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Resumo 

O principal objectivo deste trabalho foi avaliar o poder catalítico de Starbon®400-SO3H na 

Reacção de Ritter em moléculas esteróides. 

A crescente importância da Química Verde e a aplicação dos seus princípios na produção e 

desenvolvimento de novos processos químicos mais eficientes, sustentáveis e ambientalmente 

aceitáveis têm sido tema de investigação, tanto no meio académico como na indústria 

farmacêutica. Entre as várias estratégias delineadas na procura de mais eficácia a via que mais 

se destaca é a Catálise. Neste contexto, Starbon®400-SO3H posiciona-se como um catalisador 

ambientalmente aceitável por ser completamente orgânico e não tóxico. 

Os compostos esteróides estão vastamente distribuídos na natureza e que são utilizados como 

substratos funcionalizáveis na síntese de muitas moléculas biologicamente activas, pelo que 

centenas de esteróides têm sido isolados a partir de fontes naturais e vários milhares foram 

obtidos sinteticamente, mantendo-se nos nossos dias, uma intensa investigação com o fim de 

isolar e identificar novos compostos esteróides com novas actividades biológicas. 

Tendo em conta as considerações anteriores, foi estudada a actividade catalítica do 

Starbon®400-SO3H em transformações envolvendo epóxidos esteróides como substratos, uma 

vez que esta função está presente num grande número de esteróides biologicamente activos. 

A reacção de Ritter de 5β,6β-epóxidos de esteróides com nitrilos, catalisada por Starbon®400-

SO3H, permitiu a obtenção de derivados N-acilamino álcoois vicinais, com elevados 

rendimentos, e alta estereo- e regiosselectividade. Na reacção com 5α,6α-epóxidos esteróides 

há produção de estereoisómeros. Quando se usou 1,4-dioxano como solvente obteve-se o 

derivado oxazolínico como produto de reacção. 
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Abstract 

The aim of this work was to evaluate the catalytic power of Starbon®400-SO3H in the Ritter 

reaction in steroid molecules. 

The growing importance of Green Chemistry and the application of its principles in the 

production and development of new, more efficient, sustainable and environmentally 

acceptable chemical processes have been the subject of research both in academia and in the 

pharmaceutical industry. Among the several strategies outlined in the pursuit of effectiveness, 

the one that stands out the most is Catalysis. In this context, Starbon®400-SO3H appeared as 

an environmentally acceptable catalyst due to its entirely organic composition and non-

toxicity. 

Steroid compounds are widely distributed in nature and are used as functionalized substrates 

in the synthesis of many biologically active molecules. Hundreds of steroids have been 

isolated from natural sources and several thousands have been obtained synthetically. There is 

an intensive ongoing research to isolate and identify novel steroid compounds with new 

biological activities. 

In view of the foregoing, we studied the catalytic activity of Starbon®400-SO3H in 

transformations involving epoxysteroids as substrates, as this function is present in a large 

number of biologically active steroids. 

The Ritter reaction in 5β,6β-epoxysteroids with nitriles catalyzed by Starbon®400-SO3H 

afforded vic-N-acylamino-hydroxy products, in high yields and with high stereo- and 

regioselectivity. The reaction with 5α,6α-epoxysteroids afforded a mixture of stereoisomers. 

When 1,4-dioxane was used as a solvent, the reaction yielded the oxazoline derivative as the 

final product. 
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1. Green Chemistry in Pharmaceutical Chemistry 

1.1. Green Chemistry 

Over the past two centuries, fundamental theories in chemistry have been soundly established 

providing the foundations that allow us to achieve various medical wonders that save millions 

of lives and improve people’s health, solve problems like world hunger and produce materials 

essential to the present and future needs of mankind. 

However, despite such enormous achievements, we are facing great challenges in future 

chemical synthesis. The present state-of-the-art processes for synthesizing chemical products 

are highly inefficient because of their lack of resource conservation, and draws environmental 

and health concerns related to chemical wastes. Taking into account these concerns, the field 

of Green Chemistry was specifically design, providing a framework to build sustainability for 

the chemical industry as a whole. 

The original definition of Green Chemistry was “the invention, design and application of 

chemical products and processes to reduce or eliminate the use and generation of hazardous 

substances”; sustainability was added shortly after as another fundamental concept(Poliakoff, M. 

2002). Therefore the major rule of Green Chemistry is the design of environmentally benign 

products and processes, which is embodied in its 12 principles provided by Paul Anastas and 

John Warner(Anastas, P.T. 1998) (Table 1). 
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1.2. Green Chemistry in Chemical Process 

The lifecycle of chemical products generates waste and consumes resources which become 

extremely expensive to the industry. These cost problems, combined with the social pressure 

due to the poor image the chemical manufacturing has with the public and new environmental 

legislation are generating a need for cleaner and greener methods of chemical production. 

Clark pointed out that these “three cornerstones of sustainable development- economic, 

environmental and social benefit- provide the drivers of change that should help to push the 

application of green chemistry forward” (Clark, J. H. 2006). 

 
Table 1- The Twelve Principles of Green Chemistry* 

 

Prevention 
It’s better to prevent waste than to treat or clean up 

waste afterwards 

Atom Economy 
Design synthetic methods to maximize the incorporation 
of all materials used in the process into the final product 

Less Hazardous Chemical Syntheses 
Design synthetic methods to use and generate substances 

that minimize toxicity to human health and the 
environment 

Designing Safer Chemicals 
Design chemical products to affect their desired function 

while minimizing their toxicity 

Safer Solvents and Auxiliaries 
Minimize the use of auxiliary substances wherever 

possible make them innocuous when used 

Design for Energy Efficiency 
Minimize the energy requirements of chemical 

processes and conduct synthetic methods at ambient 
temperature and pressure if possible 

Use of Renewable Feedstocks 
Use renewable raw material or feedstock rather 

whenever practicable 

Reduce Derivatives 
Minimize or avoid unnecessary derivatization if 
possible, which requires additional reagents and 

generate waste 
Catalysis Catalytic reagents are superior to stoichiometric reagents 

Design for Degradation 
Design chemical products so they break down into 

innocuous products that do not persist in the 
environment 

Real-time Analysis for Pollution Prevention 
Develop analytical methodologies needed to allow for 

real-time, in-process monitoring and control prior to the 
formation of hazardous substances 

Inherently Safer Chemistry for Accident Prevention 
Choose substances and the form of a substance used in a 
chemical process to minimize the potential for chemical 

accidents, including releases, explosions, and fires 

*Adapted from the literature(Anastas, P.T. 1998). 
 



New Sustainable Processes Catalyzed by Acids with Interest in Pharmaceutical Chemistry 

Lígia Mesquita	  

~ 5 ~ 
 

 

 

 

 

 

 

 

 

 

 

To address these challenges, innovative and fundamentally novel chemistry is needed 

throughout the synthetic processes: feedstock, reactions, solvents and separations. 

The main feedstock of chemical products come from nonrenewable petroleum that is being 

depleted rapidly both for chemical and energy needs(Li, C. J. 2008) and is getting more and more 

expensive each day(Clark, J. H. 2006). However, nature provides a vast amount of biomass in the 

renewable forms of carbohydrates, amino acids and triglycerides which are a sustainable 

alternative to obtain organic products(Argyropoulos, D. S. 2007). 

The ideology of Green Chemistry is the development of new chemical reactivities and 

reaction conditions that can potentially provide benefits for chemical synthesis in terms of 

resource and energy efficiency, product selectivity, operational simplicity and health and 

environmental safety. For assessing the potential environmental acceptability of a chemical 

process different metrics have been developed, such as the Atom Economy(Trost, B. M. 1991; Trost, B. 

M. 1995) and the E factor(Sheldon, R. A. 1994). 

Atom Economy is used to compare amounts of waste of alternative processes and is 

calculated by dividing the molecular weight of the product by the total sum of molecular 

Figure 1- Drivers for change. Adapted from the literature(Clark, J. H. 2006). 
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weights of all substances produced in the stoichiometric equation of the reaction(s) involved. 

The E factor (E for environmental) provides the quantity of waste that is produced for a given 

mass of product and is defined as the Kg of waste per Kg of product obtained. 

To address these demands innovative reactions have been developed, such as 

isomerizations(Trost, B. M. 2002; Trost, B. M. 2006), addition reactions(Bower, J. F. 2008), direct conversion of 

C-H bonds(Chen, H. 2000; Chatani, N. 2001; Crabtree, R. H. 2001; Jia, C. 2004), synthesis without protections(Baran, 

P. S. 2007), catalysis(Reetz, M. T. 2000; Dalko, P. I. 2004) and innovative technologies, including 

photochemistry(Fagnoni, M. 2007), microwave irradiation(Nuchter, M. 2004; Strauss, C. R 2006). 

Solvents play an important role in chemical production and synthesis because they facilitate 

mass transfer to modulate chemical reactions in terms of reaction rate, yield, conversions and 

selectivity. The ironic aspect of this process is that, after the reaction, the final product has to 

be separated from the solvent through energy-intensive means, that is why the largest amount 

of “auxiliary waste” in most chemical productions is associated with solvent usage(Sheldon, R.A. 

2005). 

The perfect green solvent should be natural, non-toxic, cheap, available and easy to separate. 

Water is the solvent that combines all these qualities, but in some chemical processes water is 

undesirable. For this reason, green solvents with different properties are needed(Webb, P. B. 2005; 

Tavener, S. J. 2003; Sheldon R. 2001; Bergbreiter, D. E 1998) and the use of solventless reactions(Cave, G. W. V 2001). 

The achievement of greener chemical processes is a difficult task that can provide a world of 

opportunities for new studies and research. The challenges ahead for Green Chemistry are 

greater than ever! 

1.3. Green Chemistry in Pharmaceutical Chemical Process 

Advances in medical and pharmaceutical sciences improved the quality of human life and 

allowed to live longer and healthier. 

Although our life is better, there are still a lot of diseases which are incurable and fatal or that 

can only be treated symptomatically like viral infections, cancer, autoimmune diseases or 

CNS disorders. 

Therefore, academic researchers in Pharmaceutical sciences, particularly medicinal chemistry, 

and the pharmaceutical industry invest a lot of time and knowledge in the discovery of new 
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and better drugs that are more selective and active, with fewer side-effects and with less 

harmful contamination of the environment(Kourounakis, P.N. 1994). 

According to the IUPAC definition(Wermuth, G.G. 1998) medicinal chemistry is a chemistry-based 

discipline, also involving aspects of biological, medical and pharmaceutical sciences. It is 

concerned with the invention, discovery, design, identification and preparation of biologically 

active compounds, the study of their metabolism, the interpretation of their mode of action at 

the molecular level and the construction of structure-activity relationships. 

Reduce costs and accelerate the discovery process are two main goals of drug discovery and 

the use of new computational methods(Parenti, M. D. 2012) and better identifying processes like 

parallel combinatorial chemical synthesis(Dexter, J. P. 2009), high-throughput screening(Aldib, I. 2012), 

virtual screening(Elsayed, M.S. 2012) and fragment-based drug discovery(Lee, K. 2013) could be very 

helpful in accomplishing these requirements. 

Therefore, the synergy between computational techniques, biotechnology and medicinal 

chemistry will allow to find new reactions and optimized chemical processes, creating more 

efficient drug synthesis and assisting a faster delivery of new drugs on the market(Parenti, M. D. 

2012). 

The design and development of synthetic routes with the ultimate goal of manufacturing fine 

chemicals and, in particular pharmaceuticals, at a commercial scale are the foundation of 

process chemistry. To ensure that the best synthetic route is pursued, Process Research and 

Development (PR&D) requirements were created to each stage of drug development(Federsel H-J 

2009). 

For PR&D there are a number of tough criteria to be met like the development of safe and 

environmentally friendly procedures that offer cost competitiveness and allow operation on 

large scale in each step of the synthesis of complex molecules avoiding patent infringements 

and showing sustainability for long-term production(Federsel H-J 2010). 
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As per in Table 2, expedient routes are used to prepare compounds in the early stages of drug 

development. It all starts with initial in vitro screenings in the laboratory with small quantities 

(10mg) where the best compound is chosen based on a series of criteria (toxicity, 

pharmacological properties, receptor affinity and physical properties). At this time, larger 

quantities of material (10g-10Kg) are required to define and develop the best synthetic route. 

The most cost-effective and efficient route is used to scale-up investigations and manufacture 

of bulk amounts (10Kg-100Kg). Lastly, the optimized process, validated and documented, is 

used in commercial production(Federsel H-J 2010). 

In this context, and considering the importance of designing new biologically active 

molecules, a higher involvement and integration of chemical process R&D with drug 

discovery(Federsel H-J 2008) is necessary to allow the achievement of better final products, at a 

lower cost, supplied in a faster way and using more environmentally friendly synthetic 

approaches. 

 

 

 

 

 
Table 2- Process R&D requirements during drug development* 

 

 Discovery Early 
Development 

Full 
Development 

Launch 

Amount of 
compound/batch 

 

10mg - 10g 10g – 10Kg 10Kg – 100Kg 100Kg and 
more 

Type of synthesis 
 

Expedient Practical Efficient Optimal 

Site for preparation 
 

Laboratory Kilo Laboratory Pilot plant Plant 

Number of batches 
 

1 - 5 1 - 10 10 - 100 10 - 100 

*Adapted from the literature(Pinto, R. M.. 2009). 
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1.3.1. Pharmaceutical Industry: A Green Approach 

Over the past century, the development of new pharmaceutical products has contributed to a 

revolution in medical care. Unfortunately this achievement has adversely impacted the 

environment. 

Significant amounts of waste by-products and pollutants (contaminated solvents, depleted 

reagents and air pollutants) are generated by the manufacture of chemicals, and 

pharmaceuticals contribute greatly to this process. Table 3 reveals that the manufacture of 

drugs generates more waste and by-products when compared with other chemical industry 

sectors(Berkeley, W. 2009). 

This must be taken in context, as the medical and regulatory requirements of pharmaceutical 

purity (high levels of chemo-, regio- and stereo-selectivity) will lead to more waste per 

Kilogram of product, as compared with the production of less sophisticated compounds, for 

which the purity requirements are less stringent. 

The high E factor is also explained by the use of organic solvents, stoichiometric reagents, 

metal-based catalysts and purification and isolation procedures that use aqueous work-ups and 

chromatographic separations(Tucker J. L. 2006). 

This issue is further elaborated by a report from GlaxoSmithKline (GSK)(Jimenez-Gonzalez, C. 2004; 

Curzons, A. D. 2007; Henderson, R. K. 2011) that estimates that 80% of their waste is solvent related and 

that addressing the selection, use, recovery and disposal of solvents will contribute 

dramatically to alleviating this problem. 
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With the increasing emphasis on Green Chemistry, pharmaceutical process chemists have 

concentrated their focus and creative energies on minimizing the environmental impact of 

their craft. It is important to refer that due to the particular specificities of the pharmaceutical 

chemistry not all of the twelve principles can be applied. Therefore, Green Chemistry acts 

more as a guide for the pharmaceutical industry(Tucker J. L. 2006). 

