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RESUMO: 

O crescente desenvolvimento industrial levou a uma crescente produção de poluentes que 

ameaçam gravemente o ecossistema. Em particular, a indústria farmacêutica produz águas 

residuais com compostos de elevada complexidade e potencialmente perigosos quando lançados 

diretamente para os cursos de água provocando toxicidade aquática, desenvolvimento e 

resistência de bactérias patogénicas e genotoxicidade. Portanto, a eliminação de resíduos 

farmacêuticos nos efluentes deve ser encarada como um passo essencial no circuito do 

medicamento (produção). Deste modo, é necessário desenvolver tecnologias eficazes para o seu 

tratamento e/ou recuperação tendo em conta as normas ambientais atuais. Os processos 

biológicos convencionais são de difícil aplicação dada a forte toxicidade e baixa 

biodegradabilidade das espécies químicas que tipicamente caracterizam estes efluentes. Assim, 

esta dissertação teve como objetivo de estudo avaliar a eficiência de remoção de fármacos 

através de processos de oxidação avançada (POAs). Utilizando do Processo de Fenton 

Heterogéneo efetuou-se o estudo cinético da remoção de matéria orgânica presente num efluente 

farmacêutico real usando catalisadores óxidos mássicos nos quais o ferro é suportado, com 

resultados apreciáveis na oxidação catalítica por Peróxido de Hidrogénio. Este processo permite 

a eliminação do problema associado à separação de lamas de ferro do processo de Fenton 

Homogéneo. Deste modo realizou-se o “screening” de quatro catalisadores, comerciais e 

preparados no laboratório, N-150, Fe-Ce-O 70/30, Rocha Vulcânica Vermelha, e ZVI (ferro de 

valência zero) concluindo-se que o Fe-Ce-O 70/30 é o catalisador que proporciona melhores 

resultados experimentais no “Dark-Fenton”, obtendo-se 34%; 59% e 66% para a remoção de 

TPh, COD e TOC respetivamente. Estudou-se também a influência do pH e verificou-se que 

este parâmetro afeta a eficiência da degradação da matéria orgânica, considerando como ótimo o 

pH 3. Foram realizados ensaios de Foto-Fenton, onde o catalisador Rocha Vulcânica Vermelha 

obteve melhores resultados, 49%; 80% e 40% para a remoção de TPh, COD e TOC 

respetivamente. Além disso, verificou-se uma diminuição significativa na lixiviação de metal 

ativo com a utilização de radiação UV. Foram ainda realizados testes de biodegradabilidade que 

demonstraram a eficiência deste sistema catalítico na obtenção de um efluente passível de ser 

posteriormente depurado eficientemente por processos biológicos. 
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ABSTRACT: 

The growing industrial development is leading to the production of contaminants that are 

seriously threatening the ecosystems. Especially pharmaceutical industry that produces residual 

waters containing high complexity compounds, which are potentially dangerous when sent 

directly to the waters courses, causing aquatic toxicity, development of resistance on pathogenic 

bacteria and genotoxicity. Therefore, the elimination of pharmaceutical residua in the effluents 

must be looked at as an essential step in medicine circuit (production). This way, it is necessary 

to develop effective technologies for their treatment and/or recovery considering the existing 

environmental regulations. The traditional biological processes are usually not efficient given 

the strong toxicity and low biodegradability of the chemical species that generally characterize 

these effluents. This way, this dissertation aimed to evaluate the drugs removal efficiency 

through Advanced Oxidation Processes (AOP). 

 Heterogeneous Fenton’s Process was used to perform the kinetic study of the organic 

matter removal in an actual pharmaceutical effluent, by using mass oxide catalysts with iron 

over solid support, with interesting results in catalytic oxidation by Hydrogen Peroxide. 

This process allows the problem’s elimination associated to separation of iron sludge of 

Fenton Homogeneous’ process. This way, the screening of four catalysts, commercial and 

laboratory prepared, was performed, involving N-150, Fe-Ce-O 70/30, Red Volcanic Rock, and 

ZVI (zero valent iron) being concluded that Fe-Ce-O 70/30 is the material that offers best 

experimental results in Dark-Fenton, getting 34%; 59% and 66% of TPh, COD and TOC’s 

removal, respectively. It was also studied the pH influence and it came to notice that this 

parameter affects the organic matter degradation efficiency, considering pH 3 as optimal. 

Experiments of Photo-Fenton were also performed, where Red Volcanic Rock catalyst, had the 

best results, 49%; 80% and 40% concerning TPh, COD and TOC removal, respectively. 

Moreover, there was a significant reduction in the active metal leaching with the use of UV 

radiation.  

 Tests of biodegradability were made that showed the efficiency of this catalytic system 

in getting an effluent able of a posterior efficient purification by biological processes. 
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1 INTRODUCTION: 

This dissertation’s first chapter refers environmental problems related with liquid effluents 

and the most common treatment technologies with special focus on wastewaters originated in the 

pharmaceutical industry. In this context, the advanced oxidation processes (AOPs) are described 

as viable alternative in prejudice of classical biological sludge systems, with special attention to 

Fenton and Photo-Fenton systems. Finally, the aims and thesis’ structure are presented.  

 

1.1 ENVIRONMENTAL PROBLEM  

Despite the fact that pharmaceutical compounds concentration in the hydric system is only 

of a few traces, its continuous introduction may, in long term, become a potential risk to aquatic 

organisms and Man. This way, the concern regarding the presence of these toxic substances in 

environment has been increasing since early 90’s, as well as the need to analyze the inherent risks 

[71].
 
 

Except for antibiotics, most pharmaceutical compounds are chemical substances made by 

Man, and are therefore not found in Nature. Hence, if its presence is detected in the environment, 

it can only come from human or veterinarian usage. The main sources for human usage 

pharmaceutical compounds, in the hydric system are:  its excretion after usage, the inappropriate 

destruction of non – used drugs and, to a smaller scale, the wastes and spilling during its 

production [71].  

The drugs that are not removed in the wastewater treatment plants (WWTP) end up being 

unloaded along with the treated effluents, this way polluting rivers, firths, lakes and also, although 

rarely, subterraneous water and drinking water. Since these compounds are bio-refractory they are 

not destroyed in the WWTP, but can be partially transferred to the mud which is generally applied 

in agriculture, with the risk of contamination of the soil, and maybe leaching to surface water as 

well as getting infiltrated, endangering underground water quality [37].
 
 

Environmental concern is not necessarily related with the high volume of production of a 

certain drug compound, but its remaining in the ecosystems and its critical biological activity, 

resulting on high toxicity and potential to create effects on key biological processes, such as 

reproduction. According to FILHO (2007), beyond drugs remaining in environment, other 

problem comes from the fact that these have been produced to unchain specific physiologic 

effects. Although some pharmaceuticals concentrations are low, their combination can have 

strong effects due to the mechanism of synergetic action [40].
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A large amount of drugs from different types (lipid regulators, antipyretics,  analgesics, 

antibiotics, antidepressants, oral contraceptives, chemotherapeutic agents and others) are widely 

consumed all over the world 
 
[100]. 

A pharmaceutical industry that includes different types of production processes, such as 

fermentation, chemical synthesis, extraction and formulation, usually creates a highly resistant 

and variable effluent (in concentration of organic matter and in volume) considering the 

production process that was used and the season of the year which difficult the applicability of the 

traditional biological systems. This way, it is necessary a former chemical treatment, particularly 

for effluents coming from antibiotics’ production, which contain high bio-inhibiter compounds 

concentrations reducing the direct use of classical biological purification technologies [11]. 

Drugs and metabolites destiny and behaviour in the aquatic environment have not yet been 

deeply explored. The reduced volatility of the compounds states that its distribution in the 

surroundings is done, mainly, by water dispersion or through the food chain [93]. 
 

There are a large number of original articles and comments from different authors 

concerning the occurrence and quantity of pharmaceutical compounds marked in hydric systems. 

According to FENT et al. (2006), about 80 to 100 drugs and their metabolites are found on both 

effluents and superficial water. These compounds are mainly detected on nanograms and 

micrograms scale per liter (ng-μg/L). However, this can be sufficient to induce toxic effects [37].  

 

1.2 MOST COMMON TECHNOLOGIES FOR EFFLUENTS TREATMENT 

A rising subject in environmental and engineer science is the development of processes, 

which promote the definite removal of drugs from industrial wastewaters, before ecosystems 

contamination. Since common water and effluents treatment are unable to destroy definitely 

persevering compounds, it is necessary to introduce additional advanced treatment technologies 

[5], [6], [50], [69], [76], [128]. 
 

Figure 1.1 shows the different treatment industrial effluent treatment. 

Definitely, treatments based on biological processes are most commonly used, since they 

allow handling large masses of effluents transforming the toxic organic compounds into CO2 and 

H2O (or CH4 and CO2), with relatively low costs. The ability for certain microorganisms to 

degrade toxic organic substances is a well-documented fact [17]. 

Biological systems are based on the use of interest toxic compounds as substrate for 

organisms growth and maintenance. Depending on the electron’s receiver nature, the bioprocesses 

may be divided into aerobia and anaerobia. While in the former, which lead to CO2 and H2O, the 

electron receiver is molecular oxygen in the latter, CO2 and CH4, are produced in the absence of 
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O2. Some carbon forms, sulphur and nitrogen may participate as electron receivers (ex.NO3
-,SO4

-2
, 

CO2) [63], [127].  

 

 

Figure 1.1 – Organogram of types of effluent treatments. 

These methods are widely used in industrial effluents treatment. Meanwhile, these systems 

have some inconvenient issues such as: a) its implementation requires a large territory area, 

specially for aerobic technologies; b) the difficulty in controlling the microorganisms population, 

which requires a thorough maintenance of best pH conditions, temperature and nutrients since 

environment changes also produce changes in microorganisms’ metabolism; c) there is the need 

for a fairly long time in order the effluents may reach the demanded patterns. Besides, small 

differences in compound structure or effluents composition are quite significant for a certain 

biological system to work properly. Due to this, microorganisms may not recognize some 

substances and subsequently will not degrade them, or yet, they may transform them into more 

toxic products [17].
 
 

In this context, the development of alternative techniques, with high efficiency in 

destroying recalcitrant pollutant at the lowest cost, has grown in last years [127].  

There are two important elimination processes in industrial effluents treatment: adsorption 

on suspended solids and biodegradation. Adsorption depends of the drugs characteristics 

(hydrophobicity and electrostatic interactions), and that way drugs will or will not get associated 

to particles or microorganisms.  Drugs with an acid character, such as some nonsteroidal 

antiinflammatory drugs (NSAIDs) (acetylsalicylic acid, ibuprofen, ketoprofen, naproxen, 
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diclofenac, indomethacin), with a pKa that goes from 4.9 to 4.1, as well as chlofibric
1
 acid and 

bezafibrate
2
 (pKa 3.6), occur as ions in neutral pH. In those conditions, these compounds have a 

negative charge; therefore, they will be preferably in the effluents dissolved phase. For those 

species, sorption
3
 does not seem to be relevant [18], [78].

 
However, drugs of a basic and 

amphoteric
4
 character can be adsorbed in activated sludge in a significant way as, for example, 

antibiotics of  fluoroquinolones’ group [53]. 

In general, during the treatment, the micro pollutant biological decomposition, including 

drugs, increases with hydraulic retention time and with sludge’s age. For example, diclofenac 

presents a significant biodegradability only when mud retaining time is superior to 8 days.
  
As a 

counterpart,  METCALFE et al. (2003) indicate that regardless hydraulic retaining time, 

compounds with a low index of biodegradability, such as carbamazepine, are only removed in 

very low quantities (usually less than 10%) [97]. 

Recalcitrant organic pollutants’ removal, such as drugs, present in water and liquid 

effluents, can be obtained using advanced treatment technologies instead that are to be 

approached along this dissertation. Such treatment technologies can eliminate potentially 

dangerous compounds through mineralization or conversion into less harmful products to human 

health and aquatic environment [84]. 

  

1.3 ADVANCED OXIDATIVE PROCESSES 

Chemical oxidation is a process that shows great potential in treating effluents comprising 

non-biodegradable toxic compounds. Conventional oxidative processes use oxygen, ozone, 

chlorite, sodium hypochlorite, chlorine dioxide, potassium permanganate and hydrogen peroxide, 

as oxidative agents [57] but there are a number of compounds resistant to such direct action. In 

these cases, the use of Advanced Oxidative Processes (APOs) becomes necessary. These systems 

generally involve the generation of hydroxyl radicals which present a quite elevated oxidative 

potential (2.06V) and are capable of reacting with almost every type of organic compounds. If the 

oxidative extension is enough, it can even reach a total mineralization into CO2, H2O and 

inorganic minerals [101].
 

