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Abstract 

Alzheimer’s Disease is a critical neurodegenerative disease characterized by two hallmarks, deposition of 

Aβ protein in plaques and incorporation of Tau proteinaceous aggregates in neurofibrillary tangles(Braak 

et al., 2011; Huang and Mucke, 2012). Biomarkers detecting alterations in mechanism of this disease are 

of utmost importance to understand disease progression (Blennow and Hampel, 2003) 

Major breakthroughs have been made in the comprehension of the mechanisms of AD and potential 

therapies; there are however no effective disease modifying treatments of the disease(Huang and Mucke, 

2012). 

Progress in many fields like chemistry, radiology and systems biology are continuously providing tools 

giving new possibilities to develop new therapy approaches with many different strategies(Huang and 

Mucke, 2012). 

One of AD critical alterations is Tau hyperphosphorylation and aggregation in paired helical and straight 

filaments, condensing in neurofibrillary tangles. The development of these aggregates is associated with 

the progression of neuronal loss and cognitive decline (Chai et al., 2011), therefore, hyperphosphorylated 

Tau targeting by immunotherapy is one of many promising approaches to treat AD. 

Previous studies evidenced that Tau immunization prevents aggregation and attenuates functional 

impairments in mouse models (Chai et al., 2011). 

To have a better insight on therapeutic effect of a pharmacological agent, it is of great importance to 

have efficient biomarkers of AD, that can detect if there is any alteration on the levels of a determined 

protein due to the effect on a specific target (Blennow and Zetterberg, 2012; Hampel et al., 2010). 

One of the goals of this project was to characterize antibodies generated against different forms of Tau, 

both pathological and normal. 

Characterization of the antibodies was performed and a better knowledge of the library of antibodies in 

study was obtained. Antibodies reacting with pathological form of Tau were identified, there were 

antibodies epitopes that could be determined, and the knowledge on the reactivity of these antibodies 

against normal Tau vs. phosphorylated was obtained. The reactivity of these antibodies against Tau from 

different species was also obtained. 

Other goal of this project was to develop specific assays reacting with dog Tau, an important pre-clinical 

longitudinal pharmacokinetic model, that shows age related alterations in the brain and cognitive decline 
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(Head, 2013). With the knowledge obtained from the antibodies characterization it was possible to 

identify assays that could detect Tau protein in dog CSF. 

The possibility to detect specific regions of Tau protein in a sensitive way can have great importance for 

research and therapeutics development in AD. 

 

Keywords: Alzheimer’s disease; Tau; biomarkers; immunotherapy; antibody characterization. 
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Resumo 

A doença de Alzheimer é uma doença neurodegenerativa caracterizada por duas principais 

características, o deposito de placas de proteína Aβ e a incorporação da agregados proteicos de proteína 

Tau em tranças neurofibrilares (Braak et al., 2011; Huang and Mucke, 2012). Biomarcadores que 

consigam de uma forma especifica detectar alterações associadas à patologia são importantes para 

compreender a progressão da doença (Blennow and Hampel, 2003) 

Descobertas importantes tem sido feitos na compreensão e conhecimento dos mecanismos, e possível 

terapia desta doença, não existindo porem actualmente nenhum fármaco que consiga modificar a 

progressão da doença (Huang and Mucke, 2012). 

Avanços em diversas áreas, tais como a química, radiologia, e biologia de sistemas tem constantemente 

providenciado ferramentas que podem ser aplicadas no desenvolvimento de novas terapias com 

diferentes estratégias (Huang and Mucke, 2012). 

Uma das alterações críticas da doença de Alzheimer e a hiperfosforilação e consequente agregação da 

Tau em em filamentos helicoidais emparelhados e lineares, que se condensam em tranças 

neurofibrilares. O desenvolvimento destes agregados está associada com a progressão da perda neuronal 

e declínio cognitivo, portanto, imunoterapia que tenha como alvo a proteína Tau no seu estado 

hiperfosforilado é uma de muitas possíveis terapias promissoras contra a doença de Alzheimer (Chai et 

al., 2011). 

De modo a ter uma compreensão nos efeitos terapêuticos de um agente farmacológico é de suma 

importância ter biomarcadores que eficientemente consigam detectar alterações de níveis de uma 

determinada proteína associada com um efeito no alvo pretendido (Blennow and Zetterberg, 2012; 

Hampel et al., 2010). 

