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Resumo 
 

Os membros do género Rickettsia são bactérias intracelulares obrigatórias do tipo gram-

negativas, cuja transmissão a mamíferos pode ocorrer através de vetores artrópodes como 

carraças, pulgas ou piolhos. Entre as várias espécies identificadas, muitas são patogénicas para 

o Homem causando doenças infeciosas agudas das quais se destacam o tifo epidémico 

(Rickettsia prowazekii), a febre maculosa das montanhas rochosas (Rickettsia rickettsii) e a 

febre escaro-nodular (Rickettsia conorii). A elevada patogenicidade e o caráter emergente 

destas doenças, associados à inexistência de vacinas eficazes para a sua prevenção, reforçam 

inequivocamente a necessidade de identificar novos fatores proteicos para o desenvolvimento 

de terapêuticas inovadoras.  

Neste sentido, tem-se assistido nas últimas décadas a avanços significativos na 

compreensão dos mecanismos de patogénese e de resposta imunitária às rickettsioses. 

Contudo, a validação da função biológica de genes de Rickettsia tem sido amplamente limitada 

pela natureza estritamente intracelular destes organismos que dificulta a sua manipulação. Por 

conseguinte, a comparação entre os múltiplos genomas disponíveis de Rickettsia tem revelado 

ser o método mais expedito para a identificação de novos fatores proteicos potencialmente 

implicados na patogenicidade destes micro-organismos. 

Este trabalho descreve a identificação e caracterização de uma nova protease membranar 

do tipo retropepsina, altamente conservada em 55 genomas de Rickettsia. Apesar da baixa 

similaridade na sequência de aminoácidos relativamente a outras retropepsinas, 

demonstrámos que a proteína codificada pelo gene homólogo RC1339 de R. conorii Malish 7, 

designada por APRc para protease aspártica de Rickettsia conorii, é uma enzima ativa com 

propriedades altamente reminiscentes desta família de proteases aspárticas. Entre outras, 

destacam-se a atividade autolítica comprometida pela mutação do aspartato catalítico, a 

acumulação na forma dimérica, uma atividade ótima a pH de 6 e a inibição por inibidores 

específicos da protease do vírus da imunodeficiência humana do tipo 1. Além disso, utilizando 

uma abordagem de mapeamento de especificidade de alto débito, foi possível confirmar que 

os determinantes de especificidade da APRc são semelhantes aos de outras proteases 

aspárticas de ambos os tipos, retropepsina e pepsina.  

Neste trabalho, demonstrámos também que o gene codificante da APRc é transcrito e 

traduzido em pelo menos duas espécies patogénicas de Rickettsia (R. conorii e R. rickettsii), e 

que esta proteína é integrada na membrana externa de ambas. Ao explorar as potenciais 

funções biológicas da APRc, verificámos que esta protease catalisa o processamento in vitro de 
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dois membros da família das proteínas autotransportadoras envolvidas na adesão e invasão de 

Rickettsia: Sca5/rOmpB e Sca0/rOmpA. Estes resultados apontam assim para a participação da 

APRc numa via proteolítica relevante para a virulência destes micro-organismos, surgindo esta 

protease como um alvo interessante para a intervenção terapêutica contra as rickettsioses. 

Por fim, ao demonstrar que a APRc é um novo membro da família das proteases aspárticas 

do tipo retropepsina, provamos simultaneamente que estas enzimas estão efetivamente 

presentes em bactérias gram-negativas intracelulares, pelo que poderão representar uma 

forma ancestral desta classe de proteases. 
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Abstract 
 

Members of the genus Rickettsia are obligate intracellular, gram-negative, arthropod-borne 

pathogens of humans and other mammals, causing severe infections including epidemic 

typhus (Rickettsia prowazekii), Rocky Mountain spotted fever (Rickettsia rickettsii), and 

Mediterranean spotted fever (Rickettsia conorii). The life-threatening character of diseases 

caused by many Rickettsia spp. and the lack of reliable protective vaccine against rickettsioses 

strengthens the importance of identifying new protein factors for the potential development 

of innovative therapeutic tools. However, progress in correlating rickettsial genes and gene 

functions has been greatly hampered by the intrinsic difficulty in working with these obligate 

intracellular bacteria, despite the increasing insights into the mechanisms of pathogenesis of 

and the immune response to rickettsioses. Therefore, comparison of the multiple available 

genomes of Rickettsia is proving to be the most practical method to identify new factors that 

may play a role in pathogenicity. 

The present work reports the identification and characterization of a novel membrane-

embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. 

conorii Malish 7 gene homologue RC1339 as our working model we demonstrate that, despite 

the low overall sequence similarity to retropepsins, the gene product of RC1339 APRc (for 

Aspartic Protease from Rickettsia conorii) is an active enzyme with features highly reminiscent 

of this family of aspartic proteases, such as autolytic activity impaired by mutation of the 

catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition 

by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-

throughput profiling approach confirmed common preferences between this novel rickettsial 

enzyme and other aspartic proteases, both retropepsin and pepsin-like enzymes. Additionally, 

we have also shown that APRc is transcribed and translated by at least two pathogenic 

rickettsial species, R. conorii and R. rickettsii, and is integrated into the outer membrane of 

both species.  

By further exploring one of its putative biological roles, we have demonstrated that APRc is 

sufficient to catalyze the in vitro processing of two conserved high molecular weight 

autotransporter adhesin/invasion proteins, Sca5/rOmpB and Sca0/rOmpA, thereby suggesting 

the participation of this enzyme in a relevant proteolytic pathway in rickettsial virulence. As a 

novel bona fide member of the retropepsin family of aspartic proteases, APRc emerges as an 

intriguing target for therapeutic intervention against fatal rickettsioses.  
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Finally, with this work we demonstrate that retropepsin-type aspartic proteases are indeed 

present in gram-negative intracellular bacteria such as Rickettsia, suggesting that these 

enzymes may represent an ancestral form of this class of proteases. 
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Chapter I. Introduction 

1.1. Proteolytic enzymes 

General description 

Proteins are the most complex and functionally diverse macromolecules in living organisms. 

Among the many different types of proteins, enzymes have specific catalytic properties 

responsible for accelerating chemical reactions within cells and, thus, are essential for 

sustaining life. Depending on the type of catalytic activity they have, enzymes are divided into 

different classes. One of such classes comprises proteases, also termed peptidases, which are 

characterized by their capacity to selectively catalyze the hydrolysis of amide bonds within 

peptides and proteins from monomers to multimeric complexes.  

Encoded by approximately 2% of the genes in all kinds of organisms, proteases constitute 

one of the largest functional groups of proteins1. Regardless of the complexity of the organism, 

proteases control a wide range of biological functions and processes, including protein 

turnover, cell growth, cell death, immune defense and secretion2–6. Consistent with these 

essential roles, many proteases are involved in human diseases, ranging from degenerative 

and inflammatory diseases to cancer7–9. In plants, proteases also play key roles in a striking 

diversity of biological processes including embryogenesis, gametophyte survival, chloroplast 

biogenesis, stomata development, and local and systemic defense responses10. Likewise, many 

pathogenic viruses and bacteria use proteases for their life cycle or as virulence factors for 

infection of host cells6,11. Finally, proteases also occupy a pivotal position with respect to their 

numerous practical applications in the biotechnological industry as biochemical reagents or in 

the manufacture of numerous products12–14. 

 

Proteases have evolved as important regulatory enzymes which, depending on their 

specificity, can modify proteins post-translationally at highly specific sites (limited proteolysis) 

for activation and maturation of proteins or removal of signal or transit peptides. On the other 

hand, housekeeping proteases are responsible for unspecific and total degradation of 

damaged, misfolded and potentially harmful proteins, providing free amino acids for the 

synthesis of new proteins. Proteases can be divided into exoproteases, whose activity is 
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directed at the amino or carboxyl termini of polypeptide chains, or endoproteases, which 

preferentially cleave peptide bonds in the inner regions of proteins.  

The MEROPS database is the most modern and organized system that provides an 

evolutionary hierarchical classification of proteases into classes, families and clans1. 

Accordingly, based on structural and catalytic homology, proteases are categorized into the 

following nine classes: serine, aspartic, cysteine, metalloproteases, glutamic, threonine, 

asparagine, mixed catalytic type, and the ninth class, which comprises a number of proteases 

that cannot yet be assigned to any particular catalytic type. Each class of proteases is specific 

in its ability to break a certain peptide bond and displays a characteristic set of functional 

amino acid residues arranged in a specific configuration to produce its catalytic site1. To define 

the position of the substrate residues interacting with the protease substrate-binding subsites, 

a general nomenclature was formulated by Schechter and Berger15. According to this 

nomenclature, the protease-binding subsites (S) for residues located at the N-terminal side 

(prime side) of the scissile peptide bond are designated as S1, S2 and so on, whereas the 

corresponding substrate peptide (P) residues are designated as P1, P2 and so on. Binding 

subsites and substrate residues from the C-terminal side (non-prime side) of the scissile 

peptide bond are designated as S1′, S2′ and P1′, P2′ and so on, respectively. 

Aspartic proteases 

Aspartic proteases (APs) are a ubiquitous class of enzymes, which use a pair of highly 

conserved aspartate residues in the active site to activate a water molecule and hydrolyze 

peptide bonds. According to the MEROPS database, APs are currently classified into 16 

families, which are in turn included into 6 clans1, as depicted in Table 1. The families differ 

according to the conserved residues for the enzymatic functionality, the position of the 

catalytic aspartic acid residues in the peptide chains, substrate specificity, the number of 

disulfide bridges in their structure and the optimal pH at which the enzymes function1. Despite 

these variations, conserved sequence motifs have been identified for the majority of APs. For 

instance, the catalytic aspartate residues of all members of clan AA are organized in the 

consensus motif Asp-Thr/Ser-Gly, contained in the sequence Xaa-Xaa-Asp-Xbb-Gly-Xcc, where 

Xaa is hydrophobic, Xbb is Thr or Ser, and Xcc is Ser, Thr or Ala.  
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Table 1. Clans and families of aspartic proteases. 

CLAN FAMILY TYPE PROTEASE 
AA A1 Pepsin A (Homo sapiens) 

 A2 HIV-1 retropepsin (human immunodeficiency virus 1) 

 A3 Cauliflower mosaic virus-type peptidase (cauliflower mosaic virus) 

 A9 Spumapepsin (human spumaretrovirus) 

 A11 Copia transposon peptidase (Drosophila melanogaster) 

 A28 DNA-damage inducible protein 1 (Saccharomyces cerevisiae) 

 A32 PerP peptidase (Caulobacter crescentus) 

 A33 Skin SASPase (Mus musculus) 

AC A8 Signal peptidase II (Escherichia coli) 

AD A22 Presenilin 1 (Homo sapiens) 

 A24 Type 4 prepilin peptidase 1 (Pseudomonas aeruginosa) 

AE A25 GPR peptidase (Bacillus megaterium) 

 A31 HybD peptidase (Escherichia coli) 

AF A26 Omptin (Escherichia coli) 

UNASSIGNED A5 Thermopsin (Sulfolobus acidocaldarius) 

 A36 Sporulation factor SpoIIGA (Bacillus subtilis) 

 

 

The largest family of APs is the pepsin family (A1, clan AA) with 5277 identified sequences, 

which is further divided into subfamily A1A of pepsin-like enzymes (also called pepsins, 

hereafter) and subfamily A1B of plant APs; the second biggest family is the retropepsin family 

(A2, clan AA) with 719 identified sequences. The members of families A1 and A2 are known to 

be related to each other, with those of family A3 also showing some correlation to A1 and A2 

members. With exception for families A5 and A36 which have not yet been assigned to any 

clan, the remaining families (A28; A22; A24; A25; A31; A26) were included into clans AC, AD, 

AE and AF, which greatly differ regarding the catalytic motif composition and overall structural 

organization, with the majority being partially or totally membrane-embedded proteases.  

The far most characterized APs belong to families A1 and A2 (pepsin and retropepsin-like 

enzymes, respectively) as the result of the enormous interest they have received, given their 

important roles in some human diseases. The present chapter focuses specifically on these two 

families of APs, with a detailed description and comparison of their general features, in order 

to provide a context in which to compare the specific examples found in the following 

chapters. 

 

Distribution and relevance 

APs have been widely described as having important functional roles in a multitude of 

organisms, from vertebrates to fungi, plants and retroviruses, and more recently homologues 
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have been reported from prokaryotes (Table 2)16,17. Amongst all members of the pepsin family 

found in mammalian, the most studied are involved in digestion and protein degradation, such 

as pepsin - which is one of the principal proteolytic enzymes in the digestive system18 - and  

chymosin19, which has been used for thousands of years in cheese making, as well as the major 

lysosomal enzyme cathepsin D20. Nevertheless, other mammalian APs such as renin21, which 

plays an important role in blood pressure, or β-secretase 1 (BACE1/Memapsin 2)7,22 implicated 

in Alzheimer’s disease, have also been the subject of intensive study over the last decades. 

Secreted aspartic peptidases (or SAP) of Candida spp., and plasmepsins I and II, found in the 

malarial parasite Plasmodium falciparum, are two other groups of pepsin-like APs that have 

also been investigated in detail as key targets for fungal and parasitic infections23,24.  

In plants, pepsin-like APs have been found in seeds, suggesting a role in the processing of 

storage proteins during ripening and germination; in leaves, indicating a role in defense 

mechanisms against pathogens, and in flowers where they are suggested to play a role in 

sexual reproduction25. In addition, some plant APs have also been implicated in cell death 

events and response to stress (e.g., CDR1, PCS1, UNDEAD)26.  

Proteases of retroviruses, such as leukemia viruses, immunodeficiency viruses (e.g., HIV-1), 

infectious anemia viruses, and mammary tumor viruses, form an important family (A2) with 

those encoded by several endogenous viral sequences in primates and retrotransposons in 

yeast and Drosophila27. These retroviral proteases (PRs) (hereafter also termed as 

retropepsins), represented by the far most characterized HIV-1 PR, are critical enzymes in viral 

propagation. They are initially synthesized with other viral proteins as polyprotein precursors 

(Gag and Gag-Pol) which are subsequently cleaved by the viral protease activity at precise sites 

to produce the functional proteins and enzymes28. Additionally, it has also been shown that 

many host proteins are also substrates of HIV-1 PR which can contribute to the pathogenicity 

of the virus11.  
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Table 2. Examples of aspartic proteases and their biological functions.  

ASPARTIC PROTEASES  FAMILY BIOLOGICAL FUNCTIONS 
Human aspartic proteases   

Pepsin  A1 Protein digestion in the stomach 
Gastricsin  A1 Digestion in stomach and seminal plasma 
Cathepsin D  A1 General protein degradation and turnover 
Napsin  A1 Suppression of cancer growth 
Renin  A1 Regulation of blood pressure 
Memapsin 1 (BACE2) A1 Insulin receptor trafficking and signaling 
Memapsin 2 (BACE1)  A1 Neuronal development (formation of myelin 

sheaths) 
Presenilin A22 Cellular differentiation and proteolysis of 

membrane proteins 
Type IV prepilin peptidase  A24 Type IV pilus formation and protein secretion 

Plant aspartic proteases   
Cardosins 
 

A1 Plant sexual reproduction and postembryonic 
development 

Phytepsin  A1 Protein storage processing 
CDR1 A1 Disease resistance signaling 
PCS1 A1 Prevention of cell death 
UNDEAD A1 Regulation of programmed cell death 

Microbial and pathogen aspartic proteases   
Shewasin A 
Plasmepsin 2  

A1 
A1 

Not determined 
Hemoglobin digestion in vacuoles of  
Plasmodium falciparum 

Rhizopuspepsin  A1 Extracellular protein hydrolysis by Rosa chinensis 
Endothiapepsin  A1 Extracellular protein hydrolysis by  

Eutypella parasitica 
Penicillopepsin  A1 Extracellular protein hydrolysis by penicillium 

fungi 
Candida SAPs  A1 Virulent factors for Candida species 
Barrierpepsin  A1 Cleavage of α-factor for cell cycle regulation of 

yeast 

Retroviral aspartic proteases   
HIV-1 PR A2 Processing of viral polyproteins for virion assembly 
HTLV-1 PR A2 Processing of viral polyproteins for virion assembly 

 

 

Structure and processing activity 

Up to date, tertiary structures solved for APs show a unique protein fold unrelated to that 

of any other protease. The first AP to be sequenced was porcine pepsin, by Tang et al. in 

197329. Ten years later, James and Sielecki published the first 3D structure of an AP 

(penicillopepsin)30, while the second structure to be analyzed by X-ray diffraction was from 

pepsin31. Proteases of retroviruses such as Rous sarcoma virus (RSV) and HIV-1 have also been 

extensively studied and their crystal structures have been determined as early as 198932–35.  

From these primordial studies, it became clear that all mature pepsin-like enzymes have a 

considerable degree of structural similarity. They are bilobal molecules, containing two 

topological similar N and C domains predominantly formed by β-sheets and related by a 

pseudo 2-fold axis, with the active-site cleft located between the lobes with about 35-40 Å 

long (Figure 1A). These two homologous domains are linked by a six-stranded, antiparallel β-
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sheet that is the only structured motif shared by the two lobes. Each lobe contributes with one 

catalytic aspartic residue (Asp32 and Asp215, pepsin numbering) located within the hallmark 

motif Asp-Thr/Ser-Gly36. This motif is followed by a hydrophobic-hydrophobic-Gly conserved 

sequence which, together with the catalytic sequence motif, forms a structural feature known 

as psi-loop. These psi-loop/alpha-helix motifs fix the central structure of the enzyme and 

thereby define the catalytic machinery of APs36,37.  

Although the two lobes of pepsins are structurally similar, an extended β-hairpin loop on 

the N-terminal lobe surface covers the binding cleft at the junction of the two lobes to form a 

hinged flexible flap region that encloses substrates or inhibitors into the active site (switching 

between an open or closed conformation). The inspection of different available 3D structures 

of pepsin-like enzymes in the free form or complexed with inhibitors has shown that the 

conserved residues (Tyr75, Gly76 and Thr77 in pepsin sequence) located at the tip of the flap 

influence ligand selectivity by interaction with amino acids in the P1-P2’ positions38,39.  

Other landmark residues and motifs are characteristic of the members of pepsin family, 

including several intramolecular disulfide bonds at characteristic locations, whose number may 

vary from sequence to sequence and may impact on the stability of the native-state of each 

protein36,37,40. 

 

Due to the conservation of the catalytic motif Asp-Thr/Ser-Gly, structural similarities and 

other biochemical features, retroviral proteases have been promptly predicted to be related 

with members of pepsin family36,41. Nevertheless, the molecular architecture of retroviral 

proteases is distinct among enzymes, with no other known examples of active sites formed in a 

similar manner41. In contrast to pepsins, retroviral proteases are β-homodimers consisting of 

two chemically identical subunits in a nearly 2-fold internal symmetric arrangement, each one 

with 99-138 residues and a molecular weight ranging between 11-15 kDa (Figure 1B). A 

remarkable finding was the observation that despite the low sequence similarity, each of these 

subunits of retropepsins is structurally similar to a single domain of the pepsin-like enzymes42. 

Moreover, the secondary structure of all retroviral proteases follows a structural template 

where the monomeric molecule is formed by duplication of four structural elements. Figure 1C 

depicts the secondary structure of RSV PR, the first crystal structure of a retroviral protease to 

be determined35, consisting of a hairpin, a wide loop containing the catalytic Asp residue, an α-

helix and lastly a second hairpin35,41. The first HIV-1 PR structure was determined afterwards at 

Merck laboratories with a 3 Å resolution32. The active site of retroviral proteases is formed 

within the interface of the two monomers, where each monomer contributes with one 

conserved aspartic acid for active site assembling (Asp25 and Asp25’, HIV-1 PR numbering). 
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Accordingly, retropepsins are only active in the form of noncovalently bound homodimers. 

Resembling pepsins, these enzymes also retain the hydrophobic-hydrophobic-Gly sequence, 

maintaining the conserved psi-loop in each monomer. 

Structural studies have shown that the N- and C-terminal regions of the two monomers of 

HIV-1 PR form a structure of four layered β-strands, which constitutes the interface between 

both subunits and contribute significantly to dimerization43,44. As a prerequisite for 

dimerization to occur it was also observed that, under physiological conditions, monomeric 

HIV-1 PR subunits are partially structured exhibiting a similar secondary and tertiary structure 

of a single subunit of the active dimer43,44. Moreover, instead of the single flap observed in 

pepsin-like enzymes, the homodimeric retroviral proteases have two much less structured 

flaps (than that found in pepsins) that interact not only with the substrate but also with each 

other39,45,46. Nuclear magnetic resonance studies and comparison of crystal structures of HIV-1 

PR in a free form or bound to substrates or inhibitors have shown a complex dynamic behavior 

of flaps which alternate between three conformations. Free protease exists primarily in the 

“semi-open” conformation but transiently changes to the fully “open” conformation allowing 

the ligand to enter into the active site; ligand induces the closing of the flaps into a “closed” 

conformation and it is converted again to the “semi-open” conformation upon removal of 

ligand45–47. Retroviral proteases flap tips usually contain several glycines (instead of the single 

glycine in pepsin-like APs), identified to be important in the flap closing mechanism which is 

conserved across known structures of the retropepsin family45. Importantly, the prominent 

differences between the flap functional regions from pepsins and retropepsins, associated 

with their different mechanisms of molecular recognition and binding between the enzyme 

and the substrate, have been recognized to have a major impact on the specificity of each 

AP45,48. 

An important feature of all APs is a quite rigid network of hydrogen bonds occurring at the 

active site, called the "fireman's grip”. This structure involves the hydroxyl groups of each 

Thr/Ser residues in the active site Asp-Thr/Ser-Gly triplets (Thr26 in the case of HIV-1 PR), 

which accepts a hydrogen bond from the main-chain amine group of the Thr26 in the opposing 

loop and also donates a hydrogen bond to the oxygen atom of the carbonyl group of residue 

24 on the opposite loop27. The aspartic acid residues are bridged by a water molecule, located 

within hydrogen-bonding distance of the oxygen atoms of the Asp25 carboxyl group27,49,50. 

Although provided that the interactions in the N- and C-terminal dimerization domain and the 

flap region are responsible for stabilizing the dimer, it was later found that this complex 

scaffold of hydrogen bonds also aids to dimerization by mediating the initial contact of the two 

monomer molecules and by adjusting them to the proper conformation and/or orientation49,50. 
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Importantly, upon the binding of substrates with asymmetric shapes, the protease adapts and 

its symmetry is lost51. 

Although the active-site catalytic motif is common to all APs, the sequence Gly86-Arg87-

Asn/Asp88 (HIV-1 PR numbering) in the α-helix is unique to retroviral proteases. The 

Arg87 residue plays a crucial role in the stability of the dimer, as the loss of hydrogen bond 

between this residue and Asp29 results in the destabilization of the dimer interfaces, 

particularly between the C-terminal β-strands52. 

 

 

Figure 1. Structural template for pepsin-like and retroviral proteases. (A) In pepsin-like enzymes, 
the hairpin loops A1 and A2 are labeled in the left-side domain and A3 and A4 in the right-side 
domain. (B) In the symmetrical retroviral dimer, the corresponding loops A1 and A2 are shown in 
yellow in each monomer, shown as stereo pairs. Likewise, the psi-loop identified with B1 and 
loop B2 are shown in blue in each monomer of the retroviral dimer in (B), and the analogous 
loops in blue are labeled B1, B2, B3, and B4 in the single-chain enzymes. Loops B1 in the 
retroviral protease and B1 and B3 in the single-chain enzymes contain the catalytic residues. 
Helical segments C1 and C2 (red) in (A) are mirrored by segments C1-C4 in (B). Finally, loop D1 in 
the retroviral protease monomers provides a double flap structure in (B), whereas the ‘half loops’ 
D2 provide the four strands that form a β-sheet at the bottom of the dimer. In (A), loop D1 
provides the flap on one side only, whereas D3 on the other side is pointing outward. Loops D2 
and D4 provide the center of the β-sheet at the bottom of these enzymes. (C) Diagram of the 
secondary structure of retroviral proteases, with residue numbers corresponding to the 
structural elements observed in RSV PR. Adapted from Dunn et al.27 and Wlodawer and 
Gustchina41.  

Despite this overall structural organization of mature APs from A1 and A2 families, pepsin-

like enzymes - and it is believed most of the other A2 family members - are initially synthesized 



Introduction 

11 
 

as inactive zymogens. Precursor forms of pepsins consist of the intact protease with an N-

terminal extension comprising a signal peptide (pre-segment) and an activation segment (pro-

segment) which assists in folding and prevents a premature activation of the enzyme (Figure 

2A)53. While the highly hydrophobic pre-segment is removed upon entry of the zymogen in the 

endoplasmic reticulum, the post-translational removal of the pro-segment occurs typically by 

auto-proteolysis to liberate the active enzyme54. Physiological examples include the conversion 

of pepsinogens, prograstricsins and prochymosins into pepsins, grastricsins and chymosins, 

respectively55. For each type of zymogen, different isoforms (named isozymogens) have been 

identified and they are thought to be derived from different genes or from post-translational 

modifications such as phosphorylation and glycosylation55. Focusing on the most extensively 

studied example, the pepsinogen A, it comprises a pro-segment of 44 amino acids organized in 

one β-strand and three α-helices36. At neutral and alkaline pH conditions, this pro-segment 

binds and stabilizes the active site cleft with the aid of electrostatic, hydrophobic interactions 

and hydrogen bonding36. The self-cleavage of the pro-segment, i.e., the conversion of the 

zymogen into the respective active enzyme, occurs upon exposure to an acidic environment. 

Due to pH decrease, acidic residues get protonated resulting on the disruption of electrostatic 

interactions with positively charged amino acid residues of the pro-segment. Subsequent 

conformational rearrangements of both the active enzyme moiety and the pro-segment, lead 

to the proper positioning of each scissile bond in order to be cleaved by the exposed active site 

aspartates and, ultimately to the removal and dissociation of the pro-segment from the active 

center of the enzyme56,57. Although intramolecular proteolysis is the most common mechanism 

for AP activation, in some APs the activation occurs by intermolecular cleavage. For example, 

the activation of zymogens of APs involved in highly regulated physiological activities, such as 

proBACE1 and prorenin, is often accomplished by other proteases22,36,58. 

 

Similarly, retroviral proteases are initially synthesized as part of large polyproteins and must 

be processed during the maturation process of the virus in order to be active. Depending on 

the type of virus, the PR encoded in the so called Pro gene might be either produced in frame 

with the Gag (Gag-Pro) or Pol (Gag-Pro-Pol) polyproteins as in case of myeloblastosis 

associated virus (MAV)59, with a stop codon suppression as exemplified by moloney murine 

leukemia virus (MMLV) (Gag-Pro)60, by a translational frameshift mechanism as typified by HIV-

1 (Gag-Pro-Pol)61, or by a splicing event as it is the case of the human foamy virus (HFV) (Pro-

Pol)62. Analyzing in closer detail the HIV-1, the translational frameshift within the p6 region 

allows translation beyond the p6 gag gene, resulting in a Gag-Pro-Pol fusion protein. Since the 

catalytic activity of retroviral proteases requires dimer formation, the first critical step in PR 
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maturation involves the folding and dimerization of two PR domains in the form of Gag-Pro-Pol 

precursor in order to catalyze the hydrolysis of the peptide bonds at its termini48. The 

examination of the in vitro processing of a full-length Gag-Pro-Pol precursor confirmed that the 

initial cleavages carried out by the activated HIV-1 PR are intramolecular63. The released 

mature PR is critical for the virus assembly, maturation and propagation, as it is required for 

the proteolytic processing of the Gag and Gag-Pro-Pol precursors into functional structural 

proteins and enzymes. The Gag polyprotein is processed into its four mature protein domains: 

matrix (MA or p17), capsid (CA or p24), nucleocapsid (NC or p7) and p6 or transframe region 

(TFR or p6*), whereas the processing of the Pro-Pol segment creates the viral enzymes reverse 

transcriptase (RT), RNase H (RH), integrase (IN) and PR itself, in a process concomitant with 

particle release (Figure 2B). 

A plausible pathway for the regulation of this viral PR emerged considering different in vivo 

and in vitro studies of precursor processing. In vivo studies showed that, depending on the pH, 

the autoprocessing can occur either stepwise in the order denoted in Figure 2B by sites 1, 2, 

and 3 at pH>5 or directly at site 3 at pH<564. It has been also observed that prior to the 

cleavage at its N terminus (TFR/PR site), which precedes the cleavage of the C-terminal site 

(PR/RT), the dimer dissociation constant (Kd) of the protease is high and likely modulated by 

the TFR65. The high Kd is essential to allow effective recruitment of polyproteins at the plasma 

membrane, prior to the onset of polyprotein processing65. Interestingly, the activity of 

retroviral proteases appears to be in a good correlation with the way they are synthetized. In 

fact, while retroviral proteases with high specific activity are produced by frameshifting or stop 

codon suppression, thereby representing only 5-20% amount compared to the Gag 

polyprotein, the MAV PR is produced in frame of Gag and therefore, being in an equivalent 

amount with this substrate, has a substantially lower specific activity66,67.  
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Figure 2. Schematic representation of the domain organization of APs’ precursors. (A) The large 
majority of APs members of family A1 display a similar organization to pepsin with a signal 
peptide (Pre) and a pro-segment (Pro) at the N-terminus of the protease domain and the two 
catalytic aspartate residues (Asp32 and Asp215, pepsin numbering) contained in the typical Asp-
Thr-Gly motifs. (B) For retroviral proteases such as HIV-1 PR, the chain containing the single Asp-
Thr-Gly motif is comprised on the Gag-Pro-Pol polyprotein, which results from a translational 
frameshift within the p6 region. Gag-Pro-Pol polyprotein include the structural proteins p17 
matrix (MA), p24 capsid (CA) and p7 nucleocapsid (NC) and the viral enzymes protease (PR), 
reverse transcriptase (RT), RNase H (RH) and integrase (IN). Adapted from Dunn et al.27. 

Catalytic mechanism, specificity and inhibition 

Even though the overall fold of retropepsins and pepsins are different, they feature two 

conserved similar regions which are related to specific mechanistic functions (the catalytic 

pocket site and the residues in the β-sheets linking the two lobes) and thus, a common 

catalytic mechanism has been proposed for both families and extended for the remaining 

families from clan AA27,36,37. Mature APs are considered to follow a catalytic mechanism which 

begins with the binding of the substrate to form a loose complex followed by transition from 

the open to the closed conformation of flaps which set the substrate into the correct geometry 

for the catalytic process. After the bond cleavage event, the flaps open and the protease 

release the products with the concomitant re-forming of catalytic activity in the active site. 

Importantly, APs bind their substrates through hydrogen bond interactions with the substrate 

peptide backbone and by electrostatic and hydrophobic contacts between the side chains of 

substrate and well-defined pockets within the active site68. Catalysis of peptide bond hydrolysis 

by APs is dependent on the nucleophilic attack of an activated water molecule to the carbonyl 

carbon. A remarkable property of this catalytic center is its adaptation over a wide range of pH 

from pH 2 up to pH 7, although a maximal activity is generally observed at low pH (pH 3 to 4)37.  

Regarding the catalytic mechanism, it is established that the peptide bond cleavage 

catalyzed by APs follow a general acid–base mechanism, with the formation of a non-covalent 

neutral tetrahedral intermediate36,69. The microscopic details of this mechanism, on the 
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contrary, are still under debate. Taking the different 3D structures of pepsins complexed with 

pepstatin A as models for the tetrahedral intermediate, different mechanisms have been 

proposed69–71. Among them, the most well accepted and representative one is the general 

acid-base mechanism proposed by Davies72 (Figure 3), where the aspartate carboxyl groups act 

alternately as general acid and general base. According to this mechanism, the Asp on the C-

lobe acts as a general base to remove one proton from the water molecule followed by 

nucleophilic attack of the water molecule to the carbonyl carbon of the substrate scissile bond, 

while the Asp on the N-lobe, which is at first in a nonionized form, donates its proton to the 

oxygen atom of the carbonyl of the substrate. An oxyanion tetrahedral intermediate is formed 

with the N-lobe Asp being hydrogen bonded to the attacking oxygen atom, while the hydrogen 

remaining on that oxygen is hydrogen bonded to the inner oxygen of C-lobe Asp. Next, a 

reversal of configuration occurs around the nitrogen atom of the scissile bond with the 

transfer of the hydrogen from the N-terminus Asp to that nitrogen atom. At the same time a 

proton is transferred from the inner oxygen of C-lobe Asp to the carbonyl oxygen on the 

peptide bond being cleaved. Hereafter the C-N bond breaks releasing the two products. The N-

terminus Asp is negatively charged at this stage and ready for the next round of catalysis36,70,71. 

 

Figure 3. General acid-base reaction mechanism for catalysis of APs. Starting from the upper-left 
angle and following the reaction clockwise: binding of the substrate and nucleophilic attack of 
water; formation of the tetrahedral gem-diol intermediate; protonation of the nitrogen atom; 
formation of the products and release of the products. Adapted from Brik and Wong73. 
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The significant roles of APs in human diseases led to massive efforts in the understanding of 

structure-function relationships of these enzymes. Together with the comparison of 3D 

structures, subsite specificity studies of numerous APs have provided in-depth knowledge of 

their catalytic mechanisms, which in turn contributed to the structure-based design and 

synthesis of a broad range of AP inhibitors for the treatment of many human diseases. The 

specificity subsites of APs are formed by hydrophobic residues surrounding the catalytic Asp 

dyad and by the residues in the flap-turn, as previously mentioned. The majority of the 

members of families A1 and A2 show preference for the cleavage of peptide bonds of at least 

eight residues (P4-P4’ positions) in an extended conformation (the neighboring residues have 

their side chains projected in opposite directions). Despite the similar bond cleavage 

apparatus/catalytic mechanism, the substrate specificity and the enzymatic sites which define 

this specificity are much different in these proteases. In fact, while the specificity requirements 

of enzymes involved in general proteolysis (e.g., pepsin or cathepsin D) is usually nonstringent, 

enzymes involved in the regulation of physiological processes, such as renin, exhibit highly 

stringent substrate specificity74,75. 

Like the majority of members of family A1, pepsin is known to have the major specificity 

determinants at P1 and P1’ subsites. This AP prefers to cleave after large hydrophobic 

residues, such as Phe and Leu (P1), whereas it hardly cleaves after His and Lys (unless they are 

next to Leu, Phe and a few others)74,76,77. The P1’ position is less stringent exhibiting a 

preference for the residues Trp, Tyr, Phe and Val. The distal subsites are in general quite non-

specific and can accommodate different types of residues, but have also been reported to play 

a role in the specificity of these enzymes. For instance, it was shown that positively charged 

residues at P3 position have detrimental effects in pepsin activity77. 

Contrastingly to the broad specificity of pepsin, renin displays a restricted selectivity for the 

amino acid sequence on either side of the peptide bond, tolerating only little variations to the 

sequence of its natural substrate (angiotensinogen). Noteworthy, all positions from P4 to P4’ 

interact directly with the catalytic pocket of renin and have significant effects on its activity, as 

it was shown that the shortest peptide that this protease can cleave is the octapeptide Pro-

Phe-His-Leu|Leu-Val-Tyr-Ser (| denotes the cleavage site)78. Moreover, although P1', P1, and 

P3 residues of renin substrates have been identified to be critical for its activity75, it was also 

found that the His-Pro-Phe motif of angiotensinogen is a key determinant of the substrate 

specificity, by recruiting the scissile peptide bond to a favorable site for catalysis79. 

What is not so obvious is the substrate specificity of retroviral proteases, mainly because 

they do not have a particular consensus sequence substrate. Nevertheless, the analysis of 

similarities in amino acid sequences of a broad range of cleavage site sequences suggested 
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their classification into two major groups: type 1 and type 2 (Figure 4)80,81. Type 1 cleavage 

sites are characterized by having an aromatic residue and Pro at P1 and P1’ position, 

respectively, while type 2 sites have hydrophobic residues (excluding Pro) at both sides of the 

scissile bond80. The type 1 cleavage site is remarkable since, with the exception of pepsin, no 

other protease is known to act at the imino side of a Pro residue. The P2 and P2’ positions are 

also critical in determining the type of cleavage site. The S2/S2’ subsites are mostly 

hydrophobic and smaller than the S1/S1’ or the S3/S3’ binding sites and have been shown to 

be more specific, restricting the type and size of residues at P2/P2’ in substrates or inhibitors 

relative to other binding pockets in the protease molecule; S1/S1’ and S3/S3’ subsites have a 

rather broad specificity due to their ability to accept residues of different types and sizes66,82,83.  

 

Figure 4. Processing sites in retroviral Gag and Gag-Pro-Pol polyproteins. The naturally occurring 
cleavage sites in retroviruses human immunodeficiency virus 1 (HIV-1), human immunodeficiency 
virus 2 (HIV-2), equine infectious anemia virus (EIAV), feline immunodeficiency virus (FIV), 
myeloblastosis associated virus (MAV), mouse mammary tumor virus (MMTV), Mason- Pfizer 
monkey virus (MPMV), human foamy virus (HFV), Walleye dermal sarcoma virus (WDSV), 
Moloney murine leukemia virus (MMLV),  human T-lymphotropic virus 1 (HTLV-1) and bovine 
leukemia virus (BLV) are indicated by an arrow. Cleavages sites of type 1 are indicated in red. Gag 
and Gag-Pro-Pol regions: matrix (MA), capsid (CA), nucleocapsid (NC), transframe protein (TF), 
protease (PR), RNaseH (RH), integrase (IN) and dUTPase (DU); proteins and peptides with 
unidentified functions are abbreviated with the size of the protein in kDa (e.g., p12 is a protein 
having 12 kDa, while pp refers to phosphoprotein), as pX, or by the letter number. The type of 
virus and corresponding color is indicated on the bottom of figure. From Tözsér66. 
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In type 1 cleavage sites, there is a preference for Asn at P2 and for β-branched hydrophobic 

residues (Val or Ile) at P2’, while in type 2 cleavage sites the P2 position is typically β-branched 

and the P2’ residue is Glu or Gln. Despite this overall classification in type 1 and type 2 

cleavage sites, systematic specificity studies on HIV-1 PR revealed that the optimal enzyme-

substrate interaction cannot be described residue by residue and that the specificity 

determinants are not confined to the P2-P2’ region81,82. Additionally, many of the natural 

cleavage sites of retroviral proteases do not fit into this classification [e.g., they contain Pro 

after a nonaromatic residue or contain polar residues at P1 or P1’ (Figure 4)], and therefore 

this classification might be considered as an oversimplification of a more complex pattern66. In 

fact, different studies have shown that the preference for a residue at a particular position in 

HIV-1 PR substrate is strongly dependent on the sequence context and conformation of the 

peptide substrate, including both neighboring residues at the same side and at the opposite 

side of the peptide backbone of the substrate66,81,82. These detailed specificity studies provided 

an explanation for the lack of a consensus substrate sequence for HIV-1 PR and for the 

majority of retroviral proteases and have also demonstrated that specificity towards nonviral 

protein substrates significantly differed from viral polyprotein cleavage sites: unlike in the Gag 

and Gag-Pol cleavage sites, cellular protein cleavage sites frequently contain charged residues, 

especially the Glu at P2’84. Moreover, although retropepsins are symmetrical dimers, no 

obvious symmetrical substrate preference has been observed for the specificity of HIV-1 PR. In 

fact, an asymmetrical arrangement adopted by the substrate peptides of HIV-1 PR has been 

suggested to be preferred over a particular amino acid sequence51.  

 

Given the pivotal role of many APs, they have been recognized as an important group of 

enzymes in scientific, medical research and biotechnology, some of them are already used as 

key drug targets. The advance of structural biology, high-speed parallel synthesis, 

computational chemistry, and drug development have greatly contributed to the discovery and 

optimization of several AP inhibitors58. Nearly all known APs are inhibited by pepstatin85, a 

naturally occurring pentapeptide produced by Streptomyces strains, containing the unusual 

amino acid statine (Sta, (3S,4S)-4-amino-3-hydroxy-6-methylheptanoic acid). Pepstatin has 

been widely used in pharmaceutical industry as a model inhibitor. Other specific AP inhibitors 

include Diazoacetylnorleucinemethyl ester (DAN) and 1,2-epoxy-3-(p-nitrophenoxy)propane 

(EPNP), which inhibit most APs in the presence of cupric ions86.  

The recognition of the HIV-1 PR as a member of the AP family87 and of its role in the 

maturation of HIV-1 has renewed the interest in this type of enzymes and on their inhibition, in 

order to arrest virus development88,89. In fact, the introduction of HIV-1 PR inhibitors 
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represented a milestone on AIDS treatment. Since the first HIV-1 PR inhibitor approved by FDA 

in 1995, saquinavir, other nine inhibitors have become commercially available. These drugs are 

competitive inhibitors for the active site of the protease and all of the inhibitors are 

peptidomimetics, with the exception of tripanavir. Peptidomimetic inhibitors bind to the active 

site via an extensive network of hydrogen bonds, thereby mimicking the transition state of the 

substrate, but they are not cleaved due to its hydroxyethylene or hydroxylethylamine core90.  

By preventing the action of the protease, the viral maturation and replication process is 

blocked. Nevertheless, the lack of proofreading activity of reverse transcriptase results on the 

introduction of frequent mutations during reverse transcription of viral RNA to DNA. These 

mutations ultimately lead to several structural changes on HIV-1 PR and, therefore, limits the 

efficacy of currently used protease inhibitors as a result of broad cross resistance91,92. 

However, the large amount of kinetic and crystallographic studies has increased the 

knowledge on enzyme function, structure and catalytic mechanism which led to a better 

understanding of how drug-resistance mutations exert their effects at a molecular level. These 

insights are valuable for the design of new drugs and therapeutic strategies to combat drug 

resistance to AIDS as well as to combat other virus-related human/mammalian malignancies. 

Another example of an AP inhibitor approved by the FDA as a therapeutic agent is Aliskiren, 

a non-peptidic inhibitor of renin which has been used for the treatment of hypertension93. 

Renin participates in the rate-limiting step of the renin-angiotensin system (RAS), by 

hydrolyzing angiotensinogen into angiotensin, which is further converted into angiotensin II by 

the angiotensin-converting enzyme (ACE). Because of renin specificity, their inhibitors are 

potent anti-hypertensive agents similar in action to ACE inhibitors. Furthermore, attempts to 

develop new renin inhibitors have been hampered by the peptidic character of the new 

molecules, which confers low stability and poor oral bioavailability in humans associated with 

higher production costs24.  

Notably, the achievement of selective inhibition of renin and HIV-1 PR has provided an 

unambiguous validation that AP inhibitors can be successful drugs for improving 

human/mammalian condition. Despite this progress, many other inhibitors have failed on 

selectively inhibiting the targeted AP. In fact, several inhibitors of BACE1, cathepsin D or 

plasmepsins developed to date are also potent inhibitors of their counterparts, and thus better 

bioavailability, specificity and potency are needed for maximizing the inhibition of the target 

enzyme without causing toxicity and/or undesired side effects23,24. 
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Evolutionary relationships of aspartic proteases 

Very limited similarities are found in the amino acid sequences of the two homologous 

lobes of pepsin enzymes. Strikingly, the retroviral protease monomer exhibits nearly the same 

three-dimensional organization of a single lobe of pepsins. The most conserved parts 

correspond to those regions in the N- and C-terminal domains of pepsin-like enzymes that are 

related by the interdomain dyad and consist of a combination of secondary structural 

elements that form the psi-loop motif at the active site of APs. Regardless of the differences 

between the interdomain antiparallel β-sheet of pepsin-like APs and the intersubunit β-sheet 

of retropepsin enzymes in number, arrangement and directionally of strands, a detailed 

topological analysis of these structures revealed that A1 and A2 family members share a direct 

structural relationship94. Experimental studies carried out to understand the structural and 

functional relationships among the two families of APs, have shown latter on that dimers of 

the N-terminal lobe of porcine pepsinogen can express some catalytic activity, thereby 

confirming that the interface of the lobes was conserved throughout evolution95.  

Established that the aspartic dyad is located at the interface region and that the viral 

subunits are structurally similar to the N-terminal lobe of pepsin-like enzymes, it became clear 

that the two families are indeed evolutionary related. In fact, it is well-accepted that pepsin-

like enzymes have likely evolved from primordial single lobed APs as a result of a gene 

duplication and fusion event42,95,96. However, the evolutionary relatedness between eukaryotic 

and retroviral APs has been the subject of controversy among experts for many years in regard 

to the nature of the common ancestor. The lack of clear evidences (until recently, as will be 

discussed) for the presence of both bilobal and single lobed APs in prokaryotes have always 

suggested that this gene duplication event would have occurred after divergence of bacteria 

and eukaryotes. In line with this, two main theories have been advanced on how these 

enzymes could have evolved. The first (and most accepted) proposes that retroviral proteases 

may represent a direct precursor of eukaryotic bilobal pepsins and, therefore, the 

homodimeric APs encoded by retroviruses, pararetroviruses and retrotransposons would 

correspond to the most ancestral state of these enzymes (Figure 5); whereas the second 

theory suggests that retroviral proteases may have evolved from the acquisition of a pepsin-

like gene followed by one or more deletion events, similar to certain viral oncogenes that are 

deletion products of cellular proto-oncogenes94.  
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Figure 5. Evolutionary theory of gene duplication and fusion in the origin of pepsin-like enzymes.  
Despite the structural differences and the low sequence identity, it is believed that the (A) pepsin 
and (B) retropepsin families are evolutionarily related since, in both folds, the cleavage site loops 
are homologous, the Asp dyad is located at an interface region, and the viral subunits are 
structurally similar to the N-terminal lobes of pepsin-like family members. (C) According to these 
observations, pepsin-like enzymes have been suggested to have derived from the duplication and 
fusion of a gene encoding a single-lobed AP96. 

Interestingly, this later hypothesis that retroviral proteases may constitute a derived state, 

and likely be the result of a more recent gene transfer, has been recently strengthened by the 

identification of genes encoding single-lobed (retroviral-like) APs in eukaryotes, as well as in 

protozoans and prokaryotes, that are not embedded within endogenous retroviral elements97–

100. 

The Saccharomyces cerevisiae DNA-damage inducible protein 1 (Ddi1) was the first 

identified retroviral-like AP in eukaryotes101. This protein was primarily identified as a 

suppressor of a temperature sensitive mutant of the PDS1 gene, which encodes Pds1p, a key 

regulator of the cell cycle whose ubiquitin-dependent proteolysis initiates anaphase in budding 

yeast. Ddi1 is conserved in all eukaryotes for which sequence information is available, 

including the early-branching protozoans Leishmania and Plasmodium, suggesting that this 

protein may have an ancient, critical function. Bioinformatics methods revealed that Ddi1 and 

its orthologs in Drosophila and Arabidopsis share a common domain architecture, with an 

amino-terminal ubiquitin domain, a central protease domain containing the typical Asp-

Ser/Thr-Gly signature, and a carboxy-terminal ubiquitin associated domain97. In fact, although 

not proven yet to be a protease, the crystal structure of this domain of Ddi1 shows that it is a 

dimer with a fold similar to that of the retroviral proteases, thereby suggesting that Ddi1 may 

function proteolytically during regulated protein turnover in the cell102. More recently, the 
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homologue to the Ddi1 protein from Leishmania major was shown to be an active AP with 

preferential substrate selectivity for the retropepsin family substrates, an optimal activity in 

acidic conditions and an inhibition of BSA degradation under the presence of DAN, pepstatin 

and nelfinavir103. Molecular modeling of the retroviral domain of the Ddi1-like Leishmania 

protein revealed a dimer interface encompassing two Asp-Ser-Gly-Ala amino acid sequence 

motifs, in an almost identical geometry to the displayed by the homologous retroviral protease 

domain of Saccharomyces Ddi1 protein103. 

Skin aspartic protease (SASPase) is another example of a retropepsin that was found to be 

specifically expressed in the stratum granulosum (SG) of the human epidermis100. Using high-

throughput in situ hybridization screening, a mouse homolog of SASPase was also identified as 

an SG-expressing gene104. This retroviral-like AP was only found in mammals, and 

immunoblotting of human and mouse epidermal extracts revealed the expression of two forms 

of the enzyme: the 28 and 14 kDa forms in human and the 32 and 15 kDa forms in mouse. 

Although human and mouse SASPase are predicted to have one transmembrane domain, the 

full-length protein was never detected in epidermal lysates of both species, and therefore, the 

function of the transmembrane domain remains to be elucidated. Nevertheless, it was shown 

that both the human (28 kDa) and mouse (32 kDa) recombinant SASPase forms undergo auto-

activation processing in vitro, similar to other retroviral proteases such as HIV-1 PR, and that 

this cleavage event generates a 14 kDa (human)/ 15 kDa (mouse) derived protease domain. 

Also similar to HIV-1 PR, mouse SASPase displayed an optimal activity pH of 5.77, which 

corresponds to the pH of the upper surface of the epidermis. Human SASPase was also shown 

to be insensitive to pepstatin while auto-activation was inhibited by the HIV-1 PR inhibitor 

indinavir100. More recently, it was observed that SASPase activity is indispensable for 

processing profilaggrin and maintaining the texture and hydration of the stratum corneum, 

thereby preventing fine wrinkle formation100,105. 

Taken together, the recent discovery of Ddi1-like protein from Leishmania major and 

SASPase with their unique properties of auto-activation (in the case of SASPase) and 

subsequent dimerization to form an active enzyme, provide new arguments in favor of a 

homodimeric eukaryotic AP being at the origin of retroviral proteases via horizontal transfer 

from a host at an early stage of eukaryotic evolution, and not the other way around as mostly 

accepted100,103. 
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Solving the crystal structure of the protease encoded by Xenotropic Murine Leukemia 

virus–related virus (XMRV) by Li and colleagues106, also strengthens this link between 

retropepsin-like homologues found in eukaryotes with those found in retrovirus. In fact, 

despite its overall structural similarity to other retropepsins, the XMRV PR displays a novel 

type of dimeric interface. Some structural features of XMRV PR, specially the longer N and C 

termini forming hairpins, clearly defines a more closely resemblance in structure with pepsin-

like enzymes106. In fact, instead of the typical interdigitation of C- and N-terminal β 

strands between subunits of retropepsins, only the C-terminal β-strands of XMRV PR form the 

dimer interface. Accordingly, both C terminus are topologically and structurally equivalent to 

the corresponding C-terminal loops of each domain of pepsin-like enzymes which form a six-

stranded interface, with the difference that in XMRV PR this interface is four-stranded106. 

Together with other unique features, these observations suggest a closer resemblance of 

XMRV PR over other retroviral proteases to the putative common ancestor of pepsin and 

retropepsin-like enzymes, thereby supporting the theory that single-chain pepsin-like APs 

arose by gene duplication and divergence106. 

 

As previously mentioned, APs were always assumed to be restricted to eukaryotes and 

viruses. However, the observations of Rawlings and Bateman16 started changing this paradigm 

by proposing that the pepsin family of peptidases was not just confined to eukaryotes, but also 

present in bacteria. Through genomic sequence analysis, proteins bearing the characteristic 

hallmark features of the pepsin family were found in seven genomes of bacteria that belong to 

the class γ-proteobacteria: Colwellia psychrerythraea, Marinomonas sp. MWYL1, Shewanella 

amazonensis, Shewanella denitrificans, Shewanella loihica, Shewanella sediminis and 

Sinorhizobium medicae. These bacterial homologues were predicted to be structurally similar 

to pepsin, consisting of two lobes each of which bearing one active site Asp. The 

experimentally validation for these observations was latter given by Simões and colleagues, 

which have expressed in E. coli the AP gene from Shewanella amazonensis, named shewasin 

A17. This pepsin-like enzyme exhibits activity at acidic pH against a well-documented AP 

substrate, preferentially between hydrophobic amino acids, and is inhibited by pepstatin. 