                                                

1 is biological active chlofibrate’s metabolite (from fibric acid used in hyperlipoproteinemia type III and 

hypertriglyceridemia severe treatment)  

2 Bezafibrate is a cholesterol reducer; triglyceride reducer; (from fibric acid; fibrate). 

3 Absorption and adsorption happen simultaneously. 

4 Amphoteric, according to Bronsted-Lowry acid – base theory, is the substance that has the ability to behave as an acid 

or as a base, depending on other reagent’s presence. 
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These are non-selective processes for they degrade innumerous compounds regardless of 

the presence of others. Hydroxyl radicals can be produced by reactions with strong oxidant, as 

previously quoted and now described, ozone (O3) and hydrogen peroxide (H2O2); semiconductors, 

such as titanium dioxide (TiO2) and zinc oxide (ZnO); and ultraviolet radiation (UV) [87].
 

Processes that present solid catalysts are called heterogeneous, while others are referred as 

homogenous. The main AOPs systems are presented on Figure 1.2. 

AOPs present some advantages that go through polluter’s mineralization and not only 

through phase’s transfer; they are used on effluent hard removing compounds (refractive 

compounds to other treatments), and transform those cumbersome species into biodegradable 

moieties; they can be used associated to other processes (pre and post treatment); have a strong 

oxidative capability, with high reaction kinetics; if enough harsh conditions are used, they 

mineralize contaminants and do not form sub products; usually they improve the organoleptic 

qualities of the treated water; in many cases, they use less energy (when compared with other 

treatments), leading to minor costs; and allow the treatment in situ [7], [8], [9], [69]. 

 

 

Figure 1.2 – Organogram of Classical Advanced Oxidative Process Systems. (Source: HUANG et al., 

1993). 

One has to add that main benefits of advanced oxidative processes are related to the 

possibility of carrying out polluters’ degradation in low concentrations, and the easiness in 

combining with other processes such as biological and activated charcoal adsorption, adding to 

the fact that these processes are conducted at ambient pressure and temperature [7], [8], [9], [69].
 

Hydrogen peroxide is one of the most versatile oxidant, surpassing chloride, chloride 

dioxide and potassium permanganate. When used along with catalytic agents (iron compounds, 
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UV light, semiconductors, etc.) it can be converted into hydroxyl radicals (•OH) whose reactivity 

is only lower to that of fluorine [7], [8], [9], [69]. 

Table 1.1 shows the oxidation potential of most important oxidative agents. 

Table 1.1 – Main oxidant agents’ oxidation potential (Source: MARTINEZ, et al., 2001.) 

OXIDATIVE AGENT OXIDATIVE POTENTIAL (EV) 

Fluoride 3.00 

Hydroxyl radical  (•OH) 2.80 

Ozone 2.10 

Hydrogen peroxide 1.80 

Potassium permanganate 1.70 

Carbone chloride 1.50 

Chlorine 1.40 

 

The advanced oxidative processes (AOPs) are based on hydroxyl (•OH) free radical 

formation, highly reactive, with a superior oxidation potential than ozone and slightly inferior to 

fluorine. These species are non-selective, acting as an intermediate oxidant agent with a semi-

lifetime that rounds milliseconds. Due to its high reduction standard potential (Equation 1), it is 

capable of oxidizing a large variety of organic compounds to carbon dioxide, water and inorganic 

ions that come from heteroatoms [72], [102]. 

                
0

2                   2,730               Equation 1OH e H H O E V  

Hydroxyl radicals are strong oxidatives, that react with most of the organic contaminants, 

with a controlled diffusion limit. The most common mechanism for oxidation through hydroxyl 

radicals is by electrophilic addition at unsaturated compounds or aromatics, while hydrogen 

separation usually occurs with saturated compounds [136].
 

Hydrogen peroxide is used to form hydroxyl radicals; meanwhile, it is necessary to add 

activators, such as iron minerals, ozone and/or ultraviolet light, in order to enhance that 

production. The free radicals (HO•) formed attack the organic compounds and may lead to their 

fully oxidation, producing CO2 and H2O. Nevertheless, in some situation, a partial oxidation can 

be the main route usually reaching more biodegradable by-products [83]. 

Fenton’s reaction (H2O2+Fe
2+

) is among the most promising advanced methods for 

effluents improvement degradation. This process will be discussed in the following section [90]. 
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1.3.1 H2O2 / FE
2+

 (FENTON) 

In 1876, H.J.H. Fenton watched for the first time highly oxidative properties of a hydrogen 

peroxide and Fe
2+ 

ions solution [38]. Many organic molecules could be easily oxidized by using 

this reagent without the use of high pressure or temperatures and complex equipment’s were not 

needed. Fenton’s reaction is defined nowadays as a “hydroxyl radicals catalytic generation from 

chain reaction between iron ion (Fe
2+

) and hydrogen peroxide (H2O2), in an acid environment, 

creating CO2, H2O and inorganic minerals as final result“ [31], [36], [41], [51]. 

According to FLOTRON et al. (2005), Fenton’s reagent can be used in treating aromatic 

hydrocarbons, meaning low biodegradability polluters. Its application is well accepted because 

involves a low cost and simple operation with advanced oxidative potential, hydroxyl radicals 

formation in aqua solution [42]. 

NOGUEIRA et al. (2007) refer that hydroxyl radicals are formed in reactions that result 

from the combination of metallic ions or semiconductors with oxidants such as ozone and 

hydrogen peroxide with or without ultraviolet (UV) or visible (Vis) radiation. With Fenton’s 

reaction, Equation 2, one can observe that hydroxyl radical is produced throughout H2O2 

decomposition catalyzed by ferrous ions; these moieties are the oxidative specie involved in this 

process, able to react with several types of organic compounds in a spontaneous reaction that 

occurs in the dark
 
[102].

 

2 3

2 2

• -                      2 Fe H O Fe OH OH Equation  

The formed hydroxyl radicals can oxidize Fe (II) ion leading to Fe (III) Equation 3:  

2 3• -                                   3Fe OH Fe OH Equation  

Protons are added so that there is water formation, Equation 4: 

2 3

2 2 22  2  2                4Fe H O H Fe H O Equation  

This equation shows that Fenton’s reaction depends on solution’s pH. Only under acid 

conditions does HO• becomes the predominant reactive oxidant [25], [39]. 

The ferrous ions that are formed can further dissociate H2O2, always depending on pH, as 

can be seen in Equations 5 to 9, also leading to iron ions and other radicals:  

3 2

2 2                           5Fe H O FeOOH H Equation
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2 2 •

2

2 • 3

2 2

2 2 2

• •

                                     6

                                   7

3 • 2                        8
2 2

     
2

FeOOH Fe OH Equation

Fe OH Fe OH Equation

Fe OH Fe O H Equation

H O OH HO H O                             9Equation

 

As one can see in reaction 9, hydrogen peroxide can also act as a scavenger of hydroxyl 

radical, forming peroxyl radical (HO2
•
), that has a smaller oxidation potential (1.42V) than the 

hydroxyl radical (
•
OH) (2.730V), harming the efficiency of the degrading process. That occurs 

when there is an excess of hydrogen peroxide, since in this case Fe
2+ 

concentration is low when 

compared to Fe
3+

.
 
In fact the reaction between Fe

3+
 and H2O2 (Equation 5) is slower than the 

decomposition of hydrogen peroxide in presence of Fe
2+

 (Equation 3). The negative effect of 

H2O2 excess in degrading organic compounds demands an extra attention when defining its proper 

concentration [39], [102]. 

According to AGUIAR et al. (2007), hydroxyl radical high reactivity leads to rapid and 

unspecified reactions with different substrates. If Fe
3+  

is used instead of Fe
2+  

and hydrogen 

peroxide in excess, other minor oxidative potential radicals are also formed, such as peroxyl 

radical (HO2
•
) and the superoxide anion (O2

•
). The hydroxyl radical can act as an electrophile or a 

nucleophile, attacking organic molecules by hydrogen exit or connecting into multiple bounds and 

aromatic rings (hydroxylation), even in replaced positions, leading to reactions such as 

demethoxylation, dehalogenation, dealkylation, denitration, deamination and decarboxylation [1]. 

Despite the higher reaction velocity between Fe
2+ 

and hydrogen peroxide, the use of  Fe
3+

 is 

more convenient because, in this state of oxidation, iron is more abundant, which leads to costs 

reduction. H2O2 decomposed by Fe
3+ 

creates reduced Fe
2+

, according to Equations 10 and 11, that 

also react with H2O2 [89], [91]. 

3 2

2 2 2

3 2

2 2

•

•

 10

 11

                       

                            

Equation

Equation

Fe H O Fe HO H

Fe HO Fe O H

 

Since both Fe
2+

 and Fe
3+

 ions are coagulants
5
, Fenton’s reagent can have both functions 

oxidization and coagulation in the treatment processes. One of the benefits in using Fenton’s 

                                                

5 Coagulants are all products, natural or chemical, used to condense liquids, separating their solid phase. 
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reagent is the fact that there is no unwanted halogenated compounds formation during the 

oxidation process [72]. 

The use of iron minerals to catalyst decomposition of hydrogen peroxide is a low cost 

solution compared to other advanced oxidation processes, since it uses a residue from steel 

production industries (ferrous sulphate) [27]. 

An important advantage is that Fenton’s reagent is easy to apply on effluents treatment, 

since the reaction occurs at ambient temperature and pressure, involves safe and easy to handle 

reactants, not requiring special equipment and can be implemented with a great variety of 

compounds. Besides, iron is the fourth most abundant element on earth’s surface [89], [91]. 

It has been said above that hydroxyl radicals are the species that begin organic compounds 

oxidation in Fenton’s reaction. However, some studies have suggested other oxidizing species, 

such as high valence iron intermediates, like FeO
3+

 and ferrite ion FeO
2+ 

(it has colour and 

presents itself as a viable alternative to treatment of several effluents)
 
[89], [91].

 

Fenton’s reaction can be used as the only effluents’ treatment in a specific case or it can be 

integrated into an overall purifying system (pre or post). There are several facts that have 

influence into the degradation rate, such as contaminant’s chemical structure, pH, iron and 

hydrogen peroxide concentration and organic charge [102].
 
Oxidation efficiency depends on the 

environment reaction conditions, and it is very important to study factors such as: reagents 

dosage, ratio between oxidant and catalyst load, catalyst type, time of reaction, environment’s pH 

and temperature [15].
 

Fenton’s system may have different treatment functions, depending on H2O2/Fe
2+

 ratios. 

When the Fe
2+ 

amount surpasses that of hydrogen peroxide, the system tends to have a chemical 

coagulation effect. With an inverted H2O2/Fe
2+

, chemical oxidation effect is stronger [72], [101]. 

The dosage level among reagents to be properly used is different according to the type of 

affluent. Classical margin to H2O2/Fe
2+

 relation is 5:1 up to 25:1 in mass
 
[15], [73]. Reaction 

velocity increases with temperature rising. Nevertheless, when temperature rises above 40-50ºC, 

H2O2 usage efficiency decreases due to high dissociation in H2O and O2. Most reactions with 

Fenton’s process occur at temperatures between 20 and 40ºC
 
[2]. Reaction time depends on 

variables such as temperature and reactants’ dosage. The oxidation treatment end is governed by 

the relation between hydrogen peroxide and substrate (organic compound), and the rate of 

oxidation is determined by the initial iron concentration and by temperature [15], [73]. 

The main limitation/ disadvantage of the Fenton’s process is the narrow pH gap in which 

degradation efficiency is maximum (3 to 4). However, this can be solved by adding organic iron 

complexes that stabilize iron in a wider pH interval [102].
 
The reaction’s pH is more important 

since some factors depend on it. One of them is the used reagents’ stability, hydrogen peroxide 

and ferrous ions are more stable in acid pH [80]. At alkaline conditions, hydrogen peroxide 
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decomposes into H2O and O2 which reduces its oxidation’s potential. Hydroxyl radicals’ 

oxidation decreases too with pH’s increase. Some authors have proved that to near 3 pH, radical 

•OH is the most active specie in degrading organic compounds. Optimum pH gap for reaction is 

between 3 and 4
 
[2]. 

It is convenient to mention that, although Fenton’s reagent is very efficient in some cases, 

its usage leads to an additional step, which is the destruction of the formed iron minerals. This 

way, usually, a strong base is added that leads to iron precipitation for further removal [89], [91]. 

