversibly decreased the magnitudes of both ON- and OFF-type RGC light 

responses, and in 50% of RGCs, light responses were completely supressed. Sildenafil also 

greatly increased the latency of ON- and OFF-types of light responses. We provide the 

evidence that extended exposure to sildenafil and repeated light stimulation potentiates drug 

effects and delays recovery. 

In conclusion, we show that MEA recordings in ex vivo retinas might be a valuable 

method to understand how RGC circuitry can be affected by different drug treatments. This 

understanding is relevant to the development of neuroprotective strategies needed for retinal 

degenerative diseases, namely glaucoma, where no available treatment can effectively stop 

the progression of RGC death. 
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Resumo 

 

O neuropeptídeo Y (NPY) é um neuromodulador no sistema nervoso central, capaz de 

exercer efeitos neuroprotetores. O NPY é expresso na retina de mamíferos mas a sua 

localização, e dos seus recetores, e o seu potencial efeito neuromodulador na retina continua 

pouco estudado. A morte das células ganglionares da retina (CGR) é uma das principais 

caraterísticas de doenças degenerativas da retina, particularmente do glaucoma. Neste 

trabalho, verficámos a presença de mRNA e immunoreatividade para o NPY e os recetores do 

NPY em preparações purificadas de CGR. Também avaliámos o efeito da ativação de recetores 

do NPY nos níveis intracelulares de cálcio livre – [Ca2+]i, e na formação de potenciais de ação, 

utilizando culturas purificadas de CGR e em preparações de retina ex vivo. Os potenciais de 

ação gerados pelas CGR foram registados com uma matriz de elétrodos. A aplicação de NPY 

atenuou o aumento da [Ca2+]i induzido por glutamato via ativação do recetor Y1. Além disso, 

a ativação dos recetores Y1/Y5 induziu um aumento da resposta inicial das CGR tipo-OFF após 

estimulação luminosa, embora não tenha alterado a atividade espontânea das CGR. A ativação 

dos recetores Y1 inibiu o aumento da formação de potenciais de ação pelas CGR após 

estimulação com N-metil-D-aspartato (NMDA). Estes resultados sugerem que a ativação dos 

recetores Y1, ao nível da camada plexiforme interna ou da camada plexiforme externa da 

retina modula as propriedades do campo recetivo das CGR. Ao expor explantes de retina in 

vitro a NMDA verificámos que o pré-tratamento com NPY foi capaz de prevenir a morte celular 

induzida pelo NMDA através da ativação dos recetores Y1 e Y5. Num modelo animal de 

isquémia-reperfusão, o pré-tratamento com NPY não preveniu a morte das CGR. Em resumo, 

identificámos efeitos modulatórios do NPY ao nível das CGR, em que a ativação dos recetores 

Y1 parece ter um papel central. Contudo, são necessários mais estudos com a finalidade de 

avaliar o potencial neuroprotetor do NPY in vivo em modelos de doenças degenerativas da 

retina. 

 O sildenafil (ViagraTM) é um inibidor da fosfodiesterase tipo 5, amplamente usado no 

tratamento da disfunção erétil e na hipertensão arterial pulmonar. Alguns estudos clínicos 

reportaram deficiências visuais temporárias em doentes que utilizavam sildenafil, o que 

sugere o possível envolvimento das CGR, uma vez que são estas células que transmitem a 

informação visual para centros cerebrais responsáveis pelo processamento da visão. Contudo, 

o efeito do sildenafil nas respostas das CGR a estímulos luminosos está pouco esclarecido. Na 
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segunda parte deste estudo, utilizámos uma matriz de elétrodos para avaliar o efeito do 

sildenafil nas respostas das CGR à luz em retinas ex vivo. Com perfusão constante, aplicámos 

concentrações crescentes de sildenafil (0,3 – 30 µM) durante períodos de 10 ou 60 minutos, 

seguidos de solução de lavagem. Uma concentração elevada de sildenafil (30 µM), provocou 

um decréscimo reversível na magnitude das respostas das CGR à luz, do tipo ON ou OFF das 

CGR, sendo que em 50% das CGR as respostas à luz foram completamente inibidas, embora 

reversivelmente. Além disso, o sildenafil provocou um aumento das latências das respostas 

do tipo ON e OFF. Também verificámos que a exposição prolongada a sildenafil, 

simultaneamente com estimulação luminosa, potencia os efeitos do fármaco e dificulta a 

recuperação das respostas das CGR à luz. 

 Assim, concluímos que o registo da atividade das CGR com uma matriz de elétrodos 

em retinas ex vivo é um método eficiente para estudar o modo como as CGR poderão ser 

afetadas por diferentes fármacos. Esta avaliação é importante para o desenvolvimento de 

estratégias neuroprotetoras necessárias para o tratamento de doenças degenerativas da 

retina, nomeadamente o glaucoma, para o qual não existe um tratamento eficaz, capaz de 

impedir a morte das CGR. 
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1.1 – The retina 

 

 

1.1.1 – Anatomy of the retina 

 

The retina is a thin tissue composed of a highly organized neuronal network inside of 

the eyeball (Fig. 1.1 A). It is part of the CNS and is responsible for transforming outside world 

natural scenes into meaningful information to the brain. The retina is basically formed by 

three main layers of neurons (Fig. 1.1 B), which cell somas are packed into three nuclear layers: 

outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL). These retinal 

neurons communicate through chemical and electrical synapses forming two tightly organized 

plexiform layers: outer plexiform layer (OPL) and inner plexiform layer (IPL). The ONL is 

composed of cell somas of photoreceptors: rods and cones. The rods operate mainly in dim 

light conditions and cones in daylight, being responsible for coloured and fine resolution 

vision. The INL is composed of cell somas of bipolar cells, horizontal cells, and amacrine cells. 

The GCL comprise the cell somas of displaced amacrine cells and retinal ganglion cells (RGCs) 

whose axons compose the nerve fibre layer (NFL), leaving the eyeball and forming the optic 

nerve that conveys the information from the retina to the brain visual centres. Within the OPL 

the photoreceptor terminals synapse with bipolar cell and horizontal cell dendrites. The IPL is 

a complex layer of synaptic connections, organized in five strata. In this layer, different sub-

types of bipolar cells, amacrine cells, and RGCs form synapses in specific strata. This complex 

plexiform layer is responsible for the final tuning of output visual information which is coded 

in the form of action potential patterns (spiking activity) by RGCs. In addition to neurons, other 

cell types compose and support the retina. An epithelial cell layer in the outermost part, the 

retinal pigmented epithelium (RPE), is responsible for recycling outer segments of 

photoreceptors, among other important functions such as absorbing excessive light and 

transporting nutrients and ions from choriocappilaries. Retinal glial cells, namely microglia, 

astrocytes, and Müller cells (Fig. 1.1 C) exert an important role in supporting and regulating 

retinal physiology. 

The photoreceptors are supplied by the choroidal blood vessels while inner retina is 

nourished by the retinal artery, which then branches into three capillary networks throughout 

the retina. An important feature of retinal vascular network is the presence of tight junctions 



CHAPTER 1 

 

12 
 

between endothelial cells of the retinal capillaries. In addition, epithelial cells of RPE also 

exhibit tight junctions. Therefore, the RPE and retinal capillaries form a blood-retinal barrier 

(BRB) that tightly regulates the transport of molecules into the retina. The RPE forms the outer 

BRB, while retinal capillaries form the inner BRB. The BRB is an important player in the retinal 

defence mechanisms against circulating toxins (Siu et al., 2008). 

Figure 1.1. Anatomy of the retina. (A) The retina is a thin tissue inside the eyeball (Widmaier et al., 

2004). (B) There are six types of neurons in the mammalian retina: 1 – rods, 2 – cones, 3 – horizontal 

cells, 4 – bipolar cells, 5 – amacrine cells, 6 – retinal ganglion cells (RGCs). OS/IS, outer and inner 

segments of rods and cones; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear 

layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fibre layer. Adapted from 

Wassle (2004). Müller glial cells (C) extend throughout the retinal thickness Adapted from Ahmad 

et al. (2011). 

  

A B C
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1.1.2 – Phototransduction 

 

 Phototransduction is the process by which photoreceptors convert photons absorbed 

by photopigments into synaptic response at photoreceptor terminals (Fig. 1.2). The presence 

of photopigments in photoreceptor outer segments allows these cells responding to light. 

Photopigments consists of an opsin isoform and a covalently attached chromophore derived 

from vitamin A (11-cis retinal). 

Figure 1.2. Phototransduction cascade. After rhodopsin (R) activation by light, the subsequent 

transducin (T) and phosphodiesterase (P) activation triggers cGMP hydrolysis. The drop in cGMP 

leads to the closure of cyclic nucleotide-gated (CNG) channels which results in membrane 

hyperpolarization. Then, the activation of guanylate cyclase-activating protein (GCAP) and 

guanylate cyclase (GC) restores the cGMP levels and membrane depolarizes. NCKX, Na+/Ca2+, K+ 

exchanger; PM, plasma membrane (Chen, 2005). 

 

In the dark, the photoreceptor cell membrane is depolarized and the neurotransmitter 

glutamate is being released. The first step of phototransduction occurs when light isomerizes 

the 11-cis bond of the retinal to the all-trans configuration. This isomerization triggers a 

conformational change in rhodopsin (R) which becomes active in a conformation state called 

metarhodopsin II (R*). R* catalyses the exchange of gua osi e ’-triphosphate (GTP) for 

gua osi e ’-diphosphate (GDP) o  the α-subunit of the heteromeric G protein transducin 

(TαGDPβγ). Activated transducin α-subunit (T*αGTP  disso iates fro  tra sdu i  βγ-subunits (Tβγ) 

a d i ds to the i hi itor  γ-subunit of the tetrameric phosphodiesterase - PDE - (Pαβγ ). The 

uninhibited catalytic subunit of PDE (P*αβ) hydrolyzes cGMP into guanosine ’-

monophosphate ( ’-GMP). The drop of intracellular cGMP concentration closes the cyclic 
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nucleotide-gated (CNG) channel located at the plasma membrane, blocking the entry of Na+ 

and Ca2+, which results in membrane hyperpolarization and glutamate release decrease. Since 

the Na+/Ca2+, K+ exchanger (NCKX) at the cell membrane is not light sensitive and Ca2+ 

extrusion continues while Ca2+ entry through the CNG channel is blocked, the 

phototransduction leads to a decline in intracellular Ca2+ concentration [Ca2+]i. The drop in 

[Ca2+]i leads to the interaction between guanylate cyclase-activating protein (GCAP) and 

guanylate cyclase (GC) resulting in GC activation. This restores the levels of cGMP, so CNG 

channels open and the membrane depolarization is restored (Chen, 2005). 

 

 

1.1.3 – Retinal circuitry and transmission of visual signals 

 

 A simple representation of signal flow in the retina is the division in the vertical 

pathway (photoreceptor – bipolar cell – RGC), using the excitatory neurotransmitter 

glutamate, and in the lateral pathway, associated with horizontal cell and amacrine cell 

activity, which provide lateral inhibition using mainly γ-aminobutyric acid (GABA). However, 

multiple pathways operate simultaneously extending the understanding of the retinal 

circuitry, and will be detailed below. 

Rod photoreceptors contain only one type of photopigment - rhodopsin - most 

sensitive to wavelengths around 505 nm. In cone photoreceptors, different photopigments 

(photopsins) are found, based on their spectral sensitivity (Fig. 1.3 A). The type of pigment 

gives the name to the cone photoreceptor. Most mammals contain two types of cones, 

namely middle wavelength sensitive (green, M-cones) and short wavelength sensitive (blue, 

S-cones). In addition to M- and S-cones, primates also contain long wavelength sensitive cones 

(red, L-cones). The processing of visual information in the retina starts at the OPL where 

photoreceptors synapse with bipolar cells and horizontal cells through special synapses called 

pedicles for cones and spherules for rods. Is at this level that the two major functional visual 

pathways, ON and OFF, are generated and run in parallel towards brain visual centres. This 

dichotomy, ON and OFF, is based on two different types of bipolar cells. 

OFF-type bipolar cells that respond to light with the same polarity as the 

photoreceptor, i.e. bipolar cells are depolarized in the dark and hyperpolarize upon light 

stimulation. This connection is named sign conserving synapse. In contrast, ON-type bipolar 

cells respond to light with an inverted polarity, i.e. bipolar cells are hyperpolarized in the dark 
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and depolarized upon light stimulation – sign inverting synapses. The presence of different 

glutamate receptors at bipolar dendritic terminals determines the type of bipolar cell. In the 

OFF-type bipolar cells the glutamate released by photoreceptors in the dark activates 

excitatory ionotropic glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA)-Kainate type), resulting in membrane depolarization. 

In contrast, in the ON-type bipolar cells, the glutamate released by photoreceptors in 

the dark activates inhibitory metabotropic glutamate receptor 6 (mGluR6), which results in 

membrane hyperpolarization (Nakajima et al., 1993). Since each bipolar cell contact many 

photoreceptors, the relative amount and location of ON- and OFF- connections determine the 

centre-surround organization of the receptive field and, thus, define the respective cell type: 

ON-centre or OFF-centre bipolar cell. The ON and OFF dichotomy and the centre-surround 

organization of the receptive fields are maintained at IPL resulting in ON-centre and OFF-

centre RGC types. 
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Figure 1.3. Cone and rod pathways. (A) Cone photoreceptor types are determined by their 

photopigment spectral sensitivities. The absorption spectrum is shown for each photopigment. 

Adapted from Hoon et al. (2014). Dashed trace represents rhodopsin. In addition to M-cones 

(middle wavelength, green) and S-cones (short wavelength, blue), primates also contain L-cones 

(long wavelength, red). (B) Two major cone pathways, ON and OFF, run in parallel to RGCs. Adapted 

from Balasubramanian and Sterling (2009). OFF bipolar cells make sign conserving contacts with 

cone photoreceptors whereas ON bipolar cells make sign inverting contacts with cone 

photoreceptors. Then, both bipolar cell types synapse with ON or OFF RGCs. (C) Rod photoreceptor 

signals reach ON and OFF channels at RGC level through multiple pathways. Adapted from Wassle 

(2004). ON1 and OFF1 represent classical pathways. Rods make sign inverting synapses (red arrows) 

with invaginating dendrites of rod bipolar cells (RB), which then contact AII amacrine cells through 

sign conserving synapses (green arrows). AII amacrine cells access simultaneously ON and OFF 

channels. They make gap junctions (electrical synapses) with ON cone bipolar cells, which in turn 

synapse with ON RGCs (ON1), and at the same time they make inverting synapses with the axons 

of OFF cone bipolar cells, which in turn synapse with OFF RGCs (OFF1). In the ON2 and OFF2 

pathways, the rod signals are transmitted to cones through gap junctions and then follow cone 

pathways to either ON or OFF RGCs, respectively. In the OFF3 pathway, OFF cone bipolar cells make 

direct synaptic contacts with the base of rod spherules and transfer this signal directly onto OFF 

RGCs. 

A B

C
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 The way photoreceptor signals access RGCs involves various pathways. Cone 

photoreceptors connect ON and OFF cone bipolar cells which in turn contact RGCs (Fig 1.3 B), 

whereas rod photoreceptors contact mainly ON rod bipolar cells that do not contact directly 

RGCs but instead use a particular type of amacrine cell – AII amacrine cell – which in turn 

contact ON and OFF cone bipolar cells and thus access RGCs (Fig. 1.3 C). 

However, in the last decades, alternative pathways have been identified (Fig. 1.3 C) 

broadening the knowledge of retinal complex circuitry (Wassle, 2004). Of special interest are 

the electrical synapses various retinal neurons are able to establish through gap junctions. The 

rod and cone photoreceptors contact via gap junctions allowing rod signals to access cone 

pathways (DeVries and Baylor, 1995). In addition, some OFF-cone bipolar cells make direct 

synaptic contacts with the base of rod spherules transferring this signal directly onto OFF RGCs 

(Soucy et al., 1998; Hack et al., 1999). 

Taking into account the neuronal diversity found in the mammalian retina (Fig. 1.4), 

one may anticipate the complexity of this neural structure in terms of anatomical arrangement 

and physiological interactions. In fact, more than different 50 neuronal types have been 

identified by structural criteria and many remain to be assigned to a specific visual function 

(Masland, 2001). In the circuitry depicted in Figure 1.3 C, it is clear that the processing of visual 

information in the retina involves mainly two stages, one at the OPL and the other at the IPL. 

At the OPL, horizontal cells make sign conserving synaptic contacts with photoreceptors, thus 

maintaining a relatively depolarized potential in the dark and then hyperpolarizing upon light. 

Horizontal cells mainly release GABA providing a negative feedback signal to photoreceptors. 

They play an important role in the generation of receptive field surrounds in bipolar cells 

(Dacey, 1999) adding an opponent signal that is spatially constrictive. Moreover, horizontal 

cell activity is regulated by signals from the IPL, which are transmitted via various molecules 

such as dopamine, nitric oxide, and retinoic acid. These signals contribute to the regulation of 

horizontal cells under different light conditions (Twig et al., 2003).  
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Figure 1.4. Neuronal diversity of mammalian retina. Based on receptive field size and dendritic 

stratification various neuronal classes are identified. The retina is composed of wide-field cells and 

narrow-field cells, though wide-field are less numerous. The numbers of cells are distributed 

uniformly among the different classes. Note that amacrine cells and RGC dendritic terminals exhibit 

various stratification modalities in IPL, e.g. monostratified and bistratified (Masland, 2001). 

 

 At the second stage of image processing at the IPL, bipolar cell terminals, RGC 

dendrites, and amacrine cells establish contacts. At the RGC level, visual information is 

computed in the form of spike trains, and, as abovementioned, two basic channels, ON and 

OFF, form the major retina output to the brain. ON-centre RGCs are maximally activated when 

a spot of light is presented to the centre of their receptive field, and they are maximally 

inhibited when light stimulation is presented on the receptive field periphery. OFF-centre 

RGCs respond to light stimulation in an opposite way. Because the contacts between bipolar 

cell and RGCs are sign conserving, the ON- and OFF-response origin is essentially determined 

by the bipolar cell types contacting with each individual RGC (Westheimer, 2007). Amacrine 

cells convey additional information to IPL circuitry. Several neurotransmitter molecules are 

used by amacrine cells, such as GABA, glycine, acetylcholine, dopamine, and serotonin (Kolb, 

1995). Using specific markers for each neurotransmitter-containing amacrine cell, it is possible 

to identify specific strata on IPL, since their dendrites ramify in narrow bands (Haverkamp and 

Wassle, 2000). Within these different strata, specific aspects of light signals are processed, 
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where amacrine cells play a predominant role (Wassle, 2004). In fact, to extract meaningful 

features from natural scenes by the brain, part of the necessary neuronal computation of 

visual information is performed by the retina. As above mentioned, different retinal neurons 

are involved in this process, though the output signal is carried out only by RGC spiking activity. 

In Figure 1.5 are exemplified various specific visual tasks performed by retinal circuitry, such 

as detection of dim light flashes, sensitivity to texture motion, detection of differential motion 

and approaching motion, the rapid encoding of spatial structures, and the ability to switch 

circuits (Gollisch and Meister, 2010). These tasks might be understood as answers to particular 

challenges shared by many animals, such as the need to detect dim lights and the need to 

detect moving objects.  
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Figure 1.5. Neural computations in retinal circuitry. All computations within retinal circuitry 

involves different retinal cell types, namely bipolar cells, amacrine cells, and RGCs, though the 

output signal is carried out by RGC spiking activity. (A) Detection of dim light flashes originates in 

rod-to-rod bipolar pathway. Rod bipolar cells pool over many rod photoreceptors. (B) Sensitivity to 

texture motion results from the selective activation of a particular RGC when a fine grating shifts in 

either direction within the RGC receptive field (circle). (C) The detection of differential motion is 

attributed to an object-motion-sensitive RGC that remains silent under global motion of the entire 

image, but fires when the image patch in its receptive field moves differently from the background. 

(D) The detection of approaching motion is assigned to a certain type of RGC that responds strongly 

to the visual pattern of an approaching dark object. (E) The rapid encoding of spatial structures is 

based on spike latencies of specific RGCs. RGCs with receptive fields (circles) in a dark region fire 

early, and those in a bright region fire late. (F) The ability to switch between circuits is driven by a 

certain type of wide-field amacrine cell, activated during rapid image shifts in the periphery, which 

selectively gates one of two potential input signals. Adapted from Gollisch and Meister (2010). 

  

A B
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1.1.4 – Circadian visual system 

 

In mammals, in addition to classical rod and cone photoreceptors, a third type of 

photosensitive neuron is present and define a particular type of intrinsically photosensitive 

RGCs (ipRGCs), which mediate non-image-forming visual functions such as pupillary light 

reflex and circadian photoentrainment. The photosensitivity of ipRGCs requires the expression 

of melanopsin, a photopigment with peak absorbance around 484 nm (Berson et al., 2002). 

The ipRGCs project predominantly to the suprachiasmatic nuclei (SCN) of the hypothalamus 

(Hattar et al., 2002), which is the primary circadian oscillator in mammals. Indeed, ipRGCs play 

an important role in photoentrainment, a process by which the light/dark cycle synchronizes 

the SCN central oscillator (Morin and Allen, 2006). This central oscillator then synchronizes 

peripheral circadian clocks distributed in other mammalian tissues, such as the retina (Tosini 

et al., 2008), multiple brain regions (Abe et al., 2002), and many peripheral tissues (Damiola 

et al., 2000). The retinal intrinsic circadian oscillator is involved in circadian rhythms of the 

inner retinal circuitry (Storch et al., 2007). The retinal circadian pacemaker property is assured 

by the expression in multiple types of retinal neurons of key elements of the circadian 

autoregulatory gene network lo k ge es  like Period 1 and 2, Cryptochrome 1 and 2, and 

Clock and Bmal 1 (Ruan et al., 2006). 

 

 

1.1.5 – Glaucoma and retinal ganglion cell death 

 

Pathologies of the neural retina represent a major cause of visual impairment and 

blindness worldwide and the development of effective neuroprotective strategies is an 

important challenge in ophthalmology research. In order to evaluate the effectiveness of 

putative neuroprotective compounds, various in vitro and animal models of neurotoxicity, 

such as retinal ischemia, exposure to glutamate or NDMA, optic nerve crush, and glaucoma 

models characterized by increased intraocular pressure (IOP) have been used (Barkana and 

Belkin, 2004). 

In particular, glaucoma is the major cause of irreversible blindness worldwide, 

estimated to affect approximately 80 million people by 2020 (Quigley and Broman, 2006), and 

the search for neuroprotective strategies to prevent RGC death is an important challenge 

(Baltmr et al., 2010). Glaucoma is a multifactorial disease characterized mainly by the 
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progressive degeneration of RGCs and their axons. Clinically, a characteristic cup excavation 

due to alterations of the connective tissue at the optic disc are coincident with the initial 

abnormalities in both human and experimental glaucoma (Quigley et al., 1981). Although 

increased IOP is a major risk factor, several pathophysiological mechanisms have been 

associated with the progression of the disease (Cheung et al., 2008). These include 

excitotoxicity, protein misfolding, mitochondrial dysfunction, oxidative stress, inflammation, 

and neurotrophin deprivation. Currently, the medical management of glaucoma is based in 

lowering IOP, but although effective control of IOP is many times achieved, the progression of 

RGC loss is not prevented (Geringer and Imami, 2008). Therefore, pharmacological therapies 

targeting pathophysiological mechanisms, others than elevated IOP, as above mentioned, 

have been extensively evaluated in in vitro and animal models of RGC degeneration (Chidlow 

et al., 2007; Baltmr et al., 2010). The in vitro studies include mainly cultured RGCs and cultured 

retinal explants exposed to different stimuli, such as NMDA or glutamate (Pang et al., 1999; 

Dun et al., 2007), neurotrophic withdrawal (Johnson et al., 1986; Hu et al., 2010), and elevated 

hydrostatic pressure (Sappington et al., 2006; Ishikawa et al., 2010). The different stimuli used 

in in vitro studies aimed to mimic isolated characteristics of glaucoma pathophysiology. In 

addition, various animal models have been used to evaluate the potential neuroprotective 

effects of different drug treatments against RGC death. These include animal models where 

IOP is chronically elevated by blocking the aqueous humour outflow. This has been achieved 

by injecting a hypertonic saline solution into the episcleral veins (Morrison et al., 1997), 

cauterization of episcleral veins (Shareef et al., 1995; Hernandez et al., 2008), or injection of 

polystyrene microbeads into the anterior chamber (Sappington et al., 2010) among other 

techniques. Other animal models include mainly optic nerve crush (Schuettauf et al., 2000) or 

optic nerve transection (Kikuchi et al., 2000), injection of NMDA or glutamate directly into 

vitreous humour (Nash et al., 2000; Santos-Carvalho et al., 2013b), and retinal I-R injury (Kapin 

et al., 1999; Chidlow et al., 2002). 

Although these studies have contributed to significant advances in understanding both 

the pathogenic and neuroprotective mechanisms involved in glaucoma and its treatment, 

translating experimental drug treatments to glaucoma patients has not been successfully 

achieved. In fact, the clinical trial of memantine (a NMDA receptor antagonist, anti-

excitotoxic) in glaucoma patients have failed, likely due to the multifactorial nature of 

glaucoma (Osborne, 2009). This finding suggests that neuroprotective compounds with 

multiple modes of action might be more efficient.  
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1.2 – Neuropeptide Y 

 

 

1.2.1 – Structure and biosynthesis 

 

Neuropeptide Y (NPY) is a 36 amino acid peptide that was first isolated from porcine 

brain (Tatemoto, 1982; Tatemoto et al., 1982). NPY is widely expressed in the CNS and acts as 

a neurotransmitter/neuromodulator or neurohormone. In the periphery it is mainly found in 

sympathetic nerve terminals where is co-released with norepinephrine and ade osi e ’-

triphosphate (ATP) (Morris, 1999; Wier et al., 2009). During the last three decades NPY has 

been associated with a multitude of physiological functions such as feeding behaviour and 

energy homeostasis (Chambers and Woods, 2012; Sohn et al., 2013), regulation of 

emotionality and behavioural stress responses including drug addiction (Heilig, 2004; Koob, 

2008; Hirsch and Zukowska, 2012), regulation of circadian rhythm (Moore and Card, 1990; 

Yannielli and Harrington, 2004), bone physiology (Lee and Herzog, 2009; Khor and Baldock, 

2012), neurogenesis (Hansel et al., 2001; Malva et al., 2012), and immune response 

(Prod'homme et al., 2006; Bedoui et al., 2007; Wheway et al., 2007; Dimitrijevic and 

Stanojevic, 2013). NPY belongs to a family of highly conserved peptides which includes also 

pancreatic polypeptide (PP), and peptide YY (PYY), all with 36 amino acid residues (Fig. 1.6 A, 

B) (Michel et al., 1998), which bind to seven transmembrane G protein-coupled receptors 

(GPCRs) named NPY receptors, Y1, Y2, Y4, and Y5 in humans. 
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Figure 1.6. NPY family of peptides. (A) Structure of porcine PYY (pPYY), porcine NPY (pNPY), and 

bovine PP (bPP). Adapted from Lerch et al. (2004). (B) Amino acid sequences of porcine NPY (pNPY), 

human PYY (hPYY), and human PP (hPP) (Walther et al., 2011). 

 

The high homology between these peptides results from whole genome and individual 

gene duplication events occurred early in vertebrate evolution, a common feature for other 

peptides (Larhammar et al., 2009). The first duplication is believed to have generated NPY and 

PYY, and a second duplication generated PP from PYY (Cerda-Reverter and Larhammar, 2000; 

Conlon and Larhammar, 2005). These peptides have been associated with a hairpin-like spatial 

arrangement called PP-fold , consisting of an N-terminal polyproline helix (residues 1-8), a 

consecutive turn and a C-ter i al α-helix (residues 14-31) arranged in a U-shape tertiary 

structure (Blundell et al., 1981). However, nuclear magnetic resonance (NMR) studies found 

that the N-terminal is flexible and does not form hairpin-like fold under physiological 

conditions (Bader et al., 2001; Lerch et al., 2002; Lerch et al., 2004). Particularly, for NPY, 

fluorescence resonance energy transfer (FRET) studies confirmed that the N-terminal does not 

fold back onto C-ter i al α-helix in solution (Bettio et al., 2002; Haack and Beck-Sickinger, 

2009). 

The NPY gene is located on human chromosome 7p15.1. It is composed of four exons 

and results in the synthesis of a 97-amino-acid pre-pro-NPY (Fig. 1.7) (Minth et al., 1984). The 

signal peptide of pre-pro-NPY is cleaved in the endoplasmic reticulum by a signal peptidase, a 

common feature to most pre-pro-peptides (Dores et al., 1996). In the following step, pro-NPY 

A

B

pPYY pNPY bPP
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is proteolytically processed at a dibasic site by prohormone convertases into the C-terminal 

peptide of NPY (CPON) and NPY1-39 (Hook et al., 1996; Funkelstein et al., 2008; Funkelstein et 

al., 2012). This is further processed by carboxypeptidase to NPY1-37. The processing and C-

terminal amidation of NPY is a o plished  peptid lgl i e α-amidating monooxygenase. 

The amidation of NPY is essential for biological activity and prevents degradation by 

carboxypeptidases. Mature NPY (NPY1-36) is rapidly cleaved in serum into three main 

fragments: NPY3-36, NPY3-35, and NPY2-36 (Medeiros and Turner, 1996; Abid et al., 2009). NPY1-

36 is predominantly cleaved into NPY3-36 by dipeptidyl peptidase IV (DPPIV), and through a 

slower process by aminopeptidase P into NPY2-36. Both of these peptides loose the affinity for 

Y1 receptor, retaining high affinity for Y2 and Y5 receptors. In addition, a fraction of NPY3-36 is 

further degraded by plasma kallikrein into NPY3-35. This later peptide does not bind to any of 

NPY receptors, thus representing a possible major metabolic clearance product of NPY3-36.  
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Figure 1.7. Biosynthesis of NPY. NPY gene is composed of four exons and results in the synthesis of 

a 97-amino-acid pre-pro-NPY. After a series of proteolytic steps and final C-terminal amidation, the 

mature and biological active NPY1-36 is formed. bp, base pairs; nt, nucleotides; UTR, untranslated 

region; CPON, C-terminal peptide of NPY (Silva et al., 2002).  