O objectivo principal deste projecto foi o de caracterizar anticorpos gerados a partir de diferentes formas 

de Tau, tanto patológica, como normal. 

A caracterização destes anticorpos foi feita e um melhor conhecimento do conjunto de anticorpos em 

estudo foi obtido. Anticorpos que mostram reactividade contra formas patológicas de Tau foram 

identificados, houve também epitopos de determinados anticorpos que foram determinados. A 

reactividade destes anticorpos contra Tau normal ou Tau fosforilada foi também definida, bem como a 

reactividade contra diferentes espécies. 

Outro objectivo deste projecto foi desenvolver ensaios específicos que detectassem proteína Tau em 

liquido cefalorraquidiano de cão, um importante modelo longitudinal pré-clínico de farmacocinética, que 
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demonstra alterações no cérebro associadas com a idade e declínio cognitivo Com o conhecimento 

obtido através da caracterização dos anticorpos foi possível desenvolver ensaios que identificam Tau no 

liquido cefalorraquidiano de cão. 

A possibilidade de detectar regiões especificas da proteína Tau com grande sensibilidade poderá ser 

extremamente relevante na investigação e desenvolvimento de terapias para a doença de Alzheimer. 

 

Palavras-chave: Doença de Alzheimer; Tau; Biomarcadores; Imunoterapia; Caracterização de 

anticorpos. 
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1.1 Dementia 

Dementia is a syndrome, characterized by a number of disorders, that collectively and progressively 

affect memory, behaviour, orientation, judgment, comprehension, language, learning, and hence the 

ability to perform daily activities (Prince and Jackson, 2009; Wimo and Prince, 2010). 

Usually dementia is associated with aging but some cases with early onset have been reported. Above the 

age of 65, the prevalence of people with dementia doubles every five years. Most of the cases of 

dementia worldwide are related to AD but dementia syndrome is also associated with other pathologies 

like vascular dementia, dementia with Lewy bodies and frontotemporal dementia (FTD) (Prince and 

Jackson, 2009).  

It was estimated that in 2010, 35.6 

million people above the age of 60 

were living with dementia. On top of 

this, millions of new cases are 

predicted each year, nearly doubling 

the prevalence every 20 years to 65.7 

million in 2030 and 115.7 million by 

2050, shown in Figure 1 (Sosa-Ortiz et 

al., 2012). The worldwide cost of 

dementia is increasing, around US$604 

billion in 2010, more than 1% of global 

Gross Domestic Product (Wimo and 

Prince, 2010). 

Early dementia diagnosis is crucial to 

make advances in the knowledge and treatment of this group of diseases. For the patient it is crucial to 

start a potential treatment as soon as possible while it will help the family to anticipate to the 

circumstances (Prince et al., 2011). 

 

1.1.1 Alzheimer’s disease 

In 1906, Alois Alzheimer, a German psychiatrist and neuropathologist, presented the first case of the 

disease which was later named Alzheimer’s disease (AD) by his colleague, Kraeplin. The afterwards 

publication on this case in 1907 was only a relatively short communication about a woman named 

 

Figure 1 – The growth in numbers of people with dementia (in 
millions) by country income (Sosa-Ortiz et al., 2012) 
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Auguste Deter, who he examined for the first time in 1901. She had unusual symptoms that began at age 

of 51 years, having progressive changes in her personality during 8 months. Her memory slowly 

deteriorated, leading to psychosocial impairment, until ultimately she died in 1906. In 1907 Alzheimer 

treated another patient with the same clinical manifestations of Auguste D., named Johann F. This patient 

died after three years of hospitalization. In these three years, Alzheimer extensively described this new 

disease based on the observations made with the two cases (Berchtold, 1998; Möller and Graeber, 1998; 

Verhey, 2009). Alzheimer published a very comprehensive paper in 1911 in which he discussed the 

concept of the disease in detail (Alzheimer and Jahre, 1911). 