 

1.3.2 H2O2 / FE
2+

/ UV (PHOTO-FENTON) 

The process that combines hydrogen peroxide with ultraviolet radiation is more productive 

than the use of each of them separately. That happens due to high hydroxyl radicals’ production, 

extremely oxidative. According to HUANG et al (1993) and LEGRINI et al (1993), most 

common accepted mechanism for photolysis of H2O2 with UV is molecule break into hydroxyl 

radicals with an income of two •OH for each H2O2  molecule (Equation 12). However, it must be 

taken under consideration that there is also the possibility of these radicals’ recombination, 

transforming into H2O2 again (Equation 13) [68], [86].   

2 2

2 2

•2                                12

•2                                13

H O OH Equation

OH H O Equation

 

There are some available articles quoting the exclusive usage of UV/ H2O2 oxidation 

process for organic compounds degradation, such as methyl terc – butyl ether (MTBE) and dyes 

or as a pre treatment to increase surfactants
6
 biodegradability

 
[70]. 

Organic compounds’ oxidation under UV radiation in the presence of ferrous ions in an 

acid environment was tested in the 50’s, when it was discussed the hypothesis that an electronic 

transfer initiated by radiation resulted in •OH creation, responsible for oxidation reactions. The 

formation of •OH from Fe (III) species’ photolysis was also observed in oxidation processes of 

atmospheric water and in aquatic environment, considered responsible for hydrocarbon’s 

oxidation. In an aqua solution, ferrous ions exist as aqua – complexes, for example [Fe(H2O)6]
3+

. 

With pH increase, hydrolysis takes place creating hydroxyl species, whose proportion depends of 

pH. First hydrolysis balance is represented in Equation 14. Ultra violet irradiation increases 

contaminant’s degradation quantity, mainly because it stimulates Fe
3+

 to Fe
2+

 reduction [10]. This 

process is called Photo-Fenton and it is demonstrated in Equation 15:  

                                                

6
 Compounds that diminish liquid’s surface tension and interfacial tension between two liquids, or between a liquid and 

a solid. Surfactants can act as detergents, moistening, emulsifiers and dispersants.   
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23                        14
2

3 2 •                      15
2

luz
Fe H O Fe OH H Equation

luz
Fe H O Fe OH H Equation

 

According to BACARDIT et al. (2007), the presence of inorganic ions, such as chlorite or 

sulphate, can reduce the oxidation process efficiency based on hydroxyl radical [10].
 
These anions 

can “lock” hydroxyl radical, producing less reactive anionic radicals, which may react with 

hydrogen peroxide. Chloride’s interaction in Fenton’s mechanism can be from Fe
2+

 to Fe
3+

 with 

Cl⎯ complexation, according to Equation 16 to 19, or hydroxyl radical’s “capture” (Equation 20), 

which can lead to Cl
•
 radicals production, less reactive than hydroxyl radical[10]: 

2

0

2

3 2

3

2

-                        16

-                     17

-                      18

-2                     19

Fe Cl FeCl Equation

FeCl Cl FeCl Equation

Fe Cl FeCl Equation

Fe Cl FeCl Equation

 

 

 

In presence of Cl⎯
 
radical

 
•OH is captured [10]

: 

•- •                      20Cl OH ClOH Equation  

When studying chloride anions (Cl
-
) effect in Photo-Fenton’s process, MACHULEK et al., 

(2007) concluded that keeping pH close to 3 during reaction made the process suffer no changes. 

However, with different pH from 3 negative effect of Cl
- 
ions increased reducing Fenton’s process 

efficiency [90]. 

Fe
2+ 

originated during radiation reacts with, hydrogen peroxide, according to Fenton’s 

reaction (Equation 21). Here, reaction is catalytic and a cycle is established at which Fe
2+

 is 

regenerated. The use of Fe
2+/3+

 in hydrogen peroxide’s presence under radiation is then referred as 

Photo-Fenton’s reaction [90]. 

2 3

2 2

•                         21Fe H O Fe OH OH Equation  
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Fenton and Photo-Fenton processes are catalyzed by Fe
2+

/Fe
3+ 

ions, and if we consider that 

these ions are hydrolyzed and form insoluble hydroxides, environment’s pH has a very important 

role in involved reactions, which affects organic compounds’ degradation velocity. pH’s limited 

gap is due to  Fe (III) precipitation when pH is above 3, besides hydrogen peroxide is less stable 

for higher pH drastically reducing H2O2 interaction and, subsequently, •OH production. Below pH 

equal to 2.5 degradation velocity decreases since H
+
 high concentrations in solution lead to 

hydroxyl radicals consumption according to Equation 22
 
[90]. 

•                      22
2

OH H e H O Equation  

Using Fenton or Photo-Fenton’s heterogeneous process with immobilized iron in 

membranes or other supports presents its advantages, such as iron reuse, avoiding iron removal 

procedures, since iron’s limit within an effluent is approximately 15mg.L
-1

 [90]. 

Whenever hydrogen peroxide is used, alone or combined with UV or iron minerals, it must 

be used in a proper amount in order not to create residua (unnecessary expense). It is important to 

quote that hydrogen peroxide can interfere with some analyses, as in Chemical Oxygen Demand 

(COD) [90]. 

 

 1.4 OBJECTIVES OF THE THESIS: 

This work’s main objective is to evaluate solid catalysts’ efficiency in order to purify liquid 

effluents in pharmaceutical industry through Fenton and Photo-Fenton heterogeneous’ processes.   

Specific objectives: 

Catalysts preparation and selected catalyst’s characterization; 

Degradation study of a real wastewater containing several pharmaceutical origins 

(unknown) through hydrogen peroxide catalytic oxidation in a batch reactor; 

Process’s treatment analysis through pH variation and different catalysts, presence 

and absence of light in the removal of Total Phenol Content’s (TPh), Chemical 

Oxygen demand (COD) and Total Organic Carbon (TOC) depletion;  

Discussion about the possibility of integrating this process with biological methods 

of treatment through the analysis of the effluents biodegradability. 
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1.5 THESIS’ STRUCTURE 

In order to contextualize this thesis, this first chapter focuses on environmental problems 

related to pharmaceutical effluents, being discussed the reasons why their treatment is so 

important and why to choose advanced oxidative processes (Fenton and Photo-Fenton). 

Chapter 2 presents a global sight of what is written in scientific literature, state of art, about 

some drugs (therapeutic class), and average concentrations they occur at several matrixes (sewer, 

surface water, effluents) in different countries. It also overviews the application of advanced 

oxidative processes on the degradation of some of those drugs.   

Chapter 3 describes the methodologies involved in the study. Experimental equipment 

description, procedure and analysis methods to infer the process efficiency such as TOC, COD, 

TPh and BOD5 removal. Catalyst characterization and the actinometrical procedure used in Photo-

Fenton are also described in this chapter.  

Chapter 4 discusses the results obtained through the oxidation study. More specifically it 

shows the raw effluent’s characterization and catalysts screening, as well as the analysis of the pH 

influence in the Fenton process. 

Main conclusions from the work and suggestions for forthcoming investigation are 

described in chapter 5. 
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2 STATE OF THE ART: 

This chapter describes what is found in scientific literature about some drugs (therapeutic 

class), and their occurrence in several matrixes (sewer, surface water, effluents) in different 

countries. It also shows advanced oxidative processes applied to some drugs degradation.   

 

Demographic growth and industrial expansion brought contamination scenarios of soil 

and hydric resources all over the world. That is leading to environment deterioration and to the 

need to revert or minimize that process [45]. 

In the 70’s, the presence of drugs in aqua environment became known. Since then, there 

have been made several studies which reveal the presence of drugs’ residua in liquid effluents in 

several parts of the world. Water contamination by drugs is worth special attention since the 

risks to human health and aqua environment are not completely identified. First studies about 

the presence of drugs in environment were made by GARRISON and assistants [45] and 

HIGNITE AND AZARNOFF [64]. They detected the presence of clofibric acid, clofibrate, 

etofibrate in μg L
-1

 concentrations, at a Water Residua Treatment Station (WRTS) in the United 

States. 

The main way for drugs residua to enter the environment is through domestic sewer 

draining, treated or not, in watercourses. However, pharmaceutical industry effluents, rural 

effluents and the inadequate dumping of out of date drugs must also be taken under 

consideration [16], [58], [60].   

Most drugs that arrive to WRTS come from human or veterinarian metabolic excretion. 

These residua follow with rough sewer to WRTS where they are, in most cases, submitted to 

traditional treatment processes. Nevertheless, these processes are mainly based on contaminants 

biological degradation, and are not efficient on completely removing these cumbersome 

compounds due to their biocide action and complex chemical structures that cannot be easily 

bio-degraded, as has been proved by several studies that show the presence of this type of 

contaminant in WRTS effluents [8], [14], [19], [22], [24], [46], [64] [88], [126], [129]. 

Different class drugs, such as antibiotics, hormones, lipid-lowering, anti-inflammatory, 

analgesic, among others, are frequently detected on domestic sewers, surface and underwater in 

concentrations around ng.L
-1

 to µgL
-1

 in several parts of the world (Table 2.1). 

 

 

 

 



 
 
 

CHAPTER 2. STATE OF THE ART 

 

TREATMENT OF LIQUID PHARMACEUTICAL INDUSTRY EFFLUENTS BY FENTON’S PROCESSES   15 

 

 

Table 2.1 – Drugs concentration’s average in aqua environment.  

 

DRUG 

(therapeutic class) 

CONCENTRATION  

(μg L-1) 
MATRIX REFERENCE 

Amoxicillin 

(antibiotic) 
0.013 Rough sewer/Italy Castiglioni et al., 2009 

Atenolol 

(β-blocker) 

0.49 Rough sewer / Italy Castiglioni et al., 2009 

0.28 WRTS effluent/Italy Castiglioni et al., 2009 

0.050 Surface water/ Italy Calamari et al., 2003 

0.30 Rough sewer /Sweden Bendz et al., 2005 

0.16 WRTS effluent / Sweden Bendz et al., 2005 

Bezafibrate 

(lipid-lowering) 

0.54 WRTS effluent /France Andreozzi et al., 2003 

0.30 WRTS effluent Italy / Andreozzi et al., 2003 

0.070 WRTS effluent /Canada Gagné et al., 2006 

0.42 Rough sewer /Finland Lindqvist et al., 2005 

1.2 Rough sewer /Brazil Stumpf et al., 1999 

0.18 Surface water / Brazil Stumpf et al., 1999 

2.2 
WRTS effluent / 

Germany 
Ternes, 1998 

0.35 Surface water / Germany Ternes. 1998 

Carbamazepine 

(anticonvulsant) 

1.7 Rough sewer / Sweden Bendz et al., 2005 

1.2 WRTS effluent / Sweden Bendz et al., 2005 

1.0 WRTS effluent / France Andreozzi et al., 2003 

1.0 WRTS effluent Greece Andreozzi et al., 2003 

0.38 WRTS effluent / Italy Andreozzi et al., 2003 

0.085 WRTS effluent /Canada Gagné et al., 2006 

2.1 
WRTS effluent / 

Germany 
Ternes. 1998 

0.25 Surface water / Germany Ternes. 1998 

0.50 Rough sewer /Spain Santos et al., 2005 

0.48 WRTS effluent /Spain Santos et al., 2005 

Tetracycline 

(antibiotic) 

0.010 Surface water / Italy Calamari et al., 2003 

0.11 Surface water /USA Kolpin et al., 2002 
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DRUG 

(therapeutic class) 

CONCENTRATION  

(μg L-1) 
MATRIX REFERENCE 

KETOPROFEN 

(ANTI-

INFLAMMATORY) 

 

0.94 Rough sewer / Sweden Bendz et al., 2005 

0.33 WRTS effluent / Sweden Bendz et al., 2005 

0.81 WRTS effluent /France Andreozzi et al., 2003 

2.0 Rough sewer /Finland Lindqvist et al., 2005 

0.15 Rough sewer /Brazil Stumpf et al., 1999 

0.22 Surface water / Brazil Stumpf et al., 1999 

0.20 WRTS effluent /Germany Ternes. 1998 

1.1 Rough sewer /Spain Santos et al., 2005 

0.98 WRTS effluent /Spain Santos et al., 2005 

CIPROFLOXACIN 

(ANTIBIOTIC) 

0.26 Rough sewer /Italy Castiglioni et al., 2009 

0.097 WRTS effluent / Italy Castiglioni et al., 2009 

0.060 WRTS effluent /France Andreozzi et al., 2003 

0.070 WRTS effluent /Greece Andreozzi et al., 2003 

0.030 WRTS effluent / Sweden Andreozzi et al., 2003 

0.37 WRTS effluent /Switzerland Golet et al., 2001 

0.020 Surface water /USA Kolpin et al., 2002 

DICLOFENAC 

(ANTI-

INFLAMMATORY) 