Contrary to its closest eukaryotic homologues, shewasin A do not require a propeptide or 

signaling sequence for correct folding or secretion to the periplasm. The detailed biochemical 

characterization of recombinant shewasin A together with its positioning close to the 

divergence of the two subfamilies on the phylogenetic tree, has clearly demonstrated that this 

bacterial AP is strongly reminiscent of its eukaryotic counterparts16. 
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These important observations have raised the discussion on the evolutionary relationships 

between bacterial and eukaryotic pepsin-like APs, by suggesting that bi-lobal pepsin-like 

proteases may have evolved from a primordial homodimeric AP before divergence between 

eukaryotes and prokaryotes, through the proposed duplication and fusion events42. In line with 

this view, single lobed APs would also have to be present in bacterial organisms (raising again 

the discussion whether retroviral retropepsins might represent a derived state). In this regard, 

the identification of two bacterial proteins SpoIIGA98 and Perp99, exhibiting the catalytic 

determinants resembling those of the retropepsin type, have provided the first evidences to 

support this hypothesis. SpoIIGA, a novel type of AP, has been identified in Bacillus species as 

required for processing of pro-σE to σE factor in endospore formation of Bacillus subtilis98. 

According to the authors, this membrane-embedded protein shares structural features with 

the HIV-1 PR in the C terminus region and this domain was assumed to be active as a dimer 

because of the presence of a single Asp-Ser-Gly motif. However, as previously argued for other 

proteins16, this alone appears insufficient to include SpoIIGA in the retropepsin family because 

the same motif occurs around the active site Asp residue of the serine-type peptidase 

subtilisin. Furthermore, since no enzymatic characterization is yet available, it has been highly 

controversial to consider the existence of one AP catalytic sequence motif by itself as a strong 

evidence to prove the existence retroviral proteases in prokaryotes98. For this reason, SpoIIGA 

has been accepted in the MEROPS database as a new family of APs (A36). 

Almost at the same time, another protease named PerP, was identified by Chen and 

colleagues and was also suggested to belong to the retropepsin family99. This periplasmic 

protease removes a C-terminal peptide producing a truncated form of PodJ (a polar factor that 

recruits proteins required for polar organelle biogenesis to the correct cell pole), important in 

the sessile phase of the cell cycle of Caulobacter crescentus to recruit components for stalk 

assembly99. PerP was identified as containing a putative signal sequence or membrane anchor 

at its N terminus and a conserved AP catalytic motif Leu-Val-Asp-Thr-Gly-Ala in its periplasmic 

domain99. Even though no reference was made regarding its classification and no enzymatic 

characterization has been provided, the existence of a single catalytic aspartate residue 

assumed to be the active site residue, prompted the classification of PerP on MEROPS 

database as a novel family of APs – family A32 (Clan AA). 

Overall, due to the absence of characterization assays of SpoIIGA and PerP proteins, further 

investigations are still required to identify a functional retropepsin in bacteria and thus provide 

the unequivocal evidences that the hypothetical gene duplication and fusion events (that may 

have given rise to bi-lobal pepsin-like enzymes), have indeed preceded the most recent 

common ancestor of prokaryotes and eukaryotes. 
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1.2. Rickettsiae and Rickettsioses 

Rickettsiae are a diverse group of organisms, some of which causing mild to severe 

infection diseases in humans and animals, such as Rocky Mountain spotted fever (RMSF) and 

Mediterranean spotted fever (MSF). They are genetically related α-proteobacteria with 

fascinating obligatory intracellular lifestyle and are maintained in nature through a cycle 

involving reservoir in mammals and arthropod vectors107. The impact of these pathogens in 

public health is largely unmeasured, but assumed to be fairly high worldwide. In fact, over the 

last years there has been a growing concern about rickettsial diseases and their impact on 

global health as members of the genus Rickettsia have been identified together with other 

bacteria as emerging/re-emerging pathogens, responsible for the majority of infectious 

diseases on the last 60 years108,109. Rickettsia are life-threatening pathogens not only due to 

their highly virulent properties but also due to a set of unique biological characteristics, such as 

environmental stability, aerosol transmission, persistence in infected hosts and low infectious 

dose, which makes them a potential powerful biological weapon110,111.  

Being rickettsiae the causative agents of the some of the most severe human infections, 

with sophisticated and highly effective pathogenic strategies, they have been the target of 

many studies. As a result of this, important progresses in research into genomics and 

pathogenesis of these bacteria as well as regarding the immune responses to these 

microorganisms have been made. This section presents a revision on the current knowledge of 

the pathogenicity developed by Rickettsia throughout evolution. 

Bacteriology and Epidemiology 

Bacteriology 

Rickettsiae represents a large and metabolically diverse group of gram-negative bacteria 

that have the capacity to infect and replicate in the cytosol and occasionally in the nucleus of 

vertebrate cells (e.g., endothelium, vascular smooth muscle, and macrophages) and 

invertebrate cells (e.g., hemocytes and salivary gland epithelium)112,113. These small (0.8–2 µm 

x 0.3–0.5 µm), non-motile, short rod-shaped, coccobacillary gram-negative bacteria divide by 

transverse binary fission and stains poorly with conventional Gram techniques, but retain basic 

fuschin when stained using the Gimenez method110,114.  
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Epidemiology 

Rickettsioses represent some of the oldest recognized pathologies transmissible from 

animal to humans, many of them causing mild to fatal diseases. Despite being longstanding 

diseases, it was not until the early part of the 20th century that the first report was given by 

Howard T. Ricketts for the involvement of a transmissible Rickettsia causing RMSF115. The 

investigations carried out in the Bitterroot Valley of Western Montana have been stimulated 

by the spring seasonality and high incidence of this severe disease (known locally as “spotted 

fever”), with a case-fatality rate as high as 64%. Throughout history, rickettsioses have played a 

significant role on Western civilization causing more deaths than all the wars combined and 

accounting for 22.8% of deadly emerging infectious diseases in humans, in the absence of 

timely and appropriate antibiotic treatment (Table 3)109,116.  

Epidemic typhus is one of the most dangerous arthropod-borne disease affecting mankind 

with a widespread occurrence and mortality rates ranging from 10 to 60%117. From the 15th 

through 20th centuries, epidemic typhus has killed millions of people, particularly during or 

immediately after World Wars I and II, thus affecting the course of European history118. 

Transmission of the agent by the human body louse was proven by Nicolle in 1909119,120, and in 

1916 Da Rocha-Lima proved that Rickettsia prowazekii was the etiologic agent121.  Epidemic 

typhus has re-emerged fairly recently in louse-infested populations, particularly in developing 

countries with a context of socio-political instability, famine, civil wars or natural disasters108. 

In this perspective, the threat of louse-borne typhus is still real and because R. prowazekii is a 

potential bioterrorism weapon with an infectious dose lower than 10 organisms, this pathogen 

has been classified as a category B NIAID (National Institute of Allergy and Infectious Diseases) 

Priority Pathogen, whereas the other rickettsiae fall in category C108,113. 

Like epidemic typhus, RMSF is also a highly virulent human infection, with significant 

morbidity and mortality, and potentially fatal even in healthy young individuals. RMSF is 

caused by Rickettsia rickettsii, a member of the spotted fever group (SFG) of the genus 

Rickettsia.  The principal vectors of RMSF in the United States are Dermacentor variabilis and 

Dermacentor andersoni, which are most active during late spring and summer, when RMSF 

peaks. Cases of RMSF have been reported in 48 states, but 64% of these cases were reported 

from only five states: North Carolina, Oklahoma, Arkansas, Tennessee and Missouri122. R. 

prowazekii is capable of surviving within infected individuals for the lifetime of the host and, 

under extreme stress conditions, these latent bacteria can become active and cause a 

relapsing form of epidemic typhus known as Brill-Zinsser disease123.  
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Table 3. Rickettsial diseases in humans. Adapted from Walker and Ismail108. 
 

Disease Organism Arthropod vector Life cycle Geographic 
area 

Symptoms 
of fever 

Mortality 
rate * 

Rocky 
Mountain 
spotted fever 

R. rickettsii Dermacentor 
variabilis, 
Dermacentor 
andersoni, 
Rhipicephalus 
sanguineus, 
Amblyomma 
cajennense and 
Amblyomma 
aureolarum 

Transovarial in 
ticks and rodent 

Western 
hemisphere 
 

Yes High 

Boutonneuse 
fever 

R. conorii Rhipicephalus 
sanguineus and 
Rhipicephalus 
pumilio 

Transovarial 
in ticks 

Southern 
Europe, Africa 
and southern 
Asia 

Yes Mild to 
moderate 

African Tick 
Bite 
fever 

R. africae Amblyomma 
hebraeum and 
Amblyomma 
variegatum 

Transovarial 
in ticks 

Africa and the 
West Indies 

Yes None 
reported 

Maculatum 
disease 

R. parkeri Amblyomma 
maculatum and 
Amblyomma 
triste 

Ticks Western 
hemisphere 

Yes None 
reported 

Flea-borne 
spotted fever 

R. felis Ctenocephalides 
felis 

Transovarial 
in the cat flea 

Worldwide Yes None 
reported 

Murine 
typhus 

R. typhi Xenopsylla 
cheopis and 
Ctenocephalides 
felis 

Rat-flea for 
Xenopsylla 
cheopis 
and 
opossum flea 
for C. felis 

Worldwide Yes Low 

Epidemic 
typhus 

R. prowazekii Pediculus 
humanus 
humanus 

Human louse Worldwide Yes High 

Epidemic 
typhus 

R. prowazekii Fleas and lice of 
flying squirrels 
and Glaucomys 
volans volans 

Flying-squirrel 
flea and louse 
ectoparasite 

United 
States 

Yes Low 

Rickettsialpox R. akari Liponyssoides 
sanguinus 

Transovarial 
in mites 

Worldwide Yes None 
reported 

*High mortality is >15%; moderate mortality is 7–15%; mild-to-moderate mortality is 2–7% and low mortality is ≤1%. 

 

Transmission of rickettsial diseases by previously unknown and unexpected arthropod 

vectors further demonstrates the ability of the pathogen to adapt to new ecological niches and 

maintain virulence124. Other factors that might be contributing to the emergence and global 

spread of rickettsioses include the increasing proximity of human and animal populations 

which is the result of the human population growth and their mobility for socioeconomic, 

cultural and recreational purposes125,126.  

Even though more than one century has passed since the first description of RMSF, the 

majority of the newly identified species and subspecies of rickettsiae have been described as 

emerging pathogens to humans only over the past 30 years109. Owing to the improved 
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diagnostic methods and increasing interest, rickettsiae are now recognized in all parts of the 

world in endemic foci with sporadic and often seasonal outbreaks: R. japonica in Japan and 

Korea; R. honei in Australia and Southeast Asia; R. africae throughout sub-Saharan Africa and 

in the French West Indies; R. felis globally; R. sibirica mongolo-timonae strain in Asia, Europe, 

and Africa; R. parkeri in North and South America; R. heilongjiangensis in northeastern Asia; R. 

aeschlimannii in Africa; and R. helvetica and R. canadensis also suspected to be human 

pathogens110. In recent years, a number of new Rickettsia spp. has been discovered in Europe, 

some of which have been shown to be pathogenic to humans. MSF (also known as 

boutonneuse fever), the most common and well characterized rickettsial human disease in the 

Mediterranean region, is a tick-borne rickettsial disease caused by Rickettsia conorii and 

transmitted by Rhipicephalus sanguineus ticks. In general, MSF is considered to be a milder 

rickettsial disease with a lower mortality rate than RMSF127, but the increasing geographic 

distribution (Southern Europe, North and West Africa, India, Pakistan, Israel, Russia, Georgia, 

and Ukraine) and severity have raised important concerns about human infections caused by 

R. conorii128. In 1997 in Beja, a Portuguese Southern district with climatic conditions favorable 

to R. sanguineus, the mortality rate in hospitalized patients with MSF was the highest ever 

obtained since 1994 (32.3%)129,130. Including R. conorii, eight tick-borne species or subspecies 

within SFG have been reported as emerging pathogens in Eastern and Southern Europe131. 

Moreover, of the non-tick-borne species, R. felis, associated with cat fleas, is also an emerging 

human pathogen132,133 and the mite-transmitted R. akari, the agent of Rickettsialpox, is known 

to be prevalent in Europe too131. 

Phylogenomics 

Taxonomy and Phylogeny 

The genus Rickettsia is included in the bacterial tribe rickettsiae within the family 

Rickettsiaceae in the order Rickettsiales, a highly diverse collection of early-branching lineage 

of the α-proteobacteria. Some members of the genus Rickettsia are recognized human 

pathogens, while others should preferentially be considered as species or strains of unknown 

pathogenicity than as nonpathogenic, particularly when associated with arthropods able to 

bite humans134. 

The proliferation of named species over the past three decades has generated controversy 

among rickettsiologists regarding the appropriate taxonomy of Rickettsia spp. As for other 

prokaryotes, traditional phylogenetic studies of Rickettsia were based on the comparison of 
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morphological, ecological, epidemiological and clinical characteristics to differentiate and 

describe new bacterial species. Members of this genus have classically been separated into the 

SFG and those from the typhus group (TG), based on the differences in the diseases they 

cause, differences in their antigenicity to lipopolysaccharide and outer-membrane proteins 

(rOmpA and rOmpB), and on the ability to promote intracellular actin-based motility135–137. 

However, phylogenetic relationships based on these criteria were highly unreliable and some 

Rickettsia spp. did not fit well within this grouping. Moreover, given the strictly intracellular life 

of rickettsiae, and thus the few phenotypic characters expressed, other traditional 

identification methods used in bacteriology were not applicable to Rickettsia spp.  The advent 

of molecular methods has deeply modified the definition of ‘‘Rickettsia’’ and has allowed new 

taxonomic and phylogenetic inferences. The considerable sequencing efforts over the last 20 

years have culminated in the annotation of 63 complete genomes of Rickettsiales validated 

species, many of which cause diseases in humans and animals109. Further extensive work from 

various research groups, primarily using comparative analysis of gene sequences, have 

significantly contributed for a reliable estimation of evolutionary relationships of species of the 

order Rickettsiales and for the identification of relationships between genotype and 

phenotype, one of the major goals of the genomics era138–140. The 16S rRNA gene (rrs) was the 

first gene used on comprehensive phylogenetic studies of the Rickettsiales, which have 

resulted on a contemporary classification that differs greatly from the traditional classification 

scheme141. Comparative analysis based on this gene sequence have shown that several of the 

bacteria classified in the order Rickettsiales, like Rickettsiella grylli, Coxiella burnetii and 

Eperythrozoon spp., do not belong to the α-proteobacteria subclass142. Additionally, many 

bacteria belonging to the order Rickettsiales have been reclassified into the three major 

families Holosporaceae, Anaplasmataceae and Rickettsiaceae, with the latter separated into 

two recognized genera: Rickettsia and Orientia136,143–145.  

Nevertheless, the 16S rRNA gene sequences were shown to be highly conserved within the 

genus Rickettsia and, therefore, significant inferences about intragenus phylogeny were not 

possible although these have confirmed the evolutionary unity of the genus146. As 

progressively more genes have been sequenced, molecular methods involving comparison of 

multiple genes have been developed, but it was only in 2003 that the first widely recognized 

molecular criteria for the speciation of Rickettsiae was published147. According to these genetic 

guidelines, a new isolate is classified as a new Rickettsia sp. when it has no more than one 

value above the following nucleotide sequence similarities by comparison with any validated 

Rickettsia spp.: ≥99.8 and ≥99.9% for rrs and gltA genes, respectively, and when amplifiable 

≥98.8, ≥99.2, and ≥99.3% for rOmpA, rOmpB and gene D, respectively147. Since then, other 
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multigenic approaches have been updated to include genes such as atpA, recA, virB4, dnaA, 

dnaK, rrl, combined with other characteristics such as DNA-DNA homology, G+C content, and 

single-nucleotide polymorphisms and multi-spacer typing analysis142. The use of these genetic 

criteria to the available rickettsial genome sequences consistently supported the revision of 

the long-standing classification of Rickettsia into either the TG or SFG. According to this 

revision, the TG is represented by only two species, the highly pathogenic and insect-

associated R. prowazekii and R. typhi, which are the etiological agents of epidemic and murine 

(or endemic) typhus, respectively. In contrast, the SFG exhibits a marked expansion, 

comprising all rickettsial tick-borne virulent species, some of which being the causative agents 

of well-known tick-borne diseases, such as RMSF (R. rickettsii) and MSF (R. conorii)148. Even 

before gene sequencing, numerous studies based on molecular data have already shown that 

R. canadensis and R. bellii were the most divergent species within rickettsiae, clearly 

suggesting that they did not belong to any of the traditional groups but rather to a basal 

lineage142. Subsequent DNA sequencing revealed that these two species of unknown virulence 

possess larger genomes than the other rickettsial species sequenced so far and exhibit little 

colinearity with any of them. Further analysis of these genomes also suggested that these 

species may have retained several ancestral features lost in other lineages in the course of 

evolution, supporting the creation of the ancestral group (AG)149. Recent phylogenomic 

analysis have also revealed a distinct lineage that shares immediate ancestry with the 

members of the SFG, which has been named the transitional group (TRG)150. This sister clade of 

SFG includes the species R. felis, R. akari and R. australis, as well as symbionts of wasps 

(Liposcelis spp.), booklice (Neochrysocharis spp.)113,151 and the mite Ornithonyssus bacoti152. 

One particular feature of this group is the tendency for its members to be associated with non-

tick arthropod hosts143. 

Regardless all the aforementioned advances in serotyping and molecular genotyping of 

rickettsial species isolated from defined geographic locations, this taxonomic classification of 

Rickettsia into four groups (Figure 6) is still not consensual and alternative phylogenomic 

classifications have been proposed with the inclusion of several other distinct genetic 

groups143,153. The major issue is still the lack of universal consensus on the criteria that should 

be used for the designation of species, remaining unclear whether many of the new isolates 

described in recent years should be classified as new species or even subspecies, as they vary 

much less from one another than the species of other bacterial genera 110,154,155. 
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Figure 6. Phylogenetic tree classification of Rickettsia spp. according Gillespie and colleagues143. 
Phylogenomic analysis supported the reclassification of Rickettsia spp. into four groups: ancestral 
group (AG), typhus group (TG), transitional group (TRG) and spotted fever group (SFG). 

Important evolutionary inferences have also emerged by comparing the sequences of 

rickettsial spp. and mitochondrial genes139. These phylogenetic studies have revealed that 

Rickettsia are more closely related to mitochondria than any other bacteria with a sequenced 

genome, with speculation that they evolved from a common ancestor139. Therefore, an  

important link has been established between Rickettsiales and the eubacterial ancestor of the 

mitochondria, although the placement of the latter within the eubacterial tree is still a subject 

of controversy139,156. As a matter of fact, despite several phylogenetic inferences have placed 

the mitochondrial ancestor within or basal to the Rickettsiales, and some specifically within the 

Rickettsiaceae157, the most robust and accepted analysis placed the mitochondria as a sister 

taxon to Rickettsiales and Anaplasmataceae156. 

Genomics 

Genomic research allied with studies on bacterial pathogenesis have uncovered noteworthy 

aspects of pathogen biology, such as the three main forces that shape the evolution of 

bacterial pathogens: gene gain, gene loss and gene change158. In this respect, the ever-

increasing number of rickettsial sequenced genomes highlight unique characteristics among 

bacterial genomes, becoming an excellent model to investigate the process of reductive 

evolution159. In fact, while the most common prokaryotic genomes remain about the same size 
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despite the acquisition of new genes over time by lateral gene transfer (gene gain must be 

balanced by gene loss), obligate intracellular bacteria such as Chlamydia, Ehrlichia, 

Mycoplasma, Spirochaetes, and Rickettsia have much more reduced genome sizes compared 

to their nearest free-living relatives. These organisms have undergone considerable genome 

downsizing as the result of the degradation and reduction of originally ancestral non-pathogen 

genomes, which invariably accompanied the adaptation to parasitic/symbiotic lifestyles139. In 

addition to the unusual G+C content of approximately 30%142, investigations on a variety of 

hosts including non-hematophagous insects, amoebae and leeches, have revealed that 

Rickettsia genomes present substantial inter-species variations in size (1.1 Mb for the TG, 1.2-

1.4 Mb for the SFG and 1.5 Mb for R. bellii) and gene content (about 900–1500 genes)160,161. 

These studies provide a strong indication that the rickettsial ancestral initiated intracellular 

parasitism in unicellular eukaryotes like amoebae and later adapted to multicellular 

eukaryotes142. The specialization to multicellular eukaryotes and latter to distinct arthropod 

hosts has been proposed to coincide with the beginning of rickettsial genome reduction and 

diversification. The fact that the obligate amoebal symbiont related to chlamydia has a large 

genome (2.4 Mb) compared to the related obligate intracellular human/animal pathogens (~1 

Mb), exemplifies the importance of this type of host transition on the genome size159,162. 

The reductive evolution of Rickettsia genomes is mainly justified by the presence of 

orthologous genes in the host cells that compensate for the function of those rickettsial genes 

that have been discarded; a particular example are genes necessary for metabolite synthesis 

given the ability of bacteria to import proteins or metabolite products of the host genes159,163. 

Eventually, the replacement of many biosynthetic pathways present in free-living bacteria by 

transport systems in Rickettsia have resulted in a complete dependence upon the host cell for 

survival163. Also, it has been shown that the rate of sequence divergence, gene loss and 

genome rearrangements are tremendously variable throughout the various Rickettsia lineages, 

reflecting the intricate effects of specialization to distinct arthropod hosts as well as crucial 

alterations of the gene repertoire, including the amplification of mobile genes and the losses of 

DNA repair genes159.  

Horizontal gene transfer is a common event between prokaryotic organisms. Nevertheless, 

likely due to their strictly intracellular life cycle, rickettsiae minimize their exposure to 

horizontally transferred DNA, either with bacteriophages and transposons or with other 

species of bacteria, thereby exhibiting a low number of gene transfers and genome 

rearrangement142. Without exposure to such genetic parasites, there are no benefits of having 

a high chromosomal deletion rate. As a result, even under the ongoing process of genome 

reduction, the high number of split genes in these taxa reflect a reduction in the overall rates 
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of chromosomal deletion164. Indeed, while in most bacteria the noncoding DNA or 

pseudogenes represents 10% of the genome, in the case of some rickettsial species this value 

can reach 24% (R. prowazekii)165. The few evidences for lateral gene transfer in Rickettsia have 

been provided by genome analyses through the identification of a large fraction of mobile 

genetic elements, including plasmids142,160. The presence of a conjugative plasmid in an 

intracellular bacterium has been first found on R. felis, suggesting that conjugation could play a 

role in the evolution of rickettsial genomes150. Plasmids have since been detected in R. 

helvetica, R. peacockii and R. massiliae along with a number of non-validated species166.  

In conclusion, the relatively low rate of lateral gene transfer and the continuous gene loss 

have resulted in highly conserved genomes exhibiting similar gene synteny and content, which 

has been related with a higher virulence of some Rickettsia spp.136,159,162,163. The development 

of new tools for comparative genomics has been critical to unveil many core genes encoding 

potential bacterial virulence factors, thereby providing important insights into the role of many 

proteins in pathogenesis139,160,167. 

Pathogenesis 

Understanding the pathogenic steps of rickettsioses is essential for innovative interventions 

to halt disease progression. In this regard, several virulent factors have been identified over 

the last decades aided by the development of valuable tools in genomics and proteomics 

fields. The concept pathogenesis comprises three components: the sequence of events from 

transmission until immune clearance of the agent; the host–pathogen interaction from the 

cellular level to the whole patient; and the pathogenic mechanisms of cellular and tissue 

injury. In general, Rickettsia pathogenesis involves the following steps: transmission, entry in 

the organism, initial spread to other organs beyond the point of entry, adherence to and 

invasion of target cell, survival within the host, which implies evasion of the host defenses and 

adaptation to the host environment, and extension of the niche through modulation of host 

biology, multiplication and survival168–171. 

Life cycle 

Transmission vectors 

As Anaplasma and Ehrlichia, Rickettsia have arthropod hosts (e.g., ticks, mites, fleas or lice) 

which serve as the biologic vector that transmits the pathogens to animals and humans. The 
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association of rickettsial species with obligate blood-sucking arthropods denotes the highly 

adapted end-product of years of biologic evolution. In light of these associations, which are 

characterized by efficient multiplication, long-term maintenance, transstadial and transovarial 

transmission, and ecologic and extensive geographic distribution, one can explain the 

rickettsial genetic conservation due to the ecologic separation and reduced selective pressure 

(Table 3)112,172. 

Although rickettsiae are maintained in nature within arthropod vectors, they frequently 

infect vertebrates, thereby allowing new lines of vectors to acquire infection from the infected 

hosts. The involvement of vertebrates is variable and in most cases humans are not essential in 

the rickettsial cycle. Only recently it was found that most arthropod Rickettsia are basal to the 

vertebrate Rickettsia and that the Rickettsia associated with leeches, protists and freshwater 

environments fall into two phylogenetic groups, distinct from the arthropod and vertebrate 

groups113,153. Ticks belonging to the family Ixodidae are the primary vector and reservoirs, and 

can also act as amplifiers of SFG Rickettsiae and R. canadensis. Although members of SFG are 

mainly associated with ticks, they can also associate with fleas and mites148. The specificity of 

association of these group of Rickettsiae with a particular tick species has been difficult to 

characterize, in particular regarding to how long a tick species has been associated with a 

rickettsial species and consequently if coevolution has followed109. However, different studies 

have already revealed that the relationship between SFG Rickettsiae and arthropods is 

relatively tick-specific. For example, some Rickettsiae such as R. rickettsii, may associate with 

ticks from different genera, whereas others such as R. conorii, appear to be associated with 

only one tick species. Between these extremes, there are few Rickettsiae which are associated 

with several tick species within the same genus, such as the association of R. africae and R. 

slovaca with various Amblyomma spp. and Dermacentor spp., respectively173. In contrast to 

SFG members, the primary vector of R. prowazekii transmission is the human body louse 

(Pediculus humanus corporis), although the presence in Ambyomma ticks is still undefined. 

Finally, fleas are the best known vectors of R. typhi and R. felis and mites are recognized 

vectors of R. akari and O. tsutsugamushi.   

Mechanisms of infection 

Rickettsioses are considered zoonotic diseases because they are transmissible from animal 

to humans and are considered vector-borne zoonoses due to the transmission by an assorted 

range of arthropods107. Rickettsia are stably maintained in nature in hematophagous arthropod 

vectors, but unstable when separated from host components. Nevertheless, as part of their life 



Chapter I 

34 
 

cycle, some species can also switch between arthropods and other secondary hosts, typically 

vertebrates (rodents, cattle, humans), while many other Rickettsia are found exclusively in 

arthropods with no known secondary host172. The host-preference patterns and modes of 

transmission are related to the infectious mechanism in the invertebrate host and, therefore, 

their geographic distribution is often determined by that of the infected arthropod134. 

With the exception of epidemic typhus, where humans play a crucial role in the life cycle of 

bacteria, usually rickettsiae do not infect humans during their natural cycles between 

arthropod and vertebrate hosts109,174. Their transmission to humans occurs accidentally 

through either direct inoculation into the skin of the host, from the feeding tick or mite’s saliva 

during its blood meal, or contamination of broken skin and mucosal surfaces by feces of 

infected fleas or lice. Therefore, most rickettsial infections will not be transmitted from human 

to human or from human to non-human mammals.  

It is widely believed that the infected insect feces are auto-inoculated into the skin of 

humans by scratching the skin irritated by the bite. Interestingly, extracellular R. prowazekii in 

louse feces and R. typhi in flea feces are stable and highly infectious, with the ability to survive 

within the feces for several weeks, if not longer171. Other forms of potential transmission of 

infectious Rickettsiae include the inoculation via rubbing the mucous membranes (e.g., 

conjunctiva) or via inhalation of aerosols. In fact, some tick-borne rickettsioses are transmitted 

by transfer of rickettsiae to the conjunctiva by fingers contaminated with infectious tick 

hemolymph or organs after crushing a tick that has been removed from a person or animal. 

Furthermore, aerosol transmission has been demonstrated experimentally to be very efficient, 

requiring 1000-fold fewer inhaled rickettsial organisms than anthrax spores111. 

 

Even though the knowledge about the life cycles of most tick-borne rickettsiae is still 

scarce, investigations over the last few years have suggested that the transmission of bacteria 

can be vertical, horizontal or both. In general, Rickettsia pathogenic species are transovarially 

transmitted (vertical transmission) to the next generation from infected tick female to 

offspring via the eggs, which allows many rickettsiae to be maintained in their arthropod hosts 

through generations (Figure 7)175,176. Another type of vertical transmission, the transstadial 

passage, in which the infection is maintained throughout different stages of the tick life cycle 

(from egg to larva to nymph to adult), is a necessary component for the vector competence of 

the ticks. When rickettsiae are transmitted efficiently both transstadially and transovarially in a 

tick species, it will serve as a reservoir of the bacteria and the distribution of the rickettsioses 

will be identical to that of its tick host173. For example, R. slovaca and R. rickettsii multiply in 

almost all organs and fluids of its tick host, particularly in the salivary glands and ovaries, which 
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enables transmission of rickettsiae during feeding and transovarially, respectively177,178. 

Interestingly, recent studies of interspecies competition between different rickettsiae have 

shown that infection of a tick with one rickettsial species might alter the molecular-expression 

profiles of the oocytes, which interferes or block the infection by a second rickettsial 

species176. A last proposed mechanism of tick infection is horizontal transmission that is the 

acquisition of the bacteria by uninfected ticks feeding on infected animals113,178. As 

demonstrated with R. conorii, a particular type of horizontal transmission is co-feeding, which 

occurs when the uninfected vector gets infected through direct spread of bacteria from an 

infected tick during feeding at closely situated bite sites179.  

In contrast to most tick-borne rickettsiae, which are probably maintained in nature by all 

these mechanisms, flea- or louse-borne rickettsiae are not transmitted transovarially because 

they kill the vector that carries it. Thus, these bacteria have mammal reservoirs (humans for R. 

prowazekii, rodents for R. typhi, and cats for R. felis)180 which directly spread bacteria by 

horizontal transmission. The fact that R. prowazekii is not motile can explain why it does not 

spread in its vector and why is the only Rickettsia sp. unable to be transmitted transovarially to 

its progeny in its vector181. 

 

Figure 7. SFG Rickettsia’s life cycle. The figure shows the transovarial and transstadial passage 
of SFG Rickettsia in the tick vector, as well as the horizontal transmission. Humans become 
incidental hosts after being bitten by an infected adult tick. Image from Walker and Ismail108. 

Virulence 

Infectious diseases are major threats to human health worldwide and, in consequence, 

remarkable efforts have been dedicated into understanding numerous infectious agents and 

their pathogenic mechanisms. As most intracellular pathogens, rickettsiae developed highly 

specialized mechanisms to enter cells, cross cellular and biochemical barriers, and to overcome 
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specific responses from the host organism. Many of these pathogenic steps are now firmly 

established and are the subject of the following sub-section. 

Invasion 

Because Rickettsia cannot replicate extracellularly within the mammalian host, these 

pathogens have developed sophisticated mechanisms to aid their adherence, replication 

and/or dissemination within nonphagocytic mammalian cells. Different studies have 

demonstrated that these three steps of bacterial infection are distinct events that are 

governed by specific protein-protein interactions at the pathogen-host cell interface. As with 

other pathogenic bacteria, the successful establishment of a rickettsial infection is highly 

dependent on the adherence to the host cell through an effective recognition and interaction 

of conserved rickettsial outer membrane-associated proteins with specific cellular receptors 

from the cells of the host, leading to eukaryotic downstream signaling and ultimately bacterial 

uptake169. 

A bioinformatics analysis of several sequenced rickettsial species, identified a family of at 

least 17 predicted outer surface proteins designated Sca (surface cell antigen) proteins that are 

predicted to encode proteins with homology to the autotransporter proteins of gram-negative 

bacteria182. Among these, the genes encoding rOmpA (Sca0), Sca1, Sca2, and rOmpB (Sca5), 

are conserved across the SFG183–186, whereas the TG rickettsial species lack rOmpA and Sca2 

gene appears to be fragmented in many of TG members182. Analysis of the amino acid 

sequence of these autotransporters highlighted a three domain organization for some 

members of this family: an N-terminal leader sequence that mediates transport across the cell 

membrane, a central passenger domain, and a C-terminal transporter sequence that is 

inserted as a β-barrel into the outer membrane to transport the passenger domain to the 

outer surface of the cell wall. Importantly,  some of these proteins such as rOmpA and rOmpB, 

are translated first as preproteins and then processed to release the passenger domain from 

the β-barrel translocation domain, through a mechanism that is not clearly understood183–

185,187. 

rOmpB, the most abundant rickettsial surface protein, has been shown to be highly 

conserved within either closely and distantly related rickettsial species, suggesting a similar 

function in the progression of different rickettsial diseases188. Chan and colleagues186 have 

elucidated one major role for rOmpB during rickettsial infection using E. coli cells expressing a 

recombinant form of this protein. With this system, it was revealed that rOmpB from R. conorii 

and R. japonica are sufficient to trigger the adhesion and promote the bacteria uptake by 
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nonphagocytic cells186,189. It was also found that the invasion process via rOmpB protein begins 

with the specific attachment to Ku70, a host cell protein that spans the membrane, leading to 

the recruitment of additional Ku70 molecules to the cell membrane, where further rOmpB 

binding occurs. The importance of rOmpB-Ku70 interaction was further confirmed by depleting 

Ku70 from mammalian cells, which were not permissive for bacterial invasion186. Despite this 

recognized role of rOmpB in rickettsial invasion process, studies involving the inhibition of 

rOmpB-Ku70 interaction disrupted R. conorii invasion of mammalian cells by approximately 

50%, clearly suggesting that other surface proteins also contribute to this process188,190. So far, 

using similar approaches to examine the contribution of other proteins to early interactions of 

Rickettsia-target cells, rOmpA and Sca2 were also shown to mediate the attachment to host 

cells and to trigger rickettsial invasion, while Sca1 appears to be only capable of mediating the 

adhesion to mammalian cells183–185. Additional rickettsial adhesion proteins, encoded by the 

genes RC1281 and RC1282 in R. conorii, have also been proposed to be involved in bacterial 

adhesion and entry into the host cells191. 

 

Once attached to endothelial cells, signal transduction leads to actin rearrangement and to 

the actively internalization of Rickettsia pathogens in phagosomes, by a process defined as 

“induced phagocytosis”. An electron microscopy analysis of rickettsial entry suggested that 

rickettsial invasion of normally non-phagocytic cells is morphologically and mechanistically 

related to a “zipper-like” invasion strategy. Contrary to the trigger mechanism, the alternative 

pathway utilized by other invasive bacteria, in the zipper mechanism specific bacterial 

receptor-ligand interactions (e.g., rOmpB-Ku70) induce focal actin recruitment and progressive 

apposition of the plasma membrane over the bacterium170,192. An investigation into the 

molecular details responsible for the remodeling of the actin cytoskeleton during bacterial 

entry into host cells, revealed that R. conorii recruits components of the Arp2/3 complex to the 

site of entry foci169. Different approaches used to disrupt signaling pathways that directly or 

indirectly activate the Arp2/3 complex revealed that R. conorii utilizes pathways involving 

Cdc42, phosphoinositide 3-kinase, c-Src, cortactin and other protein tyrosine kinase activities 

to enter non-phagocytic cells169. Ubiquitination of Ku70 via c-Cbl and the involvement of 

clathrin and caveolin 2  implicate the host endocytic machinery in the invasion pathway (Figure 

8)190.  
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Figure 8. Adhesion and invasion mechanisms of SFG rickettsiae. SFG rickettsiae adhere to host cell 
membrane through interaction of rOmpB with its membrane embedded receptor, Ku70. Besides 
this interaction it has also been proved that Sca2 is involved in this process, being its receptor still 
unknown (black box). There are some evidences that despite acting in different cell receptors, 
both rOmpB and Sca2 trigger a signal cascade ultimately converging to localized recruitment of 
actin filaments and endocytic machinery (clathrin, caveolin-2 and c-Cbl) to entry into the host 
cell. Image from Cardwell and colleagues185. 
 

Phagosomal Escape 

Following internalization of rickettsiae, bacteria must escape from phagosome into the 

cytoplasm prior to phagolysosomal fusion, thereby avoiding exposure to lysosomal enzymes. 

This mechanism has been suggested to be dependent on proteins with membranolytic activity 

that can digest the host cell phagosomal membrane, including phospholipase A2 (PLA2), 

hemolysin C (Tlyc) and phospholipase D (PLD)193. PLD from R. conorii and R. prowazekii were 

the first phospholipases identified within rickettsial genomes, and in vitro studies have 

revealed that this gene is functional194. Later studies also confirmed that this gene is conserved 

in all species of the Rickettsia sequenced up to now, and that PLD is likely the major effector of 

rickettsial phagosomal escape193,195. Although the involvement for a PLA2 in the entry vesicle 

lysis has for long been anticipated for R. rickettsii and then extended to both R. conorii and R. 

prowazekii196, it was not until recently that genes encoding PLA2 homologues were found in 

the R. typhi, R. prowazekii, R. massiliae and R. bellii genomes197. This study also suggested that 

PLA2 is secreted into the host cytoplasm and provided additional support for the notion that 

PLA2 is a bona fide enzyme with functional phospholipase activity in R. typhi197. In addition to 

phospholipases, the membrane-disrupting TlyC from R. rickettsii and the homologue from R. 

prowazekii were also shown to have hemolytic activity on normally nonhemolytic 
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bacteria193,198. Nevertheless, a direct role for TlyC in rickettsial phagosome escape has not yet 

been demonstrated. 

Actin-based motility 

Once in the cytoplasm, rickettsiae acquire their survival nutrients from the host cell (ATP, 

amino acids, nucleotides), allowing them to grow and replicate inside the host. Investigations 

on the intracellular life-style of rickettsiae noted that like several other microbial pathogens, 

rickettsiae explore the host-cell actin cytoskeleton to enter and to disseminate within cells, 

thus avoiding the host immune response169,199. The filaments of actin push the Rickettsia to the 

surface of the host cell, where the host cell membrane is deformed outward and invaginates 

into the adjacent cell200. Historically, this intracellular spreading mechanism was described as 

the major feature allowing differentiation of SFG from TG rickettsiae. Members of the TG are 

not motile within the cells and the infection of adjacent cells only happens when the bacterial 

load increases (5-8 times greater than that observed for SFG) and induces the lysis of host 

cells. Conversely, most SFG rickettsiae exploit the host cell actin cytoskeleton to promote 

intracellular mobility via active propulsion by means of directionally polymerized actin, 

culminating in extensive membrane damage and eventual cell death117,181. The molecular 

mechanisms of actin polymerization primarily involve the expression of a surface WASP-like 

protein, RickA, which activates the Arp2/3 complex, an actin nucleator responsible for 

initiating the polymerization of new actin filaments in the cytoplasm at one pole of the 

bacteria and the induction of the formation of a network of long and unbranched actin tails in 

Rickettsia spp.200. Consistent with the importance of RickA in SFG rickettsial actin-based 

mobility, RickA gene was found to be absent in R. prowazekii genome, thereby clarifying the 

absence of motility on members of TG161. In addition to RickA, Sca2 protein was also recently 

found to be also implicated in actin assembly during actin-based motility. In this study, a 

random transposon mutagenesis of R. rickettsii disrupted the Sca2 gene by a transposon 

insertion causing a small plaque phenotype201.  Importantly, a strong suggestion that Sca2 is a 

virulence determinant for SFG rickettsiae arose with the observation that, in a guinea pig 

model, the Sca2 mutant does not induce fever as does the congenic wild-type strain201. 

Host Injury and Immune Response 

For the majority of the members from the SFG, infection of vertebrates starts with the 

attachment of the ticks and mites which then prepare to imbibe a blood meal that takes place 

over a period of 3 to 14 days after biting. Rickettsia are then transmitted by infected ticks to 
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humans through their saliva during blood feeding. While the tick salivates into the wound, a 

number of secreted proteins including enzymes, vasodilators, antihemostatic and 

immunomodulatory substances are thought to influence innate and adaptive immune 

responses in the skin. During this stage, the low immune activity at the bite site prevents the 

host from rejecting the ticks and enhances the transmission potential of rickettsiae harbored 

either by vector or host171,202. Soon after the tick bite, localized inoculation of rickettsiae 

promotes the tissue damage, giving rise to a necrotic lesion known as eschar203. 

While the primary targets of Rickettsia are endothelial cells [with the exception for R. akari 

(the agent of Rickettsialpox) which primarily infects macrophages], as bacteria spread they are 

able to infect and proliferate within any nucleated cell. Therefore, secondary targets include 

dermal cells such as fibroblasts, macrophages, dermal dendritic cells, lymphatic endothelium 

and, for R. rickettsii in RMSF perivascular smooth muscle cells202. Upon entry into host skin, 

Rickettsia is rapidly spread all over the body host through dissemination via bloodstream and 

lymphatic circulation, followed by the infection and damage to endothelial cells of the small 

capillary beds of many organs including the lungs, brain, liver, heart and kidney171. 

 

 

The most prominent pathophysiological effect of rickettsial infection is characterized by an 

increased microvascular permeability due to the disruption of adherens junctions, consequent 

development of gaps, formation of stress fibers, and conversion of the shape of endothelial 

cells from polygons to large spindles204–206. The subsequent increased fluid leakage into the 

interstitial space and further infiltration of perivascular mononuclear cells often results in a 

characteristic dermal rash110,207. In addition, endothelial dysfunction and activation is followed 

by acute phase responses characterized by generalized vascular inflammation, edema, 

increased leukocyte–endothelium interactions and release of powerful vasoactive mediators 

that promote coagulation and pro-inflammatory cytokines, all features collectively termed as 

“rickettsial vasculitis” 108,203,208. As the disease progresses, organ and tissue damage due to loss 

of blood into tissue spaces can become a life threatening situation, especially in organs where 

there are no lymphatic vessels to remove interstitial fluid, such as brain and lungs. Severe 

complications in untreated cases with widespread vasculitis can include encephalitis, 

noncardiogenic pulmonary edema, interstitial pneumonia, hypovolemia, hypotensive shock, 

and acute renal failure, responsible for the high morbidity and mortality associated with 

rickettsioses110,137,171. 
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The mechanisms underlying the host defense are not yet completely understood, although 

both humoral and cell mediated immunity are thought to play a crucial role in recovery from 

infection. Most of our understanding of the immune response against Rickettsia is derived 

from in vitro studies, as well as from murine models of SFG and TG rickettsioses which have 

identified novel mechanisms of immunity, including cytokine-mediated activation of 

endothelial cell bactericidal control of intracellular infection and the role of autophagy in 

rickettsial killing110. 

Early in rickettsial infection process, innate immune responses are thought to limit the 

growth and spread of rickettsiae through activation of natural killer cell activity in association 

with the production of IFN-γ209. This particular type of interferon is responsible for inducing 

antiviral function and for activating macrophages and dendritic cells in the presence of IL-12 

and IL-18 to support innate immune responses to microorganisms. Further migration to the 

foci of infection of perivascular CD4 and CD8 T cells, macrophages and dendritic cells, is 

presumed to promote clearance of rickettsiae through activation of intracellular bactericidal 

mechanisms on endothelial cells, most likely by secreting pro-inflammatory cytokines and 

chemokines. Human endothelial cells activated by IFN-γ, TNF-α, RANTES and IL-1b, kill 

intracellular rickettsiae via nitric oxide and hydrogen peroxide production through nitric oxide 

synthesis-dependent and indoleamine 2,3-dioxygenase-dependent mechanisms 202,210. On the 

other hand human macrophages, a minor target of rickettsiae, kill intracellular bacteria after 

activation by IFN-γ, TNF-α, and IL-1b via production of hydrogen peroxide and tryptophan 

starvation of rickettsiae associated with degradation of tryptophan by indoleamine-2,3-

dioxygenase. The pathogenic mechanism of oxidative stress associated with R. rickettsii injury 

has been proven to cause host cell membranes lipid peroxidation and was shown to be 

associated with depletion of host components such as glutathione and increased levels of 

catalase. These phenomena increases the concentration of hydrogen peroxide and leads to a 

striking reduction in enzymes such as glucose-6-phosphate dehydrogenase, glutathione 

peroxidase, and catalase that are host defenses against ROS-induced damage171,211.  

A secondary effector component of the acquired immune response against Rickettsia is the 

generation of specific cytotoxic CD8+ T cells that induce apoptosis in infected target cells via 

pathways involving perforin and/or granzymes. Cytotoxic activity of CD8 T-lymphocytes is 

crucial to the clearance of rickettsial infection212. Rickettsial manipulation of its host cell also 

includes activation of NF-kB as one major strategy employed by rickettsiae to survive and 

replicate within the endothelium. Activation of NF-kB inhibits endothelial cell apoptosis by 

preventing apical activation of caspases-8, -9 and -3 and also mediates the production of 

proinflammatory cytokines and chemokines, such as IL-8, IL-6, IL-1α213–215. However, later in 
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the infectious process, when both innate and active immunity are fully activated, the anti-

apoptotic effect of NF-kB is likely overridden by the cytotoxic CD8+ T-induced apoptosis of 

infected endothelial cells215. 

 The humoral response may play an important role in protection against infection and 

antibodies against rickettsial OmpA and OmpB, but not rickettsial lipopolysaccharide, are 

indeed protective against re-infection216,217. However, antibodies towards these proteins do 

not appear until the control and recovery from the disease has occurred. Thus, antibodies may 

be more important in preventing re-infection and in vaccine-induced immunity than in 

clearance of primary infection218. 

Diagnostics and Therapeutics 

Although important progress has been made on the fields of molecular biology, cellular 

biology, and immunology and pathogenesis of Rickettsia, diagnosis of rickettsial diseases is still 

difficult and is usually retrospective. Rapid diagnostic methods are still required for diagnosis 

of rickettsial diseases and in response to their potential use in bioterrorism.  

 

Rickettsioses can present an array of clinical signs and symptoms which generally manifest 

2–14 days following Rickettsia inoculation. These diseases vary in severity from self-limited 

mild infections to fulminating life-threatening diseases, but are generally characterized by 

acute onset of high fever, which may last up to 2 weeks as in the case of TG rickettsioses. 

Other symptoms may include severe headache, prominent neck muscle myalgia, malaise, 

nausea/vomiting, or neurologic signs203. The characteristic macular or maculopapular rashes 

appear 3-5 days following onset of the disease in most patients (~90%) infected with RMSF or 

epidemic typhus. However, in other less severe spotted fevers, such as African tick bite fever 

and R. parkeri infection, rash may be less frequent (10-15%). Conversely, focal skin necrosis 

with a dark scab (eschar) at the site of tick feeding is a common feature of MSF, African tick 

bite fever, North Asian tick typhus, Queensland tick typhus, Japanese spotted fever, Flinders 

Island spotted fever, Rickettsialpox, tick-borne lymphadenopathy, and the recently described 

infections in the US caused by R. parkeri and by a novel strain 364 D, but is rare in RMSF203. 

While these symptoms aid proper diagnosis of the infectious agent, the disease often 

manifests itself as nondescript fever and flu-like symptoms, leading to misdiagnosis and 

inappropriate treatment. Misdiagnosis of Rickettsia infection is associated with severe disease 

consequences, including interstitial pneumonia, neurological pathology, acute renal failure, 
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pulmonary edema, and other multiorgan manifestations. Untreated MSF and RMSF can result 

in mortality rates estimated to be as high as 23%, but appropriate treatment drastically 

decreases the risk109. 

 

The early diagnosis of rickettsial diseases is based mostly on clinical suspicion since no 

reliable diagnostic test is available on the early phase of the illness. When the disease is 

clinically suspected, biological diagnosis can be obtained using serology, cell culture and/or 

molecular tools109. Until recently, the diagnosis of rickettsioses was confirmed almost 

exclusively by serological tests. Of the serological tests, the indirect micro-

immunofluorescence assay has been the most sensitive and specific, but usually IgM and IgG 

antibodies reactive with Rickettsia are undetectable during the first week of illness219. In 

addition, there is an extensive antigenic cross-reaction among SFG and TG rickettsiae, making 

immunofluorescence assays a less helpful tool to distinguish between the species220. Other 

serologic tools are the Weil-Felix test, complement fixation, micro-agglutination test, latex 

agglutination, ELISA, and Western immunoblot assays221.  

Among the molecular tools, real-time quantitative PCR (qPCR) has been claimed the most 

rapid and sensitive, while reducing the costs and the time of diagnosis222,223. Several genes are 

commonly used for detection of rickettsial DNA such as the Rickettsia genus specific 17-kDa 

antigen gene, the 16S rRNA gene, the citrate synthase gene (gltA), and the outer membrane 

proteins rOmpB and rOmpA.  

 

Once diagnosed, bacteriostatic antibiotics from the tetracycline class (specifically 

doxycycline) are the most widely used and normally effective in treating rickettsioses. 

Depending on the scenario, chloramphenicol, azithromycin, fluoroquinolones, and rifampin 

may be used as alternatives to doxycycline. The treatment with the proper antibiotic should be 

initiated immediately after a suspicion of rickettsial infection, and must be continued for at 

least 3 days after fever diminishes and until there is a clear evidence of clinical 

improvement224.  

 

Although there is an increasing worldwide concern with human infections caused by the 

genus Rickettsia, relatively little is known about the factors that are required to elicit a 

protective immune response. The need for a reliable protective vaccine to prevent rickettsial 

infections is well recognized and a number of vaccine candidates have been tested with 

varying degrees of success. In the past, prospect for developing effective killed whole-cell and 
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live attenuated vaccines against rickettsial diseases have culminated in numerous failures and 

limited success in preventing or ameliorating the disease110. Even though, recent studies have 

shown that after recovery from R. rickettsii and R. conorii infections, patients and experimental 

animals develop solid immunity that prevents reinfection, thus indicating that stimulation of 

protective immunity is entirely feasible. Current challenges are focused on the identification of 

rickettsial proteins that stimulate the components of the immune system that confer 

protection, both cellular and humoral225. The development and validation of an effective 

vaccine against any of the rickettsioses that could provide adequate prophylaxis would 

definitely reduce the impact of these diseases worldwide. 
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1.3. Research objectives 

The recently observed increase in the reported incidence of rickettsial infections worldwide 

is a cause for renewed concern, as it is the potential fatal outcome associated with these 

infections. The life-threatening character of many Rickettsia spp. results from their highly 

virulent properties and unique biological characteristics including the associated high 

morbidity and mortality, environmental stability, aerosol transmission, persistence in infected 

hosts and low infectious dose. Furthermore, the emerging character of rickettsioses together 

with the difficulties of diagnostics, the lack of reliable protective vaccine and their potential 

use as bioterrorism weapons, strengthens the importance of identifying new protein factors 

for the potential development of innovative tools to prevent, diagnose and treat these 

infections diseases110,111.  

In this perspective, as part of the core genome of all Rickettsia sequenced so far, we have 

identified a putative gene encoding a membrane-embedded aspartic protease with a 

retroviral-type AP signature, for which no function has been assigned. Using R. conorii’s AP 

(RC1339) as our working-model, hereby named APRc for Aspartic Protease from Rickettsia 

conorii, the goal of the present study was to provide a comprehensive biochemical and 

enzymatic characterization of this novel retroviral-type AP and also give further insights on the 

putative functional role of this enzyme. The prospects opened with this work will pave the 

way, more broadly, to further research on how rickettsial AP might contribute for the 

pathogenicity of these parasites, with special emphasis on its potential use as a target for 

therapeutic intervention in rickettsioses. Moreover, although evidences do exist for the 

occurrence of APs in bacteria, this is the first report on this class of enzymes in gram-negative 

intracellular species like Rickettsia, thereby giving a valuable contribution for the discussion on 

the evolution of APs. 