 

 

1.2.2 – Neuropeptide Y receptors 

 

Similarly to the ligand peptides NPY, PYY, and PP, the various NPY receptors result from 

chromosomal and gene duplication events during evolution (Larhammar and Salaneck, 2004). 

Interestingly, mammals have lost some NPY receptors, namely Y7 (Fredriksson et al., 2004) and 

Y8 (Lundell et al., 1997; Larsson et al., 2008), which have arisen in the ancestor of the jaw 

vertebrates (Larhammar and Bergqvist, 2013). Functional active NPY receptors, Y1, Y2, Y4, and 

Y5, in humans and rats, as for all GPCRs, consist of an extracellular N-terminus, seven 

tra s e ra e α-helices connected by three intracellular and three extracellular loops, and 

an intracellular C-terminus. The mRNA presence evaluated by in situ hybridization for different 

NPY receptors, Y1, Y2, Y4, and Y5, together with functional autoradiography, show that all the 

receptors are widely distributed throughout the rat brain, especially in regions such as 

hypothalamus, hippocampus, and amygdala (Lynch et al., 1989; Parker and Herzog, 1999). 
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The Y1 receptor was first cloned from rat brain in 1990 (Eva et al., 1990). In humans, Y1 

receptor gene is located on chromosome 4q31.3-q32 (Herzog et al., 1993). The following 

agonist order of pote  of NPY ≥ PYY ≥ [Pro34]substituted analogue >> C-terminal fragment > 

PP has been found for Y1 receptor was reported (Michel et al., 1998). Functional 

autoradiography and immunohistochemistry experiments revealed an abundant presence of 

Y1 receptor in several brain regions such as cerebral cortex, hippocampus, hypothalamus, 

thalamus, amygdala, and brainstem (Shaw et al., 2003; Wolak et al., 2003). 

The Y2 receptor was first cloned from human SMS-KAN cells (Rose et al., 1995). In 

humans, Y2 receptor gene is located on chromosome 4q31 (Ammar et al., 1996). The following 

ago ist order of pote  of NPY ≈ PYY ≥ C-terminal fragment >> [Pro34]substituted analogue > 

PP was reported (Michel et al., 1998). Positron emission tomography (PET) neuroimaging in 

pig brain showed the presence of Y2 receptor mainly in thalamus, caudate nucleus, 

hippocampus, and cerebellum (Winterdahl et al., 2014). 

 In various systems and organs such as rat CNS (Grundemar et al., 1991), lung 

(Hirabayashi et al., 1996), and adrenals (Bernet et al., 1994), it was reported the presence of 

binding sites or responses where NPY is considerably more potent than PYY, and these sites 

has been referred as Y3. However, since no receptor has been cloned and no specific agonist 

or antagonist has been described so far, this receptor might not exist, and these sites or 

responses were proposed to be referred as putati e Y3  (Michel et al., 1998). 

The Y4 receptor was first cloned fro  a hu a  ge o i  li rar  a d a ed as PP  

due to the high affinity (13.8 pM, Ki) to PP (Lundell et al., 1995), while NPY and PYY binds with 

9.9 and 1.44 nM affinity, respectively. In humans, the gene encoding for Y4 receptor is located 

on chromosome 10q11.2 (Darby et al., 1997). Although in the periphery Y4 receptor is highly 

expressed in colon, small intestine, pancreas, and prostate (Lundell et al., 1995), in the brain 

low levels are detected, and restricted to brain stem, hypothalamus, and hippocampus (Parker 

and Herzog, 1999). 

The Y5 receptor was initially cloned from rat hypothalamus (Gerald et al., 1996; Hu et 

al., 1996) and the corresponding gene in human localized on chromosome 4q31, in the same 

location as human Y1 receptor gene, but in opposite orientation (Gerald et al., 1996; Borowsky 

et al., 1998). The follo i g ago ist order of pote  of NPY ≥ PYY ≈ [Pro34]substituted analogue 

≈ NPY2-36 ≈ PYY3-36 >> NPY13-36 was reported in in vitro functional assays. Since this 

pharmacological profile was consistent with in vivo food intake assays and mRNA for Y5 

receptor was localized in areas of hypothalamus known to regulate food intake, the Y5 
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receptor was soon suggested as the primary mediator of NPY-induced feeding (Gerald et al., 

1996). In rat brain, autoradiographic assays revealed Y5 receptor binding sites in olfactory 

bulb, lateral septum, anteroventral thalamic nucleus, hippocampal CA3, nucleus tractus 

solitarius, and area postrema (Dumont et al., 1998). Using immunohistochemistry, the 

presence of Y5 receptor imunoreactivity was found in cerebral cortex, hippocampus, 

hypothalamus, thalamus, amygdala, and brainstem (Wolak et al., 2003). 

The y6 was first cloned from mouse genomic DNA (Weinberg et al., 1996). The 

homologous gene in humans was localized in chromosome 5q31 (Gregor et al., 1996). 

However, compared to mouse, the human sequence differs by a frame shift mutation which 

causes a stop codon predicting a truncated protein, though this later has not been successfully 

expressed (Gregor et al., 1996). Several sequences from primate species contain this stop 

codon suggesting the receptor function has been inactivated early in primate evolution 

(Matsumoto et al., 1996). In fact, no physiological correlate has been reported for the cloned 

y6 receptor (Michel et al., 1998). 

 

 

1.2.3 – Intracellular signalling pathways 

 

NPY receptors are all coupled to heterotrimeric G-proteins, mainly Gi/0 family, and their 

activation leads mainly to the inhibition of adenylate cyclase (Fig. 1.8), regulation of K+ and 

Ca2+ channels, and the activation of extracellular-signal-regulated kinase 1 and 2 (ERK1/2) 

(Shimada et al., 2012). The inhibition of adenylate cyclase, which results in decreased 

intracellular cyclic adenosine monophosphate (cAMP) levels, is found in most tissues and cell 

types studied, and also in all cloned NPY receptors upon heterologous expression (Gerald et 

al., 1996; Weinberg et al., 1996). 
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Figure 1.8. Examples of NPY receptor-mediated transduction cascades. NPY is frequently present 

in neurons synthesizing GABA. Y1 receptors are located mainly postsynaptically, and Y2 receptors 

are lo ated oth pres apti all  a d posts apti all . NPY re eptor a ti atio , ia Gα su u it, leads 
to inhibition of adenylate cyclase (AC), and via Gβγ su u its leads to i hi itio  of pres apti  N- 

and P/Q-type Ca2+ channels involved in the release of glutamate and other neurotransmitters. 

Posts apti all , NPY re eptor a ti atio , ia Gβγ su u its, leads to a ti atio  of G-protein-coupled 

inwardly-rectifying K+ channels (GIRKs). Other pathways include activation of mitogen-activated 

protein kinases (MAPKs) and phospholipase C (PLC) (Benarroch, 2009). 

 

NPY-mediated regulation of Ca2+ includes the activation or inhibition of Ca2+ channels 

(Ewald et al., 1988; Michel and Rascher, 1995). In particular, facilitation of L-type voltage-

dependent Ca2+ channels (VDCCs) via Gαs-protein and inhibition of N- and P/Q-VDCCs ia Gαi-

protein has been reported in submandibular ganglion neurons (Endoh et al., 2012). The 

control of Ca2+ channels, especially the inhibition of VDCC, has been reported to regulate 

neurotransmitter release in sympathetic nerve terminals (Toth et al., 1993), cortical nerve 

terminals (Wang, 2005), and hippocampus (Silva et al., 2001). In some cell types, NPY receptor 

activation can mobilize Ca2+ from intracellular stores, which involve inositol triphosphate in 

some cells (Perney and Miller, 1989), but not in other cell types (Motulsky and Michel, 1988). 

The activation or inhibition of K+ channels has also been reported (Millar et al., 1991; Xiong 

and Cheung, 1995). Indeed, the activation of G-protein-coupled inwardly-rectifying K+ 

channels (GIRKs) has been reported in several brain regions such as hippocampus (Paredes et 
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al., 2003), thalamus (Sun et al., 2001; Sun et al., 2003), arcuate nucleus (Acuna-Goycolea et 

al., 2005), and amygdala (Sosulina et al., 2008). Activation of mitogen-activated protein kinase 

(MAPK) family members have also been reported in various cell types, such as cell lines 

expressing NPY receptors (Nie and Selbie, 1998), erythroleukemia cells (Keffel et al., 1999), 

adrenal chromaffin cells (Rosmaninho-Salgado et al., 2007; Rosmaninho-Salgado et al., 2009), 

adipocytes (Rosmaninho-Salgado et al., 2012), vascular cells (Shimada et al., 2012), 

neuroblastoma cells (Lu et al., 2010), and in retinal neural cells (Alvaro et al., 2008a) and retinal 

glial cells (Milenkovic et al., 2004). Furthermore, each NPY receptor has a distinct molecular 

mechanism responsible for the receptor trafficking processes, such as anterograde transport, 

internalization, and recycling, which contributes to receptor response and signalling (Babilon 

et al., 2013). In particular, internalization experiments showed that Y1, Y2, and Y4 receptor 

internalize at comparable rates, whereas the Y5 receptor internalized much slower upon 

agonist binding (Bohme et al., 2008). 

 

 

1.2.4 – Neuropeptide Y and neuropeptide Y receptors in the retina 

 

The presence of NPY in the retina has been extensively studied in various species, 

revealing a conserved pattern of NPY-immunoreactivity (ir) (Santos-Carvalho et al., 2014). 

After NPY discovery in 1982, immunohistochemistry studies assessing the presence and 

localization of NPY soon reported the existence of NPY-ir in the retina of trout, carp, goldfish, 

zebrafish, gilthead seabream, killifish, frog, pigeon, chicken, guinea-pig, rat, rabbit, pig, cat, 

dolphin, and baboon (Fig. 1.9) (Bruun et al., 1984; Osborne et al., 1985; Bruun et al., 1986; 

Verstappen et al., 1986; Muske et al., 1987; Bruun et al., 1991; Subhedar et al., 1996; Chen et 

al., 1999; Kang et al., 2001; Le Rouëdec et al., 2002; Mathieu et al., 2002; Pirone et al., 2008). 

In these species, a common pattern was found. NPY-ir was localized mainly to amacrine cells, 

with cell bodies in the innermost row of INL, which processes ramified in the IPL forming up 

to three distinct layers. 
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Figure 1.9. NPY immunoreactivity in the retina. Examples of NPY-ir in the frog retina (A, B) and rat 

retina (C, D). (A) Wholemount of frog retina showing NPY-ir cells and their dendrites. Adapted from 

Hiscock and Straznicky (1989). (B) Section of frog retina. NPY-ir dendrites ramify in strata 1, 3, and 

5 of IPL. Adapted from Bruun et al. (1986). (C) Wholemount of rat retina showing NPY-ir in emerging 

processes (fine arrows) from cell somas (open arrows) of amacrine cells. Adapted from Oh et al. 

(2002). (D) Section of rat retina. NPY-ir dendrites ramify in strata 1, 3, and 5 of IPL. Adapted from 

Oh et al. (2002). Scale bar: 100 µm in A and B, 50 µm in C and D. 

 

The NPY-ir has been studied in various species of frogs (Fig. 1.9 A, B) and it has been 

reported to appear during early larval life (Hiscock and Straznicky, 1989, 1990; Zhu and 

Gibbins, 1995). The NPY-ir is found in amacrine cells that co-localize with GABA (Main et al., 

1993), and a single report also demonstrated that NPY-ir can be found in Müller cells (Zhu and 

Gibbins, 1996). Interestingly, NPY-ir exhibit seasonal variations with higher concentration in 

the autumn and lower in the spring, and NPY release is increased upon light stimulation or 

depolarization (Bruun et al., 1991). In the cat retina, NPY-ir is found not only in amacrine cells 

but also in RGCs (Hutsler et al., 1993; Hutsler and Chalupa, 1994, 1995). 
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In mouse and rat retina, NPY-ir was reported to localize in cell bodies of amacrine cells 

in INL and displaced amacrine cells in GCL (Fig. 1.9 C, D), co-localizing mainly with GABA 

(Ferriero and Sagar, 1989; Sinclair and Nirenberg, 2001; Oh et al., 2002). The corresponding 

cell processes extended and ramified mainly in strata 1, 3, and 5 of IPL, and very occasionally 

in OPL (Oh et al., 2002). In human retina, NPY-ir was shown to be confined to a subset of 

amacrine cells and RGCs, which processes extend mainly in IPL and occasionally in OPL 

(Tornqvist and Ehinger, 1988; Straznicky and Hiscock, 1989; Jen et al., 1994; Jotwani et al., 

1994). Moreover, in primary cultures of rat retinal cells, NPY-ir is found in different rat retinal 

cells, namely neurons, endothelial cells, microglial cells, and in Müller cells (Alvaro et al., 

2007). Regarding NPY receptor localization in the retina, there are only a few studies 

addressing this issue. In human retina, transcripts for Y1, Y2, and Y5 receptors were detected 

in RPE (Ammar et al., 1998). The presence of mRNA for both NPY and NPY receptors (Y1, Y2, 

Y4, and Y5) has also been demonstrated in the rat retina (D'Angelo and Brecha, 2004; Alvaro 

et al., 2007) and NPY, Y1, and Y2 mRNA was detected in mouse retina (Yoon et al., 2002). Y1 

receptor-ir was detected in horizontal and amacrine cells of rat retina and in glial cells of 

diseased human retina (Canto Soler et al., 2002; D'Angelo et al., 2002), and immunoreactivity 

for Y1 and Y2 receptors was found in neurons and glial cells in cultured rat retinal cells (Santos-

Carvalho et al., 2013a). 

Besides these studies addressing the presence of NPY and NPY receptors in the retina, 

the role of NPY in this neural tissue remains unclear. NPY application was found to regulate 

neurotransmitter release of rabbit and chicken retinas (Bruun and Ehinger, 1993). Also, NPY 

attenuates depolarization-induced increase in intracellular free calcium concentration – [Ca2+]i 

– in primary retinal cell cultures (Alvaro et al., 2009). Moreover, NPY decreased depolarization-

dependent Ca2+ influx into bipolar cells via activation of Y2 receptors (D'Angelo and Brecha, 

2004), and in retinas with selective ablation of NPY-expressing amacrine cells, alterations on 

receptive field properties of RGCs were reported, though a direct effect of NPY was not 

demonstrated (Sinclair et al., 2004). In addition, other studies have suggested the involvement 

of NPY and Y1 receptor activation in the regulation of osmotic Müller glial cell swelling in the 

rat retina (Uckermann et al., 2006; Linnertz et al., 2011).  
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1.2.5 – Neuroprotective actions of neuropeptide Y 

 

Targeting NPY receptors has been reported to exert neuroprotective actions in several 

systems. In fact, NPY receptors have been regarded as potential therapeutic targets in the 

brain, namely for epilepsy (Xapelli et al., 2006). Several studies have evaluated the 

neuroprotective potential of NPY or NPY receptor activation after exposure to glutamatergic 

agonists which have been used to induce an excitotoxic insult in vitro or in vivo. Using 

organotypic hippocampal slice cultures, the activation of Y1, Y2, or Y5 receptor was found to 

prevent kainate or AMPA-induced neuronal cell death measured by propidium iodide 

incorporation (Silva et al., 2003; Xapelli et al., 2007; Xapelli et al., 2008). However, the 

contribution of individual NPY receptor activation depends on the subregion analysed. In 

neocortical and hippocampal neuronal cultures, the application of NPY before or after kainate 

exposure was able to attenuate neurotoxicity assessed by lactate dehydrogenase efflux and 

caspase-3 activity (Domin et al., 2006). In agreement with this result, Y1 or Y2 receptor 

activation, 30 min after the excitotoxic insult, prevented kainate-induced cell death in 

organotypic hippocampal slice cultures (Xapelli et al., 2007), and NPY applied 6 h after kainate 

treatment decreased cell death in cortical and hippocampal neuronal cultures (Smialowska et 

al., 2009). When NPY, Y2 or Y5 receptor agonist was injected into the hippocampus it was also 

able to reduce the extent of kainate-induced cell death (Smialowska et al., 2003; Smialowska 

et al., 2009). Similarly, NPY, or Y2 or Y5 receptor agonists infused icv reduced kainate-induced 

hippocampal cell death (Wu and Li, 2005). The modulation of hippocampal synaptic 

transmission by NPY system has long been studied (Colmers, 1990; Nadler et al., 2007; Sperk 

et al., 2007). Accordingly, the protective effect of NPY observed in hippocampus is in 

agreement with studies suggesting NPY as an endogenous antiepileptic peptide, and targeting 

NPY system as an antiepileptic strategy by reducing glutamate release and excitability (Vezzani 

and Sperk, 2004; Woldbye and Kokaia, 2004; Silva et al., 2005). 

In various models of neurodegenerative diseases, NPY system is affected by the 

disease (Beal et al., 1986; Minthon et al., 1990; Cannizzaro et al., 2003). This evidence, 

together with the accumulating findings showing protective actions exerted by exogenous 

NPY or NPY receptor agonist application in animal models of neurodegenerative diseases such 

as Parki so ’s disease (Fig. 1.10) (Decressac et al., 2012), and Alzhei er’s disease (Rose et al., 

2009; Croce et al., 2011; Croce et al., 2012) indicates that NPY system may respond to neuronal 

injury in order to counteract the progressive neuronal loss (Decressac and Barker, 2012). For 
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example, the icv injection of NPY increases striatal dopamine release (Kerkerian-Le Goff et al., 

1992) and protects dopaminergic neurons, an effect mediated by Y2 receptor activation and 

ERK1/2 and protein kinase B (Akt) pathways (Decressac et al., 2012). 

In the retina, NPY also exerts neuroprotective actions. In primary rat retinal cell 

cultures, NPY pre-treatment inhibited both 3,4-methylenedioxy-N-methylamphetamine 

(MDMA)- and glutamate-induced increased cell death (Alvaro et al., 2008b; Santos-Carvalho 

et al., 2013b). Moreover, in an animal model of excitotoxicity-induced retinal injury by using 

intravitreal injection of glutamate, NPY prevented the injury-induced increase in cell death 

and RGC loss (Santos-Carvalho et al., 2013b). 
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Figure 1.10. Examples of possible neuroprotective effects of NPY in the diseased brain. In the 

striatum, NPY is present in GABAergic neurons that receive inputs from cortical glutamatergic and 

nigral dopaminergic neurons. NPY inhibits glutamate release, thus reducing excitotoxicity in 

Parki so ’s disease. NPY ability to inhibit glial reactivity has been also reported (Ferreira et al., 

2010; Ferreira et al., 2011). NPY has a pro-neurogenic effect on SVZ neural stem cells (Agasse et al., 

2008), and by recruiting the endogenous pool of progenitors NPY might promote the self-repair 

capacity of the adult brain. SVZ, subventricular zone; DA, dopamine; Akt, protein kinase B; DARPP, 

dopamine and cAMP-regulated phosphoprotein (Decressac and Barker, 2012). 
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1.3 – Sildenafil 

 

 

1.3.1 – Mechanism of action 

 

Sildenafil is an orally active inhibitor of PDE type 5 (Fig. 1.11). Sildenafil was initially 

manufactured by Pfizer, as ViagraTM, and used for the treatment of male erectile dysfunction 

(Boolell et al., 1996). 

 

Figure 1.11. Structure of sildenafil citrate. (Salonia et al., 2003). 

 

Since its launch in 1998 sildenafil has been distributed worldwide (Salonia et al., 2003), 

and it has also been used for the treatment of pulmonary arterial hypertension under the 

trade name RevatioTM (Montani et al., 2013). Recommended doses for the treatment of 

erectile dysfunction are 25, 50, and 100 mg to be administered 1 h before sexual activity 

(Salonia et al., 2003), whereas for pulmonary arterial hypertension is usually up to 20 mg three 

times a day (Montani et al., 2013). Concerning erectile dysfunction, sildenafil enhances the 

relaxant effect of NO on the penile corpus cavernosum by inhibiting PDE5 which is responsible 

for degradation of cGMP in this tissue (Fig. 1.12). When sexual stimulation causes local release 

of NO, inhibition of PDE5 by sildenafil increases cGMP concentration causing smooth muscle 

relaxation and subsequent increase in blood flow. Smooth muscle relaxation is partly 

mediated by protein kinase G (PKG) activation leading to a decrease in intracellular Ca2+ levels. 

A similar mechanism is responsible for pulmonary arterial vasodilatation (Ghofrani et al., 

2006).  
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Figure 1.12. Mechanism of action of sildenafil. The figure shows the pathway mediating relaxation 

of vascular smooth muscle and penile erection (only upon sexual stimulation) and pulmonary 

vasodilatation (continuously). Local release of NO from cavernous nerve or endothelial cells 

regulates positively the concentration of cGMP which is then reduced by PDE5. The inhibition of 

PDE5 by sildenafil results in increased cGMP concentration causing smooth muscle relaxation and 

subsequent increase in blood flow. Smooth muscle relaxation is partly mediated by protein kinase 

G activation leading to a decrease in [Ca2+]i. PDE5, phosphodiesterase 5; cGMP, cyclic guanosine 

monophosphate; GMP, guanosine ’-monophosphate; GTP, guanosine ’-triphosphate; NO, nitric 

oxide (Ghofrani et al., 2006). 

 

 

1.3.2 – Ocular side effects 

 

Patients with erectile dysfunction have experienced transient and mild impairments of 

colour discrimination, which are occur at the peak of the drug action (Laties and Zrenner, 

2002). Moreover, sildenafil was found to decrease visual performance, particularly the 

temporal response, in S-cone isolating conditions (Stockman et al., 2007), and, in rare cases, 

transient blindness was reported (Montastruc et al., 2006). It has also been suggested that 

sildenafil might be a possible, but not yet certain, cause of anterior ischaemic optic 

neuropathy (Carter, 2007). However, other studies reported no visual toxic effects in both 

human patients and laboratory animals even after long periods of drug daily use (Vatansever 

et al., 2003; Cordell et al., 2009; Zoumalan et al., 2009). Nonetheless, serious ocular adverse 

effects occur in some patients after sildenafil use. Case reports included cases of central retinal 
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vein occlusion, cilio-retinal artery occlusion, acute angle closure glaucoma and optic atrophy 

(Azzouni and Abu samra, 2011). 

Electroretinogram (ERG) recordings showed decreases in both a- and b-wave 

amplitudes in sildenafil-treated patients (Vobig et al., 1999) or inversely, an increase in the 

scotopic ERG responses, but a decrease in the photopic response (Luu et al., 2001). Other 

studies reported increase in Naka-Rushton equation Vmax, suggesting higher rod response 

after 50 or 100 mg sildenafil ingestion (Gabrieli et al., 2001; Gabrieli et al., 2003). More 

consistently, among all human studies, sildenafil enlarged the latencies of the different 

responses (Luu et al., 2001; Jagle et al., 2004; Jagle et al., 2005). Ex vivo experiments showed 

also contradictory results. Sildenafil has been shown to increase ERG amplitudes in the rat 

retina (Barabas et al., 2003), whereas it decreases ERG amplitudes in bovine and human 

retinas, while increasing the latencies (Luke et al., 2005; Luke et al., 2007). 

Although not completely elucidated, the effects of sildenafil on retinal function might 

result from the inhibition of PDE5, expressed in retinal cells, including human RGCs (Foresta 

et al., 2008). However, apart from the inhibition of PDE5, other PDEs may be inhibited by 

sildenafil, namely PDE6, which controls the phototransduction cascade in photoreceptors 

(Beavo, 1995; Lamb, 2013). For detailed description of phototransduction cascade see section 

1.1.2. Sildenafil appears almost equally potent on cone PDE6 as on PDE5, whereas it seems 

slightly less potent on rod PDE6 (Ballard et al., 1998; Zhang et al., 2005). PDE4 is also expressed 

in RGCs, bipolar cells, cholinergic amacrine cells and rods (Whitaker and Cooper, 2009), 

whereas PDE1 and PDE9 were described so far in bipolar cells (Dhingra et al., 2008). 
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1.4 – Objectives 

 

NPY is widely distributed in central and peripheral nervous system and present 

neuromodulatory and neuroprotective properties (Xapelli et al., 2006). In the retina, NPY 

presence has been demonstrated in different species, though NPY receptor localization has 

been scarcely investigated (Santos-Carvalho et al., 2014). We and others have presented 

evidence suggesting a neuromodulatory role of NPY in the retina. NPY application regulates 

neurotransmitter release in rabbit and chicken retinas (Bruun and Ehinger, 1993). Also, NPY 

attenuates depolarization-induced increase in [Ca2+]i in primary retinal cell cultures (Alvaro et 

al., 2009), and decreases depolarization-dependent Ca2+ influx into bipolar cells (D'Angelo and 

Brecha, 2004). Moreover, in retinas with selective ablation of NPY-expressing amacrine cells, 

it was reported an alteration in the receptive field properties of RGCs, though a direct effect 

of NPY was not demonstrated (Sinclair et al., 2004). These results suggest that NPY-induced 

modulation of visual circuitry might result in changes of RGC spiking activity. Therefore, in the 

first part of the present study, we intended to further investigate the presence of NPY and 

NPY receptors in the retina at mRNA and protein level, and also, we intended to study the NPY 

modulatory potential at RGC level using purified RGC cultures and ex vivo retinal preparations. 

In purified RGC cultures, we have evaluated the effect of exogenous application of NPY in 

[Ca2+]i changes triggered by glutamate, and in ex vivo retinal preparations we have assessed 

the light- or NMDA-stimulated RGC spiking activity. 

Previous work from our laboratory have shown that NPY exerts a neuroprotective 

action against different toxic insults. In primary rat retinal cell cultures NPY pre-treatment 

prevented increased cell death induced by both MDMA and glutamate (Alvaro et al., 2008b; 

Santos-Carvalho et al., 2013b). In an animal model of excitotoxicity-induced retinal injury, 

intravitreal administration of NPY inhibited both the increase in cell death, and RGC loss 

induced by glutamate (Santos-Carvalho et al., 2013b). Retinal degenerative diseases affecting 

RGCs, in particular, glaucoma which is the major cause of irreversible blindness worldwide 

(Quigley and Broman, 2006), remain with no effective treatment able to halt the progression 

of RGC death. Therefore, we also evaluated the potential neuroprotective effects of NPY 

application against RGC death in an in vitro model of excitotoxicty and in an animal model of 

retinal I-R injury. 



CHAPTER 1 

 

40 
 

Sildenafil is a PDE type 5 inhibitor widely used for treatment of erectile dysfunction 

(Salonia et al., 2003), and also for pulmonary arterial hypertension (Montani et al., 2013). 

Patients with erectile dysfunction have experienced transient and mild impairments of colour 

discrimination, which are occurring at the peak of the drug action (Laties and Zrenner, 2002).  

Moreover, sildenafil was found to decrease visual performance, particularly temporal 

response, in S-cone isolating conditions (Stockman et al., 2007), and, in rare cases, transient 

blindness was reported (Montastruc et al., 2006). In order to understand the effects of 

sildenafil on retinal function different electrophysiological studies have been performed. 

However, these studies have yielded contradictory results. In vivo ERG recordings showed 

decreases in both a- and b-wave amplitudes in sildenafil-treated patients (Vobig et al., 1999), 

or inversely, an increase in the scotopic ERG responses, but a decrease in the photopic 

response (Luu et al., 2001). Ex vivo experiments have also shown some contradictory results. 

Sildenafil has been shown to increase ERG amplitudes in the rat retina (Barabas et al., 2003), 

whereas it decreases ERG amplitudes in bovine and human retinas, while increasing the 

latencies (Luke et al., 2005; Luke et al., 2007). To our knowledge, no studies so far have 

evaluated the effects of sildenafil, directly on RGC spiking activity, which forms the retinal 

output signal to the brain. Therefore, to further elucidate this issue, in the second part of the 

present study, we intended to investigate, using a MEA and ex vivo retinal preparations, the 

effect of different concentrations of sildenafil on principal characteristics of light-induced RGC 

responses (magnitude and latency) and the spontaneous RGC spiking activity. 
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2.1 – Animals 

 

Wistar rats, 8-10 weeks old, were obtained from Charles River, France. Long Evans rats, 

8-10 weeks old, were obtained from Charles River for retinal ganglion cell (RGC) purification 

experiments and from Janvier Labs, Le Genest Saint Isle, France, for multi-electrode array 

(MEA) experiments. Animals were housed in a temperature- and humidity-controlled 

environment and were provided with standard rodent diet and water ad libitum while kept 

on a 12 h light/12 h dark cycle. All procedures involving the animals were in agreement with 

the guidelines on the ethical use of animals from the European Community Council Directive 

2010/63/EU, transposed to Portuguese la  i  De reto-Lei nº 113/2013 . 

 

 

2.2 – Drugs and reagents 

 

NPY and NPY receptor agonists and antagonists, as well as glutamate (L-glutamic acid), 

N-methyl-D-aspartic acid (NMDA), glycine, and sildenafil were exogenously applied to retinal 

cells and are listed in Table 1. NPY and NPY receptor agonist stock solutions (100-1000x) were 

dissolved in 0.0001% Tween 20 (Merck Millipore, Billerica, MA, USA) to reduce adsorption to 

plastic. For the remaining reagents, the manufacturer is indicated throughout the text. When 

not indicated, the reagent was obtained from Sigma-Aldrich, St. Louis, MO, USA. 
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Table 1. List of drugs used in the various experiments. 

NMDAR, NMDA receptor 
aBachem, Bubendorf, Switzerland 

Tocris Bioscience, Bristol, UK 

Sigma-Aldrich, St. Louis, MO, USA 

Calbiochem, Merck Millipore, Billerica, MA, USA 
b(Gly1, Ser3,22, Gln4,34, Thr6, Arg19, Tyr21, Ala23,31,Aib32)-pancreatic polypeptide 

 

 

2.3 – Retinal ganglion cell purification 

 

Purified RGCs were obtained from the retinas of either 3-4 days old pups or 8-10 weeks 

old Wistar or Long Evans rats by sequential immunopanning (Fig. 2.1), as previously described 

(Barres et al., 1988), with some modifications. This procedure is based on the expression of 

cell surface protein Thy 1 on RGCs, which is used to isolate RGCs in an immunopanning step. 

