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Increasing knowledge exists about the mechanisms involved in the pathogenesis of B-

cell chronic lymphoproliferative disorders (B-CLPD). Generally, tumor cell survival and/or 

proliferation depend both on the genetic abnormalities of neoplastic cells and the tumor 

microenvironment. Therefore, the development and widespread of molecular techniques for 

the characterization of both tumor cell genetic alterations and B-cell receptor (BCR) features, 

have been pivotal in the understanding of B-CLPD. As a consequence, chronic lymphocytic 

leukemia (CLL) is now considered as the prototype for several B-cell diseases where 

microenvironmental interactions, rather than a specific genetic abnormality, are critical in the 

onset, expansion and even progression of the disease, in at least a fraction of cases. Thus, a 

biased repertoire of the immunoglobulin heavy chain variable region (IGHV) genes with a 

particular mutational status, or even closely homologous antigen (Ag) binding sites among 

otherwise unrelated cases (“stereotyped” BCR), is generally considered as evidence for the 

involvement of a limited set of Ags, superantigens or both, in the development of CLL, 

fostering research about the early phases of the disease, e.g. monoclonal B-cell lymphocytosis 

(MBL). In this regard, flow cytometry has facilitated the identification of MBL cases with 

(MBLhigh) or without (MBLlow) absolute B-lymphocytosis which precedes most CLL cases, 

allowing the investigation of potential mechanisms involved in the transition from such MBL 

precursor states to overt CLL. Since tumorigenesis is a multi-step process, the first 

transforming events may occur at earlier stages, either directly in the normal counterpart of a 

CLL cell or perhaps, even in the hematopoietic stem cell compartment of CLL patients.  

In order to address this issue, in the present doctoral thesis we investigated multiple 

phenotypic and BCR features of clonal B-cells and their microenvironment in a relatively large 

series of MBL, CLL/B-CLPD clones, from both monoclonal and multiclonal cases. In order to 

explore whether particular Ag could be involved in specific cytogenetic pathways during early 

oncogenesis, we first investigated the potential association between unique cytogenetic 

profiles and specific IGHV repertoires. In a second step, we compared the BCR and cytogenetic 

features of B-cell clones from monoclonal vs. multiclonal cases to determine whether or not 

the latter were associated with a higher BCR homology, potentially reflecting occurrence of B-

cell mediated immune responses. Finally, we compared the features of stereotyped vs. non-

stereotyped MBL and CLL cases.   

Overall, we detected three major groups of clones with distinct but partially 

overlapping patterns of IGHV gene usage, mutational status and cytogenetic alterations: 1) a  

group enriched in MBLlow clones expressing specific IGHV genes (e.g. VH3-23) with no or 

isolated good-prognosis cytogenetic alterations; 2) a group which mainly consisted of MBLhigh 

and advanced stage CLL with a skewed, but different, IGHV gene repertoire (e.g. VH1-69), 

Abstract 



4 
 

often associated with complex karyotypes and poor-prognosis cytogenetic alterations, and; 3) 

a group with intermediate features, prevalence of mutated IGHV genes and higher numbers of 

del(13q)+ clonal B-cells. Altogether, these results suggest that BCR features of CLL-like B-cell 

clones may modulate the type of cytogenetic alterations acquired by the transformed cell, 

their rate of acquisition, and potentially also, their clinical consequences.  

As referred above, recent findings support the existence of underlying chronic B-cell 

stimulation by a restricted set of epitopes in CLL. In line with this, expansion of ≥2 B-cell clones 

has been frequently reported in B-CLPD, mainly in MBL, which could be an epiphenomenon of 

a chronic and persistent antigenic stimulation. Thus, we hypothesized that multiclonality could 

be associated with particular BCR features indicating a greater probability of interaction with 

shared immunological determinants. Comparative analysis of CLL-like and non-CLL-like B-cell 

clones from multiclonal vs. monoclonal MBL, CLL/B-CLPD cases showed clonotypic BCR of 

multiclonal cases have a slightly higher degree of HCDR3 homology, together with unique 

hematological and cytogenetic features, which are typically associated with earlier disease 

stages. Among these cases a subgroup of phylogenetically related (coexisting) B-cell clones 

which displayed unique molecular and cytogenetic features, was identified. Altogether, these 

results would support the Ag-driven nature of such multiclonal B-cell expansions and the 

potential involvement of multiple epitopes in promoting the development of MBL and favor 

their progression into full disease (e.g. CLL). However, the scenario in which these events 

occur, remains unknown.  

In order to gain insight into the above scenario in the last part of our work we further 

investigated the potential relationship between an altered/clonal hematopoiesis and antigenic 

driving forces, during the expansion of stereotyped vs. non-stereotyped CLL and CLL-like MBL 

clones. Overall, former cases more frequently used IGHV1 rather than IGHV3 genes, together 

with longer HCDR3 and unmutated IGHV sequences. The overall size of the stereotyped B-cell 

clones in peripheral blood (PB) did not appear to be associated with their cytogenetic profile 

but it was more closely related to presence of myelodysplasia-associated immunophenotypes 

on PB myeloid cells. Such unique association suggests that the emergence and/or expansion of 

CLL-like B-cell clones in these stereotyped cases could be favored by an underlying altered 

hematopoiesis. 

In conclusion, our results highlight the potential involvement of different Ag-driven 

pathways in the early stages of development of MBL and transformation to CLL, where BCR 

recognition of multiple epitopes together with the co-existence or not of an underlying altered 

hematopoiesis, would modulate further patterns of acquisition of cytogenetic alterations in 

the pathway to CLL, through different transitional stages from multiclonal MBL to monoclonal 

CLL clones carrying more complex cytogenetic profiles. 
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Hoje o conhecimento dos mecanismos envolvidos na patogenia das doenças 

linfoproliferativas crónicas de célula-B (B-CLPD) assume uma importância crescente. De forma 

geral, a sobrevivência e/ou proliferação da célula tumoral depende tanto das anomalias 

genéticas das células neoplásicas como do microambiente tumoral. Neste sentido, o 

desenvolvimento generalizado de técnicas moleculares para a caracterização quer das 

alterações genéticas presentes nas células tumorais, quer das características do recetor das 

células B (BCR), mostrou-se fundamental. Como consequência, a leucemia linfocítica crónica 

(CLL) é hoje considerada como o protótipo para várias doenças de células B em que as 

interações com o microambiente, mais que a presença de uma anomalia genética específica, 

são cruciais no surgimento, expansão ou mesmo na progressão da doença, em pelo menos 

uma fração dos casos. Neste sentido, a existência de um repertório de genes da região variável 

da cadeia pesada da imunoglobulina (IGHV) tendencioso juntamente com um estado 

mutacional particular e a recente identificação em casos não relacionados de locais de ligação 

ao antigénio (Ag) praticamente homólogos (BCR “estereotipados") é, regra geral, indicativo do 

envolvimento de um conjunto limitado de Ags, superantigénios ou ambos, no 

desenvolvimento da doença, fomentando a investigação das fases iniciais da mesma, p.e., 

através do estudo da linfocitose monoclonal de células B (MBL). Por isso, a citometria de fluxo 

veio facilitar a identificação de casos de MBL com (MBLhigh) ou sem (MBLlow) linfocitose B 

absoluta, a qual precede a maioria dos casos de CLL, permitindo assim a investigação de 

potenciais mecanismos envolvidos na transição de tais estados precursores tipo MBL, para CLL. 

Uma vez que a tumorigénese consiste num processo em várias etapas, os primeiros eventos 

transformantes podem ainda ocorrer em etapas mais precoces, quer diretamente na 

contrapartida normal da célula de CLL ou talvez, mesmo no compartimento de células 

estaminais hematopoiéticas de doentes com CLL. 

Para resolver esta questão, na presente tese de doutoramento investigámos múltiplas 

características fenotípicas e do BCR de células B clonais assim como do seu microambiente, 

numa série relativamente ampla de clones MBL, CLL/B-CLPD, tanto de casos monoclonais 

como multiclonais. De forma a explorar se determinados Ags poderão estar envolvidos em vias 

citogenéticas específicas durante as fases inicias do processo oncogénico, na primeira parte do 

estudo, focámos o nosso interesse na potencial associação entre determinados perfis 

citogenéticos e repertórios IGHV específicos. Num segundo passo, foram comparadas as 

características do BCR e as alterações citogenéticas dos clones de células B de casos 

monoclonais vs. casos multiclonais para determinar neste último grupo de doentes, a possível 

existência de uma maior homologia nos BCR que fosse potencialmente indicadora da 

Resumo 
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ocorrência de respostas imunes mediadas por células B. Por fim, comparámos as 

características dos casos com clones MBL e CLL estereotipados vs. não estereotipados. 

De uma forma geral, foram detetados três grupos principais de clones com padrões 

distintos, mas parcialmente sobrepostos, relativamente ao uso dos genes IGHV, ao estado 

mutacional desses genes e às alterações citogenéticas: 1) um grupo enriquecido em clones 

MBLlow expressando genes IGHV específicos (p.e. VH3-23) sem alterações citogenéticas ou com 

alterações isoladas de bom prognóstico; 2) um grupo principalmente constituído por clones 

MBLhigh e estágios avançados de CLL com um repertório IGHV restrito, mas diferente (p.e., 

VH1-69), muitas vezes associado com cariótipos complexos e alterações citogenéticas de mau 

prognóstico, e; 3) um grupo com características intermédias, com prevalência de genes IGHV 

mutados e com números mais elevados de células clonais B del(13q)+. Estes resultados 

sugerem que as características do BCR de clones de células B com fenótipo de CLL podem 

modular o tipo de alterações citogenéticas adquiridas pela célula transformada, a sua taxa de 

aquisição, e eventualmente também, as suas consequências clínicas. 

Tal como referido anteriormente, os resultados recentes apoiam a existência em 

doentes com CLL, de uma estimulação crónica subjacente das células B por um conjunto 

restrito de epítopos. Neste sentido, expansões de ≥ 2 clones de células B têm sido 

frequentemente relatadas em B-CLPD, principalmente na MBL, a qual parece constituir um 

epifenómeno de estimulação antigénica crónica e persistente. Assim, foi colocada a hipótese 

de a multiclonalidade se encontrar associada com características particulares do BCR indicando 

uma maior probabilidade de interação com determinantes imunológicos partilhados. A análise 

comparativa de clones de células B com fenótipo de CLL e com fenótipo não-CLL de casos de 

MBL, CLL/B-CLPD multiclonais vs. monoclonais mostrou que, nos casos multiclonais o BCR 

clonotípico apresenta um grau ligeiramente maior de homologia de HCDR3, juntamente com 

características hematológicas e citogenéticas únicas, que estão tipicamente associadas com os 

estágios iniciais da doença. De entre estes casos foi ainda identificado um subgrupo de clones 

de células B (coexistentes) filogeneticamente relacionados que exibiam características 

moleculares e citogenéticas únicas. No seu conjunto, esses resultados apoiariam a natureza de 

tais expansões de células B multiclonais associada ao Ag e o potencial envolvimento de 

múltiplos epítopos em promover o desenvolvimento da MBL e favorecer a sua progressão para 

doença (p.e., LLC). No entanto, o cenário no qual podem ocorrer esses eventos permanece 

desconhecido. 

De forma a ganhar um maior conhecimento acerca deste cenário, na última parte do 

nosso trabalho, investigamos ainda a potencial relação entre uma hematopoiese alterada/ 

clonal e o estímulo antigénico durante a expansão dos clones de CLL e MBL estereotipados vs. 

não estereotipados. No geral, os casos estereotipados exibiam mais frequentemente genes 

IGHV1 em vez de IGHV3, juntamente com sequências HCDR3 mais longas e genes IGHV não 

mutados. O tamanho dos clones de células B estereotipados no sangue periférico (PB) não 
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mostrou estar relacionado com o seu perfil citogenético, mas sim com a presença de 

imunofenótipos associados com mielodisplasia em células mielóides do PB. Tal associação 

particular sugere que o surgimento e/ou expansão de clones de células B de CLL nestes casos 

estereotipados pode ser favorecido por uma hematopoiese alterada subjacente. 

Em conclusão, os nossos resultados destacam o potencial envolvimento de diferentes 

vias induzidas pelo Ag nos estágios iniciais de desenvolvimento da MBL e de transformação 

para CLL, onde o reconhecimento de múltiplos epítopos pelo BCR, juntamente com a 

coexistência ou não de uma hematopoiese alterada subjacente, poderão modular os padrões 

de aquisição de alterações citogenéticas na patogénese da CLL, através de diferentes vias de 

transição desde os estágios de MBL multiclonal até aos clones de CLL monoclonal com perfis 

citogenéticos mais complexos. 
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Chapter 1 INTRODUCTION 

B-cell chronic lymphoproliferative disorders (B-CLPD) are a heterogeneous group of 

diseases with a highly variable clinical course.1 Despite the well-defined clinical, biological and 

histopathological features of the distinct World Health Organization (WHO) clinical entities, the 

specific factors associated with the ontogeny of these disorders still remain largely elusive.  

As in other tumors, chromosomal and molecular/genetic alterations, particularly those 

genetic mutations and chromosomal translocations involving the immunoglobulin (Ig) heavy 

chain genes and to a lower extent also the light chain gene loci, and their distinct partnering 

proto-oncogenes, are a hallmark of many types of B-cell lymphoma.2 In recent years, 

important progress has been made as regards the identification of oncogenic mutations – e.g. 

BRAF and MyD88 gene mutations in hairy cell leukemia (HCL)3 and lymphoplasmacytic 

lymphoma (LPL),4 respectively – and chromosomal translocations – e.g. t(11;14) in mantle cell 

lymphoma (MCL)5 –. However, for other B-CLPD such as B-cell chronic lymphocytic leukemia 

(CLL), despite extensive research has been done, no universal oncogenic alteration has been 

identified thus far.6 In this regard, several factors other than genetic/chromosomal alterations 

have also been associated with the ontogenesis of specific subtypes of B-CLPD. Concerning 

this, tumor cells from most chronic B-cell leukemias and non-Hodgkin B-cell lymphomas (B-

NHL) express a unique B-cell receptor (BCR) molecule and in several B-cell malignancies, 

antigen (Ag) activation of tumor cells through BCR signaling seems to be an important factor in 

the pathogenesis of the disease.7 For example, It has been hypothesized that chronic antigenic 

stimulation could drive CLL development,8,9 as it has also been proposed for indolent B-cell 

lymphomas that are supposed to derive from the marginal zone – e.g. gastric lymphomas of 

mucosa-associated lymphoid tissue (MALT) –. The latter lymphomas are commonly associated 

with chronic antigenic stimulation either as a result of infection (e.g. Helicobacter pylori in the 

stomach) or autoimmune responses/disease in other MALT lymphomas (e.g. Sjögren syndrome 

and salivary glands lymphoma).10  

Immunogenetic analyses of the tumor cell BCR have provided new insights into the 

ontogenic relationship between B cell malignancies and Ags that they might interact with 

within their tissue of origin.11,12 Thus, a biased IG gene repertoire is seen as evidence for an 

underlying selection of progenitor cells by Ag in diseases such as CLL or marginal zone 

lymphoma (MZL). Additional evidence is provided by the differential prognosis of cases with 

distinct mutational status of the clonotypic BCR in CLL, and the existence of subsets of patients 

with highly-selected or even quasi-identical (e.g stereotyped) BCR, which account for up to 

around one-third of all CLL cases.13 These observations have been instrumental in shaping the 

notion that the ontogeny and progression of CLL are functionally driven and dynamic, rather 

than a simple stochastic process.  
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Interestingly, a precursor condition for B-CLPD, particularly for CLL, has been identified 

as a premalignant state: monoclonal B-cell lymphocytosis (MBL) with (MBLhigh; high count MBL) 

or without (MBLlow; low count MBL) absolute B-lymphocytosis in PB.14 Extensive research 

performed in recent years in MBL has also contributed to a better understanding of the 

mechanisms involved in the genesis of lymphoma/leukemia and the identification of those 

factors involved in the transition from a B-cell lymphoma/leukemia precursor state to an overt 

lymphoproliferative disorder. Thus, most MBL cases are characterized by the presence of 

circulating monoclonal B-cells, which have an immunophenotypic profile that fully overlaps 

with that of CLL (CLL-like MBL).15,16 At present, the precise factors and the likelihood of MBL to 

progress to CLL over time are still largely unknown. In this regard, the overall prevalence of 

MBL, which is significantly greater than that of CLL, is consistent with the expectation that 

most MBL will not progress to CLL; even more, for MBLlow, progression appears very unlikely,17 

while for MBLhigh the risk of progression to CLL requiring therapy is of approximately 1% per 

year.16,18 In turn, it has also been shown that many MBL are oligoclonal based on interphase 

fluorescence in situ hybridization (iFISH) but also on single cell Ig sequence analyses;15,19 in 

contrast, only around 5% of the B-CLPD display two phenotypically distinct populations of 

clonally unrelated B lymphocytes coexisting in the same patient, either simultaneously or at 

different time points during follow-up.20,21 Such particularly high prevalence of multiclonality at 

the earliest stages of MBL (≥20% vs. 5%), would further support the potential reactive nature 

of MBL among individuals with normal lymphocyte counts, prior to stepwise acquisition of 

genetic alterations and progression to MBLhigh and CLL;22-24 such a model could be similar to 

that occurring in other cancers, indicating that development of CLL might be initiated at a 

polyclonal B-cell population, one clone progressively taking over. Consequently, the evolution 

from a reactive to a neoplastic expansion of MBL clones, and their transformation to CLL, 

might provide a model for the development of CLL, where analyses of IG genes and the 

associated cytogenetic profiles can assist in better understanding the precise mechanisms 

leading to the genesis of the tumor and its malignant transformation. 

In this section, we will first review the BCR structure and repertoire, along the B-cell 

differentiation; afterward, we will focus on the major features of distinct WHO subtypes of B-

CLPD, particularly of CLL and MBL, and their monoclonal vs. multiclonal nature. 
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Chapter 1 INTRODUCTION 

1. B-CELL ANTIGEN RECEPTOR 

  

1.1. Basic structure of the B-cell receptor 

 

The BCR for Ags consists of two monomeric molecules: the Ig responsible for Ag 

binding and CD79 which delivers intracellular signals for B-cell activation. Igs are heterodimer 

molecules composed of two heavy (H) and two light (L) chains (Figure 1).25,26 Each H and L 

chain consists of a variable (V) domain, which binds to the Ag, and between one and four 

constant (C) domains, which carry out the effector function of that chain. Diversity is 

asymmetrically distributed within the V domain, each V domain containing three segments of 

higher variability which form those loops recognizing the Ag termed complementarity 

determining regions (CDR); CDR are separate one from each other and from the external 

sequences by  four conserved sequences, known as the framework regions (FR) (Figure 1).27 

Two of the CDR loops are encoded by the V genes (CDR1 and CDR2) whereas the third, and 

most polymorphic one, is encoded by the junction between the rearranged V, (D) and J genes. 

The four FR of both the H and L Ig chains fold to form the scaffold that brings together the 

three H chain and the three L chain CDRs to create the Ag binding site in the 3-dimensional 

structure.26 

Through the transmembrane and intracellular domains of their H chains, Igs are linked 

in the B-cell membrane to CD79a and CD79b, to form the functional BCR. CD79 is a disulphide-

linked transmembrane heterodimer which belongs to the immunoglobulin superfamily and 

that is responsible for the transduction of BCR signals, upon Ag recognition by B cells. 

Figure 1. Schematic diagram of the structure of the genetic loci of the immunoglobulin heavy and light (λ and κ) 

chain genes [adapted from Zakharova et al.
28

]. 
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1.2. The B-cell receptor repertoire 

 

Signaling through the BCR is required throughout B cell development, as well as during 

peripheral B-cell maturation and for the selection of the B-cell repertoire. Additionally, the 

avidity and the context in which Ag is encountered will determine both cell fate and 

differentiation in the periphery, once the Ig genes are further diversified during immune 

responses.29,30 Consequently, the study of the BCR repertoire by sequence analysis of Ig heavy 

and light chain gene transcripts can refine the categorization of B cell subpopulations and can 

shed light on the selective forces that act during aging, immune responses (e.g. infections) or 

immune dysregulation that result from B-CLPD.31,32 In contrast to nearly all other proteins, the 

components of Ig molecules are not encoded by germline DNA. The genetic elements in the Ig 

loci, the Variable (V), Diversity (D) and Joining (J) genes, need to be rearranged to encode a 

functional protein essentially through processes of V(D)J recombination, exonuclease trimming 

of germline genes, and the random addition of nucleotides that are not encoded in a DNA 

template. In the IGH locus, one of each V, D and J genes are randomly coupled to form a 

functional exon while similar rearrangements are initiated between one V and one J gene 

segment in the IGK and IGL loci.33,34  

While somatic point mutations have given B cell studies a major focus on variable 

(IGHV, IGLV, and IGKV) genes, D genes identified in BCR VDJ rearrangements allowed the 

processes and elements that contribute to the incredible diversity of the Ig heavy chain CDR3 

(HCDR3) to be analyzed in detail. Such diversity is in contrast with that of the light chain where 

a small number of polypeptide sequences dominate the repertoire.35 

 

1.2.1. Germline immunoglobulin genes and lymphocyte diversity 

 

The variable locus of the IG gene consists of multiple genes which have evolved 

through gene duplication in order to generate a diverse germline repertoire.36 Analysis of 

homology among the V gene segments has revealed that these can be grouped in discrete V 

gene families,37,38 which can further be regrouped in clans39 which reflect the earliest events of 

gene duplication in the evolution of the IG locus.40,41 The organization in multiple copies of 

variable genes, plus the somatic processes of recombination and hypermutation, allow the 

immune system to generate an antibody repertoire of great diversity. Moreover, selective 

pressures have shaped the evolution of the germline genes of the Ig. The nature of these 

selective forces is still a matter of controversy.42  
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Analysis of nucleotide and amino acid (aa) substitutions at the coding region of the V 

genes has shown that the regions involved in the interaction with the Ag present high 

variability, in contrast to the remaining relatively conserved FRs, pointing out that different 

selective forces act over these two regions.36,42,43 Evaluation of other aspects like 

polymorphisms,36,44,45 sequence variability46,47 and phylogeny39,40,48 has provided additional 

evidence of selective forces acting over V genes in order to shape their variability. In fact, 

current knowledge about the germline genes is far from being complete; this is due in part, to 

the complexity of the loci, where numerous highly similar genes are thought to have evolved 

via gene conversion,49 duplication and divergence,50 and further interspersed with many 

pseudogenes and repetitive elements. 

IGHV genes are by far the longest of the recombining IGH genes, and they are the main 

targets of the mutational machinery.51,52 As it is necessary to be certain of the germline origin 

of mutated sequences, the complete and accurate definition of the set of germline IGHV genes 

and allelic variants should remain clear. The official human IGHV germline gene dataset, 

created by the ImMunoGeneTics (IMGT) group (www.imgt.org), includes 129 functional genes, 

open reading frames (ORF), and pseudogenes, as well as over 200 allelic variants which have 

increased in recent years, as 40 new allelic variants have been reported since 2005.53-56 In turn, 

the 27 human IGHD genes include 25 functional genes, 23 of which are unique.57 The IGHJ 

locus includes 6 functional genes, which are all found downstream of the IGHD locus in a single 

cluster.  

 

1.2.2. Biases in combinatorial and junctional diversity and shaping of the BCR 

repertoire  

 

Many BCR repertoire studies which have utilized different sets of primers, and 

amplified different source materials, are surprisingly consistent with the occurrence of strong 

gene utilization biases. Some data show that segments in the V3 family are most frequently 

used (namely the IGHV3-23 gene), followed in descending order by V4, V1, V5, V2, V6, and 

lastly V7.58 Different IGHV genes are used at frequencies that range from 0.1% to more than 

10% of all rearrangements in an individual’s naïve B-cell repertoire, their relatively frequency 

also varying between alleles.59,60  

 Frequencies of usage of some IGHV families are surprisingly constant among different 

individuals (e.g. IGHV1-46, IGHV3-21 and IGHV3-49),61 while IGHV1-69 varies at frequencies 

that range from 3.1 to 9.1% (average 6.2%).59 Biased gene usage is not confined to the IGHV 

genes since IGHD gene usage also varies from < 1% (e.g. IGHD4-4/11) to > 15% (e.g. IGHD3-22) 
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of total rearrangements.62 For each D segment, there is one reading frame (RF) encoding 

predominantly hydrophilic aa residues (specially tyrosine and serine; RF1), followed by a 

hydrophobic RF (RF2), and lastly, a third RF that often encodes a stop codon (RF3). Thus, the 

RF3 can be used only if either somatic mutations or nucleotide losses during VDJ 

recombination delete the germline stop codon. Finally, there is also considerable variation 

between the frequencies of usage of IGHJ genes (e.g. IGHJ4 gene is present in approximately 

45–50% of rearrangements, IGHJ6 accounts for 20–25% of VDJ rearrangements63,64 and IGHJ1 

is only used by 1% of all rearrangements).65 

In a similar way, analysis of IGK rearrangements from sequence databases also showed 

a preferential gene usage with under- and over-utilization of the different JK gene segments,66 

while the IGLV usage is strongly skewed toward a limited number of the functional V segments 

with 3 of the 30 IGLV accounting for > 50% of the expressed rearrangements.67 Only four of the 

seven IGLJ are considered functional68 and their frequencies range from almost 55% of the 

expressed B-cell repertoire for IGLJ7, to just 5.5% for IGLJ1.69 

On the other hand, variations in the recombination signal sequences (RSS) also 

influence the frequencies of BCR gene usage, while they cannot explain all differences in allele 

utilization.70-72 In addition to the underlying biases in utilization of germline genes, a final bias 

has been identified that affects the contribution of recombination frequencies to repertoire 

diversity. For reasons that still remain unclear, the analysis of 6,500 IGH VDJ sequences 

collected from public databases appears to confirm pairing preferences for some IGHD and 

IGHJ genes that increase the frequency of particular IGHD-IGHJ pairs within the repertoire (i.e. 

IGHD2-2 and IGHD3-3 with IGHJ6, and of IGHD3-22 with IGHJ3).64,73 In addition, biases in the 

pairing of germline heavy and light chain genes have been also described in early studies;74 

however, such germline heavy and light chain gene pairing preferences were not supported by 

later studies,75,76 including a recent study that applied high-throughput sequencing to generate 

thousands of linked heavy and light chain gene sequences.77 

On top of all the above, at present it is also well established that N (non-germline 

encoded) nucleotides contribute significantly to the diversity of the BCR repertoire.78 Non-

template encoded N-additions are intrinsically biased owing to the nucleotide preferences of 

the terminal deoxynucleotidyl transferase (TdT) enzyme toward the incorporation of guanine 

(G) nucleotides; such TdT preference by G nucleotides ensures that the germline gene-

encoded regions of the CDR3 are frequently flanked by small aa encoded by G-rich codons 

such as glycine, that promote flexibility of the CDR3 loop.79 Exonuclease trimming which 

results in the loss of nucleotides from the coding ends of the genes during rearrangement is 

perhaps the least understood process that contributes to the BCR repertoire, but a number of 
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features of the process have been described, and intrinsic biases have been identified.80 In this 

regard, it seems that sequences enriched in adenine (A)/thymine (T) might be more 

susceptible to nucleotide loss, while G/cytosine (C) enriched sequences would be more 

resistant to processing.81-84 The gene sequence ends that remain after exonuclease processing 

provide a final bias that shapes the repertoire. 

Without the added diversity that comes from D genes, the kappa and lambda 

repertoires would be strongly shaped by biased gene usage and minimal processing giving rise 

to repertoires with a surprisingly limited diversity. 

 

 

2. B-CELL ONTOGENY 

 

B cells are generated throughout life from long-lived and self-renewing hematopoietic 

stem cells (HSC) in the bone marrow (BM). B-cell maturation occurs in two clearly defined 

stages which are localized in different tissues: Ag‑independent precursor B‑cell differentiation 

from an HSC to naïve mature B-lymphocytes occurs in the BM,85 whereas Ag-dependent B-cell 

maturation to memory B-cells and effector plasma cells takes place mostly in secondary 

lymphoid tissues, e.g. lymph nodes (LN), MALT, BM and spleen (Figure2).86 

Figure 2. Antigen-independent B-cell differentiation occurs in the bone marrow, whereas Ag-dependent B-cell 

differentiation occurs in the periphery. The immunophenotypic profile of the distinct human B-cell differentiation 

stages including V(D)J recombination bars are shown for both the BM and peripheral B-cell differentiation pathways  

 [adapted from Vinuesa, et al.
87

 and Perez-Andres, et al.
88

]. 
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2.1. Antigen independent B-cell differentiation in the bone marrow  

 

Differentiation of B cells from early committed progenitors to mature B-lymphocytes is 

a multistep maturation process that can be monitored by the coordinated acquisition and loss 

of leukocyte differentiation Ags and the status of rearrangement of the IGH and IGL genes 

(Figure 2). The major goal of precursor B-cell differentiation to mature B-lymphocytes is to 

generate a functional Ig receptor via an ordered V(D)J recombination of the genes encoding 

the Ig heavy (IgH) and the Ig light (Igk or Igʎ) chains. Double stranded (ds)DNA breaks at the V, 

D and J gene segments are induced by the recombinase activating gene proteins products 1 

and 2 (RAG1 and RAG2) that specifically recognize short conserved DNA sequences termed 

RSS.89 The first gene rearrangements that occur during precursor B-cell differentiation involve 

D to J rearrangements in the IGH locus.90,91 These rearrangements are generally initiated in 

parallel on both IGH alleles.92 Subsequently, only one of the alleles starts complete V to DJ 

rearrangements, whereas the second one only rearranges V to DJ when the first allele is not 

successful, e.g. if there is no functional IgH protein. In the majority of precursor B cells, V to J 

gene rearrangements in the IGK and IGL loci are initiated only after a functional IgH protein is 

formed. Still, it has been demonstrated that a minor fraction of pro-B cells can rearrange IGL 

genes before the assembly of a productive IGH.93,94 

Based on the order of IG gene rearrangements, precursor B-cells are classified into 

distinct stages of maturity (Figure 2). Thus, pro-B-cells represent the first committed B-cell 

precursors,95,96 which can be distinguished from pre-pro-B-cells by surface expression of CD19, 

upon expression of Pax5.97 In these cells, the Igα–Igβ heterodimer (CD79a/CD79b) is expressed 

on the cell surface in association with calnexin and potentially also other chaperone 

molecules.98 

D to J rearrangement in the IGH locus is initiated in the pre-pro-B-cells and continues 

with V to DJ rearrangement at the pro-B cell stage. The pre-BCR is not required for lineage 

commitment and the initiation of recombination but, this is rather dependent upon the 

intrinsic expression of two main transcription factors, E12 and E47,99 and the transcription 

factor EBF (early B-cell factor),100 which have been shown to up-regulate expression of the B-

cell-specific genes λ5, VpreB, Igα/CD79a and Igβ/CD79b, as well as of the lymphoid-specific 

RAG-1 and RAG-2, and the B-cell-specific transcription factor Pax5 or BSAP (B-cell-specific 

activator protein).101-103 Lineage commitment is enforced at the pro-B-cell stage by Pax5, which 

both activates B-cell-specific genes (including BLNK, CD19 and Igα/CD79a) and represses the 

expression of other non-B-lineage genes (including Notch1).104,105 
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Early B-cell development is not entirely intrinsically regulated by the future B-cell 

precursor, as signalling through the interleukin-7 (IL-7) receptor is required to generate pro-B-

cells.106 IL-7 signalling also induces pro-B-cells to proliferate and expand, and it has been 

shown to up-regulate expression of CD19 and Pax5.107,108 

Surface expression of a signalling-competent pre-BCR, containing an in-frame V(D)J 

rearrangement of the Ig heavy chain, allows progression from the pro-B-cell to the pre-B-cell 

stage; the pre-B cell stage is the first stage at which BCR signalling becomes required. 

Appropriate pre-BCR signalling results in allelic exclusion at the heavy-chain locus, at the same 

time it leads to parallel changes in the phenotype of developing B-cells;109 cells become larger 

as they undergo a proliferative burst of two to five cycles and become more responsive to IL-

7.110,111 After proliferation, cells enter the small pre-B stage, where they down-regulate HSA 

(heat stable Ag), CD43 and IL-7R, becoming IL-7 unresponsive. Then, they begin the process of 

light chain rearrangement, first at the kappa locus and then at the lambda locus.112 

Upon light-chain rearrangement, heavy and light chains are co-expressed on the cell 

surface, in association with Igα/CD79a and Igβ/CD79b, to form a functional Ig receptor; 

subsequently, the new B cell will be positively selected and will become an immature B-

lymphocyte. The new IgM+ IgD– immature B-lymphocytes frequently carry autoreactive or 

polyreactive receptors, which need to be removed from the immune repertoire through a BCR 

receptor-mediated negative selection process. These cells are assumed to either undergo 

apoptosis/deletion in response to high-avidity ligands, to become anergic if they encounter 

lower-avidity ligands and unresponsive to Ig receptor crosslinking, or to modify the reactivity 

of the Ig receptor by initiation of a secondary Ig gene rearrangement (receptor editing).113-115 

Of note, short-lived anergic cells down-regulate surface IgM expression and exhibit a 

characteristic intracellular signalling signature in association with a unique gene expression 

profile116 that appears to be maintained throughout chronic engagement of the BCR with low-

avidity ligands. Which of these three tolerance mechanisms is invoked depends on many 

different factors, including receptor affinity, receptor expression levels, developmental stage 

and site of encounter (e.g. ligation of the immature BCR in a BM environment results in 

receptor editing, whereas ligation in a splenic environment induces B-cell deletion).117,118 

Negative selection of cells with polyreactive and autoreactive BCR takes place during 

two checkpoints. Thus, a central checkpoint occurs in the BM and results in the removal of 

cells with both autoreactive and polyreactive BCR. Consequently, the frequencies of 

autoreactive (≈75%) and polyreactive (≈55%) BCR in early immature B-cells decrease to ≈45% 

and <10% among immature B-cells, respectively.119 In turn, a second peripheral checkpoint 

occurs upon B cell migration from the BM to the periphery, and it is mainly directed against 



 

22 
 

Chapter 1 INTRODUCTION 

the remaining autoreactive BCR which often display long (>20 aa) and positively charged IGH-

CDR3 regions,119 reducing their frequency to ≈20% among naïve mature B-cells.  

 

2.2. Antigen dependent B-cell maturation in the periphery 

 

Following successful Ag-independent differentiation in the BM, B cells migrate to 

peripheral lymphoid organs and recirculate in blood. The cells require external signals for 

survival, which thereby ensure stable homeostasis of the total B-cell pool.86,120 Only those cells 

that recognize their cognate Ag initiate further differentiation and generate memory B-cells 

and antibody-producing plasma cells.86 The maturation pathways will differ depending on the 

anatomic localization of the response (e.g. LN vs. gut, lung or splenic marginal zone) and the 

type of Ag (e.g. protein vs. polysaccharide). 

 

2.2.1. Peripheral distribution and maturation of immature to naïve B cells 

 

Recent BM emigrants are functionally immature, i.e. they do not respond to BCR 

stimulation. Immature B-lymphocytes, also referred as transitional B cells, represent ≈5–10% 

of all B cells in blood of healthy adults and have a characteristic phenotype which includes 

expression of surface membrane (Sm)IgM and SmIgD, CD21, CD22, CD5 and high expression 

levels of CD24 and CD38.121-123 Of note, B lymphocytes leaving the BM consist of cells at 

different maturation stages between the immature and naïve mature B-cell compartments; 

therefore, they typically show heterogeneous features; these cells have unmutated IGHV 

genes, express phenotypic features of immature B-cells, show a lower ability to proliferate and 

differentiate to Ab-secreting cells after in vitro stimulation when compared to naïve mature B-

cells together with a higher κ/λ ratio vs. other PB B-cell subsets.121-124 Of note, the frequency of 

these immature B-lymphocytes in PB seems to increase in autoimmune diseases and other 

immunological diseases (e.g. systemic lupus erythematosus, common variable 

immunodeficiency, X-linked lymphoproliferative disease), as well as during BM regeneration 

after transplantation,125 in parallel to decreased numbers of memory B-cells.121-123 

Maturation into pre-naïve B-cells is accompanied by downregulation of CD38 and CD24 

which makes them partially responsive to BCR stimulation and CD40 ligation. Upon subsequent 

downregulation of CD5, pre-naïve B cells finally become naïve B-cells, which are fully 

responsive to Ag. Naïve B-cells are a relatively frequent B cell compartment in the PB and 

comprise about 60–70% of circulating B-cells; they simultaneously co-express IgM and IgD and 

display unmutated IGV sequences. 
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2.2.2. T-cell dependent and T-cell independent B-cell responses to antigen 

 

B cells respond to Ags which are specifically recognized by their BCR. Upon binding to 

its cognate Ag, the BCR induces downstream signaling through the same pathways as the pre-

BCR, to initiate target gene transcription. The CD19-complex, consisting of CD19, CD21, CD81 

and CD225, is necessary for sufficiently strong signaling.126,127 

In addition to Ag recognition via the BCR and CD19 signaling, B cells require a second 

signal to become activated. Activated T cells can provide such a signal via CD40L that interacts 

with CD40 on B cells. T cell-dependent (TD) B-cell responses are characterized by germinal 

center (GC) formation. In the GC, B lymphocytes undergo extensive proliferation, affinity 

maturation and Ig class switch recombination (CSR).128 Thus, after the GC reaction, high-affinity 

memory B-cells and Ig-producing plasma cells are formed. 

Alternatively, B cells can respond to T cell-independent (TI) Ags that either activate 

them via the BCR and another (innate) receptor (TI type 1 response) or via extensive cross-

linking of the BCR due to the repetitive nature of the Ag (TI type 2 response). The Ags 

triggering TI B-cell responses can be both lipid and carbohydrate structures;129 similarly, the co-

stimulatory receptors include various types of receptors particularly pattern recognition 

receptors, such as Toll-like receptors (TLR) and nucleotide oligomerization domain-like 

receptors (NLR) that have been implicated in TI responses.130,131 Usually, TI responses are 

directed against blood-borne pathogens in the splenic marginal zone and in mucosal tissues 

(reviewed in 132,133). Among other proteins and molecules, the B-cell activating factor (BAFF) 

and the proliferation-inducing ligand (APRIL) protein must likely support TD and TI, as well as 

induction of affinity maturation and Ig CSR.134,135 

 

2.2.3. Somatic hypermutation and Ig class-switch recombination 

 

The Ig variable regions of activated B cells are targets for somatic hypermutation 

(SHM). In this process of SHM, the activation-induced cytidine deaminase (AID) enzyme is a key 

player. AID initiates deamination of cytidine to uracil (U) on single-stranded (ss)DNA through 

preferentially targeting of RGYW and WRCY DNA motifs where R are purine nucleotides, Y are 

pyrimidines, and W is either A or T.136,137 Although SHM can be introduced through the entire 

Ig variable regions, mutations in post-GC cells are preferentially found in the CDR sequences. In 

part, this is due to overrepresentation of AID-targeted RGYW and WRCY DNA motifs in the Ig 

CDR138,139 vs. the FR and other Ig regions,140,141 and results on selection of GC B-cells with higher 

affinity for the target Ag, which will therefore have preferentially mutated CDR3. AID-
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associated mutations in the DNA sequence of the IG gene can either be silent (S) mutations 

with no effect on the aa composition, or replacement (R) mutations which lead to aa 

substitutions. R mutations in the FR regions are likely to impair the Ig structure, and cells that 

acquired these mutations are most frequently removed from the repertoire. In turn, R 

mutations in the CDR regions can have either positive or negative effects on the recognition 

and affinity of the BCR for the Ag. Hypermutated B cells that cannot recognize the Ag undergo 

apoptosis, while those that carry mutations which increase their affinity for the Ag will survive 

and proliferate. In general, a high ratio of R vs. S mutations (R/S ratio) in the IGHV CDR is 

regarded as a molecular sign of an underlying affinity maturation.142 

 AID does not only play a crucial role in the generation of SHM, but it is also involved in 

the process of CSR, which leads to changes in the Ig receptor effector functions.136 In this 

regard, it should be noted that the IGH locus contains multiple constant region-encoding genes 

downstream of IGHM. In precursor and naïve mature B-cells, these regions are not used, and 

rearranged VDJ exons are spliced to the IGHM and IGHD exons. During the GC response, the B 

cell is capable of rearranging the Ig switch region upstream of IGHM with one of the switch 

regions upstream, resulting in the deletion of the intervening DNA and splicing of VDJ exons to 

the exons of an IGHC other than IGHM. 

The process of CSR does not affect the Ag specificity and/or the affinity of the BCR, but 

it influences the effector functions of the antibodies the cell will eventually produce, due to 

differential recognition of Ig subclasses (e.g. isotypes) by Fc receptors on immune cells and by 

soluble proteins (e.g. complement proteins). Also the type of Ig subclasses has an impact on 

the avidity of the Ig, since the ability of IgM and IgA antibodies to form polymers also increases 

their avidity.143,144 

IgG is the predominant Ig class in human serum, and can act locally in the tissues. All 

IgG subclasses are involved in neutralization of pathogens, but only IgG1 and IgG3 are potent 

activators of the complement system and inducers of antibody-dependent cell-mediated 

cytotoxicity (ADCC).145 Complement activation is also the predominant function of IgM, while 

the two IgA subclasses act as neutralizing antibodies with different susceptibility to digestion 

by bacterial proteases.146,147 Finally, IgE is involved in mast cell and basophil sensitization and it 

is the mediator of allergic responses and of responses to parasitic infections.148 

 

2.2.4. Circulating human memory B cells and their diversity 

 

A substantial fraction of B cells in adults (≈20–30% of all PB B-cells) are Ag-experienced 

and shows hallmarks of memory B-cell. One of these hallmarks is an increased responsiveness 
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which results from upregulation of co-stimulatory and activation molecules (i.e. CD80, CD86, 

CD180, TACI), and downregulation of Ig signaling inhibitors (i.e. CD72, LAIR1).149-151 Moreover, 

these Ag-experienced cells may display SHM within their IGHV and IGLV regions and around 

half of them have also undergone Ig CSR,152,153 as reflected by surface membrane expression of 

a switched IgH (e.g. to SmIgG or SmIgA); (23% ± 10% and 21% ± 9% of adult PB memory B-cells 

express SmIgG and SmIgA, respectively). Meanwhile, the other half of memory B-cells still 

coexpress SmIgM and SmIgD (52% ± 15% of memory B-cells), or potentially SmIgM or SmIgD 

only. Even considering that Ig class switching specializes the future effector function of the 

antibodies that will be produced by Ag-specific B-cells, through replacement of the IgM and 

IgD gene exons (Cµ and Cδ) by the IgG (Cγ), IgA (Cα), or IgE (Cε) exons via genetic 

recombination, it should be noted that a small percentage of B-cells (1%–3%) actually class 

switch from Cµ to Cδ at the genetic level using cryptic switch regions between the Cµ and Cδ 

exons; this results in an SmIgM–SmIgD+ memory B-cell phenotype. Recently the presence of 

very low numbers of SmIgE+ memory B-cells has also been described in PB;154 murine studies 

suggest that IgE-secreting plasma cells could be generated both indirectly via CSR to memory 

SmIgE+ B-cells and directly from IgG1 memory B-cells,155 although the latter possibility remains 

controversial.156 

Until recently, human memory B-cells have been defined based on the expression of 

the CD27 protein on their surface membrane.157 However, recent studies have demonstrated 

that memory B-cells are a more complex and heterogeneous group of B cells than originally 

thought, and that they can also be CD27–; such heterogeneity of memory B-cells probably 

reflects the fact that they consist of multiple different and diverse subsets originated from 

functionally distinct types of immune responses.154,158 

The majority of circulating memory B-cells in healthy adult PB derives from TD 

responses in the GC. Thus, CD27+SmIgG+ and CD27+SmIgA+ GC-derived memory B-cells have 

typically undergone the highest rate of proliferation and SHM; this supports the notion that at 

least part of the CD27+SmIgG+ and CD27+SmIgA+ B-cell subsets in healthy adults, occur later in 

the course of an immune response and/or have undergone multiple immune responses.128,159 

Interestingly, despite these two memory B-cell subsets share selection mechanisms, 

CD27+SmIgA+ B-cells display a clearly higher frequency of IGHV gene mutation vs. CD27+SmIgG+ 

B-cells. A potential explanation for such difference might be the different localization of the 

immune responses which generate most of the CD27+SmIgA+ vs. CD27+SmIgG+ memory B-cells, 

since IgA class switching mostly occurs in MALT, while IgG is typically predominant in other 

lymphoid tissues such as the LN.160 Compared to CD27+SmIgA+ and CD27+SmIgG+ memory B-

cells, CD27+SmIgM+ memory B-cells contain less SHM but show molecular footprints of (early) 
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GC emigrants that did not undergo CSR161 and participate in IgM responses initiated early in 

primary infection. Interestingly, in contrast to these CD27+(SmIgM+SmIgD−) “IgM-only” cells, 

CD27+SmIgM+SmIgD+ “natural effector” B-cells are present in patients with CD40 or CD40L 

deficiency, indicating that at least part of this subset can be generated independently of T cell 

help outside of the GC.131,159 Furthermore, natural effector B-cells resemble prediversified 

marginal zone populations that can be generated independently of functional GC and that 

have a limited replication history compared to GC B-cells (both centroblasts and centrocytes) 

and CD27+SmIgD− memory B-cells.128,159 Thus, CD27+SmIgM+SmIgD+ natural effector B-cells 

probably consist of a mixed population of GC-derived and splenic marginal zone-derived 

memory B-cells. Moreover, these cells more frequently use a subset of Ig variable region genes 

which have long been associated with autoreactivity, at the same time, they also show 

evidences of receptor editing during B-cell development,162-164 which suggests that these 

memory B-cells are either generated by a mechanism of immune tolerance or that they evade 

immune tolerance. 