Tucker stated that Pharmaceutical Green Chemistry is a “quest for benign synthetic processes 

that reduce the environmental burden within the context of enabling the delivery of our 

current standard of living”.  

So the incorporation of a green perspective in the Pharmaceutical Chemistry includes good 

corporate citizenship, reduced expense, lowered regulatory risk and a smaller environmental 

footprint(Fortunak, J. M. 2009), allowing drugs to be available rapidly and easily in the market, at a 

lower cost, with high standards of quality. 

In the past few years there have been some success stories regarding the use of Green 

Chemistry principles to guide process design in the pharmaceutical industry(Berkeley, W. 2009). 

One example is the synthesis of sildenafil citrate(Dale, D. J. 2000; Dale, D. J. 2002; Dunn, P. J. 2004; Dunn, P. J. 

2008), also known as ViagraR, where the first viable route was a linear eleven steps synthesis, 

which gave a 4.2% overall yield from 2-pentanone (scheme 1). 

 

Table 3- Comparison of chemical industry sectors by quantity of byproduct per 
Kilogram of product* 

 Product tonnage E factor 
(Kg byproducts/Kg 

product) 
Oil Refining 

 
106 – 108 ≅ 0.1 

Bulk Chemicals 
 

104 – 106 < 1 - 5 

Fine Chemicals 
 

102 – 104 5 - >50 

Pharmaceuticals 
 

10 – 103 25 - >100 

*Adapted from the literature(Sheldon, R. A. 2000; Sheldon, R. A. 2008). 
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Scheme 1. First preparative route to sildenafil citrate(Berkeley, W. 2009). 

 

This synthesis was unsuitable for large scale manufacturing due to low yield and the use of 

noxious compounds. Pfizer optimized the process by minimizing solvent use, increasing 

solvent recovery, improving solvent selection, telescoping steps and using a convergent 

strategy in the synthesis (scheme 2). 

 

 

Scheme 2. Convergent commercial preparation of sildenafil citrate(Berkeley, W. 2009). 

 

The new strategy lowered the ratio of solvent waste/Kg of product from 1300L/Kg to 7L/Kg 

and increased the overall yield significantly (average yield of the last three steps = 97%). 

As the industry continues to come under pressure to hold down the cost of drugs, the adoption 

of an environmentally benign approach to drug candidate synthesis will contribute by 

reducing the increasing costs of reagent procurement and waste disposal. 
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2. Catalysis in the Pharmaceutical Chemistry 

Catalysis plays a vital role in the welfare of humanity and is an important technology that 

supports the global economy. Many industries, including chemicals, petroleum, agriculture, 

polymer, electronics and pharmaceutical industries rely heavily on catalysis. 

Over 90% of the chemicals are derived, in some way, from catalytic processes. The 

worldwide demand for catalysts in 2007 was approximately 850,000 tons and is estimated to 

have increased 3.5-4% per year until 2012, as the market value of the products generated by 

catalysis reached about 900 billion dollars per year(Armor, J. N 2011). 

The use of catalysis provides a multitude of benefits to industries that include reducing costs, 

saving time and producing less waste. The increasing focus on the development of 

environmentally friendly manufacturing processes has led to the green chemistry movement 

and its 12 principles, which identify catalysis as the best technology(Burczyk, B. 2005). 

The catalytic transformations avoid the waste of raw materials and increase the yield of the 

final product in less time and using less energy, as they allow the design of smarter synthesis, 

with shorter routes to the final products. 

Therefore, scientific advances in catalytic processes have proven to be essential for solving 

many important problems concerning the chemopharmaceutical industry and society in 

general. 

 

2.1. Definition of Catalysis 

One of the valid definitions that exist today is due to Ostwald (1895) who recognized 

catalysis as a ubiquitous phenomenon explained by the laws of physics and chemistry, and 

stated that "a catalyst accelerates a chemical reaction without affecting the position of 

balance." 

Catalysts are, therefore, substances capable of directing and accelerating thermodynamically 

possible reactions (although without altering the thermodynamic equilibrium), remaining 

unchanged at the end of the reaction(Jens Hagen 2006). Therefore, the effect of the catalyst is purely 
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kinetic, accelerating the reaction to provide new reaction pathways with lowers activation 

energies, without affecting the free Gibbs energy of the total reaction (ΔG0)(Figueiredo, J. L 1989). 

Although it was assumed that the catalyst remained unchanged during the course of catalysis, 

it is known today that it binds to the reagent. Catalysis is a cyclic process in which the catalyst 

acts by combining with the reagents to generate intermediate compounds, thus facilitating the 

transformation into products. The intermediate catalyst is, in most cases, very reactive and 

therefore difficult to detect. After the formation of the final product the catalyst regenerates 

and is able to restart the catalytic cycle (Figure 7)(Jens Hagen 2006). 

Theoretically, an ideal catalyst would not be consumed during the reaction, but because of 

side reactions the catalyst undergoes chemical changes and its activity decreases. Therefore, it 

must be regenerated or replaced. However, the lifetime of the active catalyst is always greater 

than the duration of the reaction cycle(Figueiredo, J. L 1989). 

In addition to speeding up reactions, catalysts have the ability to influence the selectivity of 

the chemical reaction, which means that different products can be obtained from a common 

starting material using different catalytic systems; this means that by modifying the structure 

of the catalyst we can drive the reaction to a desired product(Jens Hagen 2006). 

Reactions with industrial interest must be fast and clean, which is often achieved at the 

expense of a catalyst. Therefore, the use of catalysts can be regarded as a variable (in addition 

to temperature, pressure, composition and contact time) that allows controlling the speed and 

direction of a reaction(Figueiredo, J. L 1989). 

The use of catalytic processes in industry has several advantages. The first and most important 

is the fact that thermodynamically favorable reactions in which the chemical equilibrium is 

not established at an economically acceptable time become viable. Furthermore, by using 

catalysts we can carry out reactions with less energy (lower temperature and pressure), which 

implies a considerable power gain and allows minor requirements of the manufacturing 

complex. 

Additionally, when reactions are performed under lower pressures and temperatures, side or 

secondary reactions are reduced and therefore fewer by-products are formed, thus increasing 

the selectivity for the desired products. Another equally important aspect of the industrial 

application of catalysis is the great atom economy of many catalytic processes(Clark, J. H. 2002). 
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2.1.1. Characterization of Catalytic Processes 

The properties to be considered when assessing the catalysts are selectivity, activity, stability, 

regenerability and mechanical and thermal properties(Jens Hagen 2006). 

Selectivity is the ability to direct the conversion of the reagent to a specific pathway and is 

defined as the number of moles of a product on the total amount of products and can be of 

different types, namely, chemoselectivity, regioselectivity and stereoselectivity(Bhadury, S. 2000). 

The activity of a catalyst is measured in accordance with the effect this has on the speed of a 

given reaction and can be determined, in practice, by the relative velocity of the catalytic 

chemical reaction (in comparison with the speed of the non-catalyzed reaction) or by other 

parameters, such as the temperature required to effect the conversion in a given period of time 

and under certain conditions. One way to compare the activities of various catalysts for a 

given reaction is to determine the speed of the reaction under the same conditions of 

temperature and concentration(Figueiredo, J. L 1989). 

The catalytic activity can also be expressed as the Turnover Number (TON) and the Turnover 

Frequency (TOF), where TON is the number of product molecules produced by each 

molecule of catalyst and TOF is TON per unit of time and quantifies the specific activity of 

the catalytic center for a given reaction under defined conditions through the number of 

catalytic cycles that occur in the center per unit time(Jens Hagen 2006). 

Stability (chemical, thermal and mechanical) is also very important, as a catalyst loses activity 

and selectivity with prolonged use, which can lead to its decomposition and contamination; 

the definition of stability is related to regenerability, which is the measure of the ability of the 

catalyst to have its activity and/or selectivity restored by some processes of regeneration(Jens 

Hagen 2006). 

 

2.2. Catalysis in Industrial Synthesis of Biologically Active Compounds 

The importance of catalysis in the pharmaceutical industry has increased steadily over the past 

two decades because of several interrelated factors: (i) the increasing demands in legislation, 

such as the policies of drugs with a single enantiomer and environmental protection (green 
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chemistry), (ii) the pressure to reduce costs and the time of drug development, and (iii) the 

rapid discovery of new catalysts. The interaction of these factors resulted in the frequent use 

of catalysis in research, development and production of pharmaceuticals(Jens Hagen 2006). 

The increasing complexity of the targeted chemicals and the average number of manipulations 

required to synthesize an active pharmaceutical ingredient (API) makes necessary the use of 

catalysts to achieve more compact and economic synthesis. It turns out that the development 

of a viable catalytic process for the industrial scale is a difficult task that requires the 

cooperation of multiple disciplines, including organic chemistry, analytical chemistry, 

biochemistry, process safety, chemical engineering, and spectroscopy. The aim of this 

multidisciplinary effort is to develop a robust process that operates at the lowest cost, with 

less waste and for the shortest time possible, and to this end both scientific knowledge and 

regulatory knowledge are needed. 

The process of drug development is highly regulated and controlled, and it requires the 

implementation of good manufacturing practices (GMP) in all phases of clinical development. 

Extensive studies should be conducted on the mechanism of reaction, the catalytic cycle, the 

formation of byproducts, the origin of selectivity, the limits of the process (DoE-design of 

experiment) and monitoring the reaction in real time by PAT (Process Analytical 

Technology)(Jens Hagen 2006). 

Based on these ideals, industrial chemistries involved in catalysis must work creatively to 

achieve the objectives of safety, efficiency, economy, sustainability, freedom to operate and 

regulatory compliance in order to develop a catalytic process that provides viable APIs on a 

large scale. 

 

 

 

2.3. Homogeneous Catalysis VS Heterogeneous Catalysis 

Catalysts may be categorized according to various criteria: structure, composition, application 

area or aggregation state in which they operate and, according to the last categorization, 

catalysts can be divided essentially into two major groups: homogeneous catalysts and 
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heterogeneous catalysts(Jens Hagen 2006). However, the rapid development of biotechnology and 

forms of immobilization of homogeneous catalysts on supports makes it difficult to classify 

them adequately. 

When catalytic processes occur in a uniform gas or liquid phase they are classified as 

homogeneous catalysis. The homogeneous catalysts are normally well defined chemical 

compounds or coordinated compounds which, together with the reactants, are molecularly 

dispersed in the reaction medium(Rinaldo, P. 2009). Examples of such catalysts are mineral acids 

and compounds with transition metals. 

Heterogeneous catalysis occurs in several phases and the catalyst is usually solid and the 

reagents are gaseous or liquid(Petrov, L. A. 2011). Examples of heterogeneous catalysts are chains 

of Pt/Rh (Ostwald process), supported catalysts and amorphous or crystalline 

aluminosilicates(Jens Hagen 2006). 

Whereas in heterogeneous catalysis the boundaries between the phases of the catalyst and the 

reagents are always present, in homogeneous catalysis the catalyst, the starting materials and 

the products are always in the same phase. As a result, this type of catalyst has a higher 

degree of dispersion, and, theoretically, each individual atom can be catalytically active; in 

heterogeneous catalysis only the surface atoms are active(Rinaldo, P. 2009; Petrov, L. A. 2011). 

Due to their high degree of dispersion, homogeneous catalysts exhibit a greater activity per 

unit of mass than heterogeneous catalysts. The high mobility of the molecules in the reaction 

mixture results in more collisions with the substrates, i.e., the reagents can reach the active 

site of the catalyst from any direction, and a reaction in an active center does not block 

neighbor centers. This allows the use of lower concentrations of catalyst and smoother 

reaction conditions(Jens Hagen 2006). 

In homogeneous catalysis the reaction site is well established and therefore it is relatively 

easy to understand the reaction mechanism by spectroscopic methods. In contrast, the 

processes occurring in heterogeneous catalysis are often obscure(Rinaldo, P. 2009; Petrov, L. A. 2011). 

Both homogeneous and heterogeneous catalysts play an important role in the chemical 

industry, but about 85% of the total catalytic processes are based on heterogeneous 

catalysis(Jens Hagen 2006). This is not only due to its sphere of action and increased thermal 

stability but also because in homogeneous catalysis it is very difficult to separate the catalyst 
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from the product, which makes it necessary to use complex processes such as distillation, 

liquid-liquid extraction or ion exchange. In heterogeneous catalysis, the catalyst can be 

automatically removed in the process or by simple methods such as filtration or 

centrifugation(Rinaldo, P. 2009; Petrov, L. A. 2011).  

It is noted that the comparison between homogeneous and heterogeneous catalysts is usually 

based on their activity and selectivity, and the ability to recover the catalyst, although there 

are other important characteristics to consider in this differentiation (Table 4). 

Currently, there is a marked interest in research to obtain an ideal catalyst that has the 

advantages of homogeneous catalysts (high activity and selectivity and good reproducibility) 

and of heterogeneous catalysts (long lifetime and ease of recovery)(Lücke, B. 2004). Unfortunately, 

heterogenized homogeneous catalysts still present some problems, such as leaching and the 

relatively low stability and high sensitivity to poisoning. 

 

 

 

 

 

 

 

 

 

 

Table 4- Comparison between homogeneous and heterogeneous catalysts.* 

  Homogeneous Heterogeneous 
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One way to achieve the heterogenization of homogeneous catalysts is via the immobilization 

of an active compound that is bound to an insoluble solid (support), which is typically a 

mesoporous solid (average pore diameter between 2 and 10 nm)(Lücke, B. 2004). In addition to 

improving the performance of the catalyst in terms of activity and / or selectivity, the main 

purpose of heterogeneity is to facilitate the separation, recovery and reuse of the catalyst 

allowing it to be more easily handled and less toxic than the homogeneous catalyst(Clark, J. H. 

2000). 

This support may be organic, a polymer (cross-linked polystyrene), or inorganic (silica, 

alumina, montmorillonite, zeolites and other aminossilicates)(Clark, J. H. 2000). 

The interaction between the reactants and the surface of the catalyst can be achieved by 

binding non-covalently (ionic bonding, hydrogen bonding forces, van-der-Waals forces) or by 

covalent chemical bonding(Figueiredo, J. L 1989). Catalysts with the non-covalent bond are usually 

easier to prepare but, due to the fact that these bonds are generally weak interactions, they 

Active centers All atoms Only the surface atoms 

Catalyst concentration Low High 

Selectivity High Variable 

Diffusion Problems Low Important 

Reaction Conditions Smooth Harsh 

Applicability Limited Wide 

Poison Sensibility Low High 

Structure Defined Less defined 

Action Mechanism Easy to determine Difficult to determine 

Possibility of modifying High Low 

Thermal Stability Low High 

Life Time Variable Long 

Product Separation Difficult Easy 

Recovery Expensive 

 

Affordable 

*Adapted from the literature(Rinaldo, P. 2009; Petrov, L. A. 2011). 
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have the great disadvantage of being partly destroyed by the leaching or during the separation 

and isolation of the products(Clark, J. H. 2000). 