Other cell types, non-RGCs, namely macrophages and endothelial cells that also adhere to 

anti-Thy-1 coated plates (Barres et al., 1988), are removed in a preceding step with anti-

macrophage serum. Next, the entire procedure is detailed. Rats were killed by decapitation or 

Drug Purpose Concentration
Catalog 

number
Manufacturera

NPY Y1/Y2/Y4/Y5 agonist 1-10 µM H-6375 Bachem

(Leu31, Pro34)-NPY Y1/Y5 agonist 1 µM H-3306 Bachem

NPY (13-36) Y2 agonist 0.3-1 µM H-3324 Bachem

(Gly1, …Ai 32)-PPb Y5 agonist 1 µM H-5088 Bachem

BIBP 3226 Y1 antagonist 1 µM 2707 Tocris

BIBO 3304 Y1 antagonist 10 µM 2412 Tocris

BIIE 0246 Y2 antagonist 1-10 µM 1700 Tocris

L-152,804 Y5 antagonist 1-100 µM 1382 Tocris

NMDA NMDAR agonist 30-300 µM M3262 Sigma-Aldrich

L-Glutamic acid
Agonist of all 

glutamate receptors
1-1000 µM G1251 Sigma-Aldrich

Glycine
Co-agonist of 

NMDAR
10 µM 104201 Calbiochem

Sildenafil PDE5 inhibitor 0.3-30 µM PZ0003 Sigma-Aldrich
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cervical dislocation, the eyes enucleated and the retinas dissected in ice cold sterile Dulbecco's 

Modified Eagle Medium (DMEM; Gibco, Life Technologies, Grand Island, NY, USA) 

supplemented with 5% D-glucose and 44 mM NaHCO3. Retinas were incubated for 30 min at 

 °C i  Earl’s Bala ed “alt “olutio  EB““; in mM: 1.8 CaCl2, 0.8 MgSO4, 5.3 KCl, 26 NaHCO3, 

117 NaCl, 1 NaH2PO4, 5.6 D-glucose, pH 7.4) containing 16.5 U/ml papain (Worthington 

Biochemical, Lakewood, NJ, USA), 1.65 mM L-cysteine, and 124 U/ml deoxyribonuclease I 

(DNase I), to allow tissue digestion. The cell suspension was gently triturated in an enzyme 

inhibitor solution containing 1.5 mg/ml ovomucoid (Roche, Basel, Switzerland), 1.5 mg/ml 

bovine albumin serum (BSA) and 124 U/ml DNase I in EBSS. The retinal tissue was allowed to 

settle for 1-2 min. Then, ovomucoid solution was discarded and retinal tissue further 

triturated in a solution containing 1.5 mg/ml ovomucoid (Roche), 1.5 mg/ml BSA, 124 U/ml 

DNase I and 1:125 (v:v) rabbit anti-rat macrophage antiserum (Accurate Chemical, Westbury, 

NY, USA), to yield a single cell suspension, and incubated for 10 minutes at RT. After 

centrifugation for 11 min at 190 g at RT, the supernatant was discarded and cells were 

resuspended in EBSS containing 10 mg/ml ovomucoid (Roche) and 10 mg/ml BSA and then 

centrifuged for 10 min at 190 g at RT. The supernatant was discarded and cells resuspended 

i  Dul e o’s Phosphate Buffered “ali e DPB“; in mM: 0.9 CaCl2, 0.5 MgCl2, 2.7 KCl, 1.47 

KH2PO4, 138 NaCl, 8 Na2HPO4, 0.33 sodium pyruvate (Gibco), 5.6 D-glucose, pH 7.4) containing 

0.2 mg/ml BSA and 5 µg/ml insulin. Cell suspension was plated in a 150 mm Petri dish coated 

with 5.3 µg/ml goat anti-rabbit IgG (H+L) antibody (Rockland Immunochemicals, Gilbertsville, 

PA, USA). After 30 min at RT, non-adherent cells were removed to a second 150 mm Petri dish 

coated similarly.  After 30 min at RT, non-adherent cells were removed to a 100 mm dish 

coated with 6.7 μg/ml goat anti-mouse IgM antibody (Rockland Immunochemicals) and mouse 

anti-rat Thy1.1 hybridoma supernatant of T11D7e cell line (TIB-103, ATCC, Manassas, VA, 

USA). After 30 min, the non-adherent cells were washed out with Ca2+- and Mg2+-free DPBS 

(in mM: 138 NaCl, 2.7 KCl, 8 Na2HPO4, 1.47 KH2PO4, pH 7.4), and the adherent RGCs were 

detached with a 0.125% trypsin solution in Ca2+- and Mg2+-free EBSS (in mM: 116 NaCl, 5.3 

KCl, 1 NaH2PO4, 5.6 D-glucose, 26 NaHCO3, pH 7.4). Trypsinization was stopped with 30% FBS 

(Gibco) in Neurobasal-A (Gibco), and the RGCs were detached. The cell suspension was 

centrifuged for 10 min at 190 g, at RT, and the supernatant was discarded. 

For cell culturing, RGCs were resuspended in Neurobasal-A (Gibco) medium containing 

1x B27 supplement (Gibco), 5 μg/ml insulin, 1mM sodium pyruvate (Gibco), 1x 

Sato/Bottenstein supplement which includes 100 µg/ml transferrin, 100 µg/ml BSA, 16 µg/ml 
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putrescine, 62 ng/ml progesterone, and 40 ng/ml sodium selenite, 40 ng/ml triiodo-L-

thyronine, 2 mM L-glutamine, 5 mg/ml N-acetylcysteine, 100 µM inosine, 20 ng/ml ciliary 

neurotrophic factor (Peprotech, Rocky Hill, NJ, USA), 25 ng/ml brain-derived neurotrophic 

factor (Peprotech), 5 µM forskolin, 10 ng/ml basic fibroblast growth factor (Gibco) and 50 

µg/ml gentamicin (Gibco), and were plated at a density of 460 cells/mm2 on 12 mm glass 

coverslips coated with 10 μg/ml poly-D-lysine and 10 µg/ml laminin. Cells were cultured for 

16 to 48 h at 37 °C in a humidified environment of 5% CO2. For RNA extraction, the cell pellet 

was lysed in TRIzolTM reagent, as further described below. 
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Figure 2.1. RGC purification by sequential immunopanning. Eyes from Wistar or Long Evans rats 

(1) were enucleated (2) and the retinas dissected (3). Retinas were incubated with papain (4) to 

allow tissue digestion. Retinas were then gently triturated (5) and the cell suspension incubated 

with rabbit anti-rat macrophage antiserum (6). After further dissociation and centrifugation to 

remove papain, the obtained cell suspension (7) was plated in a Petri dish coated with anti-rabbit 

IgG to remove non-RGCs expressing Thy1 (8; blue cells). Then non-adherent cells were plated in a 

Petri dish coated with anti-rat Thy1.1 hybridoma supernatant to isolate RGCs (9; yellow cells). Non-

adherent cells were discarded and the adherent RGCs were incubated with trypsin (10). RGCs were 

then detached (11) and cultured up to 48 h (12). Adapted from (Winzeler and Wang, 2013). 

 

 

2.4 – Culture of retinal explants 

 

Wistar rats (8-10 weeks old) were killed by cervical dislocation. Retinas were dissected 

in Ca2+- and Mg2+-free Ha k’s Bala ed “alt “olutio  (HBSS, in mM: 5.4 KCl, 0.44 KH2PO4, 137 

NaCl, 4.2 NaHCO3, 0.34 Na2HPO4, 5.6 D-glucose, 10 HEPES, 1 sodium pyruvate, pH 7.4) and 

flat-mounted onto 30 mm diameter culture plate inserts with a 0.4 μm pore size (Millicell, 

Merck Millipore, Billerica, MA, USA), with the GCL facing upward (Fig. 2.2). The retinal explants 

were cultured in six-well plates in Neurobasal-A (Gibco, Life Technologies, Grand Island, NY, 

USA) medium containing 1x B27 supplement (Gibco), 2 mM L-glutamine and 50 μg/ml 
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gentamicin (Gibco), and maintained for 4 days in vitro (DIV) in a humidified environment at 37 

°C and 5% CO2. 

 

Figure 2.2. Cultured retinal explant. Example of a retinal explant on a culture insert with the GCL 

facing upward. 

 

 

2.5 – Reverse-transcription polymerase chain reaction (RT-PCR) 

 

Total RNA was isolated from RGCs using TRIzolTM reagent (Ambion, Life Technologies, 

Grand Island, NY, USA). Subsequently, cDNA first strand synthesis was performed from 2 μg 

DNase-treated RNA using random primers and SuperScript II Reverse Transcriptase 

(Invitrogen, Life Technologies). The resulting cDNA (0.5 μl) was used for amplification of 

respective targets with AmpliTaq Gold DNA polymerase (Applied Biosystems, Life 

Technologies), 200 nM of primer and 2 mM MgCl2, in a Veriti thermal cycler (Applied 

Biosystems). Reactions were performed as follows: denaturation for 3 min at 95 °C; 40 cycles, 

each consisting of 95 °C for 30 sec, annealing temperature for 30 sec, and 72 °C for 30 sec; and 

final extension at 72 °C for 5 min. The primers used are indicated in Table 2. PCR products 

were separated on a 1.5% agarose gel. β-actin was used as an internal control. The gel images 

were digitally acquired in a Gel/ChemiDoc (Bio-Rad Laboratories, Hercules, CA, USA) and the 

level of gene transcription was evaluated and categorized as detected or not detected. 
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Table 2. Primers used for RT-PCR. 

bp, base pairs 

 

 

2.6 – Immunofluorescence labelling 

 

2.6.1 – Immunocytochemistry in purified retinal ganglion cells 

Purified RGCs were fixed with 4% paraformaldehyde (PFA) for 20 min at RT in 

phosphate buffer saline (PBS; in mM: 137 NaCl, 2.7 KCl, 1.8 KH2PO4, 10 Na2HPO4, pH 7.4), 

washed three times in PBS and permeabilized with 1% Triton X-100 in PBS for 5 min at RT. 

After washing three times in PBS, the unspecific binding was prevented by incubating cells in 

a 3% BSA and 0.2% Tween 20 (Merck Millipore, Billerica, MA, USA) blocking solution, in PBS 

for 60 min at RT. Then, cells were incubated with primary antibodies (Table 3) diluted in 

blocking solution for 90 min at RT as follows: rabbit anti-NPY (1:1000), anti-Y1 (1:500), anti-Y2 

(1:500), anti-Y4 (1:25), anti-Y5 (1:250), or anti-Brn3a (1:25). After washing three times in PBS, 

cells were incubated with the secondary antibodies diluted in blocking solution for 60 min at 

RT as follows: Alexa Fluor (AF) 568 anti-mouse (1:200), AF 488 anti-rabbit (1:200), or AF 488 

anti-sheep (1:200). After washing three times in PBS, the nuclei were stained with 2.5 µg/ml 

Target
For ard Primer 5’-3’
Re erse Primer 5’-3’

Annealing 

Temperature
Product Size

NPY
AGAGATCCAGCCCTGAGACA
TTTCATTTCCCATCACCACA

57 ºC 110 bp

Y1 receptor
ACGTTCGCTTGAAAAGGAGA
CATGACGTTGATTCGTTTGG

57 ºC 89 bp

Y2 receptor
CAGTTTTGTGCCATTTGGTG
AGGAAGCTGATTTGCTTGGA

60 ºC 142 bp

Y4 receptor
ATCTCATGGCCTCCCTTTCT

TCTCAACGCTGTAGGTGGTG
57 ºC 141 bp

Y5 receptor
ATACAGCTGCTGCTCGGAAT
GATTGCCCATAAAGCCAAGA

57 ºC 126 bp

Brn3a
CCCTGAGCACAAGTACCCGTCGCTGC
CCGGCTTGAAAGGATGGCTCTTGCCC

60 ºC 184 bp

GFAP
TGGTATCGGTCCAAGTTTGCA
TGGCGGCGATAGTCATTAGC

60 ºC 98 bp

CD11b
GATGCTTACTTGGGTTATGCTT

CGAGGTGCCCCTAAAACCA
60 ºC 74 bp

β-actin
CTAAGGCCAACCGTGAAAAG
ATCACAATGCCGTGGTACG

60 ºC 124 bp
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DAPI (Molecular Probes, Life Technologies, Grand Island, NY, USA) for 10 min at RT. After 

washing three times in PBS, the coverslips were mounted on glass slides using GlycergelTM 

mounting medium (Dako, Agilent Technologies, Santa Clara, CA, USA). Images were acquired 

in a laser scanning confocal microscope LSM 710 (Zeiss, Oberkochen, Germany). 
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Table 3. List of antibodies used for immunofluorescence labelling. 

AF, Alexa Fluor 
aSigma-Aldrich, St. Louis, MO, USA 

AbD Serotec, Bio-Rad Laboratories, Hercules, CA, USA 

Alomone Labs, Jerusalem, Israel 

Merck Millipore, Billerica, MA, USA 

Lab Vision, Thermo Fisher Scientific, Walthman, MA, USA 

Molecular Probes, Life Technologies, Grand Island, NY, USA 

 

2.6.2 – Immunohistochemistry in retinal sections 

Adult Wistar rats were transcardially perfused with 250 ml PBS followed by 250 ml 4% 

PFA at RT, under deep anaesthesia with 90 mg/kg (ip) ketamine (ImalgeneTM, Merial, Porto 

Salvo, Portugal) and 10 mg/kg (ip) xylazine (RompunTM, Bayer, Leverkusen, Germany). Then, 

the eyes were enucleated and the lens were removed. The eye cup was further fixed for 60 

min in PFA. After washing in PBS, the tissue was transferred sequentially to 15% and 30% (w/v) 

sucrose in PBS for at least 120 min each. The eye cup was embedded in a mixture 1:1 of 30% 

sucrose and cryomatrix embedding resin (Thermo Fisher Scientific, Walthman, MA, USA), and 

stored at -80 °C. Retinal sections, 10 μm thickness, were obtained in a cryostat and collected 

on SuperFrost Plus glass slides (Menzel-Glaser, Thermo Fisher Scientific) and stored at -20 °C. 

Retinal sections air dried for at least 45 min at RT and were fixed with acetone for 10 min at -

Antibody Dilution Catalog Number Manufacturera

Rabbit anti-NPY 1:1000 - 1:10000 N9528 Sigma-Aldrich

Sheep anti-Y1 receptor 1:200 - 1:500 6732-0150 AbD Serotec

Rabbit anti-Y2 receptor 1:500 - 1:2000 ANR-022 Alomone Labs

Rabbit anti-Y4 receptor 1:25 - 1:200 ANR-024 Alomone Labs

Rabbit anti-Y5 receptor 1:250 - 1:2000 ANR-025 Alomone Labs

Mouse anti-Brn3a 1:25 - 1:500 MAB 1585 Merk Millipore

Mouse anti-Vimentin 1:500 MS129P1 Lab Vision

AF 568 goat anti-rabbit 1:500 A-11011 Molecular Probes

AF 488 goat anti-rabbit 1:200 A-11008 Molecular Probes

AF 568 goat anti-mouse 1:200 - 1:500 A-11004 Molecular Probes

AF 488 goat anti-mouse 1:500 A-11001 Molecular Probes

AF 488 donkey anti-sheep 1:200 - 1:500 A-11015 Molecular Probes
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20 °C. In the case of Y2, Y4, and Y5 receptors, the fixation with acetone was replaced by an 

antigen retrieval step with 10 mM sodium citrate (Panreac, Barcelona, Spain) and 0.05% 

Tween 20 (Merck Millipore), pH 6, for 30 min at 95 °C. The sections were then washed two 

times in PBS and permeabilized in 0.25% Triton X-100 in PBS for 30 min at RT. Sections were 

blocked in 1% BSA and 10% goat serum (donkey serum in the case of Y1) in PBS for 30 min at 

RT. Sections were incubated overnight at 4 °C with primary antibodies (Table 3) diluted in 1% 

BSA in PBS: anti-NPY (1:10000), anti-Y1 (1:200), anti-Y2 (1:2000), anti-Y4 (1:200), anti-Y5 

(1:2000), anti-Brn3a (1:500), or anti-Vimentin (1:500). After washing three times in PBS for a 

total of 30 min, sections were incubated for 60 min at RT with the corresponding secondary 

antibodies diluted in 1% BSA in PBS: AF 488 anti-mouse (1:500), AF 568 anti-mouse (1:500), 

AF 568 anti-rabbit (1:500), or AF 488 anti-sheep (1:500). After washing three times in PBS for 

a total of 30 min, the nuclei were stained with DAPI (2.5 µg/ml, Molecular Probes) in PBS for 

10 min at RT and the sections were coverslipped using GlycergelTM mounting medium (Dako). 

Images were acquired in a laser scanning confocal microscope LSM 710 (Zeiss). 

 

2.6.3 – Immunohistochemistry in retinal explants 

Retinal explants were washed two times with PBS and fixed in 100% ethanol (Merck 

Millipore) at -20 °C for 10 min. After washing the explants three times in PBS, unspecific 

binding was prevented by incubating explants in a 10% goat serum, 1% BSA, and 0.1% Tween 

20 (Merck Millipore) in PBS blocking solution for 60 min at RT. Retinal explants were then 

incubated with anti-Brna3a antibody (Table 3) diluted (1:500) in blocking solution for 3 days 

at 4 °C. After washing again the explants more than six times in PBS for a total of 24 h, explants 

were incubated with the secondary antibody AF 568 anti-mouse (1:200). Then, after washing 

explants more than six times in PBS for a total of 24 h, explants were coverslipped using 

GlycergelTM mounting medium (Dako). Images were acquired in a laser scanning confocal 

microscope LSM 710 (Zeiss). 
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2.7 – TdT-mediated dUTP nick-end labelling (TUNEL) assay  

 

2.7.1 – TUNEL in retinal slices 

The TUNEL assay measures the fragmented DNA of apoptotic cells by incorporating 

fluorescein labelled dUTPs at 3'-OH DNA ends using terminal deoxynucleotidyl transferase 

(TdT). The TdT enzyme forms a polymeric tail allowing visualization in histological sections 

(Gavrieli et al., 1992). TUNEL assays was performed following the manufacturer’s instructions 

(Catalog number: G3250; Promega, Madison, WI, USA). After Brn3a labelling procedure as 

above mentioned, retinal sections were washed three times in PBS for a total of 30 min and 

then permeabilized with 20 μg/ml proteinase K in PBS for 10 min at RT. After washing in PBS 

for 5 min, the sections were incubated with equilibration buffer (in mM: 200 potassium 

cacodylate, 25 Tris, 0.2 dithiothreitol, 2.5 CoCl2, and 0.25 mg/ml BSA, pH 6.6) for 10 min at RT. 

Next, sections were incubated with 600 U/ml recombinant TdT enzyme and nucleotide mix 

containing 5 µM fluorescein-12-dUTPs, 10 µM dATP, and 0.1 mM EDTA, diluted in 

equilibration buffer at 37 °C for 60 min. The reaction was stopped by immersing the slides in 

saline-citrate buffer (in mM: 300 NaCl, 30 sodium citrate, pH 7.0) for 15 min at RT. After 

washing three times in PBS, the nuclei were stained with DAPI (2.5 μg/ml, Molecular Probes, 

Life Technologies, Grand Island, NY, USA) for 10 min at RT. After washing three times in PBS 

sections were mounted with GlycergelTM mounting medium (Dako, Agilent Technologies, 

Santa Clara, CA, USA). Images of retinal sections were acquired in a fluorescence microscope 

(DM IRE2, Leica, Wetzlar, Germany). The Brn3a- and TUNEL-positive cells were counted and 

results were expressed per mm of GCL length. 

 

2.7.2 – TUNEL in retinal explants 

Retinal explants were fixed in 4% PFA in PBS for 15 min at RT and permeabilized with 

20 μg/ml proteinase K in PBS for 15 min at RT. After washing in PBS, retinal explants were fixed 

in 4% PFA in PBS for 5 min, washed in PBS, and incubated in equilibration buffer for 10 min at 

RT. Then, retinal explants were incubated with 600 U/ml recombinant TdT enzyme and 

nucleotide mix containing 5 µM fluorescein-12-dUTPs, 10 µM dATP, and 0.1 mM EDTA, diluted 

in equilibration buffer at 37 °C for 60 min. The reaction was stopped by incubating the retinal 

explants in saline-citrate buffer for 15 min at RT. After washing in PBS, the nuclei were stained 

with DAPI (2.5 μg/ml, Molecular Probes) in PBS for 15 min at RT and retinal explants mounted 
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with GlycergelTM mounting medium (Dako). At least 12 images of GCL per retinal explant (three 

images per each quadrant) were acquired in a laser scanning confocal microscope LSM 710 

(Zeiss, Oberkochen, Germany). 

 

 

2.8 – Propidium iodide incorporation assay 

 

Propidium iodide (PI) binds nucleic acids by intercalating the bases and can be 

visualized under fluorescence microscope, with maximum fluorescence emission at 608 nm 

(red) and maximum excitation at 540 nm (green). PI is only incorporated in dead or dying cells 

with disrupted cell membranes, thus allowing evaluating cells undergoing necrotic or late 

apoptotic cell death. For PI incorporation assay, cultured retinal explants were incubated with 

2 µM PI for 180 min at DIV2 and at DIV4. Images comprising the four quadrants of retinal 

explant were acquired in a fluorescence microscope (DM IRE2, Leica, Wetzlar, Germany). PI-

positive cells were counted at DIV2 before NMDA treatment and at DIV4. The extent of cell 

death was expressed as the ratio between PI-positive cells at DIV4 and DIV2. 

 

 

2.9 – [35S]GTPγS binding in retinal sections 

 

[35S]GTPγS binding assay has been widely used to evaluate the activation of GPCRs 

taking advantage of a radiolabeled non-hydrolyzable GTP analogue - [35S]GTPγS (Harrison and 

Traynor, 2003). Upon activation of the GPCR by an agonist, Gα binds [35S]GTPγS allowing the 

measurement of the amount of radiolabeled GTP bound to the cell membrane (Fig. 2.3). In 

order to evaluate the presence of functional active NPY receptors in the rat retina, we used 8-

10 weeks old Wistar rats. The eyes were enucleated and frozen in dry ice. Retinal slices, 18 µm 

thickness, were obtained in a cryostat, collected onto SuperFrost Plus glass slides (Menzel-

Glaser, Thermo Fisher Scientific, Walthman, MA, USA) and stored at -80 °C until further 

processing. Sections were air dried for 30 min at RT and then rehydrated in assay buffer A (in 

mM: 50 Tris-HCl, 3 MgCl2, 0.2 EGTA, 100 NaCl, pH 7.4) for 10 min at RT. Sections were pre-

incubated in assay buffer B [assay buffer A + 0.2 mM dithiothreitol, 1 µM 1,3-dipropyl-8-

cyclopentylxanthine (DPCPX), 0.5% w/v BSA, and 2 mM GDP] for 15 min at RT to shift all G-
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proteins into the inactive state. Subsequently, incubation of retinal slices was performed in 

assay buffer B + 50 pM [35S]GTPγS (1250 Ci/mmol; PerkinElmer, Waltham, MA, USA) for 60 

min at RT with 1-10 µM NPY. In each experiment, basal binding was determined by incubation 

without NPY receptor ligands but with assay buffer B + 50 pM [35S]GTPγS (1250 Ci/mmol). 

Specificity was confirmed by adding a combination of the NPY receptor antagonists: 10 µM 

BIBO 3304 for Y1; 10 µM BIIE 0246 for Y2; 100 µM L-152,804 for Y5. For antagonistic studies, 

NPY receptor antagonists were also added to the pre-incubation buffer B. Incubation was 

terminated by two washes of 5 min each in ice cold 50 mM Tris-HCl buffer, pH 7.4, followed 

by a final wash in deionised water. Sections were air dried at RT and exposed to Kodak BioMax 

MR autoradiography films (Carestream Health, Rochester, NY, USA) together with 14C-

microscales (Amersham, GE Healthcare, Little Chalfont, UK) for 5 days at -20 °C. The films were 

developed in Kodak GBX developer. Retinal slices in autoradiography films were acquired with 

a digital camera Axiocam ERc5s (Zeiss, Oberkochen, Germany) coupled to a stereo microscope 

Discovery.V8 (Zeiss). The optical densities of retinal slices were measured using ImageJ 

software (http://imagej.nih.gov/ij/) and the values obtained converted to estimated nCi/g 

tissue using 14C-microscales. 

  

http://imagej.nih.gov/ij/
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Figure 2.3. [35S]GTPγS binding to GPCR. Upon activation of the GPCR by an agonist, Gα subunit 

release GDP and binds [35S]GTPγS. From www.perkinelmer.com. 

 

 

2.10 – Ca2+ imaging in purified retinal ganglion cells 

 

Purified RGCs cultured for 1 or 2 DIVs were used to assess the [Ca2+]i using the Ca2+ dye 

Fura-2-acetoxymethyl ester (Fura-2-AM). Fura-2-AM is a membrane permeable ratiometric 

calcium indicator which fluorescence excitation spectrum shifts to shorter wavelengths upon 

binding to Ca2+ (Grynkiewicz et al., 1985). This property allows for measurements of [Ca2+]i 

based on ratio calculation between fluorescence obtained when excited at 340 and 380 nm. 

The AM group enable Fura-2 to cross the cell membrane. Once the dye is taken up into cells 

the AM group is removed by esterases and the dye is trapped inside. Next, the entire 

procedure is detailed. Purified RGC cultures were washed two times in 0.1% free fatty acid 

BSA (Calbiochem, Merck Millipore, Billerica, MA, USA) in Mg2+-free HBSS solution (in mM: 138 

NaCl, 5.3 KCl, 0.34 Na2HPO4, 0.44 KH2PO4, 2.6 CaCl2, 5.6 D-glucose, 15 HEPES, 4.2 NaHCO3, pH 

7.4) at 37 °C. After washing, RGCs were then loaded with 5 µM Fura-2-AM in the presence of 

0.02% Pluronic F-127 (both Molecular Probes, Life Technologies, Grand Island, NY, USA) in 

0.1% free fatty acid BSA in Mg2+-free HBSS for 45 min at 37 °C. After washing two times in 0.1% 

free fatty acid BSA in Mg2+-free HBSS at 37 °C, RGCs were incubated in Mg2+-free HBSS for 15 

min at 37 °C. Under continuous perfusion (2.9 ± 0.1 ml/min) with Mg2+-free HBSS solution, 
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RGCs were exposed to glutamate for 30 sec (Fig. 2.4 A, B), and all glutamate stimuli included 

10 µM glycine, a co-agonist of NMDA glutamate receptor, as previously described (Hartwick 

et al., 2004). RGCs were alternately excited at 340 and 380 nm, with a fluorescence 

microscope Axiovert 200 (Zeiss, Oberkochen, Germany) coupled to a perfusion system. A ratio 

of fluorescence intensity (340 nm / 380 nm), as indicative of [Ca2+]i, was calculated for each 

individual cell by Metafluor software (Molecular Devices, Sunnyvale, CA, USA). The increase 

above basal Fura-2 ratio (340 nm / 380 nm) was quantified for each stimulus as a Delta value 

(Fig. 2.4 C). Fura-2 ratios (R) were converted to [Ca2+]i in separate calibration experiments (Fig. 

2.4 D) using the formula: 

 

[Ca2+]i = [Kd(F0/FS)][R – Rmin)/(Rmax – R)], 

 

with Kd for Fura-2 of 224 nM, and where F0/FS is the ratio of fluorescence intensity at 380 nm 

excitation in calcium-free solution over the intensity in solution with saturated Ca2+ levels. The 

minimum value for the Fura-2 ratio (Rmin) was obtained using Ca2+-free HBSS (in mM: 138 NaCl, 

5.3 KCl, 0.34 Na2HPO4, 0.44 KH2PO4, 5.6 D-glucose, 15 HEPES, 4.2 NaHCO3, 5 EGTA, pH 8.0) and 

1 µM ionomycin, after which the cells were perfused with Mg2+-free HBSS and 1 µM ionomycin 

in order to calculate the maximum value for Fura-2 ratio (Rmax). We obtained basal values for 

[Ca2+]i in purified RGC of 54 ± 6 nM, while upon stimulation with 30 µM glutamate and 10 µM 

glycine [Ca2+]i values increased to 733 ± 59 nM, which are in agreement with previous studies 

(Hartwick et al., 2004; Hartwick et al., 2008). 
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Figure 2.4. Ca2+ imaging in purified retinal ganglion cells. (A) Cultured RGCs are shown. Bright field 

image (a) and pseudocolour representation of Fura-2 ratio on basal condition (b) and after 

stimulation with 30 µM glutamate (c) are shown. (B) Fura-2 ratio trace from a cultured RGC 

illustrating the response of RGCs to increasing concentrations of glutamate (10 - 1000 µM). (C) Fura-

2 ratio traces showing RGC responses to two consecutive 30 µM glutamate stimuli for 30 sec each. 

The increase above basal Fura-2 ratio 340 nm / 380 nm was quantified for each stimulus as a Delta 

value. (D) Representative [Ca2+]i trace from a cultured RGC upon three consecutive stimuli of 30 µM 

glutamate, after conversion of Fura-2 ratio to  is illustrated [Ca2+]i. 

 

 

2.11 – Ex vivo multi-electrode array recordings 

 

 2.11.1 – Stimulation and multi-electrode array recordings 

Recording of extracellular action potentials from RGCs is a useful technique to assess 

the effect of exogenously applied drugs on ex vivo retinas (Meister et al., 1994; Rosolen et al., 

2008). Long Evans rats (8 weeks old) were killed by CO2 inhalation and quick cervical 

dislo atio  u der di  red light. E es ere e u leated a d pla ed i  o ge ated A es’ 

medium (Sigma-Aldrich) at RT. Square pieces of retina (1-2 mm2) were placed into the 

recording chamber (Fig. 2.5 A), with the GCL facing the MEA60 biochip electrode array. The 

electrode array was composed of 60 titanium nitride electrodes (Fig. 2.5 B), 10 μm diameter 
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each, disposed in an 8×8 layout with 100 μm inter-electrode spacing (Multi Channel Systems, 

GmbH, Reutlingen, Germany). Retinas were held in the centre of the electrode array using a 

piece of polycarbonate membrane covered by a U-shaped platinum ring with a nylon mesh. 

During recording sessions, retinas were continuously perfused with Ames’ ediu  

equilibrated with 95% O2 and 5% CO2, pH 7.4, at a rate flow of 1.3 ml/min. Retinas were 

maintained at 34-37 °C through a heating pad of the recording system. In order to obtain 

stable recordings, each session started 60 min after placing the retina in MEA recording 

chamber. 