Regarding IgD-only B-cells, at present it is known that these cells have undergone a Cμ 

deletion due to a non-canonical CSR event, they typically express Igλ, contain extremely high 

levels of SHM and show a strongly biased IGHV3-30 gene usage that can be also seen in some 

malignant B-cell disorders.165 

In addition to all above subsets of memory B-cells, there are three other minor 

populations of IgG, IgA and IgE class-switched B-cells which lack CD27 expression (21% ± 10%, 

9% ± 6% and <1% of all memory B-cells, respectively), which are present in the PB of healthy 

individuals.166 The specific origin of these cells and their relationship to the CD27+ memory B-

cell subsets remain currently unknown; overall, these CD27– memory B-cells show a lower 

frequency of SHM.154,158 In addition, CD27−SmIgG+ B-cells are derived from primary GC-

dependent responses and compared to their CD27+ counterparts, they show dominant usage 

(> 90%) of the IGHM-proximal IGHG1 and IGHG3 genes, which are potent activators of the 

complement system and inducers of ADCC, revealing their potential role in autoimmunity.167 

The CD27−SmIgA+ memory B-cell subset is a smaller population and can be derived 

independently from T cell help, through TI IgA responses in the splenic marginal zone and 

locally in the gastrointestinal system.135 The nature of CD27−SmIgE+ memory B-cells still 

remains to be elucidated.154 

Taking all these findings in consideration, 8 different subsets of antigen-experienced B 

cells have been described. They all exhibit an activated phenotype but different molecular 

signs of Ag experience (i.e. levels of SHM of rearranged Ig genes and participation in primary 

vs. secondary phases of GC responses).  
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2.2.5. Terminal B-cell differentiation to plasmablasts and plasma cells 

 

Very low numbers of CD20-/+ SmIg+ CD19+ CD27high CD38high CD43+ CD138– CD45+ HLA-

class II+ plasmablasts/plasma cells newly generated in the LN and which are derived from 

activated B cells following a different transcriptional program than memory B-cells, are found 

in steady state PB of healthy adults.168 These circulating plasmablasts/plasma cells are induced 

to circulate for a short period until they reach a niche in the BM, spleen, MALT, LN or 

chronically inflamed tissues. They ensure regulation of normal Ig production in view of the 

competition of newborn plasmablasts generated after Ag immunization with older plasma cells 

for binding to a niche, inducing the old plasma cells to recirculate.168 In the plasma cells niches, 

early plasma cells encounter all factors they require to survive and further differentiate into 

long-living mature (CD20− SmIg− CD138+) plasma cells. Overall, circulating plasmablasts/plasma 

cells only represent about 1–3% (1–5 cells/μL) of all PB B-cells in healthy adults under steady 

state conditions, although they can be found at higher frequencies of all circulating B-cells in 

specific disease conditions associated with active immune responses (e.g. acute infection).88 

Since plasma cells progressively loose membrane BCR expression while maturing, they depend 

on other mechanisms for long-term antibody production and survival in the BM.169  

In contrast to memory B-cells, the most represented subset of plasmablasts/plasma 

cells in PB is that of circulating SmIgA+ plasmablasts/plasma cells (49% ± 12% of all PB 

plasmablasts/plasma cells); SmIgM-only plasmablasts/plasma cells represent around 18% ± 

12% and SmIgG+ cells are about 13% ± 11% of all PB plasmablasts/plasma cells. The remaining 

14% ± 12% of circulating plasmablasts/plasma cells do not express any SmIg.168,170 

Interestingly, presence of circulating IgD+IgM- plasmablasts/plasma cells (<5% of 

plasmablasts/plasma cells) has been recently reported in the PB of healthy adults,168 being 

specifically associated with immune responses involving the upper respiratory tract.171,172 

 

 

3. B-CELL CHRONIC LYMPHOPROLIFERATIVE DISORDERS 

 

B-CLPD consist of a heterogeneous group of clonal/neoplastic conditions associated 

with the accumulation of variable numbers of mature-appearing clonal B-lymphocytes blocked 

at distinct stages of B-cell differentiation from transitional/immature B-lymphocytes to plasma 

cells. The expanded neoplastic B-cells typically combine features of their normal B-cell 

counterpart, with aberrant characteristics. Whereas the former features reflect the maturation 

stage and tissue homming profile of equivalent normal B-cells, the latter are frequently related 
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to primary genetic and molecular alterations occurring during either the early stages of 

malignant B-cell transformation (e.g. derailment and oncogenic V(D)J gene rearrangements) or 

during antigen-driven GC reactions in lymphoid tissues,173-175 and/or to secondary genetic 

events associated with disease progression.  

Since expanded B-CLPD lymphocytes are clonal and (frequently) aberrant, at the same 

time they accumulate in one or more “easily” accessible tissues, such as PB, BM and lymphoid 

tissues, morphologic and multiparameter flow cytometry (MFC) analyses of B-CLPD have 

emerged with the years as the most well-suited approaches for the specific identification, 

enumeration and phenotypic characterization of the expanded tumor cells. In this regard, in 

recent years, MFC has become particularly relevant because it has proven to be a highly 

sensitive and specific method for discriminating between normal and leukemic B-cells and the 

recognition of B-CLPD-phenotypes associated with distinct disease categories, even when the 

neoplastic B-cells are present at very low frequencies among a major population of normal 

hematopoietic cells and therefore, may go undetected with conventional microscopic-based 

morphologic and histologic techniques. Furthermore, MFC requires single cell suspensions, 

which can be easily obtained from PB samples, LN biopsies and fine needle aspirates, as well as 

BM aspirated samples. 

In contrast to most normal and reactive B-cell populations, expanded mature B-cells 

from B-CLPD typically display (mono)clonal features including identical V(D)J gene 

rearrangements and Ig light chain expression restricted to Igk or Igʎ.176 In addition, these cells 

also display aberrant cell Sm and/or intracellular (Cy) protein expression profiles.177 Altogether, 

these features allow for a highly specific and sensitive identification of mature neoplastic B-

cells and their distinction from normal cells by MFC.  

In the above sections of this introduction chapter we have already described in detail 

the normal B-cell phenotypes. In turn, in B-CLPD four major types of aberrant phenotypes have 

been described so far, which include: i) crosslineage Ag expression (e.g. expression of T-/NK-

cell-associated markers such as CD2 on neoplastic B-cells); ii) asynchronous expression of 

markers associated with distinct maturation stages (e.g. Bcl2 high expression on CD10+ GC-like 

B-cells); and expression of either iii) abnormally high amounts (e.g overexpression of CD305 on 

hairy cells) or; iv)  abnormally low levels – e.g. decreased intensity of staining for CD19 and 

CD20 in follicular lymphoma (FL) and CLL B-cells, respectively – of B-lineage associated 

markers.178 In practice, detailed characterization of mature B-cell-associated aberrant 

phenotypes, contributes both to the discrimination between normal and neoplastic B-cells, as 

well as to a more accurate classification of the disease, including the screening for specific 

genetic alterations for fast subsequent molecular studies.179  
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The current WHO classification of B-CLPD is based on combined assessment of 

cytomorphological/histopathological, immunophenotypic, and genetic/molecular features of 

tumor B-cells, together with the clinical characteristics of the disease.180,181 Thus, in the WHO 

2008 classification of hematopoietic and lymphoid neoplasias, B-CLPD are identified as 

neoplastic conditions of mature lymphoid B-cells, and they are stratified into three major 

groups of diseases which are mostly related to the pattern of tissue infiltration, including: i) 

peripheral blood involvement (peripheral/mature chronic B-cell leukemias); ii) infiltration of 

secondary lymphoid tissues (peripheral/mature B-cell lymphomas) and; iii) BM (and also other 

non-lymphoid tissues) involvement (neoplastic plasma cell disorders) (Table 1).181 Of note, 

within each multiple diagnostic disease categories of these three groups of B-CLPD, those 

showing common genetic events – e.g. t(11;14) in MCL or CMYC gene rearrangements in 

Burkitt lymphoma – are included together with other genetically heterogeneous disorders that 

display either a uniform immunophenotype (e.g. CLL) or a similar pattern of tissue involvement 

(e.g. MZL). In addition, the WHO 2008 classification has also drawn attention for the first time 

to pre-malignant B-cell neoplasias related to peripheral/mature lymphoid leukemias/ 

lymphomas, such as MBL14,182 and both in situ FL183,184 and in situ MCL (Table 1).5 Although such 

cases might share many biologic features with their malignant counterparts, they usually 

display a benign clinical course with relatively low rates of malignant transformation. 
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Table 1. List of the distinct subgroups of mature B-cell neoplasias and their major features, as 

defined in the WHO 2008 classification [adapted from Campo et al.181]. 

MATURE B-CELL NEOPLASMS 

Peripheral / Mature chronic B-cell leukemias 

Monoclonal B-cell lymphocytosis (MBL) 

Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) 

B-cell prolymphocytic leukemia (PLL) 

Hairy cell leukemia (HCL) 

Peripheral / Mature B-cell lymphomas 

In situ follicular lymphoma  

In situ mantle cell lymphoma 

Splenic marginal zone lymphoma (SMZL) 

Splenic lymphoma/leukemia, unclassifiable* 

Lymphoplasmacytic lymphoma (LPL) 

Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) 

Nodal marginal zone B-cell lymphoma (NMZL) 

Follicular lymphoma (FL) 

Primary cutaneous follicle center lymphoma 

Mantle cell lymphoma (MCL) 

Diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) 

DLBCL associated with chronic inflammation 

Lymphomatoid granulomatosis 

Primary mediastinal (thymic) large B-cell lymphoma 

Intravascular large B-cell lymphoma 

Primary cutaneous DLBCL, leg type 

ALK+ large B-cell lymphoma 

Plasmablastic lymphoma 

Primary effusion lymphoma 

Burkitt lymphoma (BL) 

Large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease 

B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt 

lymphoma 

B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical 

Hodgkin lymphoma 

Neoplastic plasma cell disorders 

Heavy chain disease 

Monoclonal gammopathy of undetermined significance (MGUS) 

Plasma cell myeloma 

Solitary plasmacytoma of bone 

Extraosseous plasmacytoma 

ALK, anaplastic lymphoma kinase; HHV8, human herpes virus 8.*This histologic type is a provisional entity for which the WHO 

Working Group felt there was insufficient evidence to recognize as distinct diseases at this time. 
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In the following sections of the introduction chapter we will review the most relevant 

biological as well as clinical features of the major subtypes of B-CLPD, particularly focusing on 

CLL-like MBL and CLL. 

 

3.1. Monoclonal B-cell lymphocytosis 

 

3.1.1. Diagnostic criteria for MBL and its subtypes 

 

Several hospital-based and population-based flow cytometry immunophenotypic 

studies have been reported, in which the presence of relatively small (usually CLL-like) B-cell 

clones has been demonstrated in PB from a substantial fraction of otherwise healthy adults 

classified as with or without increased B-cell counts; MBLlow or MBLhigh, respectively.15,16,185 

In most MBL cases (85%), clonal B-cells display an immunophenotype which is similar 

to that of CLL cells (CLL-like MBL) consisting of CD5+, CD19+, CD20low, CD23+, SmIglow and 

CD79blow clonal B-lymphocytes (Table 2).14,182,186 In turn, in a small fraction of CD5+ MBL cases 

(atypical-CLL-like MBL) and in a minor proportion of cases corresponding to CD5– MBL (non-

CLL-like MBL), clonal B-cells display variable phenotypes which are distinct from those typically 

found on CLL cells (e.g. CD23+, CD20low, CD79blow and SmIglow); such phenotypes frequently 

overlap with those of MZL cells (Table 2).14 Since clonal B cells of individuals with CLL-like 

MBLlow, CLL-like MBLhigh, and CLL share an identical immunophenotypic profile and overlapping 

cytogenetic alterations, at present the distinction between the two MBL subgroups and CLL is 

mostly based on the absolute count of B-lymphocytes in PB. Therefore, while diagnosis of CLL 

requires the presence of ≥ 5,000 B-cells/µl, MBL includes only those cases with < 5,000 B-

cells/µl in the absence of organ infiltration (Table 2).14 Among MBL cases, there is consensus as 

regards the usage of a threshold of 500 B-cells/µl to distinguish between MBLlow (< 500 B-

cells/µl) and MBLhigh (≥ 500 B-cells/µl) cases. However, it should be noted that such cutoff for 

the definition of MBLlow vs. MBLhigh still deserves confirmatory approval in the coming WHO 

classifications of mature B lymphoid neoplasias. Despite this, in all cases it is mandatory to 

actively exclude an underlying (e.g. BM, LN, splenic) mature-B-cell neoplasm other than MBL, 

particularly among non-CLL-like subjects and in atypical CLL-like MBL cases with circulating 

CD5– or CD5+CD23– monoclonal B-cells at levels below 5x109/L clonal B-cells, through e.g. BM 

cytomorphological/histopathological and imaging techniques (e.g. computerized tomography 

and/or magnetic resonance imaging). 

At present, the precise significance of MBL B-cell clones, particularly of the MBLlow 

ones, still remains controversial. Thus, it has been hypothesized that expanded clonal B-cells 
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circulating in the PB of MBL subjects might either result from a transient and/or chronic 

activation of the immune system during e.g. infection,187 or they may represent premalignant 

states of CLL and NHL.5,184 So far, most reported data has focused on CLL-like MBL, while there 

is very limited information concerning individuals with CD5– non-CLL-like MBL.188  

 

Table 2.Diagnostic criteria and nomenclature for MBL [adapted from Shanafelt et al.185] 

Diagnostic criteria for MBL 

1. Documentation of one or more clonal B-cell population
1
 by ≥1 of the following criteria:  

a) Light chain restriction: kappa: lambda ratio >3:1 or <0.3:1, or 

 > 25% B-cells lacking SmIg or expressing SmIg
low

  

b) Monoclonal IGHV gene rearrangement 

2. Presence of a B-CLPD disease-specific immunophenotype
2
 

3. Absolute B-cell lymphocyte count <5x10
9
/L 

4. No other clinical features compatible with a lymphoproliferative disorder: a) absence of B 

symptoms, b) normal physical examination (no lymphadenopathy or organomegaly), c) no 

autoimmune/infectious disease 

 Subclassification of MBL: 

CLL-like MBL 

● CLL phenotype: CD5
+
CD19

+
CD20

low
CD23

+
sIg

low
CD79b

low
 

● Light chain restriction with SmIg
low

 
3
 

Atypical CLL-like MBL 

● CD5
+
CD19

+
, but CD23

- or low
 and/or CD20

high
, and/or SmIg

high
 and/or CD79b

high 

● Light chain restriction with moderate to bright SmIg expression
3
 

● Exclude t(11;14) to rule out mantle cell lymphoma 

Non-CLL-like MBL 

● CD5
-
CD19

+
CD20

+ 
B-cells 

● Light chain restriction with moderate to bright SmIg expression
3
 

1
Where possible, repeated assessment(s) should also demonstrate that the monoclonal B-cell population is stable 

over a 3-month period. 
2
In the absence of a disease-specific immunophenotype, a highly skewed kappa:lambda ratio may result from a 

reactive process/immune response. 
3
Very small MBL clones may be oligoclonal and thus not light chain restricted. 

 

3.1.2. Prevalence of MBL 

 

The prevalence of MBL in the general population varies substantially (from 0.6% to up 

to 20% of cases) depending on the population-cohorts investigated and the sensitivity of the 

MFC immunophenotypic approach used.15,16,185 Thus, in the general population, MBL is more 

commonly detected among males, its frequency increasing with age, similarly to what is 

observed in CLL.15,189 Reports on more limited series of first degree relatives of CLL patients 

also suggest familial aggregation and consequently, a genetic predisposition/ inheritance.190,191 
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The prevalence of MBL in the general population appears to be very rare under the age 

of 40.16,186 Thereafter, it increases from 5.1% of adults with 40–49 years and 5.3% of adults 

aged 50 to 59 years, to much higher rates: 17.5%, 21.7%, 27.3% and 75% among the 60–69, 

70–79, 80–89 years and >89 years age groups, respectively.15 In turn, the risk for MBL appears 

to be increased by 4-fold in first-degree relatives of CLL patients.190,191 Conversely, there is 

almost no data about the prevalence of MBL among first-degree relatives of individuals with 

MBL. 

Regarding non-CLL-like MBL, controversial results have been reported in the literature 

with respect to the age at onset of the underlying B-cell clones. Ghia et al.186 suggested that 

non-CLL-like MBL clones are already detectable in the general population in sizeable amounts 

among individuals younger than 40 years and that their frequency is only marginally affected 

by age. Thus, based on the observations of Ghia et al.186 it could be hypothesized that while 

CLL-like MBL could be related to physiologic immune senescence-associated mechanisms, this 

would not explain the observation of other non-CLL-like MBL cases. However, it should be 

noted that, in contrast to what occurs in CLL-like MBL, currently there are no highly sensitive 

assays for the identification of non-CLL-like B-cells in PB, which weaknesses the potential 

conclusions about the exact prevalence (and even phenotypes) of non-CLL MBL. In addition, 

Nieto et al.192 found a progressively higher frequency of non-CLL-like MBL cases in the general 

population with increasing age, the frequencies observed ranging from 0.4% among subjects 

aged 40–59 years to 5.4% among individuals over 80 years; such findings, suggest a similar 

behavior in the general population for non-CLL-like and CLL-like MBL, as regards its prevalence 

and distribution per age. 

 

3.1.3. Risk factors for progression from CLL-like monoclonal B-cell lymphocytosis to 

chronic lymphocytic leukemia 

 

The strong association reported between CLL-like MBL and increasing age, has 

promoted the hypothesis that MBL could be one of many signs of “immunosenescence”.193 

Immunosenescence is a physiological process which involves an impaired function of immune 

cells. Among B-cells, immunosenescence is associated with accumulation of B cell populations 

producing polyreactive and autoreactive antibodies, lower incidence of SHM, and a more 

limited IGHV gene usage together with the emergence of oligo and even (mono)clonality, 

including the presence of detectable (mono)clonal component peaks in the serum.194-196 

Actually, presence of tiny numbers of clinically indolent (mono)clonal B cells with a CLL or 

other B-CLPD associated phenotype, is a rather common finding at the very early phases of 
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most mature B-cell neoplasms. The most well-recognized example of such early events is 

monoclonal gammopathy of undetermined significance (MGUS), which shows an incidence of 

around 1% in the general population older than 50 years, such frequency increasing thereafter 

to up to 10% among subjects older than 75 years.197 Of note independent studies198,199 have 

demonstrated that in most multiple myeloma (MM) patients, the disease is preceded by MGUS 

with a malignant transformation rate of MGUS to MM of between 1% and 2% cases per 

year.200 More recently, a similar behavior and relationship has been identified for CLL-like MBL 

and CLL5,184 as discussed below.  

Population-based screening for CLL-like MBL has shown that MBLlow is more commonly 

associated with oligoclonality than CLL (20% of MBL vs. 5% of CLL) and MBLlow is enriched for 

lower risk CLL markers, such as mutated IGHV sequences (around 87% of MBLlow clones have 

mutated Ig genes vs. around 50% of CLL cases).20 These findings suggest that the acquisition of 

a CLL-like cell surface immunophenotype does not necessarily go along with the emergence of 

a single clone, but it might more likely reflect a functional state potentially associated with 

prolonged/chronic B-cell stimulation, activation and/or immunesenescence, similarly to what 

has been  previously described for T cells in the aging population, where chronic and persistent 

viral infections induce the emergence of oligoclonal and even monoclonal expansions of 

CD4+CD8+ T lymphocytes, under the influence of a specific genetic background (e.g. HLA-class II 

haplotypes).201,202 In this regard, it should be noted that preliminary investigations of IGHV 

gene usage in CLL-like MBLlow based on highly-sensitive single cell purification techniques, have 

shown that clonal B-cells from MBLlow cases less frequently use VH CDR3 stereotypes (see 

definition in section 3.2.3.2.), their restricted IGHV repertoire (e.g. the IGHV4–59 and IGHV4–

61 families are more frequently used than others) being also distinct from that detected in 

both mutated and unmutated CLL cases.15,20,203 Overall, the above biological differences 

observed between expanded clonal B-cells in CLL-like MBLlow vs. CLL suggest that detection of 

CLL-like MBL in an otherwise healthy subject is not always equivalent to a preleukemic state, 

because specific BCR configurations are more prone than others for disease transformation. In 

line with this hypothesis, it has been recently shown in a cross-sectional epidemiological study 

that in the general population, MBLlow is significantly associated with a personal history of 

pneumonia and meningitis and infectious diseases among their children, while it was less 

commonly observed among subjects vaccinated against pneumococcus and influenza; these 

results suggest that exposure to infectious agents leads to serious  clinical manifestations in 

the patients or their relatives and that they may more frequently trigger immune events 

leading to MBL.204 
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In contrast to what has been described for MBLlow, in MBLhigh cases the biology of the 

expanded CLL-like B-cell clone more closely mimicks what is also seen in good-risk CLL: it 

shows molecular features similar to good-prognosis CLL (e.g. a bias toward mutated and 

clinically favorable BCR) different from those that are more frequently found in MBLlow.16 For 

example, recent investigations203,205 indicate that Ig genes commonly expressed in CLL (IGVH1–

69 and IGVH4–34) are also frequently used in CLL-like MBLhigh (IGVH4–34 and IGVH3–23), but 

rarely observed in MBLlow. 

In line with what has been described above for the IGHV repertoire of MBL, 

cytogenetic analysis of clonal B-cells from CLL-like MBL subjects has also demonstrated 

alterations – typically restricted to del(13q) and trisomy 12 – in about 40% of cases vs. >50% of 

CLL patients.16,206 These abnormalities are usually seen in only a fraction of all abnormal cells, 

such fraction increasing from MBLlow cases to CLL.20 Despite MBLlow does not show poor-

prognosis cytogenetic/molecular alterations – e.g. del(17p), del(11q) or NOTCH1 mutations – 

currently there is no cytogenetic marker which identifies MBL individuals who are likely to 

develop progressive disease.203,206 Of note, in some MBLlow cases, cytogenetic alterations are 

observed even when the number of circulating MBL cells is extremely small, once again, in the 

absence of any evidence of progression to MBLhigh and CLL.187 Overall, these findings mimick 

what has been previously reported also for most MGUS cases, where the (mono)clonal plasma 

cells frequently bear overlapping chromosomal abnormalities and cytogenetic profiles with 

symptomatic MM;207,208 at the same time, it may also contribute to explain why cells carrying 

the t(14;18) translocation (the cytogenetic hallmark of FL) can be found in the PB of 

approximately 50% of healthy persons in the absence of evidence for disease progression.209 In 

more detail, del(13q14) can be detected in approximately an equal proportion of CLL-like MBL 

and CLL, particularly among IGHV mutated clones, independent of the absolute number of 

circulating CLL cells.210,211 Once again, these observations highlight the fact that development 

of very small CLL clones with “good risk” cytogenetic and biological features is a common 

finding in the elderly and it may be a consequence of the ageing of immune system more than 

an actual oncogenic event; at the same time, they indicate that additional factors are required 

to drive small CLL clones to expand. In contrast to del(13q) cytogenetic abnormalities which 

are associated with poor prognosis CLL, such as del(17p13), del(11q22) and NOTCH1 

mutations, have not been reported in MBLlow and they are only occasionally seen in CLL-like 

MBLhigh.15,16,18 These observations, together with the restricted but different, IGHV repertoire 

detected in MBLlow vs. MBLhigh, suggest that in addition to the occurrence of specific genetic 

alterations, specific BCR signaling would be also required for the expansion of CLL-like MBL 

cells and for the transformation of MBL to symptomatic CLL, at least in a fraction of the cases.  



 

36 
 

Chapter 1 INTRODUCTION 

In this regard, it has been recently shown that CLL is always preceded by an MBL 

state,212 similarly to what occurs with MM and MGUS. In turn, this is also consistent with the 

fact that most MBL cases will not progress to CLL, particularly among MBLlow subjects, where 

progression appears to be very unlikely.213 Due to the arbitrary cutoffs used for the distinction 

between MBL and CLL Rai stage 0, at present it is well-accepted that it is more appropriate to 

define the risk of MBL progression as the risk for developing CLL requiring treatment, than just 

the risk to develop CLL. Based on such criteria, follow-up studies of large series of MBLhigh cases 

have found an annual risk of progression of MBLhigh to CLL requiring treatment of between 1 

and 2% vs. 5 to 7% for CLL Rai stage 0 patients.16,18,214 Today, the only prognostic factor known 

to predict progression of MBL to CLL is the actual number of clonal B lymphocytes in PB.16,18 

However, other prognostic markers that are informative within CLL might also be applied to 

CLL-like MBL, to predict which cases might progress to CLL and eventually require treatment. 

Therefore, established risk factors for CLL, such as the IGHV mutational status, 

cytogenetic/molecular aberrations, expression of specific phenotypic markers (e.g. ZAP-70, 

CD38 and CD49d), are potentially also adverse prognostic factors among CLL-like MBL subjects, 

their precise value deserving further investigations.  

Other factors that might contribute to understand the pathogenesis of MBL and 

predict transformation of MBL into CLL include an altered homeostasis and functionality of 

both NK- and/or T-cells, which have been suggested to influence survival of CLL B-cells and 

progression of the disease.19,215 In this regard, recent studies have shown that in MBL subjects, 

CD4+CD8+ double-positive T-cells are significantly reduced in absolute numbers while CD8+CD4– 

T-cells are increased, supporting the notion that an impaired immunosurveillance function may 

favor the emergence of MBL clones.216 Moreover, presence of MBL clones in healthy subjects 

is associated with reduced counts of normal circulating PB B-cells, mainly at the expense of 

immature and naive B-cells, such decrease being more pronounced as the number of MBL cells 

increases.216 Based on these observations, it could be hypothesized that the reduced PB counts 

of normal B-cells at the expenses of recently produced B-cell subsets in MBLlow, could depend 

on the size of the B-cell clone in the BM, suggesting a potential suppressive effect of the MBL 

clone on normal B-lymphopoiesis. Whether these abnormalities occur before or after the 

emergence of the MBL clone(s), and whether this reduction derives from immune-suppression 

or it may reflect a decrease in B-cell production at BM niches due to MBL-cell competition, 

requires further investigations. 

Altogether, the above observations raise the question about whether there is a time-

dependent pipeline of unavoidable events leading from MBLlow to MBLhigh and also to CLL, or 

MBLlow simply represents one of many features of immunesenescence, while (clinical) MBLhigh 
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is already a pre-malignant CLL state. At present, further research is still required to elucidate 

this question. However it should be noted that the understanding of the molecular and 

biological features underlying the risk of progression of MBL to CLL may significantly modify 

the currently used strategies for the follow-up of MBL, leading to a more refined management 

of CLL premalignant states and a better follow-up of MBL cases at risk of progression, for early 

adoption of measures that would potentially block or delay malignant transformation. 

 

3.2. Chronic lymphocytic leukemia 

 

3.2.1. Definition and diagnostic criteria for CLL 

 

CLL is the most common leukemia in adults in the Western world.217,218 It is a chronic 

incurable disease which is characterized by progressive accumulation of B cells in the PB, BM, 

and/or lymphoid tissues.219 When the disease mostly involves the PB and BM, it is called CLL, 

while when LN or other tissues are preferentially infiltrated by tumor cells with identical 

morphologic and immunophenotypic features to CLL, in the absence of the typical leukemic 

manifestations of the disease, it is called small lymphocytic lymphoma (SLL). In the WHO 2008 

classification,180,181 these two entities (CLL and SLL) are simply considered as different clinical 

manifestations of the same disease. Current diagnostic criteria for typical CLL requires the 

presence of at least 5,000 B lymphocytes/µl of PB with a CLL immunophenotype, or LN 

involvement by CLL cells in case of SLL.220 BM involvement is typically present, infiltrating CLL 

cells usually represent more than 30% of all nucleated cells in the aspirated BM sample. 

Despite a remarkable phenotypic homogeneity, CLL is characterized by an extremely 

variable clinical course with very heterogeneous responses to treatment; thus, while some 

patients do not require therapy for rather long periods of time after diagnosis or they reach 

complete and prolonged remissions after treatment, others relapse early and need several 

lines of treatment and frequently die from the disease.221 Such clinical heterogeneity most 

likely reflects the underlying molecular and cellular heterogeneity of the disease.22 In fact, 

several lines of research have demonstrated that CLL can be subdivided into multiple 

subgroups with distinct biological features, based on underlying genomic features, 

cytogenetic/molecular aberrations and/or the immune signaling pathways that can be 

activated via cell surface and/or intracellular receptor molecules of both the innate (e.g. TLRs) 

and adaptive (e.g. BCR) immune system.22,222,223 
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3.2.2. Immunophenotypic features of CLL cells 

 

The typical immunophenotypic profile of CLL small lymphocytes includes coexpression 

of CD5 and CD23 in the absence of FMC7 and low expression levels of SmIg (often IgM with or 

without IgD);224 in addition, the levels of expression of several other B-cell-associated cell 

surface membrane molecules like CD20, CD22, CD79b and CD81 are also significantly 

decreased compared to those found on normal mature B-lymphocytes.225 CLL cells also 

coexpress CD43 and CD200 which may provide further information in differentiating CLL from 

other B-cell NHL and chronic lymphoid leukemias such as FL (e.g. CD43 is positive in CLL but 

usually negative in FL) and MCL (e.g. CD200 is consistently expressed in CLL whilst it is negative 

or very weakly expressed in MCL).226 Moreover, CLL cells are usually positive for CD21, CD24, 

CD25, CD27, CD39, CD40, CD45RA, CD62L and CXCR5 (CD185). In turn, CD11c, CD38, CD45RO, 

CD49d, CD80, CD95, CD124, CD126, CD130, ZAP-70 and other markers that recognize adhesion 

molecules, are expressed at variable levels in a fraction of all CLL/SLL cases.  

 

3.2.3. Molecular features of CLL cells  

 

3.2.3.1. Immunoglobulin heavy chain variable region gene usage in CLL 

 

In recent years, several studies have confirmed that the IGHV gene repertoire of CLL is 

restricted and different from that of normal IgM+ B-cells;227-229 thus, several IGHV genes are 

clearly over-represented in CLL (e.g. the IGHV1-69, IGHV4-34, and IGHV3-7 genes).227 Similarly, 

a restricted usage of specific IGHD and IGHJ genes has also been described in CLL.13 In this 

regard, only five IGHD genes are used by almost half of all CLL cases, the IGHD3-3 gene being 

the most frequently selected; in turn, the IGHJ gene repertoire of CLL cells is characterized by a 

preferential usage of the IGHJ4 and IGHJ6 genes.230,231 Such restricted IGH gene repertoire 

leads to the predominant usage of specific IGHV, IGHD and IGHJ gene combinations. For 

example, IGHV1-69 gene rearrangements are strongly biased toward the usage of the IGHD3-3 

and the IGHJ6 genes; in contrast, no significant (or minor) biases are noted for cases 

expressing other IGHV genes, particularly IGHV4-34, IGHV3-7 and IGHV3-23.230,232 

Furthermore, the imprint of SHM is not uniform across different IGHV genes in CLL; thus, the 

IGHV1-69 gene most frequently carries very few or no mutations, as opposed to the IGHV3-7, 

IGHV3-23 and IGHV4-34 genes, which are mutated in a relatively significant proportion of 

cases.227  
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3.2.3.2. Stereotyped B-cell receptors in CLL 

 

Immunogenetic studies of the BCR repertoire of CLL cells has revealed the presence of 

homologous BCR in a significant proportion of cases, suggesting that recognition of common 

epitopes or classes of structurally similar epitopes is likely involved in the selection of CLL 

clones.233-235 Overall, different types of homologous BCR have been defined, enabling different 

cases to be grouped into subsets based on common sequence features of the BCR, particularly 

the homology of their VH CDR3 sequences. These highly similar BCR have been referred as 

“stereotyped” BCR.233 So far, more than 200 different subsets of cases carrying stereotyped 

BCR have been defined, 8 of such subsets accounting for ≈30% of all stereotyped CLL cases.236 

In 2007, a set of criteria was proposed for the definition of stereotyped BCR based on 

the specific underlying IGH V(D)J gene rearrangements;237 these criteria include: 1) a VH CDR3 

aa identity ≥60%, in line with established bioinformatic concepts for evaluating sequence 

conservation in protein sequences; 2) usage of the same IGHV/IGHD/IGHJ germline genes or 

different IGHV genes, as long as the above criterion for VH CDR3 sequence conservation is 

met; 3) usage of the same IGHD gene RF.  

Based on this clustering approach for stereotyped BCR in CLL, it has been shown that 

the frequency of BCR Ig stereotypes in CLL can exceed 25% of the entire CLL patient cohort;13 

although BCR Ig stereotypes exist among both mutated and unmutated CLL, they are 

significantly more frequently observed in the latter group.233,238 Of note, different versions of 

BCR Ig stereotypes can be defined based on shared VH CDR3 aa sequence patterns, which are 

distinct for each subset.239 Interestingly, the relative size of each subset differs markedly, from 

just two to large numbers of cases with homologous BCR, since individual genes show a 

markedly different susceptibility to be used in stereotyped rearrangements in CLL. Hence, 

while the frequency of stereotyped rearrangements has been shown to exceed 30% of the 

cases for some IGHV genes (e.g. IGHV3-21, IGHV1-69, IGHV1-2, IGHV1-3, IGHV4-39, IGHV3-48), 

it is rather low (<5%) for other IGHV genes (e.g. IGHV3-7, IGHV3-74).237 In addition, individual 

subsets of cases with stereotyped VH CDR3 are often characterized by restricted Ig light chain 

gene usage and CDR3 features.237,240,241 On top of all the above, specific subsets of stereotyped 

CLL cases may be also associated with distinct clinical/phenotypic features including a different 

outcome (see section 3.2.5.2. below), raising the possibility that a particular Ag binding site can 

be critical in determining clinical presentation and potentially also even disease 

prognosis.237,242 Finally, although BCR stereotypes have also been found in other B-CLPD, those 

observed in CLL are frequently different from the ones reported in other B-cell malignancies 
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such as splenic MZL (SMZL) and MCL, alluding to distinct disease-biased, selective and 

ontogenetic processes.243,244 

Based on the above observations it might be concluded that depending on the BCR 

repertoire, CLL actually consists of two major different categories which show important 

biological and ontogenetic differences;13 the first includes cases with heterogeneous BCR (non-

clustered cases), while the second is characterized by a remarkably high frequency of BCR 

stereotypy (clustered cases). The biological significance of BCR stereotypy still remains to be 

fully understood.  

 

3.2.3.3. Recognition of conserved epitopes by CLL cells 

 

Detailed dissection of the potentially relevant antigenic epitopes recognized by the 

BCR in CLL, indicates that these might probably correspond to molecular structures usually 

involved in eliminating cellular debris, scavenging apoptotic cells and apoptotic bodies, and/or 

providing a first line of defense against pathogenic bacteria.245-247 For instance, non-muscle 

myosin heavy chain IIA (MYHIIA), which is expressed on a subpopulation of apoptotic cells 

(called myosin-exposed apoptotic cells or MEAC), emerged as the antigenic target of CLL 

monoclonal antibodies (mAbs) from a subset of cases expressing IGHV1-69/IGHD3-16/IGHJ3 

stereotyped BCR, as well as of several other CLL mAbs.246 Other Ags recognized by CLL cells 

have been functionally associated with specific bacterial infections – e.g. molecular mimicry 

driven by Streptococcus pneumoniae capsular polysaccharides, Gram-positive, Gram-negative 

bacterial strains and oxidized low-density lipoprotein (LDL) –.248 Viral infections have also been 

suggested to drive subgroups of BCR stereotyped CLL cases; accordingly, persistent infection 

by Epstein–Barr virus (EBV) and cytomegalovirus (CMV) has been correlated with a 

stereotyped IGHV4-34 subset249 and hepatitis C virus (HCV) has been recently associated with 

stereotyped IGHV4-59/IGKV3-20 CLL mAbs, albeit indirectly, since such CLL mAbs can exhibit 

rheumatoid factor activity.250 Interestingly, the existence of rheumatoid factor with restricted 

Ig gene sequences in various conditions (e.g. CLL, SMZL, myoepithelial sialadenitis in primary 

Sjogren’s syndrome, mixed cryoglobulinemia type II) may allude to cross-reactivity or 

molecular mimicry of the antigenic elements which are involved in the selection of the 

clonogenic B-cell progenitors involved in distinct pathologic conditions.250 
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3.2.4. Genomic aberrations in CLL 

 

Genomic aberrations can be identified in around 50-80% of CLL cases by iFISH analysis 

of CLL cell nuclei with a disease-specific probe set.251,252 The most common chromosomal 

abnormalities in CLL are del(13)(q14), trisomy 12, del(11)(q22–23), del(17)(p13) and 

del(6)(q21).222 Del(13q14) followed by trisomy 12 are the two most frequent cytogenetic 

alterations in CLL, being present in between 8% and 60% and between 10% and 25% of all 

cases, respectively.222,252,253 In turn, del(17p13) and del(11q23.3-q23.1) are detected in a 

significantly lower proportion of cases, ranging between 5% and 16% and between 5% and 

15% of all CLL cases, respectively.222,252,253 In common, these cytogenetic abnormalities, and a 

number of other chromosomal defects, are known to target genes that play a key role in the 

regulation of cell proliferation, survival, and/or DNA repair, such as the tumor protein p53 

(TP53), retinoblastoma (RB), ataxia telangiectasia mutated (ATM), CYCLIN D2, cyclin-dependent 

kinase 4 (CDK4), and E3 ubiquitin-protein ligase (MDM2) genes. Despite the high frequency of 

both del(13q14) and trisomy 12 and the fact that they have been suggested to play a primary 

and central role in the transformation process in CLL,254 the pathogenic role of del(13q) and 

trisomy 12 in CLL is not fully understood. In this regard, at present it is known that the deleted 

chromosome 13q region, always comprises the locus coding for two microRNA (miRNA), 

miRNA-16-1 and miRNA-15a, which have been suggested to act as tumor suppressor genes in 

the pathogenesis of CLL via down-regulation of expression of the antiapoptotic Bcl2 

protein;255,256 in turn, in a fraction of cases carrying del(13q), larger deletions that include the 

region coding for the RB1 gene occur, such larger deletions being associated with a poorer 

clinical outcome, potentially due to an altered control of cell proliferation and survival.257-259 

Besides its relevance in the pathogenesis of CLL, miRNA expression profiles may also 

be relevant prognostic markers in CLL. In this regard, it should be noted that critical processes 

of the B-cell physiology, including immune signaling through the BCR and/or TLR, are targeted 

by miRNA and, changes on the expression of specific miRNA (e.g. upregulation of miRNA-150, 

miRNA-29c, miRNA-143 and miRNA-223 and downregulation of miRNA-15a) which are 

differentially expressed among mutated vs. unmutated CLL cases and in certain CLL 

stereotypes (e.g downregulation of miRNA-101 in subset 1), may also modulate the biological 

and clinical behavior of CLL clones.260 As an example, miRNA-101 regulates the expression 

levels of the enhancer of zeste homolog 2 (EZH2) protein; consequently, its overexpression is 

associated with more aggressive CLL.260  

Recent studies devoted to whole CLL genome sequencing have shown the presence of 

more than one thousand distinct mutations across CLL patients. However, the frequency at 
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which such mutations were found in CLL was relatively low, except for a few genes.6,261,262 The 

recently identified genes, included the Notch 1 (NOTCH1, 12.3%), splicing factor 3b subunit 1 

(SF3B1, 9.0%), TP53 (7.1%), exportin 1 (XPO1, 3.4%), F-box and WD repeat domain containing 7 

(FBXW7, 2.5%), myeloid differentiation primary response gene 88 (MyD88, 1.5%) and the 

kelch-like family member 6 (KLHL6, 1.8%) genes, apart from those that had been previously 

described.6,263 Since, some of these mutations can also emerge during the clinical course of 

CLL,264 future studies are required to clarify how this might influence treatment strategies, as 

data suggest that therapy may disrupt the interclonal equilibrium and lead to evolution of 

subclones with driver mutations such as SF3B1, NOTCH1 or TP53 mutations.265 Furthermore, a 

recent cohort study has shown that different subgroups of CLL can be defined according to co-

occurrence of distinct patterns of genetic alterations for some of these mutations: 1) 

mutations in SF3B1 gene are frequently associated with del(11q); 2) mutations in the NOTCH1 

and the FBXW7 genes are associated with trisomy 12, whereas these two mutations and SF3B1 

mutations were nearly mutually exclusive, and; 3) mutations in the MYD88 gene are mainly 

found in combination with isolated del(13q), while NOTCH1, FBXW7 and SF3B1 mutations are 

rarely found in this cytogenetic subgroup of CLL.263 Thus, the combination of molecular 

markers with discrete cytogenetic subgroups may hint at distinct ways of CLL pathogenesis and 

may explain the clinical heterogeneity of the disease.  

 

3.2.5. Outcome and prognosis of CLL patients 

 

As discussed above, CLL is a clinically and biologically heterogeneous disease, with a 

highly variable outcome. During the last decades, several clinical and biological variables, 

including the immunogenetic profiles of CLL cells, have been related with the prognosis of the 

disease. 

 

3.2.5.1. Clinical and biological prognostic factors  

 

The standard clinical procedures to estimate prognosis in CLL are based on the staging 

systems developed by Rai et al.266 and reformulated latter on by Binet et al..267 These systems 

(Table 3) define early (Rai 0, Binet A), intermediate (Rai I/II, Binet B) and advanced (Rai III/IV, 

Binet C) stage disease with, median estimated overall survival rates of >10 years, 5-7 years, 

and only 1-3 years, respectively. Because most patients present early or intermediate stage 

disease and a heterogeneous course of disease occurs for individual patients within the same 
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disease stage, additional markers are needed to stratify patients who are at increased risk of 

disease progression with a potentially decreased survival, within individual disease stages.  

A relatively high number of prognostically relevant markers have long been identified 

in CLL. Among other, these include clinical characteristics (e.g. patient age, gender, and 

performance status) in addition to the stage of the disease, as well as laboratory parameters 

reflecting the tumor burden and/or activity of the disease, (e.g. lymphocyte count, BM 

infiltration pattern or lymphocyte doubling time) (Table 4).268 More recently, prognostic 

markers related to the biology of the tumor have been also identified, including serum 

parameters, immunophenotypic markers and cytogenetic/molecular characteristics of CLL 

cells, such as the mutational status of the IGHV genes (Table 4) that will be specifically 

discussed in the following section of this chapter.222,269-271 

 

 Table 3. Rai et al. and Binet et al. staging systems for the prognostic classification of CLL.  

 

At present, it is widely accepted that chromosomal aberrations are one of the most 

relevant prognostic factors in CLL, being associated with different clinical and prognostic 

features of the disease. Thus, in general a normal karyotype and presence of isolated del(13q) 

are both associated with a significantly better outcome, whereas trisomy 12 confers an 

intermediate prognosis associated with atypical CLL, and both del(11q) and del(17p) are 

associated with a particularly poorer outcome.222,252,272 Despite this, recent studies have shown 

that there is a significant heterogeneity in the outcome of patients with isolated del(13q),273-276 

Staging 

System 
Stage Definition Median survival 

Rai et al. 

staging 

system 

0 (low risk) Lymphocytosis only 11.5 years 

I (intermediate risk) Lymphocytosis and lymphadenopathy 11.0 years 

II (intermediate risk) Lymphocytosis in blood and marrow with 

splenomegaly and/or hepatomegaly ( with or 

without lymphadenopathies) 

7.8 years 

III (high risk) Lymphocytosis and anemia (hemoglobin 

<110g/L or a hematocrit <33%) 

5.3 years 

IV (high risk) Lymphocytosis and thrombocytopenia 

(platelet count <100x10
9
/L) 

7.0 years 

      

Binet et al. 

staging 

  

A Enlargement of <3 lymphoid areas (cervical, 

axillary, inguinal, spleen, liver); no anemia or 

thrombocytopenia 

11.5 years 

B Enlargement of ≥3 lymphoid areas  8.6 years 

C Anemia (hemoglobin <100 g/L) or 

thrombocytopenia (platelet count 

<100x10
9
/L), or both 

7.0 years 
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the clinical impact of biallelic vs. monoallelic del(13q) still remaning controversial. In this 

regard, it should be noted that while biallelic loss of chromosome 13q is frequently seen as a 

secondary cytogenetic event with a limited impact on prognosis, the progressive accumulation 

of high percentages of cells (>90%) carrying del(13q) has been described as an independent 

prognostic factor for risk stratification of patients with del(13q).277  

TP53 and SF3B1 mutations emerge among the strongest biological markers with an 

independent prognostic value in CLL patients receiving current standard first-line therapy.278 

CLL patients with TP53 mutation have a poor prognosis when treated with fludarabine (F)-

based chemotherapeutic regimens regardless of the presence of del(17p) and should be 

considered for alternative treatment approaches.279 In turn, SF3B1 mutations have a lower 

incidence in early CLL stages, and they are more commonly observed in advanced disease, 

tending to be associated with a poorer prognosis.16,280 NOTCH1, XPO1 and MYD88 are other 

three genes that are recurrently mutated in CLL, being associated with a better (e.g. MYD88) 

or a poorer outcome (NOTCH1, XPO1).  