Much attention has been directed to the development of complex heterogenized compounds in 

which the active sites are chemically bound to the support. The immediate advantages of 

greater stability and less tendency to leach, which greatly facilitate the reuse of the material, 

are counter-balanced by the increased complexity of the synthetic material, the adverse effects 

provoked by the proximity between the support and the reactive species, and the fact that the 

compound chemically immobilized on a material support cannot be considered an exact 

equivalent of the "free" analog (typically in solution). 

The use of spacer groups between the support and the functional group now permits a greater 

similarity between the immobilized and the free species. As a result, some of the main effects 

of the support become less significant and more of the reaction site is protruded into the 

solution phase. If the aim is for the immobilized species to behave similarly to the analogous 

free species, it is also important to maintain the structural integrity around the active 

centers(Clark, J. H. 2000). 

The heterogeneous catalysts on solid supports can be prepared via various methods; the most 

common are impregnation, precipitation, ion-exchange, the sol-gel method and the multi-

synthetic routes(Geus, J. W. 2001; Clark, J. H. 1998; Clark, J. H. 2000; Price, P. M. 2000; Campanati, M. 2003; Hoffmann, F. 2006). 

 

3. Porous Materials 

 
3.1. General Aspects 

Previously, we referred that the supports for heterogeneous catalysts are usually mesoporous 

materials. This raises the questions: what are porous materials? Why mesoporous materials? 

In this section these matters will be elucidated. 

By definition, a porous material is a solid matrix composed of an interconnected network of 

pores (voids) filled with a fluid (liquid or gas). Porous and highly dispersed materials 

represent a specific solid state and have numerous applications in research and industry and 
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their physical and chemical properties can be significantly changed by small alterations of the 

specific surface area and volume ratio. 

According to IUPAC, there are three classes of porous materials: microporous, mesoporous 

and macroporous(Sing, K. S. 1985), each category being related to a specific pore size regime 

(Table 5). 

Each pore size range corresponds to a characteristic nitrogen adsorption/desorption 

mechanism: in microporous materials, three-dimensional condensation of the adsorbate 

occurs inside a strong electromagnetic field induced by the narrow pore dimensions. 

Interphasic adsorbate–adsorbent interactions do not exist and the system properties are close 

to a single-phase. In mesoporous materials, adsorption proceeds via the consecutive formation 

of adsorbate layers which is completed by the phenomenon of capillary condensation. Due to 

their dimensions, macropores materials have porous properties similar in character to 

conventional flat surfaces and cannot be filled by capillary condensation(Greg, S. J. 1982). 

 

 

 

 

 

 

 

 

The diversity of adsorption properties is responsible for the different applications of porous 

materials. Due to strong Van-der-Waals interactions, micropores are ideally suited to liquid 

and gas-phase adsorption. On the other hand, mesopores are more suitable for liquid phase 

applications such as heterogeneous catalysis or chromatographic separation because of their 

low potential energy escape surfaces and their pore sizes, which allow a high loading of 

Table 5- IUPAC classification of pore size and adsorption mechanism.* 

Pore Type Size Regime 
Condensation 

Mechanism 

Micropore ˂ 2nm Three-dimensional 

Mesopore ≥ 2 ≤ 50nm Capillary 

Macropore ˃ 50nm No condensation 

*Adapted from literature(Sing, K. S. 1985). 
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accessible active sites and, importantly, provide efficient diffusion/mass transfer of liquid 

phase analyte or substrate(Rodríguez-Reinoso, F. 1998). The presence of macropores significantly aids 

system filtering properties and enhances the flow/mass transfer/diffusion properties of the 

material. It is important to note that in ‘‘real’’ materials, pore networks are usually composed 

of all three types of pore sizes (Figure 2)(Rodríguez-Reinoso, F. 1998). 

 

 

 

 

Well-established technologies benefit from the coexistence of micro and mesopores since 

solid porous materials with an inhomogeneous pore distribution are usually inexpensive and 

easily prepared(Zhang, F. 2008). The search for more efficient porous materials to be used in 

tomorrow’s nanotechnologies is increasing, with the main goals of improved selectivity, 

efficiency, tuneability and ultimately economics and sustainability. To reach this “greener” 

sustainable nanotechnology, it is necessary to have the ability to control and manipulate the 

properties of material porous networks. Highly microporous (size selectivity) and mesoporous 

materials (surface functionality dependent selectivity) are two classes which are currently the 

focus of extensive research attention(Zhang, F. 2008). 

 

 

 

3.2. Microporous Materials 

Figure 2. Schematic representation (a) three-dimensional and (b) two dimensional structure of an activated carbon. Adapted 
from literature(Rodriguez-Reinoso,, F. 1998). 
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Molecular Sieves are a major subclass of microporous materials, exemplified by the 

aluminosilicate (zeolite) family, which are structured regular arrays of uniformly-sized 

microporous channels, with the largest pore diameters so far synthesized in the 0.8–1.3 nm 

range(Beck, J. S. 1992 JACS). 

Due to the narrow pore dimensions, these materials are used for shape/size selective catalytic 

transformations, and one of the classical applications of these materials is heterogeneous 

catalysis. On the other hand, the size selectivity advantage is one of the limitations of zeolites 

in catalytic processes involving molecules larger than the material pore dimensions (e.g. drug 

intermediates). 

 

3.3. Mesoporous Materials 

As per before, the demands for environmentally-friendly technologies, processes and products 

have led to an increase in research efforts regarding pore size manipulation, structuring and 

surface modification. Mesoporous materials arguably form the foundation for the generation 

of the future nanotechnologies needed in a sustainable society. 

Beck et al. were responsible for the breakthrough in mesoporous materials’ research, 

regarding the preparation of ordered mesoporous aluminosilicate molecular sieves (M41S or 

Mobil Composition of Matter (MCM) materials), in which they exploited, for the first time, 

the use of ‘‘liquid crystal templating (LCT)’’ to direct pore size into the mesoporous range, 

demonstrating the preparation of materials with ordered pore structures and pore sizes ranging 

from 2 to 10 nm (Figure 3)(Beck, J. S. 1992 Nat). 
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The LCT mechanism exploits micelle formation and solvent polarity to create inorganic walls 

between the surfactant liquid crystal structure and the growing inorganic species. The 

geometry of the materials may be controlled by the symmetry of the supramolecular assembly 

of surfactant molecules in the solvent–silicate solution. 

This discovery has created significant attention around mesoporous materials, especially in 

areas where diffusion of the species within the pore network is essential (catalysis), as well as 

in separation and adsorption of large molecules such as proteins and enzymes (Beck, J. S. 1992 Nat). 

Mesoporous materials easily functionalized (Mesoporous aluminosilicates, transition metal 

oxides (e.g., Ti, V, or Mn)(Taguchi, A. 2005), polymers(Johnson, S. 1999) and carbonaceous materials(Lu, 

A. 2005)), to give specific physical and chemical properties, have been of great interest and 

vastly explored in the past decade. Although these approaches allow extensive manipulation 

of textural properties, these inorganic materials are limited in terms of the surface chemistry 

available (e.g., for post functionalization), and in terms of applications where electron rich 

surfaces are desirable (e.g., graphitic carbon-chromatography). 

 

4. Carbon-based Materials 

 
4.1. General Introduction 

Figure 3. Mesoporous silicates produced by a templating method. Adapted from literature(Beck, J. S. 1992) 
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Approximately 1 million tons/year of activated carbons (AC) are used in a wide range of 

applications (water treatment, gas purification, decolourisation and absorbency) and are 

typically derived from low cost renewable materials (e.g. coconut, wood and fruit stones). 

Classical AC preparation generates microporous materials with average pore diameters of less 

than 2 nm(White, R. J. 2009). 

Although these materials have different applications, such as catalysis, electrochemistry, fuel 

cells, biomedical devices, hydrogen storage and automotive components, they present some 

limitations at an industrial level, partially due to the requirement for tuneable mesoporous 

carbon materials. Routes to such materials are resource and process intensive, not easily 

accessible and expensive from an industrial point of view. 

Therefore, new synthetic approaches that are green, inexpensive, non-resource and process 

intensive are still required, allowing the production of tuneable materials with mainly 

mesoporous characteristics with chemically active surfaces, which may be produced in a 

facile manner(White, R. J. 2009; Knox, J. H. 1997). 

 

4.2. Mesoporous Carbonaceous Materials 

There are four major synthetic routes to porous carbon materials: (i) Hard Templating (use of 

porous inorganic templates); (ii) Soft Templating (direct carbonization of polymer blends 

consisting of carbonizable and pyrolyzable polymers); (iii) Polymer Aerogel Precursor 

Carbonization; (iv) Traditional Chemical and Physical Activation of Carbon. 

One of the best examples of Hard Templating on an industrial scale was developed by Knox 

and Ross in 1979(Knox, J. H. 1997), where a highly porous HPLC silica gel is impregnated with a 

phenol-formaldehyde mixture to give a phenol-formaldehyde resin/silica hybrid. 

This hybrid compound is then carbonized at temperatures ˃ 1000ºC (under N2 or Ar) and the 

siliceous component is removed using strong alkali solution. The product of this pyrolysis 

forms a glassy carbon, originating the name “porous glassy carbon (PGC)”. 

PGC materials possess excellent textural properties, high mesoporosity, large pore volume (≤ 

0.85cm3g-1) and low microporosity, which make them ideal stationary phase media for 
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chromatography. However, they present a disordered pore structure with limited scope for 

manipulation of pore network or post chemical functionalization(Knox, J. H. 1997). 

This methodology inspired the use of different inorganic hard templates to generate novel 

ordered mesoporous carbon materials, typically at the expense of particle morphology and 

low micropore content(Kruk, M. 2000; Bazula, A. 2008). This approach includes the following steps: (i) 

Preparation of a silica gel with controlled pore structure (e.g., MCM-48). (ii) 

Impregnation/infiltration of template with monomer or polymer precursor. (iii) Cross-linking 

and carbonization of the organic precursors. (iv) Template removal via acidic or caustic 

dissolution of the inorganic matrix. 

The interest in mesoporous carbons due to their chemical inertness, stability and inherent 

advantages over classical microporous AC originated many different synthetic approaches, 

with the primary goal of providing mesopore size extension.  

Despite all their advantages, ordered mesoporous carbons do not have macropore character 

(i.e., pore diameters ˃ 50 nm) and those features are advantageous because they enable the 

rapid transport of gases and liquids to the active sites within the smaller pore size range. A 

secondary macropore template is, therefore, necessary. Baumann and Satcher used 

polystyrene (latex) spheres to introduce 100 nm macropore character into a 6 nm pore 

diameter mesoporous carbons structure(Baumann, F. T. 2003). 

In later works, soft templating techniques have been used (typically employed in the 

generation of mesoscopically ordered inorganic solids) to produce mesoporous carbons. A 

dilute aqueous route for the direct synthesis of mesoporous polymer (FDU-14) and carbon (C-

FDU-14) materials via the self assembly of p123 triblock copolymer templates, using resols 

as carbon precursor has been reported by Zhang et al.(Zhang, F. 2005). Unfortunately, this 

technique suffers from the same limitations as hard template routes, materials present small 

mesopore size with diameter inferior to 10nm and developed microporosity. 

Studies using soft templating of mesoporous carbons with renewable biomass precursors (e.g., 

sugars) are recent. Therefore, the preparation of useful materials using a simple efficient 

methodology that employs renewable sustainable carbon precursors would mark major 

progress in this field. In this Thesis a new type of mesoporous carbonaceous material called 

Starbon® will be reported. 



New Sustainable Processes Catalyzed by Acids with Interest in Pharmaceutical Chemistry 

Lígia Mesquita	  

~ 26 ~ 
 

 

5. Steroid Chemistry 

 
5.1. Steroids in Organic and Medicinal Chemistry 

Steroidal compounds are widely distributed in nature and have been extensively investigated 

in recent decades. They exist in different living beings, both animals and plants, and play an 

important role in their vital activity as physiological regulators(Noguchi, K. K. 2011), 

hormones(Mendre, K. A. 2011), pro-vitamins(Lal, A. 2010), among others. 

In the pharmaceutical industry these compounds are used as functionalized substrates in the 

synthesis of many biologically active molecules, either via chemical routes or via 

microbiological routes. 

The early research on steroids was somewhat complicated, because these compounds were 

isolated mainly from animal sources, which made it difficult to obtain large amounts(Goswami, A. 

2003) of product. This was until Marker and his collaborators (in the 1940s) described the 

preparation of 16-dehydropregnenolone acetate via controlled degradation of the side chain of  

diosgenin, which was isolated from the Mexican wild yam root, Dioscorea macrostachy 

(plant of the Dioscoriáceas’ family). 

This process is called "Marker’s degradation", and its discovery led to intense research into 

the chemistry of steroids in the following years, as 16-dehydropregnenolone acetate can be 

chemically modified to originate a large variety of steroids, such as progesterone(Goswami, A. 

2003). 

From that moment until now, hundreds of steroid compounds have been isolated from natural 

sources and several thousands have been obtained synthetically. There is ongoing intense 

research to isolate and identify new steroid compounds with new natural biological 

activities(Ivanchina, N. V. 2006). 

Many synthetic steroids are presently used in the treatment of various diseases, such as 

hormone-dependent cancers(Hoffmann, J. 2005) (e.g., breast cancer and prostate cancer). Others are 

oral contraceptives(Paulos, P. 2010), anti-inflammatory corticosteroids(Liguori, A. 2006), anabolic 
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steroids(Sheri, A. H. 2010), neurosteroids(Chisari, M. 2010) and bile acids(Pathil, A. 2011). In addition, 

estrogens, progestagens are used as therapeutic drugs for various hormonal imbalances(Paulos, P. 

2010). 

Steroids have multiple chiral centers that allow, via relatively simple chemical reactions, to 

obtain isomerically enriched products, and, due to their complexity, stereoselective reactions 

are fundamental. Because these compounds have several sites that are susceptible to oxidative 

attack and other types of reactions, the study of regio and chemoselective transformations 

assumes great importance(Felix A. Carroll). 

In summary, the pharmacobiological properties of steroids and the high cost of their synthesis 

justify the importance given to the development of new regio-, stereo- and chemoselective 

manufacturing processes with high yields, as well as the studies that have been carried out 

over the years. 