 

Accordingly, in Chapter I is presented and discussed the recombinant expression of the 

soluble catalytic domain of APRc, using E. coli as the heterologous production system. A 

detailed enzymatic and biochemical characterization of this protease is provided with respect 

to the auto-processing activity, dimerization and enzymatic properties, and the similarities and 

differences with other well studied aspartic proteases are evaluated. 

In order to determine the specificity profile of APRc, we applied the innovative technique 

Proteomics Identification of protease Cleavage Sites (PICS) in collaboration with Dr. 

Christopher Overall from the University of British Columbia, Canada. A comparative analysis 

with the specificity of other APs was also carried out (Chapter II). 
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Finally, Chapter III provides initial evidences for the potential biological relevance of this 

protease in rickettsial life-cycle. First, we addressed the type of association, location and 

topology of full-length APRc with E. coli membranes. Next, we focused on the expression and 

location analysis of native APRc in different rickettsial strains and on the evaluation of Sca 

proteins as the putative substrates for this protease. Because manipulation of pathogenic 

Rickettsiae from host cells requires appropriate biosafety level 3 facilities, part of these studies 

were conducted in collaboration with Dr. Juan Martinez, from the Louisiana State University, 

USA. 
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Chapter II. Biochemical and enzymatic  

characterization of APRc 

2.1. Introduction 

Bacterial pathogenicity generally results from a combination of factors where different 

bacterial components and strategies contribute to virulence226. Among these components, a 

diverse array of proteolytic enzymes (mainly localized to the bacterial surface or secreted) 

have been recognized as virulence factors in several pathogenic bacteria by playing critical 

functions related to colonization and evasion of host immune defenses, acquisition of 

nutrients for growth and proliferation, facilitation of dissemination or tissue damage during 

infection226–228. The relevance of proteolytic events for bacterial pathogenicity and the 

progressive increase in antibiotic resistance among pathogenic bacteria contribute to position 

proteases as potential candidate targets for the development of alternative antibacterial 

strategies228.  

In line with what has been described for other obligate intracellular bacteria, rickettsial 

species have highly conserved and reduced genome sizes, which derive from reduction of 

originally larger genomes accompanying the adaptation to strict intracellular 

lifestyles136,159,162,163. Although significant progress has been made concerning both genotyping 

and epidemiology of rickettsiae, the genetic intractability of these bacteria has severely limited 

molecular dissection of virulence factors associated with their intracellular parasitism and 

pathogenic mechanisms. However, the availability of complete genome sequences of a vast 

number of species works as an invaluable tool to unmask hidden proteases, thereby providing 

new sets of potential targets. On this subject, though, with the exception for a few examples 

belonging to the secretory pathway (e.g., type I229, type II230 and type IV231,232 signal peptidases) 

and a TG-specific prolyl oligopeptidase protein233, no other Rickettsia proteases have been 

identified and characterized. A major challenge for the future rests then in the demonstration 

and characterization of enzymatic activity, properties and function of a myriad of in silico 

predicted proteases.  

Herein, we describe the identification of a gene coding for a putative membrane-embedded 

aspartic protease (AP) of the retropepsin-type, conserved in all 55 sequenced Rickettsia 

genomes. The retropepsins were first identified with the discovery of the HIV-1 PR in the late 

1980’s234 and the recognition of its essential role in the maturation of HIV-1. As previously 
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mentioned, these proteases require homodimerization of two monomeric units in order to 

form a functional enzyme, structurally related to the pepsin family (A1) of bilobal APs27,36,41. 

Strikingly, the presence of retropepsins in prokaryotes has long been a matter of debate but 

never unequivocally demonstrated. The work presented in this chapter provides a detailed 

description on the identification and characterization of the retropepsin homologue from 

Rickettsia conorii (RC1339/APRc) and demonstrates that this protease is active and shares 

several enzymatic properties with other members of this family of APs (e.g., autolytic activity, 

optimum pH, and sensitivity to specific HIV-1 PR inhibitors). 
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2.2. Materials and Methods 

Materials 

Oligonucleotide primers were purchased from Integrated DNA Technologies, Leuven, 

Belgium. Synthetic genes encoding the full-length RC1339 and the predicted soluble catalytic 

domain, the fluorogenic peptides PepRick14 (MCA-Lys-Ala-Leu-Ile-Pro-Ser-Tyr-Lys-Trp-Ser-Lys-

DNP), PepRick15 (MCA-Lys-His-Arg-Val-Met-Ser-Ala-Leu-Ile-Lys-DNP) and the rabbit polyclonal 

antibody raised towards the sequence Cys-Tyr-Thr-Arg-Thr-Tyr-Leu-Thr-Ala-Asn-Gly-Glu-Asn-

Lys-Ala (anti-APRc) were produced by GenScript (Piscataway, NJ, USA). N-terminal amino acid 

sequence analyses were performed in the Analytical Services Unit - Protein Sequencing 

Service, ITQB (Oeiras, Portugal). Circular dichroism analyses were performed at Applied 

Photophysics on a Chirascan plus Auto-CD. 

Bioinformatics analysis 

Gene and protein sequences for R. conorii str. Malish 7 RC1339 were obtained from the 

genome sequence at NCBI (NC_003103) (AAL03877). Amino acid sequence alignment and the 

degree of identity between RC1339/APRc homologues from Rickettsia (genus) (TaxID 780) 

were obtained with ClustalW235, by comparing the 55 sequences deposited in NCBI database.  

The protein family, domain, and functional sites were searched using the InterProScan 

program236. Topology structure was predicted with HMMTOP2 algorithm237. A structure-based 

alignment of RC1339/APRc soluble catalytic domain with HIV-1 (PDB 3hvp), equine infectious 

anemia virus (EIAV) (PDB 2fmb) and XMRV (PDB 3nr6) retropepsins and with Ddi1 putative 

protease domain (PDB 2i1a) was performed with PROMALS3D238. 

DNA constructs  

The sequence encoding the full-length of RC1339/APRc (construct coding amino acids 1-

231) was chemically synthetized with OptimumGene™ codon optimization technology to E. coli 

codon usage and cloned into pUC57 vector. The sequence was then amplified to include 

restriction sites for NcoI and NotI at 5’- and 3’-ends, respectively, using the forward primer 5’-

CCATGGGAATGAACAAAAAACTGATCAAACTG-3’ and the reverse primer 5’-

CTCGAGATAATTCAGAATCAGCAGATCTTT-3’; the resulting PCR product was cloned into pGEM-T 
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Easy plasmid (Promega). After digestion with NcoI and NotI, the insert was subcloned into 

pET28-a expression vector (Invitrogen) in frame with a C-terminal His-tag (pET-APRc1-231-His). In 

order to generate the untagged construct, an insertion mutagenesis was performed to include 

the TGA stop codon at the end of the full-length sequence using the Quick Change site-

directed mutagenesis kit (Stratagene) and the primers 5’-ATTCTGAATTATTGACTCGAGCACCAC-

3’ (forward) and 5’-GTGGTGCTCGAGTCAATAATTCAGAAT-3’ (reverse) (pET-APRc1-231) 

(Supplemental Figure 1A). 

The coding sequence for the predicted soluble catalytic domain of RC1339/APRc (construct 

coding amino acids 87-231) was chemically synthetized with OptimumGene™ codon 

optimization technology to E. coli codon usage and cloned into pUC57 vector. The sequence 

flanked by restriction sites for BamHI (5’)/EcoRI (3’) was then inserted in frame to the C 

terminus of GST (glutathione S-transferase) in pGEX-4T2 expression vector (Amersham) using 

the same pair of restriction enzymes (pGST-APRc87-231 (Supplemental Figure 1D)). 

For generating the expression constructs bearing the sequence encoding the intermediate 

activation form rAPRc99-231-His and the final activated form rAPRc105-231-His, both sequences 

were firstly amplified using the construct pET-APRc1-231-His as the template and the forward 

primer containing a NdeI restriction site (5’-CATATGAGCGCCCTGATCCCGTCT-3’ for pET-APRc99-

231-His and 5’-CATATGTATAAATGGAGTACCGAAGTT-3’ for pET-APRc105-231-His) and the same 

reverse primer used for amplification of pET-APRc1-231-His (5’-

CTCGAGATAATTCAGAATCAGCAGATCTTT-3’), and cloned into pGEM-T Easy (Promega). The 

inserts were then digested with NdeI/NotI and subcloned into pET23a expression vector 

(Invitrogen) in frame with a C-terminal His-tag (pET-APRc99-231-His (Supplemental Figure 1F) and 

pET-APRc105-231-His (Supplemental Figure 1J)). 

The active site mutants of APRc constructs rGST-APRc87-231 [pGST-APRc(D140A)87-231 

(Supplemental Figure 1B)] and rAPRc99-231-His [pET-APRc(D140A)99-231-His (Supplemental Figure 

1G)], were generated by replacing the putative active site aspartic acid residue by alanine 

(D140A) using the Quick Change site-directed mutagenesis kit (Stratagene) and the primers 5’-

AAAATCAAATTCATGGTGAATACCGGCGCCTCTGATATTGCA-3’ (forward) and 5’-

TGCAATATCAGAGGCGCCGGTATTCACCATGAATTTGATTTT-3’ (reverse) (mutation underlined).  

Two mutants of the third auto-catalytic cleavage site identified upon activation of rGST-

APRc87-231 were also produced using the construct pET-APRc99-231-His as template and the Quick 

Change site-directed mutagenesis kit (Stratagene) for the substitution of the Ser104 and 

Tyr105 by a proline [constructs: pET-APRc(S104P)99-231-His (Supplemental Figure 1H) and pET-

APRc(Y105P)99-231-His (Supplemental Figure 1I), respectively]. For the mutation of Ser104 the 

following pair of primers were used 5’-
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CATATGAGCGCCCTGATCCCGCCTTATAAATGGAGTACCGAAG-3’ (forward) and 5’-

CTTCGGTACTCCATTTATAAGGCGGGATCAGGGCGCTCATATG-3’ (reverse), whereas for Tyr105 

the primers were 5’-GAGCGCCCTGATCCCGTCTCCTAAATGGAGTACCGAAGTTG-3’ (forward) and 

5’-CAACTTCGGTACTCCATTTAGGAGACGGGATCAGGGCGCTC-3’ (reverse) (mutation underlined). 

All positive clones were selected by restriction analysis and confirmed by DNA sequencing. 

Expression and purification of the soluble forms of APRc  

rGST-APRc87-231 and the corresponding active site mutant protein were expressed by 

standard procedures. Briefly, E. coli BL21 Star (DE3) cells transformed with each plasmid 

construct, pGST-APRc87-231 and pGST-APRc(D140A)87-231, were grown at 37 ˚C until an OD600nm of 

0.7. Protein expression was then induced with 0.1 mM IPTG for 3 h, after which cells were 

harvested by centrifugation at 9000g for 20 min at 4 ˚C, and resuspended in PBS buffer. 

Lysozyme (100 µg/mL) was added and the harvested cells were frozen at -20 ˚C. After freezing 

and thawing, bacterial cell lysates were incubated with DNase (1 µg/mL) and MgCl2 (5 mM) for 

1 h at 4 ˚C. The total cell lysate was then centrifuged at 27216g for 20 min at 4 ˚C and the 

resulting supernatant filtered (0.2 µm) before loading onto a GSTrap HP 5 mL column (GE 

Healthcare Life Sciences) previously equilibrated in PBS buffer. After extensive washing, the 

protein of interest was eluted in 50 mM Tris-HCl pH 8 with 10 mM glutathione and 

immediately loaded onto a Superdex 200 HiLoad 26/60 (GE Healthcare Life Sciences) 

equilibrated in PBS buffer for further purification and glutathione removal. 

Expression of E. coli BL21 Star (DE3) cells transformed with pET-APRc99-231-His plasmid as 

well as isolation of total soluble protein were performed under the same conditions as 

described for rGST-APRc87-231, except that in this case the cell pellet was resuspended in 20 mM 

phosphate buffer pH 7.5, 500 mM NaCl and 10 mM imidazole. The resultant supernatant was 

then loaded onto a HisTrap HP 5 mL column (GE Healthcare Life Sciences) pre-equilibrated in 

the same buffer. Protein elution was performed by a three-step gradient of imidazole (50 mM, 

100 mM and 500 mM) and fractions containing the protein of interest (100 mM Imidazole 

gradient step) were pooled and buffer exchanged into 20 mM phosphate buffer pH 7.5 by an 

overnight dialysis step. Dialyzed protein was further purified by cation-exchange 

chromatography with a MonoS 5/50 column (GE Healthcare Life Sciences) equilibrated in the 

same buffer and elution was carried out by a linear gradient of NaCl (0-1 M). 
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Autoprocessing activity of APRc in soluble extracts of E. coli 

E. coli BL21 Star (DE3) cells transformed with pGST-APRc87-231 (or pGST-APRc(D140A)87-231) 

were grown at 37 ˚C until an OD600nm of 0.7. At this point, 1 mL of cell culture was subjected to 

induction of protein expression with 0.1 mM IPTG for 3 h. Cells were then harvested by 

centrifugation at 10000g for 20 min at 4 ˚C, and resuspended in 200 µL of the protein 

extraction reagent BugBuster (Merck Millipore). After 20 min, extracts were clarified by 

centrifugation and analyzed by Western blot with anti-APRc antibody. 

In vitro auto-processing studies 

The autoproteolytic activity of rGST-APRc87-231 was primarily assessed over a pH range of 3.0 

to 7.0. APRc purified samples were diluted 1:1 with 0.1 M sodium citrate buffer pH 3, 0.1 M 

sodium acetate buffer pH 4, 0.1 M sodium acetate buffer pH 5, 0.1 M sodium acetate buffer 

pH 5.5, 0.1 M sodium acetate buffer pH 6 and 0.1 M Tris-HCl pH 7, and incubated for 

approximately 24 h for SDS-PAGE analysis (silver staining). 

Time-course studies of APRc activation were undertaken with two recombinant forms of 

the soluble catalytic domain of APRc (rGST-APRc87-231 and rAPRc99-231-His). Purified samples of 

APRc were first diluted to 0.1 mg/mL with PBS and then diluted 1:1 with 0.1 M sodium acetate 

buffer pH 6.  Diluted samples were incubated up to 48 h at 37 ˚C and aliquots were taken every 

12 h for SDS-PAGE analysis and proteolytic activity assays. To evaluate the effect of inhibitors 

on APRc auto-activation processing, a time-course analysis was carried out in the presence of 

20 µM pepstatin, 1 mM indinavir or 5 mM EDTA and protein samples analyzed by SDS-PAGE. 

 

Analytical size-exclusion chromatography 

Precursor rAPRc99-231-His and activated APRc110-231-His forms were analyzed under 

nondenaturing conditions by analytical size-exclusion chromatography (SEC) on a Superdex 

200 5/150 GL (GE Healthcare Life Sciences) column connected to a Prominence HPLC system 

(Shimadzu Corporation, Tokyo, Japan). The column was equilibrated in 20 mM phosphate 

buffer pH 7.5 containing 150 mM NaCl, and calibrated with Gel Filtration LMW and HMW 

calibration kits (GE Healthcare Life Sciences), according to the manufacturer’s instructions. The 

molecular mass markers used for calibration were conalbumin (75 kDa), ovalbumin (43 kDa), 

carbonic anhydrase (29 kDa), and ribonuclease A (13.7 kDa). 
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Dimerization studies 

Cross-linking reactions with disuccinimidyl suberate (DSS) (Pierce) were performed in 20 

mM phosphate buffer pH 7.5 containing 150 mM NaCl. A solution of 0.2 mg/mL of purified 

APRc (rAPRc99-231-His and activated product APRc105-231-His) was treated with a 50-fold molar 

excess of DSS in a total volume of 50 µl and allowed to react for 30 min at room temperature. 

For glutaraldehyde treatment, a solution of 0.5 mg/mL of purified rAPRc99-231-His was treated 

with 5 µl of 1.15% freshly prepared solution of glutaraldehyde for 4 min at 37 ˚C, in a total 

volume of 50 µl, under similar buffer conditions. To terminate the reactions, 5 µl of the 

quenching buffer 1 M Tris-HCl pH 8.0 were added. Crosslinked proteins were separated by 

SDS-PAGE and analyzed by Western blot with anti-APRc antibody and also analyzed by 

analytical SEC as previously described. 

Enzyme activity assays 

Activity screening with Insulin β-chain 

Evaluation of proteolytic activity during auto-processing time-course analysis was 

performed towards oxidized insulin β chain. Substrate (1 mg/mL) was incubated with purified 

recombinant APRc enzyme (corresponding to different times points of activation of rGST-

APRc87-231)): substrate mass ratio of 1:15) in 0.1 mM sodium acetate buffer pH 6.0. After an 

overnight incubation at 37 ˚C the reaction mixture was centrifuged at 20000g during 6 min and 

the digestion fragments were separated by RP-HPLC (reversed-phase high performance liquid 

chromatography) on a C18 column (KROMASIL 100 C18 250, 4.6 mm), using a Prominence 

system (Shimadzu Corporation, Tokyo, Japan). Elution was carried out with a linear gradient 

(0–80%) of acetonitrile in 0.1% v/v trifluoroacetic acid for 30 min at a flow rate of 1 mL/min. 

Absorbance was monitored at 220 nm. 

Enzymatic characterization by fluorescence activity assays 

The effect of pH on activity and inhibitory profile of activated APRc (APRc105-231-His) was 

determined by fluorescence assays in 96-well plates in in a Gemini™ EM Fluorescence 

Microplate Reader, using the fluorogenic substrate PepRick14 ([MCA]-Lys-Ala-Leu-Ile-Pro-Ser-

Tyr-Lys-Trp-Ser-Lys-[DNP]) (final concentration of 2.5 µM). For determination of the pH profile, 

APRc105-231-His was assayed for activity at 37 ˚C in buffers ranging between pH 4 and 9 (50 mM 

sodium acetate pH 4.0, 5.0, 5.5 and 6.0; 50 mM Tris-HCl pH 7.0, 8.0 and 9.0) containing 100 



Chapter II 

56 
 

mM NaCl. To test the effect of classical inhibitors, the protease was pre-incubated in the 

presence of each inhibitor, 20 µM pepstatin, 5 mM EDTA, 1 mM ZnCl2, 1 mM Pefabloc, or 10 

µM E-64, for 10 min at room temperature in 50 mM sodium acetate pH 6.0 containing 100 mM 

NaCl before determination of proteolytic activity. The effect of the HIV-1 PR inhibitors on APRc 

proteolytic activity was also evaluated. The following reagents were obtained through the NIH 

AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: indinavir sulfate, 

nelfinavir, ritonavir, saquinavir, amprenavir, atazanavir sulfate, darunavir, and lopinavir. Each 

inhibitor was again incubated with APRc for 10 min at room temperature in 50 mM sodium 

acetate pH 6.0 containing 100 mM NaCl and 5% DMSO, except for indinavir and darunavir that 

were assayed without DMSO. Indinavir, nelfinavir, ritonavir, saquinavir, amprenavir, atazanavir 

and lopinavir were tested in the range of 0.25 – 1 mM and the inhibitor darunavir in the range 

of 2.5 – 10 µM (final concentration).  

The enzymatic activity of active APRc was also tested towards five different fluorogenic 

peptides: PepRick15 ([MCA]-Lys-Tyr-His-Arg-Val-Met-Ser-Ala-Leu-Ile-Lys-[DNP]), typical AP 

substrate ([MCA]-Lys-Lys-Pro-Ala-Glu-Phe-Phe-Ala-Leu-Lys-[DNP]), BACE1 substrate ([MCA]-

Leu-Ser-Glu-Val-Asn-Leu-Asp-Ala-Gly-Phe-Lys-[DNP]), HIV-1 PR substrate (Arg-Glu-[EDANS]-Ser-

Glu-Asn-Tyr-Pro-Ile-Val-Gln-Lys-[DABCYL]-Arg) (Sigma) and CDR1 protease substrate ([MCA]-

Ala-Leu-His-Pro-Glu-Val-Leu-Phe-Val-Leu-Glu-Lys-[DPN]239. 

The rate of substrate hydrolysis was monitored for 3 hours by the increase in fluorescence 

intensity with excitation/emission wavelengths of 328/393 nm for the peptides with MCA/DNP 

and 335/490nm for those with EDANS/DABCYL, and the relative activity normalized by setting 

APRc activity as 100%.  

SDS-PAGE and Western blotting 

SDS-PAGE analysis was performed in a Bio-Rad Mini Protean III electrophoresis apparatus 

using 4-20% or 12.5% polyacrylamide gels. Samples were treated with loading buffer (0.35 M 

Tris-HCl, 0.28% SDS buffer pH 6.8, 30% glycerol, 10% SDS, 0.6 M DTT and 0.012% Bromophenol 

Blue) and  boiled for 5 minutes before loading. Gels were stained with Coomassie Brilliant Blue 

R-250 (Sigma). For Western blot analysis, protein samples were resolved by SDS-PAGE and 

electrotransferred onto PVDF or nitrocellulose membranes by standard wet (using the buffer 

25 mM Tris, 192 mM Glycine and 20% methanol) or semi-dry (in buffer 25 mM Tris, 192 mM 

Glycine, 20% methanol and 0.025% SDS) transfer apparatus. Membranes were then blocked 

for one hour in standard TBS containing 1% (v/v) Tween-20 supplemented with 5% (w/v) skim 
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milk or 2% (w/v) BSA and then incubated with the antibody anti-APRc rabbit polyclonal 

(GenScript, 2 µl/mL). Membranes were washed in TBS containing 0.1% (v/v) Tween-20, 

incubated with secondary anti-rabbit alkaline phosphatase-conjugated antibodies (GE 

Healthcare) and revealed using ECF chemiluminescence detection kit (GE Healthcare) in a 

Molecular Imager FX (Bio-Rad). 

Protein quantification 

Total protein quantifications were performed either by direct measurement of Abs280nm on 

a NanoDrop1000 instrument (Thermo Scientific) or using the Pierce BCA Protein Assay Kit or 

the Bio-Rad Protein Assay Kit (Bradford method), according to the instructions manual. The 

plates were read in a microplate reader (PowerWave XS Microplate Spectrophotometer, 

Biotek®).   
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2.3. Results 

Bioinformatics analysis on APRc 

In silico analysis of the genome sequence of R. conorii str. Malish 7, the etiologic agent of 

MSF, revealed a gene (RC1339) with 696 bp encoding a putative retropepsin-like aspartic 

protease. This gene is highly conserved among all 55 sequenced Rickettsia genomes with 

deduced amino acid sequences identities ranging from 83.6% (R. bellii str. RML369-C APRc 

homologue) to 100% (e.g., R. sibirica 246 APRc homologue) (Table 4). This striking pattern of 

conservation is illustrated in Figure 9A, which shows the alignment of the deduced amino acid 

sequence of R. conorii RC1339/APRc with eight other homologues from representative species 

of each rickettsial group (SFG, TG, TRG and AG). 

Table 4. Protein sequence identity of each APRc homologue in relation to NP_360976 as well as 
the taxonomic group of analyzed rickettsial species. Accession numbers are from NCBI database; 
gene ID from PATRIC database (between parentheses) is also shown from species with the same 
or non-attributed (NA) accession number. (SFG: spotted fever group; TG: typhus group; TRG: 
transitional group; AG: ancestral group). 

Species Accession number Sequence 
length 

Percent 
Identity 

Rickettsia 
Taxonomy 

R. conorii Malish 7 NP_360976 231 - SFG 

R. conorii subsp. indica ITTR WP_010977893 
(VBIRicCon229600_0066) 231 100.0 SFG 

R. sibirica 246 WP_010977893 
(VBIRicSib27963_0845) 231 100.0 SFG 

R. sibirica subsp. mongolitimonae HA-91 WP_010977893 
(VBIRicSib225156_0142) 231 100.0 SFG 

R. sibirica subsp. sibirica BJ-90 WP_010977893 
(VBIRicSib238733_1447) 231 100.0 SFG 

R. conorii subsp. caspia A-167 WP_016926653 231 99.6 SFG 

R. conorii subsp. israelensis ISTT CDC1 WP_016945366 231 99.6 SFG 

R. parkeri Portsmouth YP_005393543 231 99.6 SFG 

R. peacockii Rustic YP_002916969 231 99.6 SFG 

R. rickettsii Hlp#2 WP_01273 231 99.6 SFG 

R. africae ESF-5 YP_002845736 231 99.1 SFG 

R. philipii 364D YP_005301388 231 99.1 SFG 

R. rickettsii Arizona YP_005289563 231 99.1 SFG 

R. rickettsii Brazil YP_005294699 231 99.1 SFG 

R. rickettsii Colombia YP_005288210 231 99.1 SFG 

R. rickettsii Hauke YP_005293341 231 99.1 SFG 

R. rickettsii Hino WP_012151442 231 99.1 SFG 

R. slovaca 13-B YP_005066351 223 99.1 SFG 

R. slovaca D-CWPP WP_014273877 223 99.1 SFG 

R. rickettsii Sheila Smith YP_001495413 231 98.8 SFG 

R. honei RB WP_016917263 231 98.7 SFG 
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Table 5 (cont.). Protein sequence identity of each APRc homologue in relation to NP_360976 as 
well as the taxonomic group of analyzed rickettsial species. Accession numbers are from NCBI 
database; gene ID from PATRIC database (between parentheses) is also shown from species with 
the same or non-attributed (NA) accession number. (SFG: spotted fever group; TG: typhus group; 
TRG: transitional group; AG: ancestral group). 

Species Accession number Sequence 
length 

Percent 
Identity 

Rickettsia 
Taxonomy 

R. rhipicephali 3-7-female6-CWPP YP_005389841 231 98.3 SFG 

R. rickettsii Iowa YP_005286867 231 98.2 SFG 

R. heilongjiangensis 054 YP_004764976 231 97.8 SFG 

R. japonica YH YP_004885318 231 97.8 SFG 

R. massiliae AZT80 YP_005303600 231 97.8 SFG 

Candidatus R. amblyommii GAT-30V YP_005364747 231 97.4 SFG 

R. massiliae MTU5 YP_001499845 246 97.0 SFG 

R. monacensis IrR/Munich WP_008580673  231 97.0 SFG 

R. endosymbiont of Ixodes scapularis WP_008580673 231 97.0 SFG 

R. montanensis OSU 85-930 YP_005391701 231 96.5 SFG 

R. australis Cutlack WP_014412171 231 95.7 SFG 

R. felis URRWXCal2 YP_247382 231 95.2 SFG 

R. helvetica C9P9 WP_010420880 231 94.8 SFG 

R. akari Hartford WP_012150194 231 94.4 SFG 

R. prowazekii Madrid E NP_221215 231 94.4 TG 

R. prowazekii Rp22 YP_007749515 231 94.4 TG 

R. prowazekii BreinI YP_007750927 231 90.0 TG 

R. prowazekii BuV67-CWPP YP_005414277 231 90.0 TG 

R. prowazekii Cairo 3 WP_004596749 231 90.0 TG 

R. prowazekii Chernikova YP_005406783 231 90.0 TG 

R. prowazekii Dachau YP_005413443 231 90.0 TG 

R. prowazekii GvF12 WP_004596749 231 90.0 TG 

R. prowazekii GvV257 YP_005405939 231 90.0 TG 

R. prowazekii Katsinyian YP_005407621 231 90.0 TG 

R. prowazekii NMRC Madrid E YP_007749515 231 90.0 TG 

R. prowazekii RpGvF24 YP_005999345 231 90.0 TG 

R. canadensis CA410 YP_005300059 231 89.6 TG 

R. canadensis McKiel YP_001492807 231 89.2 TG 

R. typhi B9991CWPP WP_011191285 231 88.3 TG 

R. typhi TH1527 YP_005424149 231 88.3 TG 

R. typhi Wilmington YP_067793 231 88.3 TG 

R. sp. MEAM1 (Bemisia tabaci) NA 
(VBIRicSp241202_0036) 231 85.3 AG 

R. bellii OSU 85-389 YP_001495500 236 84.0 AG 

R. bellii RML369-C YP_538487 236 83.6 AG 

 

A distinguishing feature of rickettsial APs over retroviral-type ones was their predicted 

membrane-embedded nature, with different algorithms predicting three putative 

transmembrane α-helix (TMH) segments in the N-terminal domain of APRc (Figure 9A). The 

presence of Cys residues on these predicted transmembrane regions, which may be linking the 

three α-helical chains together through interchain disulfide bonds, likely contribute to 
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structural stability. Additionally, an inside orientation for the N terminus and an outside 

orientation for the C-terminal soluble protease domain of APRc (Arg87-Tyr231) relative to the 

membrane was predicted by the HMMTOP2237. 

Another striking observation was the apparent absence of sequence homology of this novel 

type of rickettsial AP when compared with APs from other organisms, except for the presence 

of the hallmark sequence motifs of family A2 members. Although the overall sequence identity 

with other retropepsins was found to be lower than 14% (with only 6% for the HIV-1 PR which 

is considered the archetypal member of this family of APs) it was possible to identify the active 

site consensus motif Asp-Thr-Gly (contained in the sequence Xaa-Xaa-Asp-Xbb-Gly-Xcc, where 

a Xaa is hydrophobic, Xbb is Thr or Ser, and Xcc is Ser, Thr or Ala) corresponding to the 

sequence Met-Val-Asp-Thr-Gly-Ala (amino acids 138-143), followed downstream by a 

hydrophobic-hydrophobic-Gly sequence (Leu-Leu-Gly, amino acids 208-210). This feature is 

characteristic of retropepsin-like proteases which are obligate homodimeric enzymes, with 

each monomer contributing one catalytic triad and one hydrophobic-hydrophobic-Gly motif to 

form the structural feature known as psi-loop27,36,41.  

An overall retention of structural similarity in proteins highly divergent at the sequence 

level is often correlated with distant relationships between these proteins. In order to evaluate 

if this would also apply to APRc, a structure-based alignment of RC1339/APRc soluble catalytic 

domain with HIV, EIAV and XMRV retropepsins as well as with Ddi1 putative protease domain 

was performed (Figure 9B). Indeed, this alignment further suggested an overall retention of 

structural similarity through conservation of the core structural motifs of APs superfamily, 

despite the high divergence at the sequence level. Importantly, APRc lacks the conserved motif 

found in most retroviral proteases Gly86-Arg87-Asn/Asp88 (HIV-1 PR numbering), in which the 

conserved Arg that forms an intra-monomer hydrogen bond with Asp29 in HIV-1 PR is replaced 

by a Met (Met211). 



Biochemical and enzymatic characterization of APRc 

61 
 

 

Figure 9. Pattern of sequence conservation among RC1339/APRc gene homologues and structural 
similarity of APRc with other retropepsin enzymes. (A) Multi-alignment of deduced amino acid 
sequences of the putative retropepsin-like protease from representative species from all 
rickettsial taxonomic groups (spotted fever group, typhus group, transitional group and ancestral 
group). Sequences were aligned against RC1339/APRc sequence from R. conorii (NP_360976) 
using the ClustalW software235. Accession numbers and corresponding species are described in 
Table 4. The predicted α-helical transmembrane domains are represented by cylinders and the 
box indicates the active site motif (DTG). (B) Structure-based alignment of the soluble catalytic 
domain of RC1339/APRc with HIV-1 (PDB 3hvp), EIAV (PDB 2fmb) and XMRV (PDB 3nr6) 
retropepsins and with DdI1 putative protease domain (PDB 2i1a), performed with 
PROMALS3D238. The first line shows conservation indices for positions with a conservation index 
above 4. Consensus_ss represent consensus predicted secondary structures (alpha-helix: h; beta-
strand: e). Sequences are colored according to predicted secondary structures (red: alpha-helix, 
blue: beta-strand). Red nines highlight the most conserved positions. Active site consensus motif 
Asp-Thr-Gly and hydrophobic-hydrophobic-Gly sequence are boxed. 
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APRc autoprocessing activity and dependence on the catalytic aspartate residue 

The lack of effective and easy tools for site-specific gene inactivation and complementation 

in Rickettsia has led to the use of heterologous expression in surrogate hosts to explore 

different aspects of gene activity, function or regulation193,240,241. In this work, we followed a 

similar strategy to conduct comprehensive biochemical and enzymatic characterization studies 

on APRc. Using R. conorii RC1339 as our working model, we first sought to investigate whether 

the putative gene would in fact encode a functional and active AP by producing its soluble 

catalytic domain fused to GST (rGST-APRc87-231) in E. coli. Assuming the predicted boundary 

between the transmembrane and soluble catalytic domains at Phe86-Arg87, the synthetic 

codon optimized sequence coding for the whole soluble domain was cloned into pGEX-4T2 

(pGST-APRc87-231) and the fusion construct expressed in E. coli (BL21 Star (DE3) strain).  

To purify recombinant rGST-APRc87-231, the soluble fraction of the cell lysates was applied to 

a GSTrap HP affinity chromatography (Figure 10A) and the eluted fractions were pooled and 

further purified by size-exclusion chromatography on a Superdex 200 HiLoad 26/60 (Figure 

10B). As shown in Figure 10C, purified fractions analyzed by SDS-PAGE confirmed the presence 

of the fusion protein with approximately 42 KDa as well as free GST (25 kDa). In parallel, the 

same purification protocol was used to purify the active site mutant rGST-APRc(D140A)87-231, 

where the putative catalytic aspartate residue was mutated to an alanine, and the same 

pattern of purification was observed (Figure 10D). These results suggest that the considerable 

amounts of free fusion tag likely result from proteolytic degradation by the host and not from 

autolytic activity of APRc. Since GST forms dimers under normal purification conditions242, free 

GST may form stable dimers with rGST-APRc87-231 fusion protein which can explain the 

unsuccessful attempts to improve purity of these samples. 
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Figure 10. Purification of rGST-APRc87-231 and its active site mutant by affinity and size-exclusion 
chromatographies. (A) Total soluble extracts of E. coli overexpressing rGST-APRc87-231 were loaded 
on a GSTrap 5 mL column previously equilibrated with 50 mM Tris-HCl pH 7.5 at a flow rate of 2 
mL/min and elution carried out with PBS, 10 mM Glutathione. Dotted lines in the chromatogram 
represent the glutathione gradient. (B) The eluted protein was then applied to a Superdex 200 
HiLoad 26/60 column equilibrated with PBS buffer at a flow rate of 2 mL/min. Protein elution was 
monitored by measuring the A280nm. (C) Fractions with eluted protein outlined by dotted lines in 
the chromatogram were analyzed in a SDS-PAGE gel stained with Coomassie blue. In addition to 
rGST-APRc87-231 precursor form, fractions 1-4 from the size exclusion chromatography (SEC) 
exhibited a high degree of contamination with free GST. (D) When the same strategy of 
purification was applied to the active site mutant rGST-APRc(D140A)87-231, an identical pattern of 
purification was observed. Description of the recombinant proteins are indicated on the right 
side of the gel and molecular weight markers in kilodaltons (kDa) are shown on the left. 
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One shared feature of proteases of the retropepsin family is their autoprocessing activity 

which promotes their own release from a larger polyprotein precursor27. In order to start 

assessing whether APRc also displays this activity, the recombinant fusion protein was 

incubated under different pH values (3.0 - 7.0) for about 24 h. As shown in Figure 11A, our 

results demonstrate that recombinant rGST-APRc87-231 also undergone autoprocessing in vitro, 

with optimal activity at pH 6.0, as indicated by the higher accumulation of a cleavage product 

with the lowest molecular weight (denoted by * in Figure 11A). Interestingly, this autolytic 

activity was shown to be a multi-step process given by the sequential generation of three 

cleavage products over a 48 h time course (Figure 11B, left panel). Edman sequencing of these 

APRc fragments allowed the identification of the three autolytic cleavage sites: Tyr92-Ala93, 

Met98-Ser99 and Ser104-Tyr105, as depicted Figure 11C.  

In order to evaluate the role of the putative catalytic aspartate for this autoprocessing 

activity, the produced active site mutant of rGST-APRc87-231, was activated under the same 

conditions as those used for the wild-type fusion protein. As expected, the mutation 

significantly affected the activation process (Figure 11B, right panel), suggesting that APRc is 

dependent on the conserved catalytic aspartate residue for triggering autolytic activity. 
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Figure 11. Autoprocessing activity of recombinant APRc soluble catalytic domain and dependence 
on the catalytic aspartate residue. (A) The soluble catalytic domain (amino acids 87-231) was 
fused to GST and produced in E. coli. Upon purification, the auto-activation of rGST-APRc87-231 was 
first evaluated in vitro at different pH values (3-7). APRc samples were diluted 1:1 with 0.1 M 
sodium citrate buffer pH 3, 0.1 M sodium acetate buffer pH 4, pH 5, pH 5.5, pH 6 and 0.1 M Tris-
HCl pH 7, and incubated at 37 ˚C for approximately 24 h. The analysis by SDS-PAGE (stained with 
silver nitrate) revealed an optimal auto-processing activity at pH 6, as indicated by faster 
generation of the cleavage product with the lowest molecular weight (denoted by *). (B) 
Subsequent auto-activation studies of rGST-APRc87-231 were performed in 0.1 M sodium acetate 
buffer pH 6 at 37 ˚C for 48 h and monitored by SDS-PAGE stained with Coomassie blue. rGST-
APRc87-231 undergoes multi-step auto-activation processing, resulting in the formation of the 
activated form APRc105-231-His with ~14.2 kDa (left panel). Mutation of the active site aspartic acid 
by alanine in this fusion construct [rGST-APRc(D140A) 87-231] clearly impaired the auto-catalytic 
activity of the protease (right panel). (C) Schematic representation of full-length APRc domain 
organization. APRc is predicted to comprise three transmembrane domains (TM 1-3) at the N 
terminus and the soluble catalytic domain at the C terminus. The three auto-cleavage sites 
(shown in B) identified by Edman degradation are highlighted by order of cleavage (1-3). 
Incubation time course in hours (h) are indicated above gels and the molecular weight markers in 
kilodaltons (kDa) are shown on the left. 
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As a first approach to assess enzyme activity, we used oxidized insulin β chain as a substrate 

as this polypeptide is usually cleaved by APs, and tested its cleavage over activation time for 

purified rGST-APRc87-231. As illustrated in Figure 12A, samples from each time point (0, 12, 24, 

36 and 48 h) were tested and the reaction products separated by RP-HPLC. Interestingly, the 

presence of several insulin cleavage products was concomitant with the appearance of the 

activation product APRc105-231-His, suggesting that autoprocessing may be an essential step for 

the activation of recombinant APRc. This was also confirmed by the lack of activity of the 

active site mutant rGST-APRc(D140A)87-231 towards insulin β chain, after incubation for 48 h at 

pH 6.0 (comparison in Figure 12B). 

 
Figure 12. Oxidized insulin β chain degradation by APRc. (A) Activity of rGST-APRc87-231 towards 

oxidized insulin β chain was tested over activation time. Samples corresponding to the 
different time points of activation, T0, T12, T24, T36 and T48 h, were incubated with the 
substrate at pH 6.0 for 16 h. Reaction products were then evaluated by RP-HPLC showing 
that substrate cleavage (appearance of four major peaks) was concomitant with appearance 
of the final activation product. (B) The activity of wild-type rGST-APRc87-231 towards oxidized 
insulin β chain upon activation assays in vitro for 48 h was compared to that of rGST-
APRc(D140A)87-231. T48_WT and T48_Mut correspond to the analysis of reaction products by 
RP-HPLC for the wild-type and active site mutant, respectively. Ctrl Insulin corresponds to 
the RP-HPLC profile of oxidized insulin β chain in the absence of protease. The observation 
of several peaks corresponding to insulin cleavage products only upon incubation with wild-
type protease, confirmed that these peaks resulted from APRc activity. 
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The observed autoprocessing ability of APRc and the importance of the catalytic aspartate 

were further confirmed by expressing the constructs harboring the soluble domain (rGST-

APRc87-231) and its active site mutant (rGST-APRc(D140A)87-231) in E. coli and by analyzing total 

soluble fractions for the presence of APRc activated forms with a specific APRc polyclonal 

antibody (raised towards amino acids 165-178). As shown in Figure 13, and consistent with the 

results obtained in our in vitro assays, the activation products were only detected when the 

wild-type sequence was expressed, further corroborating the role of the catalytic aspartate in 

this autoprocessing activity. It is also noteworthy that this activation occurred at a much higher 

rate than what was observed in vitro, indicating that the E. coli cytoplasm probably offers more 

suitable conditions for APRc processing. This intrinsic autoprocessing observed during 

expression in E. coli is in line with what has been documented for other retropepsin-type APs 

(e.g., HIV-1 and XMRV PRs)65,106.  

 

Figure 13. Immunoblot detection of rGST-APRc87-231 /rGST-APRc(D140A)87-231 over expression time. 
APRc auto-processing ability was evaluated in total lysates of E. coli cells overexpressing wild-
type rGST-APRc87-231 or the correspondent active site mutant rGST-APRc(D140A)87-231 over a time-
course of 3 h and subsequently subjected to Western blot analysis with anti-APRc antibody. A 
band with approximately 15 kDa was only detected for the wild-type construct. Expression time 
course in hours (h) is indicated above gels and the molecular weight markers in kilodaltons (kDa) 
are shown on the left. 
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Auto-processing studies on the last intermediate of APRc activation 

Since the expression of APRc soluble domain fused to GST resulted in a high degree of 

contamination with free GST, an alternative strategy was undertaken to streamline the 

production of APRc activation product with higher yield and purity. For this we designed a new 

construct where the sequence encoding the intermediate of activation APRc99-231 was cloned 

into pET23a expression vector (Invitrogen) in frame with a C-terminal 6xHis-tag (rAPRc99-231-

His). This construct was readily expressed in the soluble form in E. coli and a purification 

protocol was optimized consisting of a Ni-IMAC step, followed by dialysis of APRc-enriched 

polled fractions, and further purification through a cation exchange chromatography with a 

Mono S GL column (Figure 14). From the SDS-PAGE analysis (Figure 14C) it is clear that a highly 

expressed protein with an apparent MW of 16 kDa is purified on the 100 mM Imidazole elution 

step of Ni-IMAC chromatography (Figure 14A). In addition, one can also observe the presence 

of a lower molecular weight band with approximately 15 kDa, likely due to proteolytic 

processing occurring during the heterologous expression in E. coli cells. When this fraction is 

subjected to cation exchange purification, three major peaks are obtained (Figure 14B) 

corresponding to different proportions of these two forms, as it is clearly observed on SDS-

PAGE analysis (Figure 14C). Given the consistent presence of both products throughout 

different purification batches (with slight variations on the amount of the minor processing 

product), eluted fractions from the Mono S column were always combined in a single pool 

after purification for subsequent assays.  
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Figure 14. Purification of rAPRc99-231-His by affinity and cation exchange chromatographies. (A) 
Recombinant rAPRc99-231-His was first purified on a HisTrap 5 mL column pre-charged with Ni2+ 
ions and equilibrated in 20 mM phosphate buffer pH 7.5, 500 mM NaCl and 10 mM Imidazole. 
The protein was eluted with a three-step gradient of 50 mM, 100 mM and 500 mM Imidazole at a 
flow rate of 2 mL/min and monitored by measuring the A280nm. The eluted protein from the 100 
mM Imidazole gradient step outlined by dotted lines was pooled, dialyzed for 16 h towards 20 
mM Phosphate buffer pH 7.5 and loaded on a (B) MonoS 5/50 GL column equilibrated in the 
same buffer. Protein elution was carried out by a continuous salt gradient (0-1 M NaCl), at a flow 
rate of 0.75 mL/min and monitored by measuring the A280nm. (C) Approximately 4 µg of protein 
from the HisTrap column and from fractions 1, 2 and 3 outlined by dotted lines in the 
chromatograms were analyzed in a SDS-PAGE gel stained with Coomassie blue. The two purified 
forms of rAPRc99-231-His corresponding to the precursor and processed form are indicated in the 
gel.  The molecular weight markers in kilodaltons (kDa) are shown on the left. 

To further substantiate that the observed lower molecular weight product was a result of 

APRc autoprocessing activity (as previously observed for the GST-fusion protein), three 

additional mutated forms of the intermediate of activation rAPRc99-231-His were generated.  

Two of the mutants comprise the substitution of either P1 or P1’ residues from the last 

cleavage site Ser104*Tyr105 (* denotes cleavage site 3, Figure 11C) by a proline: 

rAPRc(S104P)99-231-His and rAPRc(Y105P)99-231-His), whereas the third construct corresponds to 

the active site mutant (rAPRc(D140A)99-231-His). By changing the cleavage site or abolishing 
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enzyme activity, a significant impact on autoprocessing ability was expected. These proteins 

were expressed and purified under the same experimental conditions used for rAPRc99-231-His. 

Although the same protein level and purity were obtained as with rAPRc99-231-His, major 

differences on the content of purified samples were identified in what concerns the presence 

of processed forms (immediately visible also by the absence of the first peak in the MonoS 

chromatogram). The analysis of purified APRc mutants for the last cleavage site 

rAPRc(S104P)99-231-His (Figure 15A) and rAPRc(Y105P)99-231-His (Figure 15B), revealed that the 

processing of APRc into the final form appears to be tightly regulated in a sequence-specific 

manner, since only a negligible amount of the low molecular weight band was observed for 

rAPRc(S104P)99-231-His (Figure 15A, fraction 1), with no visible product in the Y105P construct . 

Finally, the absence of processed forms (Figure 15C) in the active site mutant rAPRc(D140A)99-

231-His confirmed again the critical role of the catalytic aspartate on the maturation process of 

this AP. 
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Figure 15. Purification of rAPRc99-231-His mutants by cation exchange chromatography. 
Recombinant rAPRc99-231-His mutants were first purified on a HisTrap 5 mL column as described 
for wild-type protease in the legend of Figure 14. (A) rAPRc99-231(S104P)-His, (B) rAPRc99-

231(Y105P)-His and (C) rAPRc99-231(D140A)-His elution on MonoS 5/50 GL column was carried out 
by a continuous salt gradient (0-1 M NaCl), at a flow rate of 0.75 mL/min and monitored by 
measuring the A280nm. Approximately 4 µg of protein from fractions 1, 2 and 3 outlined by dotted 
lines in each chromatogram were analyzed by SDS-PAGE stained with Coomassie blue. The 
molecular weight markers in kilodaltons (kDa) are shown on the left. 

To determine whether these differences were the result of an effect of mutations on 

protein structural stability, all four constructs were analyzed by circular dichroism (CD) at 
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Applied Photophysics. The analyses of far-UV CD spectra obtained for each construct have 

shown that they share the same core secondary structures, thereby reflecting an identical fold 

pattern (Table 6).  

Table 6. Circular dichroism analyses of rAPRc99-231-His and corresponding mutants. The 
percentages of α-helix, β-strands and coils were obtained by deconvolution of the experimental 
far-UV spectra (195-260 nm) using the Net33 model (CDNN CD Spectra Deconvolution 
Software243). 

 Alpha-
Helix 

Beta-
Antiparallel 

Beta-
Parallel Beta-Turn Random Coil 

rAPRc99-231-His 4.4 – 9.4 % 39.3 – 42.5 % 5.3 – 6.0 % 17.4 – 19.4 % 31.0 – 35.3 % 

rAPRc(D140A)99-231-His 4.4 – 9.3 % 39.0 – 42.2 % 5.3 – 5.9 % 17.6 – 19.5 % 31.2 – 35.4 % 

rAPRc(S104P)99-231-His 4.4 – 9.3 % 39.3 – 42.6 % 5.3 – 6.0 % 17.4 – 19.5 % 31.0 – 35.3 % 

rAPRc(Y105P)99-231-His 4.3 – 8.9 % 39.6 – 42.8 % 5.3 – 5.8 % 17.7 – 19.4 % 31.5 – 35.5 % 

 

In contrast, when the CD spectrum for each protein was analyzed as a function of 

temperature to determine the midpoint of the unfolding transition (TM), a major difference in 

protein stability was observed for the construct rAPRc(D140A)99-231-His. Accordingly, while the 

wild-type construct rAPRc99-231-His and the mutated constructs rAPRc(S104P)99-231-His and 

rAPRc(Y105P)99-231-His exhibited identical TM of 49.2±1.2, 50.0±0.2 and 51.8±0.3 ˚C, 

respectively, a significant decrease of the TM (43.0±0.5 ˚C) was observed for the 

rAPRc(D140A)99-231-His construct. Taken together, these results show that only the mutation of 

the catalytic aspartate (D140A) has an impact on the stability of APRc, apparently without 

affecting the overall protein folding. This result is not totally unexpected, as the catalytic 

aspartate has been shown to play a significant role not only for catalytic activity but also in 

stabilizing the monomer and dimer folds of retropepsins without significantly changing the 

protein structure49,244,245. 

 

Despite the presence of some processed product upon purification of wild-type rAPRc99-231-

His, we wanted to evaluate if, as shown for rGST-APRc87-231, this intermediate of activation 

would also be able to undergo auto-activation in vitro into the mature form at pH 6.0. The 

results in Figure 16A confirm this by showing protein conversion over activation time. To 

further characterize APRc enzymatic activity we designed a specific fluorogenic substrate 

which mimics the identified auto-cleavage site between Ser104-Tyr105 residues (PepRick14 

peptide: MCA-Lys-Ala-Leu-Ile-Pro-Ser-Tyr-Lys-Trp-Ser-Lys-DNP) and tested this substrate 

during rAPRc99-231-His activation. As previously observed with the GST-fusion precursor, activity 
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towards this substrate was shown to be also dependent on the conversion step and the 

highest activity observed upon accumulation of the conversion product (Figure 16A-B), further 

strengthening the importance of enzyme activation.  

Given the observed impact of mutating the catalytic Asp residue for APRc autoprocessing 

ability we decided to evaluate the effect of pepstatin (the classical inhibitor of aspartic 

proteases) and indinavir (an HIV-1 PR inhibitor) in rAPRc99-231-His autoprocessing. Our results 

(Figure 16C) show that in the presence of pepstatin the auto-activation step was slightly 

slowed whereas indinavir had no apparent inhibitory effect on this autoprocessing activity. 

These results are not completely unexpected, as studies on HIV-1 PR precursor maturation 

have also shown different susceptibilities of autoprocessing to pepstatin and indinavir65,246. 

Surprisingly, EDTA inhibited rAPRc99-231-His auto-activation suggesting that a metal ion may be 

involved in proper folding and/or enzyme activity. 

 

Figure 16. Auto-processing activity of the last intermediate of activation rAPRc99-231-His. (A) The 
intermediate of activation rAPRc99-231-His was fused to C-terminal His-tag and produced in E. coli. 
Upon purification, the auto-activation assays were performed in vitro in 0.1 M sodium acetate 
buffer pH 6 at 37 ˚C for 48h and monitored by SDS-PAGE stained with Coomassie blue. rAPRc99-

231-His undergone auto-processing, resulting in the formation of the activated form. (B) Activity of 
rAPRc99-231-His towards the fluorogenic substrate MCA-Lys-Ala-Leu-Ile-Pro-Ser-Tyr-Lys-Trp-Ser-
Lys-DNP was tested over activation time. Substrate cleavage increased with accumulation of the 
final activation product. The error bars represent standard deviation of the mean. (C) When the 
auto-activation studies were carried out in the presence of pepstatin, this conversion was slower 
and no significant effect was detected under the presence of indinavir. The presence of EDTA 
completely inhibited protease conversion. The molecular weight markers in kilodaltons (kDa) are 
shown on the left. 

Interestingly, when the final product APRc105-231 was directly produced in E. coli with a C-

terminal His-tag (rAPRc105-231-His) (Figure 15), no proteolytic activity was observed towards the 

same substrate. This result suggests that protease autoprocessing may indeed be accompanied 
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by some conformational change that is not observed when the activation product is directly 

expressed in E. coli. Wan and co-workers have reported a similar result for HIV-1 PR by 

showing that a recombinant protein corresponding to the mature form of the protease (99 

amino acids) with two additional amino-acids at the N-terminus (Met and Gly) displayed no 

proteolytic activity247. Based on this result, we have focused on the construct of the precursor 

form rAPRc99-231-His for further analysis. 