In addition to tumor cytogenetics, several immunophenotypic markers of CLL cells, 

have also been associated with the prognosis of the disease. Thus, both CD38 and ZAP70 

expression have been shown to be associated with a poorer outcome in CLL.281,282 Similarly, 

increased expression of the CD49d integrin has consistently been identified as an independent 

negative prognosticator for CLL, particularly among IGHV unmutated cases, defining a subset 

of CLL patients characterized by an aggressive and accelerated clinical course;271,283,284 in 

contrast, preliminary data also suggests that CD305 (LAIR1), an inhibitory B-cell signaling 

molecule, appears to confer a better prognosis in CLL.285 Other markers that have been also 

associated with adverse prognostic features of CLL include: higher expression of CD74286 and 

absence of CTLA4 expression.287 Of note, specific polymorphic variants of CTLA4 have been 

associated with advanced Rai stages and an increased risk of progression of CLL.288 
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Table 4. Outcome of CLL patients distributed according to selected prognostic factors [Adapted 

from Shanafelt et al.268]. 

  

Clinical Risk 

  

Low High  

M
aj

o
r 

Sex Female Male 

Clinical stage Binet A Binet B or C 

  Rai 0, I Rai II, III, IV 

    

BM infiltration pattern Non-diffuse  Diffuse  

Morphology of lymphocytes Typical  Atypical 

Lymphocyte doubling time > 12 months < 12 months 

% of CD38
+
CLL cells <20-30% >20-30% 

Interphase FISH cytogenetics/ 

Whole-genome sequencing mutated 

genes 

Normal; del13q (sole)/ 

MYD88 

del(11q); del(17p)  

TP53  

SF3B1 

NOTCH1 

XPO1 

    

IGHV mutational status Mutated (≥2%) Unmutated (<2%) 

Cellular expression of ZAP-70 

Cellular expression of CD49d 

Cellular expression of CD74 

Low 

Low 

Low 

High 

High 

High 

Cellular expression of CD305 High Low 

Cellular expression of CTLA4 High Low 

   

Serum thymidine kinase activity  Low or Normal Elevated 

 

    

O
th

e
r Beta2-microglobulin (serum levels) Low (<2.5 mg/L) High (>2.5 mg/L) 

Soluble CD23 (serum levels) Low (<574 U/mL) High (>574 U/mL) 

 

 

3.2.5.2. Immunogenetic parameters and profiles with prognostic impact in CLL 

 

The load of somatic mutations across the sequence of the rearranged IGHV genes was 

the first highly accurate molecular marker for prognostication of CLL and it still remains one of 

the strongest prognostic markers of the disease, which is independent from the Binet/Rai 

staging (Table 4). Thus, mutated (<98% homology with germline sequences) CLL is usually 

associated with early stage and more stable forms of the disease, whereas unmutated (≥98% 

homology) CLL typically shows more aggressive features and a poorer outcome.278,289 Most 

interestingly, the mutational status of the IGHV genes also appears to be associated with 

acquisition of specific genetic alterations. Thus, mutations of the MYD88 gene are 

predominant in CLL with mutated IGHV and define a good-prognosis subgroup of young 

adults;290 in contrast, NOTCH1, SF3B1 and XPO1 mutations are mainly detected in patients with 
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unmutated Igs.263 These patterns of association between the IGHV somatic mutation profile 

and specific genetic changes, support the notion that recurrent mutations of the NOTCH1, 

MYD88, SF3B1 and XPO1 genes are oncogenic changes that contribute to the clinical evolution 

of specific subsets of CLL patients defined by their IGHV gene status.6  

In addition to the IGHV mutational status, specific IGHV genes have been also 

associated with the prognosis of CLL. The first hints suggesting that not only the mutational 

status of the IGHV genes, but also other BCR features could be prognostically relevant in CLL, 

came more than 10 years ago, in 2002. At that time, it was already found that usage of the 

IGHV3-21 gene was associated with an adverse prognosis, regardless of the SHM load.291 

Afterward, other reports confirmed the association between specific IGHV genes and 

prognosis of CLL; while some IGHV genes confer an adverse prognosis (e.g. IGHV3-23)292 others 

are associated with a more favorable outcome (e.g. IGHV3-30 and IGHV3-72) of CLL.293 

However, except for the data on the prognostic impact of the IGHV3-21 gene, for which there 

is strong evidence,294,295 the prognostic association of other IGHV gene usage profiles is based 

on retrospective analyses of rather small patient series, hence requiring definitive 

confirmation in prospective studies including larger numbers of patients.  

In parallel, specific associations have also been reported in CLL between subsets of 

cases with (quasi-identical) 'stereotyped' BCR and several clinical features of the disease.238,296 

As an example, CLL cases expressing stereotyped IGHV4-39/IGHD6-13/IGHJ5 BCR more 

frequently experience aggressive disease complicated by severe recurrent infections, Richter’s 

transformation and/or the occurrence of secondary neoplasias (e.g. solid tumors).238 Another 

clinically relevant example of such association, relies on cases showing expression of 

stereotyped IGHV4-34/IGKV2-30 BCR of the IgG isotype together with unique patterns of SHM, 

occurring in younger CLL patients237,297,298 presenting a more indolent disease.237,297 Also, the 

cooperative association between IGHV4-39 gene usage and specific BCR stereotypes,  NOTCH1 

mutation and trisomy 12, more frequently leads to CLL transformation into Richter 

syndrome;236 similarly, coexistence of SF3B1 mutations and specific BCR stereotypes 

associated to the IGHV3-21 gene, invariably leads to disease progression among such CLL 

cases.236  

 

3.2.6. The cell of origin of CLL-like MBL and CLL 

 

In human hematopoietic cells, genetic alterations which are responsible for oncogenic 

transformation should in principle accumulate in cells that already have (or will acquire) self-

renewing proprieties, such as HSCs. Such cells can continuously produce a number of 
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progenitors which carry the same genetic alteration and that are potential targets for 

additional mutations,299 which might become leukemia stem cells with self-renewal capacity 

and a limited ability to differentiate normally.300,301 

While myeloproliferative neoplasms and myelodysplastic syndromes are known to 

arise at the HSC stage in hematopoiesis, many other hematologic malignancies have been 

linked to later stages in the hematopoietic hierarchy.302-304 For example, aggressive acute 

leukemias are generally believed to arise from early progenitors, with some initial 

leukemogenic events occurring in the HSC themselves.303,304 In turn, most mature B cell 

lymphomas and leukemias are classified according to their presumed cell of origin along the 

continuum of B cell development and differentiation, early oncogenic events potentially 

targeting long living pre-GC B-cells, memory B-cells and/or plasma cells.7 

In recent years, the focus of research in CLL has moved towards the molecular genetic 

level. This is due to the fact that there is a general believe that the identification and the 

understanding of those genetic and molecular mechanisms directly responsible for the course 

of the disease, such as clinical progression, response to treatment and overall survival, will 

contribute to accelerate the cure of the disease, at the same time they will provide insight into 

those events leading to the development and malignant transformation, in CLL. Consequently, 

an increasing number of studies have been reported which provide useful information to 

delineate part of the history of the malignant CLL clone, particularly during the period that 

precedes malignant transformation, e.g. at the stage of MBL.  

 

3.2.6.1. Multistep models for human CLL development 

 

The precise B-cell subset targeted at the initial stages of CLL, still remains a matter of 

debate, and current knowledge about the history of the cell of origin of CLL, prior to leukemic 

transformation, is incomplete. Consistent expression of CD5 on CLL cells led to initial 

speculations that CLL might be a malignancy of CD5+ B-cells,305,306 a subset of B-lymphocytes 

that represent a distinct B cell lineage (B1 B-cells) in mice where they are capable of self-

renewing, producing natural/polyspecific antibodies and responding to T-independent Ags; 

based on this hypothesis, CLL cells were claimed to be potentially stimulated in vivo in a 

continued way by self-antigens.307,308 Recently, human PB CD5+ B cells have been shown to 

correspond to the so called immature/transitional B cells,121 as confirmed by unsupervised 

analysis of gene expression profile (GEP) for >10,000 transcripts of CLL cells vs. distinct subsets 

of normal mature B-lymphocytes.309,310 However, despite most CD5+ B-lymphocytes are 

regarded as pre-GC B-lymphocytes with unmutated IGHV genes, around half of all CLL cases 
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harbor mutated IGHV genes.270,311,312 In line with these findings, a small fraction of CD5+ B-cells 

(4–17%) that coexpress the memory B-cell associated CD27 marker has also been described in 

healthy subsets.152 Moreover, a small subpopulation of all CD5+ B-cells (between 0.5 and 2% of 

all CD5+ PB B cells), appears to be class-switched to IgG or IgA.309  

In fact, not only unmutated CLL but also mutated CLL appears to be highly similar to 

normal CD5+ B-lymphocytes.311-313 Thus, transcriptome analyses revealed that IGHV gene 

unmutated CLL might derive from unmutated mature CD5+ B lymphocytes, while mutated CLL 

would most likely derive from a distinct CD5+CD27+ post-GC B cell subset.309 Notably, these 

CD5+ B cell populations appear to be enriched in stereotyped IGHV gene rearrangements, at 

the same time they also include oligoclonal expansions already among young healthy adults. 

Therefore, these CD5+ PB B-cells may potentially already represent an early phase in CLL 

development, prior even to the CLL-like MBL precursor cell. Alternatively, it has also been 

proposed that CLL cells could derive from splenic marginal zone B-cells, based on the 

functional similarities between CLL and this subset of normal B-lymphocytes (Figure 3A).22 In 

this regard, it should be noted that several studies which have focused on IGHV/IGLV gene 

usage by CLL cells, including analysis of the IGHV mutational status and the IGHV repertoire, 

gene expression profiling and cellular phenotypes (e.g. CD27, ZAP-70 or CD38 expression) have 

found that CLL cells are more similar to memory than to naïve B-lymphocytes; consequently, 

CLL cells appear to potentially have a past history that would include Ag 

stimulation.227,228,237,292,314-316  

Interestingly, the Ag reactivity profile of the BCR of CLL cells appears to overlap with 

that of natural antibodies produced in the absence of exogenous Ag stimulation, and that play 

a crucial role in immediate host defense against a wide range of pathogens.247,317 Further 

studies have demonstrated that both self-reactive and polyreactive BCR profiles are inversely 

related to the mutational load of the BCR.318 These apparently discrepant findings could be 

related to the fact that BCR-dependent transductional signaling pathways are still efficient in 

unmutated CLL, while deficient in mutated CLL cells.319 Since unmutated IGVH/IGVL genes 

generally encode for antibodies with a natural/polyspecific profile, it has been proposed that 

the neoplastic B-cells using these genes would be continuously stimulated in vivo by self-

antigens that have the capacity to react with their SmIg.320 Thus, neoplastic transformation 

might potentially occur when these B cells are expanding in response to T-independent Ags, 

and they may continue to do so, also after neoplastic transformation. This would explain, at 

least in part, the expression of activation markers like ZAP-70 and/or CD38 on such stimulated 

and transformed cells, which occurs less frequently among those cases where the neoplastic 

cells used mutated IGHV genes.321 These latter cases typically express surface Ig which do not 
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show a natural/polyspecific reactivity profile.322 Although such IGHV mutated CLL cells may 

have expanded in response to antigenic stimuli acting before (or during) transformation they 

do not appear to be affected by antigenic stimulation thereafter, once the transformation 

process had been completed.323  

Based on all the above, it could be hypothesized that unmutated CLL would derive 

from marginal zone B-cells, while mutated CLL cases would have their origin on memory B-cells 

that have exited the GCs at the end of their selection process.8 However, several features of 

these two groups of CLL (unmutated and mutated CLL) do not seem to confirm such 

hypothesis. Firstly, most memory B-cells that transit through the GC and undergo isotype 

switch, express surface IgG or IgA, rather than IgM;324 secondly, CLL cells from both unmutated 

and mutated cases present rather similar gene expression profiles as assessed by high-density 

microarrays.315,325,326 An alternative possibility would be that both subsets of CLL originate from 

the same type of cell (e.g. from marginal zone B-cells), IGHV mutations potentially occurring in 

mutated CLL cases, while the cells respond to a particular TI Ag, either prior to or during 

neoplastic transformation in the marginal zone (Figure 3A).327 As a result of these mutations, 

the polyspecificity of the antibody itself is lost and the cells are no longer susceptible to in vivo 

stimulation by self-antigens. Hence, without this important promoting factor in 

leukemogenesis, B-cells which had undergone SHM would expand less rapidly and would 

exhibit a more benign clinical course than the unmutated CLL cases. In line with this latter 

hypothesis, site-directed mutagenesis tests on the IGHV/IGLV genes have demonstrated that 

elimination of the mutated spots and reversion to the unmutated IGVH/IGVL gene 

configuration, results in the synthesis of antibodies with natural/polyspecific activity;318 these 

observations reinforce the concept that the same cells that initially had natural/polyspecific 

activity had given origin to both the mutated and the unmutated CLL cases.318 If this hypothesis 

holds true, then, it would also contribute to explain their similar surface phenotype and GEP, 

as well as the shared biological features of CLL cells from these two groups of CLL cases. 
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 Figure 3. Schematic representation of "multistep" models for human CLL development. Panel A: Encounter of naive 

B-cells with antigen may proceed either through a T cell–dependent reaction occurring in the germinal center (GC), 

leading to the generation of memory B-cells that have undergone somatic hypermutation of the IGHV genes, or in T 

cell–independent immune responses, it may lead to the formation of antigen-experienced B cells harboring 

unmutated IGHV genes. CLL, and the preceding MBL phase, may originate from either of these subsets of antigen-

experienced B cells. Two distinct CD5
+
 B cell subsets (unmutated mature CD5

+
 B cells and CD5

+
CD27

+
 post–GC B 

cells) and marginal zone (MZ) B cells have been identified as the potential cell compartment in which CLL originates. 

Panel B: alternatively, based on a xenogeneic transplantation model, it has been shown that genetic abnormalities 

can accumulate on CLL hematopoietic stem cells (HSC) that might amplify B cell differentiation and produce a high 

number of polyclonal B cells carrying the same genetic aberrations. B cell clones would be then selected and they 

would expand in response to BCR signaling, presumably driven by autoantigens, simulating progression of MBL. 

Additional abnormalities such as aberrant karyotypes might play a role in progression from MBL into CLL in humans 

[Adapted from: Gaidano, G et al. 
328

 and Kikushige, Y et al.
329

]. 
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3.2.6.2. Stepwise model of development of MBL into CLL from early HSC 

 

In order to trace the origin of CLL B cells, it should be noted that CLL cells from 

individual patients are not always monoclonal, and that two or more coexisting CLL clones are 

found in up to ≈5% of CLL patients.21 Furthermore, a recent cohort study has shown that 44/45 

patients with CLL had a precursor MBL state which had been identified between 6 months and 

7 years in advance.212 Of note, MBL is more frequently composed of two or more coexisting B 

cell clones (20%–70% of total cases) than CLL, this being a particularly frequent finding among 

MBLlow and in familial CLL cases.15,20,203 These findings strongly support a model for stepwise 

development of CLL from an MBL oligoclonal precursor state, similarly to what has been 

described for other human cancers. Thus, stepwise development of MBL into CLL could have 

its onset in a mixture of polyclonal cells with one single dominant clone progressively taking 

over, such expanded B-cell clone either obscuring or eliminating other MBL clones. Recent 

evidences suggest that in such model, the first oncogenic event could be traced back at least 

up to the progenitor or HSC that has not rearranged the IGHV genes (Figure 3B).329 In parallel, 

signaling through receptors on the expanded cells, particularly BCR signaling, would play a 

critical role in the pathogenesis of CLL, through its contribution to further oligoclonal and/or 

monoclonal expansion of B cells from the initial pool of (precursor) polyclonal B-cells.  

In line with this hypothesis, recent studies by Kikushige et al.329 in a xenogeneic mouse 

model, reported that HSC from CLL patients have an increased susceptibility to generate 

expansions of (oligo-mono)clonal B cells carrying V(D)J gene rearrangements which are always 

unrelated to those of the original CLL cells. These findings, suggest that aberrant CLL-HSC have 

already intrinsic abnormalities that cause their skewing towards the B-cell lineage, supporting 

early involvement of HSC in the pathogenesis of the disease, as aberrant preleukemic cells that 

produce an increased number of polyclonal (altered) pro-B cells (Figure 3B). The resulting 

mature B cells could be then selected most likely via the recognition of autoantigen(s), 

resulting in expanded mono- and/or oligoclonal B cell populations. Later on, along the B-cell 

differentiation pathway, additional genomic abnormalities would develop, eventually resulting 

in a typical clonal MBL and/or CLL disorder. Despite all the above, it should be noted that the 

role of such genetic abnormalities of HSC may be very limited (or even nonexisting) in the early 

phases of development of MBL, whenever the microenvironmental stimuli would play a more 

prominent role. Subsequently, genetic abnormalities disrupting the control of cell growth and 

survival may cooperate with microenvironment triggered events, mainly represented by 

antigen-mediated BCR and coreceptor stimulation, to trigger and fuel clonal B-cell expansion. 

In line with this, whole-genome sequencing (WGS) approaches have contributed to the 



 

52 
 

Chapter 1 INTRODUCTION 

identification of multiple recurrent somatic mutations (e.g. NOTCH1, MYD88 and XPO1), which 

appear to contribute to determine or modulate the clinical evolution of CLL.6 In this regard, 

integrated mutational and cytogenetic analyses, have shown that clonal evolution from lower 

to higher risk CLL is associated with the emergence of molecular alterations (e.g. mutations) of 

the NOTCH1, SF3B1, and BIRC3 genes in addition to those of the TP53 and ATM genes;264 

moreover, SF3B1 mutations primarily occur in CLL cases with del(11q)330 and NOTCH1 

mutations are frequently associated with trisomy 12.331 In addition, other altered genes such 

as BAFF, specific Lyn substrate 1 (HS1) and Toll IL-1R 8 (TIR8) appear to influence the natural 

history of the disease.332 Most interestingly, previous studies indicate that virtually all 

recurrent mutations described so far in CLL appear to emerge and act only at relatively late 

stages of MBL and/or CLL; some of them may even underlie CLL transformation to Richter 

syndrome.333 Therefore, such molecular/genetic alterations appear to contribute more to 

elucidate the genetic basis of CLL progression, rather than of MBL evolution, the potential 

initiating genetic alterations still remaining to be identified. The only exception relies on a 

recent report which is based on a model where deletion of the entire minimal deleted region 

at 13q14 chromosome, encoding for the DLEU2/miR-15a/16-1 gene cluster, which suggests 

that del(13q) could lead to the development of low penetrance indolent B-cell clonal 

lymphoproliferative disorders that appear to recapitulate the whole spectrum of human CLL-

associated phenotypes from MBL to Richter syndrome.334 This approach underlines the critical 

importance of the deleted region, which appears to harbor gene(s) involved also in the first 

steps of leukemogenesis in CLL, but it would not explain the origin of cases which have 

unaltered chromosome 13q14 sequences.  

 

3.3. B-cell lymphoproliferative disorders (B-CLPD) other than chronic lymphocytic 

leukemia (CLL)  

 

Classification of B-CLPD other than CLL relies to a significant extent on the relationship 

between the expanded B-cells and the GC reaction within secondary lymphoid organs. Thus, B-

CLPD other than CLL are currently classified as pre-GC, GC and post-GC neoplasms since these 

WHO 2008 categories of ‘‘mature’’ B-cell tumors are considered to arise from B cells, that have 

already undergone V(D)J recombination at the IGH and IGL loci and that are independent of 

early hematopoiesis and HSC.181 However, it should be noted that most evidences supporting a 

model of cell-of-origin that links these mature B cell tumors to post-VDJ recombination stages 

of the B-lymphoid ontogeny and the GC reaction, are indirect evidences, based on shared 

phenotypes by normal and tumor B-cells such as the pattern of expression of cell surface 
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markers and the capacity for ongoing SHM of the tumor cells and their “normal” counterparts 

(Figure 4).7 

Figure 4. Cellular origin and immunophenotypic profile of human B-cell lymphoproliferative disorders (B-CLPD). 

Human B-CLPD are assigned to their potential normal B-cell counterpart, despite they also display aberrant patterns 

of protein expression which are presumably related to the cytogenetic abnormalities carried by the tumor cells 

and/or the altered microenvironment. ABC DLBCL, activated B-cell diffuse large B-cell lymphoma; GC DLBCL, 

germinal center derived DLBCL [adapted from Sagaert, et al.
324

 and Zenz, et al.
335

].  
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3.3.1. Peripheral/mature B-cell chronic lymphoid leukemias other than CLL  

 

Peripheral/mature B-cell chronic lymphoid leukemias other than CLL, traditionally 

include two major WHO 2008 disease categories: B-cell prolymphocytic leukemia (B-PLL) and 

hairy cell leukemia (HCL). 

 

3.3.1.1. B-cell prolymphocytic leukemia  

 

B-PLL is a rare and aggressive mature/peripheral lymphoid malignancy. For its 

diagnosis, the presence of prolymphocytes which account for more than 55% of all PB 

lymphoid cells on morphological grounds (usually > 90%), is required.181 Of note, mature B-cell 

leukemias, such as CLL (particularly CLL/PLL), MCL or SMZL, and HCL variant (HCLv) share 

similar features at presentation to those of PLL, and recent studies indicate that most PLL cases 

could in fact represent a unique subgroup of MCL.336 Despite its similarity to both SMZL and 

HCLv in terms of its clinical presentation, no cytoplasmic hairy projections or “villi ” are seen in 

PLL, and the presence of B symptoms, a very high white blood cell (WBC) count (> 100 × 109/L), 

and an aggressive clinical course, are much more characteristic of PLL than of SMZL or 

HCLv.337,338 In comparison to CLL/SLL, PLL has been described as having strong Ig, CD20/FMC7 

and CD79b expression, in association with CD23low/– and decreased staining for CD5 in a 

fraction of the patients (Figure 4).  

The most common cytogenetic abnormality seen in PLL is del(17p) involving loss of the 

TP53 gene339 and t(11;14) associated with expression of cyclin D1 and/or SOX11, the latter 

supporting the close relationship between PLL and MCL with a leukemic presentation.340,341 

Regarding their molecular features, PLL leukemic cells express a skewed repertoire 

characterized by predominant usage of distinct members of the IGHV3 gene family (73%), 

preferentially of the IGHV3–23 gene (50% of the IGHV3 genes).342 The type and distribution of 

IGHV mutations clearly indicates that in some cases the tumor cells have undergone through 

an Ag selection process.  

 

3.3.1.2. Hairy cell leukemia 

 

HCL is a rare type of leukemia characterized by the presence of large mature-appearing 

B cells, with an abundant cytoplasm and characteristic micro-filamentous (“hairy”) projections 

– hairy cells (HC) –.343 HC typically infiltrate the BM, the spleen, and to a lesser extent also the 

liver, LN and the skin.  
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Studies about the GEP of B cells from discrete subsets of normal B-cells vs. HCL cells 

have shown that HC are related to memory B-cells, although with an altered pattern of 

expression of genes controlling cell adhesion and expression of chemokine receptors.344 

Moreover, several phenotypic features of HC can be explained in the context of a highly 

activated B-cell that appears to have undergone the sequence of reactions that during normal 

immune responses occur upon stimulation by Ag, accessory cells and cytokines. Therefore, HCL 

is typically associated with an increased expression of activation-associated markers at 

intermediate to bright intensity, such as CD25, CD11c, FMC7, and CD103.345 Other unique 

immunophenotypic features of HC that contribute to the diagnosis of the disease include: 

overexpression of CD20, CD22, CD19, CD72 and CD305 (LAIR1); intermediate intensity of 

expression of CD79b, CD123, T-bet, anexin A1 and HC2; intermediate to bright positivity for 

SmIg (generally SmIgM or SmIgD but also SmIgG or SmIgA), and; lack of expression of CD23 

and CD24.346-350 In addition, CD5 and CD10 are expressed on HC from a minority of cases 

(Figure 4).177,345 Although, AID is expressed in HCL, HC fail to express GC-associated markers 

such as CD38, CD10 and Bcl6, at the same time they lack the CD27 memory B-cell marker in 

the great majority of cases.351 

For many years, no recurrent chromosomal translocations and molecular alterations 

had been identified in HCL. More recently, the BRAF V600E mutation has been reported in the 

classic forms of HCL only, as the first genetic alteration recurrently associated with this 

disease.352 Some cytogenetic alterations involving monoallelic deletions of TP53 and BCL6 have 

also been reported in a subset of cases.353 

Due to the rarity of the disease, analysis of the IGHV gene has been only performed in 

small series of cases.354 Despite this, results show that most HCL carry mutated IGHV genes 

with low levels of intraclonal heterogeneity, unmutated IGHV genes occurring only in a minor 

subset of patients who are refractory to (single-agent) cladribine and have a more aggressive 

behavior.351,355 In turn, HCL is characterized by biased usage of the IGHV3-21, IGHV3-30 and 

IGHV3-33 genes which are highly homologous gene segments; thus, the BCR of HCL patients 

may share the ability to bind identical or highly similar Ags, and potentially react with common 

bacterial superantigens, such as modified staphylococcus aureus protein A or the natural 

staphylococcus aureus enterotoxin A.356 In line with this hypothesis, IGHV3-30 has been 

reportedly involved in the immune response against Toxoplasma.356 Clearly, the pressure on 

IGHV selection in HCL appears to be different from that potentially occurring in other B-cell 

neoplasms, particularly in CLL. For example, IGHV4-34 is used predominantly in a mutated 

conformation by CLL cells, while it is preferentially unmutated in HCL cases.357,358 Interestingly, 
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the apparent lack of HCDR3 stereotypy in HCL is another distinctive feature of HCL vs. CLL and 

suggests that Ag driving in HCL may not rely on HCDR3-mediated interactions.  

 

3.3.2. Peripheral/mature B-cell lymphomas other than SLL 

 

3.3.2.1. Marginal zone lymphoma 

 

MZL represents about 8-10% of all lymphomas and the third most frequent type of 

lymphoma, just after diffuse large B-cell lymphoma (DLBCL) and FL. At present it is widely 

accepted that MZL comprises distinct lymphoma types, which are considered to originate from 

marginal zone B cells. Depending (mainly) on the organ in which the lymphoma arises, the 

current WHO 2008 classification recognizes three distinct types of MZL: nodal (NMZL), 

extranodal MZL of MALT type (or MALT lymphoma) and splenic marginal zone lymphoma 

(SMZL), depending on whether the disease arises in the LN, mucosal sites and the spleen, 

respectively.180 MZL shares some common immunophenotypic features, but the clinical course 

and molecular characteristics are different for each of the distinct subtypes of the disease. 

More recently, a fourth subtype of MZL named “primary BM MZL” (PBM-MZL) has also been 

described as a provisional entity that still deserves full recognition prior to inclusion into the 

new WHO classification.359 

 

3.3.2.1.1. Extranodal marginal zone lymphoma of mucosa-associated lymphoid 

tissue or MALT lymphoma 

 

MALT lymphoma is the most common type of MZL. It is a clinically indolent disease 

which preferentially arises in the stomach and small intestine, but that can occur in almost all 

mucosal tissues and in the skin. MALT lymphoma is therefore thought to arise from peripheral 

lymphoid tissues by long-standing (auto)antigenic stimulation, such as that observed during 

chronic infection and inflammatory disorders.360,361 Several infectious agents and inflammatory 

disorders have been associated with MALT lymphomas, among which the association between 

gastric MALT lymphoma and Helicobacter pylori infection (up to 90% of cases) is the best 

characterized.361 

MALT lymphoma cells express CD19, CD20, CD22, CD25, CD79b and CXCR3, typically in 

the absence of CD5, CD10 and CD45RO, and they show variable patterns of expression of CD23 

and CD27 (Figure 4).362 From the genetic/molecular point of view, it presents with several 

recurrent genomic lesions, including chromosomal translocations and unbalanced 
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alterations.10 Thus, MALT lymphomas frequently have translocations involving the API2, 

MALT1, BCL10, and FOXP1 genes.363 T(11;18)(q21;q21) involving the API2 gene at chromosome 

11q21 and the MALT1 gene at 18q21 chromosome, is the most common structural 

chromosomal abnormality in MALT lymphoma and its presence is usually correlated with the 

lack of any further genetic instability or chromosomal imbalances; in turn, t(3;14) and t(14;18) 

fuse the BCL10 and MALT1 genes to the heavy chain of the Ig locus, respectively.364 Of note, 

the above mentioned chromosomal translocations are mutually exclusive and they typically 

show a different anatomic distribution.365  

 

3.3.2.1.2. Splenic marginal zone lymphoma 

 

SMZL is a relatively rare disease comprising 1-2% of all NHL and roughly 20% of MZL. It 

is mostly, but not always, a clinically indolent lymphoma.180 The lymphoma originates in the 

spleen, and spreads in most cases to the BM; in addition, it is also detectable in the PB in a 

variable number of cases. SMZL is assumed to arise from the splenic marginal zone B-cells and 

it has a concordant CD20high, CD19+, CD79bhigh, CD20/FMC7+, CD22+, CD43+/–, CD11c+, 

SmIgMhigh, SmIgDlow, CD27+, CD5–/+, CD103–, HC2–, CD25–, CD10– and CD23– immunophenotype 

(Figure 4).366 

Skewed VH gene usage is pronounced in SMZL, with about 30% of cases using the 

IGHV1-2 genes.244 Also highly homologous CDR3 regions are observed among the latter cases, 

which may indicate Ag stimulation as part of SMZL lymphomagenesis.367,368 In geographic areas 

where HCV and malaria infections are endemic, SMZL cases associated with these infections 

are frequently observed.369  

In the largest series of SMZL (n=330 cases) in which cytogenetic analyses have been 

performed, it has been shown that 72% of cases exhibit chromosomal aberrations, of which 

53% include complex genetic changes.370 However, none of these cytogenetic abnormalities is 

considered to be characteristic of SMZL, with the exception of del(7q32) that occurs in 39% of 

the cases.370 Other cytogenetic alterations involving chromosomes 8, 9p34, 12q23-24, 18q, and 

17p have been reported.370 In contrast to what occurs in MALT lymphoma, chromosomal 

translocations involving the Ig loci are rarely found in SMZL. 

 

3.3.2.1.3. Nodal marginal zone lymphoma 

 

NMZL, also called monocytoid B-cell lymphoma, is a primary nodal B-cell MZL in the 

absence of evidence for splenic or extra-nodal involvement; it represents 1.5–1.8% of all 
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lymphoid neoplasms.181,371,372 Most NMZL cells express pan-B-cell markers including CD20, 

CD79a and PAX5, together with CD43 in around half of the cases.373 NMZL cells typically lack 

expression of CD5, CD23, CD10, Bcl6, anexin A1, and cyclin D1, whereas Bcl2 is positive in most 

cases.181,367,373  

As for other types of MZL, NMZL cases have been reported in association with 

infections (e.g. HCV)374,375 and autoimmune  disorders (e.g. rheumatoid arthritis, systemic 

lupus erythematosus, Sjögren’s syndrome).376 However, this evidence remains far from 

sufficient to establish a definitive role for these stimuli in lymphomagenesis. In turn, multiple 

studies have shown that in the majority of NMZL patients, SHM of rearranged Ig genes and 

preferential usage of IGHV3 and IGHV4 (particularly of IGHV4-34) occurs, further suggesting 

that antigenic stimulation is involved in the ontogenesis of this type of MZL.377 Despite 

preferential usage of IGHV4-34, no association with EBV and CMV has been established, as for 

CLL.249 However, in NMZL patients with HCV, IGHV1-69 seems to be preferentially used.378,379  

Finally, no unique and/or characteristic cytogenetic abnormality of NMZL has been 

reported so far. The cytogenetic alterations reported in this subtype of MZL include trisomy 3 

(present in about 20-25% of cases),380 7, 12, and trisomy 18, plus structural rearrangements of 

chromosome 1 with breakpoints at the 1q21 or 1p34 chromosomal regions;381,382 in contrast, 

SMZL-related 7q losses have not been reported among NMZL cases.383 

 

3.3.2.1.4. Primary bone marrow marginal zone lymphoma  

 

Among MBL cases with <5,000 B-cells/µl of PB and a CD5– non-CLL-like 

immunophenotype in the absence of LN, spleen and extranodal involvement, a new B-CLPD 

entity showing clonal B-cell lymphocytosis with marginal zone features, has been identified.359 

These cases usually correspond to adults between the 4th and 8th decades of life with a similar 

distribution per sex, and variable levels of PB infiltration by small B-lymphocytes with a 

monocytoid-like morphology, mixed with villous lymphocytes and lymphocytes with 

plasmacytoid features and a MZL phenotype; presence of serum paraproteinemia is observed 

in one third of the cases359 and BM infiltration with a mixed nodular-interstitial pattern that 

varies from 10% to 70% of the whole BM cellularity, is also usually present. From the 

cytogenetic point of view, most cases show a normal karyotype (≈70% of cases) while others 

have complex cytogenetic profiles, where chromosomes 3, 12, 17 and 7 are those 

chromosomes more frequently involved, with e.g. del(7q) and iso17q in 13% and 17% of the 

cases, respectively. Most PBM-MZL patients show mutated IGHV genes with a clear 

predominance of the IGHV4-34 gene. 
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From the clinical point of view, most PBM-MZL display an indolent and stable (clinical) 

course of the disease, although in some cases (particularly those with complex karyotypes) 

progression to symptomatic MZL, usually to a splenic MZL, is observed.384  

 

3.3.2.2. Follicular lymphoma  

 

FL accounts for 20%–30% of all lymphoid tumors, with the highest incidence in the 

Western countries.385 From a biological point of view, FL represents the neoplastic equivalent 

of the reactive GC B-cell, presenting with varying and abnormal ratios of centroblasts and 

centrocytes. Tumor cells may leave and (re)enter the GC; consequently, they may periodically 

acquire novel SHM in their IGH and IGL genes. Indeed, either analysis of individual tumor cells 

or molecular cloning of IGH gene rearrangements from a pool of tumor cells, have both 

demonstrated that not all tumor cells share the same SHM within each individual lymphoma, 

as a result of subclonal evolution associated with distinct patterns of ongoing SHM of the IG 

loci.386,387 

The t(14;18)(q32;q21) chromosomal translocation represents the cytogenetic hallmark 

of FL and it is detected in 80%–90% of cases. Its molecular consequence is the juxtaposition of 

the BCL2 protooncogene close to the enhancer sequences of the IGH promoter region;388,389 

this leads to deregulated expression of Bcl2, resulting in overexpression of the Bcl2 protein in 

the neoplastic follicles.390 Less frequently, variant translocations of t(14;18) also occur, such as 

t(2;18) or t(18;22), in which the BCL2 gene is juxtaposed to the loci of the Ig light chains genes 

(κ or λ, respectively). All these events lead to accumulation of inappropriately rescued GC B-

cells with a prolonged life span, allowing for the occurrence of additional genetic hits that are 

required for the establishment of an overt FL. Consequently, a relatively high number of 

secondary chromosomal alterations have been described in FL including structural and 

numerical changes. Of note, it has long been recognized that these alterations occur in a non-

random fashion, and a temporal order in the emergence of these aberrations has been 

described, some occurring early in the course of the disease, whereas others usually represent 

late genetic events.391-394 In addition, some of the reported alterations are mutually exclusive, 

while others frequently cluster together, potentially leading to coordinated deregulation of 

specific genetic pathways.395 From the clinical point of view, such secondary genetic hits are 

crucial to distinguish different subgroups of FL with distinct biological behavior, risk of 

transformation to aggressive lymphoma, prognosis and overall survival (e.g. BCL2 plus CMYC 

double hit transformed FL).396 
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Phenotypically, tumor cells from FL are most frequently characterized by 

overexpression of Bcl2, strong reactivity for SmIgM, CD20/FMC7, CD22 and CD79b. As normal 

GC B-cells, FL cells also express intermediate intensity CD10, Bcl6 and CD38 (Figure 4).397,398 

Conversely, these cells usually lack CD5, CD11c, CD23, CD43, CD103, CD200, CD305 and HC2 

expression. CD19 is frequently underexpressed, or even negative in some FL cases (Figure 

4).397,398 Ki-67 is typically recommended for the assessment of the proliferation index of FL 

which is highly variable.  

 

3.3.2.3. Mantle cell lymphoma 

 

MCL is a relatively rare subtype of B-cell lymphoma, comprising 5%–7% of all 

lymphomas.399 Typically, MCL is a very aggressive disease with a poor outcome,400 that has 

specific genetic lesions and a characteristic CD5+ immunophenotype. This phenotype differs 

from that of typical CLL/SLL in that MCL cells express CD20, CD22, CD79b and SmIg at 

moderate to bright intensity, and they are usually CD23 and CD200 negative while FMC7+ 

(Figure 4).397,401 Both CD38 and the proliferation marker Ki-67 show variable levels of 

expression.402 Recently, an indolent variant of MCL termed asymptomatic B cell lymphocytosis 

with cyclin D1 expression has been described with a unique CD38– CD200low vs. CD38low/+ 

CD200– immunophenotype.403 

The genetic lesion typical of MCL is the t(11;14)(q13;q32) translocation which 

juxtaposes the CCND-1 gene (also known as BCL-1 or PRAD-1 gene) encoded at chromosome 

11q13 with an enhancer of the IGH gene at chromosome 14q32.404 As a consequence, this 

translocation leads to an enhanced/continuous cell proliferation due to constitutive activation 

of the CCND1 proto-oncogene and overexpression of cyclin D1 mRNA and protein.404 In rare 

cases, MCL is cyclin D1–; when this happens, cyclin D2 or cyclin D3 can be overexpressed.405  

The t(11;14)(q13;q32) translocation most likely occurs as an initial oncogenic event at 

the pre–B-cell stage of differentiation in the BM, during recombination of the V(D)J segments 

of the IGHV. However, the tumor is composed of a unique population of mature-appearing B 

lymphocytes, indicating that the full neoplastic phenotype is acquired at later stages of the B-

cell differentiation process.406 Based on the pattern of expression of SmIgM/SmIgD and CD5 by 

the tumor cells, their topographic distribution in the mantle zones, and the predominant usage 

of unmutated IGHV genes, naive B-cells have been generally considered the normal 

counterpart of MCL tumor cells.407 However, analysis of BCR diversity in MCL has shifted this 

view to a more complex ontogenetic model, in which Ag selection would play also an 

important role in the pathogenesis of the disease, at least in a subset of the cases. For 
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example, some studies have shown that 15%–40% of MCL carry IGHV hypermutation, with 

around 10% of MCL showing stereotyped Ig heavy chain CDR3 sequences and a restricted VH 

gene repertoire, associated with predominant usage of the IGHV3-21, IGHV4-34, and IGHV5-51 

genes.408 Of note, the two former VH genes have a strong association with autoimmunity and 

the VH3-21 gene seems to be also overrepresented in CLL with mutated IGHV genes, and 

associated with a significantly poorer overall survival than that found for CLL cases with other 

mutated IGHV genes.357,409 Moreover, IGHV3-21+ MCL patients appear to almost exclusively 

show usage of the IGVλ3-19 gene.357 In contrast to CLL, the IGHV gene mutation status is not 

prognostically informative among MCL patients. 

 

3.3.2.4. Diffuse large B-cell lymphoma 

 

DLBCL is the most common subtype of NHL, accounting for approximately one-third of 

all adult lymphomas.410 It is characterized by a diffuse proliferation of large mature B-cells that 

mainly occurs in LN, although involvement of extranodal sites is observed in up to 40% of the 

cases.362 BM involvement is found in 11% to 27% of all cases, whereas PB is rarely (5%-10%) 

infiltrated.180 DLBCL is a heterogeneous lymphoma which may arise either as primary (de 

novo), or may result from a transformation of an indolent lymphoma.  

The great morphological, clinical and biological heterogeneity of DLBCL confirms the 

existence of several subtypes of the disease with different clinical outcomes.  According to the 

WHO 2008 classification, DLBCL may be subdivided into several morphological variants (Table 

1).180,411,412 Similarly, GEP studies grouped DLBCL into three subtypes which are 

morphologically indistinguishable; these three GEP subgroups of DLBCL are associated with 

different pathogenetic mechanisms and they include activated B-cell DLBCL, germinal center 

DLBCL and primary mediastinal DLBCL (Table 1).413 Consistent with this heterogeneity, the 

genetic lesions associated with DLBCL are also diverse and include balanced reciprocal 

translocations deregulating the expression of BCL6, BCL2 and MYC, gene amplifications, 

nonrandom chromosomal deletions (e.g. 6q) and aberrant somatic hypermutation.414-418 

Nonetheless, in a significant fraction of DLBCL, no specific genetic changes have been 

identified which could potentially contribute to the pathogenesis of the disease.  

The BCL6 gene is one of the most frequently affected genes in DLBCL. BCL6 promotes a 

higher cell survival and genetic instability, which both contribute to malignant 

transformation.419 In turn, t(14;18) results in overexpression of the Bcl2 protein in an identical 

way as in FL, this cytogenetic alteration being found in 15% to 30% of all DLBCL cases and 

virtually all GC-associated DLBCL patients.419,420 Genetic recombination of the MYC gene can be 
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found in 2% to 16% of DLBCL cases being specially frequent among extranodal DLBCL cases; 

MYC gene rearrangements are associated with a great rate of central nervous system 

involvement, lower complete remission rates and a poorer overall survival.421 

There is no specific DLBCL immunophenotype. Large neoplastic B-cells have strikingly 

higher forward light scatter (FSC) and sideward light scatter (SSC), once compared to normal B 

lymphocytes, and they express variable patterns of pan-B-cell markers (CD19, CD20, CD22 and 

CD79b) (Figure 4); despite a mature B-cell phenotype, a subset of these lymphomas does not 

demonstrate SmIg or CyIg expression.422 A proportion of cases express CD5 and/or CD10, the 

former marker being associated with an unfavorable clinical course.423 Indeed, CD5+ DLBCL 

may consist of a large cell lymphoma transformed from a lower-grade CD5+ B-cell neoplasm 

such as CLL/SLL (Richter syndrome) or de novo CD5+ DLBCL, including extremely rare cases of 

CD5+ intravascular large B-cell lymphoma (Table 1).424  

 

3.3.2.5. Burkitt lymphoma 

 

Three different clinical variants of BL have been described so far: EBV-associated 

endemic and sporadic BL, and immunodeficiency (HIV)-associated BL.180,181 Although all three 

variants share many morphologic and immunophenotypic features, they have distinct clinical 

and geographical presentations.181 Regarding cytogenetics, there is considerable overlap 

among the three subtypes of BL, but unique genetic features have also been described among 

these variants, potentially reflecting distinct pathogenetic mechanisms.425   

BL cells express SmIgM, Bcl6, CD19, CD20, CD22, and CD79a, and they are negative for 

CD5, CD23, and TdT, in association with a characteristic CD38high, CD81high, CD10+ GC-

phenotypic profile (Figure 4). Since CD10 is positive in nearly all cases, the typical absence of 

Bcl2 expression in association with very high levels of CD81 is helpful in ruling out “double-hit” 

lymphomas with dual translocations affecting MYC and BCL2.426,427 Translocations involving the 

CMYC oncogene are the molecular hallmark of BL, and they are seen in virtually all cases in 

association with a high proliferation rate. In most cases, CMYC gene rearrangements involve 

the IGHV gene on chromosome 14; less commonly, the light chain genes on chromosomes 2 

and 22 are involved in the CMYC translocation.426,427 Sometimes, CMYC translocations may also 

involve a non-IG partner gene.428,429 
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3.3.2.6. Lymphoplasmacytic lymphoma / Waldenström macroglobulinemia  

 

LPL/WM is a B-cell lymphoproliferative disorder characterized by IgM paraproteinemia 

and the accumulation of clonally related lymphocytes, lymphoplasmacytic cells and plasma 

cells in the BM.362,430 Some patients suffer from hyperviscosity caused by exceeding levels of 

the IgM paraprotein, which may be useful in differentiating LPL/WM from other neoplasms 

with plasmacytoid differentiation.362,431 

Morphologically, LPL/WM is characterized by proliferation of small B-cells, 

plasmacytoid cells and also plasma cells. The plasma cell component expresses the same Ig 

light chain as the lymphocytic component, it is positive for CD138 and shows low expression of 

B cell–associated Ags such as CD20, Pax5 and SmIg.432 The lymphoma cells typically express 

CD19, CD20, CD22 and CD79b, CD27 and Bcl2, while they usually lack CD5, CD10 and CD23, 

which helps to discriminate LPL/WM from FL, CLL and MCL (Figure 4).432,433 However, 

expression of these latter markers may be found in 10–20% of cases, often at weak and 

variable levels.434 The distinction between LPL/WM and other CD5- small B-cell lymphomas is 

more difficult, and it often requires detailed evaluation of a combination of 

immunophenotypic, genetic, morphologic and clinical features. 

At the molecular level, the neoplastic clone from most LPL/WM cases has undergone 

IGHV somatic hypermutation, but not isotype class switching, retaining the capability for 

plasma cell differentiation.431 The lack of a unique molecular/genetic hallmark of the disease 

has complicated the distinction between LPL/WM and other B-cell lymphomas presenting a 

monoclonal serum component.435 Recently, the MYD88 L265P mutation has been found in 

>90% of cases of LPL/WM, pointing out the utility of this molecular marker to distinguish 

LPL/WM from other entities,431 and the potential involvement of e.g. TLR-signaling in the 

pathogenesis of this disease

In the WHO 2008 classification it is stated that t(9;14) would be present in at least 50% 

of cases. However, translocations involving the IGH genes are actually rare in LPL/WM.436 The 

t(9;14)(p13;q32) translocation results in up-regulation of PAX5, implicating this gene as a 

putative oncogene in the pathogenesis of a subset of LPL.437,438 Overexpression of PAX5 seems 

to prevent expression of high levels of Ig that result in paraproteinemia, supporting the 

absence of t(9;14)(p13;q32) in typical LPL/WM cases associated with a serum monoclonal 

component.439 In turn, there are sporadic reports of WM tumors with IGH gene 

rearrangement, t(11;18)(q21;q21) and chromosome 6q abnormalities, which may also occur in 

other B-cell lymphomas types.439  
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On immunophenotypic grounds, both the lymphoid and the plasma cell compartments 

of LPL/WM neoplastic cells, show an immunophenotype that largely overlaps with their 

normal counterparts with expression of CD25 on the B lymphocyte compartment and positivity 

for immature markers (e.g. CD20+ and SmIg+) on plasma cells, usually associated with 

expression of SmIgK light chains (≈80% of cases).  