In this context, steroid molecules have been chosen as substrates for the development of new 

chemical processes using StarbonR400-SO3H as a catalyst, which is the subject of this thesis. 

Therefore, a brief overview of their structure and basic nomenclature will be presented in the 

next pages. 

 

5.2. Structure and Nomenclature of Steroids 

A steroid molecule is an amphipathic organic compound (containing a hydrophobic and a 

hydrophilic region) that has a specific arrangement of four cycloalkanes rings linked together. 

Steroids have a chemical structure containing the core of gonane (Figure 4), or a skeleton 

derived from it, which is composed of three cyclohexane rings (A, B and C), the phenanthrene 

skeleton, and a cyclopentane ring (D). The entire structure is called 

cyclopentanoperhydrophenanthrene(Moss, G. P. 1989). 

Steroids differ in the additional functional groups (alcohol, aldehyde, ketone, carboxylic acid) 

attached to the four rings of the core, in the configuration of the side chain, in the number of 

methyl groups and in the oxidation state of the rings. The four steroid rings are labeled and 

their carbon atoms are numbered according to the IUPAC-IUB Joint Commission on 

Biochemical Nomenclature(Moss, G. P. 1989). 
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Figure 4. Cyclopentanoperhydrophenanthrene: the simplest steroid. 

 

Steroids exist predominantly in eukaryotic cells, with cholesterol being the most abundant. It 

contains 27 carbons, one hydroxyl group at carbon C-3, methyl groups at carbons C-13 and 

C-10, designated as 18-CH3 and 19-CH3, respectively, and one branch of aliphatic 

hydrocarbons (8C) at carbon C-17 (Figure 5). 

The methyl groups (18-CH3 and 19-CH3) are above the plane of the steroid skeleton and, by 

convention, have a β-configuration. All the other atoms located above the plane have β-

configuration and the ones located below the plane have α-configuration(Brueggemeier, R. W. 2003; 

Hill, R. A. 1991). 
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Figure 5. Structure of cholesterol. The angular methyl groups, the side-chain and the configuration of the hydrogen atoms at ring 
junctions are shown. 

 

The three-dimensional structure of steroids is not planar; the cyclohexane rings exist in the 

preferred chair conformation to minimize strain. Consequently, its substituents can be located 

in the axial or equatorial positions. The cyclopentane ring exists in a half-chair or open-

envelope conformation. The presence of substituents in the steroid core may force distortions 

or alternative conformations(Brueggemeier, R. W. 2003; Hill, R. A. 1991). 

In most cases, naturally occurring steroids have B/C- and C/D-diequatorial trans-fused rings, 

with configurations at bridgehead positions C8, C9, C13 and C14, as shown in figure 4 for 

cholesterol: 8β-H, 9α-H, 13β-CH3 and 14α-H(Brueggemeier, R. W. 2003; Hill, R. A. 1991). 

 The configuration at C5 is slightly different because it varies from steroid to steroid. 

Therefore, two possible ring fusions are observed between rings A and B. When the 

substituent at C5 possesses 5α-configuration, the steroid has A/B diequatorial (5α, 10β)- trans 

fused rings and is designated as 5α-steroid. In contrast, the C5 substituent of 5β-steroids is β-

oriented and are characterized by A/B axial-equatorial (5β, 10β)- cis fused rings (Figure 

5)(Brueggemeier, R. W. 2003; Hill, R. A. 1991). 
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Figure 6. Representation of 5α-steroid (1a and 1b) and 5β-steroid (2a and 2b). 

 

The systematic names of steroids have been developed by the IUPAC-IUB Joint Commission 

on Biochemical Nomenclature and are based on the hydrocarbon skeleton(Moss, G. P. 1989): 5α- or 

5β- gonanes with 17 carbons and without methyl groups, 5α- or 5β- estranes with 18 carbons 

and one methyl group at carbon 13 (estrogen), 5α- or 5β- androstanes with 19 carbons and 

methyl groups at carbons 10 and 13 (androgens). When steroids have methyl groups at 

carbons 10 and 13 and a side chain at carbon 17 they can be 5α- or 5β-  pregnanes with 21 

carbons (progesterone and corticosteroids), 5α- or 5β- cholanes with 24 carbons (bile acids), 

5α- or 5β- cholestanes with 27 carbons (cholesterol and other sterols), among others(Moss, G. P. 

1989).  

All steroids are derivatives of these parent hydrocarbons and their different characteristics are 

due to different functional groups present in the molecule. These may be ketone and hydroxyl 

groups or double bonds, as observed in the structure of cortisol, carboxyl or aldehyde groups 

like the ones present in bile acids and aldosterone, respectively, or aromatic rings like in 

estradiol and other steroids with 18 carbons (Table 6). Their nomenclature follows the general 

recommendations for the nomenclature of organic compounds(Moss, G. P. 1989). 

 

 

Table 6- Different functional groups present in steroid molecules* 
 Steroid 
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6. General Objectives 

The emphasis of science and technology is shifting towards environment-friendly and 

sustainable resources and processes. The recognition of the importance of the principles of 

Green Chemistry has identified catalysis as the key technology for the design and synthesis of 

new chemical entities. 

The discovery of functional solid materials of high catalytic performance is crucial to most 

chemical processes as they allow the replacement of polluting homogeneous catalysts by 

reusable heterogeneous catalysts. 

Starbon®400-SO3H is a sulfonated mesoporous graphitizable carbon synthesized from 

mesoporous expanded starch without the need for a templating agent. It is proven to have 

catalytic activity in different acid-catalyzed reactions. 

	  
 

 

	  
 

	  

	  
 

 

	  
 

 
*Adapted from literature(Moss, G. P. 1989).  
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Steroid molecules have a wide range of applications in organic and pharmaceutical chemistry. 

For this reason, the development of chemical processes that can be used in steroid chemistry 

is of great interest. 

Taking into account the above mentioned considerations, the main goal of this Thesis is the 

development of new chemical processes using Starbon®400-SO3H as a catalyst in steroid 

chemistry. 

In recent years, studies on the ring-opening of epoxides to create amides by nitriles have been 

published. Recent work by Salvador et al. reported that 5α,6α-epoxysteroids can be converted 

into the corresponding acylamino-hydroxy products under Ritter reaction conditions using 

bismuth salts as catalyst.  

Based on that work, the one-step conversion of epoxysteroids into the acylamino-hydroxy 

compounds using Starbon®400-SO3H as a catalyst under Ritter reaction conditions will be 

evaluated, with the aim of obtaining new steroid molecules of considerable biological interest. 

The final goal of this work is to establish Starbon® materials as adequate catalysts for 

chemical processes within steroid chemistry. 



	  

 

 

 

 

 

 

 

 

II. New Sustainable Processes 
Catalyzed by Starbon®400-SO3H under 

Ritter Reaction Conditions 
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1. Introduction 

 
1.1. Starbons®: Starch-Derived Mesoporous Carbonaceous Materials 

As exposed before, the outstanding potential of mesoporous carbonaceous materials requires a 

methodology that grants control over their surface area and distribution of pore sizes. The best 

method to achieve this is the templating route. 

Nevertheless, the highly aggressive chemicals involved limit this approach to the production 

of stable graphitic carbons with inert hydrophobic surfaces(Jeong, S. 2005) and the 

functionalization requires difficult chemical modifications that reduce the availability of the 

mesopores(Li, Z. 2005). 

Daniels et al. reported a new approach for the generation of mesoporous carbonaceous 

materials is reported. This method uses the degree of carbonization to control the range from 

hydrophilic to hydrophobic of the mesoporous carbonaceous materials’ surfaces. The natural 

ability of the amylase and amylopectin polymer chains within the starch granules to assemble 

into an organized nanoscale lamellar structure that has crystalline and amorphous regions is 

used(Daniels, D. R 2004). Mesoporous carbons (Starbons) are synthesized by using mesoporous 

expanded starch(Milkowski, K. 2004; Budarin, V. 2005) as the precursor without the need for a templating 

agent. 

This process allows the production of a whole range of mesoporous carbon-based materials 

from starch to activated carbon, including amorphous oxygen-containing carbons that, due to 

their varied surface area, have many applications, such as catalysis(Son, S. U. 2000; Toda, M. 2005), 

adsorption(Ko, D. C. 2000) and medicine(Orisakwe, O. E. 2001; Otero, M. 2004). 

 

1.2. Porous Polysaccharide-derived Materials (PPDMs) 

Nature provides a wide range of organic polymers (e.g., polysaccharides) with different 

structures and storage functions in higher plants (Table 7). 
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These biomaterials are organized from the nanoscale to the macroscopic scale to give 

hierarchical materials that are sculpted with complex forms (spirals, spheroids and skeletons). 

The future of the research of mesoporous carbonaceous materials may lay on these available 

pre formed porous structures. 

Clark et al. have reported the manipulation of polysaccharides in the aqueous phase to 

generate highly mesoscopic gels, the structure of which may be maintained in a final dried 

product via a solvent exchange/drying procedure(White, R.J. 2009). Gel ordering of the 

polysaccharide upon recrystallization from the gelation step promotes the formation of an 

amphiphilic network, in which hydrogen bond formation between associated polysaccharide 

chains is the key to phase separation and subsequent gel mesophase development. 

Polysaccharides have thermal properties that present a short melting stage (e.g., hydrogen 

bond network breakdown) followed by a main sharp endothermic decomposition (ca. 280ºC). 

To avoid the destruction of the mesopore polysaccharide (e.g., starch) network, a strong 

Table 7- Examples of natural occurring organized biological structures.* 

Structured biological 

material 

Principal components 

Mineral Organic 

Shells Calcium carbonate Chitin 

Horns Calcium phosphate Keratin 

Bones Hydroxyapatite Collagen 

Teeth Hydroxyapatite - 

Bird beaks Calcium phosphate Keratin 

Insect cuticle - Chitin 

Plants - 
Cellulose, Lignin, 

Hemicellulose 

Spicules Silica - 

Starch - Starch 

*Adapted from literature(White, R.J. 2009). 
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Bronsted acid catalysis (e.g. p-toluene sulfonic acid) was used to promote non-acidic 

polysaccharide dehydration at temperatures below the sharp endothermic decomposition (ca. 

120-150ºC), to facilitate crosslinking and fixing of the mesoporous network(Daniels, D. R. 2004). 

This technique worked very well for the generation of porous precursors from starch, which is 

composed of both linear α(1→4) amylose and branched α(1→4) and α(1→6) amylopectin 

that self assemble within the starch granule to generate a semi-crystalline polysaccharide 

composite, presenting crystalline dimensions in the mesopore size range (i.e. 4–5 nm)—

attributed to spatial gaps in the crystalline amylopectin macromolecular structure, normally 

occupied by the amorphous amylose content of the granule(Daniels, D. R. 2004). 

Systematic studies of synthetic amylose/amylopectin mixtures revealed that mesoporosity 

showed a strong negative linear dependence on the amylopectin content of the gel mixture 

(Figure 7)(White, R. J. 2008).  

These results indicated that the key component to achieve highly mesoporous starches was a 

minimal amylose content, whilst materials with higher polymer ordering could be prepared by 

increasing the amylopectin content. Further subtle manipulation of the morphology and 

textural properties of high amylase starch based porous materials were performed, using 

(microwave) gelatinization temperature as a control vector, and pointed to the possibility of 

producing materials from the same polysaccharide with differing tuneable textural properties 

via the generation of differing metastable gel states(White, R. J. 2008). 
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1.3. Starbon® Synthesis 

Starbons® are a new family of highly mesoporous carbon-based materials with tuneable 

physico-chemical properties. Their low temperature generation is due to the initial acid-

catalyzed thermal conversion of mesoporous starch-derived PPDMs into stable 

nanostructured porous carbonaceous materials(Budarin, V. L. 2007).
 

These materials reveal mesoporous textural properties, with pore sizes and volumes equal to 

those observed in materials prepared via hard template routes, and their flexibility in terms of 

carbonization temperature allows the possibility of tuneable surface chemistry. This is a 

feature that is not provided by the hard template route, as it needs a high temperature 

carbonization (˃ 700ºC), or by soft template based on the self-assembly and polymerization 

gel properties of aromatic compounds, as it chemically limits the post-processing surface 

functionality available(Atkin, N. 1998; Budarin, V. L. 2007). 

Because no template is used, wasteful processing steps and harmful chemicals are avoided, 

and materials can be prepared at a temperature of choice (e.g., 200-1000ºC). This allows 

surface chemistry tuneability amenable to facile post-modification strategies. Consequently, 

Figure 7. Relationship between mesopore volume, polymer ordering (A1047 cm-1/A1022 cm-1) and amylopectin (% mass) 
content in synthetic mixtures of the α-D-polysaccharides amylose and amylopectin. Adapted from the literature(White, R. J. 

2008). 
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the hydrophilicity vs. hydrophobicity properties may be moderated, generating the possibility 

of designer material synthesis for specific applications(Budarin, V. L. 2007). 

Starbons® synthesis comprises three main stages: Expansion, Drying and Pyrolysis (Figure 

8)(Atkin, N. 1998; Shamai, K. 2004; White, R. J. 2008). In the final stage of the process, the mesoporous starch 

is doped with a catalytic amount of organic acid (e.g. p-toluenesulfonic acid) and heated 

under vaccum(Budarin, V. L. 2006). This enables fast carbonization and fixing of the mesoporous 

structure. 

Heating at different temperatures (150-700ºC) has produced a variety of mesoporous 

materials from amorphous carbons to graphite-like activated carbons. As native starch 

granules do not produced mesoporous materials when carbonized, the formation of expanded 

starch as a precursor to starbon® is crucial. 

 

 

 

Figure 8. Diagrammatic representation of the main processing steps in the production of starch-derived Starbon® materials. 
Adapted from the literature(Budarin, V. L. 2007). 
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1.4. Starbon® Properties and Characterization 

The porous structure of the starch precursor is preserved in the Starbon® product, which 

prevents the problem of micelle collapse that occurs in micelle templated polymer methods 

for the synthesis of mesoporous carbons(Li, Z. 2004) and removes the need for synthesis of 

mesoporous templates, such as silica, to define the structure. 

The granular morphology of mesoporous starch can be maintained during pyrolysis with only 

minor changes due to shrinkage. The porous/textural properties of starch-derived Starbons® 

were characterized via N2 sorption studies (Table 8). 