 

Figure 2.5. MEA recordings from RGCs. (A) Scheme of the MEA recording system illustrating the 

position of the retina in the centre of MEA chamber and the light-emitting diode (LED) used to elicit 

light responses. (B) The MEA60 biochip included a MEA chamber where 60 electrodes are 

positioned in the centre. Note that MEA is built on glass allowing for light stimulation through the 

bottom. (C) Examples of RGC spiking activity over 9 electrodes during a recording session using 

MC_Rack software. When the raw waveform (pink) exceeds the manually adjusted threshold 

(horizontal line) for each electrode it is quantified as en event.  

  

MEA recordings were conducted using MEA60 setup (Multi Channel Systems). The 

analogue extracellular neuronal signals from 60 channels were AC amplified (×1000-1200), 

band-pass filtered (200-3000 Hz), sampled at 20-30 kHz, and saved in PC-compatible computer 

Retina
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MEA
MEA chamber
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200 µV
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for subsequent off-line analysis. RGC spiking activity was monitored during recording sessions 

(Fig. 2.5 C) using MC_Rack software (Multi Channel Systems). Light-induced responses were 

evaluated under dark conditions (Fig. 2.6 A). To elicit light responses in the RGCs, white light 

episodes from light-emitting diodes (LEDs) driven by a stimulus generator STG-1008 (Multi 

Channel Systems) were applied. The LEDs were positioned 5 mm below the transparent MEA 

chamber and used to generate full-field stimuli in the photopic range (5.0 cd/m2). Stimulus 

consisted of 10 consecutive stimulus blocks with 5 sec light followed by 10 sec dark each. 
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2.11.2 – Spike sorting and data analysis 

The recordings were subsequently subjected to off-line spike sorting and analysis using 

Spike2 (Cambridge Electronic Design, Cambridge, UK). Waveforms were isolated using a 

combination of template matching algorithm and cluster cutting based on principal 

components of individual waveforms (Fig. 2.6 B). The spontaneous activity was calculated for 

each RGC as spiking rate (Hz). 

 

Figure 2.6. MEA recordings from RGCs. (A) Examples of RGC spiking frequency changes over 16 

electrodes upon repeated light stimulation using MC_Rack software. Frequency of detected events 

is shown (red) for each electrode. Note that we only used MC_Rack for live monitoring of spiking 

activity during recording sessions. (B) The spike activity quantification was performed after off-line 

spike sorting using Spike2 software. In order to isolate individual RGC spiking activity, a combination 

of template matching and cluster cutting based on principal components of individual waveforms 

was used. In this example, blue spikes are taken and green spikes are discarded. 

  

To detect changes in spontaneous activity induced by light, the raster and peri-stimulus 

time histograms (PSTH) were generated from 10 stimulus blocks using 50 msec bin widths (Fig. 

2.7). The onset of ON- and OFF-type RGC responses were defined as an increase in spike 
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number higher than 2SD than the pre-stimulus frequency over at least three consecutive bins. 

The initial burst responses to both light onset (ON-type RGCs, Fig. 2.7 A) and dark onset (OFF-

type RGCs, Fig. 2.7 B) were quantified over a 50 msec bin. The mean spiking rates over 1 and 

5 sec after light onset (ON-type RGCs) or dark onset (OFF-type RGCs) were also quantified. The 

majority of RGC light responses were classified as transient showing an initial burst response 

to light or dark onset followed by a rapid decrease in spiking activity. Latency was defined as 

the time delay between light or dark period onset (ON- or OFF-type RGCs respectively) and 

the RGC light response as defined above, when aligned in raster plots for consecutive light 

stimuli. In addition to light stimulation, in some experiments, 30 µM NMDA was applied for 5 

min to induce increased RGC spiking activity. Under continuous perfusion different drugs were 

bath-applied: 1 µM NPY, 1 µM (Leu31, Pro34)-NPY, 1µM NPY (13-36), 1 µM (Gly1, …Ai 32)-PP, or 

0.3 to 30 µM sildenafil citrate. Effects of each drug and concentrations was assessed in, at 

least, 3 different retinal preparations. 
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Figure 2.7. RGC light response quantification. Examples of peri-stimulus time histograms (PSTHs) 

and raster plots for ON- (A) and OFF-type (B) RGC light responses are shown for five consecutive 

stimulus blocks. White bars indicate duration of light period. Blue horizontal bars indicate the time 

window used for quantification of light stimulus-induced mean spiking rate for ON-type RGCs (A), 

namely initial burst (50 msec), 1 sec, and 5 sec. (B) OFF-type RGC light responses were quantified 

similarly, though the starting point for quantification corresponded to dark onset. Note that the 5 

sec bar was shortened to fit in the figure. Vertical dashed lines indicate the position used for latency 

quantification for ON- (A) and OFF-type (B) RGC light responses, determined in aligned raster plots 

for consecutive light stimuli.  
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2.12 – Intravitreal injections and retinal ischemia-reperfusion injury  

 

Wistar rats were anaesthetized by 2.5% isoflurane (Abbott Laboratories, North 

Chicago, IL, USA) inhalation, using a gas-anaesthetizing system (VetEquip, Pleasanton, CA, 

USA) and the O2 flowmeter adjusted to 1 l/min. Then, 4 mg/ml oxybuprocaine (Laboratórios 

Edol, Linda-a-Velha, Portugal) anaesthetic was applied topically to the eyes and the pupils 

dilated with 10 mg/ml tropicamide (Laboratórios Edol). Intravitreal injection of 5 µl containing 

10 μg NPY or sterile saline solution was performed using a 10 μl Hamilton syringe (Hamilton, 

Reno, NV, USA) with a 30-gauge needle, in both eyes, 120 min before the induction of retinal 

ischemia-reperfusion (I-R). Fusidic acid (10 mg/g, Leo Pharmaceutical, Bellerup, Denmark) 

ointment was applied in the conjunctival sac after the intravitreal injections. 

Retinal I-R injury was induced in one eye by elevating the intraocular pressure (IOP) to 

80 mmHg for 60 min. IOP was measured with a tonometer (Tonolab, Icare, Vantaa, Finland). 

The anterior chamber of one eye was cannulated (Fig. 2.8 A) with a 30-gauge needle 

connected to a reservoir infusing sterile saline solution (Fig. 2.8 B). The contralateral eye was 

taken as the control eye. The IOP was raised by elevating the reservoir to a height of 1.8 m. 

Retinal ischemia was confirmed by whitening of the iris and loss of the red reflex. In order to 

avoid corneal opacity, 2% methocelTM (Dávi II, Barcarena, Portugal) was applied to both eyes. 

After 60 min of ischemia, the needle was withdrawn and the reperfusion was established. 

Fusidic acid ointment (10 mg/g) was applied at the end of the experiment. Animals were killed 

after 24 h of reperfusion. 
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Figure 2.8. I-R injury model. (A) Picture illustrating a cannulated rat eye in the anterior chamber. 

(B) Scheme showing the reservoir (arrow) containing the saline solution and the gas-anaesthetizing 

system. 

 

 

2.13 – Electroretinogram recordings 

 

 Electroretinogram (ERG) recordings  are an effective and non-invasive method to study 

in vivo retinal light responses (Rosolen et al., 2005). In some animals subjected to I-R injury 

(three animals per each experimental group), ERGs were recorded before the onset of I-R 

injury (Baseline) and after 24 h of reperfusion. After dark adaptation for at least 12 h the 

animals were anaesthetized with 90 mg/kg (ip) ketamine (ImalgeneTM, Merial, Porto Salvo, 

Portugal) and 10 mg/kg (ip) xylazine (RompunTM, Bayer, Leverkusen, Germany). Then, 4 mg/ml 

oxybuprocaine (Laboratórios Edol, Linda-a-Velha, Portugal) anaesthetic was applied topically 

to the eyes and the pupils dilated with 10 mg/ml tropicamide (Laboratórios Edol) under dim 

red light illumination. The body temperature was maintained with a heating pad set to 37 °C. 

Using a Ganzfeld stimulator (Fig. 2.9 A), white light flashes (9.49 cd-s/m2) were applied under 

scotopic and photopic conditions (in the latter case, after light adaptation to a white 

background, 25 cd/m2) in order to saturate the rod photoreceptor response. Scotopic ERGs 

result mainly from rod photoreceptor activity, while photopic ERGs result from cone 

photoreceptor activity. ERGs were recorded with a corneal gold wire electrode, a reference 

BA
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electrode at the head, and a ground electrode in the tail of the animal. A band width of 1 - 300 

Hz and sampling rate of 3.4 kHz were used for acquisition (Roland Consult GmbH, Brandenburg 

and der Havel, Germany). The scotopic and photopic ERGs were evaluated (Fig. 2.9 B). The a-

wave allows for evaluation of photoreceptor activity and the amplitude was measured from 

the baseline to the a-wave through (Fig. 2.9 C). The a-wave latency was measured from the 

light stimulus onset to the a-wave through. The b-wave allows for evaluation of bipolar cell 

and amacrine cell activity and the amplitude was measured from the a-wave through to the 

b-wave peak, and the b-wave latency was measured from the light stimulus onset to the b-

wave peak (Fig. 2.9 D). Note that in the photopic ERG no clear a-wave is detected due to the 

low number of cone photoreceptors in rodent retina (Cone, 1964; Bayer et al., 2001). OFF-line 

high frequency cut-off of 50 Hz digital filter was applied to determine b-wave, with the 

RETIport software (Roland Consult GmbH). 

Figure 2.9. ERG recordings. (A) Picture illustrating an ERG recording set up. Note that the animal is 

placed on a heating pad and the head is positioned inside the Ganzfeld stimulator. (B) Examples of 

scotopic and photopic ERG waveforms. (C) Example of an ERG waveform, where the a-wave 

amplitude (a) and latency (at) quantification is indicated. (D) Example of an ERG waveform, where 

the b-wave amplitude (b) and latency (bt) quantification after high frequency cut-off of 50 Hz is 

shown. Vertical line indicates the onset of light stimulus. 
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2.14 – Statistical analysis 

 

Statistical analysis was performed with Prism 5 (GraphPad, La Jolla, CA, USA) using one-

a  ANOVA follo ed  Bo ferro i’s test. Whe  distribution normality was not possible to 

evaluate, or not achieved, one-way Kruskal-Wallis test as used follo ed  Du ’s test, as 

indicated in figure legends. P values less than 0.05 were taken as significant. All values are 

presented as mean ± SEM. 
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3.1 – Introduction 

 

NPY is widely distributed in central and peripheral nervous system. This peptide 

belongs to a family of highly conserved peptides which also includes PP, and PYY, (Michel et 

al., 1998). During the last three decades NPY has been associated with a multitude of 

physiological functions such as energy homeostasis (Chambers and Woods, 2012), stress 

response (Hirsch and Zukowska, 2012), circadian rhythm (Yannielli and Harrington, 2004), 

bone physiology (Lee and Herzog, 2009), neurogenesis (Malva et al., 2012), and immune 

system regulation (Dimitrijevic and Stanojevic, 2013). NPY, PYY, and PP, all activate seven 

transmembrane G protein-coupled receptors named NPY receptors. These receptors all bind 

to Gi/G0 proteins which results in inhibition of AC. Other signalling pathways are also regulated 

such as Ca2+ channels and GIRK channels, (Sun and Miller, 1999), phospholipase C (Perney and 

Miller, 1989), and phosphoinositide 3-kinase (Rosmaninho-Salgado et al., 2012). In humans, 

only four NPY receptors were cloned and known to be functionally active, Y1, Y2, Y4, and Y5 

(Babilon et al., 2013). These receptors have been regarded as potential therapeutic targets 

since NPY was shown to present anti-epileptic and neuroprotective properties (Xapelli et al., 

2006). Indeed NPY receptor activation has been shown to prevent neuronal cell death induced 

by excitotoxic insult (Silva et al., 2003; Xapelli et al., 2007). 

In the retina, NPY presence has been demonstrated in different species, though NPY 

receptor localization has been scarcely investigated (Santos-Carvalho et al., 2014). 

Nevertheless, previous work from our laboratory have shown that NPY exerts a 

neuroprotective action against different toxic insults. In primary rat retinal cell cultures NPY 

pre-treatment prevented increased cell death induced by both MDMA and glutamate (Alvaro 

et al., 2008b; Santos-Carvalho et al., 2013b). In an animal model of excitotoxicity-induced 

retinal injury, intravitreal administration of NPY inhibited both the increase in cell death, and 

RGC loss induced by glutamate (Santos-Carvalho et al., 2013b). In addition, we and others 

presented evidence suggesting a neuromodulatory role of NPY in the retina. NPY application 

regulates neurotransmitter release in rabbit and chicken retinas (Bruun and Ehinger, 1993). 

Also, NPY attenuates depolarization-induced increase in [Ca2+]i in primary retinal cell cultures 

(Alvaro et al., 2009). Moreover, NPY decreases depolarization-dependent Ca2+ influx into 

bipolar cells via activation of Y2 receptors (D'Angelo and Brecha, 2004), and in retinas with 

selective ablation of NPY-expressing amacrine cells, it was reported an alteration in the 
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receptive field properties of RGCs, though a direct effect of NPY was not demonstrated 

(Sinclair et al., 2004). These results suggest that NPY-induced modulation of visual circuitry 

might result in changes of RGC spiking activity. Therefore, in this study, we intended to 

evaluate NPY modulatory potential at RGC level using a purified RGC culture and an ex vivo 

retinal preparation. In addition, since RGC are lost in retinal degenerative diseases such as 

glaucoma, we also evaluated the neuroprotective potential of NPY against excitotoxic or I-R 

injury. 
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3.2 – Results 

 

 

3.2.1 – Expression of NPY and NPY receptors in retinal ganglion cells 

 

 In order to assess the presence of NPY and NPY receptors (Y1, Y2, Y4, and Y5) in RGCs 

we used a method for RGC isolation by immunopanning. After purification of RGC by this 

method, cells were used for RNA extraction or cultured overnight for immunocytochemistry 

assays. To assess the presence of mRNA for NPY and NPY receptors (Y1, Y2, Y4, and Y5) by RT-

PCR, we used RGCs isolated from the retinas of P3-4 pups and 8 weeks old adult rats of two 

different strains: Wistar and Long Evans (Fig. 3.1). We found that mRNA for both NPY and NPY 

receptors (Y1, Y2, Y4, and Y5) were detected in purified RGCs from both rat strains and ages. 

Brn3a (RGC marker) mRNA was clearly detected while glial fibrillary acidic protein GFAP 

(macroglia cell marker) and Cd11b (microglia cell marker) mRNAs were not detected or barely 

detected indicating high purity of the isolated RGCs. 

We also evaluated the immunoreactivity for NPY and NPY receptors in purified RGCs 

from P3-4 Wistar rats cultured overnight. We found NPY-ir in RGCs with co-localization with 

the RGC marker Brn3a (Fig. 3.2 a). A less intense Y1 receptor-ir was also detected in Brn3a-

positve RGCs (Fig. 3.2 b). Similar to NPY-ir, immunoreactivity for Y2, Y4, and Y5 receptors was 

also detected in RGCs (Fig. 3.2 c-e). In addition, we assessed the localization of NPY and NPY 

receptors in retinal sections of adult Wistar rats. NPY-ir was detected in ramified dendrites in 

strata 1, 3, and 5 of IPL, and cell bodies of GCL and INL (Fig. 3.3 a, arrows). These NPY-ir cells 

were already described as amacrine cells (Oh et al., 2002). A low intensity Y1 receptor-ir was 

detected in GCL similar to the immunoreactivity found in cultured RGCs (Fig. 3.3 b, arrow). Y2 

receptor-ir was found in stratum 1 of IPL and in cell bodies in proximal INL (Fig. 3.3 c, arrow). 

Y4 receptor-ir was localized in cell bodies of GCL, and proximal and distal INL (Fig. 3.3 d, white 

arrows). The cell bodies in GCL that were immunoreactive for Y4 receptor were both RGC (co-

localized with Brn3a, Fig. 3.3 d, green arrow) and non-Brn3a-positive cells, likely displaced 

amacrine cells (Fig. 3.3 d, yellow arrow). Concerning Y5 receptor, immunoreactivity was 

detected in Müller cells (Fig. 3.3 e, arrow). Co-localization of Y5 receptor-ir with vimentin in 

Müller cells confirmed this result (Fig. 3.4). The lack of clear immunoreactivity for NPY, and for 
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Y2 and Y5 receptors in RGCs in retinal sections of adult rat (Fig. 3.3), while it could be found in 

cultured RGCs from P3-4 rats (Fig. 3.2), may indicate decreased expression in adulthood. 

Figure 3.1. Detection of mRNA expression by RT-PCR for NPY and NPY receptors (Y1, Y2, Y4, and 

Y5) in RGCs purified by immunopanning. NPY and NPY receptors mRNA was detected in RGCs 

isolated from the retinas either pups or young adults Long Evans and Wistar rats. The clear presence 

of Brn3a mRNA and the barely detected mRNAs for GFAP (macroglial cell marker) and Cd11b 

(microglial cell marker) indicate high purity of the isolated RGCs. L, DNA ladder. 

Figure 3.2. NPY and NPY receptor immunoreactivity (ir) in purified RGC cultures. Cell cultures were 

obtained from Wistar pups, purified by immunopanning and cultured for 16 h. NPY (a, red) and NPY 

receptor-ir (b-e, red) were detected in Brn3a (RGC marker, green) positive cells. Nuclei are stained 

with DAPI (blue). Scale bar: 20 μm. 
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Figure 3.3. NPY-ir and NPY receptor-ir in the rat retina. Retinal slices were obtained from young 

adult Wistar rats. RGCs were stained with the RGC marker Brn3a (green) and nuclei with DAPI (blue). 

NPY-ir was detected in strata 1, 3, and 5 of IPL (a, red, arrows). Y1-ir was detected in GCL (b, red, 

arrow). Y2-ir was detected in INL (c, red, arrow). Y4-ir was detected in INL and GCL (d, red, arrows) 

and Y5-ir was detected in Müller cells (e, red, arrow). GCL, ganglion cell layer; IPL, inner plexiform 

layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Scale bar: 50 

μm. 

 

Figure 3.4. Immunoreactivity for Y5 receptor in Müller cells in the rat retina. Y5-ir (a, red) is co-

localized (c) with vimentin in Müller cells (b, green) in retinal slices. Müller cells were identified by 

vimentin-ir (green). Nuclei were stained with DAPI (blue). GCL, ganglion cell layer; IPL, inner 

plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Scale 

bar: 50 μm. 
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3.2.2 – NPY stimulates functional binding in retinal slices 

 

 We performed [35S]GTPγS binding assay to assess the functional activity of NPY 

receptors in retinal slices from adult Wistar rats (Fig. 3.5). [35S]GTPγS binding assay is able to 

evaluate the activation of G-protein-coupled receptors (GPCRs) by measuring the amount of 

radiolabeled GTP bound to the cell membrane using an autoradiography film. After incubation 

with 10 µM NPY for 60 min, we detected an increase in [35S]GTPγS binding in inner retinal 

layers (134.5 ± 6.4% comparing to basal conditions, non-stimulated retinal slices; Fig. 3.5 A 

and B). Autoradiography films did not allow obtaining higher magnification/resolution imaging 

of retinal slices due to the small size of retinal tissue and low [35S]GTPγS binding signal (Fig. 

3.5 A). However, when comparing the hematoxylin-eosin staining of native retinal slices with 

MR autoradiography film pictures of the same retinal slices, we found that the retinal layers 

presenting increased [35S]GTPγS binding upon NPY stimulation were both GCL and IPL. It is 

also of note the intense binding signal detected in photoreceptor layer both in basal and NPY-

stimulated conditions (Fig. 3.5 Aa and Ab, white arrows) that likely represents the high amount 

of G proteins in photoreceptor outer segments, mainly transducin (Arshavsky et al., 2002). 

Moreover, NPY did not induce a statistically significant increase in binding signal in 

photoreceptor layer. Since 1 µM NPY was not sufficient to increase [35S]GTPγS binding in 

retinal sections, we speculated that low levels of NPY receptors were functionally active in 

frozen retinal sections, thus requiring increased concentrations of NPY. A cocktail of NPY 

receptor antagonists (10 µM BIBO 3304 for Y1; 10 µM BIIE 0246 for Y2; 100 µM L-152,804 for 

Y5) was used to evaluate the selectivity of NPY-stimulated [35S]GTPγS binding. The blockade of 

Y1, Y2, and Y5 receptors prevented the increased binding induced by NPY confirming the 

selectivity of binding signal. To assess the non-specific binding (NSB), a competitive control 

with non-radioactive GTPγS was used, which exhibit no clear binding signal in MR 

autoradiography film (Fig. 3.5 Ad). 
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Figure 3.5. NPY increases [35S]GTPγS binding in retinal sections. (A) Examples of retinal sections 

from MR autoradiography films after [35S]GTPγS binding assay. (B) Quantification of [35S]GTPγS 

binding in inner retinal layers. Incubation with 10µM NPY increased the [35S]GTPγS binding in inner 

retinal layers (Ab, black arrow) compared to basal binding (Aa). An intense signal was found in 

photoreceptor layer (white arrows) both in basal and NPY-stimulated binding conditions that may 

represent the high amount of G proteins in photoreceptor outer segments, mainly transducin. The 

blockade of Y1, Y2, and Y5 receptors prevented the increased [35S]GTPγS binding induced by NPY 

(Ac). NSB refers to non-specific binding, a competitive control with non-radioactive GTPγS (Ad). 

Antagonists used: Y1, BIBO 3304 (10 µM); Y2, BIIE 0246 (10 µM); Y5, L-152,804 (100 µM). Bar: 2 mm. 

Data are presented as mean ± SEM of n = 8-10 independent experiments, except 1µM NPY, which 

was not used for statistical comparisons (n = 2). ***p<0.001, compared to basal; ###p<0.001, 

compared to 10 µM NPY. One-way ANOVA followed by Bonferro i’s test. 
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3.2.3 – NPY attenuates glutamate-induced [Ca2+]i increase in purified retinal ganglion cells 

 

 We aimed to evaluate the modulatory effect of NPY directly on RGCs. For this purpose, 

we cultured purified RGCs and performed intracellular free calcium concentration - [Ca2+]i, 

measurements using Fura-2 calcium indicator. Following a similar protocol described 

previously (Hartwick et al., 2004), we stimulated RGCs with different glutamate 

concentrations (1 to 1000 µM) for 30 sec, including also 10 µM glycine (Methods section). 

After testing these glutamate concentrations, in the following experiments we used 30 µM 

glutamate since this concentration was able to induce a non-saturating increase in [Ca2+]i that 

was easily reversible. The ratios between emissions of Fura-2 when excited by light at 340 nm 

and 380 nm wavelengths were quantified in cell bodies of RGCs, as indicative of [Ca2+]i. After 

the first glutamate stimulus, we applied different drugs for 10 min: NPY (1 µM), the Y1/Y5 

agonist (Leu31, Pro34)-NPY (1 µM), the Y2 agonist NPY (13-36) (300 nM), and the Y5 agonist 

(Gly1, …Ai 32)-PP (1 µM), or a drug-free solution (control), followed by a second glutamate 

stimulus (Fig. 3.6 A). The increase above basal Fura-2 ratio was quantified for each stimulus as 

a Delta value. When evaluating the average [Ca2+]i responses of the cell population analysed, 

a small decrease in Delta 2 / Delta 1 ratios was found for NPY (0.83 ± 0.04) and (Leu31, Pro34)-

NPY (0.81 ± 0.05), compared to control (0.93 ± 0.02) (Fig. 3.6 C). In fact, a small significant 

change may be hard to detect within the overall population, as can be observed in scatter 

plots showing individual RGCs from an independent experiment (Fig. 3.6 D). Hence, we 

quantified the percentage of RGCs where the Delta 2 / Delta 1 ratio value was lower than 0.9 

(Fig. 3.6 E). The application of NPY or (Leu31, Pro34)-NPY for 10 min significantly increased the 

percentage of cells with Delta 2 / Delta 1 ratio below 0.9 (77.7 ± 10.3% or 68.5 ± 8.3%, 

respectively), compared to control (32.7 ± 8.4%). Since the Y5 receptor agonist alone was not 

able to affect the RGC response to glutamate, it is likely that the effect of NPY or (Leu31, Pro34)-

NPY might occur via Y1 receptor activation. 
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Figure 3.6. NPY attenuates glutamate-induced [Ca2+]i increase in purified RGCs. (A) Schematic 

experimental protocol for Ca2+ imaging in RGCs. After the first glutamate stimulus (30 µM for 30 

sec) and a period of washout for at least 210 sec, 1 µM NPY, 1 µM (Leu31, Pro34)-NPY, 300 nM NPY 

(13-36), 1µM (Gly1, …Ai 32)-PP, or a drug-free solution (control), were applied to RGCs during 10 

min followed by a second glutamate stimulus and washout. (B) Examples of [Ca2+]i traces of RGC 

responses to consecutive glutamate stimuli (30 µM) for 30 sec each stimulus. After the first 

glutamate stimulus, 1 µM NPY or a drug-free solution (control) were applied to RGCs during 10 min 

followed by a second glutamate stimulus. (C) The increase above basal Fura-2 ratio 340 nm / 380 

nm was quantified for each stimulus as a Delta value. The Delta 2 (2nd stimulus) / Delta 1 (1st 

stimulus) ratios are presented for different drug applications for 10 min: 1 µM NPY, 1 µM (Leu31, 

Pro34)-NPY, 300 nM NPY (13-36), 1µM (Gly1, …Ai 32)-PP, or a drug-free solution (control). A small 

decrease in Delta 2 / Delta 1 ratios may be found in RGCs exposed to NPY and (Leu31, Pro34)-NPY. 

(D) Scatter plots for two populations of RGCs from the same independent experiment show the 

dispersion of Delta 2 / Delta 1 ratio values among cells. RGCs were treated with a drug-free solution 

(control) or NPY. Note that in NPY-treated population a small downward shift may be observed. 

Dashed line indicate 0.9 ratio value. (E) Percentage of cells presenting Delta 2 / Delta 1 ratio below 

0.9 was quantified. The application of NPY or (Leu31, Pro34)-NPY for 10 min increased the percentage 
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of cells with Delta 2 / Delta 1 ratio below 0.9. Data are presented as mean ± SEM of n = 5-10 

independent experiments. *p<0.05, compared to control. Kruskal-Wallis follo ed  Du ’s test. 
 

 

3.2.4 – RGC spiking activity is modulated by Y1 receptor activation 

 

 Since NPY is able to modulate neuronal activity in various brain regions (Silva et al., 

2002; Benarroch, 2009), we hypothesized whether direct application of NPY to ex vivo retinas 

could modulate RGC spiking activity. For this purpose, we used a MEA system allowing 

recording spiking activity from various RGCs within a square of 0.6 mm2 comprising 60 

electrodes arranged in an 8×8 layout. After spike sorting based on template matching, the 

spiking rate for individual RGCs was quantified. In the first set of experiments, we recorded 

RGC spontaneous activity before (Baseline) and after the application of NPY (1 µM), the Y1/Y5 

agonist (Leu31, Pro34)-NPY (1 µM), the Y2 agonist NPY (13-36), (1 µM), or a drug-free solution 

(control) for 10 min under continuous perfusion (Fig. 3.7 A). In addition, a period of washout 

up to 60 min was included. We found a small decrease in RGC spiking rate over time reaching 

79.5 ± 7.2% of Baseline in control at 60 min of washout (Fig. 3.7 B). However, exposure to NPY 

or NPY receptor agonists caused no effect since RGCs presented a decrease in spiking rate 

similar to control. 
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Figure 3.7. NPY or NPY receptor agonists do not changed the spontaneous activity of RGCs. (A) Ex 

vivo retinal preparations were exposed to 1 µM NPY, 1 µM (Leu31, Pro34)-NPY, 1µM NPY (13-36), or 

a drug-free solution (control) for 10 min followed by 60 min of washout. Arrows indicate when MEA 

recordings were performed. Open arrow indicates Baseline recording. (B) Quantification of RGC 

spontaneous spiking rate. A decrease in RGC spiking rate was observed over time, though no effects 

were found for drug treatments. 

 

In order to evaluate the effect of NPY on RGC light responses, ex vivo retinas were 

exposed to light stimuli in the photopic range (5.0 cd/m2), while RGC spiking activity was 

recorded in the MEA system. The light stimulation protocol consisted of 10 consecutive 

stimulation blocks composed of 5 sec light followed by 10 sec dark. RGC light responses were 

classified as ON- or OFF-type. An ON-type RGC light response was considered if increased 

spiking activity was detected at light onset and an OFF-type RGC light response was considered 

when increased spiking activity was detected at dark onset in each stimulation block. The most 

common RGC light response detected with our stimulation protocol was a transient response, 

either ON- or OFF-type, characterized by an initial burst response to light or dark onset, 

respectively, which was followed by a rapid decrease in spiking activity. We also detected a 

few RGC light responses classified as sustained, which were characterized by a sustained 

increase in spiking activity during the full light or dark period of a stimulation block and were 

included in ON- or OFF-type groups, respectively. The peri-stimulus time histograms (PSTHs) 

were generated from RGC responses to 9 consecutive stimulation blocks and used to calculate 

the initial burst responses to light or dark onset, as well as the mean spiking rates during the 

first 1 or 5 sec after light or dark onset, ON- or OFF-type responses, respectively. The latencies 

B
as

el
in

e

D
ru

g 1
0m

in

W
as

hout 1
0m

in

W
as

hout 6
0m

in

0

50

60

80

100

Control

NPY

(Leu31, Pro34)-NPY

NPY-(13-36)

S
p

o
n

ta
n

e
o

u
s
 a

c
ti

v
it

y

(%
 n

o
rm

a
li

ze
d

 t
o

 b
a
s
e
li

n
e
)

A B

Washout

Drug



CHAPTER 3 

 

82 
 

of RGC light responses were also calculated. The first RGC light response to a series of 10 

stimulation blocks was always excluded since it was harder to apply the spike sorting 

procedure due to increased noise in the raw recordings. Thus, in order to evaluate the 

potential modulatory effect of NPY on RGC light responses, the recordings were performed 

before (Baseline) and after the application of NPY (1 µM), the Y1/Y5 agonist (Leu31, Pro34)-NPY 

(1 µM), the Y2 agonist NPY (13-36), (1 µM), or a drug-free solution (control) for 10 min under 

continuous perfusion. Regarding ON-type light response, no effect was found on the initial 

burst of spiking activity to light onset for the drugs used (Fig. 3.8 A). The same was observed 

for 1 and 5 sec rate, and also for latency of ON-type RGCs (Fig. 3.8 B, C, D, respectively). 