 

3.3.3. Multiclonal lymphoproliferative disorders 

 

Generally, neoplastic B-cells from B-CLPD are believed to result from the expansion of 

a single B-cell clone within which all cells share an original transforming mutation, identical 

V(D)J gene segments of the IGH gene, and a restricted expression of the rearranged Ig light 

chain (e.g. kappa or lambda). Additional genetic alterations in association also with different 

phenotypic features, may be gained during the evolution of the disease. However, presence of 

two or more morphologically and/or phenotypically different populations of neoplastic 

lymphocytes in the same patient, detected either simultaneously or at different time points 

during follow-up, has been reported in the literature440-443 at an overall frequency of around 

5% of all B-CLPD.21 Actually, once the prevalence of B-cell neoplasias in elderly patients is 

considered, simultaneous emergence of two distinct clones turns out to be not that 

uncommon. Usually the presence of such coexisting ≥ 2 B-cell populations is interpreted as a 

result of either two completely different (apparently) unrelated B-cell populations –

multiclonality – or subclone formation within the original malignant tumor stem cell line –

intraclonal evolution/heterogeneity –.  

 

3.3.3.1. Composite lymphomas 

 

Composite lymphomas are defined by the coexistence of two or rarely, more than two 

morphologically and/or immunophenotypically different types of lymphoid neoplasms in the 

same patient,  which arise synchronously or metachronously within the same anatomic site.444 

Although these lymphomas can be clonally related or unrelated, and they may comprise many 

different combinations of mature B-cell subtypes,445 they are broadly categorized as follows: 1) 

cases where distinct types of NHL of the same lineage, mostly B-cell lymphomas, coexist; 2) 

coexistence of a B-NHL and a Hodgkin lymphoma (HL);446 3) distinct types of NHL of different 

lineages, e.g. B- and T-NHL,447 and; 4) colocalization of a T-NHL and a HL.448 Most cases in the 

first category represent tumor progression and transformation from an indolent B-cell 

lymphoma, with two or more abnormal B-cell populations usually showing distinct 
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morphological features, light scatter characteristics and/or DNA cell contents, but an identical 

phenotype; for example, Richter transformation of CLL/SLL or transformation of a FL to 

DLBCL.449 In contrast, in a few cases, simultaneous occurrence of two distinct small B-cell 

lymphomas is demonstrated which may involve any specific B-NHL subtype, e.g. MCL and/or 

SMZL. A recent report, about composite lymphoma cases included patients diagnosed with 

MCL and FL, MCL with Hodgkin lymphoma (HL), and MCL with plasmacytoma or SLL, together 

with a case of composite FL with SLL; of note, in none of these patients, the two neoplastic B-

cell compartments were found to be clonally related, based on molecular analysis of the Ig 

gene rearrangement profile.450 Rare cases of composite lymphomas involving SMZL include 

cases associated with HL,451 DLBCL,452 BL,453 or CLL,454 and also, cases of T-cell large granular 

lymphocyte leukemia associated with SMZL.455,456 

 

3.3.3.2. Intraclonal evolution versus multiclonality in B-cell chronic 

lymphoproliferative disorders 

 

Coexistence of two apparently distinct hematological malignancies always raises the 

question about whether or not they share a common cell of origin. As mentioned above, the 

detection of two different, apparently unrelated B-cell clones – already at diagnosis or during 

follow up –, is usually interpreted as the emergence of two clonal populations arising from a 

single primary tumor (intraclonal evolution),457,458 rather than coexistence of two distinct 

lymphoid tumors (true multiclonality).459 Intraclonal evolution and conversion between two 

histological subtypes of B-cell lymphoma is commonly interpreted as being associated with 

differentiation of neoplastic B-cells towards more aggressive disease leading to a shortened 

survival. Conversely, multiclonality appears to be rare. However, multiclonality might have 

been underestimated, since the precise diagnosis of these cases usually requires a 

multidisciplinary approach encompassing histopathology, cytomorphology, 

immunophenotypic, cytogenetic and molecular analyses in each of the cell populations, and 

such studies have frequently not been performed in a substantial fraction of the composite 

lymphomas reported in literature, the potential clonal relationship between the two tumoral 

components, being therefore disregarded.  

 

3.3.3.3. Criteria for multiclonality  

 

Documentation of multiclonality greatly depends on the type of diagnostic methods 

used for the characterization of the co-existing tumor cell populations. Histopathological and 
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immunophenotypic studies, usually reveal this situation – e.g. coexistence of two or more 

distinct and expanded abnormal lymphoid populations –, but neither of the two approaches 

guarantees the nature of the clonal relationship that exists among the coexisting tumor cell 

populations from most cases. Only the genetic rearrangements of the IGHV and/or the 

cytogenetic abnormalities of the coexisting B-cell populations may provide definitive evidence 

to distinguish between a potentially common vs. distinct origin of the involved tumor cell 

populations.460 Hence, multiclonality can only be clearly demonstrated through the 

combination of these techniques (i.e., histopathology and/or flow cytometry plus molecular 

and cytogenetic characterization of each individual population) (Figure 5).  

Regarding MFC immunophenotyping, usage of multicolor gating strategies, involving 

the combined evaluation of the patterns of expression of both Ig heavy and light chains, 

together with maturation-associated markers, is mandatory for precise identification and 

definition of such coexisting cell populations and the identification of distinctive features that 

might be used for their purification, for subsequent molecular/cytogenetic analyses. Physical 

isolation of each individual pathological cell populations through high-throughput cell sorting 

procedures or laser microdissection techniques, allows for a better characterization of the 

coexisting B-CLPD (sub)clones by other methods, such as PCR analysis of IGH gene 

rearrangements and/or the assessment of different genetic abnormalities by iFISH procedures.  

Figure 5. Illustrating example of a gating strategy based on the definition of CD19
+
 cells (Panel A) for the 

immunophenotypic identification and characterization of multiclonal B-CLPD using multiparameter flow cytometry. 

Panels B to E show the gating strategy used for the identification of the two coexisting pathologic B-cell populations 
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(pink dots) and their phenotypic discrimination from the remaining normal B-cells (blue dots) coexisting in the same 

peripheral blood sample. After cell sorting the purified B-cell populations can be evaluated by e.g. PCR analysis of 

IGH gene rearrangements and iFISH (upper right panels) which demonstrated the presence of different IGHV gene 

rearrangements in the two B-cell clones and trisomy 12 retricted to only one of them. SSC, sideward light scatter; 

APC, allophycocyanin; Cy, cytoplasmic; FITC, fluorescein isothiocyanate; PE, phycoerythrin; PerCPCy5.5, peridinin 

chlorophyll protein-cyanin 5.5.  

 

3.3.3.4. Multiclonality in chronic lymphocytic leukemia  

 

So far, multiclonal CLL has not been fully characterized since only rare cases of CLL with 

>2 CLL-like or non-CLL-like clones have been reported in the literature.21,441,459,461,462 Reported 

cases include multiclonal CLL associated with MCL,443 HCL,463 FL,464 and another CLL.462 

Therefore, the occurrence of multiclonal CLL is currently viewed as unusual and raises 

questions about whether these patients are particularly susceptible to develop B-CLPD in 

general, particularly CLL, and their actual clinical significance. Despite all the above, 

preliminary studies indicate that the frequency of multiclonality among CLL ranges between 

5% and 10% of cases, and it may appear already at diagnosis (≈ 5% of cases) or during follow-

up, sometimes even more than ten years after the initial diagnosis.465 From the clinical point of 

view, CLL patients who present ≥2 B-cell clones, particularly when the CLL clone coexists with a 

non-CLL B-cell clone, seem to have a poorer outcome, as regards the requirement for early 

treatment (treatment-free survival).21 In turn, no data about the impact of multiclonality on 

the final outcome (overall survival) of CLL patients followed for long periods of time (≥ 5-10 

years), is currently available.  

 

 

4. HYPOTHESIS AND OBJECTIVES 

 

B-CLPD are a heterogeneous group of diseases that usually show (mono)clonal 

expansion of a single mature-appearing and aberrant population of B-lymphocytes, arrested at 

a given stage of differentiation. Despite this, patients diagnosed with composite lymphomas 

and other B-cell chronic lymphocytic leukemias – e.g. CLL – have been occasionally reported in 

the literature for decades, particularly among immunocompromised subjects.21,441,461 Although 

early reports considered this phenomenon to be a rare event, current data suggests that it 

might have been underestimated due to the need for sophisticated multidisciplinary 

approaches encompassing combined histopathology, cytomorphology, immunophenotypic 

and cytogenetic techniques, and/or molecular analyses of purified cell populations. Actually, B-

CLPD consisting of two or more phenotypically distinct populations which are clonally 
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unrelated, but that coexist in the same patient (detected either simultaneously or at different 

time points during follow-up), have been reported in the literature (e.g. multiclonal B-CLPD) at 

an overall incidence of around 5% of all B-CLPD.21 Interestingly, presence of different unrelated 

B-cell clones in individual subjects has been shown to be particularly higher (>20%) in 

premalignant B-cell states such as MBL.20,22 In this regard, preliminary data based on a 

relatively small series of subjects also demonstrated that the frequency of multiclonality could 

be particularly high among CLL-like MBL cases from CLL relatives.20 Altogether, these findings 

suggest that, similarly to what occurs in other types of cancer, the development of CLL and 

potentially also of other B-CLPD, at the earliest steps, may involve a mixture of polyclonal cells, 

with one to a few clones progressively taking over. However, the immunobiology of such 

abnormally expanded B cell clones in multiclonal MBL and CLL, remains largely unknown.  

In parallel to the above findings, it has been demonstrated that the SHM status of the 

IGHV genes can divide CLL into two subgroups and that these subgroups experience markedly 

distinct clinical outcomes; at the same time, the identification of these IGHV subgroups of CLL 

also represented an important advance in the understanding of the disease and its 

pathogenesis. Thus, at present it is well-established that CLL B cells, as well as tumor B-cells 

from other B-CLPD, express a distinct restricted BCR repertoire, which suggests a selection 

process driven by specific Ags. Moreover, recent identification of quasi-identical (stereotyped) 

BCR expressed by different CLL patients, reinforces the notion that BCR reactivity may play an 

important role in the B-cell transformation process leading to CLL, although the specific Ags 

recognized by CLL antibodies still remain largely elusive.  

Altogether, these observations indicate that CLL and potentially also other B-CLPD, 

could represent antigen-driven expansions of specific subsets of normal B cells which have 

undergone neoplastic transformation from a multiclonal phase to a monoclonal state, in 

association with stepwise acquisition of genetic alterations and potentially also BCR-

independent growth stimulation, MBL representing an intermediate stage in this oncogenic 

process. Despite this and the already recognized risk factors, it should be noted that at 

present, very limited knowledge exists about the transformation events that select individual 

normal B-cells to become first CLL-like MBL and then, CLL B cells.  

 

Based on the above background, the general objective of this study aimed at gaining 

insight into the early stages of development of B-CLPD through detailed analysis of the 

immunophenotypic, genetic and molecular characteristics of clonal B-cells, paying special 

attention to the role and features of the BCR in both CLL-like MBL and CLL, and their subsets of 
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monoclonal vs. multiclonal cases, as different stages of a putative model of disease 

progression and malignant transformation.  

 

In order to accomplish this goal, we addressed the following three specific objectives: 

 

- To investigate whether specific IGHV repertoires are associated with unique cytogenetic 

profiles, as the basis for stepwise transformation pathways from MBL to CLL; 

 

- To analyze the molecular and cytogenetic features of the expanded B-cell clones from 

multiclonal vs. monoclonal B-cell lymphoproliferative disorders (particularly CLL-like MBL 

and CLL cells) in order to determine whether multiclonality is associated with molecular 

features indicating a greater probability of interaction with shared/common immunological 

determinants, and; 

 

- To investigate the potential relationship between an altered/clonal hematopoiesis and 

antigenic driving forces acting during the expansion of stereotyped vs non-stereotyped CLL 

and CLL-like MBL clones. 

 

In the following sections of this doctoral thesis, a detailed description of the patients 

from whom samples were obtained and studied, the materials and methods used for such 

studies, as well as the results obtained are presented and discussed separately for each of the 

proposed three specific objectives.  
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2.1. Abstract 

  

CLL-like MBL with (MBLhigh) or without (MBLlow) absolute B-lymphocytosis precedes 

most CLL cases, the specific determinants for malignant progression remaining unknown. For 

this purpose, simultaneous iFISH and molecular analysis of well-established cytogenetic 

alterations of chromosomes 11, 12, 13, 14 and 17 together with the pattern of rearrangement 

of the IGHV genes were performed in CLL-like cells from MBL and CLL cases. Our results based 

on 78 CLL-like MBL and 117 CLL clones from 166 subjects living in the same geographical area, 

show the existence of three major groups of clones with distinct but partially overlapping 

patterns of IGHV gene usage, IGHV mutational status and cytogenetic alterations. These 

included a group enriched in MBLlow clones expressing specific IGHV genes (e.g. VH3-23) with 

no or isolated good-prognosis cytogenetic alterations, a second group which mainly consisted 

of clinical MBLhigh and advanced stage CLL with a skewed but different CLL-associated IGHV 

gene repertoire (e.g. VH1-69), frequently associated with complex karyotypes and poor-

prognosis cytogenetic alterations, and a third group of clones with intermediate features, with 

prevalence of mutated IGHV genes, and higher numbers of del(13q)+ clonal B-cells. These 

findings suggest that the specific IGHV repertoire and IGHV mutational status of CLL-like B-cell 

clones may modulate the type of cytogenetic alterations acquired, their rate of acquisition 

and/or potentially also their clinical consequences. Further long-term follow-up studies 

investigating the IGHV gene repertoire of MBLlow clones in distinct geographic areas and 

microenvironments are required to confirm our findings and shed light on the potential role of 

some antigen-binding BCR specificities contributing to clonal evolution. 

 

2.2. Materials and Methods  

 

2.2.1. Patients and samples  

 

A total of 166 subjects presenting one or more CLL-like MBL and/or CLL clonal B-cell 

populations were included in this study: 15 cases (9%) corresponded to healthy individuals 

with MBLlow – <200 clonal B-cells/µL in peripheral blood (PB); 5 males and 10 females; mean 

age of 68±13 years; range: 49-84 years, –33 (20%) were MBLhigh – ≥200 and <5,000 clonal CLL-

like B-cells/µL of PB – (20 males and 13 females; mean age of 72±12 years; range: 37-89 years), 

–114 (69%) had newly-diagnosed untreated CLL (66 males and 48 females; mean age of 70±13 

years; range: 35-89 years) and 4 (2%) had other B-cell lymphoproliferative disorders (B-CLPD) 

with coexistence of one or two CLL-like MBL B-cell population(s) (Table 5). From the 33 MBLhigh 
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cases, 20 (61%) showed clinical MBL (>2,000 clonal B-cells/µl of PB). Individuals corresponded 

to consecutive MBL and CLL subjects from Salamanca (Spain) and Coimbra (Portugal) in the 

western area of the Iberian Peninsula. 

PB samples were obtained from each subject after written informed consent was 

given, and the study was approved by the local ethics committees of the two participating 

centres (University Hospital of Salamanca and Histocompatibility Centre of Coimbra). Diagnosis 

of MBL and CLL was based on the WHO 2008 criteria.466 Clinical staging of CLL subjects 

according to Binet classification466 was collected retrospectively; 46/77 (60%) CLL cases were 

diagnosed as stage A and the remaining cases (31/77, 40%) as stage B/C. Overall, 37/166 

subjects (22%) showed co-existence of two or three phenotypically different aberrant B-cell 

populations (multiclonal cases; 25 males and 12 females with a mean age of 76±8 years; range: 

57-89 years), while the remaining 129 individuals showed one single phenotypically aberrant 

monoclonal B-cell population (monoclonal cases; 69 males and 60 females with a mean age of 

68±12 years; range: 35-89 years). In 26/37 multiclonal cases, all different B-cell populations 

showed a typical CLL-like phenotype, while in the remaining 11 cases only one B-cell 

population displayed a typical CLL-like phenotype co-existing with population(s) phenotypically 

compatible with other B-CLPD.192 For this study, analysis was focused only on those aberrant B-

cell populations displaying a typical CLL-like and CLL phenotype (n=195 B-cell clones). The 

distribution of all CLL-like and CLL clonal populations analyzed in the distinct diagnostic 

categories was as follows: 27 corresponded to CLL-like MBLlow, 51 to CLL-like MBLhigh and 117 

to CLL (Table 5). 

 

Table 5. Distribution of subjects included in the study and the corresponding CLL and CLL-like 

MBL clones, according to diagnosis. 

   Diagnostic subgroups 

  No. of cases  MBL
low

 MBL
high

 CLL Other B-CLPD 

Subjects Monoclonal 129 13 (87%) 25 (76%) 91 (80%) - 

Multiclonal 37
†
 2 (13%)* 8 (23%)* 23 (20%)*   4 (100%)* 

Total 166 15  33  114  4 

B-cell 
clones 

From monoclonal cases 129 13 (48%) 25 (49%) 91 (78%) - 

From multiclonal cases 66 14 (52%) 26 (51%) 26 (22%) - 

Total 195 27 51 117  - 
*For multiclonal CLL and CLL-like MBL cases as well as for other B-CLPD cases other than CLL, only CLL-like clones 

were considered; the later B-CLPD cases included the following diagnoses: HCL, hairy cell leukemia; SMZL/MALT, 

splenic marginal zone B-cell lymphoma/ extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid 

tissue lymphoma. CLL, chronic lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; B-CLPD, B-cell chronic 

lymphoproliferative disorders. 
†
The number of clones per multiclonal case was of two in all diagnostic subgroups, 

except in three tri-clonal subjects corresponding to one CLL patient, one MBL
high

 case and one patient with a B-CLPD 

other than CLL. 
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2.2.2. Immunophenotypic analyses 

 

Immunophenotypic studies to screen for the presence and full characterization of 

clonal B-cell populations were performed on erythrocyte-lysed PB samples according to 

procedures which have been previously described in detail.192,467,468 PB white blood cells (WBC) 

were systematically stained with the following monoclonal antibody (mAb) combinations 

following the EuroFlow recommendations:469,470 1) CD20-pacific blue (PacB)/ CD45-pacific 

orange (PacO)/ CD8-fluorescein isothiocyanate (FITC)+ anti-SmIgλ-FITC / CD56-phycoerythrin 

(PE) +anti-SmIgκ-PE/ CD4-peridinin chlorophyll protein-cyanin 5.5 (PerCPCy5.5)/ CD19-PE–

cyanin 7 (PE-Cy7)/ CD3-allophycocyanin (APC)/ CD38-AlexaFluor 700 (AF700); 2) CD20-PacB/ 

CD45-PacO/ Cybcl2-FITC/ CD23-PE/ CD19-PerCPCy5.5/ CD10/-PE-Cy7 CD5-APC/ CD38-AF700 

and 3) CD20-PB/ anti-sIgλ-FITC/ anti-SmIgκ-PE/ CD19-PerCPCy5.5/ CD10-PE-Cy7/ CD5-APC. All 

cases showed a clonal (imbalanced SmIgκ:SmIgλ ratio of >3:1 or <1:3) and/or an aberrant CD5+ 

B-cell population for the above mAb combinations, as reported elsewhere;15 in every case, the 

phenotypic study was extended with the following additional 5- and 6-color stainings 

(PacB/FITC/PE/PerCPCy5.5/PECy7/APC): 1) CD20/ CD22/ CCR6/ -/ CD19/ CD5; 2) CD20/ CD103/ 

CD25/ CD5/ CD19/ CD11c; 3) CD20/ CD43/ CD79b/ CD5/ CD19/ CD49d; 4) CD20/ SmIgM/ 

CD27/ -/ CD19/ CD5; 5) CD20/ FMC7/ CD24/ - / CD19/ CD5; and 6) CD20/ CD3/ Cyzap70/ -/ 

CD19/ CD5. For the staining of Cybcl2 and Cyzap70, the Fix & Perm reagent kit (Invitrogen, 

Carlsbad, CA, USA) was used, following the recommendations of the manufacturer. All 

reagents were purchased from Becton/Dickinson Biosciences (BDB; San Jose, CA, USA), except 

for CD19-PECy7 (Beckman/Coulter, Miami, FL), CD20-PacB (e-Biosciences, San Diego, CA, USA), 

CD38-AF700 (Exbio, Prague, Czech Republic), CD45-PacO (Invitrogen, Carlsbad, CA, USA), 

CD79bPE, CD24PE and CD43FITC (Immunotech, Marseille, France), and bcl2-FITC, anti-IgM-

FITC, anti-SmIgλ-FITC and anti-SmIgκ-PE (DAKO, Glostrup, Denmark). 

Data acquisition was performed on a FACSCanto II flow cytometer (BDB) using the 

FACSDiva software (v6.1; BDB); in MBLlow cases, acquisition was done using a double-step 

procedure: firstly, information on 1x105 events corresponding to the whole sample cellularity 

was stored; in the second step, information was stored on CD19+ and/or CD20+ gated events, 

containing a minimum of 5x106 leucocytes/tube.  

Instrument setup and calibration were performed according to well-established 

protocols, and a daily quality control program was followed, using the Cytometer Setup and 

Tracking (CST)TM  Beads and CST Module (BDB).  

Data analysis was performed using the INFINICITYTM software program (Cytognos SL, 

Salamanca, Spain). B lymphocytes were identified according to their SSC/CD19+ distribution 
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and their numbers were calculated after excluding cell debris and platelets. The definition of a 

CLL-like/CLL phenotype was based on the presence of a CD19+, CD5+, CD20low, CD23+, CD79blow, 

FMC7-/low, Cybcl2high and SmIgκlow or SmIgλlow, in the absence of CD10 expression. The minimum 

number of cellular events required to define the presence of a CLL-like/CLL B-cell cluster was 

of 50 cells.  

The frequency of distribution of sIgκ+ vs. sIgλ+ populations within the CLL-like/CLL B 

cells were visually analyzed by superimposing the two fluorescence profiles in a double 

exposed picture (κ/λ distribution). An imbalanced sIgκ/sIgλ ratio of >3:1 or <1:3 was 

considered abnormal. 

 

2.2.3. Fluorescence-activated cell sorting (FACS) purification of B-cell populations 

(FACSorting)  

 

For all individuals studied, each CLL-like CD5+ B-cell population identified was purified 

in a FACSAria III flow cytometer (BDB). In those samples with more than one aberrant B-cell 

population (n=37), discrimination among them was based on their distinct patterns of 

expression for ≥1 of the B-cell markers analyzed, as described elsewhere.467 The clonal nature 

of each FACS-purified B-cell population (purity: 98%±0.8%) was assessed by both cytogenetic 

and molecular techniques, as described below. 

 

2.2.4. Cytogenetic and molecular studies  

 

The presence of the most common cytogenetic abnormalities associated with CLL was 

investigated by multicolour iFISH on slides containing FACS-purified and fixed CLL-like and CLL 

cells, as previously described.253 Analysis of trisomy 12, del(11q23), del(17p13.1), and 

del(13q14), as well as structural abnormalities involving the IgH gene were systematically 

investigated using the following DNA probes purchased from Vysis (Downers Grove, IL): CEP12 

DNA probe conjugated with spectrum orange (SO), LSI ATM (11q22.3), LSI MLL (11q23.3) dual-

color probe, LSI p53 (17p13.1) conjugated with SO, LSI13/RB1 gene (13q14) conjugated with 

SO, LSI D13S25 (13q14.3) conjugated with SO, and LSI IgH/bcl2 t(14;18)(q32;q21) dual color 

probe, respectively. FISH studies were then performed on purified CLL-like/CLL B-cells fixed in 

3/1 (vol/vol) methanol/acetic and hybridized. Briefly, pepsin-digested slides containing both 

the cells´ DNA and the probes´ DNA were denatured at 75°C for 1 min and immediately 

hybridized (overnight at 37°C), in a Hybrite thermocycler (Vysis). Then, slides were sequentially 

washed (5 min at 46°C) in 50% formamide/2X saline sodium chloride citrate buffer (SSCb) and 
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PBS with 1% Tween-20 (vol/vol), and counterstained with 35 µl of a mounting medium 

containing 75 ng/ml of DAPI (Sigma, St Louis, MO); Vectashield (Vector Laboratories, 

Burlingame, CA) was used as antifading agent. 

Analysis of the patterns of rearrangement of the IGHV genes was performed for each 

FACS-purified CLL and CLL-like B-cell population. Genomic DNA preparation, PCR amplification, 

sequencing and analysis of V, (D), J genes were performed following well-established 

protocols.471,472 

High molecular weight DNA from sorted CLL-like/CLL B-cells was isolated by standard 

proteinase K digestion, and isopropanol precipitation in the presence of glycogen to increase 

the DNA yield; final washing of the DNA pellet was performed in ice cold 70% ethanol. For 

amplification of complete IGH VDJ rearrangements, six different family-specific VH primers and 

one JH consensus primer were used in one multiplex PCR reaction covering framework region 

(FR) 1. The primers were produced in scale (0.02 µM) and they were purified by standard HPLC 

(InvivoScribe Technologies, La Ciotat, France). The BIOMED-2 consortium has developed and 

clinically validated these primers for immune receptor amplification and their sequences were 

as follows: Primer name VH1/7-FR1 (5´ GGCCTCAGTGAAGGTCTCCTGCAAG-3´), Primer name 

VH2-FR1 (5´ GTCTGGTCCTACGCTGGTGAAACCC-3´), Primer name VH3-FR1 (5´ 

CTGGGGGGTCCCTGAGACTCTCCTG-3´), Primer name VH4-FR1 (5´ 

CTTCGGAGACCCTGTCCCTCACCTG-3´), Primer name VH5-FR1 (5´ 

CGGGGAGTCTCTGAAGATCTCCTGT-3´), Primer name VH6-FR1 (5´ 

TCGCAGACCCTCTCACTCACCTGTG-3´) and Primer name JH consensus-FR1 (5´ 

CTTACCTGAGGAGACGGTGACC-3´). PCR amplifications were performed using 50 or 100 ng of 

template genomic DNA, 10 pmol of each primer, and 0.2 µl of AmpliTaq Gold enzyme (Applied 

Biosystems, Foster City, CA) per 35 µl reaction. The PCR amplification used was as follows: 

denaturation at 95°C for 7 min; 40 cycles at (94°C for 30s, 59.8 °C for 45s, 72°C for 90s); and a 

final extension at 72°C for 10 min. To obtain high-quality sequencing results, efficient post-PCR 

amplicon purification using ExoSAP-IT reagent (USB products, Affymetrix, Santa Clara, CA) was 

carried out. After ExoSAP-IT PCR clean up, the DNA was sequenced in an Applied Biosystems 

3130xl Genetic Analyzer.  

The IgBLAST algorithm (National Center for Biotechnology Information) was used to 

localize those sequences which show a perfect match between forward (F) and reverse (R) 

reads. For each B-cell clone, we generated a consensus IGHV-D-J sequence with the matched 

F-R region and the correct base reads found before and after such region in the original 

chromatograms. Alignment of rearranged IGHV-D-J sequences to germ line V, D and J 

segments and determination of V-D and D-J junctions were performed using the IMGT 
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database and tools (http://imgt.org). For MBLlow clones, whole genomic amplification (WGA) 

was performed prior to analysis, using the RepligRUltraFast Mini kit (Qiagen, Valencia, CA) as 

per the recommendations of the manufacturer. Those MBLlow cases showing more than one 

productive rearrangement corresponding to different IGHV genes within each purified CLL-like 

B-cell population were excluded from this study, because in such cases we could not establish 

the precise association between each IGHV gene and the underlying cytogenetic alterations 

detected. For each FACS-sorted B-cell population, only in-frame rearrangements were 

evaluated. Sequences containing >2% deviation from the germline sequence were considered 

as being somatically mutated. 

Analysis of CLL-associated NOTCH1 mutations331 was performed via PCR of previously 

amplified genomic DNA from each FACS-purified CLL-like B-cell population for a total of 70 

clones (5 MBLlow, 14 MBLhigh and 51 CLL clones). 

 

2.2.5. Statistical methods  

 

Conventional descriptive and comparative statistics – the nonparametric Kruskal-Wallis 

and Mann-Whitney U tests (for continuous variables), or the Pearson’s 2 and Fisher exact 

tests (for categorical variables) – were performed using the SPSS software program (SPSS 15.0 

Inc. Chicago, IL). P values <0.05 were considered to be associated with statistical significance. 

For multivariate comparisons among MBLlow, MBLhigh and CLL clones, based on the 

count of clonal B cells/µL and the percentage of aberrant/clonal cells carrying the different 

cytogenetic profiles, principal component analysis (PCA) was applied, and graphically visualized 

with the 3D Automated Population Separator (APS) view – Principal Component 1 (PC1) vs PC2 

vs PC3 – of the InfinicytTM software (Cytognos SL, Salamanca, Spain). As previously described in 

detail, in this APS view, each axis of a plot is represented by a different PC as a linear 

combination of parameters with distinct statistical weights.473 

For the assignment of MBLlow, MBLhigh and CLL clones to different groups, the size of 

the clone and the percentage of altered cells for each cytogenetic abnormality were the 

continuous variables included in the PCA-based assay performed with the Infinicyt softwareTM, 

while IGHV gene usage, IGHV mutational status and clinical staging of CLL subjects according to 

the Binet classification were treated as categorical variables, used only for labelling the 

different clones within each group, after applying the PCA. 
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2.3. Results 

 

2.3.1. Overall size and BCR features of CLL-like MBL and CLL B-cell clones 

  

The median relative percentage and absolute count of CLL-like and CLL B-cells 

progressively increased from MBLlow (0.6% and 20 cells/μl), to MBLhigh (14% and 2,000 cells/μl) 

and CLL clones (57% and 17,400 cells/μl) (P <0.0001) (Table 6). 

Of note, around half of all MBLlow and MBLhigh cell populations (52% and 51%, 

respectively) derived from multiclonal cases, whereas only 22% of CLL clones were identified in 

multiclonal cases (P ≤0.03; Table 6). In addition, CLL clones less frequently showed mutated 

IGHV genes (53%) compared to both MBLhigh (73%) and MBLlow (67%) clones (P ≤0.02) (Table 6).  

 

Table 6. Peripheral blood B-cell counts and BCR features of clonal MBLlow, MBLhigh and CLL B 

cells. 

 
MBL

low
 

n= 27 
MBL

high
 

n=51 
CLL 

n=117 
P value 

No. of  PB clonal B cells 

(x10
6
/L)* 

20 (0. 09-200) 2,000 (350-4,900) 17,400 (1,300
†
-369,000) P < 0.0001

a,b,c,d,e 

% of PB clonal B cells 

from WBC* 

0.6% (0.001%-7.5%) 14% (0.7%-45%) 57% (17%-97%) P < 0.0001
a,b,c,d,e

 

No. of B-cell clones 

from multiclonal cases 

14/27 (52%) 26/51 (51%) 26/117(22%) P ≤ 0.002
a,b,d

; 

P = 0.03
e

 

No. of IGHV mutated 

clones 

18/27 (67%) 37/51 (73%) 60/113 (53%) P ≤ 0.02
a,d

 

Results expressed as number of B-cell clones and percentage between brackets or as *median value (range). 

Statistically significant differences (P< 0.05) found between 
a
MBL

high 
vs CLL, 

b
MBL

low 
vs CLL, 

c
MBL

low 
vs MBL

high
, 

d
MBL

low
 plus MBL

high 
vs CLL and 

e
MBL

low 
vs MBL

high
 plus CLL. BCR, B-cell receptor; CLL, chronic lymphocytic leukemia; 

MBL, monoclonal B-cell lymphocytosis; SmIg, surface membrane immunoglobulin; IGHV, immunoglobulin heavy 

chain variable region genes.
†
Includes 6/117 cases with <5,000 clonal CLL B-cells/µL of PB, diagnosed with small 

lymphocytic lymphoma (SLL). 

 

2.3.2. Cytogenetic features and NOTCH1 mutation in CLL-like MBL and CLL B-cell 

clones 

 

Overall, MBLlow B-cell clones showed a significantly lower frequency of genetic 

alterations associated with CLL (33%) than MBLhigh (51%) and CLL (62%) B-cells (P ≤0.02) (Table 

7). Furthermore, only a small proportion of MBLlow (7%) and MBLhigh clones (14%) showed 

coexistence of ≥ 2 cytogenetic alterations, while this was found in 33% of all CLL clones (P 

≤0.04). 
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Table 7. Cytogenetic and molecular features of MBLlow, MBLhigh and CLL B-cell clones. 

Cytogenetic/molecular alterations MBL
low

 

N= 27 

MBL
high

 

N=51 

CLL 

N=117 

P value 

No. of genetically altered CLL-like/ CLL 

clones 
9/27 (33%) 26/51 (51%) 72/117 (62%) P ≤ 0.02

b,e
 

No. of clones with ≥2 genetic 

alterations 
2/27 (7%) 7/51 (14%) 38/117 (33%)

†
 P≤ 0.04

a,b,d
 

     
Type of cytogenetic/molecular changes     

No. of del(13q)
+
 clones (%) 

% del(13q)
+
cells * 

7/27 (26%) 

73% (19%-96%) 

16/51 (31%) 

56% (15%-99%) 

46/117 (39%) 

87% (10%-99%) 

NS 

NS 

No. of del(13q14.3)
+
 clones (%) 

% del(13q14.3)
+
cells * 

5/27 (19%) 

70% (19%-96%) 

16/51 (31%) 

46% (15%-99%) 

45/117 (39%) 

75% (5%-99%) 

NS 

NS 

No. of del(13q14)
+
 clones (%) 

% del(13q14)
+
cells * 

1/26 (4%) 

86% (86%-86%) 

3/51 (6%) 

96% (15%-98%) 

18/117 (15%)
 

79% (10%-99%) 

P= 0.04
d
 

NS 

     
No. of trisomy 12

+
 clones (%) 

% trisomy 12
+
 cells * 

2/27 (7%) 

50% (41%-59%) 

10/51 (20%) 

87% (66%-95%) 

20/117 (17%) 

77% (33%-97%) 

NS 

P≤ 0.04
b,e

 
     
No. of t(14q32)

+
 clones (%) 

% t(14q32)
+
 cells * 

0/17 (0%) 

- 

2/51 (4%) 

42% (31%-52%) 

12/116 (10%) 

82% (18%-98%) 

NS 

NS 

     
No. of del(11q)

+
 clones (%) 

% del(11q)
+
cells * 

0/23 (0%) 

- 

2/51 (4%) 

57% (20%-93%) 

9/116 (8%) 

58% (21%-98%) 

NS 

NS 

No. of del(11q22.3)
+
 clones (%) 

% del(11q22.3)
+
cells * 

0/23 (0%) 

- 

2/51 (4%) 

57% (20%-93%) 

7/116 (6%) 

71% (24%-98%) 

NS 

NS 

No. of del(11q23)
+
 clones (%) 

% del(11q23)
+
cells * 

0/15 (0%) 

- 

0/51 (0%) 

- 

4/116 (3%) 

32% (21%-64%) 

NS 

- 

No. of del(17p13.1)
+
 clones (%) 

% del(17p13.1)
+
cells * 

0/24 (0%) 

- 

0/51 (0%) 

- 

5/117 (4%) 

44% (33%-88%) 

NS 

- 

No. of NOTCH1 mutated clones (%) 0/5 (0%) 0/14 (0%) 5/52 (10%) NS 

Results expressed as number of B-cell clones with cytogenetic abnormalities from all clones in the corresponding 

group (percentage) or as *median values of altered cells/clone (range). In 9 clones (1 MBL
low

,1 MBL
high

 and 7 CLL) 

biallelic del(13q14.3) was detected and hyperdiploidy was found in one MBL
low

 clone. 
a
MBL

high 
vs CLL, 

b
MBL

low 
vs CLL, 

d
MBL

low
 plus MBL

high 
vs CLL and 

e
MBL

low 
vs MBL

high
 plus CLL. NS, no statistically significant differences observed (P ≥ 

0.05); CLL, chronic lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis.
†
Includes the 5/66 cases with 

NOTCH1 mutation associated to trisomy 12 in 3 cases, to biallelic del(13q14.3) in one and to both mono allelic 

del(13q14.3) and del(17p) in the remaining cases. 

 

Regarding each specific cytogenetic/molecular alteration, a tendency towards a 

greater frequency of del(13q) and trisomy 12 was observed from MBLlow to MBLhigh and CLL 

clones, although differences only reached statistical significance for the frequency of 

del(13q14) involving the RB1 gene (P =0.04). In addition, presence of t(14q32) and 
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del(11q22.3) were exclusively found among MBLhigh and CLL, while del(17p), del(11q23) and 

NOTCH1 mutations were only present in CLL clones (Table 7). Of note, among the 

cytogenetically altered clones, no significant differences were observed in the percentage of 

altered cells, except for a greater proportion of B-cells with trisomy 12 among both MBLhigh and 

CLL vs MBLlow B-cell clones (P ≤0.04) (Table 7).  

NOTCH1 mutations occurred in 5/52 CLL cases (10%), in which a preferential 

association with IGHV unmutated clones (80%, P =0.02) and a high frequency of cases (3/5, 

60%) harbouring trisomy 12 as an additional isolated chromosomal abnormality (P =0.007) was 

observed; in the remaining two CLL cases, the presence of NOTCH1 mutation was associated 

with del(13q14) involving the RB1 gene and to both del(13q14.3) and del(17p), respectively. 

None of the 19 MBL cases investigated showed NOTCH1 mutations (Table 7). 

 

2.3.3. Molecular characteristics of CLL-like MBL and CLL B-cell clones 

 

Analysis of the IGHV gene revealed single in frame gene rearrangements for each 

clonal B-cell population analyzed. Interestingly, shorter CDR3 sequences of the IGHV gene 

were found among MBLlow versus CLL clones. So, the frequency of CLL clones with CDR3 

sequences coding for >20 aa became significantly higher than that observed among MBLlow and 

MBLhigh clones (P =0.02) (Table 8).  

Regarding IGHV, DH and JH gene usage, no significant differences were found between 

the three groups of CLL-like B-cell clones, except for the VH3 and DH3 IGHV genes (Table 8): 

CLL showed lower frequency of VH3 usage and a greater proportion of DH3+clones vs MBLlow 

and MBLhigh (P ≤0.04) (Table 8).   
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Table 8. Molecular characteristics of the BCR of CLL-like MBLlow, MBLhigh and CLL B-cell clones. 

Results expressed as number of B-cell clones from all clones in the corresponding group (percentage) or or as 

*median (range). Statistically significant differences were found between 
a
MBL

high 
vs. CLL, 

b
MBL

low 
vs. CLL, 

c
MBL

low 

vs. MBL
high

, 
d 

MBL
low

 plus MBL
high 

vs. CLL and 
e
MBL

low 
vs. MBL

high
 plus CLL; NS, no statistically significant differences 

observed (P ≥0.05); BCR, B-cell receptor; CLL, chronic lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; 

aa, amino acids; HCDR3,heavy chain complementarity-determining region 3. 

 

Of note, a significant percentage of all CLL (72%), MBLhigh (74%) and MBLlow (85%) 

clones corresponded to only 12 IGHV genes, namely V3-23, V3-11, V5-51, V3-21, V1-2, V1-3, 

V4-39, V3-7, V3-30, V4-34, V3-48 and V1-69 (Figure 6). Among these, preferential usage (P 

<0.04) of the VH3-23 gene was observed in both MBLlow (7/27, 26%) and MBLhigh (10/51, 20%) 

vs. CLL (5/113, 4%) clones (Figure 6). 

 

 
MBL

low
 

N= 27 
MBL

high
 

N=51 
CLL 

N=113 
P value 

HCDR3 length* 13 (6-22) 17 (8-26) 18 (8-32) P≤0.02
b,d,e

 

HCDR3> 20 aa 3/27 (11%) 8/51 (16%) 38/113 (34%) P = 0.02
a,b,d

 

     

VH subgroups 
VH1 4/27 (15%) 7/51 (15%) 28/113 (25%) NS 

VH2 0/27 (0%) 1/51 (2%) 2/113 (2%) NS 

VH3 18/27 (66%) 31/51 (60%) 47/113 (42%)    P≤ 0.04
a,b,d

 

VH4 4/27 (15%) 9/51 (17%) 32/113 (28%) NS 

VH5 1/27 (4%) 3/51 (6%) 2/113 (2%) NS 

VH6 0/27 (0%) 0/51 (0%) 1/113 (1%) NS 

     

DH subgroups 
DH1,4,7 5/27 (18.5%) 7/50 (14%) 15/109 (14%) NS 

DH2 5/27 (18.5%) 12/50 (24%) 19/109 (17%) NS 

DH3 5/27 (18.5%) 16/50 (32%) 48/109 (44%) P≤ 0.03
b,d,e

 

DH5 5/27 (18.5%) 8/50 (16%) 12/109 (11%) NS 

DH6 7/27 (26%) 7/50 (14%) 15/109 (14%) NS 

     

JH genes 
JH1,2,3,5 4/27 (15%) 14/50 (28%) 23/113 (20%) NS 

JH4 13/27 (48%) 21/50 (42%) 45/113 (40%) NS 

JH6 10/27 (37%) 15/50 (30%) 45/113 (40%) NS 
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Figure 6. Frequency of CLL-associated cytogenetic alterations (A) and the cytogenetic profile (B) for those IGHV 

genes most commonly detected in MBL
low

, MBL
high

 and CLL B-cell clones, as assessed by iFISH. The three diagnostic 

categories studied are depicted by different colors (green, MBL
low

; red, MBL
high

; blue, CLL B-cell clones) and the 

absence vs. presence of one vs≥2 chromosomal alterations per clone, is indicated by empty circles, light colored and 

dark colored circles, respectively. For each IGHV subgroup, the clones are represented in the Y-axis according to the 

absolute number of clonal B cells per µL of PB (A) and the percentage of cells genetically altered, by iFISH (B). 

Different FISH patterns are defined by the following symbols in panel B:    , del(13q14.3);   , biallelic del(13q14.3);    , 

del(13q14);    , trisomy 12; Δ, del(11q);,del(17p) and; , t(14q32); dotted contour lines in panel A highlight those 

clones phenotypically classified as SLL(small lymphocytic lymphoma); dotted blue lines in panel B indicate cells from 

the same B-cell clone showing different cytogenetic abnormalities; U = unmutated clones; a = clones with NOTCH1 

mutation. 

 

2.3.4. Relationship between the most frequently used IGHV genes and the 

cytogenetic profile of CLL-like MBL and CLL B-cell clones 

 

As mentioned above, preferential usage of the VH3-23 gene was observed in both 

MBLlow and MBLhigh vs. CLL clones (Figure 6A). VH3-23+ MBL clones typically showed no 

cytogenetic alterations (8/17) or they carried an isolated cytogenetic alteration which 

corresponded either to trisomy 12 (3/17) or deletion of 13q (3/17) (Figure 6B). Nevertheless, 
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two MBLhigh clones showed co-existence of trisomy 12 and del(11q22.3) and one MBLlow clone 

showed del(13q) including both the 13q14.3 and 13q14 (RB1) chromosomal regions (Figure 

6B). From the five VH3-23+ CLL clones only one carried genetic alterations – trisomy 12 and 

del(13q) –. Most interestingly, VH3-23+ MBLlow clones frequently showed unmutated IGHV 

genes, including most  unmutated MBLlow clones, with <10 CLL-like cells/µl (5/8; 63%), which 

contrasts to the much lower frequency of unmutated VH3-23 CLL clones. 

A similar frequency of usage of the VH3-11, VH5-51, VH3-21 and VH1-2 genes was 

observed in both MBLlow and MBLhigh vs. CLL (Figure 6). In none of the clones expressing these 

IGHV genes, cytogenetic alterations associated with a poor disease outcome – e.g. del(17p) 

and/or del(11q) – were found; in addition, most MBL and CLL clones expressing these IGHV 

genes showed no cytogenetic alteration, or they just had a single abnormality. Despite this, 

NOTCH1 mutations were more frequently observed among cytogenetically altered, IGHV 

unmutated CLL clones expressing these IGHV genes (one VH3-11+, one VH3-21+ and one VH1-

2+ clones). Noteworthy, 4/6 CLL cases classified as small lymphocytic lymphoma (SLL) variants 

were also included among cases with a VH3-11 (n=2), VH3-21 (n=1) and VH1-2 (n=1) repertoire 

in this group. 

Finally, among those clonal B-cell populations which expressed the VH1-3, VH4-39, 

VH3-7, VH3-30, VH4-34, VH3-48 and VH1-69 genes, CLL clones were overrepresented (61/113, 

54%) vs. both MBLlow (10/27, 37%) and MBLhigh (18/51, 35%) clones. Notably, a high number of 

CLL clones carrying these IGHV genes in association with one or more cytogenetic alterations, 

including poor prognosis cytogenetic alterations, was found among these cases (44/61, 72%). 

In this regard, del(13q) including both the 13q14.3 and 13q14 (RB1) chromosomal regions was 

frequently detected (single or combined lesion) in these CLL and also MBLhigh clones, 

particularly among those cases expressing the VH3-30 and VH4-34 gene genes; presence of 

trisomy 12, del(11q) and t(14q32) were also common among these CLL cases (16%, 13% and 

18%, respectively) while being infrequent in MBL cases (only 2 MBLhigh clones showed isolated 

trisomy 12). Moreover, del(17p) alone and complex karyotypes with ≥3 cytogenetic/molecular 

alterations were also found in 4 of the CLL clones which expressed the VH1-3, VH4-39, VH3-30, 

VH3-48, VH4-34 and VH1-69 IGH genes, respectively (Figure 6B). Remarkably, ≥1 genetic 

alteration was systematically detected in a major fraction of the VH1-69+ clonal cells (Figure 

6A) while being absent in the few MBL clones which expressed this specific IGHV gene. Of 

note, unmutated IGHV genes were a hallmark of both VH1-69+ (12/14 clones; 86%) and VH4-

39+ (9/10 clones; 90%), independently of their MBL vs CLL nature (Figure 6A). 