 

Table 8- Physical analysis of starch and starch-derived Starbon® materials* 

Material Surface area 

(m2g-1) 

Pore Volume 

(cm3g-1) 

C/O atomic 

ratio 

Surface 

energy 

(EDR 

kJmol-1) 

Pore 

diameter 

(nm) SBET Mesoporous Total Mesoporous EA XPS 

Mesoporous 

Starch 
184 160 0.62 0.61 1.20 1.10 7.4 7.6 

Acid/doped 

Mesoporous 

starch 

230 170 0.67 0.66 1.20 1.30 8.2 8.6 

Starbon®100ºC 179 171 0.67 0.61 1.26 1.34 6.9 10.5 
Starbon®150ºC 172 137 0.68 0.58 1.55 1.99 6.5 10.4 
Starbon®220ºC 151 90 0.57 0.42 2.71 2.73 10.5 16 
Starbon®300ºC 293 60 0.53 0.37 3.43 3.79 17.7 17.2 
Starbon®350ºC 332 65 0.56 0.38 5.00 5.10 18.2 16.8 
Starbon®450ºC 475 70 0.52 0.32 6.01 6.04 20.6 14.5 
Starbon®600ºC 528 153 0.62 0.43 7.53 7.55 24.4 12.1 
Starbon®700ºC 538 158 0.73 0.55 8.54 8.50 26.6 10.6 
Starbon®800ºC 600 167 0.63 0.43 8.60 8.60 25.8 7.0 

*Adapted from the literature(White, R. J. 2009). 

The total pore volume (0.4-0.6 cm3g-1) and the average pore diameter (8-16a nm) indicate a 

predominance of mesopores throughout the carbonization process. This diameters are greater 

than 5 nm, which is the typical pore size for carbons prepared by the templating method(Lu, A. 

2005). Although there is a substantial increase in the contribution of microporous region to the 
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total surface area, the actual volume that this corresponds to is small in comparison to the total 

mesoporous volume. 

Table 8 also indicates that Starbon® combines both carbon and starch-like properties at lower 

preparation temperatures, and progressively gains more carbon-like characteristics with 

increasing temperatures. This is demonstrated by the surface energy, EDR, (from the Dubinin–

Radushkevich model) that has an overall increase as the carbonization preparation 

temperature rises. More starch-like properties are retained up to a temperature of 150 ºC, 

above which there is gradual change towards increasingly carbon-like properties(Budarin, V. L. 

2006). 

The properties obtained from TGA, 13C CP MAS NMR and XPS spectroscopy and DRIFT 

are summarized in Figure 9. It can be seen that there is a progressive increase in the 

hydrophobicity of the functional groups present, from a starch to graphite-like structure above 

700ºC.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Distribution of functional groups on starbons prepared at different temperatures: color scale to indicate 
relative amounts of different groups (black represent highest). Tp=temperature of starbon preparation. Adapted from 
the literature(Budarin, V. L. 2006)). 
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In the first step (100–200ºC), the CH2OH groups in the starch condensed to carbonyl groups 

conjugated with olefinic groups. The second step (150–450ºC) involves the progressive 

degradation of these groups to form aliphatic and alkene/aromatic functions. In the 

penultimate step (300–600ºC), these aliphatic groups are almost completely converted to 

aromatic π systems. Finally, as the temperature increases, these aromatic compounds 

condense to form graphite-type structures(Budarin, V. L. 2006; White, R. J. 2008). 

Starbons® prepared at the temperature range of 100–700 ºC present accessible surface 

functionality that is ideal for chemical modification (e.g., silylation, alkylation, esterification, 

etherification, amination), allowing post functionalization strategies to further manipulate 

their physical and chemical properties; arguably features not typical of the synthesis of other 

porous carbons. Information about the mechanism of starch decomposition is useful to predict 

the temperature of Starbon® preparation for certain applications(Budarin, V. L. 2006). 

 

1.5. Starbon®400-SO3H: Preparation and Applications in Organic 

Chemistry 

  
1.5.1. Heterogeneous Catalysis 

Solid acid catalysts are present in a wide variety of industrially important chemical 

transformations. Starch-derived Starbon® materials, treated with sulfuric acid, provided a 

series of porous solid Brønsted acids that were shown to be efficient catalysts in a wide range 

of acid catalyzed processes including esterifications of organic acids in aqueous medium, 

acylations of alcohols and amines, and alkylations of aromatics(White, R. J. 2010). 

We will focus on Starbon®400-SO3H, the sulfonated Starbon® that we used in the 

experimental work of this Thesis. This catalyst is produced via a carbonization at 400ºC and a 

subsequent functionalization. The material is suspended in H2SO4 (99.999% purity, 10mL 

acid per g material) and is heated for 4h at 80ºC. After sulfonation, the solid acid is washed 

with distilled water until washings became neutral, conditioned in boiling toluene (150ºC, 4h) 

and water (100ºC, 3h) and finally oven dried over night (100ºC). 
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The catalytic power of Starbon®400-SO3H was tested in the esterification(Budarin, V. L. 2007) 

reaction in aqueous ethanol of four different substrates (succinic, fumaric, levulinic and 

itaconic acids), yielding a very high conversion and selectivity to their respective esters. The 

rates of esterification of diacids (succinic, fumaric and itaconic) for Starbon® were between 5 

and 10 times higher than for any commercial alternative solid acid catalyst (zeolites, sulfated 

zirconias, acidic clays, etc.). A diester selectivity improvement (from 35–50% range for the 

majority of the solid acids to ˃90% for Starbon® at conversion levels of ca. 90%) was also 

obtained(Budarin, V. L. 2007).  

Acylation(Budarin, V. L. 2007) reaction catalyzed by Starbon®400-SO3H performed under 

microwave conditions provided very good results, in terms of conversion and selectivity, for a 

wide range of substrates, in a very short period of time (less than 10 min). Starbon® catalyzed 

benzyl alcohol acylation reaction was between 5 and 10 times higher than that of any of the 

reactions using commercial catalysts [microporous beta-25zeolite (SiO2/Al2O3 ratio 25), 

mesoporous Al-MCM-41 and acidic Montmorillonite KSF] and 2 times higher than that of 

reactions using similar sulfonated microporous carbonaceous materials(Budarin, V. L. 2007; Constable, 

D. J. 2007). 

The acylation of amines(White, R. J. 2009) to prepare amides is an important transformation in 

organic chemistry. The efficient and atom economic preparation of aromatic amides via N-

acylation of amines was successfully carried out using Starbon®400-SO3H as heterogeneous 

catalyst under microwave irradiation. Quantitative conversions of starting material were 

typically achieved in 5–15 min with very high selectivities to the target product, applicable to 

a wide range of compounds (including aromatic and aliphatic amines), substituents and acids. 

Starbon® acids provided starkly improved activities compared with other acid catalysts, 

including zeolites, Al-MCM-41 and acidic clays(Constable, D. J. 2007). 

Starbon®400-SO3H was tested in the liquid-phase alkylation(Budarin, V. L. 2007) of different 

aromatic substrates with benzyl chloride under microwave conditions. Sulfonated Starbon® 

afforded the alkylated compounds in very good yields and selectivity, where only either the o- 

or p- monoalkylated products were found, except for the m-xylene alkylation, in which a p-/o- 

3:2 ratio mixture was found. The rate of Starbon®400-SO3H catalyzed reaction was at least 

comparable with that of beta-25 zeolite catalyzed reaction, and it was much higher than the 
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rate afforded by the other catalysts tested, including sulfated zirconias (SZr) and mesoporous 

Al-MCM-41 materials(Budarin, V. L. 2007).  

Other studies using the catalytic aspect of Starbon® were published, such as redox catalysis 

using supported metal nanoparticles. Pd-starbon® materials converted phenols, napthols and 

dihydroxybenzenes into cyclohexanones, tetrahydronaphtols and hexanones, 

respectively(Makowski, P. 2008), and Ru-starbon® materials catalysed the hydrogenation of a variety 

of biomass platform molecules, including succinic, fumaric, itaconic, levulinic and pyruvic 

acids in aqueous solutions under mild reaction conditions(Luque, R. 2010). 

In summary, it was demonstrated that it is possible to harness the natural ability of plant 

starch to form nanochannelled structures without the need for a templating agent. This 

provides an entirely new, simpler, and less wasteful route to the mesoporous graphitizable 

carbons named Starbons®. Because of the diversity of surface functional groups, Starbons® 

can easily be modified. This, in conjunction with a high surface area in the mesoporous region 

and mechanical stability, makes Starbons® particularly suitable for applications such as 

catalysis and chromatography. 

 

2. New Sustainable Processes Catalyzed by Acids with Interest in 

Pharmaceutical Chemistry 

On Chapter I, we presented the importance of the Green Chemistry Principles applied to 

process chemistry to obtain new chemical procedures more efficient and clean. In this section 

we describe the use of acid catalysis in new environmentally friendly processes, providing 

suitable and greener alternatives as well as relevant biological molecules for the 

pharmaceutical chemistry. 

One of the most fundamental processes in organic chemistry is the formation of a carbon-

nitrogen bond, being the synthesis of amides an important reaction in pharmaceutical 

chemistry(Ritter, J. J. 1948; Constable, D. J. C. 2007). For these reasons, we focused our attention in the 

Ritter Reaction. 
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2.1. The Ritter Reaction 

The Ritter reaction is named after John J. Ritter, an American Chemist who, in collaboration 

with his student P. Paul Mineri, described the formation of an N-substituted amide via the 

addition of nitriles to alkenes in the presence of concentrated sulphuric acid (scheme 3)( Ritter, J. 

J. 1948; Constable, D. J. C. 2007).  

 

Scheme 3. Ritter Reaction of alkenes and alcohols: synthesis of N-substituted amides(Guérinot, A. 2012). 

	  

Since this discovery in 1948, Ritter and co-workers have preformed the Ritter reaction with a 

wide range of nitriles(Krimen, L. I. 1969), including dinitriles(Benson, F. R. 1951) and unsaturated 

nitriles(Plaut, H. 1951), which were added to a variety of compounds capable of forming 

carbonium ions, such as alcohols(Ritter, J. J. 1948) (scheme 3), carboxylic acids and esters(Ritter, J. J. 

1956). 

The known reaction mechanism involves protonation of an alcohol or alkene, to generate a 

carbonium ion that adds to the nitrile to afford a nitrilium ion that is subsequently trapped 

with water resulting in N-substituted amides (scheme 4)(Hathaway, B. A. 1989; Colombo, M. I. 2002;	  Li, J. J 

2006). 
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Scheme 4. Mechanism for the Ritter reaction of alkenes and alcohols(Hathaway, B. A. 1989; Colombo, M. I. 2002;	  Li, J. J 2006). 

 

A recent review about this matter was published by Guérinot and co-workers, were new 

applications and progress in the field of Ritter-type and multicomponent reactions is 

summarize(Guérinot, A. 2012). 

Green approaches have been used recently in the Ritter Reaction. In 2008, Yadav and co-

workers used phosphomolybdic acid supported in Silica gel (PMA-SiO2) to convert alcohols 

into their corresponding amides in excellent yields(Yadav, J. S. 2008). This method offered high 

conversions, short reaction times, cleaner reaction times and the use of inexpensive and 

readily available PMA-SiO2. 

Ma’mani et al. also used the Ritter Reaction to obtain amides from alcohols in high 

yields(Ma’mani, L. 2010). They used HClO4-functionalized silica-coated magnetic nanoparticles as a 

catalyst, since it can be simply removed using an external magnetic device, enhancing product 

purity, and recycled, promising economic. Ionic liquids had been used by Kalkhambkar et al. 

for the high yield synthesis of amides under Ritter Reaction conditions using alcohols and 

nitriles(Kalkhambkar, R. G. 2011). 

In addition, epoxides were used as substrates for the Ritter reaction. Norman et al. reported 

that epoxides could be efficiently converted into 1,2-hydroxycarboxamides under Ritter 
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reaction conditions(Johansen, S. K. 1999). Higher yields were obtained in the presence of BF3.OEt2 

than with H2SO4 and SnCl4.  

In 2005, the formation of (2R,3S) and (2S,3S)-1,3-diaminoalkan-2-ols from the opening of the 

ring of the enantiopure (2R,1’S) and (2S,1’S)-2-(1aminoalkyl)epoxides under Ritter Reaction 

conditions, with total selectivity and high yields, was described by Concéllon and co-

workers(Concéllon, J.M. 2005). 

A new and easy method to obtain trifluoromethyl diamino alcohols by the ring opening of a 

trifluoromethyl amino epoxide by the Ritter Reaction with nitriles in the presence of BF3.OEt2 

and trifluoroethanol was described by Dos Santos et al.(Dos Santos, M. 2009). 

 

2.2. Ritter Reaction in Epoxysteroids 

The Ritter reaction has been accomplished using epoxysteroids as substrates for the synthesis 

of vic-N-acylamino-hydroxy steroids. BF3.OEt2 was used in the treatment of a solution of 

5α,6α-epoxycholestan-3β-yl in acetonitrile, affording the 6β-acetamido-5α-hydroxy derivative 

with an yield of 85% (Ducker, J. W 1970). The 5α-acetamido-6β-hydroxy product was also obtained 

in high yields from the 5β,6β-epoxide in acetonitrile using gaseous BF3 instead of BF3.OEt2. 

Julia and co-workers used BF3.OEt2 and HClO4 to promote the trans-dial ring opening of 

5α,6α, 5β,6β- and 2β,3β-epoxysteroids to give the corresponding vic-N-acylamino-

hydroxysteroid using acetonitrile as a nucleophile(Bourgery, G. 1972).  

The same research team reported that under Ritter reaction conditions, and in the presence of 

HClO4, the 4α,5α- and 4β,5β-epoxycholestanes with a hydroxyl or an acetoxyl group at C3 

consistently afforded the product that results from the addition of the nitrogen atom at C5(Ryan, 

R. J. 1973). However, Wadia et al. showed that when there is no substituent groups at C3 in the 

epoxycholestanes, the products obtained have an acetamide at C4 due to a “true SN2 

attack”(Narayana, C. R 1974). 

Teutsch et al. reported that SnCl4 acts as a Lewis acid to promote the trans-dial ring opening 

of 6α,7α-epoxysteroids by acetonitrile and the one-pot synthesis of the 6β-acetamido-7α-

acetoxy derivative using p-Toluenesulfonic Acid (p-TSA) in CH3CN/Ac2O(Teutsh, G. 1970). 6β-
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benzamido-6α-hydroxysteroids were obtained in good yields in an analogous work by 

Narayana and co-workers. The 5α,6α-epoxysteroids reacted with benzonitrile, in the presence 

of HClO4(Narayana, C. R. 1977). 

Reactions of epoxides in the five-membered ring D, under Ritter conditions, have several side 

reactions. In the presence of BF3.OEt2 and various nitriles, 16β,17β-epoxysteroids give the 

corresponding vic-N-acylamino-hydroxysteroid, but in the 16α,17α-epoxysteroids a Wagner-

Meerwein-type rearrangement occurred(Schneider, G. 1982). The substrates 14α,15α-, 14β,15β- and 

15β,16β-epoxysteroids did not produce vic-N-acylamino-hydroxy compounds under Ritter 

reaction conditions, and the products that were obtained were the result of various types of 

rearrangements(Schubert, G. 1982). 