AD knowledge has evolved and today it is the most common neurodegenerative disease, characterized by 

a progressive loss of many cognitive functions, with memory loss as the best characterized. After the 

initial clinical manifestations, AD pathology progresses during 10 years, evolving into a state that the 

patient is completely incapacitated and ultimately dies (Huang and Mucke, 2012; Prince and Jackson, 

2009; Wimo and Prince, 2010). 

 

1.2 Characterization and Mechanisms of Alzheimer’s Disease Pathology 

AD leads to an extensive loss in brain weight and volume, affecting some brain regions and neuronal 

populations more than others (Gómez-Isla et al., 1996). Even though AD promotes neuronal loss in 

specific brain regions, like pyramidal cells in lamina II of the entorhinal cortex and in the CA1 region of the 

hippocampus, most of the loss in brain volume seems to be due to a shrinkage of neurons, caused by an 

atrophy of axons and dendrites (Huang and Mucke, 2012). 

Depending on the age of onset, it is possible to categorize AD in two types, the early-onset Alzheimer’s 

disease (EOAD) form, and the late-onset Alzheimer’s disease (LOAD) from. The EOAD is associated 

generally with a familial form, caused by a genetic mutation, while the LOAD, on the other hand, is 

usually associated with a sporadic form, which is thought to be a multifactorial disease, having influence 

by genetic factors (Bertram and Tanzi, 2005; Bertram et al., 2010; Kamboh et al., 2012). 

 

1.3 Hallmarks of Alzheimer’s Disease 

AD is characterised by two pathological hallmarks i.e. amyloid β (Aβ) aggregation in senile plaques, and 

Tau aggregation in neurofibrillary tangles (NFTs) (Ballard et al., 2011; Blennow et al., 2006). Concerning 

the latter, progression of Tau pathology can be categorized in six distinct stages (I-VI). Stages I and II both 
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show alterations which are virtually confined to a single layer of the transentorhinal region 

(transentorhinal I-II). The key characteristic of stages III-IV is the severe involvement of the entorhinal and 

transentorhinal layer Pre-α (limbic III-IV). Stages V and VI are marked by isocortical destruction 

(isocortical V-VI) (Braak, 1991). 

 

1.3.1 Aβ42 

The amyloid cascade hypothesis is based on the theory that Aβ aggregation will lead to neuronal 

dysfunction and cell death. Aβ originates from amyloid precursor protein (APP), by sequential hydrolysis 

(cleavage) by a group of enzymes, or enzyme complexes termed α-, β-, and γ-secretases. There are three 

enzymes with α-secretase activity and all of them belong to A Disintegrin And Metalloproteinase (ADAM) 

family of enzymes, including ADAM9, ADAM10 and ADAM17. The most studied β-secretase is β-site APP-

cleaving enzyme 1 (BACE1). There is also a BACE1 homolog, BACE2, however, its expression in neurons is 

substantially lower than BACE1, and cellular BACE2 cleaves APP near the α-secretase site much more 

efficiently than at the β-secretase site (Zhang et al., 2011). γ-secretase was identified as a complex of 

enzymes, composed of presenilin 1 or 2 (PS1 and PS2), nicastrin, anterior pharynx defective, and 

presenilin enhancer 2 (LaFerla et al., 2007; Zhang et al., 2011).  

The processing of APP (by cleavage) can proceed through two pathways; one called the prevalent non-

amyloidogenic pathway, triggered by the cleavage of APP by α-secretase, at a position 83 amino acids 

from the C- terminus, producing a 

large N-terminal ectodomain, soluble 

APP α (sAPPα), that will be secreted in 

the extracellular medium. The 

membrane-localized 83-amino-acid C-

terminal fragment (C83) will be then 

cleaved by γ-secretase resulting in a 

short fragment termed p3. The 

cleavage by α-secretase occurs within 

the Aβ region, thus preventing the 

formation of Aβ peptide (Blennow et 

al., 2006; LaFerla et al., 2007; Sakono 

and Zako, 2010; Zhang et al., 2011). 