0.16 Rough sewer / Sweden Bendz et al., 2005 

0.12 WRTS effluent / Sweden Bendz et al., 2005 

0.33 WRTS effluent / France Andreozzi et al., 2003 

0.84 WRTS effluent /Greece Andreozzi et al., 2003 

2.47 WRTS effluent / Italy Andreozzi et al., 2003 

0.35 Rough sewer /Finland Lindqvist et al., 2005 

0.40 Rough sewer /Brazil Stumpf et al., 1999 

0.020 Surface water /Brazil Stumpf et al., 1999 

0.81 WRTS effluent / Germany Ternes. 1998 

0.15 Surface water / Germany Ternes. 1998 

2.9 Rough sewer /Brazil Ghisele. 2006 

1.8 WRTS effluent /Brazil Ghisele. 2006 

4.0 Surface water /Brazil Ghisele. 2006 

17 Α-ETHINYL 

ESTRADIOL 

(CONTRACEPTIVE 

HORMONE) 

0.073 Surface water /USA Kolpin et al., 2002 

0.001 WRTS effluent / Germany Ternes et al., 1999 

0.009 WRTS effluent /Canada Ternes et al., 1999 

0.005 Rough sewer /Brazil Ternes et al., 1999 

5.8 Rough sewer /Brazil Ghisele, 2006 

5.0 WRTS effluent /Brazil Ghisele, 2006 
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DRUG 

(therapeutic class) 

CONCENTRATION  

(μg L-1) 
MATRIX REFERENCE 

GENFIBROZIL 

(LIPID-LOWERING) 

0.71 Rough sewer / Sweden Bendz et al., 2005 

0.18 WRTS effluent/ Sweden Bendz et al., 2005 

0.70 WRTS effluent /France Andreozzi et al., 2003 

0.71 WRTS effluent /Greece Andreozzi et al., 2003 

2.14 WRTS effluent / Italy Andreozzi et al., 2003 

0.071 WRTS effluent Canada Gagné et al., 2006 

0.40 Rough sewer /Brazil Stumpf et al., 1999 

0.048 Surface water /USA Kolpin et al., 2002 

IBUPROFENO 

(ANTI-

INFLAMMATORY) 

3.6 Rough sewer / Sweden Bendz et al., 2005 

0.15 WRTS effluent / Sweden Bendz et al., 2005 

0.92 WRTS effluent / France Andreozzi et al., 2003 

0.050 WRTS effluent /Greece Andreozzi et al., 2003 

0.070 WRTS effluent / Italy Andreozzi et al., 2003 

0.79 WRTS effluent /Canada Gagné et al., 2006 

13.1 Rough sewer /Finland Lindqvist et al., 2005 

0.60 Rough sewer /Brazil Stumpf et al., 1999 

0.19 Surface water /Brazil Stumpf et al., 1999 

0.37 WRTS effluent / Germany Ternes et al., 1999 

0.070 Surface water / Germany Ternes et al., 1999 

0.20 Surface water /USA Kolpin et al., 2002 

54.2 Rough sewer /Brazil Ghisele. 2006 

48.4 WRTS effluent /Brazil Ghisele. 2006 

3.7 Rough sewer /Spain Carbala et al., 2004 

1.3 WRTS effluent /Spain Carbala et al., 2004 

PROPRANOLOL 

(Β-BLOCKER) 

0.050 Rough sewer / Sweden Bendz et al., 2005 

0.030 WRTS effluent / Sweden Bendz et al., 2005 

0.030 WRTS effluent /France Andreozzi et al., 2003 

0.010 WRTS effluent /Greece Andreozzi et al., 2003 

0.040 WRTS effluent / Italy Andreozzi et al., 2003 

0.17 WRTS effluent / Germany Ternes et al., 1999 

0.010 Surface water / Germany Ternes et al., 1999 

NAPROXEN 

(ANTI-

INFLAMMATORY) 

3.7 Rough sewer / Sweden Bendz et al., 2005 

0.25 WRTS effluent / Sweden Bendz et al., 2005 

1.1 WRTS effluent /France Andreozzi et al., 2003 

2.0 WRTS effluent / Italy Andreozzi et al., 2003 
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DRUG 

(therapeutic class) 

CONCENTRATIO

N  (μg L-1) 
MATRIX REFERENCE 

NAPROXEN 

(ANTI-

INFLAMMATORY) 

CONTINUATION 

0.27 WRTS effluent /Canada Gagné et al., 2006 

4.9 Rough sewer /Finland Lindqvist et al., 2005 

0.60 Rough sewer /Brazil Stumpf et al., 1999 

0.020 Surface water /Brazil Stumpf  et al., 1999 

0.30 WTRS effluent / Germany Ternes et al., 1999 

0.070 Surface water / Germany Ternes et al., 1999 

4.7 Rough sewer /Spain Santos  et al., 2005 

1.5 WRTS effluent /Spain Santos  et al., 2005 

SULFAMETHOXAZOLE 

(ANTIBIOTIC) 

0.080 WRTS effluent / France Andreozzi et al., 2003 

0.090 WRTS effluent /Greece Andreozzi et al., 2003 

0.010 WRTS effluent / Italy Andreozzi et al., 2003 

0.020 WRTS effluent /Sweden Andreozzi et al., 2003 

0.049 WRTS effluent /Canada Gagné et al., 2006 

0.58 Rough sewer /Spain Carbala et al., 2004 

0.25 WRTS effluent /Spain Carbala et al., 2004 

0.40 WRTS effluent / Germany Hirsch et al., 1999 

0.41 Underwater/ Germany Sacher et al., 2001 

0.05 Surface water /USA Stackelberg et al 2004 

TRIMETHOPRIM 

(ANTIBIOTIC) 

 

0.080 Rough sewer/ Sweden Bendz et al., 2005 

0.040 WRTS effluent/ Sweden Bendz et al., 2005 

0.030 WRTS effluent /France Andreozzi et al., 2003 

0.080 WRTS effluent /Greece Andreozzi et al., 2003 

0.070 WRTS effluent / Italy Andreozzi et al., 2003 

0.065 WRTS effluent /Canada Gagné et al., 2006 

0.15 Surface water /USA Kolpin et al., 2002 

0.32 WRTS effluent /Germany Hirsch et al., 1999 

 

Studies show that drugs concentration levels found in aqua environments are related to 

population consumption pattern, by removal tax in WRTS, by the kind of effluent that ports at 

WRTS and by season’s hip [25], [27]. 

Drugs used in therapeutics, after working in the organism, can be excreted as metabolites, 

hydrolyzed or in its original form. They can also be conjugated with polar molecules such as 

glucuronides. However, these conjunctions are easily cleaved by applying pharmacologically 

active substances into domestic sewers [37], [59]. 
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Once in environment, drugs’ destiny depends on their structural characteristics and 

chemical – physical properties, such as photo sensibility, biodegradability and lipophilicity. 

LAM and  MABURY (2005) studied the following drugs photo degradation:  lipid-

lowering, carbamazepine (anticonvulsant), levofloxacin and sulfamethoxazole (antibiotics) and 

proposed that photo transformation reactions are an important factor in limiting these drugs 

persistence in surface water, either by direct or indirect photolysis by reacting with reactive 

species (hydroxyl radicals, for example) [81]. 

Some drugs, such as acetylsalicylic acid and caffeine are biodegradable and, therefore, 

removed from WRTS with efficiency, reaching removal percentages of 99, 9% [59], [116]. 

Penicillin is also hard to find in environment, due to their β-lactam ring chemical instability, 

which makes it susceptible to hydrolysis and biodegradation by microorganisms that have a β-

lactamase enzyme
 
[64].  

Synthetic estrogens and tetracycline (antibiotic) tend to be adsorbed to WRTS slime and / 

or sediments, due to their high lipophilicity and the formation of sediment with calcium [60], 

[64], [62].  

Biological processes are most frequently used because they allow large volumes 

treatment, can reach high organic matter removal and they cost relatively low. However, some 

compounds are recalcitrant and can even be toxic to microorganisms. Studies on drugs 

biodegradability have shown removal taxes around 50% in activated slime traditional systems 

[29], [111]. 

Phase transfer of the contaminant characterizes physical processes (decantation, filtration, 

and adsorption), without the compound being really eliminated. On other hand, they are usually 

very efficient, and can be useful as pre or post treatment [44]. 

Chemical processes are based on contaminant’ oxidants by reaction with strong oxidants, 

such as hydrogen peroxide (H2O2), chlorite (Cl2), chlorine dioxide (ClO2) and permanganate 

(MnO4
-
).In most cases, however, using this kind of treatment does not promote total 

mineralization of pollutants to CO2, and there is formation of great variety of degradation sub 

products, usually organic acids (oxalic acid, formic and acetic acid).  In case of Cl2, there is 

formation of organochlorine compounds, which can be more toxic than former contaminants, 

making it inconvenient for a proper treatment [133]. 

Drugs removal efficiency in WRTS depends on the chemical and physical properties of 

each compound. Different studies show that these compounds’ elimination is usually 

incomplete with an unsteady removal percentage. For example, anticonvulsant carbamazepine 

has a 7% removal, while acetylsalicylic acid (analgesic) reached 99% in WRTS in Germany 

[128]. This fluctuation in removal percentage was also observed in WRTS in Finland, where 

diclofenac got a 26% removal and ibuprofen 92% [88]. 
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The presence of drugs in WRTS effluents is the reflex of the removal methods’ low 

efficiency through traditional treatment processes, which claims for the research for more 

effective methods, able to promote contaminants mineralization or, at least, its transformation 

into products that do not represent hostile effects to the environment.  

 Drugs amoxicillin, bezafibrate, paracetamol [132] and tetracycline’s [13] degradation 

were studied in WRTS effluents using the Photo-Fenton’s process under solar radiation. There 

was over 95% degradation for all drugs in 5 minutes, highlighting the importance of this process 

to drugs degradation in this matrix.  

The use of UV radiation lamps was also efficient to pharmaceuticals degradation, such as 

Diclofenac [114], metronidazole [122] and sulfamethoxazole [54], showing Photo-Fenton’s 

versatility in different sources of radiation use.  

Beside works quoted in literature, several others approach drugs’ degradation by 

Advanced Oxidation Process (AOPs). Table 2.2 presents a compilation of some of these works.  

 

 

Table 2.2 – Advanced Oxidative Processes applied to drugs’ degradation  

DRUG AOP REFERENCE 

AMOXICILLIN 
O3 Andreozzi et al., 2005 

Fe
3+

, FeOx/ H2O2/ UV, solar Trovó et al., 2008 

BEZAFIBRATE 

O3 Dantas et al., 2007 

O3, O3/ H2O2 Huber et al., 2003 

TiO2/ UV Lambropoulou et al., 2006 

Fe
3+

, FeOx/ H2O2/ UV, solar Trovó et al., 2008 

CARBAMAZEPINE 

O3, O3/ UV, H2O2/ UV Gerbhardt et al., 2007 

O3/ H2O2 Huber et al., 2003 

H2O2/ UV Vogna et al., 2004 

DIAZEPAM 
O3, O3/ UV, H2O2/ UV Gerbhardt et al., 2007 

O3/ H2O2 Huber et al., 2003 

DIPYRONE 
Fe

2+
/ H2O2/solar 

Pérez-Estrada et al., 2006 
TiO2/solar 

DICLOFENAC 

TiO2/ UV Calza et al., 2006 

Fe
2+

/ H2O2/solar Pérez-Estrada et al., 2005 

Fe
3+

/ H2O2/UV Ravina et al., 2002 

Fe
2+

/ H2O2 Packer et al., 2003 

O3, O3/ UV, H2O2/ UV Gerbhardt et al., 2007 

O3, O3/ H2O2 Zwiener et al., 2000 

H2O2/ UV Vogna et al., 2004 
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Table 2.2 – Advanced Oxidative Processes applied to drugs’ degradation (continuation) 

DRUG AOP REFERENCE 

17 Α-ETHINYL 

ESTRADIOL 

TiO2/UV Coleman et al., 2004 

O3/ H2O2 Huber et al., 2003 

IBUPROFEN 
O3/ H2O2 

Zwiener et al., 2000; 

Huber et al., 2003 

Fe
2+

/ H2O2 Packer et al., 2003 

IOPROMIDA 
O3 Huber et al., 2005 

O3/ H2O2, O3/ UV Ternes et al., 2003 

METRONIDAZOLE 

H2O2/ UV 

Shemer et al., 2006 Fe
2+

/ H2O2 

Fe
2+

/ H2O2/ UV 

NAPROXEN 

O3 Huber et al., 2005 

H2O2/ UV Pereira et al., 2007 

Fe
2+

/ H2O2 Packer et al., 2003 

PARACETAMOL 
O3, H2O2/ UV Andreozzi et al., 2003 

Fe
3+

, FeOx/ H2O2/ UV, solar Trovó et al., 2008 

RANITIDINE 
TiO2/ UV Addamo et al., 2005 

Fe
2+

/ H2O2 Abellán et al., 2007 

SULFAMETHAZINE 
TiO2/ UV 

ZnO/ UV 
Kaniou et al., 2005 

SULFAMETHOXAZOLE 

TiO2/ UV Abellán et al., 2007 

Fe
2+

/ H2O2/ UV González et al., 2007 

O3 Ternes et al 2003 

O3/ H2O2 Huber et al., 2003 

TETRACYCLINE 

H2O2/UV Kim et al., 2009 

TiO2/ UV 
Reyes et al., 2006 

Addamo et al., 2005 

Fe
3+

, FeOx/ H2O2/ UV, solar Bautitz et al., 2007 

 

Under an operational point of view, AOPs can be applied to drugs residua degradation in 

WRTS exit as well as in final water treatment process steps.  