Vincze et al. reported the preparation of vic-N-acylamino-hydroxysteroids from 5α,6α-epoxy-

20-oxopregnan-3β-yl acetate and chloroacetonitrile. Aminoacid residues were incorporated in 

the final product and screened for immunological and antiarrythmic activities(Vincze, I. 1996). 

Recently, Salvador et al. reported that epoxysteroids can be converted into the corresponding 

acylamino-hydroxy product under Ritter reaction conditions using bismuth salts as catalyst 

(squeme 5)(Pinto, R. M. A. 2006). In this process, different nitriles and reaction conditions were used 

to produce the vic-N-acylamino-hydroxysteroids and, in all cases, good yields were obtained. 

This experimental work was the foundation for this Thesis. 

 

 

 

 

 

The Ritter reaction in epoxysteroids is an important route for the stereoselective introduction 

of the vic-trans-N-acylamino-hydroxy moiety to obtain products that may be considered as N-

protected aminoalcohols, which are very important from a medicinal point a view(Pinto, R. M. A. 

Scheme 5. Ritter reaction promoted by Bismuth salts in 5α,6α- and 5β,6β-epoxysteroids(Pinto, R. M. A. 2006). 
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2006). Several 2β-amino-3α-hydroxyandrostanes have potent properties as neuromuscular 

blocking agents(Bergmeier, S. C. 2000; Tuba, Z. 2002; Gyermerk, L. 2005), and similar compounds have been 

shown to inhibit the proliferation of leukemia cells(He, Q.2001; Zlotos, D. P. 2005). 

	  

3. Results and Discussion 

Although the described processes that use the Ritter reaction in epoxysteroids presented good 

yields, the use of corrosive and toxic acids or metal reagents and the difficult work-up make 

these procedures unsuitable on a commercial scale production. Thus, a more eco-friendly 

process that uses non-toxic reagents and catalytic amounts of the interveners would be of 

major interest. 

Bismuth salts presented a cleaner and safer approach to this reaction; unfortunately, this 

catalyst is a metal, which is not ideal for the use in Green Chemistry reactions. 

In this chapter we reported the use of an organic catalyst, Starbon®400- SO3H, to promote the 

one-step conversion of epoxysteroids into the corresponding acylamino-hydroxy compounds, 

under Ritter reaction conditions. 

 

3.1. Starbon®400-SO3H Catalyzed Ritter Reaction in Epoxysteroids 

Several of the procedures described before used acetonitrile as a reagent. We decided to 

screen the reactivity of Starbon®400-SO3H with the same reagent, under Ritter reaction 

conditions using 5β,6β-epoxy-17-oxoandrostan-3β-yl acetate 1 as a substrate. After a few 

hours, TLC analysis revealed that the reaction was completed and that a highly polar product 

had been formed (Scheme 6 and Table 9). In the absence of Starbon®400-SO3H, the reaction 

did not occur (Table 9, entry 1). 
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Scheme 6. Ritter Reaction catalyzed by Starbon®400-SO3H using 5β,6β-epoxy-17-oxoandrostan-3β-yl acetate 1 as a substrate. 

The Ritter reaction in the 5β,6β-epoxy-17-oxoandrostan-3β-yl acetate 1 resulted in a 

stereoselective trans-dial nucleophilic attack occurring at C5 by the α-face to obtain the 

corresponding acylamino-hydroxy products, in high yields(Scheme 6 and Table 9). 

These observations led to the study of other 5β,6β-epoxysteroids [5β,6β-epoxy-20-

oxopregnan-3β-yl acetate 3, 5β,6β-epoxycholestan-3β-yl acetate 5], as well as the nature of 

the polar products (Scheme 7 and Table 10). 

Just as it happened before, after a few hours the reaction was completed (by TLC control) 

with the formation of highly polar products, in high yields (90-98%). The acylamino-hydroxy 

products were obtained by the same trans-dial nucleophilic attack as compound 1. 

 

 

 

Table 9- Ritter Reaction catalyzed by Starbon®400-SO3H using 5β,6β-epoxy-17-oxoandrostan-

3β-yl acetate 1  as a substrate  and acetonitrile as a reagent/solvent* 

Entry Substrate Product Reagent 

(mmol) 

Solvent Starbon®400-

SO3H (mol%) 

Reactio

n time 

(h) 

Yields 

(%) 

1 1 (0.08) 2 MeCN (57.5) - - 10 - 

2 1 (0.08) 2 MeCN (57.5) - 5 6 95 

3 1 (0.14) 2 MeCN (57.5) - 10 6 95 

*Reactions were performed at room temperature under magnetic stirring. Traces of a by-product were visible 
on the TLC plates after work-up procedures, but not detectable in 1H-NMR spectrum (300 MHz).  
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Scheme 7. Ritter Reaction Catalyzed by Starbon®400-SO3H in 5β,6β-epoxysteroids. 

	  

 

To evaluate if the catalytic activity of the catalyst changed after it had been used, reactions 

with recycled catalyst were performed, and the results were somewhat disappointing. 

Although the reaction occurred, the reaction time increased significantly (entries 3, 7 and 8, 

Table 10) when compared with the reactions performed with normal catalyst.  

Table 10- Ritter Reaction catalyzed by Starbon®400-SO3H using acetonitrile* 

Entry Substrate Product 
Reagent 

(mmol) 
Solvent 

Starbon®400-

SO3H (mol%) 

Reaction 

time (h) 

Yields 

(%) 

1 3 (0.07) 4 MeCN (32.6) - 5 20 98 

2 3 (0.07) 4 MeCN (32.6) - 10 6 98 

3 3 (0.07) 4 MeCN (32.6) - 10 (recycled) 200 90 

4 5 (0.06) 6 MeCN (32.6) - 5 6 95 

5 5 (0.11) 6 MeCN (65.2) - 5 8 98 

6 5 (0.11) 6 MeCN (65.2) - 5 46(a) - 

7 5 (0.06) 6 MeCN (65.2) - 5 (recycled) 100 93 

8 5 (0.06) 6 MeCN (65.2) - 5 (2x recycled) 180(b) 90 
* Reactions were performed at room temperature under magnetic stirring. Traces of a by-product were visible on the TLC plates 
after work-up procedures, but not detectable in 1H-NMR spectrum (300 MHz). (a) Under nitrogen; according to TLC plates the 
reaction was not completed. (b) The catalyst was recycled from a previous reaction performed with recycled catalyst. 



New Sustainable Processes Catalyzed by Acids with Interest in Pharmaceutical Chemistry	  
Lígia Mesquita	  

~ 52 ~	  
	  

We also observed an increase in the reaction time when the catalyst was reused for the second 

time in comparison with the reaction time when the catalyst was reused for the first time 

(entries 7 and 8, Table 10), which means that Starbon®400-SO3H loses activity in each new 

use. 

Considering that water has a predominant role in the Ritter reaction, we decided to study the 

influence of humidity in this reaction, so we performed it under a nitrogenous dry atmosphere 

(entries 6, Table 10). When the water was removed of the reaction’s environment (under 

nitrogen), the substrate was not completely converted into the product 6 (observed on TLC 

plates, entry 7, Table 10). In this case, the reaction occurred while some water was in the 

system and was unable to proceed in its absence. These data confirm the relevance of water in 

the Ritter reaction. 

To explore further the Ritter reaction, the opening of 5α,6α-epoxysteroids was studied 

(Scheme 8 and Table 11). There is an increase in the reaction times when compared with the 

results presented in Tables 9 and 10. 

 

Scheme 8. Ritter Reaction Catalyzed by Starbon®400-SO3H in 5α,6α-epoxysteroids. 

Table 11- Ritter Reaction catalyzed by Starbon®400-SO3H using 5α,6α-epoxycholestan-3β-yl acetate 

7 as a substrate and acetonitrile as a reagent* 

Entry Substrate Product Reagent (mmol) Starbon®400-SO3H (mol%) Reaction time (h) Yields (%) 

1 7 (0.06) 8/9 MeCN (32.6) 5 45 90 

2 7 (0.06) 8/9 MeCN (32.6) 10 16 94 

*Reactions were performed at room temperature under magnetic stirring. 
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When the reaction was carried out using 5α,6α-epoxycholestan-3β-yl acetate 7 as a substrate, 

the trans-diaxial ring opening with MeCN, with the nucleophilic attack occurred at C6 by the 

β-face,  afforded the product 6β-Acetamido-5α-hydroxycholestan-3β-yl acetate 8 (Scheme 8, 

Table 11). Contrarily to what happens in the literature, there is also a nucleophilic attack at 

C5 by the α-face, creating the stereoisomer 9. 

As the results obtained showed the ability of Starbon®400-SO3H to catalyzed the Ritter 

reaction in epoxysteroids, we studied this new process using other nitriles. The first we used 

was methylthioacetonitrile (Table 12, scheme 9). 

 

 

   

 

 

 

Scheme 9. Ritter Reaction Catalyzed by Starbon®400-SO3H in 5β,6β-epoxysteroids, using methylthioacetonitrile as a reagent. 

 

Methylthioacetonitrile is a liquid nitrile like acetonitrile. When it was used in the Ritter 

reaction with 5mol% of catalyst, the substrate was not completely converted into the product 

10 (observed on TLC plates, entry 1, Table 12). The reaction ceased to proceed two hours 

after it started, and we decided to stop it after six hours and repeat it with 10 mol% of catalyst.  

Table 12- Ritter Reaction catalyzed by Starbon®400-SO3H using methylthioacetonitrile* 

Entry Substrate Product Reagent (mmol) Solvent 
Starbon®400-

SO3H (mol%) 

Reaction 

time (h) 

Yields 

(%) 

1 5 (0.06) 10 Methylthioacetonitrile 
(CH3SCH2CN) (6.0) 

- 5 6(a) - 

2 5 (0.06) 10 Methylthioacetonitrile 
(CH3SCH2CN) (6.0) 

- 10 5 90 

*Reactions were performed at room temperature under magnetic stirring. Traces of a by-product were visible on the TLC plates after 
work-up procedures, but not detectable in the 1H-NMR spectrum (300 MHz). (a) According to the TLC plates the reaction was not 
completed. 
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The reaction occurred smoothly and the final product was recovered in high yields (entry 2, 

Table 12). The need for a higher percentage of catalyst may be explained by the use of a 

smaller quantity of reagent (6.0 mmol), when compared with the acetonitrile (32.6 mmol), 

which complicated the progress of the reaction. 

The second nitrile used was methylsulfonylacetonitrile, a solid nitrile (Table 13, Scheme 10). 

The reaction occurred with 5 mol% of catalyst, but the reaction time was higher (1, Table 13) 

than that obtained in the experiments with acetonitrile. This may also be explained by the 

smaller quantity of nitrile (4.20 mmol) used in this case and by the larger size of the 

acetamide moiety introduced into the molecule. 

 

 

 

 

 

Scheme 10. Ritter Reaction Catalyzed by Starbon®400-SO3H in 5β,6β-epoxysteroids, using Methylsulfonylacetonitrile as a reagent. 
 
 

 

In this reaction we obtained an oxazoline instead of an acetamide. This particular result raised 

the question: why was the outcome of this reaction different from the others? 

In searching for the answer, we were faced with an experimental work by John R. and co-

workers where, in 1975, they converted several epoxides into Δ2-oxazolines via the reaction 

Table 13- Ritter Reaction catalyzed by StarbonR400-SO3H using Methylsulfonylacetonitrile* 

Entry Substrate Product Reagent (mmol) Solvent 
Starbon®400-SO3H 

(mol%) 

Reaction 

time (h) 

Yields 

(%) 

1 5 (0.06) 11 Methylsulfonylacetonitrile 
(CH3SO2CH2CN) (4.20) 

1,4-dioxane 
(2) 

5 34 80 

*Reactions were performed at room temperature under magnetic stirring. Traces of a by-product were visible on the TLC plates after 
work-up procedures, but not detectable in the 1H-NMR spectrum (300 MHz). 
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with acetonitrile and benzonitrile in the presence of boron trifluoride-ether complex(Smith, J. R. L. 

1975). 

More recent work from Brent D. Feske and Jon D. Stewart(Feske, B. D. 2005 JOC; Feske, B. D. 2005 Tetrah.), 

in which they used the Ritter reaction with benzonitrile to directly convert epoxides into the 

oxazoline form of the target molecules also contributed for the elucidation of the compound 

11. In these experiments the oxazoline form was obtained directly from the Ritter reaction and 

was hydrolyzed under acidic conditions to give the acetamide form(Feske, B. D. 2005 JOC). 

In view of these data, we thought of the possibility of generating an oxazoline as an 

intermediate of the Ritter reaction. 

Because methylsulfonylacetonitrile is a solid nitrile we needed to add a solvent, 1,4-dioxane, 

to the reaction, which is less acidic than the liquid nitriles (acetonitrile and 

methylthioacetonitrile) used before. Possibly, this caused the reaction to stop in the 

intermediate form (oxazoline form) because the reaction medium was not acidic enough to 

promote the formation of the acetamide form. This conclusion is purely based on the literature 

presented(Feske, B. D. 2005 JOC; Feske, B. D. 2005 Tetrah.	   Smith, J. R. L. 1975) and to confirm the results it is 

necessary to perform more studies with different acidic mediums. 

Considering the importance of the oxazolines in the pharmaceutical Industry as appetite 

suppressants, as stimulant drugs or even as intermediates in various reactions(Feske, B. D. 2005 JOC; 

Feske, B. D. 2005 Tetrah. Smith, J. R. L. 1975), the previous result was very rewarding in terms of future 

research and potential biological activity. 
 

3.2. Considerations of structural elucidation of the obtained products 

The Acylamino-hydroxy steroids 2, 4, 6 and 8 were previously obtained in prior studies(Pinto, R. 

M. A. 2009) in the FFUC (Faculty of Pharmacy of the University of Coimbra) and were published 

by Salvador et al(Pinto, R. M. A. 2006). These data were used as comparison elements for the 

characterization of these compounds.  

The formation of the vic-N-acylamino hydroxyl products by the epoxysteroids was followed 

by TLC control, and the reactions were stopped after full substrate consumption. After work-

up, the obtained compounds were characterized by 1H-NMR (Table 14) and 13C-NMR.  
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Accordingly to 1H-NMR spectroscopy, the opening of the epoxide ring was efficient since no 

signal at 3.07-3.14ppm(Silvestre, S. M. 2004) was found in the spectra of the vic-N-acylamino 

hydroxyl compounds 2, 4, 6 and 8. 

The 1H-NMR analytical data of the compounds 2, 4 and 6 synthesized in Table 14 were in 

accordance with the ones published (Pinto, R. M. A. 2006, Pinto, R. M. A. 2009) proving the authenticity of 

our results. 