The other mechanism of APP 

 

Figure 2 – Non-amyloidogenic and amyloidogenic pathways in APP 
processing (LaFerla et al., 2007) 
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processing is called the amyloidogenic pathway, which will lead to the formation Aβ. The initial cleavage 

is mediated by β-secretase at a position located 99 amino acids from the C terminus. This cut results in 

the release of soluble APP β (sAPPβ) into the extracellular space, leaving the 99-amino-acid C-terminal 

stub (known as C99) within the membrane. The newly generated N terminus corresponds to the first 

amino acid of Aβ peptide. The cleavage of this fragment by γ-secretase between residue 38 and 43 will 

release an intact Aβ peptide. This process is shown in Figure 2. The major part of Aβ produced by this 

pathway is 40-amino-acid long (Aβ40), while a small proportion of around 10% will be the 42-residue 

variant (Aβ42). This form of Aβ is more hydrophobic and more prone to fibril formation than Aβ40, which 

explains why this variant is the major Aβ species in cerebral AD plaques. Imbalances in APP metabolism or 

Aβ clearance through the blood-brain-barrier (BBB) or other mechanisms, like proteasomal degradation, 

can lead to increased levels of Aβ oligomers in the brain, which will contribute to the formation of AD. Aβ 

aggregates are thought to inhibit hippocampal long-term potentiation and also lead to a disruption of 

synaptic plasticity. Interestingly, the neurotoxic effect exerted by Aβ is believed to be mediated via Tau as 

this effect is abolished in Tau -/- mice. Like with Tau, Aβ plaques presence can also be categorized in 

different stages (0-4) (Braak et al., 2011). 

 

1.3.2 Tau 

Microtubule-associated protein (MAP)Tau is one of the major MAPs in the brain. Microtubules (MTs) are 

critical to cell function, especially for neurons, since neurons require assembly of MTs from tubulin for 

axon and dendrite growth and integrity, and also to mediate transport of cargo between the soma and 

distant synapses. Tau plays a major role in MT dynamics: decreased binding may destabilize MTs, and too 

much may lead to over-stabilization, (Wolfe, 2009). In cancer treatment with MT stabilizing drugs, like 

Taxol, it was observed an inhibition of dynamicity, shortening, and growing rates of MTs (Yvon et al., 

1999). 

 

Tau protein is codified by a single gene, MAPT, is located in locus 17q21.3 (Almos et al., 2008) and has 16 

exons, being three of them (2, 3 and 10) target of alternative splicing (Martin et al., 2011). In the central 

nervous system (CNS) this splicing will lead to six different isoforms, ranging from 352 amino acids to 

441(Martin et al., 2011).The isoforms of Tau protein are named by the presence of MT binding repeat 

sequences (named R) and N-terminal inserts (designated N). With the presence of exon 10, Tau isoform is 

called 4R, and without it is called 3R. In terms of N-terminal repeats, Tau isoforms can be called 0N, 

without the repeat, 1N with exon 2, and 2N with exons 2 and 3. Alterations in Tau gene are numbered by 

the location in the longest isoform, 2N4R (Martin et al., 2011; Morris et al., 2011). Tau can be subdivided 
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in 4 domains: 1. an N-terminal projection region, 

that interacts with cell membrane and regulates MT 

spacing (Al-Bassam et al., 2002; Morris et al., 2011); 

2. a proline-rich domain (PRD), containing many 

phosphorylation sites, that interacts with SH3 

domains of other proteins, including the tyrosine 

kinase Fyn (Augustinack et al., 2002; Lee et al., 

1998; Morris et al., 2011; Reynolds et al., 2008); 3. a 

microtubule-binding domain (MBD), which can be 

phosphorylated decreasing its interaction with MTs 

(Fischer et al., 2009); and 4. a C-terminal 

region(Morris et al., 2011). 

Recently, Tau has been found to be a key player in 

anterograde transport by kinesin and retrograde 

transport by the dynein complex. Despite the 

apparently essential function of Tau in MT 

formation, maintenance, and dynamics, Tau knock-

out mice seem to display only mild phenotypes, 

including muscle weakness, hyperactivity, and 

impaired fear conditioning, but not 

neurodegeneration (Ikegami et al., 2000). Last year, 

however, a study showed neurotoxic iron 

accumulation in Tau KO mice (Lei et al., 2012) 

suggesting a loss of function phenotype. Taking in 

account all the information on Tau protein, it is 

thought that Tau pathology is not only due to Tau 

loss of function. However it remains possible that 

compensation during development exists. 