However, the application of 1 µM (Leu31, Pro34)-NPY for 10 min was able to induce a small, but 

statistically significant, increase to 112.4 ± 2.8% of baseline on the initial burst of spiking 

activity triggered by dark onset in OFF-type RGCs (Fig. 3.9 A), when compared to control (100.3 

± 1.1% of baseline). Although a small increase may be observed for 1 (Fig. 3.9 B) and 5 sec rate 

(Fig. 3.9 C) after the application of (Leu31, Pro34)-NPY, no statistically significant differences 

were found. Also, no statistically significant differences were found after the application of 1 

µM NPY or 1 µM NPY (13-36). This result suggests that Y1 or Y5 activation may be sufficient to 

modulate the OFF-type RGC light response directly by changing the receptive field properties 

or acting upstream of RGCs in the vertical pathway of visual information, namely at the level 

of bipolar or photoreceptor cells. Concerning latency quantification of OFF-type RGC light 

responses, no effect was found after the different drug treatments used (Fig. 3.9 D). 
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Figure 3.8. NPY or NPY receptor agonists do not change the magnitude and latency of ON-type 

RGC light responses. (A) Quantification of the Initial burst to light onset of ON-type RGCs after 

application of the same drug treatments as in Fig 3.7 A. No effect was found for the different drug 

treatments compared to control. Similarly, no effect of drug treatments was found for 1 (B) and 5 

sec rate (C), and also for the latency of ON-type RGCs (D). All data were normalized to the values 

obtained before drug application (Baseline). Data are presented as mean ± SEM of n = 3-4 

independent experiments. 
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Figure 3.9. (Leu31, Pro34)-NPY increases the response of OFF-type RGCs to dark onset. (A) 

Quantification of the Initial burst to dark onset of OFF-type RGCs after application of the same drug 

treatments as in Fig. 3.7 A. The application of 1 µM (Leu31, Pro34)-NPY for 10 min was able to increase 

the magnitude of OFF-type response compared to control. Although a small increase may be 

observed for 1 (B) and 5 sec rate (C) after the application of (Leu31, Pro34)-NPY, no statistically 

significant differences were found. Concerning latency quantification for OFF-type RGCs (D), no 

effect was detected after the application of different drugs. All data were normalized to the values 

obtained before drug application (Baseline). Data are presented as mean ± SEM of n = 3-4 

independent experiments. *p<0.05, compared to control. Kruskal-Wallis follo ed  Du ’s test. 
 

 In addition to light stimulation experiments, we also evaluated the potential 

modulatory effect of NPY application on RGC spiking activity upon glutamate receptor 

activation. Glutamate is easily cleared within the retina by glutamate uptake (Higgs and 

Lukasiewicz, 1999), and therefore, we applied NMDA directly to ex vivo retinas in order to 

induce synaptic excitation of RGCs (Fig. 3.10 A, B), since NMDA receptors are abundantly 

expressed in RGCs (Shen et al., 2006). The application of NMDA (30 µM) for 5 min induced an 

acute increase in RGC spiking activity which was reversible within 10 min of washout (Fig. 3.10 

A, B). After washout of the 1st NMDA stimulus different drugs were applied for 10 min under 
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continuous perfusion: NPY (1 µM), the Y1/Y5 agonist (Leu31, Pro34)-NPY (1 µM), the Y2 agonist 

NPY (13-36) (1µM), the Y5 agonist (Gly1, …Ai 32)-PP (1µM), or a drug-free solution (control). 

After 10 min of drug treatment a 2nd NMDA stimulus was co-applied, followed by 10 min of 

washout. The increase above basal spiking rate (Baseline) or above washout was quantified 

for each NMDA stimulus as a Delta value (Fig. 3.10 B). Subsequently, the Delta 2 (2nd stimulus) 

/ Delta 1 (1st stimulus) ratios were calculated for each individual RGC. We found that 

application of (Leu31, Pro34)-NPY was able to decrease the Delta 2 / Delta 1 ratio to 0.67 ± 0.07, 

when compared to control, 0.96 ± 0.04 (Fig. 3.11 A), indicating that activation of Y1 or Y5 

receptor was sufficient to attenuate the NMDA-stimulated RGC spiking activity. For the other 

drug treatments, no statistically significant alterations were detected compared to control. 

The effect of (Leu31, Pro34)-NPY was confirmed to be mediated by Y1 receptor activation since 

the co-application of Y1 receptor antagonist BIBP 3226 (1 µM) and (Leu31, Pro34)-NPY was able 

to prevent its effect (Fig. 3.11 A). Moreover, the application of the Y5 receptor agonist alone 

did not affect the RGC response to NMDA, suggesting that the effect found for (Leu31, Pro34)-

NPY is not mediated by Y5 receptor activation. 

In order to focus on the RGCs that presented more pronounced differences between 

responses to 1st and 2nd NMDA stimulus, we calculated the percentage of RGCs presenting 

Delta 2 / Delta 1 ratio values below 0.9 for each independent experiment (Fig. 3.11 B), thus, 

overcoming the masking effect associated with overall population mean calculation. As 

expected, the application of (Leu31, Pro34)-NPY increased the percentage of cells (79.0 ± 6.9% 

of the cells analysed), with Delta 2 / Delta 1 ratio below 0.9, when compared to control (40.8 

± 5.0% of the cells analysed) (Fig. 3.11 B). Also, the Y1 receptor antagonist BIBP 3226 was able 

to prevent the effect of (Leu31, Pro34)-NPY, confirming the involvement of Y1 receptor 

activation. No statistically significant differences were detected for the other drug treatments. 

We hypothesize that a possible opposite effect of Y2 activation might be responsible 

for counteracting the effect of Y1 activation by NPY. In this regard, the application of Y2 agonist 

NPY (13-36) resulted in a Delta 2 / Delta 1 ratio of 1.2 ± 0.1 (Fig. 3.11 A), and the percentage 

of cells with Delta 2 / Delta 1 ratio below 0.9 was 24.8 ± 7.2% (Fig. 3.11 B), both values 

apparently in opposite direction of Y1 receptor activation, though no statistically significant 

differences were detected.  
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Figure 3.10. Y1 receptor activation decreases NMDA-stimulated RGC spiking activity. (A) NMDA 

(30 µM) was applied for 5 min followed by a washout period of 10 min. Then, 1 µM NPY, 1 µM 

(Leu31, Pro34)-NPY, 1 µM NPY (13-36), 1 µM (Gly1, …Ai 32)-PP, or a drug-free solution (control) were 

applied under continuous perfusion. A 2nd NMDA stimulus for 5 min was co-applied with drug 

solutions after 10 min of drug application. Arrows indicate when MEA recordings were performed. 

Open arrow indicate Baseline recording. (B) The increase above basal spiking rate (Baseline) or 

above washout was quantified for each NMDA stimulus as a Delta value. (C) Representative 

recordings of RGC spiking activity recorded in ex vivo retina using a MEA. Note the increase in 

spiking rate upon 30 µM NMDA. After washout of 1st NMDA stimulus, 1 µM (Leu31, Pro34)-NPY was 

applied for 10 min followed by a 2nd NMDA stimulus. Note that the NMDA-induced increase in RGC 

spiking activity was reduced upon application of (Leu31, Pro34)-NPY. 
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Figure 3.11. Activation of Y1 receptors decreases NMDA-stimulated RGC spiking activity. (A) The 

Delta 2 (2nd stimulus) / Delta 1 (1st stimulus) ratios for different drug applications, for 10 min, 

between NMDA stimuli: 1 µM NPY, 1 µM (Leu31, Pro34)-NPY, 1 µM NPY (13-36), 1 µM (Gly1, …Ai 32)-

PP, or a drug-free solution (control). The application of (Leu31, Pro34)-NPY was able to reduce the 

NMDA-stimulated RGC spiking activity. This effect was blocked by the Y1 receptor antagonist BIBP 

3226 (1 µM). (B) Percentage of RGCs presenting Delta 2 / Delta 1 ratio below 0.9. The application 

of (Leu31, Pro34)-NPY increased the percentage of cells with Delta 2 / Delta 1 ratio below 0.9. BIBP 

3226 was able to block the effect of (Leu31, Pro34)-NPY confirming the involvement of Y1 receptor 

activation. Data are presented as mean ± SEM of n = 3-10 independent experiments. **p<0.01, 

compared to control; #p<0.05, compared to (Leu31, Pro34)-NPY. Kruskal-Wallis follo ed  Du ’s 
test. 

 

3.2.5 – NPY prevents NMDA-induced cell death in retinal explants via Y1 and Y5 receptor 

activation 

 

NPY exerts neuroprotective actions in various brain regions, and also in the retina 

(Alvaro et al., 2008b; Santos-Carvalho et al., 2013b), suggesting that NPY receptors might be 

possible therapeutic targets for retinal diseases such as glaucoma. Therefore, in addition to 

the modulatory effect of NPY on RGC activity detected in ex vivo retinas, we also evaluated 

whether NPY could be able to prevent retinal cell death induced by an excitotoxic insult. The 

excitotoxic insult was induced in retinal explants (cultured for 4 DIV) exposed to 300 µM 

NMDA for 48 h. Different drug treatments were applied to assess the potential protective 

effect of NPY receptor activation. Thus, NPY (1 µM), the Y1/Y5 agonist (Leu31, Pro34)-NPY (1 

µM), the Y2 agonist NPY (13-36), (300 nM), or the Y5 agonist (Gly1, …Ai 32)-PP (1 µM) were 

applied at DIV1 and DIV2, respectively 24 h and 60 min before NMDA treatment (Fig. 3.12).  
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Figure 3.12. Schematic representation of the experimental protocol used for NMDA-induced cell 

death in retinal explants. The scheme shows the drug application protocol in retinal explants, 

cultured for 4 days, in order to evaluate the potential neuroprotective effect of NPY and NPY 

receptor agonists. Retinal explants were exposed to 300 µM NMDA for 48 h to induce an excitotoxic 

insult. Pre-treatment with NPY or NPY receptor agonists was performed 24 h and 60 min before 

NMDA. NPY receptor antagonists were applied 30 min before NPY or NPY receptor agonists. 

 

Apoptotic retinal cell death was assessed by TUNEL assay (Fig. 3.13) and necrotic or 

late apoptotic cell death was assessed by PI incorporation assays (Fig. 3.14). 

In TUNEL assay experiments, we quantified TUNEL-positive cells localized in GCL, using 

confocal microscopy, since this layer is highly affected in diseases like glaucoma (Fig. 3.13 A). 

TUNEL-positive cell counts were then normalized to the value obtained in non-treated retinal 

explant (control), in each independent experiment (Fig. 3.13 B). In PI assay experiments, since 

the acquisition of images was performed with live retinal explants using fluorescence 

microscopy, we quantified PI-positive cells across all retinal layers. PI-positive cells were 

quantified at DIV2 (before NMDA application) and at DIV4. The ratio between PI-positive cells 

at DIV4 and DIV2 was calculated to evaluate the effect of NMDA on necrotic or late apoptotic 

cell death (Fig. 3.14). 

Exposure of retinal explants to NMDA for 48 h increased the number of TUNEL-positive 

cells in the GCL up to 16.3 ± 1.3 times higher than in control (Fig. 3.13 B). There was also an 

increase in the DIV4 / DIV2 ratio for PI-positive cells compared to control (3.4 ± 0.2 in NMDA-

treated explants versus 1.3 ± 0.1 in control) (Fig. 3.14). Pre-treatment with NPY was able to 

prevent the increase in the number of TUNEL-positive cells induced by NMDA to 4.8 ± 0.5. NPY 

pre-treatment was also able to prevent the increase in DIV4 / DIV2 ratio for PI-positive cells 

(1.4 ± 0.2) (Fig. 3.14). The Y1 antagonist BIBP 3226 (1 µM), or the Y5 antagonist L-152,804 (1 

µM), when applied 30 min before NPY, were able to block its protective effect both on TUNEL 

and PI assays, indicating the involvement of Y1 and Y5 receptor activation on the 

neuroprotective effects of NPY. The protective effect of Y1 receptor activation was confirmed 

by the application of (Leu31, Pro34)-NPY which was able to reduce the NMDA-induced increase 

in TUNEL- and PI-positive cells. Again, the Y1 antagonist BIBP 3226 blocked this effect. 

Concerning the Y5 receptor activation, the use of (Gly1, …Ai 32)-PP, might have reduced the 

number of TUNEL-positive cells, comparing to NMDA-treated explants, though no statistically 

DIV0             DIV1             DIV2            DIV3             DIV4

Drug NMDA
Ant.
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significant differences were detected. However, it was able to reduce the number of PI-

positive cells compared to NMDA condition. This later effect was blocked by L-152,804, thus 

confirming the protective effect of Y5 receptor activation. The Y2 receptor was not involved in 

the protective action of NPY since the Y2 antagonist BIIE 0246 (1 µM) did not block the 

neuroprotective effect of NPY. Also, NPY (13-36) did not prevent the increase in TUNEL- and 

PI-positive cells induced by NMDA in retinal explants. 

 

Figure 3.13. NPY prevents NMDA-induced cell death in the GCL in retinal explants via Y1 and Y5 

receptor activation. (A) Representative images of TUNEL-positive cells (green) in the GCL of control 

(a) or NMDA-treated (b-f) retinal explants. Nuclei were stained with DAPI (blue). Retinal explants 

were pre-treated with different drugs 24 h before exposure to NMDA. Scale bar: 100 µm. (B) 
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Quantification of TUNEL-positive cells. NMDA exposure induced a significant increase in the number 

of TUNEL-positive cells in the GCL compared to control. Pre-treatment with 1 µM NPY or 1 µM 

(Leu31, Pro34)-NPY (Y1/Y5 agonist), 24 h before NMDA, was able to prevent the increase in the 

number of TUNEL-positive cells induced by NMDA. Pre-treatment with Y1 or Y5 receptor antagonist 

(1 µM BIBP 3226 or 1 µM L-152,804, respectively), when applied 30 min before NPY, blocked its 

protective effect. The effect of (Leu31, Pro34)-NPY was blocked by BIBP 3226. Data are presented as 

mean ± SEM of n = 5-11 independent experiments. ***p<0.001, compared to control; ##p<0.01, 

compared to NMDA; §p<0.05, §§p<0.01, compared to NMDA + NPY, or NMDA + (Leu31, Pro34)-NPY. 

Kruskal-Wallis follo ed  Du ’s test. 

Figure 3.14. NPY prevents NMDA-induced cell death in retinal explants via Y1 and Y5 receptor 

activation. NMDA exposure induced a significant increase in the number of PI-positive cells in 

retinal explants. Data are presented as the ratio between PI-positive cells at DIV4 and DIV2. NPY or 

(Leu31, Pro34)-NPY (Y1/Y5 agonist) was able to prevent the increase in the number of PI-positive cells 

induced by NMDA. BIBP 3226 or L-152,804 (Y1 or Y5 antagonist, respectively) blocked the protective 

effect of NPY, and BIBP 3226 blocked the protective effect of (Leu31, Pro34)-NPY. The application of 

1µM (Gly1, …Ai 32)-PP was able to prevent the increase in PI-positive cells induced by NMDA, and 

this effect was blocked by L-152,804. This result suggests that NPY is able to protect retinal cells 

from an excitotoxic insult through the activation of Y1 and Y5 receptors. Data are presented as mean 

± SEM of n = 5-11 independent experiments. ***p<0.001, compared to control; ###p<0.001, 

compared to NMDA; §§p<0.01, §§§p<0.001, compared to NMDA + NPY, or NMDA + (Leu31, Pro34)-

NPY, or NMDA + (Gly1, …Ai 32)-PP. Kruskal-Wallis follo ed  Du ’s test. 
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3.2.6 – NPY does not prevent the reduction in Brn3a-positive RGCs induced by NMDA in 

retinal explants 

 

Brn3a labelling of RGCs has been used as a valid marker to study the survival of RGCs 

in injured retinas (Nadal-Nicolas et al., 2009; Nadal-Nicolas et al., 2012). Retinal explants were 

pre-treated with 1 µM NPY, 24 h and 60 min before exposure to 300 µM NMDA for 48 h (Fig. 

3.15 A).  NMDA exposure induced a significant decrease in the number of Brn3a-positive RGCs 

to 274 ± 51 cells/mm2, compared to control (977 ± 140 cells/mm2; Fig. 3.15 B). However, pre-

treatment with 1µM NPY was not able to prevent this decrease. This result indicates that the 

neuroprotective effect exerted by NPY pre-treatment found in TUNEL and PI assays might 

restrict to amacrine cells and does not extend to RGCs. 

 

Figure 3.15. NPY does not prevent NMDA-induced reduction in Brn3a-positive RGCs in retinal 

explants. (A) Representative images of Brn3a-positive RGCs (red) in the GCL of control (a) or NMDA-

treated (b, c) retinal explants. Retinal explants were pre-treated with 1 µM NPY, 24 h and 60 min 

before exposure to 300 µM NMDA for 48 h. Scale bar: 100 µm. (B) NMDA exposure induced a 

significant decrease in the number of Brn3a-positive RGCs compared to control. Pre-treatment with 

1 µM NPY was not able to prevent this decrease. Data are presented as mean ± SEM of n = 9-12 

independent experiments. ***p<0.001, compared to control. One-way ANOVA followed by 

Bo ferro i’s test.  
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3.2.7 – Intravitreal administration of NPY does not prevent cell death induced by I-R injury 

 

In addition to cultured retinal explants, we also explored the potential neuroprotective 

action of NPY in an animal model of retinal damage induced I-R injury (Fig. 3.16 A). Retinal 

ischemia was induced for 60 min followed by 24 h of reperfusion. Ischemia was induced in one 

eye, and the contralateral eye was taken as an internal control. Saline or 10 µg (2.34 nmol) 

NPY were intravitreally injected 2 h before the onset of I-R injury. Retinal cell death was 

assessed by TUNEL-assay (Fig. 3.16 B). I-R injury induced an increase in the number of TUNEL-

positive cells per mm of retinal section length to 31.8 ± 6.6 compared to contralateral eye (0.6 

± 0.3 TUNEL-positive cells across all the retinal nuclear layers) (Fig. 3.16 C). This increase was 

not prevented by pre-treatment with NPY. RGC survival was evaluated using the RGC marker 

Brn3a (Nadal-Nicolas et al., 2012). We found that I-R injury decreased the number of Brn3a-

positive RGCs per mm of retinal section length to 12.0 ± 2.5 RGCs compared to the 

contralateral eye (26.0 ± 4.5), and again, this effect was not prevented by NPY administration 

(Fig. 3.16 D). 

We also performed ERGs in order to assess the functional effect of I-R injury on retinal 

light responses. Scotopic and photopic ERGs were recorded before the onset of I-R injury 

(Baseline) and after 24 h of reperfusion (Fig. 3.17). The obtained ERG values for amplitudes 

and latencies were normalized to baseline ERG. We found that the a-wave amplitude was not 

affected by I-R injury (Fig. 3.18). However, I-R reperfusion injury induced decreased b-wave 

amplitudes, to 37.7 ± 11.0% of baseline ERG for scotopic ERG (Fig. 3.18 C) and to 10.1± 5.6% 

of baseline ERG for photopic ERG (Fig. 3.18 E). The amplitudes of scotopic b-wave were 

reduced in all three animals tested, although no statistically significant differences were 

detected (Fig. 3.18 C). Also, the latencies for scotopic a-wave and b-wave, and photopic b-

wave were not affected by I-R injury (Fig. 3.18 B, D, F, respectively). Similarly to what was 

found regarding TUNEL and Brn3a results (Fig. 3.16), NPY administration before I-R injury did 

not prevent the reduction in ERG b-wave amplitudes, both scotopic and photopic (Fig. 3.18 C, 

E, respectively). Together, these results indicate that, contrarily to the protective action 

against an excitotoxic injury in retinal explants, NPY pre-treatment was not able to prevent 

retinal I-R injury within 24 h of reperfusion. Therefore, further studies are needed in order to 

evaluate whether NPY neuroprotective action translates to in vivo models of retinal diseases. 
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Figure 3.16. Intravitreal administration of NPY is not able to prevent cell death induced by I-R 

injury at 24 h of reperfusion. (A) Schematic representation of the protocol of retinal I-R injury and 

intravitreal administration. Retinal ischemia was induced for 60 min followed by 24 h of 

reperfusion. Saline, or 10 μg NPY, were intravitreally injected 2 h before the onset of I-R injury. 

Arrows indicate the ERG recordings, performed before (Baseline, open arrow) and 24 h after I-R 

injury (grey arrow). Ischemia was induced in one eye, and the contralateral eye was taken as an 

internal control. (B) Representative images of retinal sections showing TUNEL-positive cells (green) 

and Brn3a-positive RGCs (red). Nuclei were stained with DAPI (blue). Saline (a, c), or 10 μg NPY (b, 

d) were intravitreally injected 2 h before the onset of I-R injury. GCL, ganglion cell layer; IPL, inner 

plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. Scale 

bar: 50 µm. (C) TUNEL-positive cells are expressed per mm of retinal section length. I-R injury 

induced an increase in the number of TUNEL-positive cells. NPY administration was not able to 

reduce the number of TUNEL-positive cells. (D) Brn3a-positive RGCs were expressed per mm of 

retinal section length. NPY administration was not able to prevent the reduction in Brn3a-positive 

RGC number induced by I-R injury. Data are presented as mean ± SEM of n = 6 independent 

experiments. *p<0.05, **p<0.01, compared to Contralateral eye. Kruskal-Wallis follo ed  Du ’s 
test. 
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Figure 3.17. Intravitreal administration of NPY is not able to prevent ERG changes induced by I-R 

injury at 24 h of reperfusion. Ischemia was induced in one eye, and the contralateral eye was taken 

as an internal control. Examples of scotopic ERG traces for saline (a, c) and NPY-treated eyes (b, d). 

ERG recordings were performed before (Baseline) and 24 h after I-R injury. Note that in the injured 

eye the b-wave was abruptly reduced (c). NPY administration did not prevent the reduction in b-

wave (d). 
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Figure 3.18. Intravitreal administration of NPY was not able to prevent ERG changes induced by I-R 

injury. Ischemia was induced in one eye, and the contralateral eye was taken as an internal control. 

Quantification of a-wave amplitude (A) and latency (B), scotopic b-wave amplitude (C) and latency (D), 

and photopic b-wave amplitude (E) and latency (F). In the injured eye (I-R eye), the a-wave amplitude 

was not affected (A), but the b-wave amplitude was decreased (C, E). For the a-wave and b-wave 

latencies, no changes were detected (B, D, E). NPY administration did not prevent the reduction in b-

wave amplitudes (C, D). Data are presented as mean ± SEM of n = 3 independent experiments. *p<0.05, 

compared to Contralateral eye. Kruskal-Wallis follo ed  Du ’s test. 
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3.3 – Discussion 

 

In this study, we evaluated the presence and localization of NPY and NPY receptors in 

the rat retina, particularly at RGC level. The presence of mRNA for both NPY and NPY receptors 

(Y1, Y2, Y4, and Y5) in the rat retina have been demonstrated in previous studies (D'Angelo and 

Brecha, 2004; Alvaro et al., 2007). We now present evidence supporting the presence of NPY 

and NPY receptors specifically in acutely isolated RGCs from both Wistar and Long Evans rats 

obtained from P3-4 pups or adult animals (Fig. 3.1). NPY-ir in the retina has been extensively 

evaluated in different species (Santos-Carvalho et al., 2014). In human retina, NPY-ir was 

shown to be confined to a subset of amacrine cells and RGCs, which processes extend mainly 

in the IPL and occasionally in the OPL (Tornqvist and Ehinger, 1988; Straznicky and Hiscock, 

1989). In rat retina, NPY-ir was reported to localize in cell bodies of amacrine cells in INL and 

displaced amacrine cells in GCL and to co-localize mainly with gabaergic neurons. The 

corresponding cell processes extend and ramify mainly in strata 1, 3, and 5 of IPL, and very 

occasionally in OPL (Oh et al., 2002). We confirmed these observations in the rat retina using 

retinal slices of adult rats and showing NPY-ir in cell bodies of GCL and INL and in ramified 

dendrites in strata 1, 3, and 5 of IPL (Fig. 3.3). In addition, we found NPY-ir in a purified culture 

of RGCs obtained from P3-4 pups. In a previous study, we have also suggested the presence 

of NPY-ir in different retinal cell types in a primary culture of retinal cells (Alvaro et al., 2007). 

Regarding the localization of NPY receptors in the retina, few studies addressed this 

issue. In human retina, transcripts for Y1, Y2, and Y5 receptors were detected in RPE (Ammar 

et al., 1998). Y1 receptor-ir was detected in glial cells of diseased human retina and in 

horizontal and amacrine cells of rat retina (Canto Soler et al., 2002; D'Angelo et al., 2002), and 

we have previously detected immunoreactivity for Y1 and Y2 receptors in neurons and glial 

cells in cultured retinal cells (Santos-Carvalho et al., 2013a). Moreover, we and others have 

reported functional evidence suggesting the presence of Y1, Y2, Y4, and Y5 receptors in retinal 

cells (Bruun et al., 1994; D'Angelo and Brecha, 2004; Milenkovic et al., 2004; Alvaro et al., 

2008a; Alvaro et al., 2009; Santos-Carvalho et al., 2013b). Regarding purified RGC cultures, we 

detected immunoreactivtiy for NPY and Y1, Y2, Y4, and Y5 receptors in Brn3a-positive RGCs. In 

retinal sections, Y1-ir was found in GCL, in agreement with the labelling found in purified RGC 

cultures. Using an antigen retrieval step, we indeed detected Y2, Y4, Y5 receptor-ir in retinal 

sections. Y2 receptor-ir was found in stratum 1 of IPL and in cell bodies in proximal INL. Y4 



Neuropeptide Y in the Retina 

 

97 
 

receptor-ir was localized in cell bodies of GCL, and proximal and distal INL. The cell bodies in 

GCL that were immunoreactive for Y4 receptor were both RGC (co-localized with Brn3a) and 

non-Brn3a-positive cells, likely displaced amacrine cells. Concerning Y5 receptor, 

immunoreactivity was detected in Müller cells confirmed by co-localization with vimentin (Fig. 

3.4). The lack of clear immunoreactivity for NPY, and for Y2 and Y5 receptors in RGCs in retinal 

sections of adult rat, while it could be found in cultured RGCs from P3-4 rats, may be explained 

by decreased expression in adulthood or related with the cell culture conditions, which might 

favour the expression of NPY or NPY receptors. In addition to immunofluorescence data, we 

present further evidence showing the presence of functional active NPY receptors in the inner 

retina using [35S]GTPγS binding assay (Fig. 3.5). Binding signal detected in the photoreceptor 

layer might represent the high amount of G proteins in photoreceptor outer segments, mainly 

transducin (Arshavsky et al., 2002). 

NPY has been associated with inhibitory actions after electrical or chemical stimulation 

of excitatory synaptic transmission (El Bahh et al., 2002; Tu et al., 2006; Kovac et al., 2011). In 

fact, in different neuronal cell types NPY was reported to decrease depolarization-evoked 

increase in [Ca2+]i by inhibiting voltage-dependent Ca2+ channels. This effect was reported in a 

variety of neuronal cell types such as dorsal root ganglion neurons (Bleakman et al., 1991), 

hippocampal neurons (Bleakman et al., 1992), submandibular ganglion neurons (Endoh et al., 

2012), and hypothalamic arcuate nucleus neurons (Sun and Miller, 1999). In rat thalamic 

neurons, NPY was shown to activate GIRK channels via Y1 and inhibit N and P/Q-type Ca2+ 

channels via Y2 receptor activation (Sun et al., 2001), whereas in arcuate nucleus neurons, NPY 

analogues that activated all of the known NPY receptors (Y1, Y2, Y4, and Y5) were able to both 

inhibit Ca2+ currents and activate inwardly rectifying K+ currents (Sun and Miller, 1999). 

Moreover, the activation of Y1 receptor has been associated with inhibition of 

neurotransmitter release (Bitran et al., 1999; Hastings et al., 2004; Wang, 2005), though the 

opposite can be found depending on the neurotransmitter or cell type (Hastings et al., 2001). 

In the retina, Y2 receptor activation attenuated depolarization-evoked Ca2+ influx in rod bipolar 

cell terminals (D'Angelo and Brecha, 2004). In addition, previous work in our laboratory has 

shown that NPY application to retinal cell cultures was able to reduce depolarization-evoked 

[Ca2+]i increase via activation of Y1 and Y5 receptors (Alvaro et al., 2009). Thus, we now aimed 

to evaluate the effect of direct application of NPY or NPY receptor agonists on Ca2+ influx into 

RGCs, using a purified RGC culture. Glutamate is the major excitatory neurotransmitter in the 

retina mediating the communication between bipolar cells and RGCs. In this experiment, 30 
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µM glutamate plus 10 µM glycine, and a Mg2+-free extracellular solution, was used to 

stimulate Ca2+ influx into cultured RGCs by activating both NMDA and non-NMDA glutamate 

receptors and indirectly VDCCs, as previously described (Hartwick et al., 2004), though in these 

conditions Ca2+ influx was found to be primarily mediated by NMDA glutamate receptors 

(Hartwick et al., 2008). We now present evidence showing an inhibitory effect of NPY on 

glutamate-evoked increase in [Ca2+]i on purified RGCs likely through Y1 receptor activation (Fig. 

3.6). This result suggests that NPY, released from amacrine cells (Oh et al., 2002), may activate 

post-synaptic Y1 receptors on RGCs inhibiting glutamate receptors or VDCC, thus modulating 

the effect of glutamate released from bipolar cells. 

We further explored the modulatory potential of NPY on RGC spiking activity using a 

MEA (Meister et al., 1994). Although application of NPY or NPY receptor agonists did not affect 

the spontaneous spiking activity, a small increase was found at the initial burst response of 

OFF-type RGCs upon Y1/Y5 receptor activation (Fig. 3.9). We hypothesized that modulatory 

effects of NPY receptor activation may be exerted within the circuitry generating centre-

surround organization within the receptive field of OFF-type RGCs at the level of amacrine 

cell-RGCs (Sinclair et al., 2004). A decreased contribution of ON bipolar cell signal to this 

circuitry could be responsible for this effect although that may not be the case since Y2 

receptor activation, but not Y1 or Y5, was reported to inhibit rod bipolar cells (D'Angelo and 

Brecha, 2004). Another possibility is that the modulatory effect may reside at the level of 

horizontal cell circuitry at the OPL, since it contributes to centre-surround organization 

(Wassle and Boycott, 1991), and Y1 receptor was shown to localize in rat horizontal cells 

(D'Angelo et al., 2002). 