 

Figure 17. Purification of rAPRc105-231-His by cation exchange chromatography. Recombinant 
rAPRc105-231-His was first purified on a HisTrap 5 mL column as described for wild-type protease in 
legend of Figure 14. Protein elution on MonoS 5/50 GL column was carried out by a continuous 
salt gradient (0-1 M NaCl), at a flow rate of 0.75 mL/min and monitored by measuring the A280nm. 
Approximately 4 µg of protein from fractions 1, 2 and 3 outlined by dotted lines in chromatogram 
were analyzed by SDS-PAGE stained with Coomassie blue. The molecular weight marker in 
kilodaltons (kDa) is shown on the left. 

Dimerization studies on APRc 

In view of the homodimeric nature of retropepsins, the oligomeric organization of both 

purified rAPRc99-231-His as well as the derived activation product (APRc105-231-His) was firstly 

evaluated by analytical size-exclusion chromatography (SEC). As shown in Figure 18, the results 

were always consistent with a preferential accumulation as monomers with only a much 

reduced amount of protein eluting as oligomers, as given by the detection of a shoulder (but 

not a defined peak) prior the elution of the monomers. 
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Figure 18. Assessment of APRc oligomerization state. The precursor rAPRc99-231-His and activated 
APRc105-231-His forms were analyzed by analytical SEC. The Superdex 200 5/150 GL was 
equilibrated in 20 mM phosphate buffer pH 7.5 containing 150 mM NaCl. The black dots refer to 
elution volumes of molecular mass markers used for calibration. From left to right: conalbumin 
(75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and ribonuclease A (13.7 kDa). 

 

For this reason, cross-linking studies were conducted to provide evidence for APRc dimer 

formation, as they are generally used to stabilize transient complexes and weak interactions. 

The use of cross-linking assays is based on the accepted premise that the interacting molecules 

must be in close proximity for a sufficient period of time and for a significant fraction of the 

population of molecules under study, in order to form a covalent bond between two cross-

linkable residues248. In this study, reaction products and control samples from cross-linking 

assays performed with DSS, a homobifunctional amine-reactive cross-linker that covalently 

links Lys residues, were analyzed by immunoblotting (Figure 19A). As expected, the results 

revealed a significant amount of APRc associated as dimer, although monomeric and larger 

aggregate species were also visible. Strikingly, even though a conformational change is 

proposed for the conversion of rAPRc99-231-His to the final form APRc105-231-His, the two forms 

did not seem to markedly differ in their ability to self-associate in the dimeric state. To further 

confirm the molecular weight of the structures detected by Western-Blot, cross-linked and 

non-cross-linked protein samples were analyzed by analytical SEC, with the resulting 

chromatogram shown in Figure 19C. As expected, one major peak corresponded to the elution 

of the monomer on both samples, while the cross-linked sample exhibited an additional peak 

corresponding to the elution of the dimer with an apparent molecular weight of 30 kDa.  
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The use of cross-linkers with a long spacer harm usually yields higher efficiency of cross-

linking since it is more likely that two reactive sites are within the distance range of the 

reagent248. However, this can also lead to lower specificity as the result of the cross-linking of 

molecules that are not in direct contact with each other but that can randomly collide under 

certain conditions (e.g., high protein concentration)249. Therefore, similar studies were also 

conducted using the cross-linker glutaraldehyde, which differs from DSS in length of 

connecting backbone (11.4 Å for DSS and 7 Å for glutaraldehyde) and reactive groups (Figure 

19A-B). Despite reducing the chain length of the cross-linker spacer, the results were similar to 

those obtained with DSS further emphasizing the proximity of cross-linkable sites (Figure 19B). 

Hence, different primary amines might react with each cross-linker agent and/or a weak 

interaction between the two monomers might allow the required flexibility to accommodate 

both cross-linker agents.  

Altogether, these results strongly indicate that APRc is mainly a monomer is solution, 

although there is a slight equilibrium between monomeric and dimeric states. Therefore, much 

like it has been described for other retropepsins from spumaretroviruses family250,251, APRc 

appears to form weak transient dimers that might be only present under certain conditions, 

thereby consisting of a low fraction of the whole population of APRc oligomeric states. 
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Figure 19. Cross-linking studies of the last intermediate rAPRc99-231-His and final form of activation 
(APRc105-231-His). (A) The quaternary configuration of rAPRc99-231-His precursor and activated 
forms was assessed by incubating the protease with the cross-linker DSS. Both DSS treated and 
untreated protein samples were subjected to Western blot analysis with anti-APRc antibody. In 
the presence of the cross-linking agent, a significant proportion of the protein migrated as a 
dimer, although the monomeric forms and larger aggregates were also observed. (B) Despite the 
differences in the structure of cross-linking agent, similar results were obtained with 
glutaraldehyde as the cross-linking agent. (C) DSS treated and untreated rAPRc99-231-His protein 
samples were applied to a Superdex 200 5/150 GL equilibrated in 20 mM phosphate buffer pH 
7.5 containing 150 mM NaCl. The black dots refer to molecular weight of protein standards used 
for column calibration, from left to right: conalbumin (75 kDa), ovalbumin (43 kDa), carbonic 
anhydrase (29 kDa) and ribonuclease (13.7 kDa). 

Enzymatic properties of active APRc 

Based on the observed enzymatic activity upon conversion of the precursor form rAPRc99-

231-His, all characterization studies were focused exclusively on this derived activation product 

(for simplification APRc). The effect of pH was determined using the same fluorogenic 

substrate – [MCA]-Lys-Ala-Leu-Ile-Pro-Ser-Tyr-Lys-Trp-Ser-Lys-[DNP] - which mimics the 
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identified auto-cleavage site between Ser104-Tyr105 residues, in a range of pH values from pH 4 

to pH 9. From this analysis an optimal activity at pH 6.0 was observed (Figure 20A), with no 

appreciable hydrolytic activity below pH 5.0. This higher optimal pH value is consistent with 

optimum pH values reported for other retropepsin-type proteases. Examples include the 

Walleye Dermal Sarcoma Virus PR which display an optimal activity at neutral pH for both the 

auto-cleavage and processing of Gag peptide substrate252. Other retropepsins such as HIV-1253, 

EIAV and MLV (Murine leukemia virus) PRs have been also reported to have optimal activity in 

the range pH 4-6, which varies depending on the condition of the assays and type of substrate 

(e.g., protein versus peptide, or the presence of ionizable side chains such as Glu)66. 

When investigating the susceptibility of APRc to classical protease inhibitors (Figure 20B), 

this protease was shown to be insensitive to pepstatin, even though a slightly inhibitory effect 

was observed during autolytic processing. In contrast, APRc activity was strongly inhibited by 

EDTA retaining only 26% activity and a small inhibitory effect was also observed with Pefabloc. 

No substantial effect was observed after incubation with E-64 whereas incubation with Zn2+ 

(Figure 20B) slightly affected enzyme activity.  

In order to provide additional evidence that APRc is indeed a retropepsin-like enzyme we 

analyzed the effect of different clinical inhibitors of HIV-1 PR (Figure 20C). Strikingly, 

incubation with indinavir resulted in a near complete inhibition of APRc, even when tested at a 

final concentration of 0.25 mM in the assay. Additionally, nelfinavir, saquinavir, amprenavir 

and atazanavir also had a remarkable inhibitory effect, ranging between approximately 30-50% 

of inhibition (Figure 20C). With the exception for amprenavir, when using higher 

concentrations than 0.25 mM of remaining inhibitors solubilized in DMSO (atazanavir, 

lopinavir, nelfinavir, ritonavir and saquinavir) aggregates were observed and, thus, these 

results were not included in this analysis. This inhibitory effect of specific HIV-1 PR inhibitors 

against a prokaryotic retropepsin-like enzyme has not been previously described. 
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Figure 20. pH and inhibition profile of APRc activation product. The effect of pH, class-specific and 
HIV-1 PR specific inhibitors on the proteolytic activity of APRc activation product was evaluated 
using the synthetic fluorogenic substrate (MCA)-Lys-Ala-Leu-Ile-Pro-Ser-Tyr-Lys-Trp-Ser-Lys-
(DNP). (A) Activity at different pH values. Activated APRc was incubated with the substrate at 37 
˚C in buffers ranging between pH 4 and pH 9 containing 100 mM NaCl (50 mM sodium acetate pH 
4.0, 5.0, 5.5 and 6.0 and 50 mM Tris-HCl pH 7.0, 8.0 and 9.0), displaying an optimal activity at pH 
6. (B) and (C) To test the effect different compounds, the protease was pre-incubated in the 
presence of each inhibitor for 10 minutes at room temperature in 50 mM sodium acetate pH 6.0 
containing 100 mM NaCl before adding the substrate. APRc activation product was strongly 
inhibited by specific HIV-1 PR inhibitors, with the most prominent effect observed for indinavir. 
The rate of substrate hydrolysis (RFU/sec) was monitored for 3 hours and the relative activity 
normalized by setting the maximum activity at 100%. The error bars represent standard deviation 
of the mean. 
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2.4. Discussion 

The intrinsic difficulty in working with obligate intracellular parasites such as rickettsiae 

greatly hampers the correlation of rickettsial gene products with their function. Therefore, 

valuable information on the nature of conserved genes as well as on the identification of new 

bacterial factors that may play a role in rickettsiae pathogenesis is mostly being provided by 

comparative genomics. Using this approach, we identified a gene encoding a putative 

membrane embedded aspartic protease with a retroviral-type signature, highly conserved in 

55 Rickettsia genomes. Using the R. conorii gene homologue RC1339 as our working model we 

demonstrate that the gene product (APRc) displays a high degree of identity among Rickettsia 

spp., although no significant homology is observed when compared to other APs, except for 

the conservation of the motif around the catalytic aspartate as well as the hydrophobic-

hydrophobic-glycine motif required for the formation of the psi loop. These features resemble 

the retroviral APs comprising family A2, which are characterized by being active only as 

symmetric dimers with a single active site, where each monomer contributes with one 

aspartate27,41. Despite the observed low overall sequence similarity with retropepsins, our 

results on the enzymatic characterization of RC1339/APRc soluble catalytic domain further 

revealed that this novel rickettsial enzyme indeed shares several properties with this family of 

APs, as discussed hereinafter.  

 

Most viral retropepsins are strictly required for the processing of Gag and Gag-Pol 

polyproteins into mature structural and functional proteins (including themselves) and are, 

therefore, indispensable for viral maturation91. Because of this, retropepsin PRs are generally 

characterized by their inherent autolytic function. Interestingly, our results with APRc soluble 

catalytic domain fused to GST also demonstrated the ability of this protein to undergo a multi-

step autocatalytic conversion in vitro into APRc105-231 mature form, and this autolytic activity 

was again confirmed when the last intermediate of activation was produced in E. coli. 

Moreover, to investigate whether the lower molecular weight band observed for the purified 

sample of wild-type rAPRc99-105-His do indeed correspond to the last product of autoproteolytic 

processing observed for rGST-APRC87-231, three mutants of the last intermediate were 

generated by site directed mutagenesis. The mutation of the catalytic aspartate 

(rAPRc(D140A)99-105-His) had the effect expected for a retropepsin-like enzyme, yielding an 

inactive enzyme with impaired autoprocessing. CD analysis has also confirmed the significant 

role of this residue for the structural stability of APRc, as previously reported for other 

retroviral proteases49,244,245. The other two mutants with altered internal cleavage recognition 
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sequences to the last cleavage site between Ser104-Tyr105 residues, rAPRc(S104P)99-105-His 

and rAPRc(Y105P)99-105-His, respectively, while having a near-identical TM (from CD analysis), 

exhibited very little tolerance of changes in this recognition sequence (only slight activation 

was observed for rAPRc(S104P)99-231-His), thereby confirming that this is indeed the target for 

autoproteolytic processing. 

The enzymatic activity assays performed during these auto-activation studies (either using 

oxidized insulin β chain or the fluorogenic peptide mimicking the final cleavage site between 

the Ser104-Tyr105 residues) clearly indicated that APRc activity appears to be dependent on 

the presence of the final activation product. These results suggest that the processing at the N 

terminus must be the determining step for the regulation of enzymatic activity, presumably 

through a conformational change occurring upon conversion from rAPRc99-231-His to APRc105-

231-His form.  

This is in line with what has been described for recombinant HIV-1 PR, where the increase 

in catalytic activity upon protease autolytic conversion has been correlated with a 

conformational rearrangement between the precursor/inactive vs. mature/active forms of the 

enzyme91,254. In the context of Gag-Pol precursor, the PR domain is flanked by the TFR and the 

RT enzyme at its N and C termini, respectively, where the TFR is thought to have a role similar 

to that observed at the N termini of zymogen forms of pepsin-like enzymes246. As represented 

in Figure 21, even though the full-length TFR/PR precursor appears to be monomeric, it 

undergoes maturation through intramolecular cleavage of a putative transient dimer34,48,63,246. 

For autoprocessing to occur, the dimer intermediate undergoes a conformational change, in 

which one of the two N-terminal strands occupies its active site. The dimer formation is 

facilitated by interface interactions of at least the active site and the C-terminal residues and 

possibly stabilized further by the interaction of the N-terminal TFR/PR cleavage site sequence 

with the active-site and flap residues64,255. Cleavage of the scissile peptide bond at the N-

terminus of HIV-1 PR is the rate-determining step for the appearance of enzymatic activity 

towards Gag-Pol precursor. In accordance, and similar to what we have observed for APRc, the 

expression of a wild-type HIV-1 PR extended only with the initiator Met, lacking the original N-

terminus of the protease consisting on the Phe-Pro bond, resulted on an inactive enzyme247. 
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Figure 21. Structural organization of the Gag-Pol polyprotein of HIV-1 and representation of its 
auto-processing mechanism. (A) Individual domains are matrix (M); capsid (CA); nucleocapsid 
(NC); reverse transcriptase (RT); RNase H (RN); integrase (IN). Black arrows indicate specific sites 
of cleavage by PR. The green (TFR) and red (PR) bars denote the protease precursor (TFR-PR). (B) 
Proposed mechanism for the processing of a model precursor comprising the TFR, PR, and 
truncated ΔRT domains. Ovals indicate folded monomers in the transient precursor dimer, PR-
ΔRT and mature PR. Transitioning ovals from light red to fully red depict appearance of catalytic 
activity and stable dimer formation of PR. Adapted from Louis et al.65. 

Despite all retroviral proteases have been previously shown to be only active as 

homodimers, the mechanisms governing the formation of dimer state are rather distinct 

among the two subfamilies of retroviruses: Orthoretrovirinae (e.g., HIV-1, RSV, etc.) and 

Spumavirinae (e.g., HFV and simian foamy virus). As discussed for HIV-1 PR, the presence of 

the N-terminal flanking TFR sequence leads to the formation of weak dimers with low PR 

activity. Once the N-terminal region is cleaved off, stable and active PR dimers are 

subsequently formed. In contrast, this type of regulation cannot take place with the foamy 

virus PRs as there is no Gag–Pol precursor and thus no N-terminal extension of the PR. Foamy 

viruses (FVs) express their Pol polyprotein from a separate Pol-specific transcript and, since 

only integrase domain is cleaved off, the mature protease harbors the reverse transcriptase at 

its C-terminus (PR-RT)256. As a result, it was reported that the PRs from simian foamy virus 

from macaques (SFVmac) have significant differences in the dimerization interface relative to 

most common orthoretroviral proteases counterparts (e.g., HIV-1 PR), even though PRs from 

both retroviruses families exhibit similar overall folds250,251. In fact, the existence of a 

predominant monomeric state of SFVmac PR-RT is supposed to inhibit PR activity before virus 

assembly in order to have a properly packaged viral unit250. To explore the possible influence 

of RT on dimerization, a separate PR domain (PRshort) of SFVmac was expressed in E. coli, and 

compared to the full-length PR-RT. Although only monomeric species could be detected when 

analyzed by SEC or analytical ultracentrifugation, both enzymes exhibited proteolytic activities 

in vitro at NaCl concentrations of 2–3 M. As SFVmac PR dimerization is required in order to 
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form the catalytic center of this enzyme, recent investigations on monomer/dimer status of 

PRshort by paramagnetic relaxation enhancement analysis, have identified a transient 

homodimeric state which is characterized by an equilibrium between a lowly populated short-

lived state in high-dynamic exchange with the ground state251. Given the largely monomeric 

state of PRshort and PR-RT under physiological conditions, it is likely that FV PRs requires 

additional viral and/or cellular factors for efficient dimerization in vivo. Attending to these 

data, APRc appears to share features with proteases of the two retroviral subfamilies: while it 

appears to display a similar type of regulatory activation mechanism reported for HIV-1 PR 

(requiring processing and conformational change prior achieving full enzymatic activity), this 

enzyme also revealed to be present in solution mainly under a monomeric state, although a 

slight amount of protein appears to be in dimeric form. Noteworthy, APRc also share with FV 

PRs the lack of the conserved Gly-Arg-Asn/Asp sequence motif present in most retroviral 

proteases. This motif has been described to have a significant role in dimerization, as the intra-

monomer hydrogen bound between Arg87 and Asp29 (in HIV-1 PR) appears to influence the 

correct placing of the C-terminal β-strands (residues 96–99 in HIV-1 PR) at the interface of the 

two monomers257. Therefore, the absence of this important structural feature in APRc is most 

likely one of the key reasons why the dynamics of dimer formation and stability of this 

protease differs so much from the majority of retropepsins. 

 

Further studies are, therefore, required to better understand the maturation and dimer 

formation of APRc precursor forms in vitro and how this is accomplished and controlled in vivo. 

In fact, as will be discussed in Chapter IV, we have shown that APRc accumulates in the outer 

membrane in R. conorii and R. rickettsii and, therefore, we cannot rule out that the presence 

of the transmembrane domain may have an important role in this maturation process in vivo. 

Actually, the presence of transmembrane domains in APRc introduces a new feature still 

poorly characterized in the context of retropepsin-like enzymes. A similar domain organization 

- putatively membrane embedded with a soluble catalytic domain - with variations in the 

number of predicted TMH has been also described for eukaryotic retropepsin-like proteases 

such as human and mouse SASPase100,104 as well as for SpoIIGA from Bacillus subtilis98. SASPase 

is primarily expressed with a single transmembrane domain, as suggested by the 

immunodetection of unprocessed SASPase in the stratum corneum of psoriatic epidermis, but 

due to its auto-catalytic activity, only processed forms are found in the upper layers of normal 

skin100,104. In contrast, SpoIIGA is proposed to have five transmembrane segments in its N-

terminal domain, which might function as a receptor for the SpoIIR signal98. Interestingly, by 

expanding the search to other gram-negative bacteria, Teixeira258 identified several putative 
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genes encoding for putative retropepsin-like enzymes not only in other α-proteobacteria but 

also in δ-, γ- and β-proteobacteria, all comprising putative transmembrane domains. Although 

a remarkable similarity in amino acid sequence was observed for these putative proteins in 

what concerns the hallmark catalytic sequence motifs - hydrophobic-hydrophobic-Asp-Thr/Ser-

Gly-Ala and hydrophobic-hydrophobic-Gly - a clear difference was found regarding the number 

of putative transmembrane domains. When searching for proteins related to the retropepsin-

like enzymes from Rickettsia spp., many other α-proteobacteria, such as Polymorphum gilvum, 

Sinorhizobium fredii and Mesorhizobium amorphae, were also identified as having genes 

coding for a putative soluble catalytic motif with three putative transmembrane helices 

(3TMH). Moreover, despite belonging to δ-proteobacteria, a putative retropepsin-like enzyme 

from Desulfatibacillum alkenivorans also shares the same 3TMH motif. Importantly, a BLAST 

search for retropepsin-like enzymes in γ-proteobacteria identified related proteins with a 

single transmembrane domain (1TMH) in many pathogenic bacteria including Pseudomonas 

aeruginosa, Pseudomonas putida and Legionella pneumophilla. Besides the γ-proteobacteria 

matches, this search also retrieved proteins with 1TMH in α-proteobacteria such as PerP 

(Caulobacter crescentus), in β-proteobacteria (Thiobacillus denitrificans and Ralstonia sp. 

5_7_47FAA) and in δ-proteobacteria (Syntrophus aciditrophicus and Desulfobacter 

postgatei)258. From this analysis it is obvious that the presence of transmembrane domains is a 

common feature among putative prokaryotic retropepsin-like proteins, definitely urging for 

future studies on the functional relevance of this structural organization. 

 

Another interesting observation was that APRc autolytic activity, as well as cleavage of the 

fluorogenic substrate, occurred at a pH optimum of 6.0. This is again in good agreement with 

the optimal pH of other retropepsin-like252,253 enzymes as well as of the pepsin-like renin259,260 

and, actually, it is consistent with the presence in APRc of an alanine residue downstream from 

the catalytic motif (Asp-Thr-Gly-Ala), instead of the common Thr residue found in most pepsin-

like APs. This substitution affects the acidity of the active site residue Asp by preventing a 

hydrogen bond forming41. Unexpectedly, we observed a drastic inhibitory effect of EDTA on 

both APRc maturation and hydrolysis of the fluorogenic substrate, suggesting that this 

protease may depend on a metal ion for folding and/or activity. A similar effect has not been 

reported for other retropepsins and no homology to a metalloprotease consensus motif was 

identified in APRc that could justify this inhibition. 

 

 It is also important to note that a distinct pattern of inhibition of pepstatin and indinavir 

was observed between the maturation process and the enzymatic activity towards other 
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substrates (e.g., PepRick14). These two AP inhibitors exhibit remarkable differences in 

structural composition: pepstatin is a hexa-peptide with the sequence: Iva-Val-Val-Sta-Ala-Sta, 

where Sta is the unusual amino acid statine, whereas indinavir is a structural analogue of the 

HIV-1 PR Phe-Pro cleavage site. Therefore, the aforementioned suggested conformational 

changes on the active pocket site of APRc upon the conversion of the last intermediate to the 

mature form, may once again justify the ability of APRc to accommodate one or another 

inhibitor. Interestingly, whereas these two inhibitors have been reported to inhibit different 

retropepsins (e.g., HIV-1 and XMRV PRs65,246,261) either on both maturation and enzymatic 

activity, a contrasting effect was also observed for the auto-activation of SASPase100. In fact, 

even under the presence of 1 mM pepstatin, no inhibitory effect was observed for SASPase 

auto-activation while the inhibition by indinavir was suggested to be responsible for the skin 

side effects observed in patients during therapy for AIDS treatment100. 

Given the remarkable inhibitory effect of indinavir on APRc activity, important insights 

regarding the contribution of APRc for rickettsial infection mechanisms may be obtained in  

the future by evaluating the impact of indinavir, and other commercially available HIV-1 PR 

inhibitors, on the ability of different rickettsial strains to adhere and invade to the host cells. 

Such information would greatly assist in the assessment of the potential of APRc as a candidate 

therapeutic target for the treatment of rickettsioses, and consequently in the development of 

specific drugs directed to APRc inhibition. 

 

Further structural studies on APRc will be required to help understanding the molecular 

mechanisms of activation, the different susceptibilities to inhibitors as well as to provide 

additional insights into structure-function relationships of this novel aspartic protease. 

Nevertheless, the observed autolytic activity, optimal activity at mildly acidic pH and the 

observed inhibitory effect of specific HIV-1 PR inhibitors, clearly strengthen the striking 

resemblance between the enzymatic properties of APRc and those of viral retropepsins. 

Moreover, the results described here provide experimental substantiation that RC1339/APRc is 

a novel functional retropepsin-like enzyme expressed in a gram negative intracellular 

bacterium, contributing to the analysis of the evolutionary relationships between the two 

types of APs that will be further discussed in Chapter V. 
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Chapter III. APRc specificity profiling by PICS 

3.1. Introduction 

One of the key factors in maintaining the fidelity of most biological features is the substrate 

specificity of proteases, i.e., their ability to discriminate among many potential substrates. The 

substrate specificity of a protease can be controlled on many levels in a biological context, 

including the spatial and temporal localization of the protease and their potential substrates, 

the post-translational modifications of proteases or the requirement of cofactors or adaptor 

proteins, but it is mostly determined by the organization and composition of the substrate-

binding subsites in the catalytic pocket262. Although the primary specificity of a protease is 

determined by the amino acid residue that is accepted in its S1 (or S1′) position, the cleavage 

site selectivity of proteases largely relies on the recognition of substrate residues spanning the 

scissile peptide bond. Therefore, the conformation and flexibility of the peptide backbone of 

the substrate protein also significantly affects the efficiency of the peptide bond cleavage263. 

These and many other biochemical properties of proteases have been unveiled by the 

increasing number of studies on the role of these enzymes and associated functional 

mechanisms in biological processes, which include mapping the specificity of proteases and 

the identification of their substrates and inhibitors. The recognized importance of these 

studies led to the definition of the term Degradomics by Lopez-Otin and Overall in 2002264: “All 

genomic and proteomic investigations and techniques regarding the genetic, structural and 

functional identification and characterization of proteases, and their substrates and inhibitors, 

that are present in an organism”. 

 

Protease specificity profiling, in particular, is a key step in the biochemical characterization 

of proteases, and also provides valuable information on the active-site structure to help in the 

design of specific peptide substrates (useful for assay development) and of small molecule 

protease inhibitors. Until recently, specificity studies of proteases were typically based on 

phage display265 or peptide library approaches266,267. However, mass spectrometry-based 

proteomic strategies are now becoming widely adopted approaches for protease cleavage 

sites and activity profiling268. Their main advantages over other methods are their high 

sensitivity and selectivity, their ability to identify and characterize the primary structure of the 

cleavage products and, depending on the method, their ability to perform quantitative 

analysis269. PICS (Proteomic Identification of protease Cleavage Site specificity) is a recent 
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peptide-centric approach for the easy mapping of endoprotease subsite preferences that 

allows the identification of both prime- and non-prime side specificity in the same 

experiment268,270,271. This is a unique technique in the sense that it uses relevant and complex 

proteome-derived oligopeptide libraries and thus harnesses natural sequence diversity. The 

schematic diagram from Figure 22 illustrates the main steps of PICS methodology271.  PICS 

libraries can be generated from any proteome source with known genome or proteome 

sequence (e.g., human or E. coli cells), and thus represent biological sequence diversity. A 

specific endoprotease, such as Trypsin, GluC or Chymotrypsin, is used to digest the cellular 

proteomes and following protease inactivation, thiols and primary amines (N-terminal α-

amines and Lys Ɛ-amines) are chemically protected. The proteome-derived peptide library is 

then cleaned up and purified. Such libraries are now ready to be used as substrate for the PICS 

assay with a test protease. After incubation, in contrast with the non-cleaved peptides in the 

library that possess blocked primary amines, each prime-side (P’) cleavage fragment has a 

reactive primary amine on their neo-N termini, which is biotinylated by NHS chemistry for 

affinity isolation and sequence identification by liquid chromatography–tandem mass 

spectrometry (LC-MS/MS).  

 

Figure 22. Schematic representation of PICS methodology. (A) Libraries are generated from 
cellular proteomes through digestion into oligopeptides by specific endoproteases. Thiols and 
primary amines are then chemically blocked and the library is purified. (B) PICS peptide libraries 
are incubated with a test protease and the newly formed prime-side cleavage products, which 
possess free N termini, are then tagged with a cleavable biotin, allowing specific isolation with 
immobilized streptavidin. (C) After elution, prime-side cleavage products are identified by LC-
MS/MS while the corresponding non-prime sequences are determined using bioinformatics. 
Adapted from Schilling and colleagues271. 
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Since it relies on database-searchable peptide libraries, the corresponding non-prime 

sequences are derived bioinformatically through a web-based service, allowing the 

simultaneous determination of the amino acid residues spanning both sides of the scissile 

bond: the prime-side (P’) and non-prime side (P)271,272. 

One major limitation of this approach is that it has been designed for a qualitative 

determination of cleavage sites specificities but does not allow analyzing quantitative aspects 

of proteolytic reactions that would allow the comparison of cleavage site specificity of the 

same protease in different conditions (e.g., different pH or temperature). Also, this approach 

cannot be used for exopeptidases, which requires the use of available synthetic peptide 

libraries covering all the amino acids combinations that can be used. Finally, although PICS 

libraries contain all natural amino acids, the preparation of peptide libraries implies that 

cysteines and lysines must be blocked, thereby conferring them different properties that must 

be taken into account when analyzing the output results. Regardless these limitations, the 

large number of cleavage sequences identified in each PICS experiment, allows not only for the 

identification of protease cleavage sites but also for the analysis of potential subsite 

cooperativity, as already demonstrated for HIV-1 PR and for other classes of proteases270. 

 

The results presented in the present chapter extend and validate the applicability of PICS to 

APs (HIV-1 PR is the only AP with specificity profile determined by PICS approach) by providing 

the identification of amino acid preferences of APRc. The comprehensive analysis of APRc 

specificity profile and further comparison with the specificity of other APs, clearly corroborates 

its identity as a new enzyme belonging to the retropepsin family. 
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3.2. Materials and Methods 

PICS methodology 

Protease specificity profiling with proteome derived peptide libraries consisted of library 

preparation and PICS assay as described elsewhere270 with minor changes. 

Library generation 

PICS libraries were generated with THP1 cells derived from the peripheral blood of a 1-year-

old male with acute monocytic leukemia. The cells were grown in suspension in three 175-cm2
 

cell culture flasks to a density of 2-4 x 108 cells/mL to yield a total mass of approximately 0.5 g 

cells. Cells were centrifuged at 400g, 4 ˚C for 5 min and the supernatant decanted. The cell 

pellet was washed with PBS and the centrifugation repeated.  

Once determined the weight of the cell pellet, it was re-suspended in 5 volumes (assuming 

that 1 mg cell pellet ≈1 mL volume) of hypotonic lysis buffer (100 mM HEPES pH 7.5, 1 mM 

PMSF, 10 mM EDTA, 0.1% SDS) containing the proper amount of Thermo Scientific Halt 

Protease Inhibitor Single-Use Cocktail EDTA-free solution according to the manufacturer’s 

instructions. To promote cell lysis, a repeated aspiration (15 or more times) of the cell 

suspension with a 22 or 27-gauge needle was performed. The cell lysate was centrifuged at 

20000g for 20 min and the supernatant collected to a new 50 mL falcon tube and adjusted to 

100 mM HEPES pH 7.5. Protein concentration was determined by measuring the Abs280nm. 

For the first round of sulfhydryl alkylation, the sample was incubated with 5 mM DTT for 1 h 

at 25 ˚C. The sample was then incubated with 20 mM iodoacetamide for 1 h at 25 ˚C in the 

dark and with 5 mM DTT at 25 ˚C for 15 min to quench unreacted iodoacetamide.  

Protein precipitation was done by the addition of chloroform/methanol according to 

Wessel and Flugge273. The procedure begun with the addition of 4x sample volume of cold 

methanol followed by the addition of 2x original sample volume of chloroform and 2x original 

sample volume of 50 mM Tris-HCl containing 150 mM NaCl. Between each addition, the 

sample was mixed by vortexing and then centrifuged for 1 min at 9000g. Upper and down 

phases were decanted while the protein pellet formed at the interphase remained attached to 

the wall of the falcon tube. The pellet was then washed twice with minute amounts (2x sample 

volume) of –20 ˚C cold methanol and left to air-dry for 30-40 min in the hood. 

Subsequently, the pellet was overlaid with ice-cold 20 mM NaOH with sufficient volume to 

reach an assumed 2.0 mg/mL protein concentration on the basis of the total protein amount 
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previously determined. To neutralize sample pH, 200 mM HEPES pH 7.5 was added before 

determining the protein concentration and total protein amount using the Bradford assay 

method. 

Proteomes were digested either with Trypsin and GluC to generate tryptic or GluC libraries 

using a protease-to-proteome ratio of 1:100 (wt/wt) for Trypsin and 1:50 for GluC and 

incubated at 37 ˚C for 16h. To guarantee a complete digestion, equal amounts of enzyme were 

added for 2 h at 37 ˚C yielding a final ratio of 1:50 for Trypsin and 1:25 for GluC.  To assess the 

completion of the proteome digest, a small aliquot was analyzed by SDS-PAGE, where no 

major protein bands above 10 kDa were observed after staining. Given the complete digestion, 

1 mM PMSF was added to abolish activity of the digestion protease and 1 M guanidine 

hydrochloride to disrupt the formation of small aggregates. Bigger aggregates were pelleted by 

centrifugation at 20000g at 4 ˚C for 10 min.  

The second round of sulfhydryl alkylation consisted on the incubation of digested proteome 

with 5 mM DTT at 37 ˚C for 1 h followed by the incubation with 40 mM iodoacetamide at 37 ˚C 

for 1.5 h in the dark. Finally, the sample was incubated with 15 mM DTT at 37 ˚C for 10 min. 

For the free amine dimethylation, the peptides were incubated with 30 mM formaldehyde 

and 30 mM sodium cyanoborohydride (‘ALD coupling solution’) at 25 ˚C for 2 h. An additional 

30 mM formaldehyde and 30 mM sodium cyanoborohydride were added and incubated at 25 

˚C for 16 h. The excess of free sodium cyanoborohydride was captured by incubating the 

sample with 100 mM glycine at 25 ˚C for 30 min. 

The sample was acidified (pH < 2.5) to 2% (vol/vol) TFA purified by C18 solid-phase on a GE 

HealthCare RESOURCE™ RPC 3 mL column extraction according to manufacturer’s instructions, 

with the exception of eluting with 80% (vol/vol) acetonitrile without added TFA. After elution, 

peptide concentration was determined by the BCA method. 

The acetonitrile was then removed from solid-phase extraction eluate by vacuum 

evaporation. Throughout this step, the sample was refilled with water to approximately half of 

the original volume for four times. The sample was finally evaporated to achieve a calculated 

peptide concentration of 2.0 mg/mL. To redissolve peptides, the sample was incubated in an 

ultrasonication bath for up to 3 h followed by centrifugation at 20000g for 10 min.  

Final peptide concentration was determined by the BCA method and peptide libraries were 

stored in aliquots of 200 µg at −80 ˚C. To confirm purity and integrity of the peptide library, 10 

µg of the library was analyzed by ESI-MS/MS.  
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Test protease assay  

One aliquot of peptide library was thawed and the appropriate buffer conditions for APRc 

incubation adjusted to have 50 mM sodium acetate buffer pH 6 containing 150 mM NaCl and a 

final library concentration of 1 mg/mL. Activated form of APRc (APRc105-231-His) obtained as 

described in Chapter II, was incubated in a protease library ratio of 1:50 (wt/wt) for 16 h at 37 

˚C. To terminate the reaction, APRc was heat inactivated (90 ˚C, 5 min).  

For the biotinylation of neo-amino termini, the pH was adjusted to 7.5 by adding 100 mM 

HEPES pH 7.4 and incubated with fresh 0.5 mM sulfosuccinimidyl 2-(biotinamido)-ethyl-1,3-

dithiopropionate (sulfo-NHS-SS-biotin) at 25 ˚C for 2 h. 

Biotinylated prime-side cleavage products were captured onto high-capacity streptavidin-

sepharose (GE Healthcare) slurry previously equilibrated in 50 mM HEPES pH 7.4, 150 mM 

NaCl. Resin slurry volume was 1.5-times the volume of the PICS assay, providing sufficient 

binding capacity for bound and unbound biotin in PICS assay without further cleanup. 

Incubation was left at 4 ˚C for 16 h. The slurry was then washed by repeated (10x) 

centrifugation (200g, 30 seconds) and resuspension steps with 1 mL of 50 mM HEPES pH 7.4, 

150 mM NaCl. The slurry was transferred to a spin column with a filter of approximately 10 µm 

pore size and the column was placed in a 2 mL reaction tube. The tube was centrifuged at 200g 

for 30 seconds and the flow-through re-applied to resin for a second centrifugation. After 

discarding the flow-through, the slurry was washed by repeated (10x) centrifugation at 150g 

for 30 seconds with 400 µl of washing buffer (50 mM HEPES pH 7.4, 150 mM NaCl). To elute 

the peptides, the slurry was gently resuspended in 50 mM HEPES pH 7.5 with 20 mM DTT, 

incubated for 1 h at 25 ˚C and finally centrifuged at 500g for 1 min. This step was repeated and 

the two elution fractions pooled together. 

The eluted sample was further acidified with 2% formic acid (pH < 2.5) and loaded onto a 

reversed-phase C18 cartridge (100 cc) previously equilibrated with 1 mL 0.5% formic acid and 

centrifuged at 700g for 1 min. The column was washed with the same buffer by loading 10 

times 1 mL. Finally, peptides were eluted with 1 mL 70% acetonitrile plus 0.5% formic acid and 

vacuum-evaporated to near-dryness (10-20 µl).  

LC-MS/MS and data analysis 

 
The proteomic identification of carboxy-peptide cleavage products by LC-MS/MS analysis 

was carried out using an nano-LC system (Thermo) with a 2 cm-long trap column (100 µm 

inner diameter, packed with 5 µm-diameter Aqua C-18 beads (Phenomenex)) and a 20 cm-
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long analytical column (50 µm inner diameter, packed with 3 µm-diameter Reprosil-Pur C-

18-AQ beads (Dr. Maisch, Ammerbuch, Germany)) connected to a LTQ-Orbitrap XL hybrid 

mass spectrometer (Thermo) operated by the UBC Centre for High Throughput Biology), 

and on HALOTM C18 column (Eksigent) connected to a LC-MS/MS TripleTOF 5600 (AB SCIEX), 

operated by the Center for Neuroscience and Cell Biology Proteomics Unit. For the QSTAR 

Pulsar instrument, samples were resuspended in 2% (vol/vol) acetonitrile, 0.1% formic acid 

and loaded onto a column packed with PepMap C18 resin (Dionex). Peptides were eluted using 

a 5-40% gradient of organic phase (buffer B) over 90 min. Buffer A was 2% acetonitrile and 

0.1% formic acid, whereas buffer B was 85% acetonitrile and 0.1% formic acid. For the 

TripleTOF 5600 instrument, samples were resuspended in 0.1% formic acid and loaded onto a 

column packed with HALOTM C18 column (Eksigent). Peptides were eluted using a 2–40% 

gradient of organic phase over 120 min. Buffer A was 0.1% formic acid and buffer B was 98% 

acetonitrile, 0.1% formic acid.  

MS data was acquired automatically using Analyst QS software (Applied Biosystems) for 

information-dependent acquisition based on a 1 s MS survey scan (mass ranges listed below) 

followed by up to 3 (QSTAR Pulsar) or 2 (TripleTOF) MS/MS scans of 3 s each. Nitrogen was 

used as the collision gas and the ionization tip voltage was 22,000 V (QSTAR Pulsar) or 25,000 V 

(TripleTOF). 

The identification of prime-side sequences from LC-MS/MS data was done with the 

spectrum-to-sequence database search programs Mascot and X!Tandem274 in conjunction with 

PeptideProphet275 at a 95% confidence level. Search parameters were set to identify static 

modifications as carboxyamidomethylation of cysteine residues (+ 57.02 Da), dimethylation of 

lysines (+ 28.03 Da) and thioacylation of peptide N termini (+ 88.00 Da). Mass tolerance was 

set to 10 ppm for the parent ion and 0.6 Da for fragment ions. Semi-style cleavage searches 

were applied with no constraints for the orientation of the specific terminus. Tryptic specificity 

was defined to cleavage C-terminal to Lys or Arg and GluC specificity was defined to cleavage 

C-terminal to Glu or Asp. Up to three missed cleavages were allowed for the library-generating 

enzyme.  

Nonprime-side sequences of the original peptidic substrates were inferred by the web-

based integrated series of data handling scripts termed WebPICS271. This web service 

automatically retrieved non-prime cleavage sequences, rendered the list of cleavage sites 

nonredundant, provided heatmap-style graphical and tabular representation of subsite 

preferences, and screened the cleavage sites for potential subsite cooperativity. The 

occurrences of amino acids relative to natural abundance retrieved by WebPICS were log-
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transformed in order to represent the under- and over-represented amino acids for each 

position with the same amplitude in opposite directions. Final heatmaps were constructed 

using MeV software276. 

The sequence logos representation of APRc subsite specificities encompassing the cleavage 

site were further obtained with IceLogo tool available at http://icelogo.googlecode.com/. 

Cleavage site sequences from P4 to P4’ created by WebPICS were filtered to exclude 

redundant peptides and analyzed by the IceLogo algorithm using the proteome background 

(Swiss-Prot) of Homo sapiens as the reference set. Fold change and percentage difference 

graphical representations were generated with a p-value of 5%. 

Heatmaps generation from MEROPS database 

To provide a better means to compare the specificity profile of APRc with other APs, 

heatmap-style graphical representations of subsite preferences of selected APs from family A1 

and A2 were constructed based on the annotations on MEROPS database1. The number of 

occurrences of each amino acid in each position around the scissile bond (from P4 to P4’) were 

obtained from the specificity matrix of pepsin A (417 cleavages), cathepsin D (897 cleavages), 

BACE1 (24 cleavages), Mason-Pfizer monkey virus PR (18 cleavages), HIV-2 PR (30 cleavages) 

and feline immunodeficiency virus PR (28 cleavages). These values were then log-transformed 

in order to represent the under- and over-represented amino acids for each position with the 

same amplitude in opposite directions and the final heatmaps generated using MeV 

software276. 
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3.3. Results  

APRc specificity profile 

To further biochemically characterize this novel rickettsial protease we determined its 

specificity profile by making use of the high-throughput peptide centric approach PICS270,271. In 

this work, active APRc was incubated with PICS libraries generated by digestion of total human 

THP1 cell proteins by either Trypsin or GluC. These PICS experiments resulted in the 

identification of 830 and 327 C-terminal cleavage products from tryptic and GluC libraries, 

respectively (Supplementary Table 1 and 2). The corresponding N-terminal cleavage products 

and complete cleavage sites were obtained and summarized using the WebPICS tool271. The 

PICS-based APRc specificity profiles are shown in Figure 23, and a good agreement was 

observed between the two complementary peptide libraries. APRc displays only moderate 

specificity and accepts multiple amino acids at each position. At P1, directly preceding the 

scissile bond, APRc showed a preference for large hydrophobic residues such as Phe, Tyr, Met, 

Leu, and carboxyamidomethylated Cys (modified during library preparation). In addition, APRc 

also preferred the neutral amino acids Thr and Asn at this site. A similar preference was 

observed for P1’, although this further included small amino acids Ala, Ser, and Gly as well as 

Asp. Notably, cleavage sites were almost devoid of Pro at P1 and P1’. 

Furthermore, PICS revealed distinct preferences for selected amino acids at other positions, 

likely reflecting structural constraints imposed by the substrate recognition and binding to the 

pocket site. In P2, APRc preferences include Val, Ile, Pro, and Thr, whereas a predominant 

preference for small and branched aliphatic amino acids Ala, Val, and Ile was observed at P2’. 

More distant from the cleavage site, small preferences for Val and Ile at P3, for Ala and Gly in 

P3’, and a strong preference for Leu or Ile at P4’ were observed. Interestingly, basic and acidic 

residues were significantly underrepresented throughout. 
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Figure 23. APRc specificity profile determined by PICS methodology. APRc specificity profile 
represented by Heatmaps and IceLogos, reveals similar amino acid preferences to both 
retropepsin and pepsin-like enzymes. Results are from tryptic and GluC peptide libraries derived 
from a Homo sapiens proteome (THP1 cells) incubated with activated APRc at a ratio of 1:50 
(enzyme/library). The analytical strategy applied was similar to that described in 271. PICS libraries 
were analyzed by multiple sequence alignments and applying correction for natural amino acid 
abundance. For each class of PICS library, the average amino acid occurrences in P4–P4’ were 
calculated from three experiments and are either shown in the form of (A) a two-dimensional 
heat map of log(2) transformed values of fold-enrichment over natural abundance of amino acids 
and (B) % difference IceLogos. Both tryptic and GluC display consistency between them. In 
IceLogos representation, horizontal axis represents the amino acid position and vertical axis 
denotes the over-representation of amino acid occurrence compared with the Swiss-Prot Homo 
sapiens protein database. Cysteines are carboxyamidomethylated and lysines are dimethylated. 

The large number of APRc cleavage sites identified from the tryptic PICS library further 

allowed investigation of subsite cooperativity. When comparing two of the strongest cleavage 

site determinants, Pro at P2 and Phe at P1, we observed apparent mutual exclusion (Figure 

24). Of the 103 unique cleavage sites that contained Pro in P2, only 4 had Phe in P1 (3.7% 

compared to 10.5% occurrence for all identified cleavage sites), which was compensated by 

more frequent occurrence of P1 Met (10.3% compared to 5.8% total occurrence) and P1 Asn 

(14% compared to 8.3% total occurrence) (Figure 24A). Correspondingly, peptides with Phe in 

P1 yielded 4.6% P2 Pro (compared with 12.9% total occurrence) (Figure 24B), whereas 

peptides with Met or Asn in P1 yielded 22.9% or 21.7% P2 Pro, respectively (Figure 24C-D). A 
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similar trend was observed in identified cleavage sites from GluC libraries, indicating subsite 

cooperativity between P2 and P1. 

 

Figure 24. Subsite cooperativity of APRc between P2 and P1. The statistical analysis of subsite 
cooperativity of APRc was provided by WebPICS tool277. (A) When analyzing only cleavage sites 
with Pro in the P2 position (103 events), the number of cleavage sites with Phe in P1 dropped 
from 10.5% to 3.7%. (B) Consistently, 8.3% instead of 14% of cleavage sites revealed Pro in the P2 
position in an analysis of cleavage sites with fixed Phe in P1. This negative frequency change 
indicates that Pro and Phe in these positions are not cooperative. (C) In contrast, the frequency 
of Pro in P2 rises to 22.9% with Met in P1, (D) and the same pattern is observed with Asn fixed in 
P1 position (21.7%). Therefore, these analyses unveil subsite cooperativity between Met and Asn 
in P1 and Pro in P2 position. 

 

All together, these results clearly show that although displaying a unique profile, APRc 

shares some specificity requirements with retropepsins as well as with pepsin-like enzymes 

(particularly BACE1), further supporting APRc has being a member of the AP family. 
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3.4. Discussion 

In view of the many advantages of mass spectrometry-based proteomic methods for 

mapping protease specificity, in this work we determined both prime and nonprime side 

specificity of APRc using PICS270, providing additional evidence on the nature of this newly 

identified retropepsin-like enzyme. To date, HIV-1 PR is the only AP for which a PICS analysis 

has been reported270. However, several other studies have been carried out for many different 

APs on specificity towards individual substrates providing a collection of cleavage patterns for 

these enzymes. MEROPS database1 compile, at least partially, the known cleavage sites in 

proteins and peptides (physiological and non-physiological) as well as in synthetic substrates 

collected from experimental data. MEROPS substrate cleavage collection shows a frequency 

matrix for the residues accepted in binding pockets P4 to P4’, when 10 or more substrates are 

known. From this data, we have generated similar heatmaps as those obtained with PICS 

methodology for APRc (Figure 25), in order to compare the specificity profile of APRc with that 

of other APs. It is important to be aware, however, that the majority of substrates included in 

this collection have been identified from synthetic library peptides, some of which generated 

with fixed preferential positions. Therefore, the results are not fully comparable with APRc 

heatmaps but provide a glimpse on the major specificity determinants for each protease.  
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Figure 25. Comparative analysis of APRc specificity profile with reported specificity of other 
aspartic proteases. (A) The specificity profile of APRc derived from the digestion of human tryptic 
peptide libraries is compared with the corresponding specificity profile of human 
immunodeficiency virus 1 protease (HIV-1 PR) using PICS methodology, as described 
elsewhere270. Similarities between APRc and HIV-1 PR specificity profile were mostly confined to 
P1 and P1’ position, with a common preference for hydrophobic amino acids such as Phe, Leu 
and Met. (B) Heatmap representations of other APs specificity profile were generated based on 
the annotations on MEROPS database of the corresponding substrate specificity: pepsin A, 
cathepsin D, BACE1, Mason-Pfizer monkey virus protease (M-PMV PR), human immunodeficiency 
virus 1 protease (HIV-2 PR) and feline immunodeficiency virus protease (FIV PR). Comparison of 
APRc specificity with that of other retropepsin and pepsin-like enzymes reveals a higher degree 
of specificity similarity with pepsin-like enzymes. 
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Even though the cleavage apparatus and the mechanism are nearly identical to all APs, the 

substrate specificity and the enzymatic sites accomplishing this specificity are vastly different. 

The comparative analysis of APs substrate specificity with our PICS results confirmed, 

nevertheless, common preferences between APRc and both retropepsin and pepsin-type APs. 

The amino acid preference of APRc for P1 position is in good agreement with the canonical 

specificity of APs for large hydrophobic amino acids, such as Phe, Met, 

carboxyamidomethylated Cys (which results from the modification during generation of 

peptide libraries), or Leu. Despite the observed lower selectivity, a similar trend for 

accommodating hydrophobic amino acids is also observed in P1’. 

As observed in both tryptic and GluC libraries, APRc appears to display broader specificity 

for P1 and P1’, while a more constrained amino acid preference is observed for P3, P2, and P2’ 

positions. This observation may account for an important role on substrate recognition and 

binding to the active pocket site and may ultimately influence hydrolytic efficiency. Strikingly, a 

high degree of similarity is found with more specialized pepsin-like enzymes such as BACE1 for 

P3 (with a preference for Val and Ile) and P2’ (Ala and Val) positions, as well as with cathepsin 

D (also for P2’). Interestingly, APRc also displays unique amino acid preferences such as Pro at 

P2 (although the preference observed for Val and Thr in this position has also been described 

for feline immunodeficiency virus PR1,278), and Leu and Ile in P4’ position. Moreover, our results 

also suggest a cooperative effect between P2 and P1 positions by revealing that a P2 Pro co-

occurs more frequently with P1 Met or Asn residues and that Pro is not favored at this position 

when P1 is occupied by Phe.  

 

When compared with the two major types of cleavage sites proposed for HIV-1 PR and 

other retropepsins (type 1 and type 2), APRc specificity profile suggests a preference for type 

2-like substrates with hydrophobic amino acids in P1 and P1’, whereas type 1-like substrates 

with the typical combination of Tyr/Phe-Pro at P1-P1’ appear disfavored28,91. As previously 

mentioned, comprehensive specificity studies as well as HIV-1 PR-inhibitor crystal structures 

have shown that the specificity of HIV-1 PR is strongly dependent on the substrate sequence 

context, which provides an explanation for the lack of a consensus sequences66,81,82. Likewise, it 

is therefore not totally unexpected that APRc autolytic cleavage sites do not perfectly match 

the observed specificity preferences of the activated form used in PICS. This observation 

suggests either a different conformational arrangement of the protease or a dependence on 

the sequence context and/or conformation of the substrate.  
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Altogether, the results provided by PICS analysis raise exciting questions about APRc 

specificity preferences. In fact, the remarkable similarity between the specificity determinants 

of APRc and other APs, corroborates the findings of Chapter II by providing further 

experimental validation for the inclusion of APRc in the family of the retropepsin enzymes 

(A2). Moreover, the detailed information of the specific requirements of APRc here presented 

might also contribute to the design of new peptide substrates for the development of a 

highly specific protease-based diagnostic method for the detection of rickettsial infections, and 

it might also provide a basis for the development of structure-based inhibitors for the 

treatment of these diseases. 
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Chapter IV. Functional studies on APRc 

4.1. Introduction 

The emergent and severe character of rickettsioses allied with the lack of protective 

vaccines, strengthen the importance of identifying new protein factors that may work as 

potential targets for the development of more efficacious therapies against these 

diseases110,111. Important mediators of bacteria-endothelial cell interaction, like rickettsial 

adhesins rOmpB and rOmpA, as well as putative mediators of phagosomal escape (e.g., PLD or 

hemolysin C198) or activators of actin-based motility (RickA200) have been already identified in 

Rickettsia. However, they are only part of the complex puzzle of host-rickettsial interactions 

that occurs in vivo as many fundamental factors (both in rickettsiae and host cells) still remain 

undisclosed139,160,167. The many limitations imposed by the obligate intracellular lifestyle of 

Rickettsia have hindered the identification of additional rickettsial virulence factors, which 

would be dramatically aided by a system for genetically manipulating the organism. Therefore, 

future progress is still required to fully understand the functions of all identified putative 

virulence factors in pathogenesis, as well as to attribute functions to rickettsial genes that have 

been annotated without experimental analysis.  