Drugs degradation through AOPs, as well as direct photolysis (which depends of each 

compound absorbency), involves several different stages and several reactions that result in 

different sub products, which can be more or less toxic when compared to the original drug. 

These intermediates can, or not, maintain functional activity of the original compound. 

Since several intermediates can be formed during treatment, it is important to identify a 

degradation route as well as to evaluate their toxicity and destiny in the environment. One of the 

parameters that allow evaluating intermediates’ toxicity is biodegradability, which is given by 
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the ratio between biochemical oxygen demand after 5 days and chemical oxygen demand 

(BOD5/COD). 

Intermediates’ toxicity and biodegradability of sulfamethoxazole [54] (200mg.L
-1

) 

antibiotic were determined after photo-Fenton’s process appliance. The BOD5/COD results 

showed that by increasing the H2O2 dose from 50 to 550mg.L
-1
 during treatment, there was an 

increase in biodegradability. Another relevant data was that for the smallest dose H2O2 (50mg.L
-

1
) there was an increase in solution’s toxicity, which indicates that under such condition more 

toxic intermediates were formed than the original drug.  

In sulfonamide’s degradation, sulfadiazine, sulfamerazine, sulfadimethoxine 

sulfathiazole, by heterogeneous photocatalysis, it was seen that all these molecules follow the 

same degradation mechanism ,that is,  hydroxyl radical’s attack to aromatic ring with one or two 

hydroxisulfonamides formation, or S-N bound break and subsequent sulphate ions release [20]. 

In synthetic estrogen diethylstilbestrol (DES) degradation’s, the complex Fe (III)-oxalate 

presence under radiation was evaluated. Three main intermediates were formed, being that an 

OH group to the aromatic ring created one of them. Later, degradation followed two different 

reaction mechanisms, which resulted in DES-4-semiquinone and DES-o-quinone formation 

[138].  

Heterogeneous photocatalysis and photo-Fenton’s process under solar radiation were 

applied to stable 4-Methylaminoantipyrin intermediate degradation formed during dipyrone 

analgesic hydrolysis [107]. After treatment by heterogeneous photocatalysis 12 degradation 

products were identified, formed from aromatic ring hydroxylation and pyrazole ring’s opening. 

No intermediate was detected in the Photo-Fenton’s process and it presented a 5 times larger 

efficiency than heterogeneous photocatalysis.  

 Different advanced oxidative processes (ozonation, H2O2/UV, etc) were applied to 

several drugs mixture (carbamazepine, acid clofibric, diclofenac, sulfamethoxazole, ofloxacin 

and propranolol) and after a short exposure time to these processes (3-5 min), solution 

containing with created metabolites presented less toxicity when compared to the original 

solution [5]. 

As a counterpart, when evaluating antiepileptic carbamazepine degradation after the 

process H2O2/UV appliance, a series of acridines was obtained as intermediates
 
[134]. Acridines 

present mutagenic and carcinogenic activity and the possibility of its formation, even residual, 

can make the process’ application not viable.  

Based in the presented results, treatment processes improvement is imperious to assure 

total mineralization of target compounds, this way reducing toxic intermediates formation.  

 

 



 
 
 

CHAPTER 2. STATE OF THE ART 

 

TREATMENT OF LIQUID PHARMACEUTICAL INDUSTRY EFFLUENTS BY FENTON’S PROCESSES   23 

 

 

CONCLUSIONS:  

To summarize, different therapeutics class drugs, used both in human and veterinarian 

medicine, are excreted in its original form or as metabolites. These residua can contaminate 

aquatic environment if they are not natural biodegraded or efficiently removed in treatment 

stations. Advanced Oxidation Processes (AOPs) are viable alternative when the contaminated 

matrix has a low organic concentration (hundreds of mg.L
-1

) and pollutants are not 

biodegradable. Besides, they are adequate when classical treatment is not possible or not even 

appropriate. Treatment’s efficiency depends on the matrix, contaminants, purpose of the 

treatment, volume to be treated, as well as other factors.  

These substances continuous hauling to environment characterizes them as pseudo 

persistent, which may result in severe effects in aquatic environment and even to human health.  

Different advanced oxidative processes applied to different therapeutics class drugs’ 

degradation have been described. Despite these molecules complexity, low concentrations found 

allow these methodologies to be used, which reach high degradation efficiency, as some works 

have demonstrated. 

 



 
 
 
CHAPTER 3. EXPERIMENTAL 

24                TREATMENT OF LIQUID PHARMACEUTICAL INDUSTRY EFFLUENTS BY FENTON’S PROCESSES   

 

 

3 EXPERIMENTAL METHODOLOGY: 
 

 This chapter refers to the preparation techniques and solid catalysts’ characterization, 

oxidation tests procedures and analytical methods used to evaluate catalytic process.  

3.1 CATALYST PREPARATION AND CHARACTERIZATION  

Four distinctive catalysts were used in this work.  One of them, the only commercial one, 

Envicat® N-150 (Fe2O3-MnOx) was kindly provided by Süd-Chemie AG, Munich, Germany. 

Laboratory prepared catalyst was Fe-Ce-O (70/30), synthesized by co precipitation, through an 

aqua solution of precursor minerals, namely metallic nitrates, such as iron nitrate (Riedel-de-

Häen) and cerium nitrate (Riedel-de-Häen). Its synthesis was performed with molar proportion 

defined in order not to surpass 15 g of minerals per 100 mL of water, and precipitated by adding 

200 mL of NaOH solution at 3M (from NaOH with 98% of purity). Final precipitate was 

filtered and washed with 2.5 L of water, dried at 105 ºC, crushed and calcined at 300 ºC
 
[124]. 

Commercially available red volcanic rock (abundant in nature) was also used as catalyst and its 

chemical composition, determined in our laboratory, is as follows: 6.31% of Fe; 0.03% of Cu; 

0.02% of Zn; 0.44% of K; 1.54% of Na; 0.06% of Cr; 0.07% of Mn, 8.32% of Ca and 2.31% of 

Mg. ZVI particles, iron catalyst with zero valent state (low commercial value), were chemically 

composed by nearly 100% of Fe with some residual elements (Cu, Zn, K, Na, Cr, Mn, Ca and 

Mg) and it was supplied by a metallurgical industry in the area.  

Selected catalysts were characterized before (fresh catalyst) and after (used catalyst) they 

were applied in the oxidation process.  

 

3.2 COAGULATION PROCEDURE 

Coagulation/flocculation procedure has in goal colloidal substances removal, that is, solid 

material in suspension and/ or dissolved. That operation is usually considered as pre treatment. 

 

RITCHER & NETTO (2003) and CARDOSO (2007) say that coagulation is the process 

by which a coagulant agent added to water reduces forces that tend to keep solids in suspension 

separated forming larger particles that can sediment
 
[23], [117]. 

Coagulation cancels repulsion forces between colloidal substances through connection 

and adsorption mechanisms in colloidal particle surface by adding chemical agents, called 

electrolytes. According to DI BERNADO & DANTAS (2005), in order for coagulation process 

to be efficient, it must be made through intense agitation (quick mixture) so that interactions 

between coagulant and water (effluent) can occur. Formation velocity for these flocks depends, 
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in thermo agitation beginning (Brownian movement) and, by reaching around 0.1 mm size. Of 

course that mechanical agitation must be at a moderate level (slow mixture) for otherwise; it 

may cause already formed flocks’ degradation, which will make their removal more difficult
 

[33].  

The coagulant that used in this work was p19, an acid coagulant (provided by 

Adventech), in 1:10 (10mL of p19 diluted into 100mL of water) proportion. 

Coagulation trials were performed in a Jar-Test equipment with 600mL reactors, under 

constant agitation at 300rpm, for 5 minutes and, then agitation was reduced to 30rpm for 30 

minutes. 

Initially, 200mL of effluent and 7mL of coagulant were placed in 5 reactors. In one of 

them effluent’s pH was kept (5.4) and for others pH was adjusted to values of 3; 5; 7 and 9 with 

H2SO4 or with NaOH. COD was evaluated. 

After COD evaluation for the different pH conditions, procedure was repeated, keeping 

the pH value with a lower COD and placing different coagulant quantities 2mL; 3,5mL; 7mL; 

10mL and 14mL. COD was evaluated again. 

 

3.3 OXIDATION PROCEDURE  

3.3.1 DARK FENTON´S TREATMENT 

Heterogeneous Fenton experiment were made in batch 600 mL reactors, under constant 

300rpm agitation, during a maximum of 120 minutes period. Initially, 200mL of real effluent 

was added and pH was adjusted with H2SO4 or NaOH. Later, previously defined catalyst 

quantity was added as the select iron source, and by last hydrogen peroxide, at 50%, was 

introduced in the desired concentration marking the beginning of the reaction. Samples were 

taken during time, at 0, 15, 30, 45, 60, 75, 90, 105 and 120 minutes. Each sample was filtered 

through a 0.45 μm filter and a certain volume of NaOH was added (In first experiments 1,5mL 

of NaHSO3 were added to guarantee reaction’s terminus) to end the reaction, in order to 

eliminate residual hydrogen peroxide that interferes with some analytical determinations. Later, 

samples were acidized for the analysis mentioned next. Along experiments, the following 

parameters were evaluated: Total Phenolic Content (TPh), Chemical Oxygen Demand (COD) 

and Total Organic Carbon (TOC). Biological tests involving Biochemical Oxygen Demand 

(BOD5), were made to previously selected samples. As many tests as necessary were made, in 

order to obtain agreeing values [96]. 

It should be noticed that some runs were performed under orbital agitation (Heidolph 

Reax 20) under constant 16rpm agitation, in 50mL reactors. 
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3.3.2 PHOTO FENTON´S TREATMENT 

The Photo-Fenton’s installing process consisted of a magnetically agitated photo reactor 

(3L glass reactor), with a 9W black light (Phillips), axially placed inside a glass tube in the 

reactor. Glass tube with double wall was used to cool the lamp; the temperature was kept at 25 º 

C, through a thermo static bath. Preferred used lamp produces wave – length between 350-

400nm. Equipment was covered with aluminum foil to avoid radiation leaks and to avoid 

external influences [105]. 

Heterogeneous Photo-Fenton’s experiments were made under constant agitation, during a 

maximum time of 120 minutes. First, 300 mL of real effluent were added and pH was adjusted, 

with H2SO4 or NaOH, to the given value. Hydrogen peroxide, at 50%, in desired concentration, 

was placed 30 minutes later (zero sample), and reaction began. Samples were taken through 

time, at 0, 30, 60, and 120 minutes. Each sample was filtered through a 0.45 μm filter and a 

certain volume of NaOH was added to end reaction, in order to eliminate residual hydroxide 

peroxide that interferes with some analyses. Later, the sample was acidized to perform further 

[96]. Along these experiments, the following parameters were evaluated: Total Phenol Content 

(TPh), Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). Again, tests were 

repeated until agreeing values were obtained. 

 

3.4 ANALYTICAL TECHNIQUES  

3.4.1 COD - Chemical Oxygen Demand 

Chemical Oxygen Demand (mg O2 L
-1

) is defined as the amount of oxygen used to 

chemically oxidize all the organic matter, and it is commonly used as an indirect measure for 

organic constituents in water. Residual COD was analyzed through Closed Reflux Colorimetric 

Standard Method 5220D [56], which involves a sample’s digestion in an acid environment for 

two hours in presence of dichromate de potassium dichromate (K2Cr2O7), a strong oxidative 

agent, and mercury sulphate as catalyst. During reaction, the organic compounds are oxidized 

and the orange colored dichromate (Cr2O7
-
) is reduced to a green colored chromate (Cr

3+
), 

which is colorimetrically detected. Reaction between chromate absorbance and COD is given by 

the device internal calibration, periodically verified, with a standard solution of potassium 

hidrogenophthalate. 