In another experiment paradigm, ex vivo retinal preparations were exposed to NMDA 

to induce an excitatory stimulus to RGCs. We chose NMDA instead of glutamate since in intact 

retina even high concentrations of glutamate have no effect on RGC Ca2+ levels (Hartwick et 

al., 2004) due to the presence of glutamate uptake systems (Thoreson and Witkovsky, 1999). 

We confirmed that Y1 receptor activation is able to modulate directly RGC responses by 

attenuating the NMDA-induced increase in RGC spiking activity (Fig. 3.11). These results 

suggest that the activation of Y1 receptors present in RGC dendrites is responsible for the 

modulatory effect observed. Nevertheless, the contribution of Y1 receptor expressing 

amacrine cell inputs onto RGC dendrites may be also important (D'Angelo et al., 2002). 

Additional studies are needed to clarify the cellular contribution (RGC versus amacrine cells) 

and localization of Y1 receptor activation to the alterations in RGC spiking activity, and whether 
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Y1 receptor activation is associated to a particular RGC type or modulates a specific visual task 

(Gollisch and Meister, 2010). 

NPY has been shown to prevent neuronal cell death, also in the retina, induced by 

excitotoxic insults (Silva et al., 2003; Xapelli et al., 2007; Santos-Carvalho et al., 2013b). To 

further address this issue in the retina, we used an in vitro model, cultured retinal explants 

exposed to NMDA, as well as an in vivo model of retinal I-R injury. Both cultured retinal 

explants and the I-R model have been used to evaluate potential neuroprotective strategies 

targeting retinal neurons, specially RGCs (Lagreze et al., 1998; Goodyear and Levin, 2008; Peng 

et al., 2011; Zhang et al., 2012). We found that NPY pre-treatment was able to prevent NMDA-

induced cell death in retinal explants, through the activation of Y1 and Y5 receptors (Fig. 3.13). 

This result confirm previous studies showing neuroprotective effects upon Y1 or Y5 receptor 

activation (Silva et al., 2003; Xapelli et al., 2007; Smialowska et al., 2009), including in retinal 

neurons (Santos-Carvalho et al., 2013b). However, pre-treatment with NPY was not able to 

prevent the decrease in Brn3a-positive RGCs induced by NMDA exposure (Fig. 3.15). This 

result indicates that the neuroprotective effect exerted by NPY pre-treatment found in TUNEL 

and PI assays might be mainly restricted to amacrine cells and does not extend to RGCs. This 

selective effect may be explained by the localization of NPY and NPY receptors in the rat retina. 

In fact, in the GCL, NPY was shown to be localized in displaced amacrine cells but not in RGCs 

(Oh et al., 2002), and Y1 receptor was found to be expressed in amacrine cell dendrites in IPL 

(D'Angelo et al., 2002). Therefore, we hypothesized that the activation of NPY receptors in 

amacrine cells may be responsible for the protective effect observed in this cell type and not 

in RGCs. Moreover, in retinal I-R injury model, pre-treatment with NPY was not able to prevent 

cell death or rescue RGCs (Fig. 3.16). This observation contrasts with the protective effect of 

NPY when injected intravitreally before the intravitreal injection of glutamate, in a model of 

glutamate-induced injury in the retina (Santos-Carvalho et al., 2013b). In fact, retinal I-R injury 

involves a complex cascade of destructive events including excessive glutamatergic 

stimulation and calcium influx, oxidative stress due to energy failure, and inflammatory 

processes, making difficult to determine the treatment strategy (Osborne et al., 2004). 

Therefore, further studies are needed in order to evaluate whether NPY neuroprotective 

effects detected in cultured retinal explants can be translated to animal models of retinal 

degenerative diseases.
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4.1 – Introduction 

 

 Sildenafil is a PDE type 5 inhibitor widely used for treatment of erectile dysfunction 

(Salonia et al., 2003), and also for pulmonary arterial hypertension (Montani et al., 2013). 

Patients with erectile dysfunction have experienced transient and mild impairments of colour 

discrimination, which are occurring at the peak of the drug action (Laties and Zrenner, 2002). 

Moreover, sildenafil was found to decrease visual performance, particularly temporal 

response, in S-cone isolating conditions (Stockman et al., 2007), and, in rare cases, transient 

blindness was reported (Montastruc et al., 2006). It has also been suggested as a possible, but 

not yet certain, cause of anterior ischaemic optic neuropathy (Carter, 2007). However, other 

studies reported no visual toxic effects in both human patients and laboratory animals even 

after long periods of drug daily use (Vatansever et al., 2003; Cordell et al., 2009; Zoumalan et 

al., 2009). 

Different electrophysiological studies have investigated the effect of the drug on the 

retinal function. In vivo ERG recordings showed decreases in both a- and b-wave amplitudes 

in sildenafil-treated patients (Vobig et al., 1999), or inversely, an increase in the scotopic ERG 

responses, but a decrease in the photopic response (Luu et al., 2001). Other studies reported 

an increase in Naka-Rushton equation Vmax, suggesting higher rod response after sildenafil 

ingestion (Gabrieli et al., 2001; Gabrieli et al., 2003). More consistently, among all human 

studies, sildenafil enlarged the latencies of the different responses (Luu et al., 2001; Jagle et 

al., 2004; Jagle et al., 2005). Ex vivo experiments have also shown some contradictory results. 

Sildenafil has been shown to increase ERG amplitudes in the rat retina (Barabas et al., 2003), 

whereas it decreases ERG amplitudes in bovine and human retinas, while increasing the 

latencies (Luke et al., 2005; Luke et al., 2007). 

These effects of sildenafil on retinal function could be related to the inhibition of PDE5, 

which is expressed in retinal cells, including human RGCs (Foresta et al., 2008). However, apart 

from its effect on PDE5, sildenafil can also inhibit other PDEs including PDE6, which controls 

the phototransduction cascade in photoreceptors (Beavo, 1995; Lamb, 2013). Sildenafil 

appears almost equally potent on cone PDE6 as on PDE5, whereas it seems slightly less potent 

on rod PDE6 (Ballard et al., 1998; Zhang et al., 2005). The functional relevance of blocking 

photoreceptor PDE6s was demonstrated following rat retinal explant incubation with 

zaprinast, another mixed PDE5/6 blocker (Zhang et al., 2005). This blocker induced an 
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elevation of cGMP and the consequent photoreceptor death attributed to an excessive 

activation of the cGMP-gated channels generating the dark current in photoreceptors 

(Vallazza-Deschamps et al., 2005). PDE4s are also expressed in RGCs, bipolar cells, cholinergic 

amacrine cells and rods (Whitaker and Cooper, 2009), whereas PDE1 and PDE9 were described 

so far in bipolar cells (Dhingra et al., 2008). 

Together, the previous studies have reported conflicting results on the effect of 

sildenafil on retinal function. To further understand the effect of different concentrations of 

sildenafil on principal characteristics of light-induced RGC responses (magnitude and latency) 

and the spontaneous firing rate, we have analysed, for the first time, the retinal output signal 

at the RGC level in the presence of sildenafil. 
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4.2 – Results 

 

 

4.2.1 – Sildenafil at high concentration acutely increases RGC spiking activity and abolishes 

light responses 

 

 ON- or OFF-type RGC light responses were recorded on a MEA upon a series of 10 

consecutive stimulus blocks consisting of 5 sec light followed by 10 sec dark (Fig. 4.1). After a 

10 min application of a high concentration of sildenafil (30 µM), we found a rapid, partial or 

complete, abolishment of RGC light responses in both ON- and OFF-types (Fig. 4.2 and 4.3, 

respectively). This result confirms that sildenafil can affect retinal function acutely inhibiting 

the retinal output. However, we noticed that among the 10 consecutive stimulus blocks, the 

responses of ON-type RGCs to the first block appeared enlarged in both light and dark period 

(Fig. 4.2 B). This atypical ON-response, which was only observed at 30 µM sildenafil (Fig. 4.4), 

was not observed in the following ON responses, which were heavily suppressed (Fig. 4.2 D). 

When considering the spontaneous activity in dark, sildenafil application (0.3 to 30 µM) for 10 

min did not induce statistically significant differences on either ON- or OFF-type RGCs, though 

some cells exhibited a slight increase in spontaneous activity but only at the highest (30 µM) 

concentration (Fig. 4.5). 

  



CHAPTER 4 

 

106 
 

Figure 4.1. Schematic representation of sildenafil application to ex vivo retinas. Sildenafil (0.3 to 

30 µM) was applied for 10 (A) or 60 min (B) under continuous perfusion. After sildenafil application, 

a period of 60 min of washout was performed. Arrows indicate MEA recordings, before sildenafil 

application (Baseline, open arrow), upon sildenafil, or during washout period. 

Figure 4.2. Effects of high concentration of sildenafil on ON-type RGC light responses. Examples 

of RGC light responses before (baseline) and after exposure to 30 µM sildenafil for 10 min. Series 

of 10 consecutive stimulus blocks, each consisting of 5 sec of light period followed by 10 sec dark, 

were delivered to ex vivo retinas. Raw recordings for 5 consecutive stimulus blocks are shown for 

an ON-transient RGC, before (A) and after 30 µM sildenafil application for 10 min (B). Note the 

enlarged response to the first stimulus block. Peri-stimulus time histograms (PSTHs) and raster plots 

for ON-transient RGC responses are shown for five consecutive stimulus blocks before (C) and after 

30 µM sildenafil application for 10 min (D). After 30 µM sildenafil application RGC responses are 

acutely reduced or abolished. Note that raster plots representing spiking events become not 

aligned with light period of stimulus blocks (B). White rectangles indicate duration of light period. 
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Figure 4.3. Effects of high concentration of sildenafil on OFF-type RGC light responses. Series of 

10 consecutive stimulus blocks, each consisting of 5 sec of light period followed by 10 sec dark, 

were delivered to ex vivo retinas. Example of raw recording of an OFF-transient RGC before (A) and 

after application of 30 µM sildenafil for 10 min (B) is shown.  Peri-stimulus time histograms (PSTHs) 

and raster plots of OFF-transient RGC responses are shown for five consecutive stimulus blocks 

before (C) and after application of 30 µM sildenafil for 10 min (D). Note that RGCs responses are 

acutely reduced or abolished after sildenafil application. White rectangles indicate duration of light 

period. 
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Figure 4.4. Quantification of spiking activity for the first stimulus block of ON-type RGC responses 

following application of high concentrations of sildenafil. (A) Raw recordings for the first stimulus 

block for an ON-transient RGC before (baseline) and after exposure to 30 µM sildenafil for 10 min. 

The white rectangle indicates the duration of light period. (B) Quantification of spiking events for 

ON-transient RGCs after sildenafil application (3 to 30 µM), for 10 min. The graph indicates the 

number of spikes during the light period (white bars) and during the dark period (grey bars) of the 

first stimulus block. The spike count values were normalized to the measurements obtained during 

the baseline recordings. Sildenafil application induced an increase in spiking activity especially 

during the dark period of stimulus block. * p<0.05, compared to baseline. Kruskal-Wallis followed 

 Du ’s test. 
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Figure 4.5. Maintenance of the RGC spontaneous firing rate after sildenafil application. Effects of 

sildenafil application (0.3 to 30 µM, for 10 min) on the RGC spontaneous spiking activity were 

evaluated. RGCs were divided in ON- (A) and OFF-type (B). Spontaneous spiking rates were 

normalized to the baseline values obtained before exposure to drug. RGCs exhibited a spontaneous 

baseline spiking rate of 4.6 ± 4.1 Hz for ON-type RGCs and 19.3 ± 8.6 Hz for OFF-type RGCs. Only at 

the highest sildenafil concentration (30 µM) some RGCs showed increased spontaneous spiking rate 

after sildenafil application, although no statistically significant difference was found. 

 

4.2.2 – Sildenafil affects the RGC light responses in a concentration-dependent manner 

 

To further elucidate the sildenafil effects on light responses, we applied escalating 

sildenafil concentrations from 1 to 30 µM in order to evaluate its concentration-dependent 

effects. Since the response to the first stimulus block included the response of a non-adapted 

retina where activity from neighbouring RGCs introduced extra noise in individual recording 

electrodes, we always excluded the first stimulus block from the measurements for 

quantification. In ON-type RGCs the application (10 min) of sildenafil induced a concentration-

dependent decrease in light response magnitude (Fig. 4.6). Such effect was observed for both 

initial burst response to light onset (Fig. 4.6 A), and for 1 sec and 5 sec rate (Fig. 4.6 B and C, 

respectively). The highest sildenafil concentration (30 µM) completely suppressed the ON- and 

OFF-type light responses in 50% of RGCs. When light responses were detected for 30 µM, they 

were strongly reduced (Fig. 4.6 A-C). 

After sildenafil application, we perfused retinas with a drug-free A es’ ediu  for up 

to 60 min to assess the reversibility of sildenafil effects on ON- and OFF-type responses. We 

also recorded the response to 10 consecutive stimulus blocks every 10 min in order to monitor 

the RGC light response during the entire protocol. After 60 min of washout, although partial 

recovery (to 89.8 ± 18.7% for 10 µM and to 60.8 ± 9.4% of initial response for 30 µM) of the 

magnitude may be seen for the initial burst (Fig. 4.6 A), it was hardly found especially for 5 sec 

rate (Fig. 4.6 C), which may indicate residual alterations of retinal response for long periods 
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after cessation of drug exposure. We also quantified the latency of ON-response and found 

that this principal parameter of light responses was greatly increased in a similar 

concentration-dependent fashion as response magnitudes (Fig. 4.6 D). For 10 and 30 µM 

sildenafil concentrations, the increase in latency of ON-responses reached 272.9 ± 55.4 and 

387.4 ± 106.0% of initial response, respectively. However, contrarily to ON-response 

magnitudes, their latencies were clearly recovered, though not completely, after 60 min of 

washout. For 10 µM sildenafil concentration the ON-response latency recover to 143.0 ± 7.4% 

and for 30 µM concentration the recovery reached 197.5 ± 21.6% of initial response (Fig. 4.6 

D). 

 

Figure 4.6. Concentration-dependent and reversible effects of sildenafil on ON-type RGC light 

responses. Sildenafil application (1 to 30 µM) for 10 min concentration-dependently reduces the 

magnitude of ON-type RGC response to light onset. This reduction was found at both initial burst 

(A), and 1 sec (B) and 5 sec rate (C). The response latencies were increased in a similar 

concentration-dependent fashion (D). After 60 min of washout the recovery of response 

magnitudes were hardly seen especially for 5 sec rate (C). On the contrary, for the response 

latencies, a clear washout of sildenafil effect was found (D). All results were normalized to the 

baseline values obtained before drug exposure. *p<0.05, **p<0.01, compared to baseline; #p<0.05, 

compared to sildenafil (10 min). Kruskal-Wallis follo ed  Du ’s test. 
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Figure 4.7. Concentration-dependent and reversible effects of sildenafil on OFF-type RGC light 

responses. Sildenafil application (1 to 30 µM) for 10 min concentration-dependently reduces the 

magnitude of OFF-type RGC response to dark onset. This reduction was found at both initial burst 

(A), and at 1 sec (B) and 5 sec rate (C). The response latencies were also increased in a 

concentration-dependent manner (D). After 60 min of washout, although some partial recovery of 

response magnitude was seen (A), no recovery was found with increasing sildenafil concentrations 

(A-C). Similarly to ON-type RGCs, the response latencies showed a clear washout of sildenafil effect 

(D). All results were normalized to the baseline values obtained before drug exposure. *p<0.05, 

**p<0.01, compared to baseline; #p<0.05, compared to sildenafil 10 min. Kruskal-Wallis followed 

 Du ’s test. 
 

Concerning OFF-type RGCs, a similar pattern of concentration-dependent decrease of 

OFF-response magnitudes was found (Fig. 4.7 A-C). This decrease reached 41.8 ± 10.5% and 

18.3 ± 6.7% of the initial response for 10 and 30 µM, respectively, for the initial burst (Fig. 4.7 

A). Also, the 1 sec and 5 sec rate were reduced (Fig. 4.7 B and C). After 60 min of washout, 

although some partial recovery to 70.4 ± 5.7% of response magnitude was seen for RGCs 

exposed to 10 µM sildenafil (Fig. 4.7 A), no recovery was found with higher (30 µM) 

concentration (Fig. 4.7 A-C). The response latencies were also greatly increased in a 

concentration-dependent fashion. This increase reached 311.0 ± 118.5% and 472.9 ± 66.5% of 

initial response for 10 and 30 µM, respectively. Similarly to ON-type RGCs, a partial recovery 

was evident upon 60 min washout (Fig. 4.7 D). Although not complete, the latencies returned 

to 119.3 ± 7.7% and 219.5 ± 35.1% of initial response for 10 and 30 µM, respectively. Together, 
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these results suggest that although light responses in ON- and OFF-type RGCs recover after 

removal of sildenafil, some characteristics of responses, as magnitudes and latencies, may be 

slightly altered for longer periods. 

 

4.2.3 – Potentiation of sildenafil effects with extended exposure 

 

 Since it cannot be discarded the possibility of cases of sildenafil abuse such as the 

combination with illicit drugs (Lowe and Costabile, 2011), resulting in unpredictable 

pharmacokinetics even with therapeutic doses, we attempted to evaluate how longer 

exposures to lower concentrations would further potentiate the sildenafil-elicited 

modifications on RGC light responses. Therefore, the duration of drug application was 

extended to 60 min for concentrations ranging from 0.3 to 3 µM sildenafil, followed by 

washout. The response to 10 consecutive stimulus blocks was recorded every 10 min. In ON-

type RGCs, even concentrations as low as 0.3 and 1 µM generated higher reduction in 

response magnitude, to 83.8 ± 12.3% and 69.6 ± 9.9% of initial response, respectively, for 

initial burst to light onset (Fig. 4.8 A). The sildenafil effect was enhanced with extended 

exposure for both 1 sec and 5 sec rate (Fig. 4.8 B and C). Note that 60 min of sildenafil washout 

was not sufficient to recover the initial response magnitude (Fig. 4.8 A-C), suggesting thereby 

a massive impregnation of the tissue thus requiring longer recovery periods. For response 

latencies of ON-type RGCs, the same pattern as response magnitudes was found, increased 

effect of sildenafil in latencies with extended exposure and more difficult recovery upon 

washout (Fig. 4.8 D). 
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Figure 4.8. Effects of extended exposures to low concentrations of sildenafil on ON-type RGC light 

responses. Sildenafil application (0.3 and 3 µM) for 60 min induced a reduction of RGC responses 

to light onset more prominent than 10 min application (A). For initial burst (A), 1 sec (B) and 5 sec 

rate (C), the reduction of RGC responses were higher compared to sildenafil for 10 min. Also, the 

reversibility of sildenafil effect upon 60 min of washout was more difficult following 60 min of drug 

exposure (A-C). For the lowest concentration (0.3 µM), washout periods were not recorded. The 

response latencies concentration-dependently exhibited increased values after 60 min of sildenafil 

application (D), and although for 1 µM sildenafil there was a small but statistically significant 

recovery within 60 min of washout, the same was not observed for 3 µM sildenafil. All results were 

normalized to the baseline values before drug exposure. *p<0.05, **p<0.01, ***p<0.001, compared 

to baseline; #p<0.05, compared to sildenafil 60 min. Kruskal-Wallis follo ed  Du ’s test. 
 

 Concerning OFF-type RGCs, extended exposure (60 min) to sildenafil also potentiated 

the effects on response magnitudes (Fig. 4.9 A-C). For the lowest (0.3 µM) concentration used, 

the initial burst response was not affected even after 60 min of drug application, suggesting 

higher resilience of OFF-type RGCs compared to ON-type RGCs for this lowest concentration. 

Nevertheless, 5 sec rate (Fig. 4.9 C), but not 1 sec rate (Fig. 4.9 B), was reduced to 68.2 ± 10.7% 

of initial response after 60 min of 0.3 µM sildenafil application. This may be explained by 

natural decreased spiking activity observed during recording sessions. Nevertheless, we 

highlight that the initial burst to dark onset was preserved and more reliably indicates whether 

an OFF response is present. For concentrations of 1 and 3 µM sildenafil, for 60 min, we found 

a reduction to 59.6 ± 2.7% and 33.4 ± 1.7% for the initial burst, respectively (Fig. 4.9 A), and 1 
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sec and 5 sec rate (Fig. 4.9 B, C) presented similar behaviour. Although for 1 µM sildenafil 

concentration a small but statistically significant recovery could be found for initial burst 

within 60 min of washout (Fig. 4.9 A), the same was not clear for 3 µM sildenafil concentration. 

In addition, no recovery was observed at 1 sec and 5 sec rate for both 1 and 3 µM. In the case 

of response latencies of OFF-type RGCs, we found increased values after extended sildenafil 

exposure to 60 min. This increase reached 157.0 ± 5.1% and 312.7 ± 12.8% for 1 and 3 µM, 

respectively, after 60 min of sildenafil exposure (Fig. 4.9 A). A clear recovery of latencies was 

observed within 60 min of washout. For 1 and 3 µM sildenafil, latencies returned to 120.8 ± 

5.4% and 143.2 ± 5.9% of initial response (Fig. 4.9 D). It must be noted that in ON-type RGCs 

the recovery from sildenafil effect was not so evident, especially after 60 min of 3 µM sildenafil 

application (Fig. 4.8 D). 
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Figure 4.9. Effects of extended exposures to low concentrations of sildenafil on OFF-type RGC 

light responses. Sildenafil application (0.3 and 3 µM) for 60 min induced a reduction of RGC 

responses to dark onset more prominent comparing to 10 min application, at the level of initial 

burst (A), and at 1 sec (B) and 5 sec rate (C). Recovery from sildenafil effect upon 60 min of washout 

was seen for the initial burst (A), but no recovery was found for 1 sec (B) and 5 sec rate (C). For the 

lowest concentration (0.3 µM), washout periods were not recorded. The response latencies 

concentration dependently exhibited increased values after 60 min of sildenafil (D). However, a 

clear recovery of response latencies was found upon 60 min washout. All results were normalized 

to the baseline values before drug exposure. *p<0.05, **p<0.01, ***p<0.001, compared to 

baseline; #p<0.05, compared to sildenafil 60 min. Kruskal-Wallis follo ed  Du ’s test. 
 

Finally, we also evaluated the effect of extended sildenafil (1 and 3 µM) exposure on 

RGC spontaneous activity. Although we could not assess a genuine dark adapted spontaneous 

activity since retinal preparations were stimulated each every 10 min to monitor RGC light 

responses, we quantified spontaneous spiking rates so a mixed effect of sildenafil and light 

stimulation could be evaluated. For both ON- and OFF-type, RGCs exhibited a small decrease 

upon 60 min of exposure to 1 µM sildenafil, though no dose-dependent effect was observed 

(Fig. 4.10 A and B). However, spontaneous activity of both ON- and OFF-type RGCs seems to 

be decreased after 60 min of washout although statistically significant difference was found 
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only for OFF-type RGCs (Fig. 4.10 B). This result may reflect a prolonged effect of sildenafil 

potentiated by light stimulation. 

Figure 4.10. Effects of extended exposures to low concentrations of sildenafil on RGC 

spontaneous activity. Effect of sildenafil application (1 and 3 µM, 10 to 60 min) on the RGC 

spontaneous spiking activity was evaluated. RGCs were divided in ON- (A) and OFF-type (B). 

Spontaneous spiking rates, when detected, were normalized to the baseline values obtained before 

drug exposure. For both ON- and OFF-type, RGCs exhibited a small decrease for 1 µM after 60 min 

of sildenafil exposure, though no dose-dependent effect was observed. However, spontaneous 

activity of both ON- and OFF-type RGCs seems to be decreased after 60 min of washout, although 

statistically significant difference was found only for OFF-type RGCs (B). All results were normalized 

to the baseline values before drug exposure. *p<0.05, compared to baseline. Kruskal-Wallis 

follo ed  Du ’s test. 
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4.3 – Discussion 

 

Our results demonstrate that sildenafil has a significant and dose-dependent effect on 

the retina, and in particular, on the RGCs, illustrating the critical changes occurring in RGC light 

response principal characteristics. These changes include a concentration-dependent 

decrease in magnitude and increased latency of light responses, which were partly restored 

during 60 min of washout. Even with low concentrations, which can be measured in human 

plasma (e.g. 1 µM) after sildenafil administration (Kanjanawart et al., 2011), RGC light 

responses showed statistically significant decreases in response magnitudes and increased 

latencies, in particular after prolonged drug exposure (60 min) and repetitive light 

stimulations. The recovery of light responses was incomplete, especially for ON RGCs even 

after prolonged (60 min) washout, which, for other chemicals traditionally applied to the 

retina, takes up to 15 min (Kolomiets et al., 2010). 

 Since the introduction of sildenafil as treatment for erectile dysfunction, reports of 

sildenafil-induced visual alterations have emerged (Laties and Zrenner, 2002). Non-arthritic 

ischemic optic neuropathy has been also reported in patients after sildenafil use, though a 

direct cause-effect has been difficult to demonstrate (Carter, 2007; Azzouni and Abu samra, 

2011). Possible drug-induced modifications of retinal ganglion cell activity could contribute to 

an optic neuropathy. Thus, the reported transient episode of blindness could result from the 

complete disappearance of some ON- and OFF-type RGC light responses as observed after 

high (30 µM) sildenafil concentration (Fig. 4.2 and 4.3). Moderate impairments as in colour 

discrimination have also been reported in human volunteers after sildenafil administration. 

These latter transient alterations appeared to correlate with the peak of sildenafil plasma 

concentration and were fully reversible (Laties and Zrenner, 2002). In a trial assessing ocular 

safety of sildenafil use for pulmonary arterial hypertension, transient adverse events, such as 

chromatopsia, photophobia, and visual brightness were reported with the highest dose of 80 

mg sildenafil three times daily for twelve weeks, though no permanent detrimental effect on 

visual function was found after such a chronic dosage of sildenafil (Wirostko et al., 2012). The 

above mentioned transient visual symptoms could result from the decreased or delayed RGC 

light responses, as we found in this study. Particularly, the RGC response latencies are known 

to be a key component in the transmission of spatial structure of images to visual brain centres 

(Gollisch and Meister, 2008). 
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 Regarding acute sildenafil effects, studies in human and laboratory animals have yield 

contradictory results. Both increased and decreased light responses have been reported after 

sildenafil administration, especially in ERG measurements. Such apparently inconsistent 

results could be attributed to the atypical increase in light response magnitude followed by a 

decrease. For example, Barabas and colleagues found increased ERG amplitude with 1 µM 

sildenafil in rat retina (Barabas et al., 2003), while other authors, using bovine retinas, 

reported decreased a-wave and b-wave amplitudes with sildenafil concentrations as low as 

0.3 µM and 0.1 µM, respectively (Luke et al., 2005). Moreover, acute ERG changes, in scotopic 

range, have been recorded as increased b-wave amplitudes and higher rod light sensitivity 

after 50 mg sildenafil ingestion in human volunteers (Gabrieli et al., 2003). Other studies found 

decreased visual sensitivity after 100 mg sildenafil (Stockman et al., 2007). Some of these 

studies have focused only on one sildenafil dose, but different doses and light stimulation 

paradigms were applied across these different studies such that results are difficult to 

compare. In the present study, we intended to evaluate the effects of sildenafil application, 

particularly onto RGC light responses, which was never addressed before, using various drug 

concentrations including low concentrations found in human plasma after sildenafil 

administration (1 µM) (Kanjanawart et al., 2011). In our experiments, the light responses were 

modified even at the lowest concentrations used (0.3 and 1 µM), whereas the RGC 

spontaneous activity did not display a statistically significant difference even upon application 

of the highest drug concentration (Fig. 4.5). 

The attenuation of RGC light responses and extended time to peak/latency found in 

the present study (Fig. 4.6-4.9) are in accordance with previous reports showing decreased 

ERG amplitudes and increased implicit time in bovine and human retinas (Luke et al., 2005; 

Luke et al., 2007). Interestingly, we showed that extended exposure at lower concentrations 

together with the repetitive light stimulation potentiated the effectiveness of sildenafil-

induced attenuation of light response (Fig. 4.8 and 4.9). In particular, the ON-type responses 

did not recover even after extended periods of washout (Fig. 4.9). The concentration of 1 µM 

is easily found in human plasma after sildenafil use (Kanjanawart et al., 2011). Moreover, it is 

possible that some patients take doses above the recommended therapeutic dose, reaching 

peak plasma concentration above 1 µM, particularly patients suffering from liver disease or 

renal dysfunction. At concentrations of 1 µM and 3 µM, although we did not find strong effects 

on RGC light-responses after 10 min sildenafil exposure, extending the drug exposure to 60 
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min, we found a suppression of the light response magnitude and delayed latencies as seen 

for shorter sildenafil exposure (10 min) with higher concentrations. 

When measuring RGC light responses upon the 30 µM sildenafil application, there was 

an atypical increase in response magnitude in the first stimulus block (Fig. 4.2). However, 

following responses to subsequent stimuli were greatly decreased. This transient sildenafil 

potentiation of the light response could result from the reported increase in photoreceptor 

sensitivity after sildenafil (Barabas et al., 2003; Gabrieli et al., 2003). The partial sildenafil 

inhibition of PDE6 could have increased the photoreceptor cGMP intracellular concentration 

thus enlarging the photoreceptor functional dynamics. However, the maintained PDE6 

inhibition would lead to a progressive increase in photoreceptor cGMP and a consequent 

constant photoreceptor depolarization (Zhang et al., 2005; Simon et al., 2006). Such an 

excessive activation of cGMP-gated channels may generate risks for the cell viability as we 

previously reported on retinal explants (Vallazza-Deschamps et al., 2005). This transient 

potentiation of the RGC light responses would be consistent with enhanced PDE6 inhibition 

by sildenafil upon light stimulation. 