Therefore, a conditional knock-out of Tau in the 

adult mouse brain would provide more definitive 

answers to the question of whether loss of Tau 

function alone can contribute to 

neurodegeneration.  

 

Figure 3 – Step by step representation of the process that 
lead from normal microtubule associated tau, to NFTs 
(Martin et al., 2011) 
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Tau protein undergoes extensive and complex phosphorylation, and the phosphorylation state can alter 

MT binding (Johnson and Stoothoff, 2004). Phosphorylation disrupts MT binding, whereas 

dephosphorylation restores binding. The kinases associated with Tau phosphorylation are GSK-3β, CDK5, 

DYRK1A, CDC2, MARK, MAPK, PKA, and PKC (Augustinack et al., 2002; Kimura et al., 2007). Tau is 

abundantly expressed in the central nervous system, especially in neurons (Binder et al., 1985), and its 

function and role in MT formation suggests that disruption of MTs, so critical to axonal structure and 

transport, may be one way by which aberrant Tau phosphorylation/modification leads to 

neurodegeneration (Wolfe, 2009).  

Although Tau is an extremely soluble protein, its aggregation can be initiated by two biophysical triggers 

involving charge neutralization and β-sheet structure propensity (Mandelkow and Mandelkow, 2012). 

Indeed, in addition to MT destabilization, monomeric phosphorylated Tau undergoes a complex cascade 

leading to the formation of NFTs which is represented in Figure 3. Since many studies showed that 

hyperphosphorylated Tau is an important molecular hallmark of AD (Morris et al., 2011) facilitated 

aggregation upon phosphorylation is an attractive working hypothesis. However, the exact role of Tau 

phosphorylation on the aggregation process is not fully understood and remains controversial. Due to the 

presence of Tau inclusions, AD can be considered as a member of a group of diseases that are referred as 

Tauopathies, which are neurodegenerative disorders where Tau inclusions are present (Lee and Goedert, 

2001). These include diseases such as frontotemporal lobar degeneration with Tau inclusions (FTLD-Tau), 

Pick’s disease, progressive supranuclear palsy, and corticobasal degeneration; argyrophilic grain disease; 

and amyotrophic lateral sclerosis/parkinsonism-dementia complex (Morris et al., 2011), as outlined in 

Table 1. It is important to mention that with Tauopathies, some diseases do not show amyloid pathology, 

demonstrating that Tau dysfunction on its own can be toxic (Higuchi et al., 2002; Lee and Goedert, 2001). 

The cause of this set of disorders is not established, however, the presence of NFTs in all of them 

supports the driving force of Tau protein in the pathological mechanism. (Lee and Goedert, 2001; Morris 

et al., 2011; Wolfe, 2009). 

As referred earlier, Tau protein can be target of phosphorylation, but it can also be target of other post-

translational modifications (PTMs) including glycosylation; glycation; prolyl-isomerization; truncation; 

nitration; polyamination; ubiquitination; sumoylation; and oxidation (Martin et al., 2011).Nevertheless, 

the most studied Tau PTM in AD is phosphorylation on serine (S), threonine (T), and tyrosine (Y) residues, 

since its hyperphosphorylation, is suggested to be associated with Tau aggregation (Martin et al., 2011; 

Morris et al., 2011).The phosphorylation sites of Tau are represented in Figure 4. Mutating Tau protein to 

mimic phosphorylation, changing serine residues to glutamate residues at position 262, 293, 324, and 
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356, resulted in an increased dissociation of Tau protein from MTs, leading also to an increased 

aggregation, tested by interaction with an aggregation inducer like heparin (Fischer et al., 2009). 