 

After a thorough analysis of the 1H-NMR spectrum of the compound 8 (Figure 10), we 

realized that, although the reaction occurred and the peaks were accordingly to the ones in 

literature(Pinto, R. M. A. 2006, Pinto, R. M. A. 2009), the integration values presented in the spectrum were 

higher than what they suppose to be. 

For instance, the peaks corresponding to the 18-H3 and 19-H3 (0.69 and 1.31 respectively) 

should have values of integration similar to 3 but their values are 6.10 and 6.07, 

correspondingly. The same happens in the other peaks suggesting the existence of another 

compound with similar structure to the final product. 

Table 14- 1H-NMR data of the vic-N-acylaminohydroxyl compounds 2, 4 and 6*	  

   

Position δH Position δH Position δH 

3 4.82, m, 3α-H 3 4.83, m, 3α-H 3 4.83, m, 3α-H 

3β-OCOCH3 1.99, s, COCH3 3β-OCOCH3 2.00, s, COCH3 3β-OCOCH3 2.00, s, COCH3 

5 - 5 - 5 - 

5β-NHCOCH3 
NH: 5.21, s 

COCH3: 2.00, s 
5β-NHCOCH3 

NH: 5.15, s 
COCH3: 2.00, s 

5β-NHCOCH3 
NH: 5.15, s 

COCH3: 2.00, s 

6 4.75, s, 6α-H 6 4.69, s, 6α-H 6 4.69, s, 6α-H 

17 - 17 2.52, t, 8.64Hz, 17α-H 17 - 

18 0.88, s, 18-H3 18 0.64, s, 18-H3 18 0.68, s, 18-H3 

19 1.34, s, 19-H3 19 1.31, s, 19-H3 19 1.30, s, 19-H3 

- - 21 2.12, s, 21-H3 21 0.09, d, 4.99Hz, 21-H3 

- - - - 26 and 27 
0.85 and 0.86, d, 5.74Hz, 

26-H3 and 27-H3 

*1H-NMR: δ ppm, multiplicity, J in Hz; NMR samples prepared in CDCl3. Signals for 3β-OCOCH3 and 5β-NHCOCH3 may be reversed, 
attribution made based on literature values(Pinto, R. M. A. 2006, Pinto, R. M. A. 2009). Signals for 26-H3 and 27-H3 may be reversed. 
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The double doublet signal at 5.66ppm corresponds to the 6α-H of compound 9 and due to its 

integration value we could verify that the ratio between compound 8 and 9 is 65:35. 

 

Figure 10. 1H-NMR Spectrum (400MHz) of compound 8. Peak values on top of the spectrum and the integration values on the 
bottom. 

 

Compound 10 was synthesized for the first time in the course of this work. We did not find in 

the literature any reference to this compound. Therefore, a meticulous characterization by 

different spectroscopic techniques was performed with the aim of verifying the results. 

The 1H-NMR spectrum (Figure 11) of compound 10 showed signals at 0.69ppm (3H, s, 18-

H3), 0.85ppm and 0.86ppm (3H each, 2d, J=5.16 Hz, 26-H3, 27-H3), 0.90ppm (3H, d, J= 6.48 

Hz, 21-H3), 1.32ppm (3H, s, 19-H3), corresponding to the protons of the methyl groups in the 

methylene envelope.  
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The signals at 1.99ppm (3H, s), 4.64ppm (1H, s) and 4.81ppm (1H, m) represented the methyl 

group of the acetoxy group at C3, the 6α-H and the 3α-H, respectively. The signals 

corresponding to the protons of the methyl group of the acetamide moiety were visible at 

2.20ppm (3H, s), and the signal of the H of the secondary amide group was present at 

7.16ppm (1H, s). Signals for 3β-OCOCH3 and 5β-NHCOCH3 may be reversed since its 

attribution was made based on literature values(Pinto, R. M. A. 2006, Pinto, R. M. A. 2009). 

The 13C-NMR spectrum (Figure 12) showed the presence of 32 carbons in the molecule and, 

according to the literature(Pinto, R. M. A. 2006, Pinto, R. M. A. 2009), the signals at 170.65ppm and 

167.09ppm correspond to the carbonyl carbons of the acetoxy group in C3 and to the 

acetamide moiety. The absence, in the DEPT spectrum (Figure 13), of these signals 

confirmed the previous correspondence, since signals from carbons without attached protons 

are nonexistent in this kind of spectrum. 

 

 

Figure 11. 1H-NMR Spectrum (400MHz) of compound 10. Peak values on top of the spectrum and the integration values on the 
bottom. Sample with traces of ethyl acetate, presenting a quartet at 3.20ppm (CH2CH3), a singlet at 2.02ppm (CH3CO) and a triplet 
at 1.25ppm (CH2CH3)(Gottlieb, H. E. 1997). 
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Figure 12. 13C-NMR Spectrum (100MHz) of compound 10. Peak values on the bottom of the spectrum. 

 

 

 
Figure 13. DEPT Spectrum (100MHz) of compound 10. Peak values on the bottom of the spectrum. 
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The analysis of the NOESY spectrum (Figure 12) allowed us to assign the signals at 2.87ppm 

(dd) and at 2.10ppm (t). A nOe interaction was found between 3α-H (4.81ppm) and the signal 

at 2.87ppm and at 2.10ppm. In addition, the signal at 2.87ppm showed another cross-peak 

with the signal at 2.10ppm. 

In Figure 13 we can verify that the 3α-H has nOe interactions with 2α-H (yellow arrow), 4α-

H and the protons of the NH2 group of the acetamide moiety (blue arrows). One the other 

hand, the protons in the NH2 group have a nOe correlation with 4α-H. 

These findings, together with the integration values of the 1H-NMR spectrum, enabled us to 

assign the signals at 2.87ppm (dd, 2H) and at 2.10ppm (t, 1H) to the protons of the CH2 of the 

acetamide moiety and to the 4α-H, respectively. 

ESI-MS spectrum (Figure 16) of compound 10 showed a molecular ion peak at 550.37m/z 

corresponding to the molecular weight of the compound plus one proton (M+1). 

The information provided by the spectral analysis confirmed that the structure of compound 

10 was in accordance with the one presented in scheme 9. 

 

 

 

 

 

 

 

 

 

Figure 14. NOESY Spectrum of compound 10. 
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Figure 15. Selected nOe correlations for the 3α-H (4.81ppm) of compound 10.  

	  

	  

 

	  

	  

	  

	  

 

 

 

 

 

 

 

 

 

Figure 16. ESI-MS Spectrum of compound 10 (C32H55NO4S, MW= 549.34). 
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Compound 11 is also new, so a detailed analysis was made to prove its authenticity. In this 

case an oxazoline was obtained instead of an acetamide. In the 1H-NMR spectrum (Figure 

17) there was not a signal for the NH group of the acetamide moiety, but the signals for the 

CH2 (4.03ppm) and the CH3 (3.21ppm) were present.  

In the 13C-NMR spectrum (Figure 18) there were 32 signals corresponding to the 32 carbons 

of the molecule and the DEPT spectrum (Figure 19) confirmed the nature of the different 

carbon. The HMQC experiment (Figure 20) allowed us to correlate between the protons and 

the carbons in the different spectra and to elaborate Table 15. 

Table 15- Selected 1H-NMR and  13C-NMR data of compound 11 based on the analysis of the 
HMQC experiment* 

 
Position δH δC 

3 5.14, m, 3α-H - 

3β-OCOCH3 2.02, s, COCH3 COCH3: 21.59 

4 2.14, t, 24.10Hz, 4α-H 37.08 

5 - - 

6 3.52, s, 6α-H 76.29 

18 0.67, s, 18-H3 12.27 

19 1.18, s, 19-H3 16.84 

21 0.90, d, 6.23Hz, 21-H3 18.79 

26 and 27 
0.85 and 0.86, d, 6.02Hz, 26-H3 

and 27-H3 
- 

 

CH2: 4.03, s 
CH3: 3.21, s 

CH2: 44.02 
CH3: 41.06 

*1H-NMR: δ ppm, multiplicity, J in Hz; 13C-NMR: δ ppm; DEPT: δ ppm; NMR samples prepared in CDCl3. Signals for 

26-H3 and 27-H3 may be reversed. 
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Figure 17. 1H-NMR Spectrum (400MHz) of compound 11. Peak values on top of the spectrum and the integration values on the 
bottom. 

 

 

 

 

 

 

 

Figure 18. 13C-NMR Spectrum (100MHz) of compound 11. Peak values on the bottom of the spectrum. 
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Figure 19. DEPT Spectrum (100MHz) of compound 11. Peak values on the bottom of the spectrum. 

 

 

Figure 20. HMQC Spectrum of compound 11. Horizontal axis represent the 1H-NMR spectrum and the vertical axis represent the 
13C-NMR spectrum. 
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The imine carbon of the oxazoline moiety was attributed to the signal at 110.47ppm in the 
13C-NMR due to a cross-peak between this carbon and the protons of the CH2 group 

(4.03ppm) observed in the HMBC experiment (Figure 21, red). The cross-peak between the 

protons of the methyl group at 2.02ppm and the carbon at 171.06ppm confirmed that this 

signal corresponded to the carbonyl carbon of the acetoxy group in C3 (violet). The absence of 

these signals in the DEPT spectrum also confirmed these attributions. 

The analysis of the cross-peaks between the 19-H3 and the carbons at 32.24ppm, 38.45ppm 

and 45.60ppm and the data in the DEPT spectrum allowed us to assign these signals to the C1, 

C10 and C9, respectively (blue). Because 19-H3 and 6α-H both have a cross-peak with the 

carbon at 76.84ppm, we could confirm that this carbon is the quaternary carbon C5 (blue and 

green). The cross-peak between the 4α-H and the carbon at 31.75ppm confirmed that this 

signal corresponds to C3 (orange). 

The carbons C12, C13 and C14 were attribute to the signals at 39.63ppm, 42.86ppm and 

55.96ppm, respectively, due to the interaction between 18-H3 and the carbons at these signals 

(black) and the data in the DEPT spectrum. C17 was assigned to the signal at 56.39ppm 

because both 18-H3 and 21-H3 interact with the carbon at this signal (black and yellow). The 

cross-peak between 21-H3 and the carbon at 35.94ppm, along with the data from the DEPT 

experiment, allowed us to attribute this signal to the carbon C20. 

The results obtained from the NMR Techniques were in agreement with what was expected 

for compound 11 and confirmed the structure presented in Scheme 10. 
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Figure 21. HMBC Spectrum of compound 11. Horizontal axis represent the 1H-NMR spectrum and the vertical axis represent the 
13C-NMR spectrum. 

 

3.2.1. General Conclusions 

Based on the previous information, we were able to conclude that Starbon®400-SO3H 

catalyzes the conversion of epoxysteroids into vic-N-acylamino-hydroxysteroids under Ritter 

reaction conditions, in high yields and with low reaction times. 

Although the reaction occurred with a recycled catalyst, it was necessary to increase the 

percentage of catalyst and/or the reaction time. Water has a major role in the Ritter reaction, 

as its absence was able to increase the reaction time or even prevent the progression of the 

reaction. 

The catalyst was more effective in the ring opening of 5β,6β-epoxysteroids than in that of 

5α,6α-epoxysteroids, as in the first case there was only one reaction product and in the second 

one there was a mixture of stereoisomers. 
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The reactions proceeded well in the presence of other functional groups in the substrate, such 

as esters and ketones, proving the chemo-, regio- and stereoselectivity of this reaction. The 

nucleophilic attack invariably occurred at C6 in 5α,6α-epoxysteroids and at C5 in 5β,6β-

epoxysteroids. 

When 1,4-Dioxane was used as a solvent, the final product was in the oxazoline form. 

 

3.2.2. Future challenges 

To make this experimental work more precise, it would be of interest to replace the 1,4-

dioxane by a greener solvent, as this solvent does not fulfill the Green Chemistry parameters. 

The GSK Solvent Selection Guide(Henderson, R. K. 2011) will provide suitable alternatives. 

Another pertinent approach would be testing the catalytic power of Starbon®400-SO3H in 

steroid compounds with functional groups other than epoxides, such as alcohols or aldehydes, 

under Ritter reaction conditions. 

Furthermore, Starbon®400-SO3H could also be used in compounds other than steroids for 

which the Ritter reaction is suitable, or in other acid catalysis reactions. 

Considering the pharmaceutical relevance of the vic-N-acylamino-hydroxysteroids and of the 

oxazoline compounds it would be of significance to test the biological activity of the 

compounds produced. 

	  

4. Concluding Remarks 

Our future challenges regarding resource, environmental, economic and societal sustainability 

demand the development of new scientific technologies for working with chemical processes 

and products. Green Chemistry addresses such challenges by providing the guidelines for 

novel reactions that can maximize the production of the desire products and minimize by-

products, with the aim of designing new synthetic routes and instrumentation that can 

simplify operations in chemical production, as well as seeking greener solvents that are 

environmentally and ecologically benign. 



New Sustainable Processes Catalyzed by Acids with Interest in Pharmaceutical Chemistry	  
Lígia Mesquita	  

~ 68 ~	  
	  

Catalysis is an important tool for drug discovery and for the development of industrial 

synthesis, as it is a powerful instrument for the design of environmentally friendly, cheap and 

competitive processes. The use of the 12 principles for process design is a standard approach 

in the pharmaceutical industry and catalysis is the most efficient and green technology 

available. Therefore, the scientific efforts for the discovery of new reactions, catalysts or 

ligands are critical for the development of efficient and competitive green processes. 

Steroid chemistry has been the focus of research in the past years. Every day there are reports 

of the isolation, characterization and synthesis of new compounds and of new biological 

evaluations. The attention given to steroid molecules is justified by their biological properties 

that make them useful in medicine and pharmacy. 

Although there is an abundance of classical chemical reactions with wide applicability in 

steroid chemistry, these reactions often suffer from disadvantages, such as handling toxic, 

sensitive and/or expensive reagents, difficult work-ups, low yields, weak selectivities and lack 

of catalytic methods. For these reasons, the development of new catalytic chemical processes 

in steroid chemistry that use environmentally friendly, cheap and easily available reactants, as 

well as mild reaction conditions would be of great interest. 

Taking into account the previous considerations, the work presented on this Thesis was based 

in the development of new environmentally friendly chemical processes using steroids as 

substrates. Starbon®400-SO3H was chosen as catalyst due to the following features: 

Starbon®400-SO3H has shown good catalytic power in many organic chemical reactions; it is 

a safe, non-toxic, organic catalyst; there is no record of its use in steroid chemistry. 