In line with this notion the previous two chapters highlighted the identification and 

biochemical characterization of APRc, a novel retropepsin-like enzyme from R. conorii. In this 

chapter, we start assessing the functional role of APRc to shed light on its role on rickettsial 

pathogenesis. In fact, we demonstrate that this novel AP is expressed in vivo in two pathogenic 

species of Rickettsia and provide experimental evidence for its potential action as a modulator 

of rickettsial surface cell antigen proteins rOmpB and rOmpA. These results combined with the 

striking pattern of RC1339/APRc conservation among all rickettsial sequenced genomes 

strongly suggest that APRc may be an important player in rickettsial pivotal processes. 

Moreover, because the existence of retropepsin-like enzymes in prokaryotes has always been 

a matter of debate16,37, this work also provides the first unequivocally evidence for a 

retropepsin-like enzyme in gram-negative intracellular bacteria, thereby contributing to 

change the paradigm on the evolutionary relationships of APs. 
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4.2. Materials and Methods 

Materials 

Oligonucleotide primers were purchased from Integrated DNA Technologies, Leuven, 

Belgium. The synthetic gene encoding the full-length RC1339, the synthetic peptide PeprOmpB 

(Met-Ala-Gly-Pro-Glu-Ala-Gly-Ala-Ile-Pro-Ala-Ala-Val-Ala-Ala-Gly-Asp-Glu-Ala-Val-Aps-Asn-Val-

Ala-Tyr-Gly-Ile-Trp-Ala-Lys), the mouse monoclonal antibody anti-His and the rabbit polyclonal 

antibody raised towards the sequence Cys-Tyr-Thr-Arg-Thr-Tyr-Leu-Thr-Ala-Asn-Gly-Glu-Asn-

Lys-Ala (anti-APRc) were obtained from GenScript (Piscataway, NJ, USA). The plasmid pYC9 and 

pMC022 encoding R. conorii rOmpB and rOmpA, respectively, and anti-rOmpB35-1334 and anti-

rOmpA rabbit polyclonal were kindly provided by Dr. Juan Martinez (Louisiana State University, 

USA). Rabbit polyclonal antibodies raised towards E. coli Lap and OmpA (anti-Lep and anti-

OmpA, respectively), were generous gifts from Professor Gunnar Von Heine (Stockholm 

University, Sweden). 

DNA constructs 

The generation of the constructs encoding the full-length of RC1339/APRc with or without a 

C-terminal His-tag (pET-APRc1-231-His and pET-APRc1-231, respectively), was previously described 

in Chapter II, under the section “Materials and Methods, DNA constructs”.  

For the generation of the active site mutant pET-APRc(D140A)1-231, the same experimental 

protocol used for the mutants pGST-APRc(D140A)87-231 and pET-APRc(D140A)99-231-His (Chapter 

II, section “Materials and Methods, DNA constructs”) was applied.  

All positive clones were selected by restriction analysis and confirmed by DNA sequencing. 

Full-length APRc expression and E. coli cell fractionation 

For isolation of total and outer membrane fractions of E. coli BL21 Star (DE3) cells 

expressing full-length rAPRc1-231 the protocol used was essentially as described by Mikado in 
279. BL21 Star (DE3) cells were transformed with pET-APRc1-231 construct and grown at 37 ˚C 

until an OD600nm of 0.6-0.7. Expression of rAPRc1-231 was induced with 0.1 mM IPTG for 3 h, 

after which cells were pelleted by centrifugation at 9000g for 20 min at 4 ˚C and resuspended 

in PBS buffer. Cells were then mechanically disrupted on a FrenchPress following the 



Functional studies on APRc 

109 
 

manufacturer’s instructions (3x, 1500 psi), and cleared by centrifugation at 20000g for 20 min. 

After cell disruption, total membrane fractions were directly pelleted by ultracentrifugation at 

144028g for 1 h at 4 ˚C and resuspended in PBS buffer. For enrichment and purification of 

outer membrane proteins, inner membrane proteins were extracted by incubating the 

supernatant of lysate clearance with sarkosyl (final concentration of 0.5%) at room 

temperature for 5 min. Outer membranes were pelleted by ultracentrifugation at 144028g for 

1 h at 4 ˚C and resuspended in PBS buffer. Total and outer membrane proteins were resolved 

by SDS-PAGE and analyzed by immunoblotting using antibodies against APRc, Lep and OmpA, 

the last two used as internal markers for inner and outer membranes of E. coli, respectively.  

The protocol for rAPRc1-231-His (pET-APRc1-231-His) and rAPRc(D140A)1-231 (pET-

APRc(D140A)1-231) expression and further outer membrane proteins isolation was the same as 

used for rAPRc1-231. Total and outer membrane proteins were analyzed by immunoblotting 

using anti-His and anti-APRc antibodies, respectively. 

Flow cytometry 

E. coli BL21 (DE3) cells were transformed with pET-APRc1-231 construct and grown at 37 ˚C 

until an OD600nm of 0.6-0.7. Protein expression was induced with 0.1 mM IPTG for 3 h. Cells 

were then fixed for 20 min in 4% paraformaldehyde (PFA) and subsequently washed in cold 

PBS. Fixed cells were incubated with anti-APRc rabbit polyclonal (2 µg/mL) and anti-RNAPα 

(alpha subunit of E. coli RNA polymerase) mouse monoclonal (50 ng/mL) antibodies, and then 

labeled with both goat anti-rabbit IgG Alexa Fluor 488 (Life Technologies) and goat anti-mouse 

IgG R-PE-Cy5.5 conjugated secondary antibodies (SouthernBiotech) at the specified 

concentration (4 µg/mL). Bacteria were analyzed by flow cytometry using a BD FACSCalibur 

(BD Biosciences) instrument and FlowJo software. For analysis of non-permeable E. coli cells, 

positive anti-RNAP staining cells were gated out, and intact cells analyzed for surface 

expression of rAPRc1-231 with anti-APRc antibody. 

RT-PCR analysis 

For cDNA synthesis, total RNA was isolated from an aliquot of frozen R. conorii Malish 7 and 

R. rickettsii “Sheila Smith”, R. rickettsii Iowa, R. parkeri Portsmouth, R. montanensis OSU 85-

930, R. amblyomii GAT-30V-infected Vero cells and R. felis URRWXCal2-infected ticks using the 

SurePrep TrueTotal RNA Purification Kit (Fisher Scientific), according to the manufacturer’s 
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instructions. After extraction, RNA samples were treated with DNase I, RNase-free set (Thermo 

Scientific) for 30 min at 37 ˚C. The reaction was inactivated by adding 50 mM EDTA and heating 

the mixture at 65 ˚C for 10 min. Next, approximately 1 µg of total RNA was used as the 

template for reverse transcription using the iScript™ cDNA Synthesis Kit (BioRad), according to 

the manufacturer’s instructions. For all extracted samples, negative RT-PCR controls were 

processed in the absence of reverse transcriptase. APRc gene expression was assessed by PCR 

reaction with the specific primers RC1339_RT-Fwd (5’-AAAGCCGCCCCTATAACCTT-3’) and 

RC1339_RT-Rev (5’-TCCTGAAACCTTTGAAACGCTC-3’) which were designed for the 

amplification of a segment with 136 bp. The PCRs were performed in a 50 µl volume, with 1 µl 

of cDNA as the DNA template, 0.1 µM of each primer, 1x PCR buffer (100 mM Tris-HCl (pH 9.0), 

15 mM MgCl2, 500 mM KCl), 200 µM of dNTP mix, and 1 U of Taq DNA polymerase (GE 

Healthcare). The PCR mixtures were incubated at 95 ˚C for 3 min, followed by 35 cycles of 95 

˚C (30 sec), 55 ˚C (30 sec), and 72 ˚C (30 sec). The gene hrtA (17 kDa surface antigen) was used 

as the positive control using the primers Rc_htrA_RT-Fwd (5’-GGACAGCTTGTTGGAGTAGG-3’) 

and Rc_htrA_RT-Rev (5’-TCCGGATTACGCCATTCTAC-3’). An aliquot of 20 µl of each PCR product 

was electrophoresed on a 1.7% agarose gel and stained with ethidium bromide. The size of the 

PCR product was determined by comparison with GeneRulerTM 1 kb Plus DNA Ladder (Thermo 

Scientific). 

R. conorii and R. rickettsii cell fractionation  

Cell fractionation studies with Rickettsia spp. were performed as previously described in 280. 

Briefly, approximately 5x106 plaque forming units (pfu) of purified R. conorii Malish 7 or R. 

rickettsii “Sheila Smith” was fixed in 4% PFA in PBS, washed in PBS and then removed from 

BSL3 containment after verification that viable rickettsiae were no longer present according to 

standard operating procedures. For whole-cell lysates, cells were resuspended in SDS-PAGE 

loading buffer and boiled. Total outer membrane proteins were extracted essentially as 

described by Nikaido in 279. The sample was resuspended in 1.5 mL of 20 mM Tris-HCl pH 8.0 

containing 1X protease inhibitor cocktail and then subjected to three rounds of French press 

treatment for cell lysis. The resulting lysate was centrifuged at 10000g for 3 min to remove 

unbroken cells and then incubated in 0.5% sarkosyl at room temperature for 5 min. The 

sarkosyl-treated lysate was centrifuged at >16000g for 30 min at 4 ˚C. The sarkosyl soluble 

protein fraction was removed and the remaining insoluble pellet representing the outer-

membrane protein fraction was washed in 20 mM Tris pH 8.0 and then boiled in 0.5 mL of 20 
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mM Tris-HCl pH 8.0 containing 0.5 mL of 2X SDS sample buffer. Protein samples were 

aliquoted and frozen at -20 ˚C until use.  

rOmpB expression and trans-activation assays 

The constructs encoding R. conorii rOmpB (pYC9) and rOmpA (pMC022) and their 

expression in E. coli was performed as previously described in 186 and 183, respectively. E. coli 

BL21 (DE3) cells transformed with pYC9 or pMC022 plasmids were grown in LB medium at 37 

˚C supplemented with ampicillin. Bacteria were diluted 1:20 from overnight cultures, grown to 

an OD600nm of 0.6-0.7, and induced with 0.1 M IPTG for 3 h at 30 ˚C. After expression, the cells 

were harvested by centrifugation at 36000g for 20 min, at 4 ˚C and the pellet resuspended in 

20 mM Tris-HCl pH 8 before freezing at -20 ˚C. 

To assess for in vitro proteolytic cleavage of these outer membrane proteins by APRc, the 

total membrane fraction of E. coli cells overexpressing either rOmpB or rOmpA were isolated 

as described under the section “Full-length APRc expression and E. coli cell fractionation”, and 

then incubated for 16 h at 37 ˚C in 50 mM sodium acetate pH 4.0, 100 mM NaCl with 25 µg of 

purified active APRc (APRc105-231-His). A parallel incubation was performed under similar 

conditions with the active site mutant rAPRc(D140A)99-231-His as a negative control. The 

reaction products were separated by SDS-PAGE and analyzed by Western blot with anti-APRc, 

anti-rOmpB35-1334 and anti-rOmpA rabbit polyclonal antibodies. 

PeprOmpB cleavage assays by APRc 

To further validate the ability of APRc to process rOmpB between the passenger domain 

and the beta-barrel translocation domain, a synthetic peptide with the sequence Met-Ala-Gly-

Pro-Glu-Ala-Gly-Ala-Ile-Pro-Ala-Ala-Val-Ala-Ala-Gly-Asp-Glu-Ala-Val-Aps-Asn-Val-Ala-Tyr-Gly-

Ile-Trp-Ala-Lys (PeprOmpB) was synthetically synthesized. This peptide comprises the 

predicted cleavage region in rOmpB from R. conorii, as determined for R. typhi and R. 

prowazekii187 rOmpB proteins. For the incubation assay, 2.5 µg of active APRc (APRc105-231-His) 

were added to 100 µg of PeprOmpB in 0.1 M Sodium Acetate pH 6.0 for 16 h at 37 ˚C. To 

evaluate the inhibitory effect of indinavir and nelfinavir on the ability of APRc to cleave 

PeprOmpB, similar incubation assays were performed under the presence of each inhibitor at 

1 mM final concentration. Parallel incubations performed under the same conditions but in the 

absence of APRc were used as control. The reaction mixtures were then centrifuged at 20000g 
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during 6 min and the digestion fragments separated by RP-HPLC on a C18 column (KROMASIL 

100 C18 250, 4.6 mm), using a Prominence system (Shimadzu Corporation, Tokyo, Japan). 

Elution was carried out with a linear gradient (0–80%) of acetonitrile in 0.1% v/v trifluoroacetic 

acid for 30 min at a flow rate of 1 mL/min. Absorbance was monitored at 220 nm. Each 

corresponding control spectrum was used as baseline for spectral subtraction. Selected eluted 

peaks were collected and analyzed by LC-MS/MS (Center for Neuroscience and Cell Biology, 

Proteomics Unit). 

SDS-PAGE and Western blotting 

SDS-PAGE analysis was performed in a Bio-Rad Mini Protean III electrophoresis apparatus 

using 4-20% or 12.5% polyacrylamide gels. Samples were treated with loading buffer (0.35 M 

Tris-HCl, 0.28% SDS buffer pH 6.8, 30% glycerol, 10% SDS, 0.6 M DTT and 0.012% Bromophenol 

Blue) and  boiled for 5 min before loading. Gels were stained with Coomassie Brilliant Blue R-

250 (Sigma). For Western blot analysis, protein samples were resolved by SDS-PAGE and 

electrotransferred onto PVDF or nitrocellulose membranes by standard wet (using the buffer 

25 mM Tris, 192 mM glycine and 20% methanol) or semi-dry (in buffer 25 mM Tris, 192 mM 

glycine, 20% methanol and 0.025% SDS) transfer apparatus. Membranes were then blocked for 

one hour in standard TBS containing 1% (v/v) Tween-20 supplemented with 5% (w/v) skim milk 

or 2% (w/v) BSA and then incubated with anti-APRc (GenScript, 2 µl/mL), anti-rOmpB35-1334 (R. 

conorii), anti-rOmpA (R. conorii) rabbit polyclonal antibodies, anti-OmpA (E. coli) serum and 

anti-Lep (E. coli) serum. Membranes were washed in TBS, containing 0.1% (v/v) Tween-20 and 

incubated with secondary anti-mouse or anti-rabbit alkaline phosphatase-conjugated (GE 

Healthcare) and IRDye-conjugated (LI-COR Biotechnology) antibodies and revealed using ECF 

chemiluminescence detection kit (GE Healthcare) in a Molecular Imager FX (Bio-Rad) or by 

infrared detection using an Odyssey infrared dual-laser scanning unit (LI-COR Biotechnology), 

respectively. 

To confirm the specific band reactivity of anti-APRc antibody, a peptide competition assay 

was performed. The primary antibody was pre-incubated with 100-fold (mass) excess of 

immunizing peptide (CYTRTYLTANGENKA) for 20 min at room temperature prior 

immunoblotting analysis and parallel experiments were performed with pre-incubated and 

non-incubated antibody. 
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4.3. Results 

Full-length APRc expression and subcellular localization studies in E. coli cells 

As previously stated, a major difference between full-length APRc (rAPRc1-231) and retroviral 

proteases is the predicted membrane-embedded N-terminal domain of APRc and C-terminal 

domain with an extracytoplasmic orientation. In order to provide experimental validation of 

these theoretical observations we used E. coli as our working model. An untagged construct in 

pET28a comprising RC1339/APRc full-length coding sequence was generated and protein 

expression carried out as described under experimental procedures. After optimizing 

expression conditions to achieve the best yields of rAPRc1-231, sub-cellular fractionation studies 

with sarkosyl followed by Western blot analysis with the specific APRc antibody were 

undertaken to assess the insertion of this protein into the membrane and determine its 

location (inner vs. outer membrane). Sarkosyl, also known as sodium lauroyl sarcosinate, is an 

anionic amphiphilic surfactant due to the hydrophobic 14-carbon chain (lauroyl) and the 

hydrophilic carboxylate. Sarkosyl treatment is commonly used in the purification of outer 

membrane proteins of gram-negative bacteria given its ability to selectively solubilize inner 

membrane proteins and to produce the purest and most reproducible preparations of outer 

membrane proteins281. Because recombinant membrane proteins have a high tendency to 

aggregate, the use sarkosyl has also the advantage of solubilizing proteins in the form of 

inclusion bodies, greatly reducing the potential contamination of outer membrane fractions282. 

From this immunoblotting analysis resulted the identification of a band with approximately 

21 kDa in the total membrane fraction, shown to accumulate in the outer membrane (Figure 

26A). The nature of this signal was further confirmed by peptide competition assays (Figure 

26A, right panel). The purity of the outer membrane fraction was confirmed by Western 

blotting against E. coli Lep and OmpA proteins, as inner and outer membrane markers283, 

respectively, and compared to the total membrane fraction (Figure 26B). As expected, E. coli 

OmpA was detected in the outer membrane fraction and the absence of cross-contamination 

with inner membrane proteins was confirmed through loss of signal for Lep, when compared 

with total membrane fraction. Interestingly, APRc displayed a molecular weight lower than 

expected (~21 kDa instead of the predicted 26.4 kDa), and parallel experiments with a C-

terminal His-tagged construct (rAPRc1-231-His) confirmed the presence of the tag in the 

membrane fractions (Figure 26C, left panel), clearly suggesting that the protease may be 

processed at the N terminus during translocation to the outer membrane. Moreover, when the 
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active site mutant of full-length APRc (rAPRc(D140A)1-231) was expressed under the same 

conditions, the same apparent molecular weight was observed, thereby ruling out a potential 

auto-proteolytic event (Figure 26C, right panel). 

In an attempt to expand our knowledge about the membrane topology of APRc, further 

studies were performed in order to determine the overall in/out orientation of this protein 

relative to the outer membrane of E. coli.  To investigate this, PFA-fixed E. coli cells expressing 

untagged full-length APRc were subjected to flow cytometry with both anti-APRc and anti-

RNAPα antibodies. The staining of E. coli cells with the RNAPα mAb was primarily used to 

restrict the analysis to the non-permeable cells. As shown in Figure 26D, after gating out all the 

cells that stained positive for RNAPα (permeable cells), bacterial surface staining with anti-

APRc was observed, confirming the integration of RC1339/APRc into the outer membrane of E. 

coli and the orientation of the soluble catalytic domain to the extracellular milieu. 
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Figure 26. Recombinant full-length APRc localization in E. coli and cell surface orientation of the 
soluble catalytic domain. (A) Full-length APRc was expressed in E. coli and total (TM) as well as 
outer membrane (OM) fractions were isolated and analyzed by Western blot with anti-APRc 
antibody (left panel). As a control for non-specific staining, peptide competition assays were 
performed by blocking the anti-APRc antibody with the immunizing peptide (right panel). One 
specific band with approximately 21 kDa detected in the outer membrane fraction reveals that 
recombinant full-length APRc accumulates in this E. coli membrane. (B) The purity of outer 
membrane fractions was confirmed by using OmpA and Lep proteins as internal markers for the 
outer and inner membranes of E. coli, respectively. Both proteins were present in TM faction, 
while only OmpA is detected in outer membrane faction. (C) The positive signal observed for TM 
and outer membrane fractions of E. coli cells expressing rAPRc1-231-His confirmed that the C-
terminus is kept intact, thereby suggesting that APRc might be proteolytic processed at the N 
terminus (left panel). The same molecular weight of approximately 21 kDa observed for 
APRc(D140A)1-231, strengthens the assumption of an N-terminal cleavage by the translocation 
machinery (right panel). (D) Flow cytometric analysis was carried out for recombinant APRc 
recognition at the surface of E. coli cells. PFA-fixed E. coli cells were incubated with anti-APRc and 
anti-RNAPα, followed by secondary detection using goat anti-rabbit IgG Alexa Fluor 488- and goat 
anti-mouse IgG R-PE-Cy5.5 conjugated secondary antibodies, respectively. After gating out the 
subpopulation of cells staining positive for RNAPα (permeable cells), fluorescence was detected 
on E. coli cells incubated with anti-APRc, thereby confirming the expression of recombinant APRc 
at the outer membrane and its exposure to extracellular milieu.  

APRc transcriptional analysis and localization studies in Rickettsia 

To determine whether RC1339 and its homologues from other five rickettsial species are 

expressed in the context of intact Rickettsia cells, we isolated the total RNA from R. conorii 

Malish 7 and R. rickettsii “Sheila Smith”, R. rickettsii Iowa, R. parkeri Portsmouth, R. 

montanensis OSU 85-930, R. amblyomii GAT-30V grown in Vero cells and R. felis URRWXCal2 –

from infected ticks cells, and performed reverse transcriptase PCR (RT-PCR). As shown in 

Figure 27, R. conorii, R. rickettsii, R. montanensis and R. felis produce the transcript for the 
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retropepsin-like enzyme. Moreover, despite the apparent lack of gene amplification for R. 

parkeri and R. amblyomii, one cannot rule out the transcription of this gene in these two 

species. In fact, since an equal amount of RNA was used in cDNA synthesis, the lower 

transcription levels of hrtA gene in comparison with those of the other four analyzed species, 

suggests a substantial contamination with RNA from Vero cells on those samples. Due to the 

low sensitivity of conventional RT-PCR analysis, the reduced amount of bacterial RNA used in 

the PCR reaction may have been manifestly insufficient for the detection of APRc transcripts. 

 

Figure 27. RT-PCR analysis of APRc expression on rickettsial spp. Gene expression of APRc and 
correspondent homologues was assessed by conventional RT-PCR for six rickettsial species (Rc: R. 
conorii Malish 7, Rr: R. rickettsii Iowa, Rp: R. parkeri Portsmouth, Rm: R. montanensis OSU 85-
930, Ra: R. amblyomii GAT-30V, Rf: R. felis URRWXCal2). The housekeeping gene hrtA (17 kDa 
surface antigen) was used as a control. The amplification product of APRc gene was evident for 
Rc, Rr, Rm and Rf, although lower levels of expression are observed for Rr and Rf in relation to Rc 
and Rm (when compared to the expression levels of the hrtA gene). The apparent lack of APRc 
gene amplification for Rp and Ra is likely due to the low amount of mRNA, as indicated by the low 
amplification levels of hrtA gene. The negative control for the cDNA synthesis lacking reverse 
transcriptase is identified by (RTase -). Rickettsial species are identified on the top and the gene 
names are shown on the left side of the agarose gel. 

Then, protein lysates from R. conorii and R. rickettsii were separated by SDS-PAGE and 

immunoblotting analyses were carried out with the specific APRc antibody. As depicted in 

Figure 28, a major reactive species with an apparent molecular mass of 21 kDa was detected in 

R. rickettsii whole cell lysate and in the insoluble fraction of the R. conorii extract. These results 

clearly confirmed that RC1339 gene and its R. rickettsii homologue are indeed translated in 

both rickettsial species. Interestingly and as previously observed in E. coli, a molecular weight 

of around 21 kDa was also detected for APRc in rickettsial extracts. Although we cannot 

exclude abnormal migration of the protease in the gel, the observed lower molecular weight 

may also be correlated with APRc processing at the N terminus, as anticipated by our results in 

E. coli.  

To provide additional insights on the localization of APRc in these rickettsial species, 

fractionation studies using sarkosyl treatment were also carried out on purified bacteria. 



Functional studies on APRc 

117 
 

Whole cell lysates as well as isolated inner and outer membrane fractions were separated by 

SDS-PAGE and analyzed by Western blot. For both species tested, our results were consistent 

with localization of the protease at the outer membrane, as confirmed by the 

immunodetection of rickettsial rOmpB which was used as an internal marker for the outer 

membrane in these assays (Figure 28B, bottom panel). This further corroborates the 

localization of APRc at the outer membrane of rickettsial species.  Taken together, we have 

shown that this novel retropepsin-like enzyme is expressed in vitro in two pathogenic species 

of Rickettsia and, furthermore, provide evidence for its localization at the outer membrane of 

these bacteria. 

 

Figure 28. APRc in vivo expression in R. conorii and R. rickettsii and outer membrane localization. 
(A) A whole cell lysate from R. rickettsii (1) and insoluble (2) and soluble (3) fractions from R. 
conorii extracts were isolated and then subjected to Western blot analysis with anti-APRc 
antibody. A specific band with approximately 21 kDa was detected. (B) Whole cell lysates (WCL), 
inner (IM) and outer membrane (OM) fractions from sarkosyl treatment of R. rickettsii and R. 
conorii extracts were isolated and then subjected to Western Blot analysis with anti-APRc and 
anti-rOmpB antibody. APRc shares the same localization of rOmpB, an internal marker for outer 
membrane of Rickettsia spp. Molecular weight markers in kilodaltons (kDa) are shown on the 
left. 

rOmpB trans-activation assays with active APRc  

The evidence that a proportion of APRc is associated with the outer membrane led us to 

hypothesize that rickettsial surface proteins might be potential substrates for this newly 

characterized enzyme. As has been shown for other autotransporter proteins, rickettsial 

rOmpB, rOmpA, Sca1, and Sca2 proteins are involved in mediating important interactions with 

mammalian cells and undergo processing events at the outer membrane184–188,217,284. As an 

example, R. conorii rOmpB is expressed as a preprotein of 168 kDa and is subsequently cleaved 

to release the passenger domain (120 kDa) from the β-barrel translocation domain (32 kDa)187. 
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Interestingly, R. conorii and R. japonica rOmpB do not undergo proteolytic cleavage when 

expressed at the outer membrane of E. coli, suggesting that the processing event is not 

autocatalytic186. However, the identity of the enzyme responsible for Sca protein maturation 

still remains elusive. Therefore, and based on the observed APRc outer membrane localization, 

we sought to determine whether APRc might participate in the processing of rOmpB (Figure 

29A). In order to do this, we performed transactivation assays using E. coli outer membrane 

fractions enriched in recombinant rOmpB (C-terminally His-tagged) and purified active APRc 

(soluble catalytic domain). Reaction products were then separated by SDS-PAGE and analyzed 

by Western blot. As shown in Figure 29B, the detection of an anti-His immune reactive product 

with ~35 kDa in the presence of APRc was correlated with the disappearance of rOmpB 

proprotein, suggesting that this enzyme may be indeed capable of promoting cleavage of 

recombinant rOmpB. Moreover, the generated reactive protein product has approximately the 

same molecular weight as that expected for rOmpB β-barrel (32 kDa), further suggesting that 

this proteolytic cleavage may likely be occurring somewhere between the passenger and the β-

barrel domain, in agreement with what has been described for native rOmpB187. To further 

validate these results, parallel assays were performed in the presence of APRc active site 

mutant and the integrity of rOmpB proprotein evaluated by immunoblotting with a specific 

antibody to this outer membrane protein (Figure 29C). As expected, the disappearance of 

rOmpB proprotein was observed in the presence of active APRc but not when the cell extract 

was incubated with the active site mutant protein (APRc(D140A)99-231-His).  

  



Functional studies on APRc 

119 
 

 

Figure 29. APRc can process rickettsial OmpB in vitro. (A) rOmpB is proteolytically processed 
between the passenger and β-barrel domains through a yet unknown mechanism (?) and APRc 
was tested as the candidate enzyme to perform rOmpB proprotein processing in vitro. (B) Total 
membrane fractions of E. coli enriched in rOmpB were incubated with activated APRc soluble 
domain and the reaction products analyzed by Western blot with an anti-His antibody. The 
integrity of rOmpB proprotein was confirmed in the absence of APRc whereas in the presence of 
the protease a product with approximately 35 kDa was observed, correlated with the 
disappearance of the full-length unprocessed form. (C) The integrity of recombinant rOmpB was 
further evaluated upon incubation with both activated APRc and the active site mutant form 
(D140A) for 16 h. The reaction products were then subjected to immunoblot analysis with anti-
rOmpB, confirming the disappearance of rOmpB in the presence of the active form of the 
enzyme. Molecular weight markers in kilodaltons (kDa) are shown on the left. Protein loading 
controls: Coomassie blue staining. 

Taking into account the ability of APRc to cleave rOmpB, we decided to extend this analysis 

to another conserved rickettsial antigen, rOmpA. Interestingly, a similar phenomenon was 

observed, demonstrating that a protein other than rOmpB can be processed by APRc in vitro 

(Figure 30). 

 

Figure 30. APRc can process rOmpA in vitro. Total membrane fractions of E. coli enriched in 
rOmpA were incubated with both activated APRc and the active site mutant form (D140A) for 16 
h. The reaction products were then subjected to immunoblot analysis with anti-rOmpA, 
confirming the disappearance of rOmpA in the presence of the active form of the enzyme. 
Molecular weight markers in kilodaltons (kDa) are shown on the left. Protein loading controls: 
Coomassie blue staining. 
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Altogether, these results suggest that APRc is sufficient to mediate rOmpB and rOmpA 

maturation in vitro, thereby raising an exciting hypothesis regarding possible functional 

significance of APRc as being able to process these and possibly other autotransporter proteins 

in the context of intact R. conorii cells. Therefore, whether other Sca proteins can also serve as 

substrates might be the basis for subsequent studies. 

Cleavage of a synthetic rOmpB peptide by APRc 

Given the promising results obtained with the trans-activation assays of rOmpB, and in 

order to further confirm the ability of APRc to cleave this outer membrane protein and 

determine the site of cleavage, a synthetic peptide corresponding to the sequence between 

the passenger and the β-barrel domains of R. conorii rOmpB (Met-Ala-Gly-Pro-Glu-Ala-Gly-Ala-

Ile-Pro-Ala-Ala-Val-Ala-Ala-Gly-Asp-Glu-Ala-Val-Asp-Asn-Val-Ala-Tyr-Gly-Ile-Trp-Ala-Lys) was 

synthetized. The peptide was incubated with active APRc for 1 h, and the reaction products 

were then separated by RP-HPLC. As shown in Figure 31 it was possible to confirm activity 

towards this peptide by the appearance of three major peaks in the chromatogram (#1, #2 and 

#3). Moreover, and as shown in Figure 31A, in the presence of indinavir (left panel) and 

nelfinavir (right panel) the activity towards this substrate was inhibited, further confirming the 

specificity of APRc and corroborating our previous observations in trans-activation assays. The 

subsequent analysis by LC-MS/MS of these three eluted fractions, led to the combined 

identification of different cleavage sites within the region Ala*Val*Ala*Ala*Gly*Asp*Glu-

Ala*Val*Asp*Asn (* corresponded to identified cleavage sites). Although the identification of 

several cleavage sites may result from the fact that enzyme and substrate were incubated for 

one hour, this result is nevertheless very exciting and consistent with the region spanning the 

cleavage site, which has been experimentally determined through the N-terminal sequencing 

of the R. typhi and R. prowazekii rOmpB β-peptide187, corresponding to the sequence Ala-Ala-

Val-Ala-Ala*Gly-Asp-Glu-Ala-Val (*, cleavage site identified by Edman degradation). 

Improvements on future assays, including shorter incubation times and quantitative analysis, 

will be required to identify the preferential cleavage site within PeprOmpB as well as the most 

abundant reaction product for each identified peak. 
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Figure 31. PeprOmpB cleavage by APRc and its inhibition by indinavir and nelfinavir. (A) Reaction 
products from the incubation of PeprOmpB (a synthetic peptide corresponding to the sequence 
between the passenger and the β-barrel domains of R. conorii rOmpB) with APRc under the 
presence or absence of indinavir (left panel) and nelfinavir (right panel) were separated by RP-
HPLC and the major peaks (#1, #2 and #3) collected for further analysis by LC-MS/MS. (B) 
Identified cleavage sites for each peak within the region Ala-Val-Ala-Ala-Gly-Asp-Glu-Ala-Val-Asp-
Asn are indicated by red arrows. 
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4.4. Discussion 

The increasing number of sequenced pathogenic bacterial genomes is producing an ever 

expanding gap between sequence data and the efficient identification of genes required for 

pathogens to cause disease. Although comparative genomics and other genomic tools have 

been instrumental in the identification of numerous pathogen genes, understanding how 

these genes contribute for disease requires the validation of their expression and the 

determination of their molecular function285.  

In this work, we provide the first evidence for the expression of APRc both at the 

transcriptional and translational levels in Rickettsia spp.. Importantly, we also demonstrate 

that APRc expression is not confined to recognized pathogenic species such as R. conorii and R. 

rickettsii, but also expressed in R. montanensis, whose role in human health has yet to be 

determined. In line with these evidences, Bechah and colleagues160 reported the transcription 

of RC1339 gene homologue (RP867) in R. prowazekii. Notably, the comparison of the 

transcriptional profiles obtained for R. prowazekii Rp22 (virulent) and Erus (avirulent) strains 

has also revealed a differential regulation of RP867 gene expression with a fold change of 1.77 

between the virulent and the avirulent strains160. Because bacterial virulence is a multifactorial 

process, careful speculations should be made concerning a possible direct role of APRc for 

rickettsial virulence. Therefore, it will be critical to evaluate whether similar differential 

transcript abundance of RC1339/APRc gene can be observed among other rickettsial species 

with different degrees of virulence, complemented by studies on the dynamics of transcript 

levels during the different stages of infection. Besides the assessment of gene expression of 

APRc by quantitative RT-PCR (qRT-PCR), a comparative immunoblot analysis of protein 

expression, localization and auto-processing activity in different rickettsial species at different 

time points post infection, will allow us to determine a possible relationship between 

expression, patterns of secretion and production of APRc processed forms, with the degree of 

pathogenicity/virulence of different rickettsial strains. 

 

 Sub-cellular localization studies have also revealed an outer membrane accumulation for 

APRc in Rickettsia spp. which was also confirmed by expression of the full-length protease in E. 

coli. Gram-negative bacteria contain two lipid bilayers which differ markedly with respect to 

composition and function, the inner and outer membrane. The asymmetric outer membrane is 

composed of lipopolysaccharides in the outer leaflet and phospholipid in the inner leaflet 

while the symmetric inner membrane is composed of a phospholipid bilayer286. Both 

membranes contain proteins which are crucial players in the cell, and take center stage in 
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processes ranging from basic small-molecule transport to sophisticated signaling pathways, 

and many of them are important drug targets287. In particular, the outer membrane proteins 

are known to play essential roles in energetics, metabolism, signal transduction and 

transport288. Despite the recognized importance of membrane proteins, the high-resolution 

three-dimensional structures of membrane proteins are still very hard to obtain, representing 

less than 1% of the structures in the Protein Data Bank289. Bacterial membrane proteins can be 

either in the form of integral membrane proteins or as lipoproteins that are anchored to the 

membrane by means of N-terminally attached lipids. Among all integral membrane proteins, 

two basic architectures are recognized: the α-helical type which is the most abundant and 

occurs mostly in inner membranes, and the β-barrels which are known from outer membranes 

of bacteria290,291. The α-helices of inner membrane proteins are composed by continuous 

stretch of 20-30 nonpolar residues that cross the membrane, with a predominance of aliphatic 

side chains at the center and aromatic residues (Trp and Tyr) at both ends. Although having 

common surface characteristics, the secondary structure and fold of the outer membrane 

proteins are completely different from those of inner membrane proteins. As the name imply, 

β-barrel proteins are comprised of β-barrel motifs composed of alternate polar and non-polar 

amino acids which form mono, di and trimeric structures with 8–22 β-barrels. The non-polar 

amino acids point into the lipid and protein interface, while the polar amino acids point into 

the interior of the barrel292. 

From a bioinformatics search through a set of protein sequences derived from genomic 

DNA sequences, it became evident that, while the helix bundle represents about 20% to 25% 

of all open reading frame, the β-barrel form represents a few percent of all open reading 

frame293. At the present, transmembrane β-barrel proteins have been found exclusively in the 

outer membrane of gram-negative bacteria, and these membranes appear to lack α-helical 

proteins. In view of this, the outer membrane localization of APRc is somehow unexpected. 

However, at least another transmembrane protein with α-helical architecture have been also 

reported to be embedded in the outer membrane of gram-negative bacteria294. Wza is an 

integral outer membrane protein that is essential for capsular polysaccharides export. This 

protein assembles to an octamer with a novel α-helical barrel transmembrane region which 

forms an elongated cylindrical structure with a molecular weight of 340 kDa. The helices within 

the barrel are amphipathic to permit interaction with the outer membrane on one hand and 

the export of polysaccharides on the other hand. 

Our results provide additional evidence that the bacterial surface is not restricted to 

proteins with β-barrel structures294,295, further suggesting that the repertoire of proteins with 

α-helices localized to the outer membrane of gram-negative bacteria may be higher than 
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anticipated. Although numerous systems for protein export have already been uncovered in 

gram-negative bacteria (eight types are known to mediate export across or insertion into the 

inner membrane, while eight specifically mediate export across or insertion into the outer 

membrane), none of them has been identified as being capable to export and insert α-helical 

proteins at the outer membrane290. Gram-negative bacterial outer membrane proteins are in 

general translocated into the periplasm via the Sec pathway, consisting of the SecYEG 

membrane-spanning translocase complex. Nevertheless, the regulatory network behind outer 

membrane biogenesis appears to be rather complex and we are far from understanding the 

molecular mechanisms behind the integration of proteins into the outer membrane. 

Therefore, one can speculate that a novel outer membrane protein secretion system, yet to be 

identified, might be implicated on the insertion of α-helical type of outer membrane proteins, 

such as Wza and APRc, at the surface of gram-negative bacteria. Comparisons among the 

different bacterial protein secretion systems suggest that each evolved independently despite 

there are a number of specific biogenic, mechanistic, and evolutionary similarities among 

them290.  

The conservation of many proteins from translocase machineries between bacteria and 

mitochondria provides important insights into the evolution of the outer membranes and the 

development of their protein biogenesis system296. Mitochondrial protein translocases, which 

possibly derived from protein translocation systems in α-proteobacteria, appear to have 

evolved to their current levels of complexity during or after the degeneration of endosymbiotic 

bacteria into mitochondria. Interestingly, the mitochondrial outer membrane contains both β-

barrel and α-helical proteins. While the translocase of the outer membrane (TOM) complex 

forms the entry for most nuclear-encoded mitochondrial proteins, the sorting and assembly 

machinery (SAM) complex is not only essential to the biogenesis of some β-barrel proteins, but 

is also required for the assembly of a subset of single or multi-spanning α-helical proteins, 

including some α-helical transmembrane domain proteins from the TOM complex. The SAM 

core complex was shown to form two major complexes with Mim1 (mitochondrial import 

protein 1) and Mdm10 (mitochondrial distribution and morphology protein) proteins, with 

different functions in the biogenesis of α-helical proteins297,298. Despite distantly related, 

Sam50 from SAM complex is conserved from gram-negative bacteria to mitochondria, and 

homologues (BamA family) are present in virtually all gram-negative bacteria (e.g., YaeT in 

Escherichia coli299, Omp85 in Neisserial spp.300 and the protective surface antigen D15 in 

Haemophilus influenzae301). Proteins from BamA family are core components for the 

biogenesis of the outer membranes of bacteria as they are required for the effective insertion 

of lipids and integral proteins into these bacterial membranes302. A BLAST search of the amino 
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acid sequence of Sam50 returns an outer membrane protein annotated in rickettsial spp. 

genome named Omp1. Importantly, although Sam50 and Omp1 only share 25-27% identity at 

the amino acid level, the latter is highly conserved in Rickettsia spp.. Therefore, considering 

the well-known phylogenetic relationship of Rickettsiales and mitochondria, this raises the 

exciting hypothesis that Omp1 may be part of a new complex responsible for the insertion 

machinery of α-helical proteins like APRc into the outer membrane. 

It is noteworthy that, although no cleavable signal sequence was predicted for APRc, both 

wild-type APRc1-231 and corresponding inactive site mutant (APRc(D140A)1-231) display the same 

molecular weight of approximately 21 kDa (Figure 26). This result either suggests that this 

protein may have different gel mobility or that an N-terminal sequence is cleaved off. Similar 

to the function exerted by known bacterial signal peptidases303, one cannot exclude at this 

point that the translocation machinery responsible for the transport and insertion of APRc into 

the outer membrane may be also implicated in this (apparent) N-terminal processing. 

Nevertheless, these preliminary results definitely require further studies in order to clarify 

whether the detected 21 kDa band is an intermediate processed form or the result of different 

gel mobility.  

 

The mechanism by which multi-spanning membrane proteins with α-helix topology are 

inserted into their target membrane remains to be fully elucidated. In contrast, several factors 

are known to influence the final transmembrane orientation of these proteins, namely the 

cooperative action of topogenic sequences, the interactions during folding within the protein 

and the interactions between the protein and the insertion/translocon machinery and the lipid 

environment304–306. Among these, positively charged residues (Arg and Lys) within the loops 

flanking the hydrophobic stretches are considered the major topological determinants of 

membrane proteins, and in particular, it has been statistically derived and experimentally 

confirmed that these type of residues are four times more abundant in their cytoplasmic side 

as compared to extra-cytoplasmic domains304,307. Although this particular rule, known as the 

“positive inside rule”307, has been applied solely to α-helical proteins spanning the inner 

membrane, our preliminary biochemical results obtained by flow-cytometry analysis also 

suggests that APRc topology may follow similar principles of insertion at the outer membrane. 

The observation of a C terminus (catalytic domain) facing the exterior of the bacterial cell with 

respect to the plane of the outer membrane, implies a periplasmic orientation for the N-

terminal of APRc. In good agreement and according to the predicted secondary structure of 

APRc, the basic residues Arg and Lys are disproportionately favored in the periplasmic cap 

region, despite some of these residues are also expected in the first loop between TMH1 and 
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TMH2, which is exposed at the surface of bacteria. Of note, as previously reported for inner 

membrane proteins, individual transmembrane helices do not always insert into the 

membrane in a strict N- to C-terminal order but can reorient during the insertion 

process304,306,308. These and other similar observations raised important questions regarding 

flexibility in the way multi-spanning membrane proteins are handled by the insertion 

machinery. As observed for EmrE306, proteins might experience a post-insertion conversion 

between different topologies, but whether they occur only under extreme conditions or exist 

naturally in wild-type cells, remains to be elucidated. Similarly, further studies are definitely 

required to assess if APRc has a fixed topology or a dual-topology which could be seen as a 

regulatory mechanism to control APRc activity. 

 

Furthermore, if considering the membrane embedded nature of APRc together with its 

autoprocessing activity, exciting questions might be raised regarding how the protease exert 

its activity - whether bound to the outer membrane or in a soluble form. Actually, since the 

autolytic activity seems to be a requisite for the appearance of activity, it is most likely that 

APRc is active in a soluble form after its release from the surface of rickettsial cells by an 

ectodomain shedding-like process. Still, the consistently detection of a band with 21 kDa 

implies that a significant population of APRc is membrane-embedded. Therefore, we cannot 

exclude that APRc might also be active against other substrates while still attached to the 

membrane.  Further studies are thus required to elucidate whether APRc is active with the two 

catalytic domains bound to the outer membrane via their transmembrane domains, or with 

only one catalytic domain being membrane embedded while the other one is soluble 

(heterodimer).  

 

Together with our results confirming protease expression and accumulation into the outer 

membrane in R. conorii and R. rickettsii, the evidence for the up-regulation of APRc gene 

expression in R. prowazekii Rp22160 strongly support a potential relevant role of this highly 

conserved protease in rickettsial pathogenesis. In fact, since virulence determinants are often 

either secreted to the bacterial cell surface or released into the external environment309, the 

membrane-embedded nature of APRc points towards its potential involvement in critical 

pathogenic mechanisms, such as the modulation of activity/virulence of other rickettsial 

membrane-localized proteins, including the recently identified Sca family of outer membrane 

proteins, some of which important virulence factors182,284. A comparative genomic analysis of 

rickettsiae revealed that five of these outer membrane proteins, namely rOmpA (Sca0), Sca1, 

Sca2, Sca4 (geneD), and rOmpB (Sca5) are highly conserved among the majority of SFG 
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rickettsial species and some of them share homology with the superfamily of proteins 

produced by pathogenic gram-negative bacteria called autotransporters184–188,217,284. As 

previously mentioned, these proteins are typically composed by 3 domains: a leader sequence 

that mediates transport across the cell membrane, a passenger sequence that harbors a 

virulence function (passenger domain), and a transporter sequence that is inserted as a β-

barrel into the outer envelope to transport the passenger sequence to the outer surface of the 

cell wall (autotransporter domain)310,311. The Sca4 is an exception to this general structural 

organization, since it has no β-barrel and thus it is not an autotransporter protein182. Amongst 

Sca family proteins, rOmpB is the most abundant surface protein in Rickettsia spp. and was 

previously described as capable to trigger bacteria internalization in the absence of other 

virulence factors186. Whereas this protein appears to interact with multiple eukaryotic plasma 

membrane proteins, the bacterial entry is dependent on the interaction between the rOmpB 

passenger domain and the mammalian Ku70 surface protein186. Importantly, R. rickettsii Iowa 

has been reported to be defective in the processing of rOmpB, which is thought to contribute 

to the avirulence of this strain142,187. However, no experimental report has determined so far 

whether the inability of this rickettsial strain to lyse Vero cells and cause infection in guinea 

pigs is the result of defective rOmpB processing, some other mutation, or a combination of 

these two factors. Nevertheless, in contrast with other autotransporter proteins from gram-

negative bacteria with auto-proteolytic activity such as SPATEs310, rOmpB processing is thought 

to implicate a protease as previous expression studies in E. coli have failed to demonstrate 

autocatalytic activity186,284. In view of this, it is reasonable to speculate that the protease 

responsible for this cleavage must be highly conserved among rickettsiae and also membrane-

associated. Therefore, we have started addressing this hypothesis and we showed that APRc is 

indeed sufficient to catalyze the processing of rOmpB in vitro and that the generated product 

is consistent with the cleavage between the passenger and the β-peptide regions. We further 

confirmed this cleavage by the ability of APRc to cleave a synthetic peptide corresponding to 

the sequence between both domains of R. conorii rOmpB, and which have resulted in the 

identification of different cleavage products. This result may reflect again the importance of 

the sequence context/substrate conformation for APRc cleavage specificity. Synthetic peptide 

substrates quite often do not adopt the same native structure of the substrate and 

consequently display different conformational constraints. In addition, many proteases are 

also thought to require non-active site interaction surfaces, or exosites, to recognize and 

cleave physiological substrates with high specificity and catalytic efficiency. For all these 

reasons, it is not unexpected that PeprOmpB might be more readily accommodated in the 

substrate-binding groove of APRc and that different binding positions may be tolerated in light 
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of the broad specificity found in vitro for APRc. In addition, the method employed in this study 

(mass spectrometry) to identify the N-terminal sequence of the cleavage products has 

remarkable advantages over the Edman sequencing. Despite the fact that the traditional 

Edman technique is very robust and provides de novo capabilities, the sensitivity is in the range 

of 2-5 ρmol of a purified peptide. In contrast, mass spectrometry has routinely been used with 

peptides in the range of 100 fmol or even less. Taking this into account, we cannot exclude also 

that the identification of only one cleavage site for R. typhi and R. prowazekii rOmpB might be 

attributed to the lower sensitivity of Edman sequencing, suggesting that more than one 

cleavage may indeed occur in vivo. However, our results do not allow the identification of the 

preferential cleavage site of APRc or of the most abundant cleavage product, for which a 

quantitative analysis would be required. Nevertheless, considering the pattern of specificity of 

APRc obtained with PICS, the preferred cleavage sites would be Ala/Val, Ala/Ala, Gly/Asp and 

Ala/Gly. In fact, although it prefers aromatic amino acids at P1 and P1’ position, APRc also 

tolerates small or positively charged amino acids (see Figure 23), and therefore, these cleavage 

sites are also in good agreement with the observed specificity preferences for APRc. 

Furthermore, the diminished capacity of APRc to cleave PeprOmpB under the presence of 

indinavir and nelfinavir is of major importance, not just for the validation of cleavage 

specificity, but also to support the use of HIV-1 PR inhibitors to explore how the inhibition of 

APRc might contribute for a compromised capacity of Rickettsia to adhere and invade their 

target cells. Moreover, attending to the capacity of APRc to process rOmpA in vitro, it will be 

also important to evaluate the proteolytic activity of this protease towards a synthetic peptide 

corresponding to the sequence between the passenger and the autotransporter domains of 

rOmpA, in order to give further insights regarding the processing site of this Sca protein (only 

determined for rOmpB). Altogether, our results clearly unveil APRc as the candidate enzyme 

for the processing of rOmpB and rOmpA, thereby laying the foundations to study its relevance 

in an in vivo context as well as APRc role in the degradation of other rickettsial Sca proteins 

and/or host proteins. 
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Chapter V. General Discussion and Conclusions 
 

A number of studies carried out over the last years have culminated with the identification 

of very distinct bacterial APs, which are distributed in MEROPS database1 between distant 

families from different clans, due to great differences in sequence motifs (A1 – clan AA; A8 – 

clan AC; A24 – clan AD; A25 and A31 – clan AE; A26 – clan AF; A5 and A36 – unassigned clan) 

(Table 1, page 5). In fact, until recently, APs of families A1 (pepsin) were assumed to be 

restricted to eukaryotes and the presence of A2 (retropepsin) members in bacteria remains 

controversial. Importantly, despite retroviral-type APs have been reported in Bacillus subtilis 

(SpoIIGA)98 and in Caulobacter crescentus (PerP)99, as previously mentioned in Chapter I, their 

inclusion as retropepsin-type protease members has not been universally accepted mostly 

because they lack fundamental enzymatic characterization16.  

Other bacterial APs that possess unusual traits have also been reported. Family A24 is 

represented by the type IV prepilins peptidase (TFPP), and constitutes a novel family of bilobal 

aspartic protease. Type IV pilin is a protein found on the surface of Pseudomonas aeruginosa, 

Neisseria gonorrhoeae and other gram-negative pathogens, as well as in Archaea312. In 

Pseudomonas aeruginosa, this bifunctional enzyme is a key determinant in both type IV pilus 

biogenesis and extracellular protein secretion given its roles as a leader peptidase and methyl 

transferase. Important secreted proteins include toxins such as cholera toxin of V. cholerae313 

and exotoxin A of Pseudomonas aeruginosa314. TFPP is responsible for endopeptidic cleavage 

of leader peptides of precursor proteins with type IV pilin precursors, as well as proteins with 

homologous leader sequences that are essential components of the general secretion pathway 

found in a variety of gram-negative pathogens. Following removal of the leader peptides, the 

same enzyme is responsible for the second post-translational modification that characterizes 

the type IV pilins and their homologues, namely N-methylation of the newly exposed N-

terminal amino acid residue312. The TFPPs differ from the majority of APs in that the active site 

Asp residues are not found in the Asp-Thr/Ser-Gly motif, the optimum pH for in vitro activity is 

near neutral as opposed to pH 2–4, and peptidase activity is not inhibited by pepstatin. 

Omptins constitutes another well studied family of aspartic proteases found in bacteria. 