Based on the observation of the above described associations, we performed a 

multivariate analysis based on PCA, in searching for unique patterns of association between 
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cytogenetic alterations and IGHV repertoires among MBL vs. CLL clones. Three major groups of 

CLL-like MBL and CLL clones were identified, according to the absolute number of clonal B 

cells/µL and the percentage of cells carrying cytogenetic alterations (Figure 7) and then 

labelled according to their pattern of IGHV gene usage and the VH mutational status. Of note, 

the most homogeneous group (Group 1) included virtually all MBLlow clones (77%) and half of 

the MBLhigh clones (54%), but only around one fourth of Binet stage B/C CLL (28%); by contrast, 

no MBLlow clones were included in Group 3 (Figure 7D). Group 2 showed a more 

heterogeneous distribution with an intermediate pattern. In detail, Group 1 was mainly 

characterized by cases with a normal karyotype (83%) and lower numbers of cytogenetically 

altered cells mostly displaying the VH1-2, VH3-23 and VH4-34 IGHV genes (Supplemental Table 

1); in turn, Group 2 typically showed a higher number of cases with mutated IGHV genes, and 

higher numbers of del(13q)+ clonal B cells, while Group 3 included high numbers of cases with 

unmutated IGHV genes, trisomy 12 and an IGHV repertoire enriched in unmutated VH1-69+ CLL 

clones (Supplemental Table 1). 

Figure 7. Principal component analysis (3-dimensionalX-Y-Z axis view of PC1 vs. PC2 vs. PC3, respectively) for 

comparison of MBL
low

, MBL
high

 and CLL B-cell clones according to the absolute number of clonal B cells/µL and the 

pattern of cytogenetic alterations (including the percentage of altered cells), using the Infinicyt
TM

software. Overall, 

MBL
low

, MBL
high

 and CLL cases are clustered into groups distinguished by different colors in A: magenta, gray, and 

black circles (A). The distribution of MBL
low

, MBL
high

, CLL-stage A and CLL-stage B/C clones are coloured differently in 
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B: MBL
low

, green; MBL
high

, red, CLL stage A and B/C light blue and dark blue, respectively (B). The most informative 

parameters contributing to the best discrimination between 1 x 1 comparisons of the three groups are displayed in 

a decreasing order of percentage contribution to each of the principal component (C); Distribution of MBL
low

, 

MBL
high

 and CLL clones among the three major groups defined in panel A by principal component analysis (D); CLL, 

chronic lymphocytic leukemia; MBL, monoclonal B lymphocytosis; PC: principal component. 
 

2.4. Discussion 

It is now well established that emergence of CLL is typically preceded by MBL.212 

However, only a fraction of all MBLhigh will evolve to CLL, at a rate of 1.1% persons/year,474 

while the outcome of MBLlow remains unknown. Despite this, general consensus exists in that 

stepwise acquisition of specific genetic alterations may determine the rate of progression, not 

only from MBLhigh to CLL, but potentially also from MBLlow to MBLhigh and eventually to CLL. 

Concurrence of chronic Ag stimulation through specific BCRs may further support and 

accelerate the expansion of MBL clones, facilitate acquisition of new genetic alterations and 

therefore contribute to progression to CLL.20,218 Although data has accumulated in the last 

decade about the cytogenetic alterations and the IGHV gene repertoire of CLL-like clonal B-

cells in both MBL and CLL, to our knowledge, this is the first report about the combined 

patterns of cytogenetic alterations and IGHV gene repertoire in MBLlow vs. MBLhigh vs. CLL 

clones. 

In recent years, more than a thousand different molecular/genetic alterations 

reflected in multiple distinct and complex cytogenetic/molecular profiles in individual CLL 

patients, have been described through high-throughput WGS approaches.475,476 However, only 

a relatively small number of cytogenetic/molecular alterations recurrently occur at relatively 

high frequencies (e.g. >5% cases).333,477 Such alterations include del(13q14), reported in around 

half of all CLL cases, trisomy 12, present in about one third of the patients and del(11q), 

del(17p), t(14q32) and NOTCH1 mutations, which occur in between 5-15% of all CLL 

cases.253,333,477 In around half of CLL cases, unmutated IGH genes associated with preferential 

usage of specific IGHV genes (i.e. VH1-69 and VH4-34) and the above described cytogenetic 

alterations have also been reported in CLL. In turn, MBLhigh cases share molecular features with 

good-prognosis CLL in terms of both the IGHV gene repertoire and chromosomal 

alterations,206,478 with a greater frequency of IGHV mutated cases. By contrast, preliminary 

data indicates that the IGHV repertoire expressed by MBLlow could be strikingly different from 

that of both typical CLL and MBLhigh cases;479 in addition, such MBLlow clones appear to display a 

much lower frequency of chromosomal alterations, restricted to del(13q14.3) and trisomy 12, 

with a high prevalence of IGHV mutated cases (similar to that of MBLhigh cases),20 and no poor-

prognosis cytogenetic alterations.203,206 
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In line with such observations, we also found a lower frequency of both cytogenetically 

altered and IGHV unmutated CLL-like clones in MBLlow vs. both MBLhigh and CLL and vs. CLL 

clones, respectively. Interestingly, the proportion of B-cell clones carrying ≥2 alterations 

significantly increased from MBLhigh to CLL. On top of the progressively higher number of 

cytogenetic/molecular alterations found in MBLlow vs. MBLhigh and CLL, the cytogenetic profile 

of clonal B-cells also became significantly more heterogeneous among the latter two groups. 

Accordingly, while del(13q14.3) and to a much lesser extent, del(13q14) involving the RB1 

gene and trisomy 12, were already detected in a small fraction of MBLlow clones, del(11q) and 

t(14q32) emerged at an MBLhigh stage, whereas del(17p), del(11q23) and NOTCH1 mutations 

were only found in CLL. These latter three alterations typically involved CLL clones that already 

had other cytogenetic alterations and therefore, had more complex cytogenetic/molecular 

profiles. In line with these findings, the altered CLL-like MBL and CLL clones showed 

progressively increasing percentages of cells carrying del(13q14.3), del(13q14), trisomy 12, 

t(14q32),del(11q)and del(17p13.1),respectively. In accordance with previous observations,480 

NOTCH1 mutations were exclusively detected in CLL (preferentially among unmutated CLL 

clones) which also had other cytogenetic alterations – e.g., trisomy 12, del(13q14) and/or 

del(17p).  

The overall increased frequency of all cytogenetic alterations, together with the more 

complex cytogenetic/molecular profiles, observed from MBLlow to MBLhigh and CLL would 

support the notion that evolution from MBLlow to MBLhigh and CLL is paralleled by progressive 

acquisition of recurrent cytogenetic alterations, each of which appears to emerge at specific 

MBL and CLL stages, in line with previous data from our and other groups.15,481 Accordingly, 

del(13q), and to a lesser extent trisomy 12, are relatively early cytogenetic events which may 

frequently occur at an MBLlow stage, whereas del(17p), NOTCH1 mutations, and to a lesser 

extent also del(11q) and t(14q32), would typically arise later, as secondary cytogenetic events 

occurring at an MBLhigh or CLL stage. Acquisition of these and other genetic changes may 

potentially be associated with an increased proliferation and/or survival of the altered CLL-like 

cells. At the earliest stages of development of MBL, proliferation and/or survival signals could 

be provided to the MBL clone by chronically sustained BCR stimulation. If this holds true, the 

BCR features could also play a critical role in determining the probability of cytogenetic 

progression. Unfortunately, our series of MBL – particularly of MBLlow – is quite short at this 

time to further confirm this hypothesis, due to the difficulty in collecting cases with enough 

number of CLL-like B-cells, to perform in parallel reliable iFISH and molecular analyses. In this 

regard, the limited number of MBLlow cases included in our series may predominantly present 

with the genetic/molecular patterns of a low risk MBL cohort, which may not be related to CLL 



 

88 
 

Chapter 2 Combined patterns of IGHV repertoire and cytogenetic/molecular alterations in MBL vs. CLL 

progression. Despite this, in accordance with other recent reports,16,185,482 non-random usage 

of IGHV genes with clearly different IGHV gene repertoires was found in our series in MBL vs. 

CLL. As expected, the most frequently used IGHV genes in CLL were the VH4-34, VH3-30, VH1-

69, VH3-48, VH4-39, VH1-2 and VH3-7 genes, accounting for around half of the CLL clones. 

Interestingly, also half of the CLL clones showed unmutated IGHV genes, strikingly high 

frequencies of unmutated clones being detected among cells expressing VH1-69, VH4-39 and 

VH1-2. By contrast, VH3-23+ B-cells predominated among the MBLlow and MBLhigh clones, most 

VH3-23+ MBLlow cases showing very low counts of IGHV unmutated clonal B-cells. Of note, the 

IGHV genes used by the MBLhigh clones were commonly observed in either CLL (e.g. VH4–34, 

VH1-2, VH3–48 and VH4–39) or MBLlow (e.g. VH3-23 and VH4-34), but usually at lower 

frequencies. The fact that these particular IGHV genes have been associated with previously 

reported stereotypic B-cell receptors in CLL clones,13 together with our own results which show 

that the CDR3 of the IGHV genes are highly homologous in around one fifth of the B-cell clones 

from our short cohort (Supplemental Table 2), would reinforce the role of some antigen-

binding BCR specificities in clonal evolution. 

Based on the overall patterns of cytogenetic alterations and IGHV gene usage together 

with the BCR mutational status, it could be concluded that while some unmutated IGHV genes 

appear to be associated with the acquisition of complex cytogenetic profiles, rapid expansion 

of clonal CLL-like B-cells and progression to CLL (e.g. IGHV1-69), others would not (e.g. IGHV3-

23); the latter clones would show a more benign behaviour. This could potentially be due to a 

lower binding affinity of the unmutated BCR for the antigen, the recognition of specific 

subtypes of low concentrated antigens and/or unique immune response profiles. In line with 

this hypothesis, IGHV genes over-represented among CLL clones (e.g.VH4-39 and VH1-69) 

frequently corresponded to IGHV genes enriched in genes encoding for antibodies that 

recognise a broad variety of relatively common and abundant (auto)antigens, including low-

affinity BCR, e.g. myoglobulin, thyroglobulin, actin, and ssDNA296,483 associated with T-

independent, type II autoimmune responses.235 In contrast, the unmutated IGHV3-23 BCR was 

over-represented among our MBLlow cases, normal peripheral blood IGHV3-23+ IgM+ B-cells 

being associated with recognition of superantigens.24,484,485 Thus, the association between 

MBLlow and unmutated IGHV3-23 could be potentially due to a low affinity of this particular 

BCR for low concentrated/prevalent (super)antigens, which would limit the development of 

repetitive immune responses associated with the expansion of MBL clones and/or their 

cytogenetic progression. A recent study203 also reported MBLlow cases to display an IGHV gene 

repertoire different from that of CLL patients (e.g. absence of IGHV1-69+ MBLlow clones, 

together with a low frequency of the IGHV4-34 gene and overrepresentation of the IGHV4-
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59/61 genes); however, no preferential usage of the IGHV3-23 gene was found among MBLlow 

cells in this series. Further studies investigating the IGHV gene repertoire of MBLlow clones in 

distinct geographic areas and microenvironments, may shed light on those factors accounting 

for such apparent discrepancies, as an association between MBLlow and previous history of 

infections has been recently reported in this setting.204 

Taken together, these results would support the notion that antigen-driven BCR-

stimulation could be a triggering factor in driving CLL-like B-cells to expand, in line with recent 

data showing a significant association between MBL in the general population and the 

individual history of infectious diseases and vaccination,204 whilst depending on the nature of 

the antigenic stimuli, distinct patterns of cytogenetic changes might then occur. Thus, the 

specific combination of cytogenetic alterations acquired by the CLL-like B-cells may determine, 

for distinct antigenic stimuli, and specific BCR repertoires, the outcome of the genetically-

targeted cell. Long-term longitudinal studies, ideally of the same cases at different time-points 

and at different stages of the disease, would be crucial to definitively confirm these 

hypotheses, although based on our preliminary follow-up date19 this may require decades due 

to the stable nature of most MBLlow clones in the short-term.  

In summary, MBL and CLL clones appear to display a distinct but partially overlapping 

pattern of IGHV gene usage, IGHV mutational status and cytogenetic alterations, which may 

translate into distinct groups of clones with different genetic/molecular features associated 

with a distinct clinical behavior. Sequential studies in larger series of cases followed for long 

periods of time are ongoing to investigate the risk of progression and outcome of MBL clones 

with specific IGHV and iFISH cytogenetic profiles.  
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3.1. Abstract  

 

Chronic antigen-stimulation has been recurrently involved in the earlier stages of MBL, 

CLL and other B-CLPD. Among these individuals, expansion of ≥2 B-cell clones has been 

frequently reported; potentially, such coexisting clones have a greater probability of 

interaction with common immunological determinants. Here, we comparatively analyzed the 

BCR repertoire and the molecular profile, as well as the phenotypic, cytogenetic and 

hematological features of 228 CLL-like and non-CLL-like clones between multiclonal (n=85 

clones from 41 cases) vs. monoclonal (n=143 clones) MBL, CLL and other B-CLPD. The BCR of B-

cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-

cell clones from monoclonal cases, in association with unique hematological (e.g. lower B-

lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) 

features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-

cell clones from individual multiclonal cases which were found to be phylogenetically related, 

showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene 

usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and 

del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-

driven nature of such multiclonal B-cell expansions, with potential involvement of multiple 

antigens/epitopes. 

 

3.2. Materials and Methods  

 

3.2.1. Patients and samples 

 

 A total of 184 subjects with one (n=143 monoclonal cases) or ≥2 (n=41 multiclonal 

cases) CLL/non-CLL B-CLPD (n=140) and/or CLL-like/non-CLL-like MBL (n=88) B-cell clones – as 

defined by the WHO criteria 2008486 – were included. Binet staging466 of CLL subjects was 

retrospectively collected.  

  From the 41 multiclonal cases, 2 (5%) corresponded to healthy individuals with CLL-

like MBLlow, 8 (19.5%) were CLL-like MBLhigh cases, 23 (56%) had CLL and 8 (19.5%) had B-CLPD 

other than CLL; 4 of these latter cases showed coexistence of either one or two CLL-like MBL B-

cell population(s). In 3/41 multiclonal cases, three coexisting B-cell populations were detected. 

From the 143 monoclonal cases, 13 (9%) corresponded to healthy adults with CLL-like MBLlow, 

26 (18%) were CLL-like MBLhigh, 89 (62%) had CLL, 2 (1%) were non-CLL-like MBLlow, 2 (1%) non-

CLL-like MBLhigh cases and 11 (8%) had other B-CLPD. MBL was defined by the presence of 
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small clones of aberrant B-cells in the PB, with a clonal B-cell count below the threshold for 

diagnosis of CLL (< 5.0 × 109 cells/L).14 A MBL case was subclassified as MBLlow when the 

absolute number of clonal B-lymphocytes was less than 200 cells/µL in PB and as MBLhigh when 

this number ranged between ≥200 and <5,000 clonal CLL-like B-cells/µL of PB.468 The 

age/gender distribution for each diagnostic group, is detailed in Table 9. 

Peripheral blood samples were obtained from each subject after written informed 

consent was given, and the study was approved by the local ethics committees of the 

University Hospital of Salamanca and the Blood and Transplantation Center of 

Coimbra/Portuguese Institute of Blood and Transplantation, in accordance with the Helsinki 

Declaration of 1975, as revised in 2008.  

 

Table 9. Age and gender features of subjects included in the study. 

  Diagnostic subgroups 

  CLL and CLL-like MBL Non-CLL B-CLPD and non-CLL MBL 

 Age/Gender 
Features 

MBL
low

 MBL
high

 CLL MBL
low

 MBL
high

 Non-CLL 

Cases Monoclonal (n=143) 13 (9%) 26 (18%) 89 (62%) 2 (1%) 2 (1%) 11 (8%) 

 Age (years)* 66±13 (49-84) 69±13 (37-89) 69±13 (35-89) 65 & 95 79 & 80 71±9 (53-84) 

 Male/Female 4/9 15/11 50/39 1/1 0/2 7/4 

 Multiclonal (n=41) 2 (5%) 8 (19.5%) 23 (56%) - (0%) - (0%) 8 (19.5%) 

 Age (years)* 77 & 83 76±6 (65-82) 75±9 (57-89) - - 74±9 (56-81) 

 Male/Female 1/1 5/3 16/7 - - 6/2 

Age values expressed as *media ± one standard deviation (range) when n>2. MBL, monoclonal B-cell lymphocytosis; 

CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; B-CLPD, B-cell chronic lymphoproliferative 

disorders other than CLL or MBL. 

 

3.2.2. Immunophenotypic analyses 

 

  Immunophenotypic studies to screen for the presence and full characterization of 

clonal B-cell populations were performed by high-sensitive MFC on erythrocyte-lysed 

peripheral blood samples, according to previously described procedures (see the Materials and 

Methods section of Chapter 2 for detailed descriptions). In all cases studied, each SmIg light 

chain restricted and phenotypically aberrant B-cell population identified was purified in a 

FACSAria II flow cytometer (BDB). In those samples (n=41) containing ≥2 aberrant B-cell 

populations, discrimination among them was based on their distinct patterns of expression for 

≥1 of the B-cell markers analyzed, as described elsewhere.467 The clonal nature of each FACS-

purified B-cell population (purity: 98%±0.8%) was assessed by both cytogenetic and molecular 

techniques. 
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3.2.3. Cytogenetic and molecular studies 

 

Cytogenetic analyses were performed by multicolor iFISH on slides containing FACS-

purified and fixed aberrant B-cells, as previously described in detail (see the Materials and 

Methods section of Chapter 2 for detailed descriptions).253,468 In parallel, analysis of the 

patterns of rearrangement of the IGHV and IGKV and IGʎV genes was performed for each 

FACS-purified B-cell clone (see the Materials and Methods section of Chapter 2 for detailed 

descriptions).468,471,472 Each deduced "IMGT/V-QUEST aa sequence" corresponding to individual 

IGHV gene sequences from purified B-cell clones from both monoclonal and multiclonal cases 

was aligned using the bioinformatic tools available at the web services of the European 

Bioinformatics Institute (EMBL-EBI Cambridge, UK). More than 12,400 alignments of IGHV aa 

sequences, with a coverage ranging from framework region (FR) 1 to the HCDR3 region (both 

regions included) were obtained for all B-cell clones (a total of 8,891 alignments within the 

monoclonal and 3,560 alignments within the multiclonal groups of cases). Then, the 

percentage of alignment of IGHV aa sequences obtained after two-by-two comparisons 

between the distinct B-cell clones, was calculated for every pair of B-cell clones. Finally, each 

single paired-alignment obtained – 8,891 and 3,560 in monoclonal vs. multiclonal cases, 

respectively – was included in a final database, to calculate the median and range of the total 

IGHV aa alignment percentages and to calculate the statistical significance of their differences 

observed between the two groups (P-values). 

To investigate the level of phylogenetic relationship among IGHV aa sequences 

corresponding to distinct clones from multiclonal cases, as well as monoclonal cases, a 

sequence distance tree was built using the neighbor-joining method implemented in the freely 

available Molecular Evolutionary Genetic Analysis (MEGA) software (version 5.2, 

http://www.megasoftware.net). Examination of the different branches of the sequence 

distance tree allowed the distinction of multiclonal cases whose clones had IGHV aa sequences 

phylogenetically closer than others. Thus, sequences in the same major branch were 

guaranteed to exhibit ≥50% aa identity (from FR1 to HCDR3, both regions included).239 As 

might be expected, sequences in sub-branches emerging from the same major branch exhibit 

even more aa identity, ranging from 60% to 99%. In our analysis, those co-existing B-cell clones 

with IGHV aa sequences that belonged to the same major branch with >60% aa identity or 

belonged to close located sub-branches were assumed to be “phylogenetically” related 

sequences. This “identity” threshold was based on previously published concepts about the 

phylogeny of human IGHV genes based on their aa sequences,239 and on the minimum identity 
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percentage observed in colocalized sub-branches (presumably with the highest evolutionary 

relationship239) of the sequence distance tree built in this study. 

HCDR3-alignments were carried out for each multiclonal case whose co-existing B-cell 

clones showed HCDR3 regions with identical or one aa differing lengths using the bioinformatic 

tools available at the web services of the European Bioinformatics Institute (EMBL-EBI 

Cambridge, UK). Through the EMBL-EBI tools, the identical aa or those with analogous side-

chain polarity per case-paired HCDR3 alignments were highlighted taking into account their 

conserved composition in terms of "hydropathy", "volume" and "chemical characteristics" as 

outlined in the IMGT classification of aa". 

 

3.2.4. Statistical methods 

 

Comparisons between groups were performed with either the nonparametric Kruskal-

Wallis and Mann-Whitney U tests (for continuous variables) or the Pearson’s2 and Fisher 

exact tests (for categorical variables) using the SPSS software/version 20.0 (IBM SPSS Statistics, 

IBM, Armonk, NY, USA). P values <0.05 were considered to be associated with statistical 

significance. 

 

3.3. Results 

 

3.3.1. Distribution and immunophenotypic features of B-cell clones  

 

A total of 228 B-cell clones were identified. These corresponded to 143 B-cell clones 

(89 CLL, 11 non-CLL, 39 CLL-like MBL and 4 non-CLL-like MBL clones) from monoclonal cases 

and 85 B-cell clones (26 CLL, 14 non-CLL, 40 CLL-like MBL and 5 non-CLL-like MBL clones) from 

multiclonal cases (Table 10). The complete immunophenotypic and cytogenetic features of the 

individual clones of multiclonal cases are summarized in Supplemental Table 3. 

In 26/41 multiclonal cases, all coexisting B-cell clones showed a CLL-like phenotype, 

while in 11 of the remaining 15 cases, at least one CLL-like B-cell population coexisting with 

another non-CLL aberrant B-cell population was identified. In the remaining 4 cases, two 

distinct non-CLL-like B-cell clones were found (Supplemental Table 3). The distribution of all 

CLL/non-CLL and CLL-like MBL/non-CLL-like MBL clones analyzed (from all monoclonal and 

multiclonal cases considered together) in the distinct diagnostic categories was as follows: 27 

B-cell clones corresponded to CLL-like MBLlow, 52 to CLL-like MBLhigh, 115 to CLL, 5 to non-CLL-

like MBLlow, 4 to non-CLL-like MBLhigh and 25 to non-CLL B-CLPD (Table 10). The precise 
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diagnoses of the B-cell clones from B-CLPD patients other than CLL are specified in the 

footnote of Table 10.  

 

Table 10. Distribution of subjects included in the study and their corresponding CLL and non-

CLL like B cell clones, according to diagnosis. 

  Diagnostic subgroups 

  CLL and CLL-like MBL Non-CLL B-CLPD and non-CLL MBL* 

  MBLlow MBLhigh CLL MBLlow MBLhigh Non-CLL 

Cases Monoclonal 
(n=143) 

13 (87%) 26 (76.5%) 89 (80%) 2 (100%) 2 (100%) 11 (58%) 

 Multiclonal (n=41) 2 (13%) 8 (23.5%) 23 (20%) - (0%) - (0%) 8 (42%) 

 Total (n=184) 15 34 112  2 2 19 

B cell clones Monoclonal 
(n=143) 

13 (48%) 26 (50%) 89 (77%) 2 (40%) 2 (50%) 11 (44%) 

 Multiclonal (n=85) 14 (52%) 26 (50%) 26 (23%) 3 (60%) 2 (50%) 14 (56%) 

 Total (n=228) 27 52 115 5 4 25 

CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma (n=115 clones); MBL, monoclonal B-cell 

lymphocytosis (n=88 clones: 79 CLL-like MBL clones and 9 non-CLL-like MBL clones); B-CLPD, B-cell chronic 

lymphoproliferative disorders other than CLL (n=25 clones). *Patients other than CLL included the following 

diagnoses: HCL, hairy cell leukemia (n=1 clone); MZL, marginal zone lymphoma (n=17 clones); MALT, lymphoma of 

mucosa-associated lymphoid tissue (n=7); MCL, mantle cell lymphoma (n=3 clones); FL, follicular lymphoma (n=4 

clones); DLBCL, diffuse large B-cell lymphoma (n=1 clones); LPL, lymphoplasmacytic lymphoma (n=1 clone). 

The precise diagnosis of multiclonal cases (CLL vs. non-CLL) were based on consistent clinic-biological features, 

according to the WHO 2008 criteria 
486

. 

 

3.3.2. Overall size and BCR features of B-cell clones from multiclonal versus 

monoclonal MBL, CLL and other B-CLPD cases 

 

 The relative and absolute median number of PB clonal B-cells was significantly lower 

in multiclonal than in monoclonal cases (13% vs. 45% and 2,692 cells/µL vs. 9,115 cells/µL, 

respectively; P =0.001). Of note, the absolute median number of CLL-like MBLhigh and CLL B-cell 

clones were also significantly lower in multiclonal than in monoclonal cases (1,254 vs. 2,464 

cells/µL and 9,113 vs. 18,600 cells/µL, respectively; P =0.004 and P =0.02) (Figure 8). In 

contrast, the absolute median number of PB CLL-like MBLlow B-cell clones was significantly 

higher in multiclonal than in monoclonal cases (79 vs. 1 cells/ µL, P =0.002). No significant 

differences were found in the clone size between non-CLL like and non-CLL B-cell clones in 

multiclonal vs. monoclonal cases (Figure 8). In addition, the frequency of CLL-like MBL B-cell 

clones was significantly higher in multiclonal than in monoclonal cases (47% vs. 27%, 

respectively; P =0.002), whereas the frequency of CLL B-cell clones was higher in monoclonal 

vs. multiclonal subjects (62% vs. 31%, respectively; P =0.001). CLL B-cell clones from 

multiclonal and monoclonal CLL patients showed a similar distribution in Binet stage A vs. 
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Binet stages B/C (P >0.05). Of note, non-CLL B-cell clones were present at higher frequencies in 

multiclonal vs. monoclonal cases (17% vs. 8%, respectively; P =0.04) (Table 11). 

 

Figure 8. Absolute number of CLL-like MBL
low

, CLL-like MBL
high

, CLL, non-CLL MBL and non-CLL B-cell clones per µL of 

peripheral blood in multiclonal vs monoclonal cases distributed according to diagnosis. Boxes extend from the 25
th

 

to the 75
th

 percentiles, the lines in the middle represent median values (50
th

 percentile). Vertical lines represent the 

highest and lowest values that are not outliers or extreme values (being outliers and extreme values those values 

that lie more than 1.5- and 3- fold the length of the box). The adjacent table compiles the median number and 

range of each subgroup of CLL-like and non-CLL like clonal B-cells/µL of peripheral blood and the exact P-values 

obtained after comparing multiclonal vs. monoclonal cases (Mann-Whitney U test) for the MBL
low

, MBL
high

 and CLL 

subgroups. NS: no statistical significant differences were detected (P ≥0.05). 

 

Regarding BCR features, a similar distribution of IGHV mutated and IGHV unmutated B-

cell clones was found in multiclonal vs monoclonal cases − 51/85 (60%) vs. 84/139 (60%) and 

34/85 (40%) vs. 55/139 (40%), respectively; Table 11 −. Despite this, the percentage of 

alignment of IGHV aa sequences among B-cell clones from multiclonal cases (n =3,560 two by 

two comparisons of clonal IGHV aa sequence) was slightly higher than that obtained among B-

cell clones from monoclonal cases (n =8,891 comparisons): median of 52% vs. 50%, 

respectively; (P =0.001; Table 11).  
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Table 11. Peripheral blood B-cell counts and BCR features of multiclonal vs. monoclonal B-cell 

clones from B-CLPD and MBL cases. 

 
Multiclonal B-cells 

n=85 clones 

Monoclonal B-cells 

n=143 clones 

TOTAL 

n=228 clones 

N. of  PB clonal B cells(x10
6
/L)* 2,692 (0.6-156,168)

a
 9,115 (0.1-369,288) 5,530 (0.1-369,288) 

% of PB clonal B cells from WBC* 13% (0.1%-89%)
a

 45% (0.002%-97%) 35% (0.001%-97%) 

CLL like MBL
low

 B-cell clones 14/85 (16%) 13/143 (9%) 27/228 (12%) 

CLL like MBL
high

 B-cell clones 26/85 (31%)
a

 26/143 (18%) 52/228 (38%) 

CLL B-cell clones 26/85 (31%)
a

 89/143 (62%) 113/228 (50%) 

 CLL-stage A clones 12/20 (60%) 53/89 (60%) 65/109 (60%) 

 CLL-stage B/C clones 8/20 (40%) 36/89 (40%) 44/109 (40%) 

Non-CLL like MBL B-cell clones 5/85 (6%) 4/143 (3%) 9/228 (4%) 

Non-CLL B-cell clones 14/85 (17%)
a

 11/143 (8%) 25/228 (11%) 

IGHV mutated CLL-like  B-cell clones 40/66 (61%) 76/128 (59%) 116/194 (60%) 

IGHV mutated non-CLL-like  B-cell 

clones 

11/19 (58%) 8/15 (53%) 19/34 (56%) 

%  alignment of  IGHV aa sequences  

between coexisting B-cell clones* 
51% (38%-79%) NA 51% (38%-79%) 

% alignment of  IGHV aa sequences 

between each B-cell clone and the 

other clones* 

52% (31%-100%)
a

 50% (29%-100%) 51% (29%-100%) 

Results expressed as number of B-cell clones and percentage between brackets or as *median value (range). PB, 

peripheral blood; WBC, white blood cells; CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; 

MBL
low

, low count monoclonal B-cell lymphocytosis; IGHV, immunoglobulin heavy chain variable region genes; 

CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; MBL
high

, clinical monoclonal B-cell 

lymphocytosis; aa, amino acids. NA, not appropriate. 
a
Statistically significant differences (P <0.05) found 

between clones from multiclonal vs. monoclonal
 
cases. Information about the parameters included in this table is 

separately displayed for CLL-like vs. non-CLL-like clones in Supplemental Table 4. 

 

3.3.3. Cytogenetic features of B-cell clones from multiclonal versus monoclonal MBL 

and B-CLPD cases  

 

The frequency of CLL-like MBL and CLL clones from multiclonal cases that showed 

cytogenetic alterations was significantly lower than that found among CLL-like MBL and CLL 

clones from monoclonal cases: 27/66 (41%) vs. 77/128 (60%), respectively (P =0.02). Likewise, 

the proportion of CLL-like B-cell clones showing coexistence of ≥2 cytogenetic alterations was 

also significantly lower in multiclonal than in monoclonal cases − 8/66 (12%) vs. 32/128 (25%); 

P =0.047 −; this was specially true among B-cell clones from CLL patients − 2/26 (8%) vs. 29/89 

(33%), respectively; P =0.03 – (Table 12). 
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Regarding each specific cytogenetic alteration, only a decreased frequency of CLL-like 

B-cell clones with del(13q14) involving the RB1 gene and a lower percentage of del(13q14)+ 

cells was found in multiclonal vs monoclonal cases − frequency of del(13q14)+ clones − of 5% 

vs. 15% with a median of del(13q14)+ cells of 55% vs. 86%, respectively; P =0.01) (Table 12). Of 

note, these differences were mostly due to the lower frequency of B-cell clones with 

del(13q14) (4% vs 19%, P =0.01) found among CLL clones from multiclonal vs. monoclonal 

cases (Table 12).  

 

 

 

 

 

 

 

 

 



 

 
 

Table 12. Cytogenetic features of CLL-like MBLlow, MBLhigh and CLL B-cell clones from monoclonal versus multiclonal cases. 

Cytogenetic alterations 

MBL
low

 clones MBL
high

 clones CLL clones TOTAL 

Multiclonal 
n=14 

Monoclonal 
n=13 

Multiclonal 
n=26 

Monoclonal 
n=26 

Multiclonal 
n=26 

Monoclonal 
n=89 

Multiclonal 
n=66 

Monoclonal 
n=128 

No. of cytogenetically altered clones 2/14 (14%) 6/13 (46%) 13/26 (50%) 13/26 (50%) 12/26 (46%) 58/89 (65%) 27/66 (41%)
b
 77/128 (60%) 

No. of clones with ≥2 alterations 1/14 (7%) 1/13 (8%) 5/26 (19%) 2/26 (8%) 2/26 (8%)
a
 29/89 (33%) 8/66 (12%)

b
 32/128 (25%) 

Type of cytogenetic changes         

No. of del(13q)
+
 clones (%)  

% del(13q)
+
 cells * 

2/14  (14%) 
46% (19%-73%) 

5/13 (38%) 
86% (22%-96%) 

7/26 (27%) 
74% (15%-98%) 

8/26  (31%) 
38% (21%-99%) 

8/26 (31%) 
93% (30%-96%) 

36/89 (40%) 
80% (47%-99%) 

17/66 (26%) 
84% (10%-98%) 

49/128 (38%) 
79% (18%-99%) 

No. of del(13q14.3)
+
 clones (%) 

% del(13q14.3)
+
 cells * 

2/14  (7%) 
(19%-73%) 

4/13 (31%) 
78% (22%-96%) 

7/26 (27%) 
65% (15%-98%) 

8/26 (31%) 
38% (21%-99%) 

8/26 (31%) 
81% (30%-96%) 

35/89 (39%) 
73% (5%-99%) 

17/66 (26%) 
80% (15%-98%) 

47/128 (37%) 
71% (5%-99%) 

No. of del(13q14)
+
 clones (%) 

% del(13q14)
+
 cells * 

0/14 (0%) 
- 

1/12 (8%) 
86% (-) 

2/26 (8%) 
57% (15%-98%) 

1/26 (4%) 
96% (-) 

1/26 (4%)
a
 

95% (-) 
17/89 (19%) 

79% (47%-99%) 
3/66 (5%)

b
 

55% (10%-98%)
b
 

19/127 (15%)
 

86% (47%-99%) 

No. of trisomy 12
+
 clones (%) 

% trisomy 12
+
 cells * 

0/14 (0%) 
- 

1/13 (8%) 
59% (-) 

6/26 (23%) 
87% (19%-95%) 

5/26 (19%) 
84% (80%-93%) 

2/26 (8%) 
84% (75%-93%) 

17/89 (19%) 
76% (33%-97%) 

8/66 (12%) 
87% (41%-95%) 

23/128 (18%) 
80% (33%-97%) 

No. of t(14q32)
+
 clones (%) 

% t(14q32)
+
 cells * 

0/12 (0%) 
- 

0/10 (0%) 
- 

2/26 (8%) 
42% (31%-52%) 

0/26 (0%) 
- 

1/26 (4%) 
98% (-) 

10/89 (11%) 
82% (18%-94%) 

3/64 (5%) 
72% (28%-98%) 

10/125 (8%) 
59% (18%-94%) 

No. of del(11q)
+
 clones (%) 

% del(11q)
+
 cells * 

0/12 (0%) 
- 

0/11 (0%) 
- 

1/26 (4%) 
93% (-) 

1/26 (4%) 
20% (-) 

1/26 (4%) 
91% (-) 

7/89 (8%) 
57% (21%-98%) 

2/64 (3%) 
92% (91%-93%) 

8/126 (6%) 
57% (20%-98%) 

No. of del(11q22.3)
+
 clones (%) 

% del(11q22.3)
+
 cells * 

0/12 (0%) 
- 

0/11 (0%) 
- 

1/26 (4%) 
93% (-) 

1/26 (4%) 
20% (-) 

1/26 (4%) 
91% (-) 

6/89 (7%) 
70% (24%-98%) 

2/64 (3%) 
92% (91%-93%) 

7/126 (6%) 
68% (20%-98%) 

No. of del(11q23)
+
 clones (%) 

% del(11q23)
+
 cells * 

0/12 (0%) 
- 

0/11 (0%) 
- 

0/26 (0%) 
- 

0/26 (0%) 
- 

0/26 (0%) 
- 

3/89 (3%) 
32% (21%-64%) 

0/64 (0%) 
- 

3/126 (2%) 
40% (24%-64%) 

No. of del(17p13.1)
+
 clones (%) 

% del(17p13.1)
+
 cells * 

0/13 (0%) 
- 

0/12 (0%) 
- 

0/26 (0%) 
- 

0/26 (0%) 
- 

0/26 (0%) 
- 

5/89 (6%) 
44% (33%-88%) 

0/65 (0%) 
- 

5/127 (4%) 
44% (33%-88%) 

Results expressed as number of clones with cytogenetic changes from all clones in the corresponding group (percentage) or as *median values of altered cells/clone (range). In seven clones (1 multiclonal 

MBL
low

, 3 monoclonal and 3 multiclonal CLL clones) biallelic del(13q14.3) was detected, and polysomy was found  in 1 multiclonal CLL clone. Statistically significant differences found between multiclonal vs. 

monoclonal B-cell clone groups for 
a
CLL clones (P =0.01) and 

b
all

 
(total) clones (P =0.01). CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; MBL, monoclonal B-cell lymphocytosis.

1
0

1
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No statistically significant differences were observed in the cytogenetic patterns of 

non- CLL B-cell clones from multiclonal vs monoclonal cases, which is probably due to the 

relatively low number of non-CLL clones included in the study; the precise cytogenetic 

alterations found in non-CLL/non-CLL-like MBL cases are shown in Supplemental Table 3 and 

Table 4. In turn, the overall cytogenetic features of non-CLL like B-cell clones from multiclonal 

(n=19; 3 non-CLL MBLlow, 2 non-CLL MBLhigh, 14 non-CLL B-cell clones) vs. monoclonal (n=15; 2 

non-CLL MBLlow, 2 non-CLL MBLhigh, 11 non-CLL B-cell clones) subjects were similar, as regards 

both the frequency of cytogenetically altered clones (6/19, 32% and 6/15, 40%) and the 

percentage of cases with ≥2 genetic alterations − 2/19 (11%) vs. 2/15 (13%) – (Supplemental 

Table 3 and Table 5). 

 

3.3.4. Molecular characteristics of the BCR of B-cell clones from multiclonal versus 

monoclonal MBL and B-CLPD cases 

  

The molecular profile of the BCR of CLL-like MBLlow, MBLhigh and CLL B-cell clones and of 

B-cell clones other than CLL from multiclonal vs. monoclonal cases was very similar (Table 13 

and Table 14).  

No statistically significant differences in multiclonal vs monoclonal VH gene usage were 

found for most groups. Despite this general behavior, CLL-like MBLhigh B-cell clones from 

multiclonal cases less frequently showed usage of the DH1, DH4 and DH7 gene families than B-

cell clones from monoclonal cases; in addition, JH6 genes were also less frequently used by CLL 

B-cell clones from multiclonal vs. monoclonal cases (Table 13). Overall, 33 functional IGHV 

gene rearrangements were identified from which 12 (V4-34, V3-23, V3-48, V3-30, V1-69, V3-

21, V4-39, V3-33, V3-11, V3-53, V1-2, V3-7) were highly represented among the B-cell clones 

(≥5% of all B-cell clones corresponding to ≥4 and ≥5 B-cell clones sharing the same IGHV gene 

in multiclonal and monoclonal cases, respectively) (Figure 9A). Interestingly, 11 of these IGHV 

genes were found at similar frequencies within the clones of multiclonal vs. monoclonal cases, 

while the V3-33 gene was typically associated with multiclonal cases (6% vs. 1%, P =0.03). 

Regarding IGHD genes, no significant differences were observed between B-cell clones from 

multiclonal and monoclonal cases, the D3-3, D5-12, D3-10, D6-19, D2-15, and D2-2 genes being 

the most frequently used and shared by both groups of B-cell clones (Figure 9B). Among IGHJ 

genes, significant differences were only observed for the JH6 gene, which was more frequently 

used in monoclonal cases (40% vs. 26%, P = 0.03) (Figure 9C). 
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Table 13. Molecular characteristics of the BCR of CLL-like MBLlow, MBLhigh and CLL B-cell clones 

from monoclonal versus multiclonal cases.  

 MBLlow clones MBLhigh clones CLL clones TOTAL 

 
Multiclonal  

n= 14 
Monoclonal 

n= 13 
Multiclonal  

n= 26 
Monoclonal 

n= 25 
Multiclonal  

n= 26 
Monoclonal 

n= 87 
Multiclonal  

n= 66 
Monoclonal  

n= 126 

HCDR3 length*  
(N. of aa) 

15 (6-22) 13 (11-20) 16 (8-23) 17 (9-26) 17 (11-26) 18 (8-32) 17 (6-26) 17 (8-32) 

         
VH families 

VH1 2/14 (14%) 2/13 (15%) 3/26 (12%) 4/25 (16%) 4/26 (15%) 25/87 (29%) 9/66 (14%) 31/125 (25%)  
VH3 9/14 (65%) 9/13 (69%) 15/26 (58%) 16/25 (64%) 11/26 (42%) 36/87 (41%) 35/66 (53%) 61/125 (49%) 
VH4 2/14 (14%) 2/13 (15%) 6/26 (23%) 3/25 (12%) 9/26 (35%) 23/87 (27%) 17/66 (26%)  28/125 (22%) 
VH2, VH5, VH6 1/14 (7%) 0/13 (0%) 2/26 (8%) 2/25(8%)  2/26 (8%) 3/87 (3%) 5/66 (7%) 5/125 (4%) 
         
         

DH families 
DH1, DH4, DH7 3/14 (21%) 2/13 (15%) 1/26 (4%)a 6/24 (25%) 6/26 (23%) 11/86 (13%) 10/66 (15%) 19/123 (16%) 
DH2 2/14 (14%) 3/13 (23%) 5/26 (19%) 7/24 (29%) 4/26 (15%) 15/86 (17%)  11/66 (17%) 25/123 (20%) 
DH3 3/14 (21%) 2/13 (15%) 9/26 (35%) 7/24 (29%) 13/26 (50%) 36/86 (42%) 25/66 (38%) 45/123 (37%) 
DH5 2/14 (14%) 3/13 (23%) 6/26 (23%) 2/24 (8%) 3/26 (12%)  9/86 (11%) 11/66 (17%) 14/123 (11%) 
DH6 4/14 (29%) 3/13 (23%) 5/26 (19%) 2/24 (8%) 0/26 (0%)  15/86 (17%) 9/66 (13%) 20/123 (16%) 
         
         

JH genes 
JH1, JH2, JH3, JH5 3/14 (21%) 2/13 (15%) 7/26 (27%) 7/24 (29%) 9/26 (35%) 14/86 (16%) 19/66 (29%) 23/123 (19%) 
JH4 6/14 (43%) 7/13 (54%) 13/26 (50%)  8/24 (33%) 10/26 (38%) 34/86 (40%) 29/66 (44%)  49/123 (40%)  
JH6 5/14 (36%) 4/13 (31%) 6/26 (23%) 9/24 (38%) 7/26 (27%)a 38/86 (44%)  18/66 (27%)a 51/123 (41%)  
         
         

LCDR3 length*  
(N. of aa) 

9 (8-13) 10 (8-10) 10 (8-12)a 9 (7-12) 10 (8-15) 9 (5-12) 10 (8-15)a 9 (5-12)  

         
VK families 

VK1 0/6 (0%) 1/4 (25%) 6/14 (43%)  3/12 (25%) 6/12 (50%) 23/48 (48%) 12/32 (38%) 27/64 (42%) 
VK2, VK5, VK6 1/6 (17%) 0/4 (0%) 1/14 (7%) 3/12 (25%) 2/12 (17%) 8/48 (17%) 4/32 (13%) 11/64 (17%) 
VK3, VK4 5/6 (83%)  3/4 (75%) 7/14 (50%) 6/12 (50%) 4/12 (33%) 17/48 (35%) 16/32 (50%)  26/64 (41%) 
         

JK genes 
JK1, JK3, JK5 3/6 1/4 5/14  7/12  5/12  21/47  13/32  29/63  

 (50%) (25%) (36%) (58%) (42%) (45%) (40%) (46%) 
JK2 2/6  2/4  8/14  3/12  4/12  10/47  14/32  15/63  
 (33%) (50%) (57%) (25%) (33%) (21%) (44%) (24%) 
JK4 1/6  1/4  1/14  2/12  3/12  16/47  5/32  19/63  
 (17%) (25%) (7%) (17%) (25%) (34%) (16%) (30%) 
         

Vλ families 
Vλ3 2/3 (67%) NA 1/7 (14%) 0/7 (0%) 2/7 (29%) 8/25 (32%) 5/17 (29%) 8/32 (25%) 
Other 1/3 (33%) NA 6/7 (86%) 7/7 (100%) 5/7 (71%) 17/25 (68%) 12/17 (71%) 24/32 (75%) 
         

Jλ genes 
Jλ1 1/3 (33%) NA 0/7 (0%) 0/7 (0%) 4/7 (57%) 6/21 (71%) 5/17 (29%) 6/28 (21%) 
Other 2/3 (67%) NA 7/7 (100%) 7/7 (100%) 3/7 (43%) 15/21 (29%) 12/17 (71%) 22/28 (79%) 
         

IGHV mutational 
status 

        

Mutated IGHV 9/14 (64%) 8/11 (73%) 17/26 (65%) 20/25 (80%) 14/26 (54%) 46/86 (54%) 40/66 (61%) 74/122 (61%) 
Unmutated IGHV 5/14 (36%) 3/11 (27%) 9/26 (35%) 5/25 (20%) 12/26 (46%) 40/86 (47%) 26/66 (39%) 48/122 (39%) 

Results expressed as number of B-cell clones from all clones in the corresponding group (percentage) or as *median 

(range). CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; MBL, monoclonal B-cell lymphocytosis; 

BCR, B-cell receptor; HCDR3, heavy chain complementarity-determining region 3; LCDR3, light chain 

complementarity-determining region 3; aa, amino  acid. NA, not analyzed; 
a
 statistically significant differences found 

between groups of clones from multiclonal vs monoclonal cases (P ≤0.03). 
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Table 14. Molecular characteristics of the BCR of non-CLL B-cell clones from both MBL and B-

CLPD other than CLL. 