Epoxysteroids are readily available substrates obtained by one-step procedures from the 

corresponding olefinic steroids. Various selective epoxidation procedures have been reported 

to obtain diastereomerically pure epoxides, in high yields. These substrates were used to study 

the reactivity of Starbon®400-SO3H to catalyze the nucleophilic ring opening of epoxides. 

In Chapter II we described the formation of vic-N-acyloamino-hydroxy compounds via the 

trans-dial ring opening of epoxysteroids catalyzed by Starbon®400-SO3H under Ritter 

reaction conditions. These transformations presented high yields and good reaction times.  
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Even though the catalyst lost some of its activity when recycled, the reaction still occurred but 

with a longer reaction time. Water had a preponderant role in the Ritter reaction and the 

solvent used was important for the outcome of the reaction. 

In summary, the results presented in this Thesis highlight the potential of Starbon®400-SO3H 

as a renewable, sustainable and ecofriendly catalyst in transformations involving steroids as 

substrates. Acid Starbon® materials have proven to be very effective in acid catalyzed 

reactions. 
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1. General Methods 

 
1.1. Reagents and Solvents 

Starbon®400-SO3H was provided by Prof. James H. Clark from the Green Chemistry Centre 

of Excellence in The University of York.  

General reagents, such as acetonitrile (MeCN), methylthioacetonitrile (CH3SCH2CN), and 

methysulfonylacetonitrile (CH3SO2CH2CN) were obtained from Sigma-Aldrich Co. 

Solvents were obtain from VWR Portugal; when necessary, solvents were purified according 

to standard procedures(Perrin, D. D. 1988). 

Steroid compounds that were used in the preparation of epoxysteroids, namely cholesterol, 

dehydroepiandrosterone (DHEA) and pregnenolone were purchased from Sigma-Aldrich Co. 

5α,6α-Epoxysteroids were prepared from the corresponding Δ5-steroid via epoxidation with 

m-chloroperbenzoic acid (mCPBA)(Matthews, G. J. 1972). 5β,6β-Epoxysteroids were obtained by β-

selective epoxidation of Δ5-steroids using a method developed by Salvador et al.(Salvador, J. A. R. 

1996). Acetylations were carried out at r.t., with Ac2O (1.5eq), in dry THF, using 2.5 mol % of 

DMAP as a catalyst. 

 

1.2. Chromatography and Purification Techniques 

 
1.2.1. TLC 

Thin Layer Chromatography (TLC) was done in commercial Kieselgel 60 F254/Kieselgel 60G 

Merck TLC plates, purchased from VWR Portugal. The development was done with ethyl 

acetate/ petroleum ether in a v/v proportion suitable for each product, followed by heating at 

150ºC in an appropriate heating plate. When pertinent, the TLC plates were observed at UV 

light (254nm). 
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1.2.2. Flash Column Chromatography 

Silica gel 60 (230-400 mesh) was used for flash column chromatography. The crude mixture 

was immobilized in silica gel, and then transferred to the column, previously filled with 

stacked silica gel 60 (230-400 mesh). Analytical grade solvents were used for the preparation 

of the eluents. The eluent is indicated as v/v proportions. The control was done by TLC. 

 

1.2.3. Recrystallizations 

Recrystallizations were made following the standard procedures. Analytical grade solvents 

were used to afford crystals at r.t.(Furniss, B. S. 1989). 

 

1.2.4. Recycling of the Catalyst 

After filtration of the final solution to separate the catalyst, Starbon®400-SO3H was washed 

with acetone and diethyl ether and dried, during two days, in a high vacuum stove. The 

recycled catalyst was then used in the same reaction than before to evaluate its catalytic 

power. 

 

2. Analytical Instrumentation 

 
2.1 Nuclear Magnetic Resonance 

1H, 13C NMR, NOESY, HMBC and HMQC experiments were performed on a Bruker Avance 

300 MHz equipped with a BBO-ATMA 5mm probe. 

NMR samples were prepared in CDCl3 solution and calibration of chemical shift scale was 

made using the CDCl3 signal at 7.26 ppm (1H NMR) or 77.0 ppm (13C NMR). Chemical shifts 

(δ) are given in ppm and coupling constants (J) are presented in Hz. 
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2.2 Mass Spectroscopy 

Electrospray ionization mass spectroscopy ESI-MS was made on a Quadrupole Ion Trap 

Mass Spectrometer (QIT-MS) (LCQ Advantage MAX, THERMO FINNINGAN). The 

samples were dissolved in MeOH- CHCl3 (80-20). 

 

2.3 Melting Poits 

Melting points were determined on a Buchi Melting Point B-540. 

 

3. Ritter Reaction Catalyzed by Starbon®400-SO3H 

 

3.1 5α-Acetamido-6β-hydroxy-17-oxoandrostan-3β-yl acetate 2 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1) was added and suspended into a solution of 

5β,6β-epoxy-17-oxoandrostan-3β-yl acetate 1 in dry MeCN. The reaction was maintained 

under magnetic stirring, at r.t., until it was completed. This was verified by TLC control. The 

solution was then filtered to separate the catalyst. The remaining solution was concentrated 

under reduced pressure in a rotative evaporator to give compound 2, as a white solid. TLC 

[ethyl acetate/petroleum ether (3:1 v/v)] revealed two products, the major one appearing at Rf 

= 0.18; The by-product was not detectable by NMR spectroscopy; Mp (ºC): 209.5-210.5; 1H 

NMR (400MHz, CDCl3) δ (ppm): 0.88 (3H, s, 18-H3), 1.34 (3H, s, 19-H3), 1.99 (3H, s, 

CH3COO), 2.00 (3H, s, CH3CONH), 4.75 (1H, m, 6α-H), 4,82 (1H, m, 3α-H), 5.21 (1H, s, 

NH) (Pinto, R. M. A. 2006, Pinto, R. M. A. 2009). 

 

3.2 5α-Acetamido-6β-hydroxy-20-oxopregnan-3β-yl acetate 4 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1) was added and suspended into a solution of 

5β,6β-epoxy-20-oxopregnan-3β-yl acetate 3 in dry MeCN. The reaction was maintained under 

magnetic stirring, at r.t., until it was completed. This was verified by TLC control. The 

solution was then filtered to separate the catalyst. The remaining solution was concentrated 
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under reduced pressure in a rotative evaporator to give compound 4, as a white solid. TLC 

[petroleum ether/ethyl acetate (4:3 v/v)] revealed two products, the major one appearing at Rf 

= 0.27; The by-product was not detectable by NMR spectroscopy; Mp (ºC): 136.1-138.5; 1H 

NMR (400 MHz, CDCl3) δ (ppm): 0.64 (3H, s, 18-H3), 1,31 (3H, s, 19-H3), 2.00 (3H, s, 

CH3COO), 2.00 (3H, s, CH3CONH), 2.12 (3H, s, CH3CO), 2.52 (1H, t, J= 8.64Hz, 17α-H) 

4.69 (1H, m, 6α-H), 4,83 (1H, m, 3α-H), 5.15 (1H, s, NH); 13C NMR (100 MHz, CDCl3) 

δ(ppm): 209.48, 170.75, 169.37, 70.63, 68.29, 63.77, 62.70, 56.44, 46.76, 44.38, 39.03, 38.55, 

34.46, 32.11, 31.60, 30.23, 29.32, 26.33, 25.06, 24.38, 23.04, 21.51, 21.51, 17.51, 13.74(Pinto, 

R. M. A. 2006, Pinto, R. M. A. 2009). 

 

3.3 5α-Acetamido-6β-hydroxycholestan-3β-yl acetate 6 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1) was added and suspended into a solution of 

5β,6β-epoxycholestan-3β-yl acetate (5) in dry MeCN. The reaction was maintained under 

magnetic stirring, at r.t., until it was completed. This was verified by TLC control. The 

solution was then filtered to separate the catalyst. The remaining solution was concentrated 

under reduced pressure in a rotative evaporator to give compound 6, as a white solid. TLC 

[petroleum ether/ethyl acetate (2:1 v/v)] revealed two products, the major one apearing at Rf = 

0.20; The by-product was not detectable by NMR spectroscopy; Mp (ºC): 109.0-110.2; 1H 

NMR (400 MHz, CDCl3) δ (ppm): 0.68 (3H, s, 18-H3), 0.85 and 0.86 (3H each, 2d, J=5.74 

Hz, 26-H3, 27-H3), 0.90 (3H, d, J= 4.99 Hz, 21-H3), 1,30 (3H, s, 19-H3), 2.00 (3H, s, 

CH3COO), 2.00 (3H, s, CH3CONH), 4.66 (1H, s, 6α-H), 4,83 (1H, m, 3α-H), 5.16 (1H, s, 

NH); 13C NMR (100 MHz, CDCl3) δ(ppm): 170.72, 169.31, 70.76, 68.57, 62.64, 56.40, 56.34 

46.91, 42.89, 40.04, 39.63, 38.48, 36.27, 35.88, 34.51, 32.11, 30.17, 29.35, 28.31, 28.16, 

26.39, 25.07, 24.16, 23.94, 22.94, 22.70, 21.56, 21.52, 18.84, 17.53, 12.40(Pinto, R. M. A. 2006, Pinto, 

R. M. A. 2009). 

 

3.4 6β-Acetamido-5α-hydroxycholestan-3β-yl acetate 8 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1) was added and suspended into a solution of 

5α,6α-epoxycholestan-3β-yl acetate (7) in dry MeCN. The reaction was maintained under 
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magnetic stirring, at r.t., until it was completed. This was verified by TLC control. The 

solution was then filtered to separate the catalyst. The remaining solution was concentrated 

under reduced pressure in a rotative evaporator to give compound 8, as a white solid. TLC 

[petroleum ether/ethyl acetate (2:1 v/v)] revealed two products, the major one appearing at Rf 

= 0.38; The by-product was detectable by NMR spectroscopy, the stereoisomer 9; Mp (ºC): 

107.4-114.0; 1H NMR (400 MHz, CDCl3) δ (ppm): 0.69 (3H, s, 18-H3), 0.85 and 0.87 (3H 

each, 2d, J= 6.4 Hz, 26-H3, 27-H3), 0.90 (3H, d, J= 5.29 Hz, 21-H3), 1,31 (3H, s, 19-H3), 2.00 

(3H, s, CH3COO), 2.02 (3H, s, CH3CONH), 4.66 (1H, m, 6α-H of compound 8), 4,83 (1H, m, 

3α-H), 5.18 (1H, s, NH), 5.67 (1H, dd, J= 4.74Hz and 9.24Hz, 6α-H of compound 9) (Pinto, R. M. 

A. 2006, Pinto, R. M. A. 2009); 

 

3.5 5α-methylthioAcetamido-6β-hydroxycholestan-3β-yl acetate 10 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1) was added and suspended into a solution of 

5β,6β-epoxycholestan-3β-yl acetate (5) in CH3SCH2CN. The reaction was maintained under 

magnetic stirring, at r.t., until it was completed. This was verified by TLC control. The 

solution was then filtered to separate the catalyst. The remaining solution was concentrated 

under reduced pressure in a rotative evaporator to give compound 10, but the reagent did not 

evaporate so it dried over time in a high vacuum stove. TLC [petroleum ether/ethyl acetate 

(2:1 v/v)] revealed two products, the major one appearing at Rf = 0.18; The by-product was 

not detectable by NMR spectroscopy; Mp (ºC): 161.9-164.3; 1H NMR (400 MHz, CDCl3) δ 

(ppm): 0.69 (3H, s, 18-H3), 0.85 and 0.85 (3H each, 2d, J=5.16 Hz, 26-H3, 27-H3), 0.90 (3H, 

d, J= 6.48 Hz, 21-H3), 1,32 (3H, s, 19-H3), 1.99 (3H, s, CH3COO), 2.10 (1H, t, J= 24.90 Hz, 

4-αH), 2.20 (3H, s, CH3SCH2OCNH), 2.87 (2H, dd, J1= 7.69 and J2= 4.71, CH3SCH2OCNH), 

4.64 (1H, m, 6α-H), 4,81 (1H, m, 3α-H), 7.16 (1H, s, NH). 13C NMR (100 MHz, CDCl3) 

δ(ppm): 170.65, 70.54, 68.58, 62.58, 56.48, 56.34, 45.99, 42.91, 40.16, 39.85, 39.63, 38.89, 

36.27, 35.85, 34.54, 32.24, 30.18, 29.83, 29.41, 28.29, 28.15, 26.40, 24.17, 23.94, 22.95, 

22.69, 21.56, 21.48, 18.83, 17.53, 17.03, 12.41; ESI-MS m/z (%): 550 (100) M+1, 490 (5), 

462 (2), (356) (2), 335 (5), 304 (2), 216 (1), 185 (1), 102 (2). 
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3.6 5α,6β –methylsulfonylmethylene oxazole-cholestan-3β-yl acetate 11 

Starbon®400-SO3H (HSO3 loading 0,5mmol g-1)  was added and suspended into a solution of 

5β,6β-epoxycholestan-3β-yl acetate (5) with CH3SO2CH2CN (solid nitrile) in 1,4-dioxane. 

The reaction was maintained under magnetic stirring, at r.t., until it was completed. This was 

verified by TLC control. The solution was then filtered to separate the catalyst. The remaining 

solution was concentrated under reduced pressure in a rotative evaporator to give compound 

11 and the excess solid nitrile. The solid material was diluted in diethyl ether (max 50mL) and 

washed two times with 30mL of distilled water. The organic phase was dried with anhydrous 

Na2SO4 and concentrated under reduced pressure in a rotative evaporator to give compound 

1.10, as a white solid; TLC [petroleum ether/ethyl acetate (2:1 v/v)] revealed two products, 

the major one appearing at Rf = 0.43; The by-product was not detectable by NMR 

spectroscopy; 1H NMR (400 MHz, CDCl3) δ (ppm): 0.67 (3H, s, 18-H3), 0.85 and 0.85 (3H 

each, 2d, J=6.02 Hz, 26-H3, 27-H3), 0.90 (3H, d, J= 6.23 Hz, 21-H3), 1,18 (3H, s, 19-H3), 2.02 

(3H, s, CH3COO), 2.15 (1H, t, J= 24.10 Hz, 4-αH), 3.21 (3H, s, CH3O2SCH2CNO), 3.52 (1H, 

m, 6α-H), 4.03 (2H, s, CH3O2SCH2CNO), 5.14 (1H, m, 3α-H). 13C NMR (100 MHz, CDCl3) 

δ(ppm): 171.05, 110.47, 76.29, 75.83, 71.34, 56.39, 55.95, 45.60, 44.02, 42.85,41.05, 40.03, 

39.63, 38.45, 37.08, 36.29, 35.94, 34.76, 32.24, 30.32, 28.35, 28.13, 26.80, 24.28, 24.03, 

22.94, 22.69, 21.59, 21.21, 18.79, 16.84, 12.27; Further analytical data is being acquired.
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