They are a family of structurally related surface proteases found in pathogenic species of the 

Enterobacteriaceae, comprising OmpT and OmpP of E. coli, Pla of Yersinia pestis, PgtE of 

Salmonella, Pla endopeptidase A of Erwinia pyrifoliae, and SopA of Shigella flexneri. The 

sequences lack the signature sequences of classical protease families and Cys residues, have 

typical features of a β-barrel fold and are resistant against typical inhibitors of APs315. Until 
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recently, omptins formed the S18 family of serine peptidases, which as a group are 

characterized by the Ser-Asp-His catalytic triad1. However, the crystal structure of OmpT316 has 

revealed a pair of Asp residues at the catalytic site and, on this basis, the omptins were 

reclassified as APs (family A26, Clan AF). The omptins share a common structural backbone 

and have minor sequence variations in their surface-exposed regions, which results in differing 

specificities and functions in infectious diseases. In line with this, they have been 

demonstrated to be multifunctional surface proteins: besides proteolytic activity, they may 

enhance bacterial virulence by nonproteolytic functions or promote bacterial adherence to 

tissue components and invasion into human cells315.  

In 2005, Carrol and Setlow317 described a protease, named germination protease (GPR), 

involved on the degradation of small, acid-soluble spore proteins during germination of spores 

of Bacillus and Clostridium species. Due to the lack of amino acid sequence homology of GPR 

with members of the major protease families, the authors classified this protease as an 

atypical AP after the identification of Asp127 and Asp193 as the catalytic residues, either by 

site-directed mutagenesis and structural studies317, and the enzyme included in a new family 

A25.  

 

Regardless of these relatively few examples on APs in bacteria, no valuable contribution 

that could support either of the two evolutionary theories involving pepsins and retropepsins 

(previously discussed in Chapter I) has been provided until the identification of pepsin 

homologues in prokaryotes16. The recent report on the first prokaryotic pepsin homologues in 

the genome sequences of several γ-proteobacteria16 and the further validation of shewasin A 

as an active enzyme17, brought new insights about pepsin-like ancestors. These important 

findings clearly suggest that prokaryotic APs may be the archetype of modern eukaryotic APs, 

implying that the duplication and fusion events have occurred before the divergence of 

bacteria and eukaryotes. Our current results on RC1339/APRc further support this hypothesis 

by providing the first experimental evidence that a gene for a single-lobed AP is indeed present 

in prokaryotes, coding for an active enzyme with properties resembling those of retropepsins. 

The presence of single-lobed AP genes in prokaryotes suggests that enzymes such as APRc may 

actually represent the most ancestral forms of these proteases, whereas retroviral proteases 

may instead correspond to a derived state. Accordingly, the identification of APRc homologues 

in other α-proteobacteria strengthens the hypothesis that this protease may have originally 

evolved in the α-proteobacterial lineage - the one that gave rise to mitochondria - and may 

have later been transferred from the protomitochondrial genome to the ancestral eukaryotic 

nuclear genome97,139. Consequently, the occurrence of this class of enzymes in retroviruses and 
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retrotransposons is thereby suggested to have resulted from the capture and incorporation of 

a eukaryotic retropepsin gene at an early stage of eukaryotic evolution.  

Given the central role of proteins in living systems as essential mediators of biological 

functions, their evolution has been the object of intense study in the last decades. It is now 

clear that the increase in protein repertoire of an organism is manly driven by the duplication 

of sequences coding for one or more domains, the divergence of these duplicated sequences 

most frequently due to point mutations, insertions and deletions, and the recombination of 

genes that results in novel arrangements of domains318. Such mechanisms, taken repeatedly in 

the course of evolution, are effective paths to increased protein complexity and 

diversification319,320. Examination of genome sequences and protein structures show that most 

proteins are formed by combinations of multiple domains linked together in a single 

polypeptide chain, which have been correlated with gain of novel or modified protein 

functions. While the basic domain counterparts were already established to a large extent at 

the time of the ‘last common ancestor’, other very successful domains evolved later within the 

archaea, bacteria, or eukaryotes and have been spread by endosymbiosis or lateral transfer 

into the other kingdoms 321. These findings clearly support the view of an increased complexity 

of APs from a common ancestror to the most complex eukaryotes. In fact, based on recognized 

evolutionary trends toward reduction in archaea and toward complexity in eukarya322–324, the 

identification of a gene coding for a retropepsin-like homologue in archaea by Teixeira258, 

provides strong evidences to show that the ancestror of APs was presumably a single lobed 

and soluble protein. Correspondingly, the existence of homodimeric APs with transmembrane 

domains and the bilobal soluble pepsin-like enzymes with higher complexity found in 

eukaryotes (comprising pre-, pro- and plant specific inserts elements, for example) in 

comparison with bacterial pepsin homologues, strengthen the hypothesis of a divergence of at 

least two lineages branching from a common ancestror of APs. Apparently, the acquisition and 

retention of transmembrane domains by membrane embedded APs (e.g., APRc and SASPase), 

and the duplication accompanied by gene fusion mechanisms that gave rise to pepsin-like 

enzymes, were likely two independent events that gave rise to the two lineages. Along with 

these divergence processes, APs from different organisms became so dissimilar that their 

common origin cannot be detected from their sequences, even though they may still fulfill 

fundamentally the same function. The results presented in this work clearly corroborate this 

general view. In fact, while rickettsial APs show a low degree of amino acid sequence similarity 

with their eukaryotic and virus counterparts their structures diverge much more slowly, 

providing evidence of common ancestry long after their sequence similarity has decayed. The 

observed conservation of secondary structure between APRc and other retropepsins further 
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strengthen the evolutionary relationships between these proteases.  Therefore, solving the 

three-dimensional structure of APRc and its homologues will likely allow us to gain deeper 

understanding of this structural proximity with eukaryotic and viral retropepsins, and will 

provide fundamental information to address questions regarding evolution of APs. 

 

Pathogenic bacteria have evolved a variety of mechanisms to disable cells of the 

mammalian immune system and create a niche in which they can multiply and disseminate. As 

part of the arsenal of bacterial virulence factors, some bacteria make use of impressively 

efficient proteases that have a wide range of biological functions which can be very subtle and 

specific to help establishing and maintaining an infection6,226. Therefore, proteases from 

pathogens are now recognized important targets for drug discovery, and as a result, many 

pharmaceutical companies and academic labs around the world are currently putting major 

efforts on the development of molecules to selectively block the activity of these enzymes 

without harming normal cellular function58. Actually, the role of proteases in bacterial 

pathogenesis has gained special focus on research over the past few decades since they have 

been shown not only to degrade structural proteins of the host and cause massive tissue 

damage, but also to indirectly influence - activate or inhibit - protease cascades of the human 

body, such as the innate and acquired immune defenses of infected mammals. A familiar 

example of a bacterial protease known to interact with their hosts during a pathogenic 

infection is the called lethal factor of Anthrax toxin, a metalloprotease of the pathogenic 

bacterium Bacillus anthracis that specifically cleaves and inactivates MAP kinase kinases325. 

Another example is the botulinum neurotoxin from Clostridium botulinium, which hold a 

metalloprotease domain capable of blocking acetylcholine release at peripheral nerve ending 

by the cleavage the SNAP-25 protein that plays a role in the storage and depletion of 

acetylcholine326. Botulinum neurotoxin is considered as one of most lethal toxins in nature 

with a LD50 of roughly 0.005–0.05 µg/kg327. 

Owing to the importance of proteases in pathogenesis, future research is expected to show 

whether proteases may become targets for novel treatment strategies of bacterial infectious 

diseases of humans, animals and plants. Interestingly, while serine-, cysteine-, and 

metalloproteases are widely spread in many pathogenic bacteria, much less is known about 

the role of APs. In fact, besides the aforementioned type IV prepilins328 and omptin 

peptidases329, no other APs (particularly of the retropepsin-type) have been reported so far to 

participate in bacterial pathogenesis. In this work, taking into account the unique biochemical 

and enzymatic features of APRc: i) the apparent non-stringent sequence requirement; ii) outer 

membrane localization and extracellular orientation of recombinant APRc catalytic domain and 
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iii) autolytic activity suggesting that the soluble biological unit may be released from the 

surface of rickettsial cells by an ectodomain shedding-like process, we anticipate a potential 

multi-functional role for this protease on the various stages of rickettsial infection (Figure 32).  

The human body has a complex set of overlapping defenses to prevent most of the bacteria 

it encounters from causing injury, which can be divided in specific and non-specific defenses. 

The latter ones include antibacterial substances such as complement, phagocytic cells, and the 

washing action of fluids such as saliva and urine, whereas the specific defenses are cells 

producing antibodies upon stimulation, and cytotoxic cells. At the critical early period of 

infection, the non-specific defenses are the host's only defenses and thus it is not surprising 

that the ability of certain types of bacteria to cause infection depend on characteristics that 

allow them to evade the primary defense mechanisms of the body. Such characteristics include 

the so called secreted virulence factors that manipulate or even destroy defense lines of the 

host. Like other proteases, APRc might play an important role at the various stages of 

rickettsial infectious process by directly affecting the immunological defense functions through 

the inactivation of the components of the host immune system, such as circulating antibodies 

or complement proteins as well as antimicrobial cationic peptides in epithelial or phagocytic 

cells (Figure 32A)227,330.  

Rickettsial entry into host cells occurs mainly by induced phagocytosis in nonphagocytic 

cells, a mechanism mediated by different proteins displayed at the surface of the cell183,185,331. 

As we anticipate in this work by the ability of APRc to perform the in vitro cleavage of 

recombinant R. conorii rOmpB and rOmpA, this protease may likely be implicated on the 

degradation and/or maturation of other rickettsial proteins, in particular those located at the 

outer membrane. Therefore, it will be also important to extend these studies to other Sca 

proteins such as Sca1 and Sca2, also reported to suffer a proteolytic cleavage for maturation 

(Figure 32B)182,188. 

Because most intracellular pathogens are frequently taken into the cell via an endocytic or 

a phagocytic vacuole, they have at least a transient association with a vacuole. However, in 

contrast with a specialized group of bacteria (Chlamydia, Salmonella, Brucella, Legionella, 

Coxellia, and Mycobacterium) which reside and replicate within specific vacuoles332, most 

common intracellular bacterial pathogens enter cells via endocytosis, followed by rapid escape 

to the cytoplasm to avoid the lysosomal pathway. As discussed in Chapter I, once within the 

host cell phagosomal vacuole, phospholipase D and tlyC have been recognized as the major 

effectors of rickettsial phagosomal escape due to their membranolytic activities. Nevertheless, 

the acidic phagosomal micro-environment suggests that APRc may also intervene in the 

formation of vacuole gaps, by degrading membrane proteins of these organelles. Supporting 
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this idea, the secreted IgA1 protease of pathogenic Neisseria gonorrhoeae is a serine protease 

that was found to cleave phagosomal molecules, such as the human lamp-1 membrane 

protein333. By interfering with human lysosomal/phagosomal membrane proteins, IgA1 

protease is thought to facilitate the destruction of the phagosomal membrane and the 

subsequent release of N. gonorrhoeae to the host cytosol (Figure 32C)333. 

Once free in the host cytosol, Rickettsia requires many components for growth and 

replication. As detailed by Andersson et al.139, amino acid metabolism is deficient in Rickettsia, 

and therefore, many amino acids which are likely not synthetized by Rickettsia must be 

provided by the host cell. Since bacterial proteases are assumed to control and modify the 

environment according to the needs of the bacterium within the host tissue, APRc might 

contributes for the degradation of host tissues for supplying bacteria with amino acids, similar 

to that described for other extracellular proteases secreted by many pathogens (Figure 

32D)226.  

The increased microvascular permeability resulting from the disruption of adherens 

junctions between infected endothelial cells with consequent development of inter-

endothelial gaps, formation of stress fibers, and conversion of the shape of endothelial cells 

from polygons to large spindles), is considered the major pathophysiological effect of 

rickettsial infections204. Even though the molecular mechanisms underlying the appearance of 

these gaps are still poorly understood, they have been suggested to include endothelial cell 

production of toxic reactive oxygen species, damage to the cell membrane upon rickettsial 

exit, and cytotoxic T lymphocyte-induced apoptosis of infected endothelial cells204. 

Nevertheless, despite proteases have not been suggested to participate in this process, we 

cannot exclude that APRc may also directly damage host structures, such as fibrin clots or 

extracellular matrices, thereby promoting the spread of the infection and dissemination of 

bacteria across tissue barriers (Figure 32E).  

Overall, this hypothesized ability of APRc to perform more than one function or additional 

catalytic side activities is strongly supported by the report of protein 

moonlighting/multitasking as a widespread phenomenon in bacterial pathogens334. In 

particular, it has been shown that several proteins from pathogens and other host-associated 

bacteria with contracting genomes, acquire new or alternate functions, apparently to 

compensate for gene loss335. Accordingly, the evolution of multitasking has been hypothesized 

to arise from shifts in the selective pressures of remaining genes to favor an increased protein 

functional diversity335,336.  
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Figure 32. Schematic representation of proposed APRc biological roles. The unique biochemical 
and enzymatic features of APRc suggests a multi-functional role for this protease on the various 
stages of rickettsial infection. (A) One of the proposed functions is the potential implication of 
APRc on the inactivation of the host immune system components (e.g., antibodies or 
complement proteins). (B) As anticipated in this work, APRc might also be involved in the 
maturation of other outer membrane proteins of Rickettsia, such as the Sca proteins (e.g., rOmpB 
and rOmpA). (C) To facilitate the Rickettsia escape from the lysosomal pathway, APRc might 
cleave human lysosomal/phagosomal membrane proteins leading to the destruction of the 
phagosomal membrane. (D) Inside the host cell cytoplasm, APRc can contribute for the Rickettsia 
supply of amino acids by degrading host proteins. (E) The last proposed function of APRc relies on 
its potential role on the degradation of adherens junction proteins between infected endothelial 
cells, thereby facilitating the rickettsial infection dissemination. Given its autoprocessing activity, 
APRc is suggested to exert its function in a soluble form (exemplified by A and E) or attached to 
the outer membrane through only one (exemplified by B and D) or the two catalytic domains 
(exemplified by C).   

In the future, it will be critical to validate some of the present findings in vivo and study the 

functional role and the mechanism by which this enzyme can contribute to rickettsial 

pathogenesis, thereby exploring in more detail the potential of APRc as candidate target for 

therapeutic inhibition in the treatment of rickettsioses.  

Mutagenesis of particular genes is one of the most powerful means to understand how 

bacteria and their hosts interact during the course of an infection. This approach can be 

applied to identify and characterize virulence-associated genes337. However, although 

important progresses have been made during past decade, mutagenesis studies have been 
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historically difficult to implement in intracellular bacteria like Rickettsia, and genetic 

manipulation for the development of reliable methods of targeted gene disruption in 

rickettsiae is still a remaining challenge338.  So far, three main systems have been successfully 

used for Rickettsia genetic manipulation:  homologous recombination, transposition and site-

directed mutagenesis. Despite transformants were unstable and difficult to obtain by 

homologous recombination339, this was the first report on the direct genetic manipulation of 

rickettsiae and provided the basis for further work in this field. Transposon mutagenesis using 

mariner element Himar1 has enabled the insertion and complementation of defective genes 

with restoration of wild-type phenotype as well as the generation of random gene 

knockouts340,341. Regardless of these advances, a robust method of targeted gene inactivation 

in rickettsiae is a remaining obstacle, with only a single publication by Driskell and 

colleagues195 reporting the use of site-directed mutagenesis for the analysis of a putative 

rickettsial virulence gene. In this study, the authors targeted the R. prowazekii pld (RP819) 

gene, which encodes a protein with homology to the phospholipase D (PLD) family, by site-

directed knockout mutagenesis using homologous recombination. Although quite challenging, 

the generation of APRc mutant in R. conorii by site-directed mutagenesis with further 

phenotypic evaluation, would definitely give a broad understanding on the mechanism by 

which APRc might contribute to rickettsial pathogenesis and its relevance as a therapeutic 

target. For instance, the generation of an APRc mutant would offer an elegant way to study 

the substrate repertoire of this enzyme by one of the two most powerful protein-centric 

strategies currently used for the identification of protease cleavages sites and substrates: 

combined fractional diagonal chromatography (COFRADIC)342 and terminal amine isotopic 

labeling of substrates (TAILS)343. COFRADIC and TAILS are the only N-terminomics approaches 

that provide both broad coverage and isotopic quantification that is essential for the study of 

protease’s substrate degradome with unknown or broad cleavage-site recognition motifs343. 

For a complete picture of the proteolytic pathways in which APRc might be involved, it would 

be also interesting to compare the APRc degradome at different time points of infection or 

even at different points of Rickettsia life cycle. 

 

In conclusion, this work provides clear evidences that this new AP from Rickettsia is indeed 

an active enzyme with features resembling those of retropepsin family. The native expression 

and the outer membrane-embedded nature anticipate a key role on rickettsial virulence 

through the degradation/maturation of other outer membrane proteins such as rOmpB and 

rOmpA. All together, the results from this study provide insights into the function of this novel 

core rickettsial protein and open new lines of research in the study of this complex and 



General Discussion and Conclusions 

139 
 

intriguing intracellular organism. Additionally, with this work we expect to contribute to start 

changing the currently accepted evolutionary paradigm of APs, by positioning what we 

denominate as “prokaryopepsins” as the new archetypes of modern APs. 
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Supplementary Material 

 

Supplementary Figure 1. Schematic representation of the different constructs encoding APRc. The name of each 
construct is indicated on the top of each panel, along with name of the expression vector, fusion tag (GST: Glutathione S-
transferase tag; 6xHis: hexa His tag) and the restriction sites used. Grey boxes represent the three transmembrane domains 
and the black box indicates the catalytic active site. Amino acids substitutions are highlighted in red. 
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Supplementary Figure 1 (cont.). Schematic representation of the different constructs encoding APRc. The name of each 
construct is indicated on the top of each panel, along with name of the expression vector, fusion tag (GST: Glutathione S-
transferase tag; 6xHis: hexa His tag) and the restriction sites used. Grey boxes represent the three transmembrane domains 
and the black box indicates the catalytic active site. Amino acids substitutions are highlighted in red. 
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Supplementary Table 1. APRc cleavage sites identified from a tryptic peptide library using Mascot and X!Tandem. 

Peptides identified by LC-MS/MS spectrum-to-sequence assignment with Mascot and X!Tandem are listed with 

PeptideProphet probability score, calculated neutral mass and one exemplary accession number of a matching Uniprot 

protein entry is listed. This data was further processed and rendered non-redundant for generation of cleavage 

specificity profiles. 

 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

AAAALAAAAVK 0.9884 1042.5923 Q8TAQ2 

AAAAPAKVEAK 0.9788 1169.6556 Q8NHW5 
AAAGAVGSVVGQIAK 0.9460 1413.7728 Q14914 

AAAGYDVEKNNSR 0.9726 1509.6960 Q02539 
AAAIAYGLDK 0.8889 1107.5712 P11021 
AAAIAYGLDK 0.8592 1107.5712 P11021 

AAAIAYGLDKK 0.9983 1263.6975 P54652 
AAAIAYGLDKK 0.9994 1263.6975 P54652 
AAAIAYGLDKK 0.9996 1263.6975 P54652 
AAAIAYGLDKK 0.8204 1263.6897 Q91883 

AAAIAYGLDKRE 0.9624 1392.7149 P11021 
AAALAYGLDKSEDK 0.9811 1594.7991 P38646 

AAASIANIVK 0.9051 1072.6029 P17987 
AAAVDAGMAMAGQSPVLR 0.8664 1802.8555 P26599 

AAEKLQVVGR 0.9845 1185.6618 O43175 
AAGAGATHSPPTDLVWK 0.9997 1793.8849 P02545 
AAGAGATHSPPTDLVWK 0.9988 1793.8849 P02545 

AAGLFLPGSVGITDPCESGNFR 1.0000 2352.0957 Q12905 
AAGLFLPGSVGITDPCESGNFR 1.0000 2352.0957 Q12905 

AAGLSVPNVHGALAPLAIPSAAAAAAAAGR 0.9955 2723.4619 P26599-2 

AAGLSVPNVHGALAPLAIPSAAAAAAAAGR 1.0000 2723.4619 P26599-2 

AAGLSVPNVHGALAPLAIPSAAAAAAAAGR 0.9954 2723.4619 P26599-2 
AAGSTAGSLR 0.7338 977.4678 Q8TEJ3 

AAHVEYSTAAR 0.9925 1262.5792 P49411 
AALILVADNAGGSHASK 0.9854 1709.8849 Q7Z5L9 

AALKNPPINTK 0.8115 1309.7506 O15511 
AAMADTFLEHMCR 0.9958 1639.6693 P14618 
AAMADTFLEHMCR 0.8411 1639.6619 P00548 
AAMTLLSDASHLPK 0.9239 1569.7973 Q8NBX0 

AAPVAAATTAAPAAAAAPAK 0.9801 1777.9474 P05388 
AAQLHLQLQSK 0.9932 1351.7360 P54920 

AASAPVLAVAGLGDSNQFFR 0.9944 2078.0333 Q9UHL4 
AASAPVLAVAGLGDSNQFFR 1.0000 2078.0333 Q9UHL4 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

AASSSSLEK 0.8859 994.4719 P62736 
AASVSSSSLV 0.9962 994.4645 Q5VS55 
AASVSSSSLV 0.9644 994.4645 Q5VS55 
AASVSSSSLV 0.9884 994.4645 Q5VS55 
AASVSSSSLV 0.9763 994.4645 Q5VS55 
AASVSSSSLV 0.9986 994.4645 Q5VS55 
AASVSSSSLV 0.9718 994.4645 Q5VS55 
AASVSSSSLV 0.9665 994.4645 Q5VS55 
AASVSSSSLV 0.9825 994.4645 Q5VS55 
AASVSSSSLV 0.9942 994.4645 Q5VS55 
AASVSSSSLV 0.9334 994.4645 Q5VS55 
AASVSSSSLV 0.9962 994.4645 Q5VS55 
AASVSSSSLV 0.9813 994.4645 Q5VS55 
AASVSSSSLV 0.9891 994.4645 Q5VS55 
AASVSSSSLV 0.8684 994.4645 Q5VS55 

AATLLANHSLR 0.9973 1253.6628 P13489 
AAVDTSSEITTK 0.9873 1337.6388 P01252 

AAVSNLVR 0.7803 916.4878 P18206 
ADALLIIPK 0.9958 1068.6331 Q92526 

ADAPMFVMGVNHEK 0.9990 1660.7416 P10096 
ADAPMFVMGVNHEK 0.9802 1660.7416 P10096 

ADIKAKAQLVK 0.8479 1355.8289 Q76L83 
AEGIHTGQFVYCGK 0.9896 1681.7671 P62917 

AEHQINLIK 0.9822 1180.6352 P25398 
AEILELAGNAAR 0.9858 1314.6680 P04908 
AEVLELAGNASK 0.9946 1316.6724 Q71UI9 

AFADALLIIPK 0.9928 1286.7386 Q92526 
AGGDVCVDR 0.8103 1035.4192 Q96RT8 

AGPNTNGSQFFICTAK 0.9998 1827.8362 A2BFH1 
AGPTALLAHEIGFGSK 0.9995 1683.8732 Q99497 
AGPTALLAHEIGFGSK 0.9947 1683.8732 Q99497 
AGPTALLAHEIGFGSK 0.9727 1683.8732 Q99497 
AGPTALLAHEIGFGSK 0.9990 1683.8732 Q99497 
AGPTALLAHEIGFGSK 0.8201 1683.8732 Q99497 
AGPTALLAHEIGFGSK 0.9903 1683.8657 Q5E946 
AGPTALLAHEIGFGSK 0.9999 1683.8657 Q5E946 

AGPVAEYLK 0.9992 1062.5498 Q01518 
AGPVAEYLK 0.9794 1062.5424 Q01518 
AGPVAEYLK 0.9444 1062.5424 Q01518 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

AGQCGNQIGAK 0.9914 1218.5563 Q13885 
AHAVTQLANR 0.9212 1167.5897 P78371 
AHAVTQLANR 0.9974 1167.5897 P78371 
AHLDATTVLSR 0.9966 1270.6418 P06576 
AHLDATTVLSR 0.9965 1270.6418 P06576 
AHLDATTVLSR 0.9976 1270.6418 P06576 

AHTFNPK 0.7271 929.4507 P28838 
AIAEAWAR 0.9977 974.4722 Q71U36 
AIAEAWAR 0.9678 974.4722 Q71U36 

AIEHADFAGVER 0.9583 1401.6425 P78371 
AIGLSVADLAESIMK 0.7667 1632.8467 P00338 
AILDAVGDDIPVQ 0.7746 1412.6861 A9HWC3 
AILGMDVLCQAK 0.9994 1433.7159 O00148 
AILGMDVLCQAK 0.9979 1433.7159 O00148 

AINPELLQLLPLHPK 0.9999 1811.0457 Q99661 
AIPSAAAAAAAAGR 0.9997 1255.6421 P26599 

AITATQK 0.9843 847.4552 P04406 
AITQVLLLANPQK 0.9965 1523.8823 Q9UJY5 

ALAASALPALVMSK 0.9495 1457.8064 P36578 
ALALFGGEPK 0.8501 1117.5920 P49736 
ALCSLHSIGK 0.9912 1200.6073 P14174 
ALCSLHSIGK 0.9748 1200.6073 P14174 
ALCSLHSIGK 0.9325 1200.6073 P14174 
ALCSLHSIGK 0.9430 1200.6073 P14174 

ALFEDTNLCAIHAK 0.9998 1717.8172 P02302 
ALFPPVEFPAPR 0.9590 1427.7275 P49327 
ALFPPVEFPAPR 0.7824 1427.7275 P49327 

ALGWVAMAPKPGPYVK 0.9900 1843.9807 Q01518 
ALGWVAMAPKPGPYVK 0.9665 1827.9858 Q01518 
ALGWVAMAPKPGPYVK 0.9813 1827.9858 Q01518 
ALGWVAMAPKPGPYVK 0.9985 1827.9858 Q01518 
ALGWVAMAPKPGPYVK 0.9919 1827.9858 Q01518 

ALLAHEIGFGSK 0.8130 1357.7142 Q99497 
ALLPQTLLDQK 0.9875 1354.7608 P50225 

ALLSAPNPDDPLANDVAEQWK 0.9995 2379.1495 P61088 
ALNELLQHVK 0.9559 1279.7036 Q9Y490 

ALPFFGFSEPLAAPR 0.7521 1706.8569 P22314 
ALPHAILR 0.9866 977.5558 Q562R1 
ALPHAILR 0.8960 977.5558 Q562R1 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

ALPHAILRLD 0.9410 1205.6669 Q562R1 
ALQDMLLLK 0.9015 1175.6372 Q6P2M8-5 

ALSENSGMNPIQTMTEVR 0.9337 2064.9356 P48643 
ALTGGIGFIHHNCTPEFQANEVR 0.9914 2655.2401 P12268 

ALVIDNGSGMCK 0.9327 1379.6247 P53505 
ALVIDNGSGMCK 0.7986 1379.6251 P53505 
ALVKPEVWTLK 0.9346 1426.8336 Q9UL46 

ALVLLIAQEK 0.9101 1212.7230 P48637 
ALVVDNGSGMCK 0.9901 1365.6169 Q562R1 
ALYPEGQAPVKK 0.9532 1443.7874 P37802 
ALYPEGQAPVKK 0.8664 1443.7874 P37802 
ALYPEGQAPVKK 0.9874 1443.78 P37802 

AMPTLIELMKDPSVVVR 0.9529 2014.0743 Q14974 
AMQLLTAEIEK 0.9385 1361.7012 Q07666 

ANAGPNTNGSQFFICTAK 0.9924 2012.9163 A2BFH1 
ANNLVAAAIDAR 0.9037 1285.6526 P11586 

ANTVLSGGTTMYPGIADR 0.9934 1910.8867 P53478 
APELIHDFLVNEK 0.9998 1639.8358 P53618 
APELIHDFLVNEK 0.9994 1639.8358 P53618 

APMLVTGNPGVPVPAAAAAAAQK 0.9808 2217.1728 Q9NR56 
APSGQPGSTK 0.7451 1044.4914 Q7VA20 
APTHFLVIPK 0.9632 1237.6971 P49773 

APVNVTTEVK 0.9966 1172.6115 P68103 
APVNVTTEVK 0.9944 1172.6115 P68103 
APVNVTTEVK 0.9779 1172.6115 P68103 

AQGHGIIQVDK 0.8946 1280.6625 P29144 
AQINQGESITHALK 1.0000 1624.8321 Q01518 
AQINQGESITHALK 1.0000 1624.8321 Q01518 
AQINQGESITHALK 0.9982 1624.8321 Q01518 
AQINQGESITHALK 0.9973 1624.8247 Q01518 
AQINQGESITHALK 0.9976 1624.8247 Q01518 
AQLDHWALTQR 0.9909 1425.6901 Q6GTX8 

ASAAAVDAGMAMAGQSPVLR 0.7298 1960.9247 P26599 
ASILAAFSK 0.9047 1022.5549 P54819 
ASILAAFSK 0.9742 1022.5475 P08166 
ASILAAFSK 0.9910 1022.5475 P08166 

ASQCQQPAENK 0.9999 1375.5938 Q01518 
ASQCQQPAENK 0.9998 1375.5938 Q01518 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

ASQCQQPAENK 0.9973 1375.5938 Q01518 
ASSSSLEK 0.8969 923.4348 P62736 

ASSSSLEKSYELPDGQVITIGNER 0.9984 2695.3089 P62736 
ASTPVFGGILSLINEHR 1.0000 1897.9798 O14773 

ATAASSSSLEK 0.9265 1166.5567 P62736 
ATAASSSSLEK 0.9687 1166.5493 P53478 
ATAASSSSLEK 0.9407 1166.5493 P53478 
ATAASSSSLEK 0.9831 1166.5493 P53478 
ATAASSSSLEK 0.9845 1166.5493 P53478 
ATAASSSSLEK 0.9956 1166.5493 P53478 
ATAASSSSLEK 0.9602 1166.5493 P53478 
ATAASSSSLEK 0.9835 1166.5493 P53478 
ATAASSSSLEK 0.9931 1166.5493 P53478 
ATAASSSSLEK 0.909 1166.5493 P53478 
ATQLAVNKIKE 0.9939 1357.7717 Q99832 
ATVLARSIAKE 0.9766 1273.7142 P10809 
ATYAPVISAEK 0.9884 1264.6377 P68362 

AVALAGLLAAQK 0.9982 1240.7291 P23368 
AVALAGLLAAQK 0.8190 1240.7291 P23368 

AVALAYGIYK 0.9922 1183.6389 O95757 
AVDALIDSMSLAK 0.9998 1448.7333 P13010 

AVIAELKK 0.8011 1014.6225 P10809 
AVLIVAKKCPS 0.9822 1328.7638 Q04323 

AVRLLLPGE 0.9342 1054.5923 Q96A08 
AVTVAPPGARQGQQQAGGDGKTE 0.9997 2338.1414 Q00839-2 

AVTYTEHAK 0.9752 1134.5458 P62805 
AVVFGPNLLWAK 0.9989 1429.7870 Q07960 

AWGLVTTAPR 0.7969 1158.5934 A6NCC3 
CAEHQINLIK 0.9939 1340.6659 P25398 
CAEHQINLIK 0.9312 1340.6585 Q76I81 
CAGYLEGGK 0.9759 1069.4577 P00760 
CAILSPAFK 0.7828 1121.5691 Q92598 

CALSTSQLVACTK 0.7832 1553.7256 P54939 
CAVLIVAAGVGEFEAGISK 0.9997 2006.0217 P68103 

CDEGYESGFMMMKNCMDIDECQ 0.8594 2880.9926 P35555 
CEDIIQLKPDVVITEK 0.9815 2043.0710 P49368 

CELINALYPEGQAPVKK 0.7977 2073.0717 P37802 
CELINALYPEGQAPVKK 0.9936 2073.0717 P37802 
CELINALYPEGQAPVKK 0.9829 2073.0717 P37802 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

CETIIGAVP 0.8890 1046.4781 P23400 
CGVDLIIGVGGGR 0.9799 1342.6377 B8GGP5 

CIAIKESAK 0.9973 1162.6168 P61158 
CLHFNPR 0.9989 1030.4555 P09382 

CPGESSHICDFIR 0.9910 1647.6484 P45478 
CPGESSHICDFIR 0.9987 1647.6484 P45478 
CVLQGLQTPSCK 0.9992 1505.7044 P13489 

CVVAVLPHILDTGAAGR 0.9963 1835.9464 Q15084 
CVVAVLPHILDTGAAGR 0.9997 1835.9464 Q15084 

DAANFEQFLQER 0.8383 1554.6851 P35268 
DAFGTAHR 0.8651 961.4154 P00558 

DAGAGIALNDHFVK 0.9819 1542.7579 P04406 
DAGAGIALNDHFVK 0.9543 1542.7579 P04406 
DAGAGIALNDHFVK 0.9958 1542.7507 P10096 
DAGAGIALNDHFVK 0.9997 1542.7507 P10096 
DAGAGIALNDHFVK 0.9735 1542.7507 P10096 

DAGILQLVESVR 0.9993 1386.7255 P13489 
DALCVLAQTVK 0.9002 1332.686 P78371 

DALDKIR 0.9204 945.5032 P14625 
DAMAGDFVNMVEK 0.9996 1541.6642 P10809 

DANLQTLTEYLKK 0.9481 1679.8882 P55060 
DANTIVCNSK 0.8726 1236.5557 P09382 

DANTIVCNSKDGGAWGTEQR 0.9977 2294.0134 P09382 
DANTIVCNSKDGGAWGTEQRE 0.9995 2423.0560 P09382 

DAPMFVMGVNHEK 0.9848 1589.7119 P04406 
DCHTAHIACK 0.9933 1327.5550 P68104 
DCHTAHIACK 0.9887 1327.555 P68104 
DCHTAHIACK 0.9739 1327.5550 P68104 
DDHDPVDK 0.8588 1055.4308 P22626 

DDVVGIVEIINSK 0.9999 1515.7933 Q01518 
DEELNKLLGK 0.9704 1301.6979 P20671 

DEGGFAPNILENKEGLELLK 0.9961 2329.1953 P06733 
DEITYVELQKEEAQK 0.9768 1965.9683 Q00839 
DEITYVELQKEEAQK 0.9986 1965.9683 Q00839 

DESGPSIVHR 0.9369 1183.5370 Q9BYX7 
DESGPSIVHR 0.9893 1183.537 Q9BYX7 
DESGPSIVHR 0.9733 1183.5370 Q9BYX7 
DESTGSIAKR 0.9650 1178.5679 P04075 

DFEQEMATAASSSSLEK 0.9818 1945.8363 P60709 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

DFLLKPELLR 0.9300 1358.7710 O00148 
DIAVDGEPLGR 0.9029 1228.5836 P62937 
DIAVDGEPLGR 0.9126 1228.5836 P62937 

DIETIGEILKK 0.8970 1401.7867 P61978 
DISPQAPTHFLVIPK 0.7650 1777.9515 P49773 
DISPQAPTHFLVIPK 0.9442 1777.9515 P49773 
DISPQAPTHFLVIPK 0.9588 1777.9515 P49773 

DIVQLPTGLTGIK 0.8570 1469.8242 P34932 
DKANAQAAALYK 0.9998 1406.7306 P40121 
DKANAQAAALYK 0.9801 1406.7306 P40121 
DKANAQAAALYK 0.9953 1406.7306 P40121 
DKDGDGTITTK 0.9540 1293.6201 P62158 

DKDGDGTITTKE 0.9500 1422.6627 P62158 
DKFDENAK 0.9956 1109.5141 P00558 

DKGLQTSQDAR 0.9488 1333.6374 P27797 
DKLNVITVGPR 0.9931 1326.7408 P04040 
DKLNVITVGPR 0.9634 1326.7408 P04040 
DKPLKDVIIAD 0.8905 1369.7605 P23284 

DKYLIPNATQPESK 0.9966 1746.894 P31946 
DKYLIPNATQPESK 0.8435 1746.8940 P31946 

DLCHALR 0.9924 971.4395 P24534 
DLFNAVGDGIVLCK 0.9893 1635.8079 P13796 
DLFNAVGDGIVLCK 0.9393 1635.8079 P13796 

DLVVGLCTGQIK 0.9785 1417.7388 P06733 
DMVPGKPMCVESFSDYPPLGR 0.9984 2497.1228 P68104 
DMVPGKPMCVESFSDYPPLGR 0.9872 2497.1228 P68104 
DMVPGKPMCVESFSDYPPLGR 0.9988 2497.1228 P68104 

DNDIMLIK 0.9709 1076.5324 P35030 
DNSSRPSQVVAETR 0.8388 1632.7604 P13639 

DNVICPGAPDFLAHVR 0.9995 1867.8788 P21964 
DQANLTVK 0.7675 1003.5087 P09382 

DQAQKAEGAGDAK 0.8455 1431.6742 P05204 
DQIQNAQYLLQNSVK 0.9949 1876.9431 P61978 

DQLHAAVGASR 0.9783 1211.5795 P13804 
DQSYKPDENEVR 0.9939 1594.7011 P31939 
DRTVIDYNGER 0.9844 1424.6432 P07237 

DRTVIDYNGERTLD 0.9619 1753.8019 P07237 
DSCTCAGSCKCKE 0.9934 1705.6317 P02795 
DSLLAGPVAEYLK 0.9980 1490.7769 Q01518 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

DSLLAGPVAEYLK 0.7829 1490.7769 Q01518 
DSLLAGPVAEYLK 0.9357 1490.7769 Q01518 
DSLLAGPVAEYLK 0.7614 1490.7697 Q01518 
DSLLAGPVAEYLK 0.8376 1490.7697 Q01518 
DSLLAGPVAEYLK 0.9653 1490.7695 Q01518 

DSLYVEKIDVGEAEPR 0.8656 1934.9373 P54577 
DSYVGDEAQSKR 0.9955 1469.6535 P62736 

DTFLEHMCR 0.9732 1295.5175 P14618 
DTFLEHMCR 0.7707 1295.5175 P14618 

DTFWKEFGTNIK 0.8257 1628.7987 Q58FF3 
DTKPGTTGSGAGSGGPGGLTSAAPAGGDKK 0.9999 2728.3417 P67809 
DTKPGTTGSGAGSGGPGGLTSAAPAGGDKK 0.8637 2728.3417 P67809 
DTKPGTTGSGAGSGGPGGLTSAAPAGGDKK 0.9915 2728.3417 P67809 

DTLLVDVEPK 0.9029 1243.6448 P62314 
DTYNCDLHFK 0.9823 1427.5928 Q9BUJ2 
DTYNCDLHFK 0.8452 1427.5928 Q9BUJ2 
DTYNCDLHFK 0.9124 1427.5928 Q9BUJ2 

DVCPLTLGIETVGGVMTK 0.9905 2004.9937 Q91883 
DVVVLPGGNLGAQNLSESAAVK 1.0000 2253.1753 Q99497 
DVVVLPGGNLGAQNLSESAAVK 0.9864 2253.1753 Q99497 
DVVVLPGGNLGAQNLSESAAVK 0.9439 2253.1753 Q99497 

DVVYALK 0.9718 922.4912 P62805 
DVVYALKR 0.8879 1078.5923 P62805 

DYNGHVGLGVK 0.9845 1273.6203 P15880 
DYNGHVGLGVK 0.9561 1273.6203 P15880 
EALAAAELLKK 0.9997 1299.7550 P29401 

EAPNPKL 0.8195 883.4477 Q39072 
EAPNPKL 0.8939 883.4477 Q39072 

EASEAYLVGLFEDTNLCAIHAK 0.7360 2566.2162 Q71DI3 
EASGGGAFLVLPLGK 0.9999 1530.8117 P31146 

EAYLVGLFEDTNLCAIHAK 0.9475 2279.1044 P68431 
EAYLVGLFEDTNLCAIHAK 1.0000 2279.1044 P68431 

EDTNLCAIHAK 0.9986 1386.6350 P68431 
EDTNLCAIHAK 0.9858 1386.635 P68431 
EDTNLCAIHAK 0.9785 1386.6350 P68431 
EDTNLCAIHAK 0.9989 1386.6276 P84227 
EDTNLCAIHAK 0.9998 1386.6276 P84227 
EDTNLCAIHAK 0.9998 1386.6277 P84227 
EDTNLCAIHAK 0.9990 1386.6277 P84227 

 



Supplementary Material 

173 
 

Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

EGNDYFKEK 0.7990 1272.5775 O95801 
EHGIQPDGQMPSDK 0.9983 1653.7205 Q71U36 

EIAPHALLQAVLK 0.9996 1517.8718 P49327 
ELDQDMVTEDEDDPG 0.7924 1792.6297 Q9NRL2 

ESCGIHETTFNSIMK 0.9994 1868.8185 P60709 
ESCGIHETTFNSIMK 0.9991 1868.8185 P60709 

ESHIQSTSDR 0.7984 1246.5326 Q14974 
EVAAAVPAPK 0.9357 1049.5584 Q82KE2 
EVGDIMLIR 0.9609 1132.5699 P00491 
EVGVLVGK 0.9975 915.5178 P07737 
EVLLPGLQK 0.8901 1111.6389 P07954 
FAALTSIAQK 0.8735 1164.6291 Q9Y5Y2 
FAEALAAHK 0.8814 1072.5453 P07237 
FAEALAAHK 0.9990 1072.5453 P07237 
FAEALAAHK 0.9996 1072.5453 P07237 
FAGILSQGLR 0.9941 1148.6090 P09874 

FAGPHAALANK 0.9990 1211.6199 Q9BY44 
FAGSVPPP 0.7937 858.395 P13002 
FALLEIPK 0.8483 1045.5960 O94915 

FAPVNVTTEVK 0.9611 1319.6874 P68104 
FAPVNVTTEVK 0.9868 1319.6799 P68103 
FAPVNVTTEVK 0.9994 1319.6797 P68103 
FAPVNVTTEVK 0.8600 1319.6797 P68103 
FAPVNVTTEVK 0.9995 1319.6797 P68103 

FAQINQGESITHALK 0.9989 1771.9005 Q01518 
FAQINQGESITHALK 0.9986 1771.9005 Q01518 
FAQINQGESITHALK 0.9997 1771.9005 Q01518 
FAQINQGESITHALK 0.9962 1771.9005 Q01518 
FAQINQGESITHALK 0.9999 1771.8927 Q01518 

FCAILHR 0.8255 1003.4810 Q8N3D4 
FCSEYRPK 0.9160 1201.5338 P09429 

FDQANLTVK 0.8275 1150.5696 P09382 
FDSLLAGPVAEYLK 0.9904 1637.8377 Q01518 
FDSLLAGPVAEYLK 0.9966 1637.8377 Q01518 

FEDTNLCAIHAK 0.9996 1533.7034 P68431 
FEDTNLCAIHAK 0.9999 1533.7034 P68431 
FEDTNLCAIHAK 0.9998 1533.7034 P68431 
FEDTNLCAIHAK 0.9621 1533.6957 P84227 
FEDTNLCAIHAK 0.9551 1533.6957 P84227 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

FEQEMATAASSSSLEK 0.9996 1830.802 P53478 
FEQEMATAASSSSLEK 0.9994 1830.802 P53478 

FFVQTCR 0.9714 1044.4599 B2RPK0 
FFVQTCREE 0.9390 1302.5451 B2RPK0 

FGGGVIGDLAGFAAANYLR 0.7336 1955.9567 Q1LU62 
FGILLDQGQLNK 0.9081 1460.7776 Q00610 
FGPDICGPGTK 0.9951 1263.5632 Q4VIT5 

FGTHETAFLGPK 0.9962 1419.6935 P51858 
FGVLGLDLWQVK 0.9996 1489.8081 P27797 
FGVLGLDLWQVK 0.9581 1489.8007 Q4VIT5 
FGYFEVTHDITK 0.9994 1571.7409 P04040 
FGYFEVTHDITK 0.9974 1571.7337 Q2I6W4 

FHTEQMYK 0.8022 1198.5229 P59998 
FIAIKPDGVQR 0.8202 1358.7459 P15531 

FIFIDSDHTDNQR 0.9355 1694.7437 P07237 
FIGAIAIGDLVK 0.9927 1331.7601 P78371 
FIGAIAIGDLVK 0.9997 1331.7527 Q3ZBH0 

FIGNSTAIQELFK 0.9926 1582.8143 Q13885 
FIGNSTAIQELFK 0.9787 1582.8067 Q9YHC3 

FIGNSTAIQELFKR 0.8744 1738.9154 Q13885 
FIGNSTAIQELFKR 0.9711 1738.9154 Q13885 

FILFKDAASVEK 0.9951 1510.8184 Q99729 
FIVLTTSAGIMDHEEAR 0.9959 1976.9337 Q9LX88 

FLAAGLK 0.8607 834.4752 Q9ULV1 
FLAQLKDECPEVR 0.9664 1719.8402 P30153 

FLGMESCGIHETTFNSIMK 1.0000 2317.0329 P60709 
FLGMESCGIHETTFNSIMK 0.9998 2317.0329 P60709 

FLLNTLQENVNK 0.9991 1547.8096 Q9HAV4 
FLLPHPGLQVATSPDFDGK 0.9734 2154.0898 Q6DD88 
FLLPHPGLQVATSPDFDGK 0.9852 2154.0898 Q6DD88 

FLNLANDPTIER 0.9938 1489.7313 P15313 
FLPEFLVSTQK 0.9975 1423.7500 P30740 
FLPEFLVSTQK 0.7975 1423.75 P30740 

FLPVIGLVDAEK 0.9976 1415.7812 P17980 
FLPVIGLVDAEK 0.9904 1415.7812 P17980 
FLTTGVLSTLR 0.7258 1294.7033 P49915 

FMNTELAAFTK 0.8877 1387.6594 P31949 
FMPGFAPLTSR 0.9956 1310.6156 Q9YHC3 

FMVVNDAGRPK 0.9649 1348.671 P11142 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

FMVVNDAGRPK 0.9975 1348.6710 P11142 
FMVVNDAGRPK 0.9924 1348.6710 P11142 

FNTLQTK 0.7459 966.4923 P12814 
FNVINGGSHAGNK 0.9996 1429.6851 P06733 

FPRPVTVEPMDQLDDEEGLPEK 0.7247 2656.2479 Q15233 
FQLAPAILQGQTK 0.7493 1529.8354 Q96JB5 
FSAPKPQTSPSPK 0.9924 1514.7881 Q01518 

FSGLFGGSSK 0.9399 1101.5243 P54920 
FSTPLLLGKK 0.9838 1246.7437 P40926 
FSTPLLLGKK 0.8605 1246.7437 P40926 
FTTTAERE 0.9329 1041.4515 Q562R1 

FTVWDVGGQDK 0.8143 1366.6306 P84077 
FVALSTNTTKVKE 0.8709 1580.8562 P06744 

FVLDEFKR 0.7413 1168.6029 P26641 
FVMGVNHEK 0.9932 1175.5546 P04406 

FVTFCTK 0.9301 1017.4742 O60506 
FVTFDDHDPVDK 0.9906 1549.6838 P22626 
FVTFDDHDPVDK 0.9648 1549.6838 P22626 

FVVEVIK 0.8488 948.5433 Q07021 
FYELSENDLNFIK 0.9989 1746.8253 P13639 
FYFDPLINPISHR 0.8857 1705.8365 Q6P2Q9 
FYVNGLTLGGQK 0.8321 1411.7248 P07737 
FYVNGLTLGGQK 0.9129 1411.7248 P07737 
FYVNGLTLGGQK 0.9978 1411.7248 P07737 
FYVNGLTLGGQK 0.9839 1411.7248 P07737 
GAAAAIEAAAK 0.9935 1058.5508 Q9Y490 

GAAGVMAIEHADFAGVER 0.9987 1887.8686 P78371 
GAAVQAAILSGDK 0.9963 1315.6884 P11142 
GAAVSAGHGLPAK 0.9992 1250.6520 O75367 

GAFLHIK 0.9826 900.4970 Q8WUM4 
GAGLMGAGIAQVSVDK 0.9985 1588.7957 P40939 

GAGLMGAGIAQVSVDKGLK 0.9483 1915.0349 P40939 
GAGNPVGDKLNVITVGPR 0.9997 1879.0064 P04040 

GALAIANFAR 0.9940 1090.5671 P52306 
GALLEEAEQLLDR 0.9389 1543.7556 P48643 

GALLPCEECSGQLVFK 0.9964 1922.8944 P18493 
GAPFLKEGASEEEIR 0.8969 1747.8529 P23141 

GASGGAYEHR 0.9997 1091.4532 P31943 
GASGGAYEHR 0.9912 1091.4532 P31943 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

GASIYIENKEEK 0.9465 1523.7619 O75832 
GASTGIYEALELR 0.9981 1466.7079 Q9C9C4 
GDDDSGPGPK 0.8628 1059.4257 Q13316 

GDLDETSSNEGGVK 0.7461 1522.6457 Q9SLF3 
GDRFTDEEVDELYR 0.9128 1830.7809 P19105 
GDRFTDEEVDELYR 0.9892 1830.7734 P19105 
GDRFTDEEVDELYR 0.9886 1830.7737 P19105 

GEKPVGSLAGIGEVLGK 0.9924 1753.9726 O75531 
GESITHALK 0.9755 1070.5508 Q01518 
GESITHALK 0.9604 1070.5508 Q01518 

GFPCNQFGHQENAK 0.9998 1748.7477 P07203 
GFSAFPFELLHTPEK 0.9999 1834.9042 P07099 
GFSAFPFELLHTPEK 0.9911 1834.9042 P07099 

GGPLPPHLALK 0.8714 1214.6924 Q08211 
GGQDILSMMGQLMKPK 0.9999 1876.9361 Q9Y265 
GGQDILSMMGQLMKPK 0.9995 1876.9361 Q9Y265 

GGSHAGNKLAMQE 0.9427 1414.6411 P06733 
GGSSEPCALCSLHSIGK 0.8927 1874.8403 P14174 
GGSSEPCALCSLHSIGK 0.8867 1874.8403 P14174 

GGTTMYPGIADR 0.9183 1325.5822 P62736 
GGTTMYPGIADRMQKE 0.9909 1869.8501 P62736 

GGTTMYPGIGER 0.8812 1325.5748 P26183 
GGTTMYPGIGER 0.9474 1325.5748 P26183 

GGVCEPLK 0.8395 974.4644 Q9UHF7 
GGVLPNIQAVLLPK 1.0000 1533.9031 Q96QV6 
GGVLPNIQAVLLPK 0.9999 1533.9031 Q96QV6 
GGVLPNIQAVLLPK 0.9530 1533.8957 P04908 
GGVLPNIQAVLLPK 0.9907 1533.8957 P04908 
GGVLPNIQAVLLPK 0.9987 1533.8957 P04908 
GGVLPNIQAVLLPK 0.9987 1533.8957 P04908 
GGVLPNIQAVLLPK 0.9920 1533.8957 P04908 

GGVMSGAVPAAAAQEAVEEDIPIAK 0.7462 2496.2318 P52815 
GHILAAEQLSR 0.8893 1281.6577 Q15738 

GHLLLVAK 0.9794 965.5810 Q9BX68 
GHPAFVNYSTSQK 0.9998 1550.7266 P14866 

GHPLGASGCR 0.9845 1098.4777 Q9BWD1 
GHSVEELCK 0.9973 1173.5236 P29401 

GHVGADLAALCSEAALQAIR 0.9999 2110.0377 P55072 
GHVLAAGCGQNPVR 0.9999 1522.7211 Q9BWD1 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

GHVLAAGCGQNPVR 0.9996 1522.7211 Q9BWD1 
GHVLAAGCGQNPVR 0.9924 1522.7211 Q9BWD1 
GIFVEKYDPTIEDSYR 0.9973 2046.9687 P62834 

GIHETTFNSIMK 0.9991 1492.7057 P53478 
GIHETTFNSIMK 0.9998 1492.7057 P53478 
GIHETTFNSIMK 0.9997 1492.7057 P53478 
GIHETTFNSIMK 0.9990 1492.7057 P53478 
GIHETTFNSIMK 0.9998 1492.7058 P53478 
GIHETTFNSIMK 0.9523 1492.7132 Q562R1 
GIHETTFNSIMK 0.9967 1492.7132 Q562R1 
GIHETTFNSIMK 0.9343 1492.7132 Q562R1 