 
Non-CLL B-cell clones 

n=34 clones 

 Multiclonal Monoclonal 

HCDR3 length* (N. of aa) 14 (8-26) 16 (7-22) 

VH families 
VH1 4/19 (21%) 3/15 (20%) 

VH3 12/19 (63%) 8/15 (53%) 

VH4 3/19 (16%) 2/15 (13%) 

VH5 0/19 (0%) 1/15 (7%) 

VH6 0/19 (0%) 1/15 (7%) 

   
DH families 
DH1, DH4, DH7 5/19 (26%) 2/14 (14%) 

DH2 3/19 (16%) 4/14 (29%) 

DH3 4/19 (21%) 2/14 (14%) 

DH5 2/19 (11%) 5/14 (36%) 

DH6 5/19 (26%) 1/14 (7%) 

   
JH genes 
JH1, JH2, JH3, JH5 7/19 (37%) 3/15 (20%) 

JH4 8/19 (42%) 7/15 (47%) 

JH6 4/19 (21%) 5/15 (33%) 

   

   

LCDR3 length* (N. of aa) 9 (9-11) 9 (8-12) 

VK families 
VK1 4/11 (36%) 3/12 (25%) 

VK2 2/11 (18%) 1/12 (8%) 

VK3-4 5/11 (46%) 8/12 (67%) 

   
JK genes 
JK1, JK3, JK5 5/11 (42%) 5/11 (45%) 

JK2 2/11 (33%) 2/11 (21%) 

JK4 4/11 (25%) 4/11 (34%) 

   
Vλ families 
Vλ3 1/3 (33%) 1/1 (100%) 

Other 2/3 (67%) 0/1 (0%) 

   
Jλ genes 
Jλ2 2/3 (67%) 1/1 (100%) 

Jλ3 1/3 (33%) 0/1 (0%) 

Results expressed as number of B-cell clones from all clones in the corresponding group (percentage) or as *median 

(range). Non-CLL, clones mimicking or compatible with B-cell chronic lymphoproliferative disorders other than 

chronic lymphocytic leukemia; BCR, B-cell receptor; HCDR3, heavy chain complementarity-determining region 3; 

LCDR3, light chain complementarity-determining region 3; aa, amino acid. 

 

Except for slightly longer LCDR3 sequences of the IGKV and IGLV genes found among B-

cell clones from multiclonal versus monoclonal cases, specially among CLL-like MBLhigh clones 

(Table 13), no other significant differences were found in the molecular characteristics of the 
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immunoglobulin light chain genes, neither among CLL-like nor non-CLL like B-cell clones from 

multiclonal vs. monoclonal cases (Table 13 and Table 14). Regarding IGKV and IGLV genes, only 

the VK1-33 gene was associated with multiclonal cases (6% vs. 0%, P =0.02) (Figure 9D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Frequency of IGHV (panel A), IGHD (panel B), IGHJ (panel C) and both IGKV and IGLV (panel D) genes in 

multiclonal and monoclonal CLL versus non-CLL like B cell clones. Diagrams show the relative frequency of each IG 

gene in multiclonal compared to monoclonal B-cell clones (black and white bars, respectively). *Statistically 

significant differences were found between the multiclonal vs. monoclonal subgroups (P <0.05). 
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3.3.5. Molecular features of phylogenetically related BCRs of B-cell clones from 

multiclonal cases 

 

Thirty-two of the 85 B-cell clones from individual multiclonal cases were 

phylogenetically closely related and had exactly the same IGHV family (IGHV3 in 28 B-cell 

clones and IGHV4 in 4 B-cell clones) (Figure 10). Of note, this subgroup of B-cell clones 

frequently showed IGHV3 gene usage (28/85, 33%) and they displayed shorter HCDR3 

sequences than other (multiclonal and monoclonal) B-cell clones − 13 (6-25) vs. 17(9-26) and 

16 (8-32) aa; P =0.001 and P =0.004, respectively −; in addition, they also showed a higher 

frequency of del(13q14.3) compared to B-cell clones from multiclonal cases expressing 

phylogenetically unrelated IGHV families (41% vs. 17%, respectively; P =0.05). Moreover, a 

slightly higher frequency of multiclonal cases whose coexisting clones were cytogenetically 

altered was found among phylogenetically closely related clones vs phylogenetically unrelated 

clones from multiclonal cases (53% vs. 34%, respectively; P =0.06). Interestingly, a trend 

towards an increased percentage of IGHV mutated B-cell clones among phylogenetically 

related B-cell clones from multiclonal cases compared to other B-cell clones from multiclonal 

cases, was also found (70% vs. 54%, respectively; P =0.1). Interestingly, most of the co-existing 

phylogenetically related clones had a CLL-like phenotype (10/16 cases, identified in 

Supplemental Table 3 with the ¶ symbol), while in 4/16 multiclonal cases, one CLL-like B-cell 

clone coexisted with one non-CLL B-cell clone, (2 MZL, 1 MALT lymphoma and 1 HCL clones 

from cases 29, 32, 37 and 38, also identified in Supplemental Table 3 with the ¶ symbol). In a 

minority of cases (2/16), the two co-existing phylogenetically related clones were both non-CLL 

like, their phenotype being consistent with FL (case 16¶, in Supplemental Table 3) and MALT 

lymphoma (case 34¶, in Supplemental Table 3), respectively.  

 

 



 

107 
 

Chapter 3 Molecular and cytogenetic characterization of B-cell clones from multiclonal vs. monoclonal B-CLPD 

 

Figure 10. Sequence distance cladogram of IGHV gene usage in CLL-like and non-CLL like B-cell clones from 

multiclonal (dark colored bars in the outside circle) and monoclonal (light colored bars in the outside circle) cases.  

Five major branches were found in the sequence distance cladogram (i.e VH1, VH5, VH3, VH2-VH6, VH4). B-cell 

clones from individual multiclonal cases are represented by numbers; from them, those phylogenetically closely 

related B-cell clones, which share the same IGHV family, are specifically identified by bold numbers in the inner part 

of the circle and the symbol ¶. Of note, B-cell clones from multiclonal cases 14¶, 16¶ and 35¶ belong to closely 

located sub-branches of the cladogram, having their IGHV sequences an aa identity of 79%, 76% and 69%, 

respectively. In turn, B-cell clones from the multiclonal case 32¶ belong to the VH4 major branch with IGHV 

sequences whose aa identity is of 69%. Finally, the other B-cell clones from multiclonal cases – cases 2¶, 11¶, 15¶, 

18¶, 19¶, 27¶, 29¶, 31¶, 34¶, 37¶, 38¶ and 40¶– belong to the VH3 major branch, having IGHV sequences with an 

aa identity which is > 60% (–68%, 73%, 73.4%, 61%, 79%, 70%, 63%, 77%, 69.9%, 70%, 72% and 68.4%–, 

respectively).  

 

3.3.6. Homology of the HCDR3 region between B-cell clones coexisting in 

multiclonal cases versus non-coexisting (monoclonal) B-cell clones 

 

The HCDR3 aa sequence from coexisting B-cell clones had the same length or it just 

differed in one aa in 8/41 multiclonal cases analyzed (19%) (Table 15A). The homology of all 

these case-paired HCDR3 regions was calculated as the number of identical aa or aa with an 

analogous side-chain polarity (excluding the anchor second-CYS104 (C_) and the J-TRP 118 
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(_W) aa positions that delineate the HCDR3 region) divided by the corresponding HCDR3 

length (Table 15A). It is worth noting that the aa composition of HCDR3 sequences of the same 

length (±1 aa) that belonged to the same or evolutionary, highly-related, VH families (e.g. VH3-

48, VH3-21, VH3-11)239 (n=57) from monoclonal cases (Supplemental Table 6) showed a 

tendency towards a lower homology than that of multiclonal cases: median of 37% (range: 

11% to 71%) vs. 50% (range: 26% to 64%), respectively; (P =0.1). Since stereotyped sequences 

are widely represented in CLL 487, we further analyzed the frequency of stereotyped HCDR3 

sequences in multiclonal cases (Table 15B) vs. monoclonal cases (Table 15C). Interestingly, the 

number of multiclonal cases showing the same or highly similar stereotyped HCDR3 sequences 

was significantly higher than that of monoclonal cases: 8/41 (19%) vs. 11/143 (8%), 

respectively, (P =0.001). Furthermore, the aa composition of HCDR3 sequences from 

monoclonal cases with stereotyped HCDR3 sequences showed clearly less identical and/or 

conserved positions than those found among multiclonal cases (underlined aa in Table 15B and 

Table 15C). 

 

Table 15. Multiclonal cases with coexisting B-cell clones sharing HCDR3 features (A). 

Multiclonal (B) and monoclonal (C) cases with B-cell clones showing stereotyped HCDR3 aa 

sequences. 

A. Multiclonal cases with coexisting B-cell clones showing identical or one aa differing 

length of HCDR3 regions, and analogous composition of aa in some parallel positions. 

Multiclonal Case ID VH families aa composition of HCDR3 (length) % homology
#
 

8A 

8B 

V1-3 

V3-53 

C_ARDRVVIIPDTTTINWFDP_W (19) 

C_ATHPTNIYTRWPYVSDMDV_W (19) 
26 

11A 

11B 

V3-23 

V3-48 

C_ANRGETRGMDV_W (11) 

C_VRDGFHYYGFDI_W (11) 
54 

14A 

14B 

V4-34 

V4-34 

C_ARGPDRLYSGSYTRFDY_W (17) 

C_ARREDDNFWSGFYMDV_W (16) 
47 

22A 

22B 

V3-74 

V4-59 

C_ARDLDGSGSGVFDW_W (14) 

C_ARGWRSTDSYYGMDV_W (15) 
64 

29A 

29B 

V3-48 

V3-15 

C_VRELWFGNGGDY_W (12) 

C_ATAGQGSADFLY_W (12) 
42 

31A 

31B 

V3-33 

V3-23 

C_ARGELLHNWFDP_W (12) 

C_AKDGFPYYGFDI_W (12) 
58 

32A 

32B 

V4-39 

V4-34 

C_ARQTGWLAPSDY_W (12) 

C_ARRDSSGWYYFDY_W (13) 
54 

33A 

33B 

V2-26 

V3-53 

C_AGTNIPRQFDFWSGSSPNWFDP_W (22) 

C_ARAGGYCNSGSCRGAPRWYFDL_W (22) 
32 

Amino acids (aa) with analogous side-chain polarity (highlighted in gray): case 8 (I, V and F, M), case 11 (A, V and M, 

F), case 14 (L, F), case 22 (L, W; S, T and F, M), case 29 (A, V), case 31(L, F and H, Y), case 32 (T, S), case 33 (W, C) 

(EMBL-EBI Cambridge, UK). All cases had coexisting B-cell clones with CLL-like phenotype, except case 29 (one B-cell 

clone corresponded to a MALT lymphoma-like phenotype), cases 32 and 33 (both had one B-cell clone with a MZL-

like phenotype). MALT, lymphoma of mucosa-associated lymphoid tissue; MZL, marginal zone lymphoma. 
#
Number 

of aa with analogous side-chain polarity (excluding the delineating C_ and _W positions)/HCDR3 length*100. 
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B. Multiclonal cases with B-cell clones showing stereotyped HCDR3 sequences. 

Multiclonal Cases ID V(D)J rearrangement AA composition of HCDR3 

1 

2 

V3-30(D3-9)J6 

V3-30(D3-9)J6 

C_AKYGGVKLRYFDWLLYGDYYYGMDV_W 

C_AKYGGVKLRYFDWLLYGDYYYGMDV_W 

9 

15 

V3-23(D5-12)J6 

V3-23(D3-22)J6 

C_ANRGETRGMDV_W 

C_ANRGESWGMDV_W 

21 

35 

V3-21(D2-2)J6 

V3-21(D2-2)J6 

C_ARDANGMDV_W 

C_ARDANGMDV_W 

22 

40 

V3-74(D3-10)J4 

V3-21(D4-23)J4 

C_ARDLDGSGSGVFDW_W 

C_ARDLDGGNSVFDC_W 

Cases 1 and 2; 9 and 15; 21 and 35; 22 and 40 showed a highly similar HCDR3 sequence; the 

underlined aa were different. All the listed B-cell clones had a CLL-like phenotype. 

 

C. Monoclonal cases with B-cell clones showing stereotyped HCDR3 sequences. 

Monoclonal Cases ID V(D)J rearrangement AA composition of HCDR3 

117 

134 

V3-7(D3-3)J4 

V3-7(D3-3)J4 

C_VRENELWSGGWGLDG_W 

C_VRENEFWSGGWGLDG_W 

207 

208 

210 

V4-39(D2-2)J6 

V4-39(D2-2)J6 

V4-39(D2-2)J6 

C_ARHRLGYCSSTSCYYYYYGMDV_W 

C_ARHRLGYCSSTSCYYYYYGMDV_W 

C_ARDRLGYCSSTSCYYYYYGMDV_W 

187 

215 

V4-b(-)J4 

V4-b(D5-5)J4 

C_ARSWIQLWSEFDY_W 

C_ARAWIQLWSDFDY_W 

180 

204 

V1-2/D6-19/J4 

V1-2/D6-19/J4  

C_ARLQWLGISHFDY_W 

C_ARAQWLVLENFDY_W 

196 

198 

V4-34/D3-16/J6 

V4-34/D4-23/J6 

C_VRGYPSDYTERRYYYYGLDV_W 

C_ARGYGSTGETRRYYYYGMDV_W 

Cases 117 and 134; 207, 208 and 210; 187 and 215; 180 and 204; 196 and 198 showed a highly 

similar HCDR3 region; the underlined aa were different. All the listed B-cell clones had a CLL-like 

phenotype. 

 

 

3.4. Discussion 

 

Multiclonal expansions of phenotypically aberrant B-cell clones (MBLlow) have been 

reported as frequently present in the general population;19 of note, multiclonal expansions of 

immunophenotypically normal B-cells can also be found in non-malignant diseases, such as 

autoimmune disorders and inflammatory responses against several infectious agents (e.g. 

Helicobacter pylori, HCV).488,489 Whether clonal expansions of aberrant B-cells found in 

otherwise healthy individuals (MBLlow) reflect a prominent reactive process against potent 

antigenic stimuli with unknown clinical relevance, or they represent an early (multi)clonal 

manifestation of a BCR-dependent neoplastic event, still remains to be established. In this 

regard, it should be noted that between 30% and 40% of such cases show cytogenetic changes 

shared by MBL and CLL, e.g. del(13q). Of note, among other large structural chromosomal 

alterations, clonal mosaicism involving del(13q14) has also been recently found in peripheral 

blood cell populations from otherwise healthy individuals, particularly among subjects with 
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more advanced age (around 2-3% in the elderly), but its potential relationship with MBL and 

CLL remains unknown.490,491 Compared to the typical (monoclonal) MBL and B-CLPD, coexisting 

B-cell clones from multiclonal MBL and B-CLPD may potentially have a greater probability of 

interacting with common immunological determinants. However, there is still little information 

about the potential existence of shared BCR features in cases showing ≥2 coexisting B-cell 

clones vs. monoclonal cases.  

In the present study, we analyzed for the first time the molecular and cytogenetic 

features of a large group (n=85) of coexisting, but unrelated, B-cell clones from a series of 41 

multiclonal MBL and B-CLPD cases, in comparison to 143 monoclonal cases. Overall, the 

former clones more frequently showed cytogenetic and hematological features which are 

typical of the earliest MBL stages and/or initial phases of CLL.468,488,489 Accordingly, B-cell clones 

from multiclonal cases more frequently corresponded to MBL cases, whereas B-cell clones 

from monoclonal cases were more frequently found to correspond to overt CLL. Of note, these 

findings do not contradict the apparent discrepancy between such association and our 

previous observation among CLL patients of a worse clinical outcome for multiclonal cases 

carrying non-CLL clones,21 as this latter study was restricted to overt CLL cases. In addition, 

multiclonal cases were also associated with lower clonal B-cell counts in peripheral blood, a 

lower number of cytogenetically altered clones, particularly of those carrying del(13q), and a 

decreased frequency of clones with ≥2 alterations. Of note, clonal expansions of non-CLL like 

B-cell clones were also more frequently observed in multiclonal than in monoclonal cases, such 

expansions corresponding mainly to indolent lymphomas (e.g. MZL) which have been 

associated with chronic immune responses.492,493  

Altogether, these results support the notion that the presence of multiple B-cell clones 

in the same individual more closely reflects the earlier stages of the disease. If this holds true 

and chronic antigen stimulation is involved in the onset of MBL and B-CLPD – as it has been 

recently suggested for MBL, based on epidemiological studies204 –, it could be hypothesized 

that B-cell clones coexisting in multiclonal cases would show more closely related BCR features 

than B-cell clones from monoclonal cases. In this regard, our results point out the existence of 

a slightly higher level of HCDR3 homology among B-cell clones from multiclonal vs monoclonal 

cases. In fact, in around one fifth of all multiclonal cases, the co-existing B-cell clones showed a 

high homology in their HCDR3 aa sequences; this also hold true when we compared the 

homology of the HCDR3 sequences of these multiclonal against those of monoclonal cases 

whose B-cell receptors were restricted to the same and/or ontogenetically related IGHV 

families. In addition, the frequency of stereotyped HCDR3 was also higher in multiclonal vs. 

monoclonal cases. Such more closely related BCR features would be found independently of 
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whether common antigens or superantigens are specifically involved, although the former 

would potentially lead to a higher HCDR3 homology, whereas superantigens could contribute 

to a greater frequency of usage of specific IGHV, IGHD and/or IGHJ genes.22,244  

In the present study, we found a similar frequency of IGHV gene usage between 

coexisting multiclonal and non-coexisting monoclonal B-cell clones in association with a lower 

frequency of DH1, DH4 and DH7 as well as JH6 families in multiclonal vs. monoclonal B-cell 

clones. Overall, these results suggest that no single Ag or superantigen is involved in common 

in MBL and B-CLPD. This is further supported by the relatively low percentage of alignment 

(≈50%) of the IGHV aa sequences observed among the different clonal B-cell populations 

analyzed, since such potential antigens – including superantigens – would require interaction 

with highly conserved sites at the IGHV/HCDR3 regions of the BCR.494 Interestingly however, 

the higher representation of DH1, DH4, DH7 and JH6 IGH gene segments in monoclonal vs 

multiclonal B-cell clones, together with the slightly higher levels of HCDR3 homology observed 

among coexisting (multiclonal) vs non-coexisting (monoclonal) B-cell clones from MBL, CLL and 

other B-CLPD cases, would indicate that still non-random selection of specific HCDR3, DH and 

JH segments could exist in the MBL and CLL repertoire of both multiclonal and monoclonal 

cases, which could reflect antigen-driven selection and expansion of specific B-cell clones, both 

at the MBL and/or CLL stages.64  

In this regard, based on the phylogenetic proximity of their BCR, we could further 

identify within the B-cell clones from multiclonal cases, a considerably represented subgroup 

of B-cell clones showing preferential usage of IGHV3 genes and shorter HCDR3 sequences 

carrying a significantly higher number of IGHV mutations vs the unrelated clones. These results 

further support the involvement of a common antigen, at least in this specific subset of 

cases.495 Interestingly, these “phylogenetically-related” B-cell clones coexisting in multiclonal 

cases showed a significantly higher frequency of del(13q) than B-cell clones expressing other 

IGHV genes. These observations further suggest that the BCR features of this subset of 

coexisting multiclonal B-cell clones could also contribute to determine the probability and/or 

type of cytogenetic progression occurring at the earliest stages of the disease, as previously 

suggested by our group468 and others.479,496 Further long-term, longitudinal studies are required 

to confirm this hypothesis, since multiple productive IGHV gene rearrangements may also 

underline clonal drift leading to selection for more aggressive clones whose proportions would 

change over time.497 

In summary, based on the molecular features of the BCR and the cytogenetic profile of 

B-cell clones from the multiclonal vs monoclonal MBL, CLL and other B-CLPD cases here 

analyzed, it may be concluded that multiclonality is typically associated with early stages of B-



 

112 
 

Chapter 3 Molecular and cytogenetic characterization of B-cell clones from multiclonal vs. monoclonal B-CLPD 

CLPD, at the same time it appears to more closely reflect an antigen-driven nature of MBL and 

B-CLPD, with potential involvement of multiple and diverse antigenic determinants. 
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4.1. Abstract 

 

An increasing body of evidences suggests the potential occurrence of antigen 

encounter by the cell of origin in CLL and CLL-like MBL. However, the scenario in which this 

event might occur, remains unknown. In order to gain insight into this scenario we investigated 

the molecular, cytogenetic and hematological features of 223 CLL-like (n=84) and CLL (n=139) 

clones with stereotyped (n=32) vs. non-stereotyped (n=191) IGHV aa sequences. Overall, 

stereotyped CLL-like MBL and CLL clones showed a unique IGHV profile, associated with higher 

VH1 and lower VH3 gene usage (P =0.03), longer HCDR3 sequences (P =0.007) and unmutated 

IGHV (P <0.001) vs. non-stereotyped clones. Whilst the overall size of the stereotyped B-cell 

clones in PB did not appear to be associated with the CLL-related cytogenetic profile of B-cells 

(P >0.05) it did show a significant association with the presence of myelodysplastic syndrome 

(MDS)-associated immunophenotypes on PB neutrophils and/or monocytes (P =0.01). 

Altogether these results, point to the potential involvement of different selection forces in the 

expansion of stereotyped vs. non-stereotyped CLL and CLL-like MBL clones, the former being 

potentially favored by an underlying altered hematopoiesis. 

 

4.2. Materials and methods 

 

4.2.1. CLL patients and MBL subjects 

 

A total of 200 subjects (119 males and 81 females; mean age of 69±12 years; range: 

35-89 years) presenting one or more CLL-like and/or CLL clonal B-cell populations, were 

included in this study. Fifteen cases (7%) corresponded to healthy individuals with MBLlow 

(<200 CLL-like B-cells/µL in PB), 41 (20%) were MBLhigh (≥200 and <5 000 CLL-like B-cells/µL in 

PB), 131 (66%) had newly-diagnosed untreated CLL, 9 (4%) were CLL patients who had 

previously received chemotherapy for CLL, and 4 (2%) had other B-CLPD in association with ≥1 

CLL-like MBL B-cell population(s). PB samples were obtained from each subject after written 

informed consent was given, and the study was approved by the local ethics committees of the 

participating centres. Diagnosis of MBL and CLL was based on the WHO 2008 criteria466 and 

clinical staging of CLL subjects was established according to the Binet classification.498 

Immunophenotypic evaluation of the B-cell clones in MBL cases and both CLL and other B-

CLPD patients was performed as previously described.192,468,499 
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Overall, 37/200 subjects (18%) showed co-existence of two or three phenotypically 

different aberrant B-cell populations with a CLL-like (n=33) or other B-CLPD phenotype (n=4). 

For this study, analysis was focused only on those aberrant B-cell populations displaying a 

typical CLL-like MBL and CLL phenotype, for a total of 228 B-cell clones. The distribution of all 

clonal B-cell populations analyzed in the distinct diagnostic categories was as follows: 27 

corresponded to CLL-like MBLlow, 59 to CLL-like MBLhigh and 142 to CLL (see Table 16). 

  

Table 16. Distribution according to diagnosis of subjects included in the study and the 

corresponding CLL and CLL-like MBL clones. 

   Diagnostic subgroups 

  No. of cases  MBL
low

 MBL
high

 CLL Other B-CLPD 

Subjects Monoclonal 163 13 (87%) 33 (80%) 117 (84%)
#
 - 

 Multiclonal 37
†
 2 (13%)* 8 (19%)* 23 (16%)*

, # 
  4 (100%)*

, # 

 Total 200 15  41 140
#
 4

#
 

B-cell 
clones 

From monoclonal cases 163 13 (48%) 33 (56%) 117 (82%) - 

 From multiclonal cases 65 14 (52%) 26 (44%) 25 (18%) - 

 Total 228 27 59 142 - 

*For multiclonal CLL and CLL-like MBL cases as well as for B-CLPD cases other than CLL, only CLL-like clones were 

considered; the later B-CLPD cases included the following diagnoses: HCL, hairy cell leukemia; SMZL/MALT, splenic 

marginal zone B-cell lymphoma/ extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue 

lymphoma. CLL, chronic lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; B-CLPD, B-cell chronic 

lymphoproliferative disorders. 
†
The number of clones per multiclonal case was of two in all diagnostic subgroups, except in three tri-clonal subjects 

corresponding to one CLL patient, one MBL
high

 case and one patient with a B-CLPD other than CLL. 
#
Six monoclonal and four multiclonal subjects had received conventional chemotherapy (see Supplemental Table 7). 

 

4.2.2. Cytogenetic and molecular studies 

 

Cytogenetic analyses were performed by multicolor interphase fluorescence in situ 

hybridization on slides containing FACS-purified and fixed aberrant B-cells, as previously 

described in detail.253,468,499 In parallel, analysis of the patterns of rearrangement of the IGHV 

was performed for each FACS-purified B-cell clone.468,471,472,499 Forward and reverse sequences 

were aligned into a single resolved sequence and then aligned with germline sequences using 

the IMGT database and tools (http://imgt.org). Only B-cell clones showing in-frame 

rearrangements were finally evaluated (n=223). Sequences containing >2% deviation from the 

germline sequence were considered as being somatically mutated. Those IGHV-IGHD-IGHJ 

rearrangements with HCDR3 sequences that matched stereotyped CLL subsets, as previously 

defined by Agathangelidis13 and Stamatopoulos et al.,237 were classified as stereotyped IGHV 

sequences; all other IGHV sequences were identified as being non-stereotyped.  
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4.2.3. Immunophenotypic analyses of PB myeloid cells 

 

Neutrophils were recognized as displaying MDS-associated phenotypes when they 

lacked or expressed low levels of CD10 and/or showed low SSC properties (e.g. granularity) vs. 

their normal counterpart;500 in turn, presence of CD56 expression on PB monocytes was also 

defined as an MDS-associated phenotype.500 

 

4.2.4. Statistical methods 

 

Conventional descriptive and comparative statistics –nonparametric Kruskal-Wallis and 

Mann-Whitney U tests (for continuous variables), or the Pearson’s 2 and Fisher exact tests 

(for categorical variables) – were performed using the SPSS software program (SPSS, version 

20.0; SPSS software, IBM, Armonk, NY, USA). P values <0.05 were considered to be associated 

with statistical significance. 

 

4.3. Results 

 

4.3.1. Molecular and cytogenetic features of CLL and MBL B-cell clones with 

stereotyped versus non-stereotyped IGHV amino acid sequences 

 

Thirty-two of the 223 B-CLPD clones (14%) analyzed showed stereotyped HCDR3 aa 

sequences. These stereotyped HCDR3 sequences corresponded to 19 different stereotyped CLL 

subsets, as previously defined by Stamatopoulos and Agathangelidis et al..13,237 From the 32 

stereotyped clones, 26 (81%) corresponded to B-cell clones from monoclonal B-CLPD, whereas 

6 (19%) derived from multiclonal B-CLPD cases (Table 17 and Table 18), the latter representing 

a slightly lower frequency than that found among non-stereotyped clones (19% vs. 30%, P 

=0.2)(Table 18). Further analysis of the specific IGHV gene sequences revealed a higher VH1 

gene usage in stereotyped vs. non-stereotyped B-cell clones; in contrast, the VH3 gene was 

less frequently found among the stereotyped clones (P =0.03) (Table 19). Moreover, 

stereotyped B-cell clones displayed longer median HCDR3 sequences and lower percentages of 

IGHV mutated aa sequences than non-stereotyped B-cell clones (P =0.007 and P <0.001, 

respectively) (Table 19).  



 

 
 

Table 17. Phenotypic, haematological, molecular and cytogenetic features of B-CLPD cases whose CLL-like B-cell clones had stereotyped HCDR3 

sequences defined according to previously reported stereotypic CLL profiles.13,237 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clone 
No 

Subset 
No. 

Clone 
Phenotype 

% 
Clone 

Abs. No. 
Clone (x106/L)  

MAP 
Binet 

Stage* 
IGHV 
MS 

IGHV-D-J gene 
rearrangements 

HCDR3 sequence (length) iFISH (% of altered cells) 

1 1 CLL 88 120 102 No B U V1-2/D6-19/J4 CARAQWLVLENFDYW (13) ND 

2 1 CLL-like MBLlow 3.1 112 No - U V1-2/D6-19/J4 CARLQWLGISHFDYW (13) ND 

3 1 CLL 87.6 79 839 Yes B U V1-3/D6-19/J4 CARWQWLVPSRFDYW (13) -13q14.3 (94%) 

4 1 CLL 35 5 085 No A U V1-18/D6-19/J4 CARKQWLGMYYFDYW (13) -13q14.3 (13%); t(14q32) (13%) 

5B† 2 CLL-like MBLhigh 9.8 2 078 Yes - M V3-21/D2-15/J6 CARDANGMDVW (9) ND 

6B 2 CLL-like MBLhigh 2.3 250 Yes - M V3-21/D2-15/J6 CARDANGMDVW (9) ND 

7 2 CLL-like MBLhigh 33.2 4 424 No - M V3-21/D1-26/J6 CARDANGMDVW (9) ND 

8 3 CLL 45.8 9 545 Yes NA U V4-34/D2-2/J6 CARADLLVVPAAIYYYYYGMDVW (21) -13q14 (90%);-13q14.3 (90%);-17p13.1 (83%) 

9 6 CLL 87 20 880 No A U V1-69/D3-16/J3 CARGGNYDYIWGSYRPNDAFDIW (21) -11q23 (24%) 

10 7 CLL 88 75 170 No A U V1-69/D3-3/J6 CARADGGYDFWSGYSTVNYYGMDVW (23) t(14q32) (91%) 

11 7 CLL 72 71 516 No B U V1-69/D3-3/J6 CARGPSSYDFWSGYYTGRDYYYYMDVW (25) -13q14 (12%);-13q14.3 (12%); t(14q32) (60%) 

12 7 CLL 43 8 544 Yes A U V1-69/D3-3/J6 CAREGGADKDYDFWSGYYPNYYYYGMDVW (27) ND 

13 7 CLL 68.3 30 093 No A M V1-69/D3-3/J6 CARAEQYYDFWSGHKGVDYYYYMDVW (24) +12 (33%); -11q22.3 (24%) 

14B 8 CLL-like MBLhigh 3 700 Yes - U V4-39/D6-13/J5 CASVQGYSSSWYGGDNWFDPW (19) +12 (93%) 

15 8 CLL 62.7 24 647 No NA U V4-39/D6-13/J5 CATQTGYSSSWYAVNWFDPW (18) t(14q32) (94%) 

16 10 CLL-like MBLhigh 44.6 4 594 Yes - U V4-39/D2-2/J6 CARHRLGYCSSTSCYYYYYGMDVW (22) ND 

17 10 CLL 40.6 17 214 No A U V4-39/D2-2/J6 CARHRLGYCSSTSCYYYYYGMDVW (22) ND 

18 10 CLL 86 22 704 No B U V4-39/D2-2/J6 CARDRLGYCSSTSCYLYYYGMDVW (22) ND 

19A 11 CLL 33.7 6 807 No NA U V4-34/D3-10/J4 CARGLYYYGSGVYFDYW (15) t(14q32) (98%) 

20 11 CLL 64.2 19 568 No C U V4-34/D3-10/J4 CARGLIGAYGSGSYYPFPFDYW (20) +12 (73%); t(14q32) (82%) 

21 12 CLL-like MBLhigh 15.3 1 454 NA - M V1-2/D3-22/J4 CARDLARYDSGGSYKRKMFDYW (20) ND 

22 16 CLL 90 186 012 Yes B M V4-34/D2-15/J6 CAGRFYCSGDTCHLPLYHYYYGLDVW (24) ND 

23 21 CLL 42 11 147 NA A U V3-23/D3-3/J6 CAKHQLTYYDFWSGYYTEYYYYYGMDVW (26) -13q14.3 (99%) 

24 22 CLL-like MBLhigh 18 2 531 No - U V3-11/D3-3/J6 CARDRRDDFWSGYRIYYYYYGMDVW (23) +12 (84%) 

25 22 CLL 66.9 17 488 Yes A M V3-23/D3-3/J6 CARDLTHHNFWSAYYETSYCGMDVW (23) ND 

26A† 23 CLL 62.9 49 600 Yes B U V3-30/D3-9/J6 CAKYGGVKLRYFDWLLYGDYYYGMDVW (25) ND 

27 25 CLL 65.6 33 003 No A U V1-8/D3-3/J6 CARGPSYYDFWSGPFDNYGMDVW (21) -13q14.3 (97%) 

28 31 CLL-like MBLhigh 19.5 1 661 No - U V3-48/D3-3/J6 CARSPGYDFWSGYPDYYGMDVW (20) +12 (84%) 

29 34 CLL 24.9 5 578 Yes A U V1-18/D3-9/J6 CARGAYYDILTGYRYYYGMDVW (20) +12 (75%) 

30A 38 CLL-like MBLhigh 23 3 174 Yes - U V4-39/D3-3/J5 CARHTSLYDFWSGYYRGWFDPW (20) -13q14 (15%);-13q14.3 (15%) 

31 77 CLL 91 219 537 No A M V4-59/D6-19/J4 CARGPDISGWNGLDYW (14) -13q14.3 (82%) 

32 201 CLL 65.4 11 523 No A M V4-34/D5-12/J3 CARREEDWKRSGRDSFDIW (17) Biallelic -13q14.3 (79%) 

*Specified for CLL cases only. Gray shadowed lines correspond to stereotyped CLL-like B-cell clones derived from multiclonal B-CLPD cases. U, unmutated; M, mutated; CLL, chronic 

lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; B-CLPD, B-cell chronic lymphoproliferative disorders; MAP, myelodysplasia-associated phenotype; MS, mutational status. ND, 

not detected. NA, not available. †Patients that received chemotherapy for CLL. 
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Table 18. Peripheral blood B-cell counts, distribution of CLL-like MBLlow, MBLhigh and CLL B-cell 

clones and of CLL clinical stages according to the expression of non-stereotyped vs. 

stereotyped IGHV amino acid sequences. 

Results expressed as number of B-cell clones and percentage between brackets or as *median value (range). PB, 

peripheral blood; WBC, white blood cells; IGHV, immunoglobulin heavy chain variable region genes; CLL, chronic 

lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; MDS, myelodysplastic syndromes. **Statistically 

significant differences (P <0.05). 

 

The frequency of cytogenetically altered stereotyped B-cell clones (59%) was similar to 

that found among non-stereotyped B-cell clones (58%). Likewise, the proportion of B-cell 

clones showing coexistence of ≥2 cytogenetic alterations was also similar in both groups (22% 

and 26%, respectively). Regarding each specific cytogenetic alteration, similar frequencies and 

percentages of cytogenetically altered cells were observed in stereotyped vs. non-stereotyped 

B-cell clones (Table 19). 

 

 
Non-stereotyped B-cell clones 

n=191 

Stereotyped B-cell clones 

n=32 

N. of  PB clonal B cells(x10
6
/L)* 7,408 (0.09-369 289) 11,336 (112-219 537) 

% of PB clonal B cells from WBC* 37% (0.001%-97%) 45% (2.3%-91%) 

% of multiclonal B-cell clones 58/191 (30%) 6/32 (19%) 

   
clones and CLL clones: cell-Blike -CLL   

CLL-like MBL
low

 B-cell clones 25/191 (13%) 2/32 (6%) 

CLL-like MBL
high

 B-cell clones 49/191 (26%) 8/32 (25%) 

         CLL B-cell clones 117/191 (61%) 22/32 (69%) 

             CLL-stage A clones 62/106 (59%) 12/19 (63%) 

             CLL-stages B clones    27/106 (25%) 6/19 (32%) 

             CLL-stages C clones 17/106 (16%) 1/19 (5%) 

   

% of cases with MAP (MDS-associated 

phenotypes) 

27/154 (17%) 12/30 (40%)** 
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Table 19. Molecular and cytogenetic features of CLL-like MBL and CLL clones with non-

stereotyped versus stereotyped IGHV amino acid sequences. 

Molecular and cytogenetic features 
Non-stereotyped clones Stereotyped clones 

n=191 n=32 

VH subgroups 

VH1 

VH3 

VH4 

VH2,VH5, VH6 

 

37/191 (19%) 

101/191 (53%) 

43/191 (23%) 

10/191 (5%) 

 

12/32 (38%)** 

8/32 (25%)** 

12/32 (38%) 

0/32 (0%) 

HCDR3 length*, aa 16 (6-32) 20 (9-27)
**

 

IgH mutated clones 122/191 (64%) 9/32 (28%)
**

 

   

   No. of genetically altered CLL-like clones 110/191 (58%) 19/32 (59%) 

   No. of CLL-like clones with ≥2 alterations 50/191 (26%) 7/32 (22%) 

   Type of cytogenetic alterations   

No. of del(13q)
+
 clones (%) 

% del(13q)
+
 cells * 

74/191 (39%) 

82% (10%-99%) 

9/32 (28%) 

79% (15%-90%) 

No. of del(13q14.3)
+
 clones (%) 

% del(13q14.3)
+
 cells * 

71/191 (37%) 

76% (5%-99%) 

9/32  (28%) 

82% (12%-99%) 

No. of del(13q14)
+
 clones (%) 

% del(13q14)
+
 cells * 

28/190 (15%) 

80% (7%-99%) 

3/32  (9%) 

15% (12%-90%) 

No. of del(13q)
+
 clones with another alteration (%) 40/191 (21%) 5/32 (16%) 

   
No. of trisomy 12

+
 clones (%) 

% trisomy 12
+
 cells * 

30/191 (16%) 

76% (8%-97%) 

6/32 (19%) 

80% (33%-93%) 

No. of trisomy 12
+
 clones with another alteration (%) 14/191 (7%) 2/32 (6%) 

   

No. of t(14q32)
+
 clones (%) 

% t(14q32)
+
 cells * 

20/180 (11%) 

27% (6%-91%) 

6/32 (19%) 

87% (13%-98%) 

No. of del(11q)
+
 clones (%) 

% del(11q)
+
 cells * 

8/186 (4%) 

68% (20%-98%) 

2/32 (6%) 

24% (24%-24%) 

   No. of del(11q22.3)
+
 clones (%) 

% del(11q22.3)
+
 cells * 

8/186 (4%) 

82% (20%-98%) 

1/32 (3%) 

24% (-) 

No. of del(11q23)
+
 clones (%) 

% del(11q23)
+
 cells * 

3/176 (2%) 

64% (40%-93%) 

1/32 (3%) 

24% (-) 

   No. of del(17p13.1)
+
 clones (%) 

% del(17p13.1)
+
 cells * 

6/188 (3%) 

56% (33%-88%) 

1/32 (3%) 

83% (-) 

Results expressed as number of CLL and CLL-like MBL clones with cytogenetic alterations from all CLL and CLL-like MBL clones in the 

corresponding group (percentage) or as *median values (range). In eight clones, biallelic del(13q14.3) was detected and polysomy 

was found in 1 (multiclonal) clone. **Statistically significant differences (P < 0.05).  

 



 

121 
 

Chapter 4    Subjects with stereotyped CLL-like B-cell clones frequently show MAP on myeloid cells 

4.3.2. Haematological features of CLL and CLL-like MBL B-cell clones with 

stereotyped versus non-stereotyped IGHV amino acid sequences 

 

Within the two groups of B-cell clones classified according to the presence of 

stereotyped vs non-stereotyped IGHV aa sequences, a similar distribution of CLL-like MBLlow, 

MBLhigh and CLL B-cell clones was found, albeit the stereotyped group included a slightly 

higher, but statistically not significant, ratio of CLL/CLL-like MBL B-cell clones (CLL/ CLL-like 

MBL ratio of 2.2 vs. 1.6, respectively; P =0.3) (Table 18). Similarly, the overall distribution of CLL 

B-cell clones per clinical stage showed a predominance of Binet stage A (63% and 59% of the 

clones, respectively) vs. Binet stage B (32% and 25%, respectively) and Binet stage C (5% and 

16%, respectively) among both the stereotyped and the non-stereotyped CLL clones. Of note, 

the median PB percentage and absolute count of stereotyped B-cell clones showed a tendency 

towards higher values than that of non-stereotyped B-cell clones: 45% vs. 37% of all white 

blood cells (P =0.1) and 11,336 clonal B-cells/μl vs. 7,408 clonal B-cells/μl (P =0.1), respectively 

(Table 18).  

Despite all the above similarities, non-stereotyped B-cell clones which were IGHV 

unmutated displayed significantly higher PB (clonal) B-cell counts than the IGHV mutated ones 

(14,076 cells/µl vs. 5,354 cells/µl, P =0.006) (Figure 11A). Likewise, the non-stereotyped B-cell 

clones which carried ≥2 cytogenetic alterations showed higher PB (clonal) B-cell counts than 

the the cytogenetically unaltered or minimally altered (isolated cytogenetic alteration) non-

stereotyped B-cell clones (17,310 cells/µl vs 4,841 cells/µl and 6,701 cells/µl, respectively; P 

≤0.007) (Figure 11B). In contrast, IGHV stereotyped B-cell clones did not show significant 

differences in their overall size when grouped according to their IGHV mutational status or to 

their cytogenetic profile (P >0.05; Figure 11). 

Similarly to what has been recently reported for multiple myeloma patients,501 29 of 

140 (21%) CLL and 10 of 41 (24%) MBLhigh cases, displayed MDS-associated immunophenotypic 

profiles on PB neutrophils (97%) and/or monocytes (46%). Most interestingly, 40% of all CLL 

and MBL cases carrying stereotyped B-cell clones showed MDS-associated phenotypic 

alterations on PB neutrophils and/or monocytes, a frequency which was significantly higher 

than that found among cases which had non-stereotyped B-cell clones (17%) (P =0.01) (Table 

18). 
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Figure 11. Number of clonal B-cells in the PB from IGHV stereotyped vs. non-stereotyped B-cell clones grouped 

according to their IGHV mutational status (panel A) and cytogenetic profile (panel B). Diagrams show the number of 

PB clonal B cells (x10
6
/L) with both stereotyped and non-stereotyped IGHV sequences according to their mutational 

status: unmutated (≤2% deviation from the germline sequence) vs. mutated (>2% deviation from the germline 

sequence) and the absence versus the presence of one or more than one cytogenetic abnormalities. Circles 

represent individual cases, and horizontal lines indicate median values. 

 

4.4. Discussion 

 

Despite increasing evidences about the potential occurrence of Ag encounter by the 

cell of origin in CLL exist,319 the precise B-cell scenario in which this event might occur, remains 

unknown. In order to gain insight into such potential scenario, here we investigated the 

molecular and biological features of stereotyped vs. non-stereotyped CLL and CLL-like MBL 

clones. Overall, stereotyped CLL and CLL-like MBL clones showed a unique IGHV profile, 

associated with higher VH1 gene usage (an IGHV subgroup that is particularly related with 

early stages in the evolution of the IGHV repertoire),40,502 longer HCDR3 sequences and 



 

123 
 

Chapter 4    Subjects with stereotyped CLL-like B-cell clones frequently show MAP on myeloid cells 

unmutated IGHV as compared to non-stereotyped clones. More interestingly, the overall size 

of the stereotyped B-cell clones in PB did not appear to be associated with the CLL-related 

cytogenetic profile of B-cells, whereas it did show a significant association with the presence of 

MDS-associated immunophenotypes on PB myeloid cells (neutrophils and monocytes).  

In recent years, immunophenotyping has been progressively introduced in clinical 

research and diagnostic laboratories for the identification of altered phenotypes in bone 

marrow precursors and myeloid (e.g. neutrophil, monocytic and erythroid lineage) cells, being 

currently considered in the WHO 2008 classification of hematological malignancies as a co-

criterion for the diagnosis of MDS.466 More recently, we have shown that altered MDS-like 

immunophenotypes are frequently observed on residual maturing neutrophils and monocytes 

(and to a lesser extent also on erythroid cells) from “de novo” AML and both MGUS and MM 

patients, where such aberrant myeloid phenotypes can be detected in >80% 503 and around 

15% 501 of de novo AML and MGUS/MM cases, respectively. Of note, in both groups of diseases 

(“de novo” AML and MGUS/MM), the MDS-associated phenotypes predicted for MDS-

associated cytogenetic changes (but not e.g. MGUS/MM-related genetic alterations) and the 

presence of an underlying clonal hematopoiesis.501 Based on these findings, we hypothesize 

that in those CLL and MBL cases in which we here found PB neutrophils and monocytes 

displaying the same MDS-associated phenotypes, an underlying clonal hematopoiesis, 

potentially associated with specific genetic changes that still remain to be identified, might 

also exist. Under these circumstances it could be speculated that, due to the close association 

between the presence of such MDS-associated phenotypes on myeloid cells and stereotyped 

B-cell clones, expansion of such stereotyped B-cell clones could more likely be favored by the 

altered local BM microenvironment than by chronic antigen stimulation outside the BM. This 

could also explain, at least in part, the greater rate of IGHV unmutated clones with longer 

HCDR3 sequences among stereotyped vs non-stereotyped cases. Similarly, it might also explain 

the lack of relationship observed between the presence and number of CLL-associated 

cytogenetic changes and the size of the stereotyped CLL and MBL PB clones, in contrast to 

what we observed among non-stereotyped cases. In line with these findings, it should be 

noted that within non-stereotyped cases, the presence and number of CLL-associated 

cytogenetic changes was significantly associated with the size of the B-cell clone in PB, only 

among those cases that did not show MDS-associated phenotypes on myeloid cells (data not 

shown). 