The thermo reactor WTW CR3000 was used as digester and the photometer WTW 

MPM3000 was used to detect dichromate excess, with a double performance for each sample.  
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3.4.2 TPh - Total Phenol Content 

Total Phenol Content (TPh) was colorimetrically analyzed through Foulin-Ciocalteau 

method [43]. 20 μL of the sample were introduced in a 2mL cuvette later diluted with 1.58mL 

distilled water.  Next, 100 μL Foulin-Ciocalteau’s reagent was added and after 3 to 6 minutes, 

300μL of a Sodium Carbonate (Na2CO3) saturated solution. Cuvettes were placed in light’s 

absence for 2 hours, and absorbance measured at 765nm through a T60 PG Instruments 

Spectrophotometer, against a blank that contained distilled water instead of a sample. 

Concentration’s value is expressed in mg.L
-1 

equivalent to gallic acid, corresponding to a 

calibration curve, previously performed with different concentrations of this compound
 
[94]. 

 

3.4.3 TOC - Total Organic Carbon  

Total Organic Carbon is indirectly obtained from Total Carbon (TC) and Inorganic 

Carbon (IC) difference; first TC is measured, and then IC is determined. Samples were 

introduced by automatic injection in a suction tube, through an auto-sampler Shimadzu ASI-

5000A which improves analyses’ efficiency. Their measure was made with a Shimadzu 5000 

TOC Analyser that works through the combustion/Infrared Analyses Method gas non-disperser 

(NDIR). This device uses ultra pure air (<1 mg L
-1

of hydrocarbons), that in presence of a 

catalyst (platinum supported in alumina), oxidizes Total Carbon to CO2 inside the reactor, being 

the carbon dioxide detected in NDIR. The resultant signal is electronically analyzed, and the 

area of its peak calculated that, in turn is proportional to Total Carbon concentration, 

corresponding to the value of a calibration curve which is obtained through several solutions, 

prepared with a standard solution with 2.125g Potassium hidrogenophthalate per distilled water 

liter. IC (Inorganic Carbon) is determined after the samples’ injection in the IC reactor, where 

gas passes through an acid solution. IC contained is decomposed into CO2 also detected in 

NDIR. The calculated peak area corresponds to the value of the calibration curve obtained by a 

standard solution with 3.500g of Sodium Hidrogenocarbonate 4.410g and of Sodium Carbonate 

per distilled water liter [125]. 

 

3.4.4 BOD5 – Biochemical Oxygen Demand 

Biochemical Oxygen Demand (mg O2 L
-1

) corresponds to the amount of oxygen used in 

organic matter degradation by biological processes action, at a medium temperature of 20ºC for 

5 days and with adjusted pH between 6.5 and 8.5. BOD5 was calculated by the difference of 
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oxygen amount between the moment of preparation and after the incubation period. First, a 

mineralized solution was prepared (with a solution of hexahidrated ferric chloride, heptahydrate 

sulphate magnesium and Calcium chloride anhydrous), that was pumped with air in order to 

saturate it with oxygen. After that period, inoculum was prepared with organisms from earth 

and garden according to Standard Methods
 
[56]. At each 300mL (V) erlenmeyer 300μL  

inoculums was placed, mineralized solution was added, a certain sample value (Vs), that 

depends of its COD value, and dissolved oxygen was measured (ODi) with the help of a WTW 

Inolab 740. Erlenmeyer’s volume was made up and was closed to be isolated and without any 

air bubbles inside, with each rehearsal being performed in double. At incubation’s end period (5 

days) dissolved oxygen was measured again (ODf) and considering dilution made CBO5 was 

calculated through equation 23. This procedure was also performed with a flask without sample 

(B), to take O2 used by inoculums endogenous’ respiration value under consideration.  

5

( ) ( )
                     Equation 23

I
OD OD OD ODI Bf f

CBO
Vs

V  

The range of BOD and the correlated volume needed are shown in Table 3.1 

 

Table 3.1 – The amount of effluent sample to be used in the BOD5 experimental procedure. 

(Adapted from Metcalf and Eddy, 2003)  

 

 

3.4.5 pH 

pH was determined by the potentiometric method, using a pH measurer (Crison 

micropH2000), previously calibrated with buffer solutions of pH 4.0 and 7.0. 

3.4.6 Residual hydrogen peroxide  
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Processes’ efficiency was also evaluated by residual hydrogen concentration.  Residual 

H2O2 analyses were performed through a colorimetric method, Peroxide Test Strip of Precision 

Laboratories, which presented a 1; 3; 10; 50 and 100ppm scale. 

 

3.4.7 Effluent’s biodegradability  

In order to define or control an effluent’s treatment process it is important to evaluate 

effluent’s biodegradability connecting BOD5 with COD, whose ratio may give an effluent’s 

biodegradability reference:  

5 biodegradability
BOD

COD  

If biodegradability tends to 0 it is an effluent biologically hard to treat. If, by contrary, the 

value tends to 1 it is an effluent with some availability for biological treatment [35]. 

 

3.4.8 Actinometry 

Actinometry is a classical method to determine radiation source’s intensity. The main 

substance used is salt from Parker’s actinometre, K
3
(Fe(C2O4)3).3H2O (tris (oxalate) ferrate 

(III), tri hydrate), a light green solid. Another substance commonly used is potassium 

ferrioxalate, since it is easy to handle with and sensible to a wide variety of wavelengths (254 to 

500 nm). These crystals are prepared by mixing 500mL of 1.5M ferric chlorite (Riedel-de 

Haen) with 1.5L of potassium oxalate solution 1.5M (Panreac), at 60ºC.  The resulting mixture 

is then cooled with an ice bath at 0ºC. This temperature is kept until salt’s crystallization is 

complete. Next, final product is filtered through a disposable 0.45μm filter, washed with a small 

amount of cold water and a small cold methanol volume to remove excess of water. After that, 

the product is left in a desiccator to dry, kept in the dark to be protected from light. Finally, the 

obtained crystals are stored in a plastic flask covered with aluminum leaf to stop light from 

entering [99], [119], [120]. 

Next, 0.006 M solution is prepared through 2.947g of crystals dissolution in 100mL of 

H2SO4 (1N) (Panreac) and dissolved in distilled water until it makes 1L. This solution is then 

irradiated in the photo reactor under efficient agitation, for 3minutes. Then, 2.0 mL of irradiated 

solution is placed in a 10mL volumetric balloon, containing a 1.0mL mixture of 0.12% of 1.10-

fenantrolina (Panreac) and 2.5mL of sodium acetate tampon solution (tampon 

solution: 600mL of 1.0M of sodium acetate solution (Riedel-de Haën), 360ml of 0.5M of 

H2SO4, diluted in a 1L balloon with distilled water), that is diluted with distilled water until it 
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makes the necessary volume. The blank is prepared the same way; the only difference is that 

this one is not irradiated. Both solutions are kept in the dark (for about one hour) until color 

development reaches its full. Both samples’ absorbance difference is measured at 510nm in a 

spectrophotometer [119], [120]. 

Through this actinometrical method of potassium ferrioxalate one can know radiation’s 

flux intensity, where Fe
3+ 

is photo chemically transformed into Fe
2+ 

according to the equation 

24:  

3 2 22 2 2                       24
2 4 2

Fe C O Fe CO Equation  

(The amount of produced Fe
2+

 is measured due to its with 1.10fenantrolina at 510nm.)
 

[26]. 

Using the obtained absorbance, light intensity is calculated through the equation:  

. .
2 3

. . . .
1

AV V
I

d t V
 

Where:  

 light intensity (Einstein/min);

 the optical difference in absorbance ( =510nm) between the irradiated solution and

that taken in the dark;

 Width cell used to measure the absorbance ( );

 is th

I

A

d A

2+ 4
at of the complex Fe(phen) to 510nm ( 1,11 10 / . );

3

 is the quantum yield of ferrous ion prodution at the irradiation wavelength;

 is the aliquot of the irradiated solution taken for the det
1

L mol cm

V ermination of the ferrous ions;

 is the irradiated volume (mL);
2

 is the final volume after complrxation with phenanthroline (mL);
3

 the irradiation time (min).

V

V

t  

3.4.9 Iron Leaching Measurement 

 

Aiming to get iron leaching on long terms data, an experimental run was performed with 

the same characteristics of the others without stopping the reaction. Iron concentration in the 

liquid was determined by atomic absorption using a Perkin-Elmer 3300 spectrometer.  

 

3.4.10 Suspended Solids  
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Before beginning experiments, porcelain capsules were washed and 45 ηm filters were 

humidified with distilled water. Later they were placed in the glasshouse at, approximately, 105º 

C in order to volatize volatile constituents present in both capsules and filter papers. Filter 

papers and porcelain capsules were weighted.  

Afterwards, 50mL of effluent was filtrated at low pressure using the mentioned former 

paper filter. From the filtrate, 20mL were placed in a porcelain capsule. Paper filter was placed 

at 105ºC in glasshouse and the porcelain capsule in muffle at 600ºC for 1h-2h. After this, they 

were left in the dessicateur to cool and they were weighted again.  

  

a) Total Solids (TS) 

Inside of a crucible previously dried, a known volume of sample was taken to glasshouse 

at 105ºC until constant weight. Total solids are those that remain as residue after that procedure. 

With mass values from the crucible (with and without dried solids), TS may be calculated this 

way:  

1 2
TS M M  

Equation 25 – Total Solids calculation. Where M1 is mass before evaporation and M2 is mass after 

evaporation. 

 

b) Total Fix Solids (TFS) 

Total fixed solids are the portion remaining in the recipient even after calcination (made 

in a muffle, at 600ºC for two hours). With crucible’s mass values before and after that stage, 

TFS can be calculated as follows:  

2 3
TFS M M  

Equation 26 – Total fixed solids calculation. Where M2 is mass before calcinations and M3 is mass after 

calcinations. 

c) Total Volatile Solids (TVS) 

Total volatile solids constitute the part of total solids that volatize during calcination. 

TVS value is obtained through difference between total solids and total fix solids (TFS), as 

shown in equation below: 

TVS TS TFS  

Equation 27 – Total volatile solids’ calculation.  

 

d) Total Suspended Solids (TSS) 



 
 
 
CHAPTER 3. EXPERIMENTAL 

32                TREATMENT OF LIQUID PHARMACEUTICAL INDUSTRY EFFLUENTS BY FENTON’S PROCESSES   

 

Suspended solids are those with diameter higher than 0.45µm. They correspond to the 

remaining residue over filter paper with pores diameter equal to 0.45µm after a known volume 

sample is filtered. With masses values from paper filters (dried in glasshouse at 105ºC for one 

hour) before and after containing the filtrate residua, TSS can be calculated this way:    

1 2
TSS P P  

Equation 28 – Total suspended solids calculation. Where P1 is mass from washed and dried paper filter 

before it contains the solids and P2 is mass from dried paper filter after it contains the solids. 

 

e) Fix Suspended Solids (FSS)  

Fix suspended solids are the portion of total suspended solids that remain as residua in a 

crucible after calcination (600ºC for two hours). Through crucible’s masses difference before 

and after calcination, fix suspended solids mass can be calculated through the equation below:  

2 3
FSS P P  

Equation 29 – Fix suspended solids calculation. Where P2 is dried crucible’s mass before calcinations 

and P3 is crucible’s mass after calcinations. 

 

f) Volatile Suspended Solids (VSS)  

Volatile suspended solids are the filtered part of residua that volatizes during calcination 

(600ºC for two hours). Volatile suspended solids mass can be calculated through the following 

difference:  

VSS TSS FSS  

Equation 30 – Volatile suspended solid’ calculation. 

  

g) Total Dissolved Solids (TDS) 

TDS TS TSS

 
Equation 31 – Total dissolved solids’ calculation. 

 

 

 

h) Fix Dissolved Solids (FDS) 

FDS TFS FSS  
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Equation 32 – Fix dissolved solids’ calculation.  

 

i) Volatile Dissolved Solids (VDS) 

VDS TVS VSS  

Equation 33 – Volatile dissolved solids’ calculation. 
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4 RESULTS AND DISCUSSION: 

In this chapter, the industrial effluent is characterized and all the results are presented and 

discussed.  

 

4.1 EFFLUENT’S CHARACTERIZATION  

The real effluent in study was collected from a pharmaceutical industry and its 

composition is unknown. The plant synthesizes and produces active substances and develops 

formulas of several therapeutic classes.  

Effluent’s chemical characteristics are summed in the table 4.1.1, as well as the standard 

deviations associated to each analyses technique. 