GIMNSFVNDIFER 0.9978 1628.7327 P06900 
GIMNSFVNDIFER 0.9998 1628.7327 P06900 

GIPVLVLGNKR 0.9742 1280.7717 Q96BM9 
GIPVLVLGNKR 0.9663 1280.7717 Q96BM9 

GIPYLDAPSEAEASCAALVK 0.9998 2177.0462 P39748 
GISLANLLLSK 0.9304 1243.7288 P08397 

GISQGLADNTVIAK 0.9995 1501.7888 P26639 
GITLPVDFQGR 0.9878 1289.6442 P31943 
GITLPVDPEGK 0.8388 1240.6377 Q5E9J1 

GIVPIVEPEILPDGDHDLK 0.9999 2171.1262 P04075 
GLAWSKTGPVAKE 0.9915 1486.7932 Q01518 

GLDLWQVK 0.9439 1073.5658 P27797 
GLEVFHAGTALK 0.9976 1357.7142 P22102 

GLFPCVDELSDIHTR 0.9869 1845.8468 Q92974 
GLIFVVDSNDR 0.8725 1321.6415 P84077 

GLLWALEPEKPLVR 0.9991 1735.9773 Q86TX2 
GLLWALEPEKPLVR 0.9986 1735.9773 Q86TX2 
GLTHTAVVPLDLVK 0.8956 1577.8929 Q00325-2 
GLTLGGQKCSVIRD 0.9984 1618.8249 P07737 

GLVASNLNLKPGECLR 0.9770 1855.9726 P09382 
GMGMEGIGFGINK 0.9787 1425.6533 P52272 

GMILPTMNGESVDPVGQPALK 0.9517 2269.1235 O95433 
GNIVGLVGVDQFLVK 0.8504 1672.9227 Q3SYU2 
GNIVGLVGVDQFLVK 0.9997 1672.9227 Q3SYU2 
GNIVGLVGVDQFLVK 0.9982 1672.9227 Q3SYU2 
GPKPALPAGTEDTAK 1.0000 1595.8307 P06396 

GPKPALPAGTEDTAKEDAANR 0.8412 2252.1185 P06396 
GQDEMIDVIGVTK 0.8514 1519.7341 P39023 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

GQKDSYVGDEAQSK 0.9999 1654.7587 P62736 
GQLLTSSNYDDDEKK 0.9999 1855.8588 P11388 
GQLLTSSNYDDDEKK 0.9998 1855.8588 P11388 
GQLLTSSNYDDDEKK 0.9476 1855.8588 P11388 
GQLMNMLSHPVIR 0.9825 1582.7860 Q7Z6Z7 
GQSGAGNNWAK 0.9963 1204.5373 Q13885 
GQSGAGNNWAK 0.9661 1204.5373 Q13885 
GQSGAGNNWAK 0.8827 1204.5299 Q9YHC3 

GQVITIGNER 0.9861 1173.5890 P62736 
GSLGQGLGAACGMAYTGK 0.9989 1813.8239 P29401 

GSPKADSPGSLTI 0.7936 1344.6673 Q8NFW5 
GSTSDLGHCEK 0.9672 1305.5408 P22234 
GSTSDLGHCEK 0.9868 1305.5408 P22234 

GTAAVALAGLLAAQK 0.9999 1469.8354 P23368 
GTFALNLLK 0.9662 1091.6127 P35237 

GTQDQIQNAQYLLQNSVK 0.9924 2163.0708 P61978 
GVDLLADAVAVTMGPK 0.9054 1671.8654 P10809 
GVDLLADAVAVTMGPK 0.9908 1671.8577 P10809 
GVGYLAGCLVHALGEK 0.9997 1758.8875 Q9Y3Z3 
GVGYLAGCLVHALGEK 0.9992 1758.8875 Q9Y3Z3 

GVHQVPTENVQVHFTER 0.9582 2063.9926 Q9HB71 
GVLPNIQAVLLPK 0.8899 1476.8816 Q96QV6 

GVPMPDKYSLEPVAVELK 0.9709 2115.1074 P00558 
GVPMPDKYSLEPVAVELK 0.8261 2115.1074 P00558 

GVSHPVLK 0.8490 951.5290 P22695 
GVSLAVCK 0.9987 948.4851 P06733 
GVSLAVCK 0.8683 948.4851 P06733 

GVSLQELNPEMGTDNDSENWK 1.0000 2478.0757 P07195 
GVVVLHK 0.9855 866.5126 O43395 

GWVAMAPKPGPYVK 0.8966 1643.8646 Q01518 
HACIGGTNVR 0.7667 1171.5305 P60842 
HAQVADMK 0.9908 1014.4705 P35579 

HCASPPPSSNNK 0.9983 1410.6098 Q15738 
HCIDPNDSK 0.9925 1200.4982 Q15185 

HEALAAAELLKK 0.9990 1436.8139 P29401 
HEALAAAELLKK 0.9717 1436.8139 P29401 

HEKYDNSLK 0.8571 1276.6200 P04406 
HHTFYNELR 0.8326 1303.5846 Q9BYX7 
HIISSNLEK 0.9587 1155.6036 Q9UL46 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

HILSPWGAEVK 0.9009 1351.7037 P09874 
HLATGDMLR 0.9014 1100.5185 P54819 
HLATGDMLR 0.9927 1100.5185 P54819 

HLKSPVR 0.8036 951.5402 Q9UIF9 
HLLLQNNLPAVR 0.9991 1474.8156 P48643 
HLQLAIRNDEE 0.9998 1424.6796 Q96QV6 

HNCAVEFNFGQK 0.9986 1565.6833 Q00839 
HQALLGTIR 0.9985 1095.5937 P25705 
HQATILPK 0.9370 1022.5661 P49327 
HQATILPK 0.9952 1022.5661 P49327 

HQGVMVGMGQKDSYVGDE 0.9993 2051.8829 P62736 
HSFGGGTGSGFTSLLMER 1.0000 1927.8635 Q71U36 

HSGIAPR 0.7955 824.4041 Q8IWT3 
HSIIETLR 0.9792 1055.5512 P07900 
HSIVLPLK 0.8109 1021.6072 O94979 

HSLGGGTGSGMGTLLISK 0.8678 1787.8988 Q13885 
HSLGGGTGSGMGTLLISK 0.9789 1787.8988 Q13885 

HSLLPALCDSK 0.7387 1355.6581 A1YES6 
HTISPLDLAK 0.9779 1209.6506 Q15365 
HTVLPEALER 0.9130 1251.6286 Q3B7M9 

HTVPIYEGYALPHAILR 0.7847 2037.0584 P60709 
HVTYAGAAVDELGK 0.9999 1545.7576 P30086 

HVVNIGAEDLK 0.9985 1309.6778 P13796 
IAAQYSGAQVR 0.9993 1250.6156 P26641 

IADLVVGLCTGQIK 0.9561 1601.8599 P06733 
IAGHPAFVNYSTSQK 0.9148 1734.8478 P14866 

IAIGDLVK 0.8966 943.5491 P78371 
IANLFNR 0.9812 934.4773 P13796 

IAPALVSKKLNVTE 0.8933 1625.9504 P06733 
IAPALVSKKLNVTE 0.9997 1625.9504 P06733 

IAPIVIFASNR 0.9998 1287.7087 Q9Y265 
IAQGGVLPNIQAVLLPK 1.0000 1846.0828 Q96QV6 
IAQGGVLPNIQAVLLPK 0.9991 1846.0757 P04908 
IAQGGVLPNIQAVLLPK 0.9981 1846.0757 P04908 
IASGGVLPNIHPELLAK 0.9989 1844.0308 O75367 
IASGGVLPNIHPELLAK 0.9897 1844.0308 O75367 

ICAGPTALLAHEIGFGSK 0.7868 1956.988 Q99497 
ICQQNGIVPIVEPEILPDGDHDLK 0.9405 2814.4010 P04075 
ICQQNGIVPIVEPEILPDGDHDLK 0.9995 2814.401 P04075 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

IFIDSDHTDNQR 0.9968 1547.6753 P07237 
IFIDSDHTDNQR 0.9920 1547.6753 P07237 
IFIDSDHTDNQR 0.9775 1547.6679 P05307 

IGAIAIGDLVK 0.9970 1184.6917 P78371 
IGNSTAIQELFKR 0.9922 1591.8470 Q13885 

IGRRFDDAVVQSD 0.9438 1564.7382 P11142 
IGSLICNVGAGGPAPAAGAAPAGGPAPSTAAAPAEEK 0.9994 3341.6462 P05386 

IGYPITLFVEK 0.9997 1394.7598 Q14568 
IGYPITLYLEK 0.9793 1424.7703 Q58FF7 

IIAEGIPEALTR 0.8924 1369.7353 P53396 
IINSLYKNKE 0.8141 1364.7452 P14625 

IIRPRPPK 0.7241 1091.6716 Q16881-2 
IKKIGYNPD 0.8868 1190.6447 P68104 

ILGQNGISDLVK 0.9844 1371.751 P00338 
ILGQNGISDLVK 0.8321 1371.7437 P00338 
ILGQNGISDLVK 0.9640 1371.7436 P00338 
ILGQNGISDLVK 0.7707 1371.7437 P00338 
ILGTTLKDEGK 0.9996 1317.7292 O75083 
ILGTTLKDEGK 0.8954 1317.7292 O75083 
ILLVQPTKRPE 0.9959 1408.8190 P84090 

ILNVSAVDKSTGKE 0.9953 1603.8569 P11142 
ILTHGIFSGPAISR 0.9878 1555.8259 P60891 

ILTLKYPIE 0.9520 1204.6855 P62736 
IMNSFVNDIFER 0.9996 1571.7117 P06900 
IMNSFVNDIFER 0.9972 1571.7117 P06900 
IMNSFVNDIFER 0.9804 1571.7117 P06900 
IMNSFVNDIFER 0.8862 1571.7117 P06900 

INGHNAEVR 0.9906 1096.5162 P22626 
IPNEIIHALQAGR 0.9915 1518.8055 P52272 

IPTEGGDFNEFPVPEQFK 0.9989 2166.0058 Q01518 
IPTLITQLTQK 0.9882 1370.7921 P55060 

IQANPLLEAFGNAK 0.9970 1600.8361 Q9UKX3 
IQAVLLPK 0.7468 996.6120 Q96QV6 
IQAVLLPK 0.8108 996.6120 Q96QV6 
IQAVLLPK 0.9811 996.6120 Q96QV6 
IQAVLLPK 0.9327 996.612 Q96QV6 

IQAVLLPKKTE 0.9975 1382.8285 Q96QV6 
IQGITKPAIR 0.9891 1211.7138 P62805 
IQWITTQCR 0.9828 1292.6084 P37802 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

IRNDEELNK 0.9718 1245.6101 Q96QV6 
ISADIETIGEILKK 0.9999 1672.9399 P61978 
ISADIETIGEILKK 0.9899 1672.9399 P61978 
ISADIETIGEILKK 0.8749 1672.9399 P61978 

ISATLPHEILEMTNK 0.9952 1811.9239 P38919 
ISKLIFKS 0.8192 1078.6539 Q9ULI3 

ISLCQAILDETKGDYEK 0.9997 2126.0354 P04083 
ISLCQAILDETKGDYEK 0.9999 2126.0354 P04083 

ISPYFINTSKGQKCE 0.9980 1914.9298 P10809 
ISRMQYAPNTQVE 0.9635 1623.7463 P40121 

ITALHIK 0.9859 910.5388 P62263 
ITFDQANLTVK 0.8732 1364.7088 P09382 
ITFDQANLTVK 0.9371 1364.7017 P09382 

ITGKTFSSR 0.8278 1111.5774 O15144 
ITWIGENVSGLQR 0.9387 1559.7844 Q14019 

ITYTDEEPVKK 0.9329 1465.7453 O14979 
IVASKASLRE 0.9035 1188.6614 P13489 

IVCNSKDGGAWGTEQRE 0.9993 2021.9013 P09382 
IVGNSALK 0.7209 916.5130 Q9Y283 

IVPALEIANAHR 0.9979 1390.7469 P10809 
IVPALEIANAHR 0.9220 1390.7469 P10809 
IVPALEIANAHR 0.9801 1390.7397 P10809 
IVPALEIANAHR 0.9661 1390.7395 P10809 
IVPALEIANAHR 0.9979 1390.7397 P10809 

IVPIVEPEILPDGDHDLK 0.9998 2114.1048 P04075 
IVPIVEPEILPDGDHDLK 0.9759 2114.1048 P04075 

IVPTGKTGLIIGKGGE 0.9981 1682.9719 Q96AE4 
IVSWGSGCAQK 0.7351 1307.6006 P00760 
IVSWGSGCAQK 0.9912 1307.6006 P00760 
IVVIGHVDSGK 0.9998 1238.6771 P68104 

IYTNYEAGKDDYVK 0.9554 1821.8573 P09211 
KADGIVSKNF 0.8101 1221.6506 P63220 

KANAQAAALYK 0.9593 1291.7036 P40121 
KAPLDIPVPDPVKE 0.8980 1660.9188 Q06323 

KDDAMLLK 0.9173 1076.5688 P10809 
KDSPSVWAAVPGK 0.9997 1484.7776 P07737 

KDSTLIMQLLR 0.9913 1432.7860 P31946 
KEPAVLELEGK 0.9973 1355.7374 Q01518 

KEPISVSSEQVLK 0.9982 1586.8668 P00918 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

KGTVAVQEK 0.8271 1102.6135 Q8NHV4 
KLAPGELTIIL 0.7571 1282.7648 P04114 

KNNQITNNQR 0.9946 1344.6646 P00558 
KPGMVVTFAPVNVTTEVK 0.9903 2060.1129 P68104 

KPIIDLYEEMGK 0.9718 1578.8115 P30085 
KPISVEGSSK 0.8588 1174.6346 Q9HB71 

KPMCVESFSDYPPLGR 0.9997 1997.9127 P68104 
KQDLPNAMNAAEITDK 0.9861 1901.9305 P84077 

KQGQDNLSSVKE 0.9982 1475.7368 P30040 
KSESEILR 0.7890 1076.5614 Q05823 

KVEFLECSAK 0.9876 1353.6751 Q9Y5M8 
LAAAELLKK 0.9956 1099.6753 P29401 

LAALGGNSSPSAKD 0.8290 1402.6840 P05387 
LAALGGNSSPSAKD 0.9960 1402.6840 P05387 
LAASALPALVMSK 0.9913 1386.7693 P36578 
LAAVGLVGDLCR 0.9969 1330.6737 Q14974 
LACNIALDAVK 0.8981 1302.6754 P49368 

LADNVICPGAPDFLAHVR 0.9244 2051.9999 P21964 
LAGGIIGVK 0.9751 942.5650 P61978 

LAGLATDVQTVAQR 0.9988 1529.7950 P49720 
LAGPVAEYLK 0.9981 1175.6338 Q01518 
LAGPVAEYLK 0.8948 1175.6338 Q01518 
LAGPVAEYLK 0.9987 1175.6338 Q01518 
LAGPVAEYLK 0.9994 1175.6338 Q01518 
LAGPVAEYLK 0.9601 1175.6264 Q01518 
LAGPVAEYLK 0.9645 1175.6264 Q01518 

LAHILSPWGAEVK 0.9888 1535.8248 P09874 
LAHILSPWGAEVK 0.9823 1535.8248 P09874 

LAIIDPGDSDIIR 0.9914 1484.7623 P62888 
LAIIDPGDSDIIR 0.8758 1484.7623 P62888 
LAIVEALNGK 0.8556 1142.6447 Q99497 

LAIVEALNGKEVAAQVK 0.9999 1896.0832 Q99497 
LANHSLR 0.9446 897.4569 P13489 

LANSLACQGKYTPSGQAGAAASE 0.9993 2367.0913 P04075 
LAPLPPLPAQFK 0.8083 1406.8074 Q9NP79 

LAPVNIFK 0.7956 1016.5807 P78371 
LAQYLINAR 0.9931 1148.6090 Q15365 
LASYAVQSK 0.9245 1081.5556 P26038 

LATYAPVISAEK 0.9423 1377.7217 P68362 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

LATYAPVISAEK 0.9646 1377.7217 P68362 
LATYAPVISAEK 0.9575 1377.7217 P68362 
LAVAVGHVK 0.9947 1008.5869 P62906 

LAVDAVIAELK 0.9999 1256.7128 P10809 
LAVDAVIAELK 1.0000 1256.7128 P10809 
LAVDAVIAELK 0.9984 1256.7128 P10809 
LAVDAVIAELK 0.9916 1256.7054 P10809 

LAVDAVIAELKK 0.9999 1412.8391 P10809 
LAVDAVIAELKK 0.9998 1412.8391 P10809 
LAVDAVIAELKK 0.9994 1412.8391 P10809 
LAVDAVIAELKK 0.8569 1412.8317 P10809 
LAVDAVIAELKK 0.9021 1412.8317 P10809 
LAVDAVIAELKK 0.9383 1412.8317 P10809 

LAVLQQFK 0.9874 1061.6022 O60506 
LCAIHAK 0.9969 927.4748 P68431 
LCAIHAK 0.8768 927.4748 P68431 

LCKPEPELNAAIPSANPAK 0.9960 2163.1146 Q8WUM4 
LEGGKQPR 0.8731 999.5250 Q9UKZ4 

LGALTLPLAR 0.9873 1111.6501 Q9BSJ8 
LGALTPMPAVR 0.7633 1228.6386 Q9UHC9 

LGGPEAAKSDETAAK 0.9994 1587.7892 P04792 
LGIPFAKPPLGPLR 0.8858 1590.9398 P23141 

LGSLALYEK 0.9909 1108.5916 P36542 
LGSLALYEK 0.9095 1108.5842 P36542 

LIANGPTGPVSF 0.9292 1259.6224 C7G046 
LINIIPEDHIPLNLSGK 0.9754 2001.1047 O95602 

LIPHDFGMK 0.7430 1172.5800 P09874 
LIQTADQLR 0.9695 1144.5988 P18031 
LISAGLPPLK 0.8619 1123.6753 O43143 

LISFGAAGPPR 0.9936 1172.6090 Q75VX8 
LISVYSEKGESSGK 0.9401 1626.8253 P36578 
LITNFHTEQMYK 0.9897 1639.7816 P59998 

LIVLEGVDR 0.9916 1100.5978 P23919 
LIVLEGVDR 0.9763 1100.5978 P23919 

LIYTNYEAGKDDYVK 0.9982 1934.9414 P09211 
LIYTNYEAGKDDYVK 0.9990 1934.9414 P09211 
LIYTNYEAGKDDYVK 0.9993 1934.9414 P09211 
LIYTNYEAGKDDYVK 0.9975 1934.9337 P09211 
LIYTNYEAGKDDYVK 0.9992 1934.9337 P09211 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

LKEDQTEYLEER 0.9785 1667.7790 Q58FF7 
LKQGQDNLSSVKE 0.9061 1588.8209 P30040 

LLAAEFLK 0.9988 1019.5803 Q99832 
LLAAEFLK 0.9987 1019.5803 Q99832 

LLAALGGNSSPSAKD 0.9988 1515.7681 P05387 
LLAALGGNSSPSAKD 0.9889 1515.7681 P05387 

LLAGIECPR 0.9662 1115.5545 Q7KZF4 
LLAGPVAEYLK 0.9447 1288.7179 Q01518 
LLAGPVAEYLK 0.9722 1288.7179 Q01518 
LLAGPVAEYLK 0.8798 1288.7105 Q01518 
LLAGPVAEYLK 0.9081 1288.7105 Q01518 
LLAGPVAEYLK 0.8815 1288.7105 Q01518 
LLALEPELEAR 0.8590 1340.7088 P04843 
LLAYTLGVK 0.8631 1092.6331 P68104 
LLLAGVFR 0.8367 975.5654 Q9Y678 

LLLLVGGVDQSPR 1.0000 1453.8041 P33993 
LLSLAAAAK 0.7301 972.5756 P0CAP2-3 

LLSQNLVVKPDQLIK 0.9543 1851.0982 P53396 
LNGIPGLER 0.8637 1055.5512 Q8NH56 
LNSQKAGKE 0.8945 1117.5880 Q13185 

LNVVDIAGLVK 0.9985 1255.7288 Q9NTK5 
LQEYVANLLK 0.9991 1305.7081 O14980 

LQGIPVLVLGNK 0.8000 1365.8132 Q96BM9 
LQGIPVLVLGNKR 0.9928 1521.9143 Q96BM9 
LQGIPVLVLGNKR 0.9952 1521.9143 Q96BM9 
LQGIPVLVLGNKR 0.9836 1521.9143 Q96BM9 

LQGVDLLADAVAVTMGPK 0.9998 1913.0080 P10809 
LQGVDLLADAVAVTMGPK 0.9998 1913.0006 P10809 

LQLAIRNDE 0.9724 1158.5781 Q96QV6 
LQLAIRNDEE 0.9876 1287.6207 Q96QV6 

LQPLLDNQVGFK 0.9129 1486.7932 P20618 
LQTVAKNKDQGTYE 0.9444 1737.8686 P60660 

LSAGGAAVGGRR 0.7299 1158.6006 Q6ZSJ9 
LSASFEPFSNK 0.9976 1341.6353 P27797 

LSFMNTELAAFTK 0.9941 1587.7677 P31949 
LSLAEAQLR 0.9913 1087.5774 Q86UX7 

LSPLAAAVGGVASQEVLK 0.9997 1825.0097 A0AVT1 
LSVPCILGQNGISDLVK 0.9992 1928.0189 P00338 
LVADENPFAQGALK 0.9999 1587.8045 P06396 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

LVANVTNPNSTEHMK 0.8630 1769.8519 Q14974 
LVASNLNLKPGECLR 0.9993 1798.9512 P09382 
LVFDDVVGIVEIINSK 0.9997 1875.0067 Q01518 

LVFLPFADDKR 0.9573 1435.7612 P12956 
LVFLPFADDKR 0.9727 1435.7612 P12956 
LVFLPFADDKR 0.9609 1435.7612 P12956 

LVGAGAIGCELLK 0.9757 1415.7595 P22314 
LVGAGAIGCELLK 0.9853 1415.752 P31254 

LVGLFEDTNLCAIHAK 0.9965 1915.9614 P68431 
LVGLFEDTNLCAIHAK 0.9983 1915.9614 P68431 

LVGLIQK 0.9638 885.5436 P17655 
LVHWNTK 0.8963 1012.5242 P00918 

LVLTDPDAPSRK 0.7857 1426.7568 P30086 
LVSSSADPEGHFETPIWIER 0.9745 2357.1076 Q14697 

LVTASQCQQPAENK 0.9306 1688.7940 Q01518 
LVTASQCQQPAENK 0.9619 1688.7940 Q01518 
LVTASQCQQPAENK 0.9994 1688.7866 Q01518 
LVTASQCQQPAENK 0.9998 1688.7867 Q01518 

LVTGPLVLNR 0.8597 1168.6716 Q02878 
LVTYVPVTTFK 0.7844 1382.7598 P62899 

LVYQEPIPTAQLVQR 0.9940 1841.9788 P25787 
LYGLGELPQGFAR 0.8151 1507.7571 P31150 

LYYTGEKGQNQDYR 0.9828 1849.8383 P19338 
MADSGLLLK 0.9534 1062.5531 Q5SY16 

MANAGPNTNGSQFFICTAK 0.9313 2143.9567 A2BFH1 
MAPKPGPYVK 0.9679 1230.6583 Q01518 
MAPKPGPYVK 0.8610 1230.6583 Q01518 
MAPKPGPYVK 0.9982 1230.6509 Q01518 
MAPKPGPYVK 0.9996 1230.6509 Q01518 
MAPKPGPYVK 0.9377 1230.6509 Q01518 
MGNHELYMR 0.9480 1237.5120 P15311 

MIEIMEMK 0.9947 1139.5177 P40227 
MIEPIDEYCVQQLK 0.9925 1880.88 P07900 

MIGLPGAGK 0.8389 958.4984 Q00839 
MIVNNLLKPISVEGSSK 0.9703 1972.0815 Q9HB71 
MIVNNLLKPISVEGSSK 0.9999 1972.0815 Q9HB71 

MLARMASEVH 0.7382 1247.5465 B3QLW4 
MMQNPQILAALQER 0.9998 1729.8391 P55209 
MMTPTVLYDVQELR 0.9925 1782.8433 P09525 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

MPFVTEELFQR 0.8886 1483.6918 P26640 
MTEPIDEYCVQQLK 0.9885 1868.8437 Q58FF7 
MTEPIDEYCVQQLK 0.9839 1868.8437 Q58FF7 
MTEPIDEYCVQQLK 0.9988 1868.8362 Q58FF7 

MTSSYGHVLER 0.8976 1382.6037 P54821 
MTTVHAITATQK 0.8629 1416.7183 P04406 
MTTVHAITATQK 0.9988 1416.7183 P04406 

MVGSYGPRPEEYEFLTPVEEAPK 0.9584 2740.2842 P52566 
MVLTKMKE 0.9640 1122.5929 P11021 

MVPGKPMCVESFSDYPPLGR 0.9496 2382.0959 P68104 
MVPGKPMCVESFSDYPPLGR 0.7906 2382.0959 P68104 
MVPGKPMCVESFSDYPPLGR 0.9647 2382.0959 P68104 

MVTEALKPYSSGGPR 0.9984 1707.8402 P06744 
MVTPGHACTQK 0.9750 1344.6067 P04075 
MVTPGHACTQK 0.8665 1344.5992 P04075 
MVTPGHACTQK 0.9986 1344.5992 P04075 
MVTPGHACTQK 0.9809 1344.5992 P04075 

MVVTFAPVNVTTEVK 0.8720 1749.9124 P68104 
MVWEGLNVVK 0.8713 1289.659 O60361 

NAAGGLNPK 0.9162 956.4828 P00491 
NACFEPANQMVK 0.9552 1523.6575 P68362 
NACFEPANQMVK 0.9969 1523.6575 P68362 

NAHIQQVGDR 0.9943 1224.5748 Q00610 
NAHIQQVGDR 0.9996 1224.5748 Q00610 
NAPEQACHLAK 0.9255 1353.6247 P61981 

NAPPPELLEIINEDIAK 0.7474 1991.0363 Q15084 
NAPPPELLEIINEDIAKR 1.0000 2147.1374 Q15084 
NAPPPELLEIINEDIAKR 0.9849 2147.1374 Q15084 

NAQAAALYK 0.9992 1064.5403 P40121 
NAQAAALYK 0.9072 1064.5329 P40121 

NAQYLLQNSVK 0.9995 1392.7149 P61978 
NAQYLLQNSVK 0.8884 1392.7075 Q3T0D0 

NCDLHFK 0.9971 1048.4548 Q9BUJ2 
NCDLHFK 0.9299 1048.4548 Q9BUJ2 

NDGAAALVLMTADAAKR 0.9577 1802.9097 P24752 
NDGATILSMMDVDHQIAK 0.9974 2073.9611 P48643 
NDGATILSMMDVDHQIAK 0.9989 2073.9611 P48643 

NEASVLHNLK 0.8660 1239.6360 P35580 
NEASVLHNLK 0.9489 1239.636 P35580 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

NFIFGQTGAGNNWAK 0.9538 1739.8168 Q9BUF5 
NFTDGALVQHQEWDGK 0.9966 1959.8864 Q01469 
NFTDGALVQHQEWDGK 0.9997 1959.8864 Q01469 
NFVFGQSGAGNNWAK 0.9960 1711.7855 Q13885 

NHHLQETSFTK 0.7314 1456.6847 P13693 
NHPGQISAGYAPVLDCHTAHIACK 0.9997 2732.2700 P68104 
NHPGQISAGYAPVLDCHTAHIACK 0.9915 2732.27 P68104 

NIALLSDLTK 0.9782 1202.6659 P30048 
NIFISERPTDVLQTVK 0.9922 1975.0527 Q15813 

NIQLVTSQIDAQR 0.9672 1572.7937 Q86V81 
NLFVGNLNFNK 0.9842 1394.7095 P19338 
NLLKPISVEGSSK 0.9767 1514.8456 Q9HB71 
NLLKPISVEGSSK 0.9933 1514.8387 Q3T168 
NLNLKPGECLR 0.9863 1428.7295 P09382 

NLSYSATEETLQEVFEK 0.9837 2102.9796 P19338 
NLVVKPDQLIK 0.9954 1409.8394 P53396 
NLVVKPDQLIK 0.9725 1409.8394 P53396 

NMILDDGGDLTNLIHTK 1.0000 1984.9676 P23526 
NMLNPPAEVTTK 0.8177 1429.6949 P13010 

NNDIMLIK 0.8238 1091.5433 P07477 
NNDPLVLR 0.8609 1027.5199 Q9UH17 

NPGLAELIAEK 0.9966 1269.6717 P06737 
NPIISGLYQGAGGPGPGGFGAQGPK 1.0000 2412.1975 P08107 
NPIISGLYQGAGGPGPGGFGAQGPK 0.9956 2412.1975 P08107 

NPNIPNEIIHALQAGR 0.9986 1843.9441 P52272 
NPNTNDLFNAVGDGIVLCK 0.9996 2176.0371 P13796 

NPVDILTYVAWK 0.9663 1533.7905 P00338 
NSASAIGCHVVNIGAEDLK 0.9999 2069.9952 P13796 

NSFVNDIFER 0.9173 1327.5945 P33778 
NSFVNDIFER 0.9997 1327.5945 P33778 
NSFVNDIFER 0.9754 1327.5945 P33778 
NSFVNDIFER 0.8381 1327.5871 P06900 
NSFVNDIFER 0.7422 1327.5871 P06900 

NSPVWGADKCEELLEK 0.9739 2017.9567 O75367 
NSQLPVDHILAGSFETAMR 0.9976 2173.0374 P53621 

NTHADFADECPKPE 0.9939 1745.7103 P43487 
NTIDTLLSVVEDHK 0.9999 1698.8577 O95373 

NVDLSTVDKDQSIAPK 0.9144 1872.9581 P04844 
NVDLTEFQTNLVPYPR 0.9993 1992.9617 P68362 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

NVDLTEFQTNLVPYPR 0.9992 1992.9617 P68362 
NVGAGGPAPAAGAAPAGGPAPSTAAAPAEEK 0.9985 2698.3099 P05386 

NVLPVFDNLMQQK 0.8634 1660.8395 P07339 
NVNIGSLICNVGAGGPAPAAGAAPAGGPAPSTAAAPAEEK 1.0000 3668.8005 P05386 

NVSAVDKSTGKE 0.9877 1377.6888 P11142 
PDASKPEDWDER 0.9999 1559.6567 Q4VIT5 

PGLHVWR 0.9807 951.4753 P40121 
PLLSGLLDSPALK 0.9210 1438.8109 P49327 

PPAGSAPGEHVFVK 0.9999 1507.7497 P54577 
PPATQKAK 0.8787 983.5552 P50502 
PPAVAPR 0.8262 794.4187 Q9H9H4 

PTGTYHGDSDLQLDR 0.9983 1761.7637 Q9YHC3 
QAALKNPPINTK 0.8806 1437.8092 O15511 

QAAVYFEKGDYNK 0.9943 1675.7994 P31948 
QAELAVILK 0.9447 1099.6389 Q14980 

QALLELEMNSDLK 0.9916 1618.8024 P62081 
QALLELEMNSDLK 0.9636 1618.795 A6H769 
QANPILEAFGNAK 0.9762 1487.7520 P35749 
QARPDDLLISTYPK 0.9508 1731.8944 P50225 

QAYQEAFEISKK 0.9994 1584.7936 P31946 
QCQQPAENK 0.9392 1217.5247 Q01518 
QDAAIVGYK 0.9882 1079.5399 P07737 
QEAFEISKK 0.9981 1222.6346 P31946 

QEYDESGPSIVHR 0.9416 1586.6677 P53478 
QGESITHALK 0.9999 1198.6094 Q01518 
QGESITHALK 0.9810 1198.6094 Q01518 
QGESITHALK 0.9998 1198.6094 Q01518 
QGESITHALK 0.9993 1198.6094 Q01518 
QGESITHALK 0.9877 1198.602 Q01518 
QGESITHALK 0.9987 1198.602 Q01518 
QGESITHALK 0.9963 1198.602 Q01518 
QGESITHALK 0.9982 1198.602 Q01518 
QGESITHALK 0.9891 1198.602 Q01518 
QGESITHALK 0.9831 1198.602 Q01518 
QGESITHALK 0.9943 1198.602 Q01518 
QGESITHALK 0.7683 1198.602 Q01518 
QGESITHALK 0.9301 1198.602 Q01518 
QGESITHALK 0.9684 1198.602 Q01518 

QGGVLPNIQAVLLPK 0.9772 1661.9617 Q96QV6 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

QGGVLPNIQAVLLPK 0.9948 1661.9617 Q96QV6 
QGGVLPNIQAVLLPK 0.9384 1661.9542 P04908 

QGTVIHFNNPK 0.9952 1369.6891 Q13892 
QHGKVEIIANDQGNR 0.8943 1793.8921 P34931 

QHLGESTVR 0.9486 1113.5315 P06576 
QHNDIIR 0.9882 982.4733 Q14697 

QLGNIVFK 0.9433 1033.5709 P35749 
QLLLENLGNENVHR 0.7279 1735.8753 Q14974 

QLLLFASK 0.9758 1034.5912 Q08211 
QLTHSLGGGTGSGMGTLLISK 0.9951 2130.0892 Q13885 
QLTHSLGGGTGSGMGTLLISK 0.9508 2130.0892 Q13885 

QPILLELEAPLK 0.9997 1478.8496 P62136 
QPILLELEAPLK 0.9976 1478.8427 Q61JR3 

QPLVILEMESGASAK 1.0000 1687.8603 P49588 
QPPAAPPAAPALSAADTKPGTTGSGAGSGGPGGLTSAAPAGGDKK 0.9670 4039.0399 P67809 

QPSFLGMESCGIHETTFNSIMK 1.0000 2629.1763 P60709 
QPSFLGMESCGIHETTFNSIMK 0.9992 2629.1763 P60709 

QPTVGMNFKTPRGPV 0.9243 1743.8879 P08708 
QQLDLTHLK 0.9518 1210.6458 P61221 

QQNGIVPIVEPEILPDGDHDLK 0.9951 2541.2863 P04075 
QSEVKPILEK 0.9773 1313.7343 P30153 

QSPVDIDTHTAK 0.9999 1409.6501 P00918 
QVAEVFTGHMGK 1.0000 1418.6765 P06576 
QVAEVFTGHMGK 0.8758 1418.669 Q5ZLC5 

QYLLTLGFK 0.8629 1197.6546 Q9BXB7 
QYLLTLGFK 0.8742 1197.6546 Q9BXB7 
QYLLTLGFK 0.8936 1197.6546 Q9BXB7 

RDQNILLGTTYR 0.9965 1536.7797 P78527 
RDTKENGKHMDL 0.9712 1586.7623 Q86XP1-3 
RDTKENGKHMDL 0.8933 1586.7623 Q86XP1-3 

REPIICK 0.7282 1030.5382 P48735 
REPVVTLEGHTK 0.9857 1480.7786 P31146 

RFDQLFDDESDPFEVLK 0.9879 2215.0222 Q8NC51 
RIVAPGKGILAADE 0.9780 1524.8412 P04075 

RLPLQDVYK 0.9964 1246.6822 P68104 
RLPLQDVYK 0.9563 1246.6822 P68104 
RLPLQDVYK 0.7985 1246.6748 P68103 
RNPLIAGK 0.9675 983.5664 P62316 

RPDNFVFGQSGAGNNWAK 0.9997 2079.9663 Q13885 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

RPDNFVFGQSGAGNNWAK 0.9995 2079.9663 Q13885 
RPGLEGYALPR 0.9196 1315.6785 P33992 

RPGLVVVHAEDGTTSK 0.9913 1780.9220 P30049 
RPQNYLFGCELK 0.9561 1639.7929 P06748 
RPQNYLFGCELK 0.9839 1639.7929 P06748 
RPQNYLFGCELK 0.9942 1639.7857 Q3T160 

RSDSENILTNYENQSR 0.9119 2012.8936 Q03001 
RTVSLGAGAKDE 0.9504 1318.6629 P06748 
RTVSLGAGAKDE 0.9768 1318.6629 P06748 
RVHIPNDDAQFD 0.9955 1513.6698 Q16576 

RVPAGNWVLIEGVDQPIVK 0.9954 2205.2058 Q15029 
SAAAVLSHNR 1.0000 1112.5475 P04844 

SAALIQQATTVK 0.9947 1345.7354 P32969 
SAALIQQATTVK 0.9753 1345.7354 P32969 

SADFPALVVK 0.8513 1161.6182 P22102 
SADPEGHFETPIWIER 0.9965 1970.8911 Q14697 

SAGIMDHEEAR 0.9771 1302.5411 P62244 
SAGIMDHEEAR 0.9961 1302.5411 P62244 

SAGTQCLISGWGNTK 0.9998 1694.776 P00760 
SAGTQCLISGWGNTK 0.9999 1694.7757 P00760 
SAGTQCLISGWGNTK 0.9999 1694.7757 P00760 
SAGTQCLISGWGNTK 0.9938 1694.7757 P00760 

SALAAATAAAAAAASAAAATAA 0.8837 1802.8837 Q99932 
SALGIPSLLPFLK 0.9303 1470.8598 O75533 
SALGIPSLLPFLK 0.9911 1470.8527 O75533 

SALILHDDE 0.8397 1099.4934 P05386 
SAPAFSLVFPFLK 0.9691 1538.8211 Q92616 

SAPGPLELDLTGDLESFKK 0.9879 2160.1102 P52565 
SAPKPQTSPSPK 0.9626 1367.7197 Q01518 
SAPKPQTSPSPK 0.9833 1367.7197 Q01518 

SAPVLAVAGLGDSNQFFR 0.9997 1935.9591 Q9UHL4 
SASAIGCHVVNIGAEDLK 0.9018 1955.9523 P13796 
SASAIGCHVVNIGAEDLK 0.9997 1955.9523 P13796 
SASAIGCHVVNIGAEDLK 0.9998 1955.9523 P13796 
SASIPGILALDLCPSDTNK 0.9949 2087.0357 Q9UMS4 
SASIPGILALDLCPSDTNK 0.9226 2087.0357 Q9UMS4 
SASTPVFGGILSLINEHR 0.9581 1985.0119 O14773 

SATMPSDVLEVTK 0.7211 1492.7231 P60842 
SATMPSDVLEVTKK 0.9995 1648.8494 P60842 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SATMPSDVLEVTKK 0.8368 1648.8494 P60842 
SCGLTHTAVVPLDLVK 0.9998 1824.9556 Q00325-2 

SCVGVFQHGK 0.9991 1233.5713 P34931 
SCVGVFQHGK 0.9645 1233.5713 P34931 

SDNAPPPELLEIINEDIAKR 0.9927 2349.1964 Q15084 
SDYPPLGR 0.9982 991.4511 P68104 
SDYPPLGR 0.9501 991.4437 P68103 

SEAYLVGLFEDTNLCAIHAK 1.0000 2366.1365 Q71DI3 
SEIAALLVKPQK 0.9563 1439.8500 Q8NF50 

SENFQTLLDAGLPQK 0.9984 1775.8767 O60506 
SENFQTLLDAGLPQK 0.9993 1775.8767 O60506 

SEVILPVPAFNVINGGSHAGNK 0.7623 2335.2073 P06733 
SFNPYSEFILATGSADK 0.8721 1961.9159 Q09028 

SFVDKDLLEPGCSVLLNHK 0.9514 2314.1780 P62191 
SGGPVVCSGK 0.9481 1062.4842 P00760 
SGGPVVCSGK 0.9979 1062.4842 P00760 
SGGPVVCSGK 0.9972 1062.4842 P00760 

SGGQHTVLLVK 0.9660 1253.6880 P18754 
SGGTTMYPGIADR 0.9826 1428.6092 P62736 
SGGTTMYPGIADR 0.9989 1428.6092 P62736 
SGGTTMYPGIADR 0.9987 1428.6018 P53478 
SGGTTMYPGIADR 0.9946 1428.6018 P53478 
SGGTTMYPGIADR 0.7323 1428.6018 P53478 
SGGTTMYPGIADR 0.9802 1428.6018 P53478 
SGGTTMYPGIADR 0.7711 1428.6018 P53478 
SGGTTMYPGIADR 0.9982 1428.6018 P53478 
SGGTTMYPGIADR 0.9987 1412.6143 P62736 
SGGTTMYPGIADR 0.9030 1412.6143 P62736 
SGGTTMYPGIADR 0.9991 1412.6068 P53478 
SGGTTMYPGIADR 0.9992 1412.6068 P53478 
SGGTTMYPGIADR 0.9992 1412.6068 P53478 
SGGTTMYPGIADR 0.9990 1412.6068 P53478 
SGGTTMYPGIADR 0.9888 1412.6068 P53478 
SGGTTMYPGIADR 0.9345 1412.6068 P53478 
SGGTTMYPGIADR 0.9773 1412.6068 P53478 
SGGTTMYPGIADR 0.9633 1412.6068 P53478 

SGGTTMYPGIADRMQKE 0.8656 1956.8822 P62736 
SGGVLPNIHPELLAK 0.9742 1659.9096 O75367 
SGGVLPNIHPELLAK 0.9738 1659.9096 O75367 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SGIPAGWMGLDCGPESSKK 0.9998 2119.9819 P00558 
SGIPAGWMGLDCGPESSKK 0.9960 2119.9819 P00558 
SGSPFPGSVQDPGLHVWR 0.9994 2009.9496 P40121 
SGSPFPGSVQDPGLHVWR 0.9998 2009.9496 P40121 
SGSPFPGSVQDPGLHVWR 0.9989 2009.9417 P40121 

SGSSHQDLSQR 0.9998 1288.5544 P11908 
SGSSHQDLSQR 0.9719 1288.5544 P11908 

SGVTTCLR 0.9598 980.4498 Q13885 
SGVTTCLR 0.7225 980.4498 Q13885 
SGVTTCLR 0.8879 980.4498 Q13885 

SHDASTNGLINFIK 0.9948 1631.8056 P06744 
SHDGAFLAVCDASK 1.0000 1592.7041 O75083 

SHPLIPDK 0.9203 1021.5345 Q9NSE4 
SHTLAVDAK 0.9560 1056.5352 Q14289 
SISIALIGGSR 0.9414 1160.6301 Q86UK0 

SIVPALEIANAHR 0.9475 1477.7789 P10809 
SIVPALEIANAHR 0.9964 1477.7717 P10809 
SIVPALEIANAHR 0.9713 1477.7717 P10809 

SLAGGIIGVK 0.9877 1029.5971 P61978 
SLDIQCEELSDAR 0.9595 1622.692 P13489 

SLFLTDLYSPEYPGPSHR 0.9993 2166.0170 Q16181 
SLFLTDLYSPEYPGPSHR 0.9982 2166.017 Q16181 
SLGGGTGSGMGTLLISK 0.9150 1650.8327 Q9YHC3 
SLGGGTGSGMGTLLISK 0.9758 1650.8327 Q9YHC3 
SLIALVNDPQPEHPLR 0.9995 1885.9798 P68036 
SLIALVNDPQPEHPLR 0.9947 1885.9798 P68036 

SLLAGPVAEYLK 0.8111 1375.7499 Q01518 
SLLAGPVAEYLK 0.9676 1375.7425 Q01518 
SLLAGPVAEYLK 0.8999 1375.7425 Q01518 

SLLDKFLIK 0.9230 1219.7328 Q04917 
SLLDKFLIK 0.7952 1219.7328 Q04917 
SLLDKFLIK 0.9389 1219.7328 Q04917 

SLPLDTLLVDVEPK 0.9969 1653.8977 P62314 
SLPLDTLLVDVEPK 0.9666 1653.8977 P62314 
SLPLDTLLVDVEPK 0.9398 1653.8977 P62314 

SLPLITASILSK 0.9997 1357.7969 P19971 
SLVDLKAELFR 0.9095 1405.7717 Q6PII3 

SMANAGPNTNGSQFFICTAK 0.9998 2230.9888 A2BFH1 
SMMDVDHQIAK 0.9988 1389.6169 P48643 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SMMGQLMKPK 0.9698 1293.6395 Q9Y265 
SNLLDLNPQNINK 0.9925 1597.8212 P63010 
SNLNLKPGECLR 0.9998 1515.7616 P09382 
SNNLCLHFNPR 0.9874 1458.65 P09382 

SNPLLEAFGNAK 0.7821 1375.6884 Q12965 
SNQGGLVHPK 0.9914 1151.5836 P56537 
SNVLIIGELLK 0.8793 1313.7707 Q92526 
SNVLIIGELLK 0.8850 1313.7707 Q92526 

SPAPAAAAPAVQ 0.7793 1137.5492 P51610 
SPAVHLDLLSLR 1.0000 1407.7622 P34810 

SPPVAMETASTGVAAVP 0.8109 1671.7852 Q64548 
SPSSSIVPAFNTGTITQVIK 0.9021 2162.1371 O43747 

SQCGSLIGK 0.9208 1064.5073 Q15366 
SQCQQPAENK 0.9994 1304.5567 Q01518 
SQCQQPAENK 0.999 1304.5567 Q01518 
SQCQQPAENK 0.9286 1304.5567 Q01518 

SQEESIKPK 0.8264 1188.6138 Q9UBQ5 
SQHQALLGTIR 0.9995 1310.6843 P25705 

SQLLNGLK 0.9120 987.5501 Q8NCG7 
SQLSAAVTALNSESNFAR 1.0000 1952.9340 O75390 
SQLSAAVTALNSESNFAR 0.9513 1952.9340 O75390 

SQQAYQEAFEISKK 0.9999 1799.8842 P31946 
SQVLAGLMEAQK 0.9989 1389.7074 Q96EK9 
SQVTTVCQALAK 0.9295 1420.7133 P50897 

SSAPGPLELDLTGDLESFKK 0.9999 2247.1423 P52565 
SSEGVPDLLV 0.8156 1102.522 Q0Q473 

SSEPACLAEIEEDKAR 0.9771 1919.8683 P78527 
SSFGPISEVVVVK 0.9673 1462.7820 P98179 

SSGFSLEDPQTHSNR 0.8627 1748.7502 P08238 
SSGGLSKDDIENMVK 0.9998 1722.8246 P38646 
SSGGLSKDDIENMVK 0.9965 1722.8246 P38646 

SSHIANVER 0.9134 1099.5158 P06396 
SSIVPAFNTGTITQVIK 0.7206 1891.0203 O43747 

SSLAATLLANHSLR 0.9999 1540.8109 P13489 
SSLAATLLANHSLR 0.9998 1540.8109 P13489 
SSLAATLLANHSLR 0.9980 1540.8037 P13489 

SSLMGLFEK 0.9992 1126.5481 P50395 
SSMAEVDAAMAARPHSIDGR 0.9721 2158.9636 P22626 

SSMLREQILDLSK 0.9145 1650.8399 Q09328 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SSSQELGAALAQLVAQR 0.9946 1815.9157 O95336 
SSTFDAGAGIALNDHFVK 0.9856 1964.9380 P04406 

STAIQELFK 0.9355 1151.5975 Q13885 
STAIQELFK 0.7894 1151.59 Q9YHC3 

STAIQELFKR 0.9821 1307.6986 Q13885 
STAIQELFKR 0.9231 1307.6986 Q13885 

STDLPLNIECFMNDKDVSGK 0.8491 2426.1246 Q92598 
STSHVPEVDPGSAELQK 0.9750 1895.9013 P49327 

STSLLGPPPGLLTPPVATELSQNAR 0.9982 2603.3707 Q8N163 
STVFKDDDDVVIGK 0.9879 1680.8359 O15144 

SVEQITAMLLTK 0.9024 1448.7697 Q92598 
SVEVDGNSFEASGPSKK 1.0000 1880.8904 Q12906 
SVEVDGNSFEASGPSKK 0.9927 1880.8904 Q12906 

SVGIDHLALDEIK 0.9997 1524.7936 Q9UBQ7 
SVHYPGEAVATR 0.8563 1373.6397 O94808 

SVLNLVIVK 0.8213 1099.6753 P62753 
SVLNVLHSLVDK 0.9997 1438.7932 Q9Y262 

SVLTQSVK 0.9674 976.5341 P62316 
SVPAVPGALGPLTITSSAVTGR 0.9408 2138.1484 O95758 

SVSLVADENPFAQGALK 0.9999 1860.9370 P06396 
SVSLVADENPFAQGALK 0.9945 1860.9297 P06396 
SVSLVADENPFAQGALK 0.9450 1860.9297 P06396 
SVSLVADENPFAQGALR 0.9914 1860.9044 P13020 

SVTLHQDQLK 0.7908 1283.6622 P53602 
SVVIIAAELLK 0.9977 1270.7648 P17987 

SYLGGFDSSSNVLAGQLR 0.8691 1957.9282 Q6XQN6 
SYPLSEGQLDQK 0.9229 1479.6919 P23141 
SYVGDEAQSK 0.8796 1198.518 P53478 
SYVGDEAQSK 0.9994 1198.518 P53478 
SYVGDEAQSK 0.9993 1198.518 P53478 

SYVGDEAQSKR 0.9980 1354.6191 P53478 
SYVGDEAQSKR 0.9995 1354.6191 P53478 
SYVGDEAQSKR 0.9967 1354.6191 P53478 
SYVGDEAQSKR 0.8097 1354.6191 P53478 
SYVGDEAQSKR 0.9919 1354.6191 P53478 
SYVGDEAQSKR 0.9607 1354.6191 P53478 

TAASSSSLEK 0.9267 1095.5122 P53478 
TAASSSSLEK 0.8598 1095.5122 P53478 

TAEILELAGNAAR 0.9973 1415.7156 P04908 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

TAHIACK 0.9615 915.4385 P68104 
TAHIACK 0.9343 915.4385 P68104 

TALLQPHDR 0.8171 1137.5679 P34897 
TAPVNIAVIK 0.7510 1140.6655 P53602 

TAQLDEELGGTPVQSR 0.9848 1787.8367 P06396 
TDINLPYLTMDSSGPK 0.9244 1866.8822 P38646 
TDINLPYLTMDSSGPK 0.9963 1866.8747 P38646 
TDINLPYLTMDSSGPK 0.9865 1866.8747 P38646 
TGLAWSKTGPVAKE 0.9973 1587.8409 Q01518 

TGNVPLKVGQK 0.9258 1283.7350 Q8WUE5 
THGLNEEQR 0.8291 1170.5166 O95373 

THNMDVPNIK 0.9235 1283.6080 P63241 
THSLGGGTGSGMGTLLISK 0.9465 1904.9414 Q13885 
THSLGGGTGSGMGTLLISK 0.8868 1904.9414 Q13885 
THSLGGGTGSGMGTLLISK 0.9927 1888.9465 Q13885 
THSLGGGTGSGMGTLLISK 0.9678 1888.9465 Q13885 
THSLGGGTGSGMGTLLISK 0.8534 1888.9465 Q13885 
THSLGGGTGSGMGTLLISK 0.9999 1888.9387 Q9YHC3 
THSLGGGTGSGMGTLLISK 0.9999 1888.9387 Q9YHC3 
THSLGGGTGSGMGTLLISK 0.9999 1888.9387 Q9YHC3 
THSLGGGTGSGMGTLLISK 0.7353 1888.9387 Q9YHC3 
TISANGDKEIGNIISDAMKK 0.9180 2276.1834 P10809 