 In summary, we found that sildenafil concentration-dependently attenuates RGC light 

responses in terms of magnitude and latencies. Moreover, these effects are potentiated by 

extended drug exposure and repeated light stimulation. To our knowledge, this is the first 

time the effects of sildenafil directly on RGC spiking activity are evaluated. The present study 

highlights the acute effects of sildenafil on RGC light responses, which are transmitted towards 

brain visual centres. These results on transient losses of light responses or, at least, magnitude 

decreases warn against sildenafil abuses, which could lead to more severe and irreversible 

long-term visual losses (Lowe and Costabile, 2011). Since sildenafil and its first metabolite UK-

103,320 were identified in human post-mortem vitreous humour, suggesting that the drug 

can reach the retina directly (Lewis et al., 2006), understanding the acute visual alterations is 

needed, especially under repeated administration. 
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In this study, we present evidence supporting the localization of NPY and NPY 

receptors in the inner retina and indicating a role for NPY system in modulation of retinal 

circuitry. The presence of mRNA for both NPY and NPY receptors (Y1, Y2, Y4, and Y5) detected 

in purified RGCs extends the findings of previous works (D'Angelo and Brecha, 2004; Alvaro et 

al., 2007). Regarding the immunoreactivity of NPY and NPY receptors in the rat retina, we 

confirmed that NPY is localized in cell bodies of amacrine cells in INL and displaced amacrine 

cells in GCL, which the processed extend and ramify in IPL (Oh et al., 2002). We extended the 

study of Y1 and Y2 receptor localization (Canto Soler et al., 2002; D'Angelo et al., 2002; Santos-

Carvalho et al., 2013a), showing that Y1-ir is localized to GCL and Y2-ir is found in stratum 1 of 

IPL and in cell bodies of proximal INL. We also present novel evidence indicating the 

localization of Y4 receptor in cell bodies of GCL, and proximal and distal INL. Concerning Y5 

receptor, immunoreactivity was detected for the first time in Müller cells. In addition to 

immunofluorescence data, we present further evidence showing the presence of functional 

active NPY receptors in the inner retina using [35S]GTPγS binding assay. 

We presented evidence showing an inhibitory effect of NPY on glutamate-evoked 

increase in [Ca2+]i on purified RGCs likely through Y1 receptor activation suggesting that NPY, 

released from amacrine cells (Oh et al., 2002), may activate post-synaptic Y1 receptors on 

RGCs. In addition, we found that Y1/Y5 receptor activation induces a small increase in the initial 

burst response of OFF-type RGCs. This result indicates that NPY might exert modulatory 

effects within the circuitry generating centre-surround organization in the receptive field of 

RGCs, which extends previous findings in this issue by Sinclair and colleagues (Sinclair et al., 

2004). Indeed, we found that Y1 receptor activation is able to modulate directly RGC responses 

by attenuating the NMDA-induced increase in RGC spiking activity. Clearly, more studies are 

needed to clarify whether the activation of Y1 receptors is associated to a particular RGC type 

or modulates a specific visual task (Gollisch and Meister, 2010). 

We presented evidence supporting that NPY exerts neuroprotective effects, upon Y1 

or Y5 receptor activation, in cultured retinal explants, confirming previous studies (Silva et al., 

2003; Xapelli et al., 2007; Smialowska et al., 2009; Santos-Carvalho et al., 2013b). However, 

pre-treatment with NPY was not able to prevent the decrease in Brn3a-positive RGCs induced 

by NMDA exposure to cultured retinal explants or induced by retinal I-R injury. Therefore, 

further studies are needed in order to evaluate whether NPY neuroprotective effects detected 

in cultured retinal explants can be translated to animal models of retinal degenerative 

diseases. 
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In the second part of this work, we took advantage of MEA technique in ex vivo retinal 

preparations as an easy method to evaluate the acute effects of exogenously applied drugs 

on RGC activity. We found that sildenafil concentration-dependently attenuates RGC light 

responses. Even with low concentrations, which can be measured in human plasma (e.g. 1 

µM) after sildenafil administration (Kanjanawart et al., 2011), RGC light responses showed 

decreased response magnitudes and increased latencies, in particular after prolonged drug 

exposure (60 min) and repetitive light stimulations. These results extend previous findings 

showing decreased ERG amplitudes and increased implicit time in bovine and human retinas 

(Luke et al., 2005; Luke et al., 2007). In addition, high sildenafil concentration (30 µM) induced 

an atypical increase in response magnitude in the first stimulus block, but not in subsequent 

stimuli which were greatly decreased. This transient sildenafil potentiation of the light 

response might result from the reported increase in photoreceptor sensitivity after sildenafil 

(Barabas et al., 2003; Gabrieli et al., 2003) which may be explained by increased photoreceptor 

cGMP intracellular concentration due to partial inhibition of PDE6 by sildenafil. Altogether, 

these findings contributes to the understanding of the acute visual alterations reported in 

patients using sildenafil. 

Thus, we show that MEA recordings in ex vivo retinas might be a valuable method to 

understand how RGC circuitry, as the output signal from the retina to the brain, is affected by 

different drug treatments. This understanding is an important step towards the development 

of neuroprotective strategies aimed to halt RGC death, and needed for retinal degenerative 

diseases such as glaucoma. 

 

 



 

 
 

 

 

 

 

 

CHAPTER 6 

References 

  



 

 

 
 

  



References 

 

127 
 

Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) 

Circadian rhythms in isolated brain regions. J Neurosci 22:350-356. 

Abid K, Rochat B, Lassahn PG, Stocklin R, Michalet S, Brakch N, Aubert JF, Vatansever B, Tella 

P, De Meester I, Grouzmann E (2009) Kinetic study of neuropeptide Y (NPY) proteolysis 

in blood and identification of NPY3-35: a new peptide generated by plasma kallikrein. 

J Biol Chem 284:24715-24724. 

Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN (2005) Mechanisms of 

neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green 

fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine 

arcuate nucleus. J Neurosci 25:7406-7419. 

Agasse F, Bernardino L, Kristiansen H, Christiansen SH, Ferreira R, Silva B, Grade S, Woldbye 

DP, Malva JO (2008) Neuropeptide Y promotes neurogenesis in murine subventricular 

zone. Stem Cells 26:1636-1645. 

Ahmad I, Del Debbio CB, Das AV, Parameswaran S (2011) Muller glia: a promising target for 

therapeutic regeneration. Invest Ophthalmol Vis Sci 52:5758-5764. 

Alvaro AR, Rosmaninho-Salgado J, Ambrosio AF, Cavadas C (2009) Neuropeptide Y inhibits 

[Ca2+]i changes in rat retinal neurons through NPY Y1, Y4, and Y5 receptors. J 

Neurochem 109:1508-1515. 

Alvaro AR, Martins J, Araujo IM, Rosmaninho-Salgado J, Ambrosio AF, Cavadas C (2008a) 

Neuropeptide Y stimulates retinal neural cell proliferation--involvement of nitric oxide. 

J Neurochem 105:2501-2510. 

Alvaro AR, Martins J, Costa AC, Fernandes E, Carvalho F, Ambrosio AF, Cavadas C (2008b) 

Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. 

Neuroscience 152:97-105. 

Alvaro AR, Rosmaninho-Salgado J, Santiago AR, Martins J, Aveleira C, Santos PF, Pereira T, 

Gouveia D, Carvalho AL, Grouzmann E, Ambrosio AF, Cavadas C (2007) NPY in rat retina 

is present in neurons, in endothelial cells and also in microglial and Muller cells. 

Neurochem Int 50:757-763. 

Ammar DA, Hughes BA, Thompson DA (1998) Neuropeptide Y and the retinal pigment 

epithelium: receptor subtypes, signaling, and bioelectrical responses. Invest 

Ophthalmol Vis Sci 39:1870-1878. 

Ammar DA, Eadie DM, Wong DJ, Ma YY, Kolakowski LF, Jr., Yang-Feng TL, Thompson DA (1996) 

Characterization of the human type 2 neuropeptide Y receptor gene (NPY2R) and 



CHAPTER 6 

 

128 
 

localization to the chromosome 4q region containing the type 1 neuropeptide Y 

receptor gene. Genomics 38:392-398. 

Arshavsky VY, Lamb TD, Pugh EN, Jr. (2002) G proteins and phototransduction. Annu Rev 

Physiol 64:153-187. 

Azzouni F, Abu samra K (2011) Are phosphodiesterase type 5 inhibitors associated with vision-

threatening adverse events? A critical analysis and review of the literature. J Sex Med 

8:2894-2903. 

Babilon S, Morl K, Beck-Sickinger AG (2013) Towards improved receptor targeting: 

anterograde transport, internalization and postendocytic trafficking of neuropeptide Y 

receptors. Biol Chem 394:921-936. 

Bader R, Bettio A, Beck-Sickinger AG, Zerbe O (2001) Structure and dynamics of micelle-bound 

neuropeptide Y: comparison with unligated NPY and implications for receptor 

selection. J Mol Biol 305:307-329. 

Balasubramanian V, Sterling P (2009) Receptive fields and functional architecture in the retina. 

J Physiol 587:2753-2767. 

Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM (1998) Effects of sildenafil on 

the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic 

nucleotide phosphodiesterase isozymes. J Urol 159:2164-2171. 

Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF (2010) Neuroprotection in glaucoma - Is 

there a future role? Exp Eye Res 91:554-566. 

Barabas P, Riedl Z, Kardos J (2003) Sildenafil, N-desmethyl-sildenafil and Zaprinast enhance 

photoreceptor response in the isolated rat retina. Neurochem Int 43:591-595. 

Barkana Y, Belkin M (2004) Neuroprotection in ophthalmology: a review. Brain Res Bull 

62:447-453. 

Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and 

electrophysiological variation among retinal ganglion cells purified by panning. Neuron 

1:791-803. 

Bayer AU, Cook P, Brodie SE, Maag KP, Mittag T (2001) Evaluation of different recording 

parameters to establish a standard for flash electroretinography in rodents. Vision Res 

41:2173-2185. 

Beal MF, Mazurek MF, Chattha GK, Svendsen CN, Bird ED, Martin JB (1986) Neuropeptide Y 

immunoreactivity is reduced in cerebral cortex in Alzheimer's disease. Ann Neurol 

20:282-288. 



References 

 

129 
 

Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple 

isoforms. Physiol Rev 75:725-748. 

Bedoui S, von Horsten S, Gebhardt T (2007) A role for neuropeptide Y (NPY) in phagocytosis: 

implications for innate and adaptive immunity. Peptides 28:373-376. 

Benarroch EE (2009) Neuropeptide Y: its multiple effects in the CNS and potential clinical 

significance. Neurology 72:1016-1020. 

Bernet F, Maubert E, Bernard J, Montel V, Dupouy JP (1994) In vitro steroidogenic effects of 

neuropeptide Y (NPY1-36), Y1 and Y2 receptor agonists (Leu31-Pro34 NPY, NPY18-36) 

and peptide YY (PYY) on rat adrenal capsule/zona glomerulosa. Regul Pept 52:187-193. 

Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the 

circadian clock. Science 295:1070-1073. 

Bettio A, Dinger MC, Beck-Sickinger AG (2002) The neuropeptide Y monomer in solution is not 

folded in the pancreatic-polypeptide fold. Protein Sci 11:1834-1844. 

Bitran M, Tapia W, Eugenin E, Orio P, Boric MP (1999) Neuropeptide Y induced inhibition of 

noradrenaline release in rat hypothalamus: role of receptor subtype and nitric oxide. 

Brain Res 851:87-93. 

Bleakman D, Colmers WF, Fournier A, Miller RJ (1991) Neuropeptide Y inhibits Ca2+ influx into 

cultured dorsal root ganglion neurones of the rat via a Y2 receptor. Br J Pharmacol 

103:1781-1789. 

Bleakman D, Harrison NL, Colmers WF, Miller RJ (1992) Investigations into neuropeptide Y-

mediated presynaptic inhibition in cultured hippocampal neurones of the rat. Br J 

Pharmacol 107:334-340. 

Blundell TL, Pitts JE, Tickle IJ, Wood SP, Wu CW (1981) X-ray analysis (1. 4-A resolution) of 

avian pancreatic polypeptide: Small globular protein hormone. Proc Natl Acad Sci U S 

A 78:4175-4179. 

Bohme I, Stichel J, Walther C, Morl K, Beck-Sickinger AG (2008) Agonist induced receptor 

internalization of neuropeptide Y receptor subtypes depends on third intracellular 

loop and C-terminus. Cell Signal 20:1740-1749. 

Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C 

(1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase 

inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8:47-52. 



CHAPTER 6 

 

130 
 

Borowsky B, Walker MW, Bard J, Weinshank RL, Laz TM, Vaysse P, Branchek TA, Gerald C 

(1998) Molecular biology and pharmacology of multiple NPY Y5 receptor species 

homologs. Regul Pept 75-76:45-53. 

Bruun A, Ehinger B (1993) NPY-induced neurotransmitter release from the rabbit and chicken 

retina. Acta Ophthalmol (Copenh) 71:590-596. 

Bruun A, Tornqvist K, Ehinger B (1986) Neuropeptide Y (NPY) immunoreactive neurons in the 

retina of different species. Histochemistry 86:135-140. 

Bruun A, Ehinger B, Ekman R (1991) Characterization of neuropeptide Y-like immunoreactivity 

in vertebrate retina. Exp Eye Res 53:539-543. 

Bruun A, Edvinsson L, Ehinger B (1994) Neuropeptide Y inhibits adenylyl cyclase activity in 

rabbit retina. Acta Ophthalmol (Copenh) 72:326-331. 

Bruun A, Ehinger B, Sundler F, Tornqvist K, Uddman R (1984) Neuropeptide Y immunoreactive 

neurons in the guinea-pig uvea and retina. Invest Ophthalmol Vis Sci 25:1113-1123. 

Cannizzaro C, Tel BC, Rose S, Zeng BY, Jenner P (2003) Increased neuropeptide Y mRNA 

expression in striatum in Parkinson's disease. Brain Res Mol Brain Res 110:169-176. 

Canto Soler MV, Gallo JE, Dodds RA, Hokfelt T, Villar MJ, Suburo AM (2002) Y1 receptor of 

neuropeptide Y as a glial marker in proliferative vitreoretinopathy and diseased human 

retina. Glia 39:320-324. 

Carter JE (2007) Anterior ischemic optic neuropathy and stroke with use of PDE-5 inhibitors 

for erectile dysfunction: cause or coincidence? J Neurol Sci 262:89-97. 

Cerda-Reverter JM, Larhammar D (2000) Neuropeptide Y family of peptides: structure, 

anatomical expression, function, and molecular evolution. Biochem Cell Biol 78:371-

392. 

Chambers AP, Woods SC (2012) The role of neuropeptide Y in energy homeostasis. Handb Exp 

Pharmacol:23-45. 

Chen CK (2005) The vertebrate phototransduction cascade: amplification and termination 

mechanisms. Rev Physiol Biochem Pharmacol 154:101-121. 

Chen ST, Shen CL, Wang JP, Chou LS (1999) A comparative study of neuropeptide Y-

immunoreactivity in the retina of dolphin and several other mammalian species. 

Zoological Studies 38:416-422. 

Cheung W, Guo L, Cordeiro MF (2008) Neuroprotection in glaucoma: drug-based approaches. 

Optom Vis Sci 85:406-416. 



References 

 

131 
 

Chidlow G, Wood JP, Casson RJ (2007) Pharmacological neuroprotection for glaucoma. Drugs 

67:725-759. 

Chidlow G, Schmidt KG, Wood JP, Melena J, Osborne NN (2002) Alpha-lipoic acid protects the 

retina against ischemia-reperfusion. Neuropharmacology 43:1015-1025. 

Colmers WF (1990) Modulation of synaptic transmission in hippocampus by neuropeptide Y: 

presynaptic actions. Ann N Y Acad Sci 611:206-218. 

Cone RA (1964) The Rat Electroretinogram. I. Contrasting Effects of Adaptation on the 

Amplitude and Latency of the B-Wave. J Gen Physiol 47:1089-1105. 

Conlon JM, Larhammar D (2005) The evolution of neuroendocrine peptides. Gen Comp 

Endocrinol 142:53-59. 

Cordell WH, Maturi RK, Costigan TM, Marmor MF, Weleber RG, Coupland SG, Danis RP, 

McGettigan JW, Jr., Antoszyk AN, Klise S, Sides GD (2009) Retinal effects of 6 months 

of daily use of tadalafil or sildenafil. Arch Ophthalmol 127:367-373. 

Croce N, Dinallo V, Ricci V, Federici G, Caltagirone C, Bernardini S, Angelucci F (2011) 

Neuroprotective effect of neuropeptide Y against beta-amyloid 25-35 toxicity in SH-

SY5Y neuroblastoma cells is associated with increased neurotrophin production. 

Neurodegener Dis 8:300-309. 

Croce N, Ciotti MT, Gelfo F, Cortelli S, Federici G, Caltagirone C, Bernardini S, Angelucci F (2012) 

Neuropeptide Y protects rat cortical neurons against beta-amyloid toxicity and re-

establishes synthesis and release of nerve growth factor. ACS Chem Neurosci 3:312-

318. 

D'Angelo I, Brecha NC (2004) Y2 receptor expression and inhibition of voltage-dependent Ca2+ 

influx into rod bipolar cell terminals. Neuroscience 125:1039-1049. 

D'Angelo I, Oh SJ, Chun MH, Brecha NC (2002) Localization of neuropeptide Y1 receptor 

immunoreactivity in the rat retina and the synaptic connectivity of Y1 immunoreactive 

cells. J Comp Neurol 454:373-382. 

Dacey DM (1999) Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 

18:737-763. 

Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted 

feeding uncouples circadian oscillators in peripheral tissues from the central 

pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950-2961. 



CHAPTER 6 

 

132 
 

Darby K, Eyre HJ, Lapsys N, Copeland NG, Gilbert DJ, Couzens M, Antonova O, Sutherland GR, 

Jenkins NA, Herzog H (1997) Assignment of the Y4 receptor gene (PPYR1) to human 

chromosome 10q11.2 and mouse chromosome 14. Genomics 46:513-515. 

Decressac M, Barker RA (2012) Neuropeptide Y and its role in CNS disease and repair. Exp 

Neurol 238:265-272. 

Decressac M, Pain S, Chabeauti PY, Frangeul L, Thiriet N, Herzog H, Vergote J, Chalon S, Jaber 

M, Gaillard A (2012) Neuroprotection by neuropeptide Y in cell and animal models of 

Parkinson's disease. Neurobiol Aging 33:2125-2137. 

DeVries SH, Baylor DA (1995) An alternative pathway for signal flow from rod photoreceptors 

to ganglion cells in mammalian retina. Proc Natl Acad Sci U S A 92:10658-10662. 

Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Vardi N (2008) Probing neurochemical structure 

and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 

510:484-496. 

Dimitrijevic M, Stanojevic S (2013) The intriguing mission of neuropeptide Y in the immune 

system. Amino Acids 45:41-53. 

Domin H, Kajta M, Smialowska M (2006) Neuroprotective effects of MTEP, a selective mGluR5 

antagonists and neuropeptide Y on the kainate-induced toxicity in primary neuronal 

cultures. Pharmacol Rep 58:846-858. 

Dores RM, Rubin DA, Quinn TW (1996) Is it possible to construct phylogenetic trees using 

polypeptide hormone sequences? Gen Comp Endocrinol 103:1-12. 

Dumont Y, Fournier A, Quirion R (1998) Expression and characterization of the neuropeptide 

Y Y5 receptor subtype in the rat brain. J Neurosci 18:5565-5574. 

Dun Y, Thangaraju M, Prasad P, Ganapathy V, Smith SB (2007) Prevention of excitotoxicity in 

primary retinal ganglion cells by (+)-pentazocine, a sigma receptor-1 specific ligand. 

Invest Ophthalmol Vis Sci 48:4785-4794. 

El Bahh B, Cao JQ, Beck-Sickinger AG, Colmers WF (2002) Blockade of neuropeptide Y(2) 

receptors and suppression of NPY's anti-epileptic actions in the rat hippocampal slice 

by BIIE0246. Br J Pharmacol 136:502-509. 

Endoh T, Nobushima H, Tazaki M (2012) Neuropeptide Y modulates calcium channels in 

hamster submandibular ganglion neurons. Neurosci Res 73:275-281. 

Eva C, Keinanen K, Monyer H, Seeburg P, Sprengel R (1990) Molecular cloning of a novel G 

protein-coupled receptor that may belong to the neuropeptide receptor family. FEBS 

Lett 271:81-84. 



References 

 

133 
 

Ewald DA, Sternweis PC, Miller RJ (1988) Guanine nucleotide-binding protein Go-induced 

coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc Natl 

Acad Sci U S A 85:3633-3637. 

Ferreira R, Xapelli S, Santos T, Silva AP, Cristovao A, Cortes L, Malva JO (2010) Neuropeptide Y 

modulation of interleukin-1{beta} (IL-1{beta})-induced nitric oxide production in 

microglia. J Biol Chem 285:41921-41934. 

Ferreira R, Santos T, Viegas M, Cortes L, Bernardino L, Vieira OV, Malva JO (2011) 

Neuropeptide Y inhibits interleukin-1beta-induced phagocytosis by microglial cells. J 

Neuroinflammation 8:169. 

Ferriero DM, Sagar SM (1989) Development of neuropeptide Y-immunoreactive neurons in 

the rat retina. Brain Res Dev Brain Res 48:19-26. 

Foresta C, Caretta N, Zuccarello D, Poletti A, Biagioli A, Caretti L, Galan A (2008) Expression of 

the PDE5 enzyme on human retinal tissue: new aspects of PDE5 inhibitors ocular side 

effects. Eye (Lond) 22:144-149. 

Fredriksson R, Larson ET, Yan YL, Postlethwait JH, Larhammar D (2004) Novel neuropeptide Y 

Y2-like receptor subtype in zebrafish and frogs supports early vertebrate chromosome 

duplications. J Mol Evol 58:106-114. 

Funkelstein L, Toneff T, Hwang SR, Reinheckel T, Peters C, Hook V (2008) Cathepsin L 

participates in the production of neuropeptide Y in secretory vesicles, demonstrated 

by protease gene knockout and expression. J Neurochem 106:384-391. 

Funkelstein L, Lu WD, Koch B, Mosier C, Toneff T, Taupenot L, O'Connor DT, Reinheckel T, 

Peters C, Hook V (2012) Human cathepsin V protease participates in production of 

enkephalin and NPY neuropeptide neurotransmitters. J Biol Chem 287:15232-15241. 

Gabrieli C, Regine F, Vingolo EM, Rispoli E, Isidori A (2003) Acute electroretinographic changes 

during sildenafil (Viagra) treatment for erectile dysfunction. Doc Ophthalmol 107:111-

114. 

Gabrieli CB, Regine F, Vingolo EM, Rispoli E, Fabbri A, Isidori A (2001) Subjective visual halos 

after sildenafil (Viagra) administration: Electroretinographic evaluation. 

Ophthalmology 108:877-881. 

Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ 

via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493-501. 

Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE, Vaysse P, Durkin 

MM, Laz TM, Linemeyer DL, Schaffhauser AO, Whitebread S, Hofbauer KG, Taber RI, 



CHAPTER 6 

 

134 
 

Branchek TA, Weinshank RL (1996) A receptor subtype involved in neuropeptide-Y-

induced food intake. Nature 382:168-171. 

Geringer CC, Imami NR (2008) Medical management of glaucoma. Int Ophthalmol Clin 48:115-

141. 

Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction 

to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689-702. 

Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. 

Science 319:1108-1111. 

Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in 

circuits of the retina. Neuron 65:150-164. 

Goodyear E, Levin LA (2008) Model systems for experimental studies: retinal ganglion cells in 

culture. Prog Brain Res 173:279-284. 

Gregor P, Feng Y, DeCarr LB, Cornfield LJ, McCaleb ML (1996) Molecular characterization of a 

second mouse pancreatic polypeptide receptor and its inactivated human homologue. 

J Biol Chem 271:27776-27781. 

Grundemar L, Wahlestedt C, Reis DJ (1991) Neuropeptide Y acts at an atypical receptor to 

evoke cardiovascular depression and to inhibit glutamate responsiveness in the 

brainstem. J Pharmacol Exp Ther 258:633-638. 

Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly 

improved fluorescence properties. J Biol Chem 260:3440-3450. 

Haack M, Beck-Sickinger AG (2009) Towards understanding the free and receptor bound 

conformation of neuropeptide Y by fluorescence resonance energy transfer studies. 

Chem Biol Drug Des 73:573-583. 

Hack I, Peichl L, Brandstatter JH (1999) An alternative pathway for rod signals in the rodent 

retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate 

receptors. Proc Natl Acad Sci U S A 96:14130-14135. 

Hansel DE, Eipper BA, Ronnett GV (2001) Neuropeptide Y functions as a neuroproliferative 

factor. Nature 410:940-944. 

Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and 

applications in pharmacology. Life Sci 74:489-508. 

Hartwick AT, Hamilton CM, Baldridge WH (2008) Glutamatergic calcium dynamics and 

deregulation of rat retinal ganglion cells. J Physiol 586:3425-3446. 



References 

 

135 
 

Hartwick AT, Lalonde MR, Barnes S, Baldridge WH (2004) Adenosine A1-receptor modulation 

of glutamate-induced calcium influx in rat retinal ganglion cells. Invest Ophthalmol Vis 

Sci 45:3740-3748. 

Hastings JA, McClure-Sharp JM, Morris MJ (2001) NPY Y1 receptors exert opposite effects on 

corticotropin releasing factor and noradrenaline overflow from the rat hypothalamus 

in vitro. Brain Res 890:32-37. 

Hastings JA, Morris MJ, Lambert G, Lambert E, Esler M (2004) NPY and NPY Y1 receptor effects 

on noradrenaline overflow from the rat brain in vitro. Regul Pept 120:107-112. 

Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal 

ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 

295:1065-1070. 

Haverkamp S, Wassle H (2000) Immunocytochemical analysis of the mouse retina. J Comp 

Neurol 424:1-23. 

Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213-224. 

Hernandez M, Urcola JH, Vecino E (2008) Retinal ganglion cell neuroprotection in a rat model 

of glaucoma following brimonidine, latanoprost or combined treatments. Exp Eye Res 

86:798-806. 

Herzog H, Baumgartner M, Vivero C, Selbie LA, Auer B, Shine J (1993) Genomic organization, 

localization, and allelic differences in the gene for the human neuropeptide Y Y1 

receptor. J Biol Chem 268:6703-6707. 

Higgs MH, Lukasiewicz PD (1999) Glutamate uptake limits synaptic excitation of retinal 

ganglion cells. J Neurosci 19:3691-3700. 

Hirabayashi A, Nishiwaki K, Shimada Y, Ishikawa N (1996) Role of neuropeptide Y and its 

receptor subtypes in neurogenic pulmonary edema. Eur J Pharmacol 296:297-305. 

Hirsch D, Zukowska Z (2012) NPY and stress 30 years later: the peripheral view. Cell Mol 

Neurobiol 32:645-659. 

Hiscock J, Straznicky C (1989) Neuropeptide Y-like immunoreactive amacrine cells in the retina 

of Bufo marinus. Brain Res 494:55-64. 

Hiscock J, Straznicky C (1990) Neuropeptide Y- and substance P-like immunoreactive amacrine 

cells in the retina of the developing Xenopus laevis. Brain Res Dev Brain Res 54:105-

113. 

Hook VY, Schiller MR, Azaryan AV (1996) The processing proteases prohormone thiol protease, 

PC1/3 and PC2, and 70-kDa aspartic proteinase show preferences among 



CHAPTER 6 

 

136 
 

proenkephalin, proneuropeptide Y, and proopiomelanocortin substrates. Arch 

Biochem Biophys 328:107-114. 

Hoon M, Okawa H, Della Santina L, Wong RO (2014) Functional architecture of the retina: 

Development and disease. Prog Retin Eye Res. 

Hu Y, Cho S, Goldberg JL (2010) Neurotrophic effect of a novel TrkB agonist on retinal ganglion 

cells. Invest Ophthalmol Vis Sci 51:1747-1754. 

Hu Y, Bloomquist BT, Cornfield LJ, DeCarr LB, Flores-Riveros JR, Friedman L, Jiang P, Lewis-

Higgins L, Sadlowski Y, Schaefer J, Velazquez N, McCaleb ML (1996) Identification of a 

novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol 

Chem 271:26315-26319. 

Hutsler JJ, Chalupa LM (1994) Neuropeptide Y immunoreactivity identifies a regularly arrayed 

group of amacrine cells within the cat retina. J Comp Neurol 346:481-489. 

Hutsler JJ, Chalupa LM (1995) Development of neuropeptide Y immunoreactive amacrine and 

ganglion cells in the pre- and postnatal cat retina. J Comp Neurol 361:152-164. 

Hutsler JJ, White CA, Chalupa LM (1993) Neuropeptide Y immunoreactivity identifies a group 

of gamma-type retinal ganglion cells in the cat. J Comp Neurol 336:468-480. 

Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y (2010) Effects of acutely elevated hydrostatic 

pressure in a rat ex vivo retinal preparation. Invest Ophthalmol Vis Sci 51:6414-6423. 

Jagle H, Jagle C, Serey L, Sharpe LT (2005) Dose-dependency and time-course of 

electrophysiologic short-term effects of VIAGRA: a case study. Doc Ophthalmol 

110:247-254. 

Jagle H, Jagle C, Serey L, Yu A, Rilk A, Sadowski B, Besch D, Zrenner E, Sharpe LT (2004) Visual 

short-term effects of Viagra: double-blind study in healthy young subjects. Am J 

Ophthalmol 137:842-849. 

Jen PY, Li WW, Yew DT (1994) Immunohistochemical localization of neuropeptide Y and 

somatostatin in human fetal retina. Neuroscience 60:727-735. 

Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor 

supports the survival of cultured rat retinal ganglion cells. J Neurosci 6:3031-3038. 

Jotwani G, Itoh K, Wadhwa S (1994) Immunohistochemical localization of tyrosine 

hydroxylase, substance P, neuropeptide-Y and leucine-enkephalin in developing 

human retinal amacrine cells. Brain Res Dev Brain Res 77:285-289. 



References 

 

137 
 

Kang WS, Lim MY, Lee EJ, Kim IB, Oh SJ, Brecha NC, Park CB, Chun MH (2001) Light- and 

electron-microscopic analysis of neuropeptide Y-immunoreactive amacrine cells in the 

guinea pig retina. Cell Tissue Res 306:363-371. 

Kanjanawart S, Gaysonsiri D, Tangsucharit P, Vannaprasaht S, Phunikhom K, Kaewkamson T, 

Wattanachai N, Tassaneeyakul W (2011) Comparative bioavailability of two sildenafil 

tablet formulations after single-dose administration in healthy Thai male volunteers. 

Int J Clin Pharmacol Ther 49:525-530. 

Kapin MA, Doshi R, Scatton B, DeSantis LM, Chandler ML (1999) Neuroprotective effects of 

eliprodil in retinal excitotoxicity and ischemia. Invest Ophthalmol Vis Sci 40:1177-1182. 