 

Table 4.1 – Chemical characteristics of the real liquid effluent in study with the corresponding 

experimental deviation presented in parenthesis  

 

Characteristics Values 

COD (mg O2 L
-1

) 9520 (± 10) 

BOD5 (mg O2 L
-1

) 4710 (± 20) 

BOD5/COD 0.4 

TOC (ppm) 5134 (± 10) 

TPh (mg GA L
-1

) 211 (± 20) 

pH 5.4 

 

Liquid effluent treatments based on advanced oxidation process have as main goal to 

obtain an effluent that corresponds to discharge legal limits in the environment. When this is not 

possible or economically not viable, the targets become reducing its toxicity and increase its 

biodegradability. According to present environmental laws, an effluent must not have COD and 

BOD5 values above 150mg O2 L
-1

 and 40mg O2 L
-1

, respectively, to be released into 

surroundings. 

The studied effluent presents a high organic charge, with COD of 9520 mg O2 L
-1

, 

BOD5 of 4710 mg O2 L
-1

 and TOC of 5134ppm (Table 4.1.1). Even if biodegradability is not so 

low (BOD5/COD) = 0.4, as an effluent is considered to be completely biodegradable when this 

ratio is superior to 0.4
 
[35] it is known that it can not be directly subjected to biological 

treatment, sustaining the need to proceed to an oxidative chemical process. In fact, its 
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cumbersome composition comprising highly toxic substances such as phenolic compounds (211 

mg GA L
-1

)
 
which are known for being refractory and toxic to microorganisms, is continuously 

changing throughout time due to variations on the drugs being produced. 

For effluents’ directly release into the natural water courses, Decretory-Law nº 236/98 

establishes limited emission values. The most commonly quoted and analyzed parameters are 

summed in the table 4.2.  

 

Table.4.2 – Emission limit values (ELV) in residual water release 

Parameters Results expression ELV 

pH Sorensen’ Scale 6,0-9,0 

Temperature ºC 3ºC increase 

BOD5 mg  O2 L
-1

 40 

COD mg  O2 L
-1

 150 

TSS mg L
-1

 60 

Color - Not detectable in dilution 1:20 

Odor - Not visible in dilution 1:20 

 

4.2 PRELIMINARY EXPERIMENTS 

4.2.1 Coagulation  

The raw effluent presents brownish color, intense odor and suspended solids. This way, 

before the experimental procedure related to the study of the Heterogeneous Fenton’s process 

behavior, coagulation tests and posterior suspended solids analyses were made. 

In figure 4.1 it is possible to see a significant reduction of COD and TOC by placing 7mL 

(1g mL
-1

) of coagulant p19 and pH 3. 

  

 
a) b) 

Figure 4.1 – Effect of the different pH on COD (a) and TOC (b) degradation by placing 7mL of coagulant p19. 
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It was seen that pH has influence over coagulation’s process. At pH 3, not only does one 

get better results but also, it will not be necessary to make future pH corrections in order to 

proceed with the Fenton’s process, since process’ optimum pH is 3. 

After this, it was observed that by adding lower (2mL; 3.5) and higher (10mL; 14mL) 

quantities of coagulant at pH3 COD removal percentage increased (figure 4.1.2). However, the 

obtained results show that the TOC removal was not favored by lowering the p19 amount while 

a slight increase was reached when adding 10mL. In what regards TPh values, bigger reductions 

were detected, with the exception of 2mL that led to a removal percentage near zero, which 

reveals that the quantity of coagulant used was not enough to remove phenol content.  

 

  

           a)  b) 

 

 

       c) 

Figure 4.2 – Effect of the different concentration of  p19 on COD (a) , TOC (b) and TPh (c) degradation by 

placing pH 3. 

As for effluent’s BOD5, a significant decrease was observed, given that this parameter 

went from 4710 mg O2 L
-1 

to 2441 mg O2 L
-1

. 

 

4.2.2 Suspended solids  

From a chemical point of view, solids are classified as volatiles and fix. Volatile solids 

are those that volatize at temperatures below 600ºC, either organic substances or mineral salts. 
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Fix solids are those that remain after water’s complete evaporation, usually salts. Dissolved 

solids excess in the effluent can cause corrosion problems. As for suspended solids, they make 

water muddy creating aesthetic problems and harming photosynthetic activity.  

Through the figure 4.3 it is possible to check a further reduction in the amount of solids 

present in the effluent coagulated with 3.5mL of p19 and pH 3. The excess coagulant (10mL 

and 14mL) discloses increased TSS because for large concentrations of coagulant restabilization 

occurs, i.e., colloids become positively charged by excess coagulant. 

 

 

Figure 4.3 – Effect of the different concentration of p19 on TSS by placing pH 3. 

 

4.3 CATALYSTS SCREENING 

The effluent used for all experimental tests (except those marked) was coagulated effluent 

(with 3.5mL of p19 and pH 3). 

Effluent’s chemical characteristics are summed in the table 4.3, as well as the standard 

deviations associated to each analyses technique. 

 

Table 4.3 – Chemical characteristics of the coagulated liquid effluent with analytical deviations in 

parenthesis  

 

Characteristics Values 

COD (mg O2 L
-1

) 4270 (± 10) 

BOD5 (mg O2 L
-1

) 2441 (± 20) 

BOD5/COD 0.57 

TOC (ppm) 2855 (± 10) 

TPh (mg GA L
-1

) 149 (± 20) 

pH 3 

 



 
 
 
CHAPTER 4. RESULTS AND DISCUSSION 

38                TREATMENT OF LIQUID PHARMACEUTICAL INDUSTRY EFFLUENTS BY FENTON’S PROCESSES   

 

 

4.3.1 Dark Fenton´s Treatment 

The catalyst screening was made through a series of tests with different solids, analyzing 

their abilities for the reaction’s proposed system, in order to select the most active catalyst, so 

that the process’ efficiency can be improved. Four catalysts were used, namely, N-150 (Fe2O3-

MnOx), Fe-Ce-O (70/30), Red volcanic rock and ZVI, having been studied their effect in TPh, 

COD and TOC removal and biodegradability as well. Experimental performance was equal in 

all cases, with pH values between 3.6 and 3.2, catalyst concentration of 1.0 g L
-1

, environment 

temperature and hydrogen peroxide volume of 2,50mL (5g.L
-1

) (stoichiometric quantity, 1:5) 

[11,40] with mechanical agitation. Figure 4.4 represents Total Phenol Content (TPh), COD and 

TOC removal along the reaction period, in presence of those catalysts for the raw effluent 

without being submitted to the pre-coagulation process. An experiment was also performed with 

FeSO4.7H2O to compare heterogeneous and homogeneous Fenton’s oxidation.  

 

 

a)  b) 

 

c) 

Figure 4.4 – Effect of different catalysts at pH 3 under mechanical stirring in Dark-Fenton. 

(catalyst concentration of 1.00g L
-1

, room temperature and hydrogen peroxide volume of 2.50mL) 

on TPh (a), COD (b) and TOC (c). 
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  Through these data, it is seen that there was inconsistency in the obtained results 

reflected on the irregular profiles along time. That can be explained by the impossibility to 

maintain the solid catalysts with the same uniform concentration in solution under 

homogeneous agitation since with mechanical stirring that was used in the experiment system 

the presence of catalyst’s deposit in the reactor could be observed. Besides, effluent’s 

coagulation had not yet been made, which shows that the presence of dissolved solids makes 

phenol compounds and organic matter measurement impracticable. 

It is also important to note that, in these first experiments, the method for that was used 

for the reaction terminus was the addition of 1.5mL of NaHSO3, to consume all hydrogen 

peroxide still present, according to equation 4.3:  

                       34
2 2 3 2 4

H O SO H O SO Equation
 

However, it was discovered that this reagent also interfered with the COD determination 

and for that reason all the runs had, as method for ending the reaction, a pH increase for values 

near pH=10. Besides, since no homogeneity was possible to be attained with mechanical 

stirring, all the following experiments were then performed in an orbital agitator. In fact, with 

these changes in the operation mode, those irregularities in the values measured along treatment 

were eliminated, as can be observed in the results shown below. Moreover, the quite different 

range levels detected now indicate that the previous procedure was inappropriate. 

In figure 4.5 it is possible to see the total phenol content removal given by the oxidation 

reaction performed for the different catalysts under the new operating characteristics.  

 

Figure 4.5 – Effect of different catalysts at pH 3 with orbital agitator in Dark-Fenton (catalyst 

concentration of 1.00g L
-1

, room temperature and hydrogen peroxide volume of 0,33mL) on TPh 

degradation profiles. 

It can be observed that all catalytic systems had satisfactory results, in what concerns 

TPh, with removals above 50% (except for Fe-Ce-O) under high initial velocities. The 
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laboratory made catalyst, Fe-Ce-O, is the one presenting lower efficiency, with phenolic 

decrease removal around 34%. Among other catalysts, there are similar degradation profiles for 

the reaction’s first 30 minutes. After 120 minutes, it was achieved 56% degradation with the 

commercial catalyst, N-150, and 52% on those of low commercial value, red volcanic rock 

(RVR) and ZVI In what regards the red volcanic rock, after 30 minutes of reaction no further 

TPh abatement is observed maintaining itself practically unaltered, most likely due to refractive 

phenol compounds formed during the oxidation process. In this case, the heterogeneous 

Fenton’s process, with any of those catalysts, was much below expectation when compared with 

the homogeneous process, since when FeSO4.7H2O was used 64% of the phenolic compounds 

were removed after 120 minutes. 

Figure 4.6 presents Chemical Oxygen Demand removal through time for the different 

catalytic systems. 

 

Figure 4.6 – Effect of different catalysts at pH 3 under orbital agitator in Dark-Fenton. (catalyst 

concentration of 1.00g L
-1

, room temperature and hydrogen peroxide volume of 0,33mL) on COD 

degradation profiles. 

 

Each one of the catalysts presents similar evolution until 30 minutes, with removals in the 

range 50-60% removal, which are nearly maintained until 120 minutes. Fe-Ce-O presents 59% 

of COD degradation at the reaction’s end, while the red volcanic rock catalyst reaches little 

more than 50% of Chemical Oxygen Demand abatement. Even though the heterogeneous 

systems reached similar results to those of the homogeneous operation, in this case the 

efficiency was slightly higher with 61% final depuration. 

TOC removal allows evaluating the mineralization degree obtained by the oxidation 

process of the involved compounds. Figure 4.7 shows the TOC degradation profiles for all the 

systems under study.  
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Figure 4.7 – Effect of different catalysts at pH 3 under orbital agitator in Dark-Fenton. (catalyst 

concentration of 1.00g L
-1

, room temperature and hydrogen peroxide volume of 0,33mL) on TOC 

degradation profiles. 

These results point out that most catalysts have a higher TOC than COD removal (figure 

4.6). In the volcanic rock’s (RVR) case it was verified 54% COD and 61% TOC removal, for 

Fe-Ce-O 59% COD and 66% TOC, whereas the ZVI catalyst system had degradations around 

52% for COD and 58% for TOC. It is important to distinguish, while studying treatment 

processes, the total oxidation reactions from the partial oxidation reactions, to infer on the used 

catalysts selectivity. According to MANTZAVINOS et al. (2000) [92], it is possible to 

determine the COD removed quantity and COD degradation efficiency by partial oxidation 

(equations (35) and (36)). 

                    Equation 35
0

0

                                                       Equation 36

0

TOC
COD COD COD

parcial TOC

COD
partial

X
COD COD

 

If X is near 0, treatment selection is for total mineralization, while if X is near 1, 

oxidation tends to be partial [92].  

According to the obtained results for the studied catalysts an X value near 0 (0.1) is 

always verified, meaning that catalysts selectivity aims to total mineralization with CO2 and 

H2O formation. 

For the environment parameters in analyses, it is verified that Fe-Ce-O and red volcanic 

rock catalytic systems are those presenting better results. In fact, in the field of oxidative 

processes, cerium based catalysts are promising due to their oxygen in cerium oxide storage 

ability. This way, when Ce is among other elements, it provides or takes oxygen to those 
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elements according to need, allowing a better electronic balance and this way favoring oxidative 

reactions [131]. 

Table 4.4 presents final COD and BOD5 values, which according legislation may not 

exceed 40 and 150 mg O2 L-1 if the wastewater is to be directly discharged in surroundings. As 

can be seen, the effluent after this chemical treatment is still not under legal limits for release. 

This way, biodegradability (BOD5/COD) at the end of the Fenton’s treatment was evaluated in 

order to determine posterior biological treatment applicability to further purify the effluent. It 

was then seen that the less efficient catalyst in the organic removal and with lower BOD5/COD 

ratio with a 0.54 value was N-150, meaning the effluent is more biodegradable while all other 

catalysts increased BOD5/COD ratio compared to 0.57 of initial coagulate effluent and were 

close to reaching biodegradability. Homogeneous system had lower value discrepancy when 

compared to heterogeneous.  