Altogether, our results support the notion that selective genetic and/or BM 

microenvironment forces may favor expansion of specific VDJ clones. This might occur already 

at the HSC level, particularly among IGHV stereotyped cases; such forces could initially lead to 
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the expansion of B-cell clones in an Ag-independent way, as recently proposed by Kikushige et 

al. 329. These early expansions would therefore, more likely translate into an oligoclonal MBLlow 

stable condition, in which clonality will not directly translate into malignancy;468,479 further 

clonal B-cell expansion might depend on additional micro-environmental factors (e.g. 

infections)204 and/or acquisition of specific (additional) genetic changes by the expanded B-

cells.468 Alternatively, chronic Ag-driven B-cell stimulation could act as the primary triggering 

factor in other cases (e.g. non-stereotyped B-cell clones from subjects who have a normal 

haematopoietic BM background/environment). However, due to the stable nature of most 

MBLlow clones, very long-term longitudinal studies are required to determine the exact 

pathways and factors involved in clonal CLL and CLL-like B-cell expansions potentially leading 

to neoplastic transformation.468 

In line with all the above, our study also revealed a greater VH1 and a lower VH3 gene 

usage in stereotyped vs. non-stereotyped B-cell clones. These findings would further support 

the existence of different ontogenic pathways for both categories of CLL-like and CLL clones.239 

VH3 genes belong to the ancestral phylogenetic clan III, which shows the greatest nucleotide 

conservation within the FR1 and FR3 intervals (versus IGHV1/5/7 and IGHV2/4/6 genes); 

because of this, usage of VH3 genes has been more frequently associated with the production 

of autoantibodies (e.g. anti-DNA antibodies) and direct FR3-ligand interaction with 

superantigens or self-antigens recognized in a pattern-specific way;40 this is further supported 

by the polyreactivity of some monoclonal antibodies produced by CLL cells247,318 which react 

with molecular structures present on apoptotic cells and bacteria.245,247 Fully in line with this 

hypothesis, we observed a lower incidence of multiclonality and a lower frequency of IGH 

mutated clones with longer HCDR3 sequences among stereotyped vs. non-stereotyped B-cell 

clones, pointing out the potential involvement of different types of BCR-triggers in stereotyped 

(e.g. survival promoting antigens like vimentin and calreticulin found on stromal cells504 or 

apoptotic cells245,246) vs. non-stereotyped clones (e.g. superantigens and autoantigens). Such 

hypothesis would be supported by recent observations which show that coexistence of 

phylogenetically-related B-cell clones that frequently share IGHV3 gene usage and that show 

both shorter HCDR3 sequences and a greater proportion of IGHV mutations and del(13q14.3), 

are more frequently seen in multiclonal MBL, CLL and other B-CLPD than in unrelated B-cell 

clones from monoclonal cases.499 Altogether these findings suggest that non-stereotyped B-cell 

clones with mostly mutated IGHV sequences and shorter HCDR3 sequences, could be more 

closely associated with chronic expansions driven by antigens in the periphery, whereas 

stereotyped B-cell clones with mostly unmutated IGHV sequences and longer HCDR3 
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sequences could derive from B-cells which are specifically selected in the bone marrow 

microenvironment. 

The association between stereotypy and MDS-associated immunophenotypic features 

of myeloid cells, further suggests the potential occurrence of increased cytokine-mediated 

intramedullary apoptosis reported to occur in specific subtypes of MDS.505 The potential 

contribution of intramedullary apoptosis to the expansion of stereotyped CLL and CLL-like MBL 

clones carrying unmutated IGHV sequences reactive against molecular structures present on 

apoptotic cells,245,247,296 would be in line with the highly-repetitive HCDR3 sequences of these 

stereotyped B-cell clones selected in such BM microenvironment; further investigations are 

required to confirm this hypothesis. 

In summary, in this study we report for the first time a significant association between 

stereotyped IGHV HCDR3 B-cell clones from both MBL subjects and CLL patients and 

coexistence of phenotypically altered (MDS-like) myeloid cells, suggesting that the emergence 

and/or expansion of CLL-like MBL and CLL clones in these cases could be favored by an 

underlying altered hematopoiesis; the precise significance of the MDS-like altered myeloid 

phenotypes, the potential underlying genetic lesions and the specific antigens involved, remain 

to be defined. 
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In general, detailed molecular analysis of the IGHV genes, has significantly contributed 

to unravel the pathogenesis of human B-CLPD. Thus, immunogenetic analysis of the clonogenic 

BCR offers valuable insight into both the ontogenesis of CLL and other B-CLPD and their 

precursor (e.g. MBL) states, and the potential involvement of Ag selection in the onset and 

development of the disease. In this regard, multiple studies have shown that CLL and other B-

CLPD exhibit a biased repertoire together with SHM patterns in their IGHV genes, both findings 

being generally considered as evidence for the involvement of a limited set of Ags and/or 

superantigens in the development of the disease. For CLL, the involvement of Ags in 

leukemogenesis is further supported by the identification of closely homologous Ag binding 

sites among unrelated cases (“stereotyped” BCR), which are characterized by a non-random 

combination of specific IGHV genes and homologous HCDR3, also associated in some 

instances, with a restricted selection of IGKV/IGLV light chains; of utmost relevance, such IGHV 

profiles are strongly associated with the clinical course of the disease. Despite all the above 

findings, at present it still remains unclear whether a single or multiple normal precursors are 

stimulated in parallel to evolve into CLL and at what stage(s) this potentially occurs. The 

recognition of MBL and particularly, the high frequency at which MBL cases show expansions 

of multiple B-cell clones, highlight a potential scenario where some individuals develop 

oligoclonal expansions of B-cells (e.g. CLL-like) from which only some will be selected to 

progress to overt disease. The specific driving forces involved in the origin, expansion, 

selection and malignant transformation of these B-cell clones, still remain largely unknown.  

In order to gain insight into the precise mechanisms leading to the development and 

progression of MBL into CLL and other B-CLPD, here we investigated the BCR features of a 

relatively large series of MBL and B-CLPD cases, particularly focusing on CLL-like MBLlow, CLL-

like MBLhigh and CLL subjects. For the purpose of the study we focused on three major goals: 1) 

the investigation of the potential associations between the specific IGHV repertoires and 

unique cytogenetic and mutational profiles of MBL vs. CLL cases; 2) the comparison of the 

immunogenetic, cytogenetic and hematological features of B-cell clones from monoclonal vs. 

multiclonal MBL, CLL and other B-CLPD, and; 3) the molecular and cytogenetic characteristics 

of MBL and CLL cases carrying stereotyped vs. non-stereotyped BCR. Based on the results of 

the work performed during this doctoral thesis, the following major conclusions can be drawn:  

 

‐ Regarding the potential existence of unique cytogenetic and mutational profiles associated 

with specific IGHV repertoires in MBL versus CLL: 

– MBLlow, MBLhigh and CLL B-cell clones display three major distinct, but partially 

overlapping, patterns of IGHV gene usage, IGHV mutational status and cytogenetic 
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alterations, suggesting that the combination of specific IGHV genes and IGHV 

mutational status of CLL-like B-cell clones may modulate the type of cytogenetic 

alterations acquired, their rate of acquisition and/or potentially also the distinct 

clinical behavior of such clones. 

 

‐ With respect to the phenotypic, cytogenetic and molecular characterization of expanded B-

cell clones from multiclonal versus monoclonal B-CLPD: 

– Multiclonal MBL, CLL and other B-CLPD display molecular, cytogenetic and 

hematological features which are typically associated with early MBL stages 

and/or initial phases of disease, at the same time they appear to more closely 

reflect an antigen-driven nature of MBL and B-CLPD with potential involvement of 

multiple and diverse antigenic determinants. 

 

‐ Regarding the molecular and cytogenetic characteristics of stereotyped CLL and CLL-like 

MBL clones and the potential coexistence of myelodysplasia-associated phenotypes on 

myeloid cells: 

– Stereotyped CLL and CLL-like MBL clones show unique IGHV profiles associated 

with unmutated IGHV sequences, longer HCDR3 and preferential usage of the VH1 

vs. VH3 genes; these BCR features may reflect a distinct origin for MBL and CLL B-

cells with stereotyped vs. non-stereotyped BCR. In line with this hypothesis, 

stereotyped CLL and CLL-like MBL B-cell clones more frequently showed 

myelodysplasia-associated immunophenotypes on PB myeloid cells. Altogether, 

these results point out the coexistence of an underlying altered hematopoiesis 

with potential involvement of HSC in the development and/or expansion of the CLL 

and CLL-like MBL B-cell clones from a significant fraction of cases carrying 

stereotyped BCR, the precise pathogenic role of such myelodysplasia-associated 

alterations of hematopoiesis deserving further investigations. 
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Supplemental Table 1. Informative parameters of the CLL-like/CLL B-cell clones included in the three 

major groups graphically visualized with APS view of the InfinicytTM software. 
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1 127_MBLlow_V3-23_UM_del13q.xlsx 0 73 0 0 0 0 0 0 54 3-23 >98% 
 

1 134_ MBLlow_V3-23_UM_0 0 0 0 0 0 0 0 0 0.11 3-23 >98% 
 

1 135_ MBLlow_V3-23_UM_0 0 0 0 0 0 0 0 0 0.17 3-23 >98% 
 

1 136_ MBLlow_V3-23_UM_0 0 0 0 0 0 0 0 0 0.47 3-23 >98% 
 

1 137_ MBLlow_V3-23_UM_0 0 0 0 0 0 0 0 0 0.57 3-23 >98% 
 

1 41_ MBLlow_V3-21_UM_0.xlsx 0 0 0 0 0 0 0 0 80 3-21 >98% 
 

1 42_ MBLlow_V3-21_M_0.xlsx 0 0 0 0 0 0 0 0 250 3-21 <98% 
 

1 138_ MBLlow_V3-21_M_0 0 0 0 0 0 0 0 0 3.05 3-21 <98% 
 

1 77_ MBLlow_V4-34_M_0.xlsx 0 0 0 0 0 0 0 0 39 4-34 <98% 
 

1 140_ MBLlow_V4-34_M_bidel13q 0 91 0 0 0 0 0 0 9.31 4-34 <98% 
 

1 35_ MBLlow_V3-11_M_0.xlsx 0 0 0 0 0 0 0 0 10 3-11 <98% 
 

1 36_ MBLlow_V3-11_M_0.xlsx 0 0 0 0 0 0 0 0 200 3-11 <98% 
 

1 93_ MBLlow_V1-69_M_0.xlsx 0 0 0 0 0 0 0 0 115 1-69 <98% 
 

1 94_ MBLlow_V1-69_UM_0.xlsx 0 0 0 0 0 0 0 0 158 1-69 >98% 
 

1 48_ MBLlow_V1-2_UM_0.xlsx 0 0 0 0 0 0 0 0 112 1-2 >98% 
 

1 69_ MBLlow_V3-7_M_0.xlsx 0 0 0 0 0 0 0 0 0.09 3-7 <98% 
 

1 72_ MBLlow_V3-30_M_0.xlsx 0 0 0 0 0 0 0 0 3 3-30 <98% 
 

1 26_MBLhigh_V3-23_M_0.xlsx 0 0 0 0 0 0 0 0 986 3-23 <98% 
 

1 27multi_ MBLhigh_V3-23_UM_0.xlsx 0 0 0 0 0 0 0 0 2900 3-23 >98% 
 

1 28_ MBLhigh_V3-23_M_0.xlsx 0 0 0 0 0 0 0 0 3281 3-23 <98% 
 

1 43multi_ MBLhigh_V3_21_M_0.xlsx 0 0 0 0 0 0 0 0 2078 3-21 <98% 
 

1 44_ MBLhigh_V3-21_M_0.xlsx 0 0 0 0 0 0 0 0 4424 3-21 <98% 
 

1 78multi_ MBLhigh_V4-34_M_0.xlsx 0 0 0 0 0 0 0 0 346 4-34 <98% 
 

1 79_ MBLhigh_V4-34_M_0.xlsx 0 0 0 0 0 0 0 0 1352 4-34 <98% 
 

1 80multi_ MBLhigh_V4-34_M_0.xlsx 0 0 0 0 0 0 0 0 2047 4-34 <98% 
 

1 81_ MBLhigh_V4-34_M_0.xlsx 0 0 0 0 0 0 0 0 2311 4-34 <98% 
 

1 95multi_ MBLhigh_V1-69_UM_0.xlsx 0 0 0 0 0 0 0 0 430 1-69 >98% 
 

1 96multi_ MBLhigh_V1-69_UM_0.xlsx 0 0 0 0 0 0 0 0 511 1-69 >98% 
 

1 49_ MBLhigh_V1-2_M_0.xlsx 0 0 0 0 0 0 0 0 999 1-2 <98% 
 

1 50_ MBLhigh_V1-2_M_0.xlsx 0 0 0 0 0 0 0 0 1454 1-2 <98% 
 

1 70_ MBLhigh_V3-7_M_0.xlsx 0 0 0 0 0 0 0 0 1264 3-7 <98% 
 

1 73_ MBLhigh_V3-30_M_0.xlsx 0 0 0 0 0 0 0 0 3986 3-30 <98% 
 

1 128multi_ MBLhigh_V3-30_M_del13q.xlsx 0 95 0 0 0 0 0 0 914 3-30 <98% 
 

1 57multi_ MBLhigh_V1-3_UM_0.xlsx 0 0 0 0 0 0 0 0 3458 1-3 >98% 
 

1 89_ MBLhigh_V3-48_UM_0.xlsx 0 0 0 0 0 0 0 0 1170 3-48 >98% 
 

1 63_ MBLhigh_V4-39_UM_0.xlsx 0 0 0 0 0 0 0 0 4594 4-39 >98% 
 

1 39_ MBLhigh_V5-51_UM_0.xlsx 0 0 0 0 0 0 0 0 2000 5-51 >98%  

1 31_CLL_V3-23_UM_0_A.xlsx 0 0 0 0 0 0 0 0 5200 3-23 >98%  

1 32multi_CLL_V3-23_M_0_A.xlsx 0 0 0 0 0 0 0 0 5680 3-23 <98%  

1 33_CLL_V3-23_M_0_A.xlsx 0 0 0 0 0 0 0 0 17488 3-23 <98%  

1 34_CLL_V3-23_M_0_A.xlsx 0 0 0 0 0 0 0 0 28710 3-23 <98%  
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Continuous parameters included for multivariate 

analysis based on PCA  
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1 47_CLL_V3-21_M_0_A.xlsx 0 0 0 0 0 0 0 0 37985 3-21 <98% A 

1 83_CLL_V4-34_M_0_A.xlsx 0 0 0 0 0 0 0 0 7103 4-34 <98% A 

1 84multi_CLL_V4-34_M_0_A.xlsx 0 0 0 0 0 0 0 0 7597 4-34 <98% A 

1 85_CLL_V4-34_M_0_A.xlsx 0 0 0 0 0 0 0 0 8653 4-34 <98% A 

1 130multi_CLL_V4-34_M_del13q_A.xlsx 0 96 0 0 0 0 0 0 8382 4-34 <98% A 

1 131multi_CLL_V4-34_M_del13q_A.xlsx 0 91 0 0 0 0 0 0 8398 4-34 <98% A 

1 132_CLL_V4-34_M_2del13q_A.xlsx 14 79 0 0 0 0 0 0 11523 4-34 <98% A 

1 37_SLL_V3-11_UM_0_A.xlsx 0 0 0 0 0 0 0 0 2404 3-11 >98% A 

1 38_CLL_V3-11_UM_0_A.xlsx 0 0 0 0 0 0 0 0 14076 3-11 >98% A 

1 98_CLL_V1-69_UM_del11q_A.xlsx 0 0 0 0 0 0 24 0 20880 1-69 >98% A 

1 56_CLL_V1-2_M_0_A.xlsx 0 0 0 0 0 0 0 0 9524 1-2 <98% A 

1 71_CLL_V3-7_M_t14q_del17p_A.xlsx 0 0 0 0 18 0 0 33 3055 3-7 <98% A 

1 58_CLL_V1-3_M_0_A.xlsx 0 0 0 0 0 0 0 0 7220 1-3 <98% A 

1 59multi_CLL_V1-3_M_0_A.xlsx 0 0 0 0 0 0 0 0 7833 1-3 <98% A 

1 61_CLL_V1-3_UM_0_A.xlsx 0 0 0 0 0 0 0 0 20229 1-3 >98% A 

1 92_CLL_V3-48_M_t14q_A.xlsx 0 0 0 0 22 0 0 0 64726 3-48 <98% A 

1 64multi_CLL_V4-39_UM_0_A.xlsx 0 0 0 0 0 0 0 0 6800 4-39 >98% A 

1 65_CLL_V4-39_UM_0_A.xlsx 0 0 0 0 0 0 0 0 17214 4-39 >98% A 

1 68multi_CLL_V4-39_UM_0_A.xlsx 0 0 0 0 0 0 0 0 71485 4-39 >98% A 

1 87_CLL_V4-34_M_0_B.xlsx 0 0 0 0 0 0 0 0 186012 4-34 <98% B 

1 133multi_CLL_V4-34_UM_del13q_C.xlsx 0 85 0 0 0 0 0 0 66142 4-34 >98% C 

1 53_CLL_V1-2_UM_0_B.xlsx 0 0 0 0 0 0 0 0 45081 1-2 >98% B 

1 54_CLL_V1-2_UM_0_B.xlsx 0 0 0 0 0 0 0 0 120102 1-2 >98% B 

1 74_SLL_V3-30_UM_0_B.xlsx 0 0 0 0 0 0 0 0 3509 3-30 >98% B 

1 76multi_CLL_V3-30_UM_0_B.xlsx 0 0 0 0 0 0 0 0 49600 3-30 >98% B 

1 129_CLL_V3-30_M_2del13q_C.xlsx 5 95 0 0 0 0 0 0 17175 3-30 <98% C 

1 66_CLL_V4-39_UM_0_B.xlsx 0 0 0 0 0 0 0 0 22704 4-39 >98% B 

2 24_ MBLlow_V3-23_M_2del13q.xlsx 86 0 86 0 0 0 0 0 1 3-23 <98%  

2 115_ MBLlow_V4-34_M_del13q.xlsx 96 0 0 0 0 0 0 0 26 4-34 <98%  

2 139_ MBLlow_V3-7_M_del13q 22 0 0 0 0 0 0 0 0.4 3-7 <98%  

2 141_ MBLlow_V3-48_M_del13q_tris12 19 0 0 41 0 0 0 0 0.57 3-48 <98%  

2 142_ MBLlow_V3-48_M_del13q 70 0 0 0 0 0 0 0 0.57 3-48 <98%  

2 29_ MBLhigh_V3-23_M_del13q.xlsx 21 0 0 0 0 0 0 0 4040 3-23 <98%  

2 101_ MBLhigh_V3-23_M_del13q.xlsx 88 0 0 0 0 0 0 0 3044 3-23 <98%  

2 116multi_ MBLhigh_V4-34_M_del13q.xlsx 83 0 0 0 0 0 0 0 551 4-34 <98%  

2 102multi_ MBLhigh_V3-11_M_del13q.xlsx 87 0 0 0 0 0 0 0 2692 3-11 <98%  

2 51_ MBLhigh_V1-2_M_del13q.xlsx 23 0 0 0 0 0 0 0 4623 1-2 <98%  

2 103_ MBLhigh_V1-2_M_2del13q.xlsx 96 0 96 0 0 0 0 0 4371 1-2 <98%  

2 107multi_ MBLhigh_V3-7_M_2del13q.xlsx 98 0 98 0 0 0 0 0 2750 3-7 <98%  

2 88multi_ MBLhigh_V3-48_M_del13q.xlsx 18 0 0 0 0 0 0 0 680 3-48 <98%  

2 62multi_ MBLhigh_V4-39_UM_2del13q.xlsx 15 0 15 0 0 0 0 0 3174 4-39 >98%  

2 118_CLL_V4-34_M_del13q_A.xlsx 99 0 0 0 0 0 0 0 13167 4-34 <98% A 

2 119_CLL_V4-34_M_2del13q_A.xlsx 97 0 95 0 0 0 0 0 105594 4-34 <98% A 

2 104_CLL_V1-2_UM_2del13q_A.xlsx 84 0 93 0 0 0 0 0 7683 1-2 >98% A 

2 111multi_CLL_V3-30_M_del13q_A.xlsx 80 0 0 0 0 0 0 0 7920 3-30 <98% A 

(Supplemental Table 1, continued) 
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Continuous parameters included for multivariate 

analysis based on PCA  
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2 112_CLL_V3-30_M_del13q_A.xlsx 53 0 0 0 0 0 0 0 13524 3-30 <98% A 

2 113_CLL_V3-30_UM_2del13q_del11q_A.xlsx 60 0 60 0 0 98 0 0 32063 3-30 >98% A 

2 114_CLL_V3-30_M_del13q_A.xlsx 88 0 0 0 0 0 0 0 33146 3-30 <98% A 

2 105_CLL_V1-3_UM_2del13q_t14q_del11q_A.xlsx 73 0 58 0 86 0 21 0 11419 1-3 >98% A 

2 123_CLL_V3-48_UM_2del13q_2del11q_A.xlsx 19 0 55 0 0 51 64 0 369289 3-48 >98% A 

2 45_CLL_V3-21_M_del13q_B.xlsx 0 0 61 0 0 0 0 0 5314 3-21 <98% B 

2 46multi_CLL_V3-21_M_del13q_C.xlsx 30 0 0 0 0 0 0 0 15309 3-21 <98% C 

2 97_CLL_V1-69_UM_del13q_del11q_B.xlsx 25 0 0 0 0 95 0 0 17445 1-69 >98% B 

2 125_CLL_V1-69_UM_2del13q_del17p_C.xlsx 91 0 93 0 0 0 0 44 23134 1-69 >98% C 

2 126_CLL_V1-69_M_del13q_C.xlsx 40 0 0 0 0 0 0 0 45737 1-69 <98% C 

2 110_CLL_V3-7_M_2del13q_B.xlsx 81 0 81 0 0 0 0 0 237817 3-7 <98% B 

2 120_CLL_V3-48_M_del13q_t14q_C.xlsx 64 0 0 0 19 0 0 0 16670 3-48 <98% C 

2 121_CLL_V3-48_M_2del13q_C.xlsx 77 0 66 0 0 0 0 0 26880 3-48 <98% C 

2 122multi_CLL_V3-48_M_2del13q_C.xlsx 87 0 95 0 0 0 0 0 27200 3-48 <98% C 

2 106_CLL_V4-39_M_2del13q_del11q_C.xlsx 51 0 47 0 0 68 0 0 190555 4-39 <98% C 

3 2_ MBLhigh_V3-23_M_tris12.xlsx 0 0 0 91 0 0 0 0 1358 3-23 <98% 
 

3 3multi_ MBLhigh_V3-23_UM_tris12.xlsx 0 0 0 87 0 0 0 0 3360 3-23 >98% 
 

3 4multi_ MBLhigh_V3-23_M_tris12_del11q.xlsx 0 0 0 95 0 93 0 0 3443 3-23 <98% 
 

3 5_ MBLhigh_V3-23_M_tris12_del11q.xlsx 0 0 0 93 0 20 0 0 4851 3-23 <98% 
 

3 19_ MBLhigh_V3-48_UM_tris12.xlsx 0 0 0 84 0 0 0 0 1661 3-48 >98% 
 

3 11multi_ MBLhigh_V4-39_UM_del13q.xlsx 0 0 0 93 0 0 0 0 700 4-39 >98% 
 

3 7multi_ MBLhigh_V5-51_UM_tris12_t14q.xlsx 0 0 0 76 52 0 0 0 1900 5-51 >98% 
 

3 8multi_ MBLhigh_V5-51_M_tris12.xlsx 0 0 0 93 0 0 0 0 2659 5-51 <98% 
 

3 10_CLL_V3-21_UM_tris12_A.xlsx 0 0 0 75 0 0 0 0 30739 3-21 >98% A 

3 17multi_CLL_V4-34_M_tris12_A.xlsx 0 0 0 75 0 0 0 0 5482 4-34 <98% A 

3 21_CLL_V1-69_UM_tris12_A.xlsx 0 0 0 87 0 0 0 0 14470 1-69 >98% A 

3 99_CLL_V1-69_UM_tris12_del11q_A.xlsx 0 0 0 33 0 24 0 0 30093 1-69 >98% A 

3 100_CLL_V1-69_UM_t14q_A.xlsx 0 0 0 0 91 0 0 0 75170 1-69 >98% A 

3 22_CLL_V1-69_UM_tris12_t14q_B.xlsx 0 0 0 73 82 0 0 0 46393 1-69 >98% B 

3 23_CLL_V1-69_UM_tris12_t14q_B.xlsx 0 0 0 97 30 0 0 0 119647 1-69 >98% B 

3 6_SLL_V3-11_UM_tris12_B.xlsx 0 0 0 84 0 0 0 0 2531 3-11 >98% B 

3 18_CLL_V4-34_UM_tris_t14q_C.xlsx 0 0 0 73 82 0 0 0 19568 4-34 >98% C 

3 13_CLL_V3-7_M_tris12_C.xlsx 0 0 0 78 0 0 0 0 9093 3-7 <98% C 

3 14_CLL_V3-7_M_tris12_C.xlsx 0 0 0 85 0 0 0 0 15257 3-7 <98% C 

3 15multi_CLL_V3-30_UM_tris12_del11q_B.xlsx 0 0 0 93 0 91 0 0 5412 3-30 >98% B 

3 20_CLL_V3-48_M_tris12_t14q_B.xlsx 0 0 0 82 91 0 0 0 10807 3-48 <98% B 

3 12_CLL_V4-39_UM_tris12_del17p_B.xlsx 0 0 0 80 0 0 0 35 22028 4-39 >98% B 

3 9_CLL_V5-51_UM_tris12_B.xlsx 0 0 0 76 0 0 0 0 175686 5-51 >98% B 

*The unmutated status of the IGHV genes (U) was defined as those with >98% identity with the most similar germline gene, 

while mutated one (M) was those in which CLL-like B cell clones displayed IGHV genes with <98% identity with the most 

similar germline gene. **only applicable to CLL cases. 

 

 



 

 
 

Supplemental Table 2.  IGHV sequences of CLL-like MBL and CLL B-cell clones analyzed by the IMGT-V-QUEST tool.  

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 

allele 

D-REGION 

reading 

frame 

CDR3 

length 
AA JUNCTION 

MBLlow from (monoclonal) #1 IGHV4-34*01 Productive 91.84% IGHJ4*02 IGHD2-15*01 2 20 CARGPPYCSGDSCSWGGILDYW 

MBLlow from (monoclonal) #2 IGHV3-23*01 Productive 100.00% IGHJ6*02 IGHD3-10*01 1 11 CANRGETRGMDVW 

MBLlow from (monoclonal) #3 IGHV3-7*01 Productive 96.39% IGHJ4*02 IGHD6-19*01 1 12 CVRDKYDSGSMDYW 

MBLlow from (monoclonal) #4 IGHV3-21*01 Productive 92.34% IGHJ6*02 IGHD6-25*01 1 20 CARHHPVRESSATGHYYGMDVW 

MBLlow from (monoclonal) #5 IGHV3-23*01 Productive 98.42% IGHJ6*02 IGHD5-12*01 1 11 CANRGETRGMDVW 

MBLlow from (monoclonal) #6 IGHV3-48*03 Productive 90.36% IGHJ3*02 IGHD5-12*01 3 12 CVRDGFHYYGFDIW 

MBLlow from (monoclonal) #7 IGHV3-23*01 Productive 95.98% IGHJ4*02 IGHD2-15*01 2 15 CAKHGSYSPDPYYFDYW 

MBLlow from (monoclonal) #8 IGHV1-8*01 Productive 97.86% IGHJ4*02 IGHD2-21*02 2 13 CARGLGSASQSRDSW 

MBLlow from (monoclonal) #9 IGHV4-34*01 Productive 96.57% IGHJ4*02 IGHD4-11*01 2 13 CARLGGDDSDYGFYW 

MBLlow from (monoclonal) #10 IGHV3-7*03 Productive 85.54% IGHJ4*03 IGHD3-3*01 2 15 CVRENEFWSGGWGLDGW 

MBLlow from (monoclonal) #11 IGHV3-23*01 Productive 99.6% IGHJ6*02 IGHD5-12*01 1 11 CANRGETRGMDVW 

MBLlow from (monoclonal) #12 IGHV3-30*02 Productive 88.54% IGHJ3*02 IGHD1-26*01 3 20 CANLGESRGGGSYPAPDTFDIW 

MBLlow from (monoclonal) #13 IGHV1-2*02 Productive 100.00% IGHJ4*02 IGHD6-19*01 3 13 CARLQWLGISHFDYW 

MBLlow from (multiclonal) #14A IGHV3-23*01 Productive 99.6% IGHJ6*02 IGHD5-12*01 1 11 CANRGETRGMDVW 

MBLlow from (multiclonal) #14B IGHV3-48*03 Productive 90.76% IGHJ3*02 IGHD5-12*01 3 12 CVRDGFHYYGFDIW 

MBLlow from (multiclonal) #15B IGHV3-23*01 Productive 97.99% IGHJ6*02 IGHD6-19*01 1 22 CANAPTPYSSGWNPWDYYYGMDVW 

MBLlow from (multiclonal) #16B IGHV3-11*03 Productive 96.79% IGHJ4*02 IGHD2-15*01 2 17 CAREEYCDGGTCYRLFDYW 

MBLlow from (multiclonal) #17A IGHV3-74*01 Productive 90.32% IGHJ4*02 IGHD3-10*01 2 14 CARDLDGSGSGVFDWW 

MBLlow from (multiclonal) #17B IGHV4-59*03 Productive 91.8% IGHJ6*01 IGHD3-10*01 2 15 CARGWRSTDSYYGMDVW 

MBLlow from (multiclonal) #18B IGHV5-a*01 Productive 100.00% IGHJ6*03 IGHD6-19*01 2 21 CARHVAVAGTTWGPYYYYYMDVW 

MBLlow from (multiclonal) #19B IGHV3-23*01 Productive 100.00% IGHJ4*02 IGHD2-2*01 2 15 CAKDHGEQFIGGCFDYW 

MBLlow from (multiclonal) #20B IGHV1-69*01 Productive 100.00% IGHJ3*02 IGHD3-3*01 2 22 CARDNPKYYDFWSGYYAPPAFDIW 

MBLlow from (multiclonal) #21C IGHV1-69*13 Productive 94.84% IGHJ4*02 IGHD4-11*01 2 15 CAREGKSRDNSNPFDYW 

MBLlow from (multiclonal) #22B IGHV3-21*04 Productive 94.98% IGHJ6*02 IGHD2-15*01 3 9 CARDANGMDVW 

MBLlow from (multiclonal) #23B IGHV4-34*01 Productive 96.68% IGHJ4*02 IGHD7-27*01 1 6 CAHLSGYW 

MBLlow from (multiclonal) #23C IGHV3-11*04 Productive 97.57% IGHJ6*03 IGHD2-21*01 2 18 CARKTCASITNYYYYYMDVW 

MBLlow from (multiclonal) #24B IGHV3-21*01 Productive 99.6% IGHJ4*02 IGHD6-13*01 2 11 CARVGAATGMDYW 

MBLhigh from (monoclonal) #25 IGHV3-23*01 Productive 94.76% IGHJ3*02 IGHD1-7*01 3 18 CAKDLPSTYNWNSGGAFDIW 

MBLhigh from (monoclonal) #26 IGHV3-23*01 Productive 90.36% IGHJ4*02 IGHD5-12*01 3 16 CTKDPRDTGYGGDAFDYW 

MBLhigh from (monoclonal) #27 IGHV3-23*01 Productive 99.58% IGHJ6*02 IGHD3-3*01 2 22 CAKDNKYYDFWSGYYPVGTGMDVW 

MBLhigh from (monoclonal) #28 IGHV3-53*01 Productive 92.31% IGHJ3*02 IGHD3-10*01 3 16 CARGPPQSRPVGDTFEIW 
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(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 

allele 

D-REGION 

reading 

frame 

CDR3 

length 
AA JUNCTION 

MBLhigh from (monoclonal) #29 IGHV2-26*01 Productive 91.64% IGHJ4*03 IGHD5-18*01 3 15 CTRTRGYPYGDRYFDSW 

MBLhigh from (monoclonal) #30 IGHV1-2*02 Productive 94.44% IGHJ3*02 IGHD4-17*01 2 13 CARGLNTDYGAFDIW 

MBLhigh from (monoclonal) #31 IGHV1-2*02 Productive 91.88% IGHJ3*02 IGHD2-21*02 3 18 CARDRSVIVVTYILDAFDMW 

MBLhigh from (monoclonal) #32 IGHV3-23*01 Productive 91.97% IGHJ5*01 IGHD6-13*01 1 8 CSKGGWGDSW 

MBLhigh from (monoclonal) #33 IGHV3-74*01 Productive 94.51% IGHJ5*02 IGHD2-8*02 3 9 CARQLDMYSLW 

MBLhigh from (monoclonal) #34 IGHV4-34*01 Productive 92.68% IGHJ6*02 IGHD3-16*01 2 20 CVRGYPSDYTERRYYYYGLDVW 

MBLhigh from (monoclonal) #35 IGHV3-30*04 Productive 90.76% IGHJ3*02 IGHD2-2*01 2 18 CTRPHCSMSSCSWNDAFAIW 

MBLhigh from (monoclonal) #36 IGHV3-23*01 Productive 91.94% IGHJ3*02 IGHD3-22*01 2 14 CAKFYDDIQPNAFDIW 

MBLhigh from (monoclonal) #37 IGHV1-2*02 Productive 91.7% IGHJ4*02 IGHD5-18*01 3 15 CARDLEMRYSQGSFDSW 

MBLhigh from (monoclonal) #38 IGHV3-11*01 Productive 99.2% IGHJ6*02 IGHD3-3*01 2 23 CARDRRDDFWSGYRIYYYYYGMDVW 

MBLhigh from (monoclonal) #39 IGHV3-21*01 Productive 97.88% IGHJ6*02 IGHD1-26*01 3 9 CARDANGMDVW 

MBLhigh from (monoclonal) #40 IGHV3-7*03 Productive 97.19% IGHJ4*02 IGHD6-19*01 1 9 CARGGWYGDYW 

MBLhigh from (monoclonal) #41 IGHV4-39*01 Productive 100.00% IGHJ6*02 IGHD2-2*01 2 22 CARHRLGYCSSTSCYYYYYGMDVW 

MBLhigh from (monoclonal) #42 IGHV3-15*01 Productive 91.39% IGHJ4*02 IGHD2-8*01 3 12 CTTDSMVYVDMDYW 

MBLhigh from (monoclonal) #43 IGHV3-48*02 Productive 100.00% IGHJ6*02 IGHD2-2*01 3 23 CARDNTANDIVVVPADYYYYGMDVW 

MBLhigh from (monoclonal) #44 IGHV3-23*01 Productive 90.76% IGHJ3*02 IGHD4-17*01 3 17 CAKDRTLATVIQKDTFDIW 

MBLhigh from (monoclonal) #45 IGHV5-51*01 Productive 100.00% IGHJ6*02 IGHD3-3*01 2 19 CARRDFRGDFWSGYYYGMDVW 

MBLhigh from (monoclonal) #46 IGHV3-23*01 Productive 95.32% IGHJ6*02 IGHD2-2*01 2 14 CAFHCCRISCYGVDFW 

MBLhigh from (monoclonal) #47 IGHV4-34*01 Productive 93.67% IGHJ4*01 IGHD1-1*01 3 14 CARVIGDKGGYYLTYW 

MBLhigh from (monoclonal) #48 IGHV3-48*01 Productive 99.59% IGHJ6*02 IGHD3-3*01 2 20 CARSPGYDFWSGYPDYYGMDVW 

MBLhigh from (monoclonal) #49 IGHV1-2*02 Productive 96.02% IGHJ4*02 IGHD3-22*01 2 20 CARDLARYDSGGSYKRKMFDYW 

MBLhigh from (multiclonal) #50B IGHV3-11*03 Productive 95.32% IGHJ4*02 IGHD6-19*01 1 10 CAKVRSHYFDYW 

MBLhigh from (multiclonal) #51B IGHV3-21*04 Productive 96.65% IGHJ6*02 IGHD2-15*01 3 9 CARDANGMDVW 

MBLhigh from (multiclonal) #52B IGHV3-33*01 Productive 99.6% IGHJ4*02 IGHD3-9*01 1 21 CARDPRVLRYFDWLLSPPPFDYW 

MBLhigh from (multiclonal) #53A IGHV3-15*01 Productive 89.03% IGHJ4*02 IGHD2-21*01 2 12 CTTESGWYSASDHW 

MBLhigh from (multiclonal) #53B IGHV3-30*03 Productive 94.27% IGHJ4*02 IGHD2-15*01 2 18 CAKDTWGHCSGGFCSHFDSW 

MBLhigh from (multiclonal) #54B IGHV3-48*03 Productive 90.95% IGHJ3*02 IGHD3-3*01 2 20 CVRDDRSCSSNNCHALRSFDMW 

MBLhigh from (multiclonal) #55B IGHV3-53*01 Productive 92.55% IGHJ6*02 IGHD2-8*01 1 19 CATHPTNIYTRWPYVSDMDVW 

MBLhigh from (multiclonal) #56A IGHV3-23*01 Productive 100.00% IGHJ6*02 IGHD3-3*01 1 11 CAKDWESWGMDVW 

MBLhigh from (multiclonal) #57A IGHV4-39*01 Productive 100.00% IGHJ5*02 IGHD6-13*01 1 19 CASVQGYSSSWYGGDNWFDPW 

MBLhigh from (multiclonal) #57B IGHV3-23*01 Productive 100.00% IGHJ6*02 IGHD3-10*01 1 11 CANRGETRGMDVW 

1
6

5
 



 

 
 

(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 

allele 

D-REGION 

reading 

frame 

CDR3 

length 
AA JUNCTION 

MBLhigh from (multiclonal) #58A IGHV4-39*01 Productive 100.00% IGHJ5*02 IGHD3-3*01 2 20 CARHTSLYDFWSGYYRGWFDPW 

MBLhigh from (multiclonal) #58B IGHV1-69*01 Productive 100.00% IGHJ4*02 IGHD5-18*01 2 17 CAREAGSIQLWPPGFFDYW 

MBLhigh from (multiclonal) #59A IGHV3-7*01 Productive 93.57% IGHJ3*02 IGHD5-12*01 2 9 CARGRYVYDIW 

MBLhigh from (multiclonal) #60A IGHV4-34*01 Productive 96.48% IGHJ4*02 IGHD5-24*01 1 19 CARAEGQATLLSVWEYYFDSW 

MBLhigh from (multiclonal) #60B IGHV3-33*01 Productive 96.67% IGHJ2*01 IGHD6-19*01 1 17 CARDILITGGRGDWYFDLW 

MBLhigh from (multiclonal) #61B IGHV3-72*01 Productive 95.92% IGHJ5*02 IGHD2-2*01 2 13 CVRSSTGWTDWFDPW 

MBLhigh from (multiclonal) #62B IGHV4-34*01 Productive 96.81% IGHJ6*03 IGHD3-3*01 2 16 CARREDDNFWSGFYMDVW 

MBLhigh from (multiclonal) #63B IGHV3-23*01 Productive 95.16% IGHJ4*02 IGHD2-15*01 2 18 CAKLSTPCGGGSCYSSLDYW 

MBLhigh from (multiclonal) #64B IGHV4-34*01 Productive 95.12% IGHJ4*02 IGHD6-19*01 1 13 CARRDSSGWYYFDYW 

MBLhigh from (multiclonal) #65A IGHV5-51*01 Productive 92.2% IGHJ4*01 IGHD5-18*01 3 14 CGRRRTGYNDGEIDYW 

MBLhigh from (multiclonal) #65B IGHV4-30-4*01 Productive 97.81% IGHJ4*01 IGHD2-2*01 2 16 CARHPSCSRTSCYFFDYW 

MBLhigh from (multiclonal) #66A IGHV5-51*01 Productive 100.00% IGHJ4*02 IGHD3-3*01 2 21 CARHGTYYDFWSGYYLPGFFDYW 

MBLhigh from (multiclonal) #66B IGHV1-69*01 Productive 100.00% IGHJ6*02 IGHD6-13*01 1 26 CARQGAGSSWYGIVKGWFEYYYYGMDVW 

MBLhigh from (multiclonal) #66C IGHV3-33*01 Productive 98.81% IGHJ3*02 IGHD3-3*01 1 22 CARGNGGALRFLEWLLYHDAFDIW 

MBLhigh from (multiclonal) #67A IGHV1-3*01 Productive 97.96% IGHJ6*02 IGHD3-3*01 2 23 CARADGGYDFWSGYSTVNYYGMDVW 

MBLhigh from (multiclonal) #67B IGHV3-9*01 Productive 93.57% IGHJ4*02 IGHD1-26*01 3 14 CARVESGSYFWPSDYW 

CLL from (monoclonal) #68 IGHV3-23*01 Productive 93.57% IGHJ4*02 IGHD4-23*01 1 12 CAKGRQLWSYLDYW 

CLL from (monoclonal) #69 IGHV1-2*02 Productive 99.59% IGHJ3*02 IGHD5-12*01 3 12 CARDGDYFDAFDIW 

CLL from (monoclonal) #70 IGHV3-11*01 Productive 98.8% IGHJ4*02 IGHD3-3*01 2 22 CARDPRYYDFWSGYYLPDDKFDYW 

CLL from (monoclonal) #71 IGHV3-7*01 Productive 93.98% IGHJ4*02 - - 8 CASGSHVDYY (TRP 118 not identified)  

CLL from (monoclonal) #72 IGHV4-b*02 Productive 100.00% IGHJ4*02 IGHD5-18*01 2 13 CARSWIQLWSEFDYW 

CLL from (monoclonal) #73 IGHV4-4*02 Productive 91.57% IGHJ6*02 IGHD5-12*01 1 25 CARGSRNVDIVATITFIGFYYYGMDVW 

CLL from (monoclonal) #74 IGHV1-69*06 Productive 97.96% IGHJ6*03 IGHD3-3*01 2 24 CARAEQYYDFWSGHKGVDYYYYMDVW 

CLL from (monoclonal) #75 IGHV3-11*01 Productive 97.91% IGHJ4*02 IGHD3-10*01 2 16 CARGPDPYYYGSGTPSYW 

CLL from (monoclonal) #76 IGHV3-21*01 Productive 97.21% IGHJ5*02 IGHD3-9*01 1 22 CARDRRNGNFDWLEDPLYNWFDPW 

CLL from (monoclonal) #77 IGHV3-9*01 Productive 90.91% IGHJ6*02 IGHD4-23*01 1 16 CAKDRSNTWPLWGGMDVW 

CLL from (monoclonal) #78* IGHV1-2*02 Productive 99.57% IGHJ4*02 IGHD6-19*01 3 13 CARAQWLVLENFDYW 

CLL from (monoclonal) #79 IGHV4-34*01 Productive 85.43% IGHJ3*02 IGHD5-12*01 2 17 CARREEDWKRSGRDSFDIW 

CLL from (monoclonal) #80 IGHV1-69*01 Productive 95.1% IGHJ4*02 IGHD3-3*01 2 13 CAKGPYYDFWSGDYW 

CLL from (monoclonal) #81 IGHV4-39*01 Productive 99.21% IGHJ4*02 IGHD3-16*02 2 19 CARHTYYDYVWGSYRTPFDYW 

CLL from (monoclonal) #82 IGHV3-21*01 Productive 100.00% IGHJ4*02 IGHD2-2*02 2 21 CAREGGLGYCSSTSCYTTLFDYW 
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(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 

allele 

D-REGION 

reading 

frame 

CDR3 
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AA JUNCTION 

CLL from (monoclonal) #83 IGHV3-72*01 Productive 89.41% IGHJ4*02 IGHD6-13*01 3 15 CVRSSMGAEQTIACDYW 

CLL from (monoclonal) #84 IGHV3-30*01 Productive 95.2% IGHJ4*02 IGHD6-19*01 1 15 CARDDYSSGVGTRLSYW 

CLL from (monoclonal) #85 IGHV4-4*03 Productive 92.77% IGHJ6*02 IGHD2-2*01 2 21 CARAPYCGSNTCYSYYYYGMDVW 

CLL from (monoclonal) #86 IGHV4-34*01 Productive 89.72% IGHJ6*02 IGHD2-15*01 2 24 CAGRFYCSGDTCHLPLYHYYYGLDVW 

CLL from (monoclonal) #87 IGHV3-23*01 Productive 94.78% IGHJ6*04 IGHD3-3*01 2 23 CARDLTHHNFWSAYYETSYCGMDVW 

CLL from (monoclonal) #88 IGHV3-48*02 Productive 95.58% IGHJ6*03 IGHD5-24*01 3 18 CARQGEDYNNRGYYCYMDVW 

CLL from (monoclonal) #89 IGHV1-2*02 Productive 98.29% IGHJ6*02 IGHD3-10*01 2 17 CARDPGGGDYYYYYGMDVW 

CLL from (monoclonal) #90 IGHV4-39*01 Productive 92.97% IGHJ4*02 IGHD6-13*01 3 10 CARHEQQLADYW 

CLL from (monoclonal) #91 IGHV4-34*01 Productive 95.98% IGHJ6*02 IGHD4-23*01 3 20 CARGYGSTGETRRYYYYGMDVW 

CLL from (monoclonal) #92 IGHV4-59*01 Productive 100.00% IGHJ4*02 IGHD3-3*01 2 19 CARVVHYLDFWSGYTYYFDYW 