Keffel S, Schmidt M, Bischoff A, Michel MC (1999) Neuropeptide-Y stimulation of extracellular 

signal-regulated kinases in human erythroleukemia cells. J Pharmacol Exp Ther 

291:1172-1178. 

Kerkerian-Le Goff L, Forni C, Samuel D, Bloc A, Dusticier N, Nieoullon A (1992) 

Intracerebroventricular administration of neuropeptide Y affects parameters of 

dopamine, glutamate and GABA activities in the rat striatum. Brain Res Bull 28:187-

193. 

Khor EC, Baldock P (2012) The NPY system and its neural and neuroendocrine regulation of 

bone. Curr Osteoporos Rep 10:160-168. 

Kikuchi M, Tenneti L, Lipton SA (2000) Role of p38 mitogen-activated protein kinase in 

axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 20:5037-5044. 

Kolb H (1995) Neurotransmitters in the Retina. In: Webvision: The Organization of the Retina 

and Visual System (Kolb H, Fernandez E, Nelson R, eds). Salt Lake City (UT). 

Kolomiets B, Dubus E, Simonutti M, Rosolen S, Sahel JA, Picaud S (2010) Late histological and 

functional changes in the P23H rat retina after photoreceptor loss. Neurobiol Dis 

38:47-58. 

Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11-34. 

Kovac S, Megalogeni M, Walker M (2011) In vitro effects of neuropeptide Y in rat neocortical 

and hippocampal tissue. Neurosci Lett 492:43-46. 

Lagreze WA, Knorle R, Bach M, Feuerstein TJ (1998) Memantine is neuroprotective in a rat 

model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci 39:1063-1066. 

Lamb TD (2013) Evolution of phototransduction, vertebrate photoreceptors and retina. Prog 

Retin Eye Res 36:52-119. 



CHAPTER 6 

 

138 
 

Larhammar D, Salaneck E (2004) Molecular evolution of NPY receptor subtypes. 

Neuropeptides 38:141-151. 

Larhammar D, Bergqvist CA (2013) Ancient Grandeur of the Vertebrate Neuropeptide Y 

System Shown by the Coelacanth Latimeria chalumnae. Front Neurosci 7:27. 

Larhammar D, Sundstrom G, Dreborg S, Daza DO, Larsson TA (2009) Major genomic events 

and their consequences for vertebrate evolution and endocrinology. Ann N Y Acad Sci 

1163:201-208. 

Larsson TA, Olsson F, Sundstrom G, Lundin LG, Brenner S, Venkatesh B, Larhammar D (2008) 

Early vertebrate chromosome duplications and the evolution of the neuropeptide Y 

receptor gene regions. BMC Evol Biol 8:184. 

Laties A, Zrenner E (2002) Viagra (sildenafil citrate) and ophthalmology. Prog Retin Eye Res 

21:485-506. 

Le Rouëdec D, Rayner K, Rex M, Wigmore PM, Scotting PJ (2002) The transcription factor cSox2 

and Neuropeptide Y define a novel subgroup of amacrine cells in the retina. J Anat 

200:51-56. 

Lee NJ, Herzog H (2009) NPY regulation of bone remodelling. Neuropeptides 43:457-463. 

Lerch M, Mayrhofer M, Zerbe O (2004) Structural similarities of micelle-bound peptide YY 

(PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. 

J Mol Biol 339:1153-1168. 

Lerch M, Gafner V, Bader R, Christen B, Folkers G, Zerbe O (2002) Bovine pancreatic 

polypeptide (bPP) undergoes significant changes in conformation and dynamics upon 

binding to DPC micelles. J Mol Biol 322:1117-1133. 

Lewis RJ, Johnson RD, Blank CL (2006) Quantitative determination of sildenafil (Viagra) and its 

metabolite (UK-103,320) in fluid and tissue specimens obtained from six aviation 

fatalities. J Anal Toxicol 30:14-20. 

Linnertz R, Wurm A, Pannicke T, Krugel K, Hollborn M, Hartig W, Iandiev I, Wiedemann P, 

Reichenbach A, Bringmann A (2011) Activation of voltage-gated Na(+) and Ca(2)(+) 

channels is required for glutamate release from retinal glial cells implicated in cell 

volume regulation. Neuroscience 188:23-34. 

Lowe G, Costabile R (2011) Phosphodiesterase type 5 inhibitor abuse: a critical review. Curr 

Drug Abuse Rev 4:87-94. 



References 

 

139 
 

Lu C, Everhart L, Tilan J, Kuo L, Sun CC, Munivenkatappa RB, Jonsson-Rylander AC, Sun J, Kuan-

Celarier A, Li L, Abe K, Zukowska Z, Toretsky JA, Kitlinska J (2010) Neuropeptide Y and 

its Y2 receptor: potential targets in neuroblastoma therapy. Oncogene 29:5630-5642. 

Luke M, Szurman P, Schneider T, Luke C (2007) The effects of the phosphodiesterase type V 

inhibitor sildenafil on human and bovine retinal function in vitro. Graefes Arch Clin Exp 

Ophthalmol 245:1211-1215. 

Luke M, Luke C, Hescheler J, Schneider T, Sickel W (2005) Effects of phosphodiesterase type 5 

inhibitor sildenafil on retinal function in isolated superfused retina. J Ocul Pharmacol 

Ther 21:305-314. 

Lundell I, Berglund MM, Starback P, Salaneck E, Gehlert DR, Larhammar D (1997) Cloning and 

characterization of a novel neuropeptide Y receptor subtype in the zebrafish. DNA Cell 

Biol 16:1357-1363. 

Lundell I, Blomqvist AG, Berglund MM, Schober DA, Johnson D, Statnick MA, Gadski RA, 

Gehlert DR, Larhammar D (1995) Cloning of a human receptor of the NPY receptor 

family with high affinity for pancreatic polypeptide and peptide YY. J Biol Chem 

270:29123-29128. 

Luu JK, Chappelow AV, McCulley TJ, Marmor MF (2001) Acute effects of sildenafil on the 

electroretinogram and multifocal electroretinogram. Am J Ophthalmol 132:388-394. 

Lynch DR, Walker MW, Miller RJ, Snyder SH (1989) Neuropeptide Y receptor binding sites in 

rat brain: differential autoradiographic localizations with 125I-peptide YY and 125I-

neuropeptide Y imply receptor heterogeneity. J Neurosci 9:2607-2619. 

Main CM, Wilhelm M, Gabriel R (1993) Colocalization of GABA-immunoreactivity in 

neuropeptide- and monoamine-containing amacrine cells in the retina of Bufo 

marinus. Arch Histol Cytol 56:161-166. 

Malva JO, Xapelli S, Baptista S, Valero J, Agasse F, Ferreira R, Silva AP (2012) Multifaces of 

neuropeptide Y in the brain--neuroprotection, neurogenesis and neuroinflammation. 

Neuropeptides 46:299-308. 

Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11:431-436. 

Mathieu M, Tagliafierro G, Bruzzone F, Vallarino M (2002) Neuropeptide tyrosine-like 

immunoreactive system in the brain, olfactory organ and retina of the zebrafish, Danio 

rerio, during development. Brain Res Dev Brain Res 139:255-265. 



CHAPTER 6 

 

140 
 

Matsumoto M, Nomura T, Momose K, Ikeda Y, Kondou Y, Akiho H, Togami J, Kimura Y, Okada 

M, Yamaguchi T (1996) Inactivation of a novel neuropeptide Y/peptide YY receptor 

gene in primate species. J Biol Chem 271:27217-27220. 

Medeiros MdS, Turner AJ (1996) Metabolism and functions of neuropeptide Y. Neurochem 

Res 21:1125-1132. 

Meister M, Pine J, Baylor DA (1994) Multi-neuronal signals from the retina: acquisition and 

analysis. J Neurosci Methods 51:95-106. 

Michel MC, Rascher W (1995) Neuropeptide Y: a possible role in hypertension? J Hypertens 

13:385-395. 

Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz 

T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for 

the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide 

receptors. Pharmacol Rev 50:143-150. 

Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2004) Neuropeptide Y-

evoked proliferation of retinal glial (Muller) cells. Graefes Arch Clin Exp Ophthalmol 

242:944-950. 

Millar BC, Weis T, Piper HM, Weber M, Borchard U, McDermott BJ, Balasubramaniam A (1991) 

Positive and negative contractile effects of neuropeptide Y on ventricular 

cardiomyocytes. Am J Physiol 261:H1727-1733. 

Minth CD, Bloom SR, Polak JM, Dixon JE (1984) Cloning, characterization, and DNA sequence 

of a human cDNA encoding neuropeptide tyrosine. Proc Natl Acad Sci U S A 81:4577-

4581. 

Minthon L, Edvinsson L, Ekman R, Gustafson L (1990) Neuropeptide levels in Alzheimer's 

disease and dementia with frontotemporal degeneration. J Neural Transm Suppl 

30:57-67. 

Montani D, Gunther S, Dorfmuller P, Perros F, Girerd B, Garcia G, Jais X, Savale L, Artaud-

Macari E, Price LC, Humbert M, Simonneau G, Sitbon O (2013) Pulmonary arterial 

hypertension. Orphanet J Rare Dis 8:97. 

Montastruc JL, Bagheri H, Gardette V, Durrieu G, Olivier P (2006) Actualites 2006 de 

Pharmacovigilance. Service de Pharmacologie Clinique, Centre Midi-Pyrénées de 

PharmacoVigilance, de Pharmacoépidémiologie et d'Informations sur le Médicament, 

Faculty of Medicine of Toulouse. 



References 

 

141 
 

Moore RY, Card JP (1990) Neuropeptide Y in the circadian timing system. Ann N Y Acad Sci 

611:247-257. 

Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain Res Rev 51:1-60. 

Morris JL (1999) Cotransmission from sympathetic vasoconstrictor neurons to small 

cutaneous arteries in vivo. Am J Physiol 277:H58-64. 

Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC (1997) A rat model 

of chronic pressure-induced optic nerve damage. Exp Eye Res 64:85-96. 

Motulsky HJ, Michel MC (1988) Neuropeptide Y mobilizes Ca2+ and inhibits adenylate cyclase 

in human erythroleukemia cells. Am J Physiol 255:E880-885. 

Muske LE, Dockray GJ, Chohan KS, Stell WK (1987) Segregation of FMRF amide-

immunoreactive efferent fibers from NPY-immunoreactive amacrine cells in goldfish 

retina. Cell Tissue Res 247:299-307. 

Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Bejar 

JJ, Vidal-Sanz M, Agudo-Barriuso M (2012) Whole number, distribution and co-

expression of brn3 transcription factors in retinal ganglion cells of adult albino and 

pigmented rats. PLoS One 7:e49830. 

Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, 

Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion 

cells: qualitative and quantitative time course studies in naive and optic nerve-injured 

retinas. Invest Ophthalmol Vis Sci 50:3860-3868. 

Nadler JV, Tu B, Timofeeva O, Jiao Y, Herzog H (2007) Neuropeptide Y in the recurrent mossy 

fiber pathway. Peptides 28:357-364. 

Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) 

Molecular characterization of a novel retinal metabotropic glutamate receptor 

mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol 

Chem 268:11868-11873. 

Nash MS, Wood JP, Melena J, Osborne NN (2000) Flupirtine ameliorates ischaemic-like death 

of rat retinal ganglion cells by preventing calcium influx. Brain Res 856:236-239. 

Nie M, Selbie LA (1998) Neuropeptide Y Y1 and Y2 receptor-mediated stimulation of mitogen-

activated protein kinase activity. Regul Pept 75-76:207-213. 

Oh SJ, D'Angelo I, Lee EJ, Chun MH, Brecha NC (2002) Distribution and synaptic connectivity 

of neuropeptide Y-immunoreactive amacrine cells in the rat retina. J Comp Neurol 

446:219-234. 



CHAPTER 6 

 

142 
 

Osborne NN (2009) Recent clinical findings with memantine should not mean that the idea of 

neuroprotection in glaucoma is abandoned. Acta Ophthalmol 87:450-454. 

Osborne NN, Patel S, Terenghi G, Allen JM, Polak JM, Bloom SR (1985) Neuropeptide Y (NPY)-

like immunoreactive amacrine cells in retinas of frog and goldfish. Cell Tissue Res 

241:651-656. 

Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: 

mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91-

147. 

Pang IH, Wexler EM, Nawy S, DeSantis L, Kapin MA (1999) Protection by eliprodil against 

excitotoxicity in cultured rat retinal ganglion cells. Invest Ophthalmol Vis Sci 40:1170-

1176. 

Paredes MF, Greenwood J, Baraban SC (2003) Neuropeptide Y modulates a G protein-coupled 

inwardly rectifying potassium current in the mouse hippocampus. Neurosci Lett 340:9-

12. 

Parker RM, Herzog H (1999) Regional distribution of Y-receptor subtype mRNAs in rat brain. 

Eur J Neurosci 11:1431-1448. 

Peng PH, Chao HM, Juan SH, Chen CF, Liu JH, Ko ML (2011) Pharmacological preconditioning 

by low dose cobalt protoporphyrin induces heme oxygenase-1 overexpression and 

alleviates retinal ischemia-reperfusion injury in rats. Curr Eye Res 36:238-246. 

Perney TM, Miller RJ (1989) Two different G-proteins mediate neuropeptide Y and bradykinin-

stimulated phospholipid breakdown in cultured rat sensory neurons. J Biol Chem 

264:7317-7327. 

Pirone A, Lenzi C, Marroni P, Betti L, Mascia G, Giannaccini G, Lucacchini A, Fabiani O (2008) 

Neuropeptide Y in the brain and retina of the adult teleost gilthead seabream (Sparus 

aurata L.). Anat Histol Embryol 37:231-240. 

Prod'homme T, Weber MS, Steinman L, Zamvil SS (2006) A neuropeptide in immune-mediated 

inflammation, Y? Trends Immunol 27:164-167. 

Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 

2020. Br J Ophthalmol 90:262-267. 

Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human 

glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635-

649. 



References 

 

143 
 

Rose JB, Crews L, Rockenstein E, Adame A, Mante M, Hersh LB, Gage FH, Spencer B, Potkar R, 

Marr RA, Masliah E (2009) Neuropeptide Y fragments derived from neprilysin 

processing are neuroprotective in a transgenic model of Alzheimer's disease. J 

Neurosci 29:1115-1125. 

Rose PM, Fernandes P, Lynch JS, Frazier ST, Fisher SM, Kodukula K, Kienzle B, Seethala R (1995) 

Cloning and functional expression of a cDNA encoding a human type 2 neuropeptide Y 

receptor. J Biol Chem 270:22661-22664. 

Rosmaninho-Salgado J, Araujo IM, Alvaro AR, Duarte EP, Cavadas C (2007) Intracellular 

signaling mechanisms mediating catecholamine release upon activation of NPY Y1 

receptors in mouse chromaffin cells. J Neurochem 103:896-903. 

Rosmaninho-Salgado J, Cortez V, Estrada M, Santana MM, Goncalves A, Marques AP, Cavadas 

C (2012) Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and 

lipid accumulation in murine adipocytes. Neuropeptides 46:359-366. 

Rosmaninho-Salgado J, Araujo IM, Alvaro AR, Mendes AF, Ferreira L, Grouzmann E, Mota A, 

Duarte EP, Cavadas C (2009) Regulation of catecholamine release and tyrosine 

hydroxylase in human adrenal chromaffin cells by interleukin-1beta: role of 

neuropeptide Y and nitric oxide. J Neurochem 109:911-922. 

Rosolen SG, Rigaudiere F, Le Gargasson JF, Brigell MG (2005) Recommendations for a 

toxicological screening ERG procedure in laboratory animals. Doc Ophthalmol 110:57-

66. 

Rosolen SG, Kolomiets B, Varela O, Picaud S (2008) Retinal electrophysiology for toxicology 

studies: applications and limits of ERG in animals and ex vivo recordings. Exp Toxicol 

Pathol 60:17-32. 

Ruan GX, Zhang DQ, Zhou T, Yamazaki S, McMahon DG (2006) Circadian organization of the 

mammalian retina. Proc Natl Acad Sci U S A 103:9703-9708. 

Salonia A, Rigatti P, Montorsi F (2003) Sildenafil in erectile dysfunction: a critical review. Curr 

Med Res Opin 19:241-262. 

Santos-Carvalho A, Aveleira CA, Elvas F, Ambrosio AF, Cavadas C (2013a) Neuropeptide Y 

receptors Y1 and Y2 are present in neurons and glial cells in rat retinal cells in culture. 

Invest Ophthalmol Vis Sci 54:429-443. 

Santos-Carvalho A, Elvas F, Alvaro AR, Ambrosio AF, Cavadas C (2013b) Neuropeptide Y 

receptors activation protects rat retinal neural cells against necrotic and apoptotic cell 

death induced by glutamate. Cell Death Dis 4:e636. 



CHAPTER 6 

 

144 
 

Santos-Carvalho A, Alvaro AR, Martins J, Ambrosio AF, Cavadas C (2014) Emerging novel roles 

of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog 

Neurobiol 112:70-79. 

Sappington RM, Chan M, Calkins DJ (2006) Interleukin-6 protects retinal ganglion cells from 

pressure-induced death. Invest Ophthalmol Vis Sci 47:2932-2942. 

Sappington RM, Carlson BJ, Crish SD, Calkins DJ (2010) The microbead occlusion model: a 

paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci 

51:207-216. 

Schuettauf F, Naskar R, Vorwerk CK, Zurakowski D, Dreyer EB (2000) Ganglion cell loss after 

optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest 

Ophthalmol Vis Sci 41:4313-4316. 

Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular 

hypertension following episcleral venous occlusion in rats. Exp Eye Res 61:379-382. 

Shaw JL, Gackenheimer SL, Gehlert DR (2003) Functional autoradiography of neuropeptide Y 

Y1 and Y2 receptor subtypes in rat brain using agonist stimulated [35S]GTPgammaS 

binding. J Chem Neuroanat 26:179-193. 

Shen Y, Liu XL, Yang XL (2006) N-methyl-D-aspartate receptors in the retina. Mol Neurobiol 

34:163-179. 

Shimada K, Ohno Y, Okamatsu-Ogura Y, Suzuki M, Kamikawa A, Terao A, Kimura K (2012) 

Neuropeptide Y activates phosphorylation of ERK and STAT3 in stromal vascular cells 

from brown adipose tissue, but fails to affect thermogenic function of brown 

adipocytes. Peptides 34:336-342. 

Silva AP, Cavadas C, Grouzmann E (2002) Neuropeptide Y and its receptors as potential 

therapeutic drug targets. Clin Chim Acta 326:3-25. 

Silva AP, Carvalho AP, Carvalho CM, Malva JO (2001) Modulation of intracellular calcium 

changes and glutamate release by neuropeptide Y1 and Y2 receptors in the rat 

hippocampus: differential effects in CA1, CA3 and dentate gyrus. J Neurochem 79:286-

296. 

Silva AP, Xapelli S, Grouzmann E, Cavadas C (2005) The putative neuroprotective role of 

neuropeptide Y in the central nervous system. Curr Drug Targets CNS Neurol Disord 

4:331-347. 



References 

 

145 
 

Silva AP, Pinheiro PS, Carvalho AP, Carvalho CM, Jakobsen B, Zimmer J, Malva JO (2003) 

Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in 

organotypic hippocampal slice cultures. FASEB J 17:1118-1120. 

Simon A, Barabas P, Kardos J (2006) Structural determinants of phosphodiesterase 6 response 

on binding catalytic site inhibitors. Neurochem Int 49:215-222. 

Sinclair JR, Nirenberg S (2001) Characterization of neuropeptide Y-expressing cells in the 

mouse retina using immunohistochemical and transgenic techniques. J Comp Neurol 

432:296-306. 

Sinclair JR, Jacobs AL, Nirenberg S (2004) Selective ablation of a class of amacrine cells alters 

spatial processing in the retina. J Neurosci 24:1459-1467. 

Siu TL, Morley JW, Coroneo MT (2008) Toxicology of the retina: advances in understanding the 

defence mechanisms and pathogenesis of drug- and light-induced retinopathy. Clin 

Experiment Ophthalmol 36:176-185. 

Smialowska M, Wieronska JM, Szewczyk B (2003) Neuroprotective effect of NPY on kainate 

neurotoxicity in the hippocampus. Pol J Pharmacol 55:979-986. 

Smialowska M, Domin H, Zieba B, Kozniewska E, Michalik R, Piotrowski P, Kajta M (2009) 

Neuroprotective effects of neuropeptide Y-Y2 and Y5 receptor agonists in vitro and in 

vivo. Neuropeptides 43:235-249. 

Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior 

and metabolism. Trends Neurosci 36:504-512. 

Sosulina L, Schwesig G, Seifert G, Pape HC (2008) Neuropeptide Y activates a G-protein-

coupled inwardly rectifying potassium current and dampens excitability in the lateral 

amygdala. Mol Cell Neurosci 39:491-498. 

Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M (1998) A novel signaling pathway from 

rod photoreceptors to ganglion cells in mammalian retina. Neuron 21:481-493. 

Sperk G, Hamilton T, Colmers WF (2007) Neuropeptide Y in the dentate gyrus. Prog Brain Res 

163:285-297. 

Stockman A, Sharpe LT, Tufail A, Kell PD, Ripamonti C, Jeffery G (2007) The effect of sildenafil 

citrate (Viagra) on visual sensitivity. J Vis 7:4. 

Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ (2007) Intrinsic circadian 

clock of the mammalian retina: importance for retinal processing of visual information. 

Cell 130:730-741. 



CHAPTER 6 

 

146 
 

Straznicky C, Hiscock J (1989) Neuropeptide Y-like immunoreactivity in neurons of the human 

retina. Vision Res 29:1041-1048. 

Subhedar N, Cerda J, Wallace RA (1996) Neuropeptide Y in the forebrain and retina of the 

killifish, Fundulus heteroclitus. Cell Tissue Res 283:313-323. 

Sun L, Miller RJ (1999) Multiple neuropeptide Y receptors regulate K+ and Ca2+ channels in 

acutely isolated neurons from the rat arcuate nucleus. J Neurophysiol 81:1391-1403. 

Sun QQ, Huguenard JR, Prince DA (2001) Neuropeptide Y receptors differentially modulate G-

protein-activated inwardly rectifying K+ channels and high-voltage-activated Ca2+ 

channels in rat thalamic neurons. J Physiol 531:67-79. 

Sun QQ, Baraban SC, Prince DA, Huguenard JR (2003) Target-specific neuropeptide Y-ergic 

synaptic inhibition and its network consequences within the mammalian thalamus. J 

Neurosci 23:9639-9649. 

Tatemoto K (1982) Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc 

Natl Acad Sci U S A 79:5485-5489. 

Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y--a novel brain peptide with structural 

similarities to peptide YY and pancreatic polypeptide. Nature 296:659-660. 

Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. 

Prog Retin Eye Res 18:765-810. 

Tornqvist K, Ehinger B (1988) Peptide immunoreactive neurons in the human retina. Invest 

Ophthalmol Vis Sci 29:680-686. 

Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM (2008) The circadian clock system in the 

mammalian retina. Bioessays 30:624-633. 

Toth PT, Bindokas VP, Bleakman D, Colmers WF, Miller RJ (1993) Mechanism of presynaptic 

inhibition by neuropeptide Y at sympathetic nerve terminals. Nature 364:635-639. 

Tu B, Jiao Y, Herzog H, Nadler JV (2006) Neuropeptide Y regulates recurrent mossy fiber 

synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor 

plasticity. Neuroscience 143:1085-1094. 

Twig G, Levy H, Perlman I (2003) Color opponency in horizontal cells of the vertebrate retina. 

Prog Retin Eye Res 22:31-68. 

Uckermann O, Wolf A, Kutzera F, Kalisch F, Beck-Sickinger AG, Wiedemann P, Reichenbach A, 

Bringmann A (2006) Glutamate release by neurons evokes a purinergic inhibitory 

mechanism of osmotic glial cell swelling in the rat retina: activation by neuropeptide 

Y. J Neurosci Res 83:538-550. 



References 

 

147 
 

Vallazza-Deschamps G, Cia D, Gong J, Jellali A, Duboc A, Forster V, Sahel JA, Tessier LH, Picaud 

S (2005) Excessive activation of cyclic nucleotide-gated channels contributes to 

neuronal degeneration of photoreceptors. Eur J Neurosci 22:1013-1022. 

Vatansever HS, Kayikcioglu O, Gumus B (2003) Histopathologic effect of chronic use of 

sildenafil citrate on the choroid & retina in male rats. Indian J Med Res 117:211-215. 

Verstappen A, Van Reeth O, Vaudry H, Pelletier G, Vanderhaeghen JJ (1986) Demonstration of 

a neuropeptide Y (NPY)-like immunoreactivity in the pigeon retina. Neurosci Lett 

70:193-197. 

Vezzani A, Sperk G (2004) Overexpression of NPY and Y2 receptors in epileptic brain tissue: an 

endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 

38:245-252. 

Vobig MA, Klotz T, Staak M, Bartz-Schmidt KU, Engelmann U, Walter P (1999) Retinal side-

effects of sildenafil. Lancet 353:375. 

Walther C, Morl K, Beck-Sickinger AG (2011) Neuropeptide Y receptors: ligand binding and 

trafficking suggest novel approaches in drug development. J Pept Sci 17:233-246. 

Wang SJ (2005) Activation of neuropeptide Y Y1 receptors inhibits glutamate release through 

reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: 

suppression of this inhibitory effect by the protein kinase C-dependent facilitatory 

pathway. Neuroscience 134:987-1000. 

Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747-757. 

Wassle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 

71:447-480. 

Weinberg DH, Sirinathsinghji DJ, Tan CP, Shiao LL, Morin N, Rigby MR, Heavens RH, Rapoport 

DR, Bayne ML, Cascieri MA, Strader CD, Linemeyer DL, MacNeil DJ (1996) Cloning and 

expression of a novel neuropeptide Y receptor. J Biol Chem 271:16435-16438. 

Westheimer G (2007) The ON-OFF dichotomy in visual processing: from receptors to 

perception. Prog Retin Eye Res 26:636-648. 

Wheway J, Herzog H, Mackay F (2007) The Y1 receptor for NPY: a key modulator of the 

adaptive immune system. Peptides 28:453-458. 

Whitaker CM, Cooper NG (2009) The novel distribution of phosphodiesterase-4 subtypes 

within the rat retina. Neuroscience 163:1277-1291. 

Widmaier EP, Raff H, Strang KT (2004) Vander, Sherman, Luciano's Human physiology: the 

mechanisms of body function. 9th           edition. McGraw-Hill:825 pp. 



CHAPTER 6 

 

148 
 

Wier WG, Zang WJ, Lamont C, Raina H (2009) Sympathetic neurogenic Ca2+ signalling in rat 

arteries: ATP, noradrenaline and neuropeptide Y. Exp Physiol 94:31-37. 

Winterdahl M, Audrain H, Landau AM, Smith DF, Bonaventure P, Shoblock JR, Carruthers N, 

Swanson D, Bender D (2014) PET brain imaging of neuropeptide Y2 receptors using N-

11C-methyl-JNJ-31020028 in pigs. J Nucl Med 55:635-639. 

Winzeler A, Wang JT (2013) Purification and culture of retinal ganglion cells from rodents. Cold 

Spring Harb Protoc 2013:643-652. 

Wirostko BM, Tressler C, Hwang LJ, Burgess G, Laties AM (2012) Ocular safety of sildenafil 

citrate when administered chronically for pulmonary arterial hypertension: results 

from phase III, randomised, double masked, placebo controlled trial and open label 

extension. BMJ 344:e554. 

Wolak ML, DeJoseph MR, Cator AD, Mokashi AS, Brownfield MS, Urban JH (2003) Comparative 

distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using 

immunohistochemistry. J Comp Neurol 464:285-311. 

Woldbye DP, Kokaia M (2004) Neuropeptide Y and seizures: effects of exogenously applied 

ligands. Neuropeptides 38:253-260. 

Wu YF, Li SB (2005) Neuropeptide Y expression in mouse hippocampus and its role in neuronal 

excitotoxicity. Acta Pharmacol Sin 26:63-68. 

Xapelli S, Silva AP, Ferreira R, Malva JO (2007) Neuropeptide Y can rescue neurons from cell 

death following the application of an excitotoxic insult with kainate in rat organotypic 

hippocampal slice cultures. Peptides 28:288-294. 

Xapelli S, Agasse F, Ferreira R, Silva AP, Malva JO (2006) Neuropeptide Y as an endogenous 

antiepileptic, neuroprotective and pro-neurogenic peptide. Recent Pat CNS Drug 

Discov 1:315-324. 

Xapelli S, Bernardino L, Ferreira R, Grade S, Silva AP, Salgado JR, Cavadas C, Grouzmann E, 

Poulsen FR, Jakobsen B, Oliveira CR, Zimmer J, Malva JO (2008) Interaction between 

neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated 

neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci 27:2089-

2102. 

Xiong Z, Cheung DW (1995) ATP-Dependent inhibition of Ca2+-activated K+ channels in 

vascular smooth muscle cells by neuropeptide Y. Pflugers Arch 431:110-116. 

Yannielli P, Harrington ME (2004) Let there be "more" light: enhancement of light actions on 

the circadian system through non-photic pathways. Prog Neurobiol 74:59-76. 



References 

 

149 
 

Yoon HZ, Yan Y, Geng Y, Higgins RD (2002) Neuropeptide Y expression in a mouse model of 

oxygen-induced retinopathy. Clin Experiment Ophthalmol 30:424-429. 

Zhang X, Feng Q, Cote RH (2005) Efficacy and selectivity of phosphodiesterase-targeted drugs 

in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Invest 

Ophthalmol Vis Sci 46:3060-3066. 

Zhang Z, Qin X, Zhao X, Tong N, Gong Y, Zhang W, Wu X (2012) Valproic acid regulates 

antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Curr 

Eye Res 37:429-437. 

Zhu BS, Gibbins I (1995) Synaptic circuitry of neuropeptide-containing amacrine cells in the 

retina of the cane toad, Bufo marinus. Vis Neurosci 12:919-927. 

Zhu BS, Gibbins I (1996) Muller cells in the retina of the cane toad, Bufo marinus, express 

neuropeptide Y-like immunoreactivity. Vis Neurosci 13:501-508. 

Zoumalan CI, Zamanian RT, Doyle RL, Marmor MF (2009) ERG evaluation of daily, high-dose 

sildenafil usage. Doc Ophthalmol 118:225-231. 