Table 4.4 – BOD, COD and Biodegradability quantification of the residual water  

Catalyst 
BOD5 (mg O2 L

-1
) COD (mg O2 L

-1
) Biodegradability 

Red Volcanic Rock 1253 1945 0,64 

N-150 1010 1840 0,54 

Fe-Ce-O 70/30 1115 1770 0,62 

ZVI 1889 2050 0,58 

FeSO4.7H2O 1113 1665 0,67 

 

 

In order to evaluate catalyst stability the amount of iron leached (mg Fe L
-1

) was 

quantified at the end of oxidation process and is shown in figure 4.8. 

 

 

Figure 4.8 – Amount of iron leached after 120 minutes of Dark-Fenton Process for different 

catalysts. 
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The lower iron leached value is attained by the commercial catalyst N-150, 2.90 mg Fe L
-

1
. However, Fe-Ce-O and volcanic rock (RVR) also presented low values, 6.0 and 18.6 

respectively, when compared to ZVI with 224 mg Fe L
-1
 and with the more drastically higher 

result for the homogeneous process with 634 mg Fe L
-1

 (the legal limit for discharge of 

wastewater is 2 mg Fe L-1, Decretory-Law nº236/98). 

In the following study we only pursued with the laboratorial Fe-Ce-O catalyst as well as 

with the low cost solids, red volcanic rock and ZVI, since the commercial catalyst N-150 may 

be more expensive without revealing, in general, better performance. Indeed it presented lower 

biodegradability results and was very close to other catalysts in TOC, COD and TPh depuration 

levels. 

 

4.3.1.1 pH’s influence on the process performance   

Since Fenton’s processes are catalyzed by Fe
2+

/Fe
3+ 

ions and considering that these ions 

are hydrolyzed forming insoluble hydroxides, environment’s pH has a strong role in organic 

compounds degradation velocity, since iron ions precipitate when pH is higher than 6 [95], 

[109]. At pH 3 Fe
3+

 dominant species in aqua solution are FeOH
3+

 [12]. Below optimum pH for 

reaction’s success, active species’ concentration is low and for high pH Fe
3+

/Fe
2+

 ions 

precipitate as hydroxides [55]. 

In order to evaluate the influence of pH’s liquid mixture during the treatment process, 

values (in range 3-9) of pH 3, 5, 7 and 9 were taken under consideration. pH 3 was chosen 

because it is indicated for Fenton’s reaction; pH 5, on other turn, was selected because  it is 

close to effluent’s pH; pH 7 is ideal for discarding the effluent in environment; lastly, pH 9 to 

verify if there is still reaction to a high pH, since to end reaction pH was settled near 10. 

It is known that with neutral to alkaline pH there is fast H2O2 decomposition with 

molecular oxygen production without corresponding hydroxyl radicals formation, prejudicing 

the desirable degradation process [112], since molecular oxygen is not capable of an efficient 

organic compounds oxidation at environment’s pressure and temperature. Another important 

parameter is active species’ leaching, demanding the need to quantify iron in solution after the 

process in order to evaluate catalyst stability and reuse. Several references show that leaching 

increases as pH decays [112], [28]. This way it is also essential to estimate the amount of iron in 

the liquid after experimental performance because iron has to be lower than 2 mg L
-1

, the legal 

limit, so that the effluent can be released into natural courses. 

Figure 4.9 presents COD and TOC removal efficiency to different used pH, intending for 

the select a pH value that has better global catalyst system efficiency, and that provides better 

removal rates and higher catalyst stability. For pH 7, it is verified that the COD removal 
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percentage is low, even null in the Fe-Ce-O case. That can be explained through H2O2 fast 

decomposition, into molecular oxygen without formation of hydroxyl radicals. At pH9 

oxidation is not significant, and that was expected since iron ions begin to precipitate forming 

hydroxides. 

 

 

a)  b) 

Figure 4.9 – COD (a) and TOC (b) removal to different used pH at 120 minutes in Dark-Fenton. 

(Fixed pH during the experimental test. Pressure and Room temperature). 

 

However, TOC results show that there is significant mineralization (above 50%) to all pH 

range for ZVI and Fe-Ce-O. For the red volcanic rock (RVR), there is clearly a remarkable 

difference between reaction under pH 3 and higher values with TOC depletion being favored at 

pH 3. It is known that removed carbon can be due to adsorption or oxidation. In order to identify 

which are the paths involved the used catalysts were analyzed after treatment and the results 

point out that there is larger adsorption under pH 9 in Fe-Ce-O, around 16.5mg L
-1

, while under 

pH 3,5 and 7 was  0.3mg.L
-1

, 0.4mg.L
-1

 and  1.4mg.L
-1

, respectively. ZVI also had high 

adsorption, with the lower one at pH 3, around 0.4mg.L
-1
, whereas in the cases of pH 5, 7 and 9 

had 13.7mg.L
-1

, 15.4mg.L
-1

 and 13.2mg.L
-1

 of carbon, respectively. The red volcanic rock 

presented lower carbon concentration, around 1mg L
-1 

for pHs 5, 7 and 9. 

These result lead to the conclusion that the possibility of using equal to 5 or above may be 

excluded once the process’ stability and adequate results obtaining is affected with subsequent 

lower degradation [113]. In order to determine pH’s impact in the catalyst stability, the leached 

iron was quantified (mg L
-1

) after the oxidation’s process performed to different pH values, as 

presented in figure 4.10.  
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Figure 4.10 – Amount of iron leached after 120 minutes of Heterogeneous Fenton Process for 

different pHs. 

As seen, the Fe quantity in solution after 120 minutes reaction with ZVI
 
is very high, and 

that is also observed at naked eye, showing a clear pH influence in the solid catalyst stability. 

Therefore, in order to ensure a stable solid, it is considered that the Fe-Ce-O and Red 

volcanic rock catalysts are more adequate for this treatment. 

 

4.3.2 Photo-Fenton´s Treatment  

To proceed with the heterogeneous Fenton’s process with UV radiation, the catalysts 

ZVI, Fe-Ce-O and Red volcanic rock were used. 

Light intensity in the process was 0,366 Einstein/min [86]. 

Total Phenolic Content removal for the different catalysts can be seen in figure 4.11.  

 

Figure 4.11 – TPh removal along photo-Fenton´s process operating time. (Fixed pH during the 

experimental test. Pressure and Room temperature.) 
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The red volcanic rock and ZVI present similar behavior, while Fe-Ce-O reveals only 11% 

removal, below the expected values, since one could presume to benefit from ultra violet light 

instead of an activity reduction  (when compared to Dark-Fenton, 34%). 

Those solid catalysts (volcanic rock and ZVI) could reach a TPh final degradation around 

51% presenting a higher reactive velocity along time when compared to the process carried out 

without a catalyst, which, however, allowed a higher depuration at the end of the treatment.  

Figure 4.12 presents COD and TOC removal profiles. 

 

  

a)   b) 

Figure 4.12 – COD (a) and TOC (b) removal along photo-Fenton´s process operating time. (Fixed 

pH during the experimental test. Pressure and Room temperature) 

For Chemical Oxygen Demand removal, the most efficient catalyst was the red volcanic 

rock, reaching 70% after 30 min and a final efficiency of 80%. All catalysts have high reactive 

velocity during the first 30 minutes. Fe-Ce-O 70/30 presents again similar reaction profiles and 

inferior oxidation, around 63%, showing lower selectivity for this environmental parameter’s 

removal.  

In what regards Total Organic Carbon degradation all catalysts have a high reaction rate 

in the first 30 minutes. However, ZVI presents a better removal percentage, 47%, being, 

therefore, the most efficient catalytic system for TOC removal. The other catalysts showed 

lower activity.  

The most commonly accepted mechanism for photolysis with UV/H2O2 is the breakdown 

of the molecule leading to two hydroxyl radical •OH according to equation 12. However, it 

should be noted that there is also the possibility of recombination of these radicals, producing 

H2O2 again (equation 13). And if there is excess of H2O2, it can possibly act as radical scavenger 

and subsequently promote a low yield because the oxidation of organic matter will be slower. In 

literature, there are tests described using less UV light intensity, which supports this assertion. 
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Since the obtained results were beyond expectations, no biodegradability tests were 

performed.  

To evaluate catalyst stability, the leached iron was quantified (mg Fe L
-1

) at the end of the 

oxidation process and it was verified that Fe-Ce-O presents a better result, 2.40 mg Fe L
-1
, 

figure 4.13. An interesting aspect is that all of them had a decrease of dissolved iron in solution 

quantity (for ZVI 16.0 mg Fe L
-1 

and volcanic rock (RVR) 11.9 mg Fe L
-
1), when compared to 

Dark-Fenton. 

 

Figure 4.13 – Amount of iron leached after 120 minutes of Photo-Fenton Process for different 

catalysts. 

Effluent’s color may influence the treatment process’s efficiency, once the presence of 

suspended material, colloidal or solution, and other substances absorb light’s radiation, blocking 

effluent’s penetration and reducing oxidatives’ action. 
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5 CONCLUSIONS AND FUTURE WORK SUGGESTION: 

In this part of the thesis, a general overview of the main results is presented, along with 

the most relevant conclusions. Suggestions for future work are also bring forward. 

 

5.1 CONCLUSIONS: 

This work was done into several steps, and it aimed to determine best operational 

conditions for an actual pharmaceutical effluent’s degradation, whose characteristics and 

constitution were unknown, through Fenton’s process. Different massic catalysts were tested, 

namely, the commercial N-150 (Fe2O3-MnOx), the laboratory made Fe-Ce-O 70/30, and low 

cost volcanic rock (nature) and ZVI (metallurgic industry) solids. In order to take advantage 

from Fenton’s and to minimize solid residue formation, ultraviolet radiation was studied as 

adjuvant in hydroxyl radicals’ formation. 

The obtained results award the Fe-Ce-O 70/30 system as most efficient in Dark Fenton 

and Red Volcanic Rock in Photo-Fenton. Fe-Ce-O 70/30 in Dark-Fenton, had a TPh 34% 

degradation and removals around 59% and 66% for COD and TOC respectively, after 120 

minutes of reaction, presenting selectivity towards total mineralization. Due to its high storage 

capacity for oxygen in cerium oxide, Fe-Ce-O 70/30 allows a better electronic equilibrium and, 

therefore favors oxidative reactions. Besides, it is a stable catalyst, since among all it was the 

one presenting lower leached iron quantity. Red Volcanic Rock in Photo-Fenton led to 49% of 

TPh decrease and removals around 80% for COD and 40% for TOC after 120 minutes of 

reaction.  

In what concerns the effect of pH, if, in one hand, reaction efficiency increases with pH 

reduction, iron leaching also increases originating activity and catalyst stability reduction. 

Moreover, under higher pH there is fast H2O2 decomposition, without corresponding hydroxyl 

radicals formation harming the desired degradation process. 

In what respects to biodegradability, it was possible to achieve acceptable results. 

An important aspect is that the experimental coagulation pre-treatment was able to 

remove large amounts of suspended solids and achieve better results in the Fenton process.  

Finally, this work points out the catalyst Fe-Ce-O 70/30 and the Red Volcanic Rock as 

promising in the catalytic oxidation through Heterogeneous Fenton and Photo-Fenton, 

respectively, in the effluent’s degradation. This shows capabilities for implementing these 
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technologies as residual water treatment, so that it can be possible to include in posterior 

biological systems.  

 

5.2 FUTURE WORK SUGGESTION: 

While preparing this dissertation, it was verified that there is lack of information 

concerning hydric environment and human health possible effects in presence of persistent 

drugs in the environment. Therefore, information about formed degradation products’ identity 

and sample’s toxicity after treatment are fundamental information in order to ensure Fenton’s 

process appliance’ safety and effectiveness in treating effluents with drugs’ residua. This way, 

biodegradability and toxicity experiments and, mostly, identification of effluent’s active 

constituents before and after treatment, are extremely important.  

Based on the obtained promising results and considering the industrial interest for this 

liquid effluents’ treatment method, it would be important to adjust the process intervenient 

variable, such as, catalyst concentration, hydrogen peroxide concentration and reaction time in 

order to attempt to achieve better results. Besides, using UV radiation during the process has 

proven to involve a capital gain in reducing catalyst’ leaching. This way, it would be very 

important to deepen the analysis of this process, as one of the stronger Fenton’s inconvenient is 

iron’s high leaching at optimum pH (pH3).  

.  
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