TLAVNAAQDSTDLVAK 0.9947 1731.8717 Q32L40 
TLAVNAAQDSTDLVAK 0.9925 1731.8717 Q32L40 

TLHLLPCEVAVDGPAPVGR 0.9976 2088.0574 Q8TDP1 
TLPAGPEIGPSPAPPYGLFVGGR 0.9532 2337.1906 Q8IZ83 

TLPHEILEMTNK 0.9962 1540.7707 P38919 
TMSGVTTCLR 0.9926 1212.5379 Q13885 
TNDFLSLLEK 0.9997 1294.6557 O14929 
TNLCAIHAK 0.9961 1142.558 P84227 
TNLCAIHAK 0.9897 1142.558 P84227 

TPAPVEKSPAK 0.9137 1267.6924 P16401 
TPEIMAPILANADVQER 1.0000 1954.9570 Q16186 
TPEIMAPILANADVQER 0.9976 1954.9570 Q16186 

TPGVAADLSHIETK 0.9045 1553.7763 P40926 
TPGVAADLSHIETK 0.9894 1553.7767 P40926 
TPIEGMLSHQLK 0.9997 1468.7496 Q9UQ80 
TPLLDYALEVEK 1.0000 1505.7765 P53396 

TPLLPSTTGLLNDNTFAQCK 0.9999 2306.1365 O43175 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

TPLLPSTTGLLNDNTFAQCK 0.9383 2306.1365 O43175 
TPRPVIVEPLEQLDDEDGLPEK 0.9863 2604.3071 P23246 

TQCGSLIGK 0.8146 1078.5229 Q15365 
TQPPPAPAPHATLPR 0.9838 1637.8426 P49327 

TQQLHAAMADTFLEHMCR 0.8911 2246.9771 P14618 
TSAGIMDHEEAR 0.9999 1403.5887 P62244 
TSEGVCLAVEK 0.9896 1307.6179 P28066 

TSELDMSESKTR 0.9268 1498.6721 Q86X24 
TSILEYPIEPSGVLGAVATK 0.9762 2160.1466 Q96PU8 

TTAIAEAWAR 0.8833 1176.5675 Q71U36 
TTHELTIPNNLIGCIIGR 1.0000 2109.0789 Q15365 

TTNCLAPLAK 0.9794 1203.6070 O14556 
TTSAGIMDHEEAR 0.9998 1504.6364 P62244 
TTSAGIMDHEEAR 0.9990 1504.6364 P62244 
TTSAGIMDHEEAR 0.9997 1504.6364 P62244 
TTSAGIMDHEEAR 0.9975 1504.629 Q9LX88 

TTSHELTIPNDLIGCIIGR 0.9981 2197.0949 Q15366 
TTVHAITATQK 0.9965 1285.6779 P04406 
TTVHAITATQK 0.9963 1285.6779 P04406 
TTVHAITATQK 0.8932 1285.6779 P04406 

TVEGPPPKDTGIAR 0.9959 1552.7998 P14678 
TVEGPPPKDTGIAR 0.8886 1552.7998 P14678 

TVFTPLEYGACGLSEEK 0.9876 2015.9298 Q16881 
TVLSGGTTMYPGIADR 0.9868 1741.8093 P60709 
TVLSGGTTMYPGIADR 0.9975 1725.8067 P53478 
TVLSGGTTMYPGIADR 0.9984 1725.8067 P53478 
TVLSGGTTMYPGIADR 0.9917 1725.8067 P53478 
TVPIYEGYALPHAILR 0.9212 1899.9995 P60709 
TVPIYEGYALPHAILR 0.9998 1899.9995 P60709 
TVPIYEGYALPHAILR 0.9969 1899.9995 P60709 
TVPIYEGYALPHAILR 0.9976 1899.9917 P53478 

TYGWTANMER 0.8779 1315.5403 Q58FG1 
VADLAESIMK 0.9952 1191.5957 P00338 

VADLQLIDFEGKK 0.9945 1618.8719 Q9Y376 
VAEITNACFEPANQMVK 0.9237 2036.9448 Q71U36 
VAEITNACFEPANQMVK 0.8759 2036.9448 Q71U36 

VAGLVAHSDLDER 0.9344 1468.7058 O60506 
VAGLVAHSDLDER 0.9984 1468.6984 O60506 

VAIVDPHIKVD 0.9817 1320.7190 Q14697 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

VALAGLLAAQK 0.9524 1169.692 P23368 
VALDFEQEMATAASSSSLEK 0.9998 2229.0259 P60709 

VAPPGARQGQQQAGGDGKTE 0.9937 2066.9882 Q00839-2 
VASNLNLKPGECLR 0.9986 1685.8671 P09382 
VASNLNLKPGECLR 0.7846 1685.8597 P09382 

VEQNFPAIAIHR 0.9225 1481.7527 O00148 
VFFDIAVDGEPLGR 0.9987 1621.7814 Q6DTV9 

VFGPDKK 0.9165 933.5072 P30041 
VGLFEDTNLCAIHAK 1.0000 1802.8773 P68431 

VGMGQKDSYVGDEAQSKR 0.9982 2097.9902 P62736 
VHAITATQK 0.9936 1083.5825 P04406 
VHAITATQK 0.9510 1083.5825 P04406 
VHAITATQK 0.9848 1083.5751 P10096 
VHAITATQK 0.9376 1083.5751 P10096 
VHAITATQK 0.9255 1083.5751 P10096 
VHAITATQK 0.9617 1083.5751 P10096 

VHGALAPLAIPSAAAAAAAAGR 0.9954 2014.0860 P26599 
VHGALAPLAIPSAAAAAAAAGR 0.9237 2014.0860 P26599 
VHGALAPLAIPSAAAAAAAAGR 0.9967 2014.086 P26599 

VHLDLLSLR 0.9999 1152.6403 P34810 
VHLDLLSLR 0.9197 1152.6403 P34810 

VIANPVNSTIPITAEVFKK 1.0000 2184.2306 P40926 
VIPAAHPVGT 0.9226 1048.538 B1KHV0 

VLAAELLR 0.9773 971.5552 P78371 
VLAKPTPK 0.8963 996.6120 Q92954 

VLIPTEGGDFNEFPVPEQFK 0.9999 2378.1583 Q01518 
VLLGPPGAGKGTQAPRLAE 0.9995 1947.0690 P54819 

VLPHILDTGAAGR 0.8570 1406.7418 Q15084 
VLQPGTALFS 0.7304 1119.5638 P47224 

VMGLLSNNNQALR 0.9868 1516.7568 Q13283 
VMVGMGQK 0.9478 964.4622 P62736 

VMVGMGQKDSYVGDEAQSK 0.9989 2171.9980 P62736 
VMVGMGQKDSYVGDEAQSKR 0.9801 2328.0991 P62736 
VNHPQVSALLGEEDEEALHYLTR 0.9998 2707.2990 Q01105 

VNITPAEVGVLVGK 0.9984 1510.8507 P07737 
VNITPAEVGVLVGKDR 0.9146 1781.9788 P07737 

VPAPLPKKISSE 0.9097 1408.8078 P14317 
VPGKPMCVESFSDYPPLGR 0.9989 2251.0554 P68104 

VPITFQVK 0.9373 1046.5913 P05107 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

VQAFDSLLAGPVAEYLK 0.9991 1936.0017 Q01518 
VQAFDSLLAGPVAEYLK 0.9969 1936.0017 Q01518 

VQAFQFTDKHGE 0.9683 1521.7001 Q06830 
VQEISHLIEPLANAAR 0.9999 1847.9641 Q9Y490 

VQGLGENVTIESVADYFK 0.9977 2084.0214 P35637 
VQSGMVVGLGTGSTTAFV 0.9204 1797.8647 Q8DJF2 

VQSGSHLAAR 0.9763 1112.5475 P04040 
VQSGSHLAAR 0.9057 1112.5475 P04040 
VQSGSHLAAR 0.9966 1112.5475 P04040 
VSAVDKSTGKE 0.9698 1263.6459 P11142 

VSLGGFEITPPVVLR 0.9934 1670.9144 P06748 
VSLGGFEITPPVVLR 0.9968 1670.9067 Q3T160 

VSLINLAMK 0.9917 1103.6161 Q96QK1 
VSNLVIEDTELK 0.9987 1474.7667 Q01518 

VSSFYHAFSGAQK 0.8008 1543.7208 P12814 
VSVLQLFCSSPK 0.9260 1479.7544 Q9Y678 

VTASQCQQPAENK 1.0000 1575.7099 Q01518 
VTASQCQQPAENK 0.9983 1575.7025 Q01518 
VTASQCQQPAENK 0.9999 1575.7025 Q01518 
VTASQCQQPAENK 0.9991 1575.7025 Q01518 
VTASQCQQPAENK 0.9202 1575.7025 Q01518 
VTASQCQQPAENK 0.9999 1575.7025 Q01518 
VTASQCQQPAENK 0.9999 1575.7025 Q01518 

VTKYTSAK 0.9859 1040.5654 P06899 
VTKYTSSK 0.8905 1056.5604 Q96A08 

VVAVLPHILDTGAAGR 0.9999 1675.9158 Q15084 
VVAVLPHILDTGAAGR 0.9998 1675.9158 Q15084 

VVSAAHCYK 0.9567 1149.5389 P35030 
VVSAAHCYK 0.9961 1149.5389 P35030 

VWNTHADFADECPKPELLAIR 0.7899 2597.2485 P43487 
WDMLDLAK 0.9126 1106.5218 P49321 

WIGENVSGLQR 0.9761 1345.6527 Q14019 
WQGLIVPDNPPYDK 0.9828 1756.8573 P68036 
WVAMAPKPGPYVK 0.9953 1586.8431 Q01518 
WVAMAPKPGPYVK 0.9826 1586.8431 Q01518 

WVVSAAHCYK 0.8515 1335.6182 P35030 
WVVSAAHCYK 0.8042 1335.6182 P35030 
YADPVSAQHAK 0.9995 1301.6152 P26599 
YAGAAVDELGK 0.7825 1208.5825 P30086 
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Supplementary Table 1 (cont.). APRc cleavage sites identified from a tryptic peptide library using Mascot and 

X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

YAHELPK 0.9609 972.4817 P46777 
YALPHAILR 0.9887 1140.6192 Q562R1 

YEGYALPHAILR 0.9998 1489.7466 Q562R1 
YLVPILTQTLTK 0.8965 1504.8653 Q14974 

YMVGPIEEAVAK 0.9512 1421.7013 P06576 
YSCVGVFQHGK 0.7349 1396.6346 P34931 

YTLIVRPDNTYEVK 0.9734 1825.9362 P27797 
YVELQKEEAQK 0.9996 1507.7670 Q00839 
YVELQKEEAQK 0.9305 1507.7670 Q00839 
YVELQKEEAQK 0.9916 1507.7597 Q00839 
YVELQKEEAQK 0.9663 1507.7597 Q00839 
YVLLLMGAFS 0.9045 1216.5876 P37296 

YVRPLPPAAIESPAVAAPAYSR 0.9838 2383.2436 P04792 
YVRPLPPAAIESPAVAAPAYSR 0.9985 2383.2436 P04792 

YYLLSGAGEHLK 0.8881 1465.7353 P35579 
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Supplementary Table 2. APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Peptides identified by LC-MS/MS spectrum-to-sequence assignment with Mascot and X!Tandem are listed with 

PeptideProphet probability score, calculated neutral mass and one exemplary accession number of a matching Uniprot 

protein entry is listed. This data was further processed and rendered non-redundant for generation of cleavage 

specificity profiles. 

 

AAAALAAAAVK 0.9913 1042.5923 Q8TAQ2 
AAAGYDVEKNNSR 0.9739 1509.6960 Q02539 

AAAIAYGLDK 0.8871 1107.5712 P11021 
AAAIAYGLDKK 0.9997 1263.6975 P54652 
AAEKLQVVGR 0.9851 1185.6618 O43175 

AAGAGATHSPPTDLVWK 0.9989 1793.8849 P02545 
AAGGGREHALR 0.8320 1181.5802 Q6ZRF8-3 
AALKNPPINTK 0.8569 1309.7506 O15511 
AALLALQHKAE 0.8604 1279.7036 Q15154 

AASLLGKK 0.8823 930.5650 P49321 
AATLEVERPLPMEVEK 0.9959 1926.9873 P51858 

ADIETIGEILKK 0.8278 1472.8238 P61978 
AEAMNYEGSPIKVTLATLK 0.9993 2179.1347 P06748 

AEQLKNQIR 0.8820 1214.6519 P62873 
AEQLKNQIR 0.8642 1214.6519 P62873 

AFEISKK 0.8685 965.5334 P31946 
AFEISKK 0.9468 965.5334 P31946 

AFQLFDRTGDGK 0.8260 1469.7051 P60660 
AFWIDKIK 0.9037 1163.6491 Q9UKV3 

AGALVLADR 0.8253 972.5141 P49736 

AGPTALLAHEIGFGSK 0.8372 1683.8732 Q99497 
AGPVAEYLK 0.9993 1062.5498 Q01518 

AHLDATTVLSR 0.9977 1270.6418 P06576 
AIAEAWAR 0.9708 974.4722 Q71U36 

AKDAFLGSFLYE 0.9669 1475.7007 P02769 
AKPFVPNVHAAE 0.9961 1394.7095 Q8IYD1 

AKQIVWNGPVGVFE 0.9815 1658.8569 P00558 
ALALFGGEPK 0.8784 1117.5920 P49736 
ALCSLHSIGK 0.9605 1200.6073 P14174 

ALFAQLNQGE 0.9944 1177.5516 P40123 
ALFAQLNQGE 0.9764 1177.5516 P40123 

ALGWVAMAPKPGPYVK 0.9990 1827.9858 Q01518 
ALGWVAMAPKPGPYVK 0.9940 1827.9858 Q01518 

 

 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

ALKLESCGVTSDNCR 0.9992 1824.8247 P13489 
ALLSLAKGDRSE 0.9374 1374.7255 P04083 

ALNGKEVAAQVK 0.8218 1370.7670 Q99497 
ALPHAILR 0.9219 977.5558 Q562R1 

ALPHAILRLD 0.9854 1205.6669 Q562R1 
ALPHAILRLD 0.9975 1205.6669 Q562R1 
ALPHAILRLD 0.9941 1205.6669 Q562R1 
ALPHAILRLD 0.9268 1205.6669 Q562R1 
ALQDMLLLK 0.9084 1175.6372 Q6P2M8-5 

ALSRQLSSGVSE 0.9417 1320.6348 P04792 
AQINQGESITHALK 0.9988 1624.8321 Q01518 

ASGKQEPEAK 0.8777 1187.5934 Q92797 
ASLAAAKK 0.8668 902.5337 P20700 
ASPAPVK 0.9154 784.4157 Q2N9J7 

ASQCQQPAENK 0.9975 1375.5938 Q01518 
ASSSSLEKSYELPDGQVITIGNER 0.9989 2695.3089 P62736 

ATIIDILTKR 0.9912 1258.7397 P04083 
AVALAGLLAAQK 0.8766 1240.7291 P23368 

AVLLGPPGAGKGTQAPRLAE 0.9979 2018.0987 P54819 
AVLPPLPKRPALE 0.8666 1515.8925 Q9NR56 
AVLVALKRAQSE 0.8888 1399.7935 P25786 

AVRLLLPGE 0.9168 1054.5923 Q96A08 
AVSSPPPADLCHALR 0.8942 1677.8045 P24534 

AVTYTEHAK 0.9770 1134.5458 P62805 
AVVTVPAYFND 0.9690 1282.5982 P11021 

C[143 0.9742 2078.6941 A0JP86 
CELINALYPEGQAPVKK 0.9871 2073.0717 P37802 

CIAIKESAK 0.9978 1162.6168 P61158 
CLAPLAKVIHD 0.9051 1351.7070 P04406 

DANLQTLTEYLKK 0.9511 1679.8882 P55060 
DANTIVCNSKDGGAWGTEQR 0.9984 2294.0134 P09382 

DCHTAHIACK 0.9807 1327.5550 P68104 
DEELNKLLGK 0.9736 1301.6979 P20671 

DEGGFAPNILENKEGLELLK 0.9965 2329.1953 P06733 
DEITYVELQKEEAQK 0.9991 1965.9683 Q00839 

DESGPSIVHR 0.9749 1183.5370 Q9BYX7 
DESTGSIAKR 0.9683 1178.5679 P04075 
DFLLKPELLR 0.9396 1358.7710 O00148 

DGCHAYLSKNSLDCE 0.9439 1883.7566 Q01518 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

DIAVDGEPLGR 0.9202 1228.5836 P62937 
DISPQAPTHFLVIPK 0.9703 1777.9515 P49773 
DKANAQAAALYK 0.9967 1406.7306 P40121 

DKANAQAAALYKVSD 0.9983 1707.858 P40121 
DKGLQTSQDAR 0.9522 1333.6374 P27797 

DKVSHVSTGGGASLE 0.9249 1558.7297 P00558 
DKYLIPNATQPESK 0.8801 1746.8940 P31946 

DLFRGTLDPVE 0.9731 1348.6411 P11142 
DNSSRPSQVVAETR 0.8458 1632.7604 P13639 
DQAQKAEGAGDAK 0.8576 1431.6742 P05204 

DQATSLRILNNGHAFNVE 0.8455 2085.998 P00918 
DQLHAAVGASR 0.9841 1211.5795 P13804 
DQSYKPDENEVR 0.9941 1594.7011 P31939 

DRTAGIGGMNHFMLPD 0.9590 1834.7807 Q13SY1 
DRTVIDYNGER 0.9855 1424.6432 P07237 

DSLLAGPVAEYLK 0.9404 1490.7769 Q01518 
DSLYVEKIDVGEAEPR 0.9038 1934.9373 P54577 

DSYVGDEAQSKR 0.9958 1469.6535 P62736 
DTFWKEFGTNIK 0.8305 1628.7987 Q58FF3 

DTKPGTTGSGAGSGGPGGLTSAAPAGGDKK 0.9918 2728.3417 P67809 
DTYNCDLHFK 0.9169 1427.5928 Q9BUJ2 

DVVVLPGGNLGAQNLSESAAVK 0.9570 2253.1753 Q99497 
DVVYALKR 0.9217 1078.5923 P62805 

E[111 0.8931 1406.6544 Q05778 
EAPLNPKANRE 0.9360 1353.6717 P18600 
EDTNLCAIHAK 0.9762 1386.6350 P68431 
EYIPHADLRLI 0.8602 1426.7283 P66648 
FAEALAAHK 0.9996 1072.5453 P07237 

FALLEIPK 0.8667 1045.5960 O94915 
FAQINQGESITHALK 0.9998 1771.9005 Q01518 
FAQINQGESITHALK 0.9972 1771.9005 Q01518 

FASKPAAR 0.9668 962.5086 P23246 
FCSEYRPK 0.9233 1201.5338 P09429 
FFVQTCR 0.9814 1044.4599 B2RPK0 

FGPLKAFNLVKD 0.9217 1491.8238 P26368 
FHFEPNEYFTNEVLTK 0.9286 2129.9846 P55209 
FIAIKPDGVQRGLVGE 0.9065 1813.9839 P15531 

FIFIDSDHTDNQR 0.9454 1694.7437 P07237 
FILFKDAASVEK 0.9954 1510.8184 Q99729 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

FINNPLAQAD 0.9741 1189.5516 P35579 
FKELVYPPDYNPEGK 0.9917 1938.9516 P12956 

FLQTPKIVADKD 0.8935 1517.8242 P07195 
FLQTPKIVADKD 0.8676 1517.8242 P07195 
FMILPVGAANFR 0.9942 1422.7230 P06733 
FMVVNDAGRPK 0.9976 1348.6710 P11142 
FMVVNDAGRPK 0.9928 1348.6710 P11142 

FNVINGGSHAGNKLAMQE 0.9883 2001.9479 P06733 
FNVINGGSHAGNKLAMQE 0.8442 2001.9479 P06733 

FSAPKPQTSPSPK 0.9948 1514.7881 Q01518 
FSQIVRVLTEDE 0.9906 1522.7337 P14324 

FSTPLLLGKK 0.8938 1246.7437 P40926 
FTTNLTEEEEKSK 0.9321 1698.8100 P35579 
FVALSTNTTKVKE 0.9865 1580.8562 P06744 

FVTFCTK 0.9503 1017.4742 O60506 
FVTFDDHDPVDK 0.9668 1549.6838 P22626 
FYAPWCGHCQR 0.8242 1568.6190 Q15084 

FYIITNKLKE 0.9466 1411.7863 Q9NTJ3 
FYVNGLTLGGQK 0.9986 1411.7248 P07737 
FYVNGLTLGGQK 0.9883 1411.7248 P07737 

FYVNGLTLGGQKCSVIRD 0.998 2142.068 P07737 
GAFQHVGK 0.9111 958.4773 P26641 

GAGLMGAGIAQVSVDKGLK 0.9604 1915.0349 P40939 
GAPFLKEGASEEEIR 0.9123 1747.8529 P23141 
GCHAYLSKNSLDCE 0.9738 1768.7297 Q01518 

GFTLPHAILRLD 0.9621 1439.7597 P0C542 
GFTLPHAILRLD 0.8971 1439.7597 P0C542 

GGSHAGNKLAMQE 0.9843 1430.6360 P06733 
GGSHAGNKLAMQE 0.9482 1414.6411 P06733 

GGTTMYPGIADRMQKE 0.9948 1869.8501 P62736 
GGTTMYPGIADRMQKE 0.9240 1869.8501 P62736 
GGTTMYPGIADRMQKE 0.9773 1869.8427 P18600 

GHSLGTGVATNLVR 0.8227 1468.7535 Q8N2K0 
GHVLAAGCGQNPVR 0.9947 1522.7211 Q9BWD1 

GIHETTFNSIMK 0.9341 1492.7132 Q562R1 
GILTLKYPIE 0.9909 1261.7070 P62736 

GIMNSFVNDIFERIAGE 0.9345 1998.9187 P33778 
GINLVQAKKLVE 0.9807 1454.8609 P52815 

GKEILVGDVGQTVDDPYATFVK 0.9997 2494.2744 P23528 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

GKVLPGVDALSNI 0.9048 1397.7597 P00558 
GKVLPGVDALSNI 0.9670 1397.7597 P00558 

GLAWSKTGPVAKE 0.9980 1486.7932 Q01518 
GLTLGGQKCSVIRD 0.9841 1618.8249 P07737 
GLTSVINQKLKDDE 0.9579 1702.8817 P07195 
GLTSVINQKLKDDE 0.9769 1702.8817 P07195 
GLTSVINQKLKDDE 0.9201 1702.8817 P07195 
GLTSVINQKLKDDE 0.9671 1702.8817 P07195 

GPIKTTE 0.9347 860.4318 P24487 
GQKDSYVGDEAQSK 0.9999 1654.7587 P62736 
GQLLTSSNYDDDEKK 0.9563 1855.8588 P11388 

GQSGAGNNWAK 0.9782 1204.5373 Q13885 
GTLLKPNMVTPGHACTQK 0.9931 2096.0659 P04075 
GTLLKPNMVTPGHACTQK 0.9959 2096.0659 P04075 

GVDLLADAVAVTMGPK 0.9083 1671.8654 P10809 
GVGILALIDALRDNE 0.9607 1655.8557 Q9NYL9 

GVLPNIQAVLLPK 0.9213 1476.8816 Q96QV6 
GVLPNIQAVLLPKKTE 0.9988 1863.0982 Q96QV6 

GVMVGMGQKDSYVGDE 0.9937 1786.758 P18600 
GVPLSDPVPDPE 0.8852 1308.5912 A1T700 

GVPMPDKYSLEPVAVELK 0.8538 2115.1074 P00558 
GVSLAVCK 0.9001 948.4851 P06733 

GVSLKTLHPD 0.8475 1181.6193 P00338 
GYALPHAILR 0.8288 1197.6406 Q562R1 
GYALPHAILR 0.9661 1197.6406 Q562R1 
GYALPHAILR 0.9923 1197.6406 Q562R1 
GYALPHAILR 0.9258 1197.6406 Q562R1 
GYALPHAILR 0.9699 1197.6406 Q562R1 
GYALPHAILR 0.9990 1197.6406 Q562R1 

GYNYTGMGNSTNKK 0.9927 1677.7569 Q08211 
HEKYDNSLK 0.8692 1276.6200 P04406 

HGIQPDGQMPSDK 0.9991 1524.6779 Q71U36 
HLATGDMLR 0.9932 1100.5185 P54819 

HLQLAIRNDEE 0.9959 1424.6796 Q96QV6 
HLQLAIRNDEE 0.9172 1424.6796 Q96QV6 
HLQLAVRNDEE 0.9905 1410.6640 Q8IUE6 
HSAVSLDPIKSFE 0.9687 1544.7623 Q9Y3F4 

HVVVPVNPK 0.8494 1103.6240 Q92499 
IAALVIDNGSGMCK 0.9985 1579.7486 P63261 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

IAALVIDNGSGMCK 0.9918 1579.7486 P63261 
IAALVIDNGSGMCK 0.9999 1563.7537 P63261 
IAALVIDNGSGMCK 0.9997 1563.7537 P63261 
IAALVIDNGSGMCK 0.9920 1563.7537 P63261 
IAALVIDNGSGMCK 0.9920 1563.7537 P63261 
IAALVIDNGSGMCK 0.9998 1563.7537 P63261 
IAALVIDNGSGMCK 0.9993 1563.7537 P63261 

IAAQYSGAQVR 0.9996 1250.6156 P26641 
IAEAYLGK 0.9981 979.5126 P11142 

IAMATVTALR 0.9983 1133.6015 P04075 
IANLFNRYPALHKPE 0.9901 1897.9951 P13796 
IAPALVSKKLNVTE 0.9967 1625.9504 P06733 
IAPALVSKKLNVTE 0.9985 1625.9504 P06733 
IAPALVSKKLNVTE 0.9982 1625.9504 P06733 
IAPALVSKKLNVTE 0.9988 1625.9504 P06733 
IAPALVSKKLNVTE 0.9988 1625.9504 P06733 
IAPALVSKKLNVTE 0.9926 1625.9504 P06733 
IAPALVSKKLNVTE 0.9962 1625.9504 P06733 
IAPALVSKKLNVTE 0.9938 1625.9504 P06733 
IAPALVSKKLNVTE 0.9919 1625.9504 P06733 
IAPALVSKKLNVTE 0.9985 1625.9504 P06733 
IAPALVSKKLNVTE 0.9715 1625.9504 P06733 
IAPALVSKKLNVTE 0.9799 1625.9504 P06733 
IAPALVSKKLNVTE 0.9858 1625.9504 P06733 
IAPALVSKKLNVTE 0.9326 1625.9504 P06733 

IAQGGVLPNIQAVLLPKKTE 0.9916 2232.2994 Q96QV6 
IAQVDPKK 0.9416 1041.5971 Q9Y2B0 

IASGGVLPNIHPELLAK 0.9903 1844.0308 O75367 
IFIDSDHTDNQR 0.9933 1547.6753 P07237 

IFIDSDHTDNQRILE 0.9106 1902.886 P07237 
IFMAIAK 0.9043 908.4942 P20339 

IGAIAIGDLVK 0.9975 1184.6917 P78371 
IGGIGTVPVGRVE 0.9987 1340.7201 P68104 

IGLAKDDQLK 0.8252 1243.6924 P41567 
IGNLNTLVVKKSDVE 0.9871 1771.9832 O60812 

IITTEKTSK 0.9421 1163.6550 P40939 
ILFLDPSGKVHPE 0.9712 1566.8194 O95881 

ILLVQPTKRPE 0.9625 1408.8190 P84090 
ILTAFQK 0.8309 935.5228 P30040 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

ILTHGIFSGPAISR 0.9912 1555.8259 P60891 
ILTLKYPIE 0.9596 1204.6855 P62736 
ILTLKYPIE 0.9153 1204.6855 P62736 
ILTLKYPIE 0.9856 1204.6855 P62736 
ILTLKYPIE 0.9931 1204.6855 P62736 
ILTLKYPIE 0.9698 1204.6855 P62736 
ILTLKYPIE 0.9721 1204.6855 P62736 
ILTLKYPIE 0.9762 1204.6855 P62736 

IMFGPDKCGE 0.9932 1268.5318 P27824 
INAISKK 0.8596 916.5494 P61158 

INPDHPIVETLR 0.9799 1490.7630 P08238 
IQAVLLPKKTE 0.9961 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9959 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9987 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9980 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9991 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9399 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9575 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9968 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9955 1382.8285 Q96QV6 
IQAVLLPKKTE 0.8761 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9907 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9986 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9961 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9952 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9925 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9940 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9908 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9273 1382.8285 Q96QV6 
IQAVLLPKKTE 0.9236 1382.8285 Q96QV6 
IQGITKPAIR 0.9929 1211.7138 P62805 

IQGLTTAHEQFK 0.9788 1487.7521 P12814 
IQNAPEQACHLAK 0.9862 1594.7674 P61981 

IRNDEELNK 0.9681 1245.6101 Q96QV6 
ISADIETIGEILKK 0.8922 1672.9399 P61978 

ISFGTTKDK 0.8673 1139.5975 P48643 
ISHLIEPLANAAR 0.9990 1491.7946 Q9Y490 

ISLPIHPMITNVAK 0.9714 1648.9123 Q14204 
ISPYFINTSKGQKCE 0.9990 1914.9298 P10809 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

ISPYFINTSKGQKCE 0.9980 1914.9298 P10809 
ITYTDEEPVKK 0.9341 1465.7453 O14979 

ITYTDEEPVKKLLE 0.9168 1820.9560 O14979 
IVKLPLLPHE 0.9352 1273.7546 O43681 

IVTNWDDME 0.8470 1225.4709 P60709 
IYGMEGIPEKDMDER 0.9813 1897.8338 O43670 
IYTNYEAGKDDYVK 0.9566 1821.8573 P09211 
KACANPAAGSVILLE 0.9874 1628.8267 P00558 
KACANPAAGSVILLE 0.9028 1628.8267 P00558 

KACQSIYPLHD 0.8469 1446.664 Q801S3 
KACSLAKTAFDE 0.9332 1483.7057 P68250 
KACSLAKTAFDE 0.9819 1483.7057 P68250 

KADGIVSKNF 0.8425 1221.6506 P63220 
KAGAAPYVQAFD 0.8415 1352.6437 Q01518 
KAPLDIPVPDPVKE 0.9922 1660.9188 Q06323 
KAPNLKILNLSGNE 0.9434 1653.9202 Q9UBU9 

KDDAMLLK 0.9249 1076.5688 P10809 
KDFKAAID 0.9290 1050.5498 Q155Q3 

KDGLILTSRGPGTSFE 0.9306 1792.9037 Q5E946 
KDSPSVWAAVPGK 0.9997 1484.7776 P07737 

KDSTLIMQLLR 0.9919 1432.7860 P31946 
KFLIPNASQAE 0.9894 1332.6752 P63103 
KFLIPNASQAE 0.9947 1332.6752 P63103 
KGTVQQADE 0.8771 1090.5043 P32969 

KHLIPAANTGE 0.9823 1265.6442 P62261 
KHTGPNSPDTAND 0.9990 1468.6331 P31943 
KHTGPNSPDTAND 0.9993 1468.6331 P31943 

KKISSIQSIVPALE 0.9132 1655.9537 P10809 
KLAPVPFFSLLQYE 0.8471 1766.9317 P07741 
KLCYVALDFEQE 0.9410 1629.7427 P18600 

KLFIGGLSFE 0.9194 1225.6421 Q32P51 
KLIAPVAEEE 0.8401 1213.6267 P07195 

KLRIYFLE 0.8590 1196.6705 Q96SN8 
KLSDLLAPISE 0.9043 1300.6957 Q01518 

KMINLSVPDTIDE 0.9941 1589.7687 P13796 
KMINLSVPDTIDE 0.9604 1589.7687 P13796 

KMSVQPTVSLGGFE 0.9106 1594.7813 P06748 
KMSVQPTVSLGGFE 0.9985 1594.7737 Q3T160 

KMVADGVEP 0.9440 1076.4886 A0M380 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

KNLSDLIDLVPSLCE 0.9525 1830.9111 P79136 
KNNQITNNQR 0.9963 1344.6646 P00558 
KQDRTLTIVD 0.8987 1303.6884 Q58FG1 

KQGQDNLSSVKE 0.9905 1475.7368 P30040 
KQGQDNLSSVKE 0.9745 1475.7368 P30040 
KSPLLQLPHIEE 0.8584 1518.8194 Q9UGP8 

KTVQLRNGNLQYD 0.9863 1663.8430 P06396 
KVCNPIITK 0.9752 1215.6798 P11142 

KVLSLLALVKPE 0.9380 1452.8997 Q9UL46 
KYDPSLKPLSVSYD 0.9152 1754.8879 P00918 

KYTLPPGVDPTQVSSSLSPE 0.9964 2217.0953 P04792 
LAGHQTSAESWGTGR 0.9727 1644.7393 P36578 

LAGPTNAIFK 0.8435 1146.6185 Q15366 
LAGPVAEYLK 0.9988 1175.6338 Q01518 
LAGPVAEYLK 0.9995 1175.6338 Q01518 

LAIIDPGDSDIIR 0.8760 1484.7623 P62888 
LAIVEALNGKEVAAQVK 0.9999 1896.0832 Q99497 

LALIDKQE 0.9176 1044.5603 Q9UFN0 
LALLDGSNVVFK 0.9958 1390.7608 O15212 

LAPLAKVIHD 0.9088 1191.6764 P04406 
LAPSTMKIKIIAPPE 0.9895 1752.0007 P62736 

LAQVLAQERPK 0.9990 1367.7673 P49327 
LATATGAK 0.8390 847.4552 Q9BZH6 

LAVDAVIAELK 0.9986 1256.7128 P10809 
LAVDAVIAELKK 0.9995 1412.8391 P10809 

LAWSKTGPVAKE 0.9912 1429.7717 Q01518 
LAWSKTGPVAKE 0.9891 1429.7717 Q01518 

LCAIHAK 0.9092 927.4748 P68431 
LFADKVPK 0.8575 1060.6069 P62937 

LFAEFGTLKK 0.9604 1296.7230 Q86V81 
LFAEFGTLKK 0.8950 1296.7230 Q86V81 
LFHQQGTPR 0.9887 1170.5682 P20700 

LFLPEEYPMAAPK 0.9695 1620.8010 P61088 
LGAYCGYSAVR 0.9461 1303.5767 P21964 

LGGPEAAKSDETAAK 0.9994 1587.7892 P04792 
LGIILAHTNLR 0.9995 1307.7462 P31939 

LGIPFAKPPLGPLR 0.9231 1590.9398 P23141 
LGPKPEVAQQTR 0.8426 1438.7680 P53621 

LGPLVSKVKE 0.8785 1212.7230 Q86VP6 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

LIINSLYKNKE 0.9706 1477.8292 P14625 
LIINSLYKNKE 0.9920 1477.8292 P14625 
LIINSLYKNKE 0.9772 1477.8292 P14625 
LIINTFYSNKE 0.9733 1456.735 Q58FF8 
LIQTADQLR 0.9734 1144.5988 P18031 

LISVYSEKGESSGK 0.9402 1626.8253 P36578 
LIVLEGVDR 0.9786 1100.5978 P23919 

LIVPDNPPYDKGAFRIE 0.9091 2059.0527 P68036 
LIYTNYEAGKDDYVK 0.9994 1934.9414 P09211 
LKAPLDIPVPDPVKE 0.9976 1774.0029 Q06323 

LKEDQTEYLEER 0.9823 1667.7790 Q58FF7 
LKKAGGANYDAQTE 0.9917 1608.7817 Q2HJ57 
LKKAGGANYDAQTE 0.9743 1608.7817 Q2HJ57 

LKQEVISTSSK 0.8889 1362.7507 P63244 
LLAAEFLK 0.9989 1019.5803 Q99832 

LLAKNLPYKVTQDE 0.8899 1774.9617 P19338 
LLALVKPE 0.8901 997.5960 Q9UL46 

LLAYTLGVK 0.9190 1092.6331 P68104 
LLDKYLIPNATQPESK 0.9954 1973.0621 P31946 

LLIGPRGNTLKNIE 0.8990 1652.9362 Q15637 
LLKQGQDNLSSVKE 0.9443 1701.9049 P30040 
LLKQGQDNLSSVKE 0.8636 1701.9049 P30040 
LLPAIVHINHQPFLE 0.9191 1827.9784 P17844 

LLTSFGPLK 0.9887 1090.6175 P26368 
LLVVTDPRADHQPLTE 0.9264 1890.9588 P08865 

LMTPAACPEPPPEAPTEDDHDEL 0.9787 2619.0893 P14314 
LNILTAFQKKGAE 0.9967 1575.8773 P30040 

LNMLSLK 0.9704 933.5105 Q9Y617 
LNVVDIAGLVK 0.9988 1255.7288 Q9NTK5 

LQANCYEEVKDR 0.9711 1639.7412 P23528 
LQGIPVLVLGNKR 0.9884 1521.9143 Q96BM9 
LQKYPPPLIPPRGE 0.8925 1719.9460 P25098 

LQLAIRNDEE 0.9625 1287.6207 Q96QV6 
LQLFRGDTVLLK 0.9998 1517.8718 P55072 

LQTVAKNKDQGTYE 0.9453 1737.8686 P60660 
LQTVAKNKDQGTYE 0.9641 1737.8686 P60660 

LSNLKAPLDIPVPDPVKE 0.9843 2088.1619 Q06323 
LSQLQKQLAAKE 0.8444 1499.8459 P02545 
LVEAIVLPMNHK 0.9434 1478.8067 P17980 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

LVFLPFADDKR 0.9643 1435.7612 P12956 
LVTASQCQQPAENK 0.9662 1688.7940 Q01518 

LVVLLQANRDPDAGIDE 0.9957 1924.9567 P08758 
LVVLLQANRDPDAGIDE 0.9907 1924.9567 P08758 
LVVLLQANRDPDAGIDE 0.9874 1924.9567 P08758 
LVVLLQANRDPDAGIDE 0.9950 1924.9568 P08758 
LVWVPSDKSGFEPASLKE 0.9955 2132.0942 P35579 

LVYQEPIPTAQLVQR 0.9957 1841.9788 P25787 
LYCLEHGIQPDGQMPSDK 0.9412 2202.9826 Q71U36 

LYTLIVRPDNTYE 0.9211 1683.8256 P27797 
LYYTGEKGQNQDYR 0.9834 1849.8383 P19338 

MANAGPNTNGSQFFICTAK 0.9489 2143.9567 A2BFH1 
MAPKPGPYVKE 0.9953 1359.6937 Q01518 
MAPKPGPYVKE 0.9954 1359.6937 Q01518 
MATAASSSSLEK 0.9927 1313.5921 P62736 
MATAASSSSLEK 0.9515 1297.5972 P62736 
MATAASSSSLEK 0.9983 1297.5972 P62736 
MATAASSSSLEK 0.9918 1297.5972 P62736 

MGTYATQSALSSSRPTK 0.9952 1900.9101 P53618 
MLMAHAVTQLANR 0.9993 1542.7547 P78371 

MQIQHPTASLIAK 0.9044 1552.8184 Q92526 
MQKLDAQVK 0.9319 1203.6434 P04843 

MRPGVACSVSQAQKDE 0.9679 1877.8512 P32969 
MRPGVACSVSQAQKDE 0.9683 1877.8512 P32969 
MSHLGRPDGVPMPD 0.9778 1595.6973 P00558 

MVPGKPMCVESFSDYPPLGR 0.9712 2382.0959 P68104 
NDGAAALVLMTADAAKR 0.9671 1802.9097 P24752 

NDGATILSMMDVDHQIAK 0.9993 2073.9611 P48643 
NGFLSPDKLSLLEK 0.9845 1703.9246 P31689 

NHIIDGVK 0.9737 1010.5297 Q9GZT3 
NSFVNDIFER 0.9758 1327.5945 P33778 

NSKDGGAWGTEQRE 0.9945 1649.7182 P09382 
NTAVSQLTKAKE 0.9970 1432.7674 Q9NTJ3 

NTHADFADECPKPE 0.9808 1745.7103 P43487 
NVDLSTVDKDQSIAPK 0.9395 1872.9581 P04844 

NVLRQTGNNE 0.8449 1231.5693 Q9BYX4 
NVPLPNTLPLPKRE 0.9946 1702.9518 Q9Y520 
NVSAVDKSTGKE 0.9855 1377.6888 P11142 
NVSAVDKSTGKE 0.8845 1377.6888 P11142 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

QAALKNPPINTK 0.9139 1437.8092 O15511 
QARPDDLLISTYPK 0.9506 1731.8944 P50225 

QGESITHALK 0.9994 1198.6094 Q01518 
QGGVLPNIQAVLLPK 0.9966 1661.9617 Q96QV6 

QGGVLPNIQAVLLPKKTE 0.9974 2048.1782 Q96QV6 
QGLIVPDNPPYDKGAFRIE 0.9551 2244.1327 P68036 

QHGKVEIIANDQGNR 0.9121 1793.8921 P34931 
QIDNPDYKGTWIHPE 0.9627 1927.8853 P27797 

QYLLTLGFK 0.9079 1197.6546 Q9BXB7 
QYLLTLGFK 0.9159 1197.6546 Q9BXB7 
QYLLTLGFK 0.9251 1197.6546 Q9BXB7 

RAQPVQVAE 0.9954 1084.5413 P06396 
RDQNILLGTTYR 0.9967 1536.7797 P78527 

REVPCPPGTE 0.8986 1228.5295 Q9Y4B4 
RIVAPGKGILAADE 0.8499 1524.8412 P04075 
RIVAPGKGILAADE 0.9391 1524.8412 P04075 

RIVILGPE 0.9135 983.5552 Q5T089 
RKAEPEGLR 0.8924 1170.6257 Q9GZX7 

RLCYVALDFEQE 0.9893 1629.7171 P43239 
RLCYVALDFEQE 0.9859 1629.7171 P43239 
RLCYVALDFEQE 0.9845 1629.7171 P43239 
RLCYVALDFEQE 0.9592 1629.7171 P43239 

RNPLIAGK 0.9790 983.5664 P62316 
RPDNFVFGQSGAGNNWAK 0.9995 2079.9663 Q13885 

RPGLEGYALPR 0.9260 1315.6785 P33992 
RRLPLPKP 0.9056 1091.6716 Q6IE36 

RSYELPDGQVITIGNE 0.9910 1877.8833 Q8BFZ3 
RSYELPDGQVITIGNE 0.9957 1877.8833 Q8BFZ3 
RSYELPDGQVITIGNE 0.9958 1877.8833 Q8BFZ3 
RSYELPDGQVITIGNE 0.9958 1877.8833 Q8BFZ3 

RVHIPNDDAQFD 0.9927 1513.6698 Q16576 
RVHIPNDDAQFD 0.9248 1513.6698 Q16576 
SAALIQQATTVK 0.9840 1345.7354 P32969 
SAGIMDHEEAR 0.9964 1302.5411 P62244 

SAIVILRPTKA 0.9582 1283.7639 Q5JFZ4 
SALFAQLNQGE 0.9963 1264.5836 P40123 

SALILHDDE 0.9627 1099.4934 P05386 
SAPKPQTSPSPK 0.9875 1367.7197 Q01518 

SAQLSQLQKQLAAKE 0.9953 1785.9663 P02545 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SATMPSDVLEVTKK 0.8444 1648.8494 P60842 
SAVPPGADKKAE 0.9062 1312.6701 Q3T0F4 
SCVGVFQHGKVE 0.9471 1461.6823 P34931 
SDNLKFPDLGLKLI 0.9125 1715.9536 Q57690 

SFTLRQQLQTTRQE 0.9895 1822.8997 Q08E38 
SGGGVAMIGVGE 0.8641 1120.4897 Q58039 
SGGTTMYPGIADR 0.9304 1412.6143 P62736 

SGGTTMYPGIADRMQKE 0.9848 1956.8822 P62736 
SGGTTMYPGIADRMQKE 0.9972 1956.8747 P18600 

SGGVTIPP 0.8890 814.3899 Q5JH10 
SGSSHQDLSQR 0.9733 1288.5544 P11908 

SGVTTCLR 0.9232 980.4498 Q13885 
SILGTTLKDE 0.9704 1191.6135 O75083 

SIQALGWVAMAPKPGPYVK 0.9990 2156.1604 Q01518 
SLIALVNDPQPEHPLRADLAEE 0.9280 2514.2502 P68036 

SLIINTFYSNKE 0.9769 1543.7597 Q76LV2 
SLIINTFYSNKE 0.8679 1543.7597 Q76LV2 
SLIINTFYSNKE 0.8433 1543.7597 Q76LV2 

SLLDKFLIK 0.9482 1219.7328 Q04917 
SLLLFEAMRK 0.9485 1322.7168 P47897 

SLPLDTLLVDVEPK 0.9427 1653.8977 P62314 
SNVLIIGELLK 0.8987 1313.7707 Q92526 
SPIMAKPR 0.8343 1014.5432 Q9NP61 

SPLVSRLTLYD 0.9618 1350.6857 Q32LG3 
SPNSKVNTLSKE 0.9226 1446.7466 P40939 
SQCQQPAENK 0.9376 1304.5567 Q01518 

SQLQDTQELLQEENRQK 0.9995 2202.0665 P35579 
SRGFGFVLFKE 0.9973 1401.7117 Q14103 

SSEPACLAEIEEDKAR 0.9841 1919.8683 P78527 
SSFYVNGLTLGGQKCSVIRD 0.9529 2316.1321 P07737 

SSGFSLEDPQTHSNR 0.8535 1748.7502 P08238 
SSMAEVDAAMAARPHSIDGR 0.9767 2158.9636 P22626 

STGALSLKKVPE 0.8539 1372.7714 P09622 
STGLSLEQVKK 0.9371 1332.7401 P16615 

STRIIYGGSVTGATCKE 0.9962 1914.9258 P60174 
STRIIYGGSVTGATCKE 0.9891 1914.9258 P60174 

SVEVDGNSFEASGPSKK 0.9950 1880.8904 Q12906 
SVLISLKQAPLVH 0.9986 1519.8797 P04973 
SVLISLKQAPLVH 0.9814 1519.8797 P04973 
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Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

SVLLPLVAKE 0.8439 1183.6964 P0C024 
SVLVDAFSHVAR 0.9999 1387.6996 Q9NQG5 

SVSLVADENPFAQGALRSE 0.9978 2076.9787 Q3SX14 
SVYIKGFPTDATLDDIKE 0.9937 2155.0837 P05455 

TAEAYLGKK 0.9108 1123.6025 P11021 
TAGIQRIPLPPPPAPE 0.9454 1740.9311 Q07666 

TAHIACK 0.9547 915.4385 P68104 
TALLSSGFSLEDPQTHSNR 0.9996 2147.0031 P08238 

TDINLPYLTMDSSGPK 0.9237 1866.8822 P38646 
TGLAWSKTGPVAKE 0.9948 1587.8409 Q01518 
TGLAWSKTGPVAKE 0.9515 1587.8409 Q01518 

THSLGGGTGSGMGTLLISK 0.9327 1904.9414 Q13885 
THSLGGGTGSGMGTLLISK 0.8932 1888.9465 Q13885 

TILRPLNVEPPLTDLQK 0.9298 2062.1575 Q99459 
TKVVAPTISSPVCQE 0.9985 1730.8661 Q9Y490 

TLHLLPCEVAVDGPAPVGR 0.9979 2088.0574 Q8TDP1 
TLLAKNLPYKVTQDE 0.9956 1876.0094 P19338 

TPAPVEKSPAK 0.9201 1267.6924 P16401 
TPLKPSPLPVIPDTIKE 0.9133 1988.1346 Q7Z6Z7 

TPLLPSTTGLLND 0.9315 1428.7249 O43175 
TPLSKLMKAYCE 0.9343 1583.7839 P61956 

TQDKLYQPEYQEVSTEEQREEISGK 0.9992 3157.4839 Q9Y4L1 
TRKYTLPPGVDPTQVSSSLSPE 0.9049 2474.2441 P04792 

TSIANLPKLNKLKKLE 0.8991 2009.2401 P39687 
TSLYTQDR 0.9701 1070.4781 P50897 

TTAIAEAWAR 0.8972 1176.5675 Q71U36 
TTFNSIMK 0.9936 1056.5062 Q562R1 

TTGLAWSKTGPVAKE 0.8693 1688.8886 Q01518 
TTSAGIMDHEEAR 0.9998 1504.6364 P62244 

TTVHAITATQK 0.9219 1285.6779 P04406 
TVEGPPPKDTGIAR 0.8885 1552.7998 P14678 

VAGLAGKDPVQCSRD 0.9072 1687.8100 Q99497 
VAKLGNREDPLPQDSFE 0.9355 2029.9857 P57737 

VAPISDIIAIK 0.8800 1254.7335 P13804 
VAVLPHILD 0.9575 1063.5814 Q15084 

VENGGSLGSKK 0.8533 1218.6356 P14618 
VEPSDTIENVKAK 0.8627 1572.8147 P62987 

VFFFGTHE 0.9667 1070.4536 Q9XSK7 
VGLLIGPRGNTLKNIE 0.8945 1809.026 Q15637 

 

 

 



 

214 
 

Supplementary Table 2 (cont.). APRc cleavage sites identified from a GluC peptide library using Mascot and X!Tandem. 

Identified Peptides (prime sequence) PeptideProphet 
probability 

Neutral peptide 
mass (Da) 

Exemplary 
protein ID 

VGMGQKDSYVGDEAQSKR 0.9979 2097.9902 P62736 
VHAITATQK 0.9656 1083.5825 P04406 

VHAITATQKTVD 0.9856 1398.7255 P04406 
VIILNHPGQISAGYAPVLD 0.9170 2064.0717 P68103 

VILIDPFHK 0.9930 1196.6706 P61313 
VIVVSVKEAIPGGKVKKG 0.9207 2007.2534 A8GPE0 

VLAAELLR 0.9794 971.5552 P78371 
VLPKLFE 0.8768 960.5432 Q14008 

VLPNIQAVLLPKKTE 0.8400 1806.0767 Q96QV6 
VLPNIQAVLLPKKTE 0.9563 1806.0767 Q96QV6 

VMVGMGQKDSYVGDEAQSK 0.9994 2171.9980 P62736 
VMVGMGQKDSYVGDEAQSKR 0.9808 2328.0991 P62736 

VNITPAEVGVLVGKDR 0.9327 1781.9788 P07737 
VPIILVGNKK 0.8591 1223.7754 P61586 

VQAFQFTDKHGE 0.9664 1521.7001 Q06830 
VQAFQFTDKHGE 0.9093 1521.7001 Q06830 

VQALDDTERGSGGFGSTGKN 0.9997 2110.9668 P33316 
VQSGSHLAAR 0.9976 1112.5475 P04040 

VQSGSHLAARE 0.9554 1241.5901 P04040 
VSTYIKK 0.9312 981.5647 P68104 

VTIVNILTNR 0.9849 1229.6880 P07355 
VVAVHPGGDTVAIGGVDGNVR 0.9378 2076.0501 O75083 

VVAVLPHILDTGAAGR 0.9999 1675.9158 Q15084 
WIVLKEPISVSSE 0.8925 1601.8453 P00918 

WVAMAPKPGPYVK 0.9879 1586.8431 Q01518 
YGKIDTIEIITDR 0.9996 1651.8569 P22626 

YHQVIQQMEQK 0.9185 1546.7350 P80303 
YQEVSTEEQREEISGK 0.9983 2026.9231 Q9Y4L1 

YSCVGVFQHGKVE 0.8550 1624.7456 P34931 
YSCVGVFQHGKVE 0.9617 1624.7456 P34931 

YVELQKEEAQK 0.9304 1507.7670 Q00839 
YVTIIDAPGHRD 0.8654 1443.6895 P68104 
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