CLL from (monoclonal) #93 IGHV3-64*01 Productive 95.58% IGHJ6*02 IGHD6-19*01 2 9 CAVDRTGMDVW 

CLL from (monoclonal) #94 IGHV6-1*01 Productive 92.19% IGHJ4*02 IGHD6-19*01 1 18 CARSPSRYSNGWYERDFDCW 

CLL from (monoclonal) #95 IGHV1-69*01 Productive 100.00% IGHJ6*02 IGHD6-19*01 2 21 CAREVVYGVAGTYYYYYYGMDVW 

CLL from (monoclonal) #96 IGHV4-34*08 Productive 85.96% IGHJ4*02 IGHD3-22*01 2 13 CARGFHWGGYYLDFW 

CLL from (monoclonal) #97 IGHV3-23*01 Productive 94.4% IGHJ4*02 IGHD2-15*01 2 18 CAKLSTPCGGGSCYSSLDYW 

CLL from (monoclonal) #98 IGHV1-8*01 Productive 87.5% IGHJ6*02 IGHD3-3*01 2 21 CARGPSYYDFWSGPFDNYGMDVW 

CLL from (monoclonal) #99* IGHV1-2*02 Productive 100.00% IGHJ4*02 IGHD6-19*01 3 13 CARAQWLVLENFDYW 

CLL from (monoclonal) #100 IGHV3-7*01 Productive 94.38% IGHJ3*01 IGHD3-16*01 1 16 CASALRYLPYADTAFDLW 

CLL from (monoclonal) #101 IGHV3-7*03 Productive 85.77% IGHJ4*03 IGHD3-3*01 2 15 CVRENEFWSGGWGLDGW 

CLL from (monoclonal) #102 IGHV1-69*13 Productive 99.59% IGHJ6*02 IGHD3-3*01 3 22 CATTTITIFGVVTVYYYYYGMDVW 

CLL from (monoclonal) #103 IGHV4-34*01 Productive 100.00% IGHJ4*02 IGHD3-10*01 2 20 CARGLIGAYGSGSYYPFPFDYW 

CLL from (monoclonal) #104 IGHV1-69*01 Productive 100.00% IGHJ6*02 IGHD3-3*01 2 23 CARADGGYDFWSGYSTVNYYGMDVW 

CLL from (monoclonal) #105 IGHV3-48*03 Productive 91.06% IGHJ3*02 IGHD5-12*01 3 12 CVRDGFHYYGFDIW 

CLL from (monoclonal) #106 IGHV3-30*03 Productive 97.93% IGHJ6*03 IGHD3-3*01 2 30 CAKDQEQGPRPRYYDFWSAPPPWYYYYYMDVW 

CLL from (monoclonal) #107 IGHV1-69*01 Productive 98.29% IGHJ5*02 IGHD3-3*01 2 15 CATDKKYYDFWSGYYLW 

CLL from (monoclonal) #108 IGHV4-59*02 Productive 91.5% IGHJ4*02 IGHD1-14*01 3 13 CARHLRNDKYYLDFW 

CLL from (monoclonal) #109 IGHV3-48*03 Productive 100.00% IGHJ6*02 IGHD3-3*01 2 21 CARDYDFWSGYYSYYYYYGMDVW 

CLL from (monoclonal) #110 IGHV5-51*01 Productive 99.6% IGHJ6*03 IGHD2-2*01 2 23 CARYCSSTSCMTGTMGYYYYYMDVW 

CLL from (monoclonal) #111 IGHV3-48*02 Productive 92.34% IGHJ4*02 IGHD6-13*01 1 14 CARDLGGNSWPTFDFW 

CLL from (monoclonal) #112 IGHV3-30*03 Productive 89.56% IGHJ6*02 IGHD6-19*01 2 19 CAKIGMAGDFLEFRYYGMDVW 

CLL from (monoclonal) #113 IGHV1-3*01 Productive 99.18% IGHJ6*02 IGHD3-22*01 2 25 CARDLTYYYDSSGYYYFNYYYYGMDVW 
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(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 
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D-REGION 

reading 

frame 

CDR3 
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AA JUNCTION 

CLL from (monoclonal) #114 IGHV3-7*03 Productive 85.54% IGHJ4*03 IGHD3-3*01 2 15 CVRENEFWSGGWGLDGW 

CLL from (monoclonal) #115 IGHV4-59*01 Productive 91.94% IGHJ4*02 IGHD6-19*01 1 14 CARGPDISGWNGLDYW 

CLL from (monoclonal) #116 IGHV4-34*01 Productive 91.46% IGHJ5*02 IGHD6-13*01 3 13 CATNSRESQGWFDPW 

CLL from (monoclonal) #117 IGHV3-15*01 Productive 91.32% IGHJ6*02 IGHD2-15*01 2 23 CVTGPGYCSGGGCSSRGYYYGMDVW 

CLL from (monoclonal) #118 IGHV3-30*04 Productive 100.00% IGHJ6*02 IGHD3-3*01 2 22 CARDLKTAYYDFWSGYYGDGMDVW 

CLL from (monoclonal) #119 IGHV3-9*01 Productive 98.8% IGHJ6*02 IGHD3-3*01 2 26 CAKDKYYDFWSGYSHLGVLYYYYGMDVW 

CLL from (monoclonal) #120 IGHV1-3*01 Productive 97.94% IGHJ6*02 IGHD3-3*01 2 23 CARADGGYDFWSGYSTVNYYGMDVW 

CLL from (monoclonal) #121 IGHV1-18*01 Productive 100.00% IGHJ6*02 IGHD2-15*01 3 9 CARDANGMDVW 

CLL from (monoclonal) #122 IGHV1-69*01 Productive 100.00% IGHJ3*02 IGHD3-16*02 2 21 CARGGNYDYIWGSYRPNDAFDIW 

CLL from (monoclonal) #123 IGHV1-69*02 Productive 100.00% IGHJ6*03 IGHD2-15*01 3 22 CARSQAHIVVVVAATYYYYYMDVW 

CLL from (monoclonal) #124 IGHV1-18*01 Productive 100.00% IGHJ4*02 IGHD7-27*01 3 13 CARKNWGPDYYFDYW 

CLL from (monoclonal) #125 IGHV4-39*01 Productive 100.00% IGHJ6*01 IGHD2-2*01 2 22 CARHRLGYCSSTSCYYYYYGMDVW 

CLL from (monoclonal) #126 IGHV1-69*01 Productive 98.76% IGHJ1*01 IGHD3-22*01 2 22 CARGSSTYYYDSSVYGVAEYFQHW 

CLL from (monoclonal) #127 IGHV3-30*03 Productive 98.39% IGHJ4*02 IGHD3-22*01 2 21 CARGPNVSHTYYYDNSGSHFDYW 

CLL from (monoclonal) #128 IGHV3-74*01 Productive 92.98% IGHJ4*02 IGHD2-2*01 3 15 CARVDIEVDGGGHFDNW 

CLL from (monoclonal) #129 IGHV1-2*02 Productive 96.97% IGHJ4*02 IGHD2-8*01 1 15 CGRDVELRYWQGYFDLW 

CLL from (monoclonal) #130 IGHV1-18*01 Productive 100.00% IGHJ6*02 IGHD6-13*01 1 19 CARDLSLSSNWFTPPYGMDVW 

CLL from (monoclonal) #131 IGHV1-2*02 Productive 100.00% IGHJ5*01 IGHD3-3*01 2 32 CARAPRGDYDTEAGGAYSYGLEVWRLRRNRFDSW 

CLL from (monoclonal) #132 IGHV4-39*07 Productive 100.00% IGHJ6*02 IGHD2-2*01 2 22 CARDRLGYCSSTSCYLYYYGMDVW 

CLL from (monoclonal) #133 IGHV4-b*01 Productive 94.14% IGHJ1*01 IGHD2-15*01 2 20 CARLPHCTASRCYGGGRYVDQW 

CLL from (monoclonal) #134 IGHV1-18*01 Productive 99.57% IGHJ6*02 IGHD3-9*01 2 20 CARGAYYDILTGYRYYYGMDVW 

CLL from (monoclonal) #135 IGHV4-34*01 Productive 95.49% IGHJ4*02 IGHD2-15*01 2 11 CARGSAGSRLDYW 

CLL from (monoclonal) #136 IGHV3-21*01 Productive 94.63% IGHJ6*02 - - 9 RTKDANGMDVW (2nd-CYS 104 not identified) 

CLL from (monoclonal) #137 IGHV3-7*01 Productive 95.98% IGHJ4*02 IGHD2-2*01 2 16 CGSQCSTTSCPSSISEYW 

CLL from (monoclonal) #138 IGHV1-69*01 Productive 100.00% IGHJ6*03 IGHD7-27*01 3 21 CARDTGLMTNWGYYYYYYYMDVW 

CLL from (monoclonal) #139 IGHV3-7*03 Productive 92.59% IGHJ4*02 IGHD3-22*01 2 15 CARVSDETTGYGNFDYW 

CLL from (monoclonal) #140 IGHV4-b*01 Productive 99.59% IGHJ4*02 IGHD5-18*01 2 13 CARAWIQLWSDFDYW 

CLL from (monoclonal) #141 IGHV4-34*01 Productive 99.19% IGHJ6*02 IGHD2-2*01 3 21 CARADLLVVPAAIYYYYYGMDVW 

CLL from (monoclonal) #142 IGHV3-48*03 Productive 91.13% IGHJ6*02 IGHD6-19*01 1 8 CSRRGRLDIW 

CLL from (monoclonal) #143 IGHV3-30*03 Productive 96.37% IGHJ4*02 IGHD3-10*01 2 19 CANRGDTSGLGTCCQGIGDSW 

CLL from (monoclonal) #144 IGHV4-61*02 Productive 91.63% IGHJ5*02 IGHD5-12*01 3 14 CAKRYGDHGEGWFDPW 
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(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  
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CLL from (monoclonal) #145 IGHV3-30*01 Productive 93.15% IGHJ4*02 IGHD3-10*01 3 17 CASGSMIGGVILPPGFDYW 

CLL from (monoclonal) #146 IGHV3-53*01 Productive 100.00% IGHJ6*02 IGHD3-22*01 2 25 CAREGYYDSSGYSEAPHYYYYYGMDVW 

CLL from (monoclonal) #147 IGHV2-70*11 Productive 96.21% IGHJ4*02 IGHD1-20*01 3 14 CARMQHRYHWNDSDSW 

CLL from (monoclonal) #148 IGHV1-3*01 Productive 90.2% IGHJ5*01 IGHD3-9*01 1 19 CARGIRYSGWLLYGSDWYDSW 

CLL from (monoclonal) #149 IGHV3-23*01 Productive 99.58% IGHJ6*02 IGHD5-12*01 1 11 CANRGETRGMDVW 

CLL from (monoclonal) #150 IGHV4-39*01 Productive 100.00% IGHJ5*02 IGHD6-13*01 1 18 CATQTGYSSSWYAVNWFDPW 

CLL from (monoclonal) #151 IGHV1-24*01 Productive 100.00% IGHJ6*02 IGHD3-9*01 2 24 CATDGYDILTGYYKGPGAYYYGMDVW 

CLL from (monoclonal) #152 IGHV3-48*03 Productive 99.16% IGHJ3*02 IGHD5-12*01 3 12 CARDGFHYYGFDIW 

CLL from (monoclonal) #153 IGHV4-61*02 Productive 92.65% IGHJ4*02 IGHD7-27*01 3 12 CARDNWGFEGFDSW 

CLL from (monoclonal) #154 IGHV3-74*01 Productive 93.15% IGHJ3*01 IGHD4-23*01 3 14 CARGHKVVNPGSFDLW 

CLL from (multiclonal) #155A IGHV4-34*01 Productive 93.06% IGHJ4*02 IGHD3-3*01 3 11 CARPNVGAVFVFW 

CLL from (multiclonal) #156A IGHV4-34*01 Productive 96.69% IGHJ2*01 IGHD4-23*01 2 13 CARAGGYSDWYFDLW 

CLL from (multiclonal) #157A IGHV3-9*01 Productive 100.00% IGHJ3*02 IGHD3-3*01 2 19 CAKDRYYDFWSGYYTAAFDIW 

CLL from (multiclonal) #158A IGHV4-39*01 Productive 98.47% IGHJ6*02 IGHD3-3*01 1 18 CGILGEWLSFYFFFYGMDVW 

CLL from (multiclonal) #159A IGHV3-30-3*01 Productive 91.13% IGHJ4*02 IGHD5-12*01 3 16 CARGKGRNSGYDYLLHYW 

CLL from (multiclonal) #160A IGHV1-3*01 Productive 94.03% IGHJ5*02 IGHD5-18*01 1 19 CARDRVVIIPDTTTINWFDPW 

CLL from (multiclonal) #161A IGHV3-48*02 Productive 96.34% IGHJ4*02 IGHD4-17*01 2 12 CARSSGDDSLIDYW 

CLL from (multiclonal) #162A IGHV4-34*01 Productive 97.56% IGHJ6*02 IGHD3-10*01 2 17 CARGFDYYGSGSANGLDVW 

CLL from (multiclonal) #163A IGHV1-46*01 Productive 100.00% IGHJ4*01 IGHD3-3*01 2 21 CARAHYYDFWSGYVYPRLAFDYW 

CLL from (multiclonal) #164A IGHV3-53*01 Productive 100.00% IGHJ6*02 IGHD3-22*01 2 25 CAREGYYDSSGYSEAPHYYYYYGMDVW 

CLL from (multiclonal) #165A IGHV1-3*01 Productive 96.2% IGHJ3*01 IGHD1-26*01 3 17 CARGLRSGTFYGADAFDFW 

CLL from (multiclonal) #165B IGHV4-34*01 Productive 92.93% IGHJ3*02 IGHD2-15*01 3 26 TARGGLFVETEIAGVGYRSGTGTLFDSW 
(2nd-CYS 104 not identified) 

CLL from (multiclonal) #166A IGHV3-33*01 Productive 91.5% IGHJ6*02 IGHD3-10*01 2 18 CARDDNRDGSGNYKGGMDFW 

CLL from (multiclonal) #166B IGHV3-21*01 Productive 94.8% IGHJ4*02 IGHD4-23*01 2 13 CARDLDGGNSVFDYW 

CLL from (multiclonal) #167A IGHV3-52*01(P) Productive** 96.06% IGHJ3*02 IGHD2-21*02 2 19 CMTVLWANRGGDCPGDAFDIW 

CLL from (multiclonal) #168A IGHV4-34*01 Productive 98.78% IGHJ4*02 IGHD1-26*01 3 17 CARGPDRLYSGSYTRFDYW 

CLL from (multiclonal) #169A IGHV3-48*02 Productive 93.6% IGHJ4*02 IGHD3-10*01 1 12 CVRELWFGNGGDYW 

CLL from (multiclonal) #170A IGHV3-30*03 Productive 99.22% IGHJ6*02 IGHD3-9*01 1 25 CAKYGGVKLRYFDWLLYGDYYYGMDVW 

CLL from (multiclonal) #171A IGHV3-33*01 Productive 99.61% IGHJ5*02 IGHD1-26*01 2 12 CARGELLHNWFDPW 

CLL from (multiclonal) #171B IGHV3-23*01 Productive 99.18% IGHJ3*02 IGHD5-12*01 3 12 CAKDGFPYYGFDIW 

CLL from (multiclonal) #172A IGHV2-26*01 Productive 91.91% IGHJ5*02 IGHD3-3*01 2 22 CAGTNIPRQFDFWSGSSPNWFDPW 

1
6

9
 



 

 
 

(Supplemental Table 2, continued)        

B-cell clon from #case number 
V-GENE and 

allele 
Functionality 

% Identity  

V-REGION 

J-GENE and 

allele 

D-GENE and 

allele 

D-REGION 

reading 

frame 

CDR3 

length 
AA JUNCTION 

CLL from (multiclonal) #173A IGHV3-30*03 Productive 99.6% IGHJ6*02 IGHD3-9*01 1 25 CAKYGGVKLRYFDWLLYGDYYYGMDVW 

CLL from (multiclonal) #174A IGHV4-39*01 Productive 98.76% IGHJ3*01 IGHD1-14*01 3 17 CASHRNTQTYNNRAAFDVW 

CLL from (multiclonal) #175A IGHV5-51*01 Productive 100.00% IGHJ4*02 IGHD2-15*01 2 19 CARIPVAGYCRGGSCYPFDYW 

CLL from (multiclonal) #175B IGHV4-34*01 Productive 99.16% IGHJ4*02 IGHD3-10*01 2 14 CARTKTYGSGPPGKYW 

CLL from (multiclonal) #176A IGHV4-34*01 Productive 99.59% IGHJ4*02 IGHD3-10*01 2 15 CARGLYYYGSGVYFDYW 

*B-cell clones from #78 and #99 corresponded to the same untreated CLL patient at recruitment and after 1-year evaluation, respectively; **however the closest V is a pseudogene. 

Grey shadowed cells highlight those CDR3 of the IGHV genes identical or highly homologous. Scripts in cells indicate IMGT/JunctionAnalysis giving no results for that JUNCTION. 

1
7
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            SUPPORTING INFORMATION 

Supplemental Table 3. Diagnosis, differential immunophenotypic/IGHV features and cytogenetic 

alterations of the coexisting aberrant B-cell populations from multiclonal MBL, CLL and other B-

CLPD cases (n=41). 

Case 
ID 

Phenotype of population 1  
(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH 

Phenotype of population 2  
(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH* 

1 FSC/SSClo CD19++ CD5+ CD20lo 
(62.9%; CLL) 

V3-30(D3-9)J6-UM 

ND FSC/SSCint CD19+hi CD5- CD20+ 
(4.1%; Non-CLL-like MBLhigh MZL) 

V1-2(D5-5)J4-UM 

ND 

2¶ FSC/SSClo


lo FMC7lo CD23+ CD5+ 
CD43lo CD11clo (33%; CLL) 

V3-30(D3-9)J6-UM 

+12 (93%) 
del(11q22.3) (91%) 

FSC/SSClo


lo FMC7lo CD23+ CD5+ 
CD43+ CD11c+ (21%;  CLL-like 
MBLhigh) 

V3-23(D2-15)J4-M 

+12 (95%) 
del(11q22.3) (93%) 

3 FSC/SSClo CD19+ lo CD5+ CD79blo 

FMC7- (26.5%; CLL) 

V1-3(D1-26)J3-M 

ND FSC/SSCint CD19lo
+ CD5het CD79b- 

FMC7+ (25.7%; CLL) 

V4-34(D2-15)J3-M 

ND 

4 FSC/SSCint


lo CD20lo CD79bloCD5+ 
(20.6%; CLL) 

V3-53(D3-22)J6-UM 

+12 (49%) 
polysomy 

FSC/SSClo


lo CD20lo CD79bloCD5+ 
(0.6%; CLL-like MBLlow) 

V1-69(D3-3)J3-UM 

NDª 

5 FSC/SSClo


loCD20lo CD5+ CD43+ 
CD23+ (44.2%; CLL) 

V4-34(D3-3)J4-M 

biallelic 
del(13q14.3) (99%)  

FSC/SSClo


hiCD20+ CD5- CD43- 
CD23- (1.4%; Non-CLL-like MBLlow 

MZL) 

V1-8(D3-3)J5-UM 

ND 

6 FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (33%; CLL) 

V4-34(D4-23)J2-M 

del(13q14.3) (96%) FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (10.6%; CLL-likeMBLhigh) 

V3-11(D6-19)J4-M 

del(13q14.3) (96%) 

7 FSC/SSCloCD19+ lo CD20lo CD5+ 
(34.6%; CLL) 

V4-39(D3-3)J6-UM 

ND  FSC/SSCloCD19+ lo CD20lo CD5+ 
(9.4%; CLL-likeMBLhigh) 

V3-33(D3-9)J4-M 

ND  

8 FSC/SSClo CD19lo CD43- CD5+ 
CD25+ IgM+ CD27+ CD11c+/het 
(50.2% CLL) 

V1-3(D5-5)J5-M 

ND FSC/SSClo CD19+ CD43+ CD5hi 

CD25hi IgMhi CD27hi CD11c+ (5% 
CLL-like MBLhigh) 

V3-53(D2-8)J6-M 

ND 

9 FSC/SSClo
+ CD5+ CD20lo CD43- 

(12.6%; CLL-like MBLhigh) 

V3-23(D5-12)J6-UM 

+12 (87%) FSC/SSClo
+ CD5+ CD20lo CD43+ 

(3%; CLL-like MBLhigh) 

V4-39(D6-13)J5-UM 

+12 (93%) 

10 FSC/SSClo


lo CD22lo CD23+ CD5+ 
(54.6%; CLL) 

Not found 

del(13q14.3) (96%) FSC/SSClo


lo CD22lo CD23+ CD5+ 
(4.1%; CLL-like MBLhigh) 

V3-72(D2-2)J5-M 

ND 

11¶ FSC/SSClo CD19+ lo CD5+ CD79blo 
FMC7- (0.6%; CLL-like MBLlow) 

V3-23(D5-12)J6-UM 

ND FSC/SSClo CD19+ + CD5+ CD79blo 
FMC7- (1.6%; CLL-like MBLlow) 

V3-48(D5-12)J6-M 

del(13q14.3)(19%) 
+12 (41%) 

12 FSC/SSCloCD19+lo CD5+ CD20lo 
(89%; CLL) 

V4-39(D1-7)J3-UM 

ND FSC/SSCloCD19+ lo CD5+ CD20lo 
(0.1%; CLL-like MBLlow) 

V3-21(D6-13)J4-UM 

ND 

13 FSC/SSCloCD19+ lo CD20lo FMC7- 
CD5+ (49.9%; CLL) 

V5-51(D2-15)J4-UM 

ND FSC/SSCloCD19+ lo CD20lo FMC7- 
CD5+ (40.8%; CLL) 

V4-34(D3-10)J4-UM 

ND 

14¶ FSC/SSClo
+d CD20lo CD5+ CD22lo 

CD23+ FMC7- (84%; CLL) 

V4-34(D1-26)J4-UM 

biallelic 
del(13q14.3) 
(85%); 
 

FSC/SSClo


loCD20lo/het CD5+ CD22lo 
CD23+ FMC7- (0.7%;  CLL-like 
MBLhigh) 

V4-34(D3-3)J6-M 

del(13q14.3) (83%) 

15¶ FSC/SSCloCD19lo
+ CD5- (11%; 

CLL-like MBLhi) 

V3-23(D3-22)J6-UM 

ND FSC/SSCloCD19+ loCD5+ (1.1%; 
CLL-like MBLlow) 

V3-11(D2-15)J4-M 

NDª 

16¶ FSC/SSChi CD19loCD38++CD10+ 

cBcl2+ sIg- c+ 
(20.6%;  Non-CLL FL) 

V3-11(D1-1)J3-M 

t(14q32)(95%); 
t(14;18) (96%);  
+18q21 (95%)  
+8q24 (92%) 

FSC/SSClo CD19+CD38-CD10-+ 
(2.5%;  Non-CLL FL) 

V3-23(D5-12)J6-UM 

t(14;18) (90%);  
+8q21 (90%)  
+18q21 (87%) 

17 FSC/SSCloCD19+ + CD5+ CD20lo 
CD11c- (59.3%; CLL) 

V1-46(D3-3)J4-UM 

ND FSC/SSClo CD19+ Ig- CD5- CD20hi 
CD11chi (0.5%;  Non-CLL-like 
MBLlow MZL) 

V3-53(D1-26)J4-M 

ND 
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   SUPPORTING INFORMATION 

(Supplemental Table 3, continued) 

Case 

ID 

Phenotype of population 1  

(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH 

Phenotype of population 2  

(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH* 

18¶ FSC/SSCloCD19+ CD5+ lo (15.6%; 
CLL-like MBLhigh) 

V3-15(D3-3)J4-M 

ND FSC/SSCloCD19+ CD5+ lo (10.1%; 
CLL-like MBLhigh) 

V3-30(D5-12)J4-M 

+12 (19%);  
del(13q14.3) (32%) 

19¶ FSC/SSCloCD19+lo CD20lo CD5+ 
(44%; CLL) 

V3-30(D5-12)J4-M 

del(13q14.3) (80%) FSC/SSCloCD19+ loCD20lo CD5+ 
(0.3%; CLL-like MBLlow) 

V3-23(D6-19)J6-UM 

biallelic 
del(13q14.3) (73%) 

20 FSC/SSCloCD19+ loCD20lo CD5+ 
(35.6%; CLL) 

V4-34(D3-10)J6-M 

+12 (75%);  
 

FSC/SSCloCD19+ lo CD20lo CD5+ 
(0.5%; CLL-like MBLlow) 

V5-a(D6-19)J6-UM 

NDª 
 

21 FSC/SSClo


hi FMC7+ CD5- CD23- 
CD43- (5.2%; Non-CLLMZL) 

V4-61(D7-27)J4-M 

ND FSC/SSClo


lo FMC7- CD5+ CD23+ 
CD43+ (2.3%;  CLL-like MBLlow) 

V3-21(D2-2)J6-M 

ND 

22 FSC/SSClo
+ CD5+ CD20lo CD79blo 

(6.4%; CLL-like MBLlow) 

V3-74(D3-10)J4-M 

NDª FSC/SSClo


loCD5+ CD20lo CD79b- 
(0.6%; CLL-like MBLlow) 

V4-59(D3-10)J6-M 

ND 

23 FSC/SSCloCD19+ lo CD22lo CD23+ 
CD5+ (11.5%; CLL-like MBLhigh) 

V4-34(D5-24)J4-M 

ND FSC/SSCloCD19+ lo CD22lo CD23+ 
CD5+ (3.8%; CLL-like MBLhigh) 

V3-33(D6-19)J2-M 

 ND 

24 FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (21.1%;  CLL-like MBLhigh) 

V5-51(D5-5)J4-M 

+12 (93%) FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (8.7%; CLL-like MBLhigh) 

V4-30-4(D2-2)J4-M 

ND 

25 FSC/SSCloCD19+ lo CD5het CD20lo 
(17.8%;  CLL-like MBLhigh) 

V5-51(D3-3)J4-UM 

+12(76%);  t(14q32) 
(52%) 

FSC/SSCloCD19+ lo CD5lo CD20lo 
(2.6%;  CLL-like MBLhigh) 

V1-69(D6-13)J6-UM 

ND 

26 FSC/SSClo
+ CD5+ CD20lo CD43+ 

(23%; CLL-like MBLhigh) 

V4-39(D3-3)J5-UM 

del(13q14) (15%);  
del(13q14.3) (15%) 

FSC/SSClo


lo CD5+ CD20lo CD43- 
(3.7%; CLL-like MBLhigh) 

V1-69(D5-5)J4-UM 

ND 

27¶ FSC/SSClo


loCD20lo CD79blo CD5+ 
(10%; CLL-like MBLhigh) 

V3-7(D5-12)J3-M 

del(13q14) (98%);  
del(13q14.3) (98%) 

FSC/SSClo


loCD20lo CD79blo CD5+ 
(0.6%; CLL-like MBLlow) 

V3-23(D6-6)J4-M 

ND 

28 FSC/SSCloCD19+ + CD5+ CD20lo 
CD22- (68%; CLL) 

V3-48(D4-17)J4-M 

del(13q14) (95%);  
del(13q14.3) (87%) 

FSC/SSCloCD19+  + CD11c+ 
CD5het CD20hi CD22+ (1.1%; Non-
CLL-like MBLhigh MZL) 

V1-69(D6-6)J4-M 

ND 

29¶ FSC/SSClo


lo CD19lo, CD20lo 
CD79b- CD43+ (36.4%; CLL) 

V3-48(D3-10)J4-M 

ND FSC/SSClo


hi CD19+, CD20hi 

CD79b+ CD43- (16.7%; Non-CLL 
MALT) 

V3-15(D4-17)J4-M 

del(17p13) (91%) 

30 FSC/SSClo


loFMC7lo CD5+ CD79b- 
CD23+ CD43+ (33.7%; CLL) 

V4-34(D3-10)J4-UM 

t(14q32) (98%)  FSC/SSClo
+ CD5- CD11c- 

FMC7hiCD79bhet CD23- CD43- 
(8.4%; Non-CLL MALT) 

V3-15(D6-6)J6-M 

ND 

31¶ FSC/SSCint


lo CD23+ CD5+ CD11c+ 
(24%; CLL) 

V3-33(D2-15)J5-UM 

ND FSC/SSClo


lo CD5+ CD23het CD11clo 
(20%; CLL) 

V3-23(D5-12)J3-M 

ND 

32¶ FSC/SSCintCD19+ + CD20+ CD5- 
(17.7% Non-CLL MZL) 

V4-39(D6-19)J4-M 

ND FSC/SSCloCD19+ lo CD5+ CD20lo 
(3.2%;  CLL-like MBLhigh) 

V4-34(D6-19)J4-M 

ND 

33 FSC/SSCloCD19+dlo CD5+ CD20lo  
(65.3%; CLL) 

V2-26(D3-3)J5-M 

del(13q14.3) (81%) FSC/SSCloCD19hi
+ CD5+ CD20hi 

(12.5%; Non-CLL MZL) 

V3-53(D2-15)J2-M 

t(14q32) (28%)  

34¶ FSC/SSClo
+ CD19+ CD20hi CD22+ 

CD38- CD11c- CD25+ (65.8%; 
Non-CLL MALT) 

V3-7(D2-21)J4-M 

ND FSC/SSClo
+ CD19+ CD20hi CD22+ 

CD38- CD11c- CD25+ (13.2%; 
Non-CLL MALT) 

V3-23(D2-2)J2-M 

ND 

35¶ FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (55.3%; CLL) 

V3-9(D3-3)J3-UM 

ND FSC/SSClo


lo CD20lo FMC7- CD5+ 
CD23+ (9.8%;  CLL-likeMBLhigh) 

V3-21(D2-2)J6-M 

ND 
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            SUPPORTING INFORMATION 

(Supplemental Table 3, continued) 

Case 

ID 

Phenotype of population 1  

(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH 

Phenotype of population 2  

(% from WBC; compatible 

diagnosis) 

V(D)J rearrangement-MS† 

iFISH* 

36 FSC/SSCint


hiCD5+ CD11c+ FMC7lo 
(46%; Non-CLL MZL) 

V1-2(D6-6)J5-UM 

ND FSC/SSClo


hi CD5- CD11c- FMC7hi 
(40.9%; Non-CLL MALT) 

V3-48(D1-26)J4-UM 

ND 

37¶ FSC/SSChi CD103+ CD25+ CD11c+ 
(21%; Non-CLL HCL) 

V3-30(D3-3)J5-UM 

NA FSC/SSClo


loCD5+ (0.8%; CLL-like 
MBLlow) 

V3-11(D4-17)J6-M 

NDª 

38¶ FSC/SSCloCD19lo
+ CD5+ CD20+ 

CD23- (38.6%; Non-CLL MZL) 

V3-21(D6-13)J6-UM 

+3q27 (89%) FSC/SSCloCD19hi


lo CD5+ CD20lo 
CD23+ (6.3%; CLL-likeMBLhigh) 

V3-48(D3-3)J3-M 

del(13q14.3) (18%) 

39 FSC/SSClo


lo CD19+, CD20lo 
CD79b- CD43+ (24%; CLL-like 
MBLhigh) 

V1-3(D3-3)J6-UM 

ND FSC/SSClo


lo CD19+ CD20lo FMC7- 
CD5+ CD23+ (14%; CLL-like 
MBLhigh) 

V3-9(D1-26)J4-M 

del(13q14.3) (65%); 
t(14q32) (31%) 

40¶ FSC/SSClo


loCD20lo CD5+ CD22lo 
CD23+ FMC7- (46.7%; CLL) 

V3-33(D3-10)J6-M 

biallelic 
del(13q14.3) (95%)  

FSC/SSClo


loCD20lo/het CD5+ 
CD22lo CD23+ FMC7- (43.1%; CLL) 

V3-21(D4-23)J4-M 

del(13q14.3) (30%) 

41 FSC/SSCint


lo CD5+ CD19+ CD11c- 
(87.1%; Non-CLL MCL) 

V3-21(D3-3)J6-UM 

t(11;14) (97%) FSC/SSClo
+ CD11chi CD19hi 

(1.3%; Non-CLL-like MBLlow MZL) 

V4-34/D3-10/J5-M 

ND 

CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; HCL, hairy cell leukemia; LPL, lymphoplasmacytic 

lymphoma; MZL, marginal zone lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MALT, B-cell 

lymphoma of mucosa-associated lymphoid tissue. + indicates antigen expression at normal levels; -, absence of 

expression; het, heterogeneous antigen expression; hi, high antigen expression; lo, low antigen expression; int, 

intermediate scatter; c, cytoplasmatic antigen expression. 
†
MS, mutational status (UM, unmutated; M, mutated), 

*FISH was performed on interphase nuclei from FACS-purified cells; ND: no chromosomal alterations detected by 

iFISH for the probes studied; NA: not analyzed. An additional B-cell clone (population 3) was detected by interphase 

FISH in case 2 (FSC/SSC
lo


lo
 CD23

lo
 CD5

lo
 CD43

lo
 CD11c

lo
; 0.7%, CLL-like MBL

low
; ND

a
), case 25 (FSC/SSC

lo
CD19+ + 

CD5
hi

 CD20
lo

; 2.4%, CLL-like MBL
high

; +12(66%)) and case 37 (FSC/SSC
lo


lo
 CD5+; 0.2%, CLL-like MBL

low
; NDª)

a
The 

percentage of B-cells from this subpopulation was very low and only allowed analysis for some iFISH probes (13q14, 

13q14.3, 17p13.1 and 11q22.3). Genetic abnormalities present in one population were always evaluated also in the 

other coexisting population. 

¶Cases whose clones had IGHV aa sequences phylogenetically closer than those found in the rest of multiclonal 

cases. 
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   SUPPORTING INFORMATION 

Supplemental Table 4. Peripheral blood B-cell counts and BCR features of multiclonal versus 

monoclonal CLL-like and non-CLL-like B-cell clones. 

 CLL-like B-cells Non-CLL-like B-cells 

 
Multiclonal B-cells 

n=66 clones 

Monoclonal B-cells 

n=128 clones 

Multiclonal B-cells 

n=19 clones 

Monoclonal B-cells 

n=15 clones 

N. of PB clonal B cells (x10
6
/L)* 2,675 (0.6-71,485)a 10,956 (0.1-369,288) 4,375 (85-156,168) 4,771 (54-41,221) 

% of PB clonal B cells from WBC* 13% (0.1%-89%)a 45% (0.001%-97%) 13% (0.5%-87%) 41% (1%-73%) 

MBL
low

 B-cell clones 14/66 (21%)a 13/128 (10%) 3/19 (16%) 2/15 (13%) 

MBL
high

 B-cell clones 26/66 (39%)a 26/128 (20%) 2/19 (10%) 2/15 (13%) 

CLL B-cell clones 26/66 (39%)a 89/128 (69%) NA NA 

CLL-stage A clones 12/66 (18%)a 53/128 (41%) NA NA 

CLL-stage B/C clones 8/66 (12%)a 36/128 (28%) NA NA 

Non-CLL B-cell clones NA NA 14/19 (74%) 11/15 (73%) 

IGHV mutated B-cell clones 40/66 (61%) 76/124 (61%) 11/19 (58%) 8/15 (53%) 

% alignment of IGHV aa 

sequences between coexisting  

B-cell clones 

51% (38%-79%) NA 62% (46%-76%)# NA 

% alignment of IGHV aa 

sequences between each B-cell 

clone and the other clones 

52% (31%-100%)a 50% (29%-100%) 51% (32%-89%)a 49% (33%-86%) 

Results expressed as number of B-cell clones and percentage between brackets or as *median value (range). 

PB, peripheral blood; WBC, white blood cells; CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; 

MBL
low

, low count monoclonal B-cell lymphocytosis; IGHV, immunoglobulin heavy chain variable region genes; 

CLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; MBL
high

, clinical monoclonal B-cell 

lymphocytosis; aa, amino acids. NA, not appropriate.
#
Both coexisting B-cell clones showed Non-CLL-like 

phenotype (n=4 cases) or the majority B-cell clone showed Non-CLL-like phenotype (n=4 cases). 
a
Statistically 

significant differences (P <0.05) found between clones from multiclonal vs. monoclonal cases. 
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            SUPPORTING INFORMATION 

Supplemental Table 5. Cytogenetic features of non-CLL like B-cell clones from monoclonal cases. 

Clone type Type of cytogenetic changes / % aberrant B-cells analyzed by iFISH 

Non-CLL-like MBL
high 

(MZL) trisomy 12
+
 (80%); and  t(14q32)

+
 (35%) 

Non-CLL (FL) del(13q14.3)
+
 (18%); 3 copies of IGH gene (85%)*

 

Non-CLL (FL) t(14;18)
+
 (89%); and t(8;14)

+
 (78%); polysomy 

Non-CLL (MCL) t(11;14)
+ 

(93%) 

Non-CLL (MALT) t(14q32)
+ 

(94%) 

Non-CLL (MZL) t(14q32)
+
 (94%); 3 and 4 copies of IGH gene (53% and 37%, respectively) 

Only cytogenetically altered clones are shown; cytogenetically non-altered clones from monoclonal cases included non-CLL MZL (n=5; 2 

MBLlow, 1 MBLhigh and 2 MZL), MALT-lymphoma (n=1), MCL (n=1), DLBCL (n=1) and LPL (n=1). CLL, chronic lymphocytic leukemia/small 

lymphocytic lymphoma; MBL, monoclonal B-cell lymphocytosis; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; LPL, 

lymphoplasmacytic lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone B-cell lymphoma; MALT, B-cell lymphoma of mucosa-

associated lymphoid tissue; * t(14;18)+ by molecular studies; ND, not detected ; NA, not analyzed. 
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Supplemental Table 6.  Monoclonal cases with B-cell clones sharing HCDR3 sequences of the 

same length (± 1 amino acid) and belonging to identical or evolutionary highly-related VH 

families. 

Monoclonal Case 

 ID 

VH families RDCH3 

htgnel 

aa composition of HCDR3 (% homology)# 

149 V3-48 8 _WIDRGRLRSC_ 
(25) 

158 V3-11 8 _WYDGSYFRAC_ 

66 V3-7 9 _WIDRYVYARGC_ 
(44) 

136 V3-7 9 _WYDGWYGARGC_ 

113 V3-74 9 _WRQLDMYSLAC_ 
(11) 

121 V3-64 9 _WVDRTGMDVAC_ 

92 V3-23 12 _WYLDGRQLWSYAKC_ 
(33) 

153 V3-23 12 _WIFDDGFTKDVAKC_ 

16 V1-2 13 _WIFDGLNTDYGAARC_ 
(31) 

18 V1-2 13 _WYFDAQWLVLENARC_ 

201 V4-34 13 _WFLDRGFHWGGYYAC_ 
(23) 

206 V4-34 13 _WPFDTNSRESQGWAC_ 

190 V4-34 14 _WYDIRYYDFSAPAPAC_ 
(29) 

214 V4-34 14 _WYTLIGDKGGYYVRAC_ 

205 V4-59 14 _WYLDNGGWPDISARGC_ 
(50) 

218 V4-61 14 _WPGWFDDHGEGRYAKC_ 

124 V3-23 14 _WDIQPNAFIKFYDDAC_ 
(29) 

145 V3-23 14 _WDFSCYGVIFHCCRAC_ 

24 V1-2 15 _WSFDSQGSRDLEMRYAC_ 
(60) 

35 V1-2 15 _WYFDLQGWRDVELRYGC_ 

125 V3-7 16 _WLDFTARYLPYADLASAC_ 
(31) 

147 V3-7 16 _WYESSISTTSCPSCQSGC_ 

105 V3-23 16 _WYFDADGYGGTPRDKDTC_ 
(35) 

142 V3-23 17 _WIFDTDVIQKTRTLAKDAC_ 

142 V3-23 17 _WFDIRTLATVIQKDTAKDC_ 
(35) 

104 V3-23 18 _WFDILPSTYNWNSGGAAKDC_ 

151 V3-30 17 _WDYFILPPGVGGIASGSMC_ 
(18) 

120 V3-30 18 _WAIFSWNDACSSMTRPHCSC_ 

132 V3-30 19 _WVGMDEFRYYLDFGMAGKIAC_ 
(37) 

150 V3-30 19 _WSDGGIGTCCQGLDTSGNRAC_ 

96 V3-21 20 _WYYGMDVATGHSHHPVRESRAC_ 
(45) 

155 V3-48 20 _WYYGMDVGYPDSSPGYDFWARC_ 

196 V4-34 20 _WVLDYYGYYTERRYYPSDVRGC_ 
(40) 

202 V4-34 20 _WYFDPFPYYGSGSYLIGAARGC_ 

198 V4-34 20 _WVMDYYGYYRRTEGSTGYARGC_ (50) 

202 V4-34 20 _WYFDPFPYYGSGSAYGLIARGC_  

155 V3-48 20 _WYYGMDVPDYDFWSGYSPGARC_ (71) 

130 V3-48 21 _WYYGMDVYSYYYYDFWSGYDARC_  

96 V3-21 20 _WVMDYGYGHTASHHPVRESARC_ (35) 

114 V3-21 21 _WYFDTTLYSCTSSEGGLGYCARC_  
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            SUPPORTING INFORMATION 

(Supplemental Table 6, continued) 

Monoclonal Case 
ID 

VH families RDCH3 
htgnel 

aa composition of HCDR3 (% homology)# 

130 V3-48 21 _WVMDGYYYYYSYGYWSFYDARDC_ 
(48) 

114 V3-21 21 _WYFDTTLYSTSCSCLGYGGAREC_ 

22 V1-69 21 _WMDVGYYYYYYTGVAGVVYAREC_ 
(67) 

39 V1-69 21 _WGYYYYYYYMDVLMTNWGTARDC_ 

22 V1-69 21 _WMDVYYYYYGGTYAVGYEVVARC_ 
(48) 

31 V1-69 21 _WFDIARPNDGSYWIDYYGGNARC_ 

31 V1-69 21 _WFDIRPNDAYSWGNYDYIGGARC_ 
(43) 

39 V1-69 21 _WMDVYYYYYYYWGLMTNGDTARC_ 

143 V3-30 21 _WYFDSHGTYYYDNSHGPNVSARC_ 
(28) 

138 V3-30 22 _WVMDDGGDFWSGYYYDLKTAYARC_ 

114 V3-21 21 _WYFDTTLCYSSTSCLGYGGAREC_ 
(42) 

110 V3-21 22 _WPFDNWYLEDPLNFDWGRRNARDC_ 

114 V3-21 21 _WYFDTTLCYSSTSCGYLGGEARC_ 
(42) 

157 V3-21 22 _WVMDYYYGIYMEGLSAWLLRARGC_ 

110 V3-21 22 _WPDNWFYPLDEWLRNGNFDRDARC_ 
(36) 

157 V3-21 22 _WVDYYYGMYGIELMWLLSARGARC_ 

110 V3-21 22 _WPFDYNWLLEDPWDFNGNRRARDC_ 
(41) 

93 V3-11 22 _WYFDPDDKLSGYYFWYYDRPARDC_ 

157 V3-21 22 _WVMDYYGYYIGGRLSAWLLMEARC_ 
(32) 

93 V3-11 22 _WYFDLPDDKGYYDPRYYDFWSARC_ 

26 V1-69 22 _WDVMGYYYYTVYITIFGVVTTTAC_ 
(32) 

34 V1-69 22 _WQHYFGVAESVYSTYYYDSSRGAC_ 

26 V1-69 22 _WYYGMDVYYYTVVVFGTTTITIAC_ 
(50) 

27 V1-69 23 _WYYGMDVNTVYSGSWDFRADGGYAC_ 

34 V1-69 22 _WEYFQHAGVYYYDSSVYGSSTARC_ 
(23) 

27 V1-69 23 _WNYYGMDVVSTYDFWSGYADGGARC_ 

129 V3-11 23 _WYYYYGMDVRRDDFWSGYRIYARDC_ 
(48) 

141 V3-48 23 _WYYYYGMDVNTANDIVVVPADARDC_ 

27 V1-69 23 _WMDVGYYNVYSTYDFWSGGGARADC_ 
(69) 

15 V1-69 24 _WMDVYYYYDVHKGYDFWSGQYARAEC_ 

Amino acids with an analogous side-chain polarity (highlighted in gray): L,F; A,V; I,L; K,R; L,V;  L,M; L,C; T,S; A,I; 

D,E; I,M; V,C; L,F; M,F; I,V; H,Y; I,C; F,W. #Number of aa with an analogous side-chain polarity (excluding the 

delineating C_ and _W positions)/HCDR3 length*100. 

  



 

178 
 

   SUPPORTING INFORMATION 

Supplemental Table 7. Haematological features of B-CLPD cases who received chemotherapy. 

 No. of case Abs. No. Clonal B-cells (x106/L) Binet Stage MAP 

Monoclonal Subjects 33 12 640 A Yes 

 34 23 134 C No 

 35 5 314 B No 

 36 44 428 B Yes 

 37 18 600 B Yes 

 38 29 376 B Yes 

Multiclonal Subjects 5 
Clone A: 11 724 
Clone B: 2 078 

B Yes 

 26 
Clone A: 49 600 

Clone B: 350 
B Yes 

 39 
Clone A: 5 438 
Clone B: 158 

C No 

 40* 
Clone A, HCL: 1 029 

Clone B, CLL-like MBLlow: 39 
Clone C, CLL-like MBLlow: 10 

- No 

*This case corresponded to a hairy cell leukemia patient. Gray shadowed clonal B-cells represent multiclonal B-CLPD cases with 

stereotyped CLL-like B-cell clones. CLL, chronic lymphocytic leukemia; MBL, monoclonal B-cell lymphocytosis; HCL, hairy cell 

leukemia; B-CLPD, B-cell chronic lymphoproliferative disorders; MAP, myelodysplasia-associated phenotype; -, not applicable. 

 

 

 

 