Table 1 – Tauopathies, distinguishing absence or presence of amyloid pathology (*Diseases in which synuclein-positive lesions 

are the most prominent neuropathologic feature) (Adapted from: Higuchi et al., 2002) 

Diseases showing coexistence of Tau and 

amyloid pathologies 
Diseases without distinct amyloid pathology 

 

 

Amyotrophic lateral sclerosis/parkinsonism– 

dementia complex 

Alzheimer’s disease Argyrophilic grain dementia 

Creutzfeldt-Jakob disease Corticobasal degeneration 

Dementia pugilistica Diffuse neurofibrillary tangles with calcification 

Down’s syndrome 

Frontotemporal dementia with parkinsonism 

linked to 

chromosome 17 

Gerstmann-Sträussler-Scheinker disease Hallevorden–Spatz disease* 

Inclusion-body myositis Multiple system atrophy* 

Prion protein cerebral amyloid angiopathy 

Niemann–Pick disease, type C 

Pick’s disease 

Progressive subcortical gliosis 

 

Progressive supranuclear palsy 

Subacute sclerosing panencephalitis 

Tangle-predominant Alzheimer’s disease 

 

 

Figure 4 – Phosphorylation sites of tau. In green non-pathogenic phosphorylation sites, in red pathological 
phosphorylation sites, in blue phosphorylation found in both conditions, in black putative phosphorylation sites of tau 
(Martin et al., 2011) 
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The abnormal phosphorylation of Tau will start to occur several years before the onset of the disease, 

usually starting around the second and third decades of life, prior to Aβ aggregation (Braak and Braak, 

1995; Braak et al., 2011). Braak & Braak in 1991 presented a neuropathological stageing of brain changes 

in AD, by the NFT tangles distribution pattern. The first two stages were an either mild or severe 

alteration of the transentorhinal layer Pre-α (transentorhinal stages I-II). The two forms of limbic stages 

(stages III-IV) were marked by a conspicuous affection of layer Pre-α in both transentorhinal region and 

proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The 

hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical 

association areas (Braak, 1991; Braak and Braak, 1995; Braak et al., 2011).The results from a study on 

these stages, and also Aβ extracellular deposition, in 2332 brains of non-selected subjects is shown in 

Figure 5. 

Aggregated Tau will lead to normal Tau, MAP1 and MAP2 sequestration. This sequestration will lead to a 

disassembly of MTs that will lead to a disturbed axonal flow and transport of essential elements from the 

soma to the terminal of the axon. The previously mentioned sequestration will eventually lead to a 

polymerization of Tau, creating paired helical filaments (PHFs), thought to be the most toxic form of Tau 

aggregates (Martin et al., 2011; Morris et al., 2011; Wolfe, 2009). 

 

 

 

 

Figure 5 – Development of AT8-immunoreactivity (ir) (A) versus β-amyloid pathologic findings.(B) 
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1.4 Familial form 

Like referred before, AD may be caused by a genetic alteration. Familial AD is associated with three genes 

that are related with the molecular hallmarks of the disease, being these genes APP, PSEN1 and PSEN2 

(Selkoe, 2001). 

 

1.4.1 APP 

The APP gene encodes the APP protein that as referred above is absolutely important for AD. Some 

mutations in this gene have been shown to cause an increased processing of APP through the 

amyloidogenic pathway leading to elevated Aβ levels. On top of this, since APP gene is situated in 

chromosome 21, individuals with trisomy in that chromosome show an increased probability to develop 

AD, because this trisomy will lead to an increase in total APP levels (LaFerla et al., 2007). In addition to 

the mutations associated with EOAD, a recent genetic study in an Icelandic population revealed another 

alteration in the APP gene (A673T) that provides protection against AD. This alteration results in an 

approximately 40% reduction in the formation of amyloidogenic peptides in vitro (Jonsson et al., 2012). 

Alterations in PSEN1 and PSEN2 genes, which codify for PS1 and PS2 protein respectively, part of γ-

secretase, are associated with familial form of AD (LaFerla et al., 2007). 

 

1.5 Sporadic form 

While the genetic causes of the rare familial inherited forms of AD are well known, the causes of the 

sporadic forms of the disease are not. Molecularly, these two forms cannot be distinguished (Götz et al., 

2011). There are, however, factors, both genetic and non-genetic, that are known to increase the 

susceptibility to develop AD. Recent genome-wide association studies (GWAS) have been made to better 

establish the genetic factors associated with sporadic AD (Bertram et al., 2010; Huang and Mucke, 2012). 

1.5.1 ApoE 

The first established genetic risk factor associated with AD is the presence of ApoEε4 allele. This 

alteration in ApoE gene will lead to an increased susceptibility to develop AD (Huang and Mucke, 2012). 

GWASs on LOAD in different populations around the world identified ApoEε4 as the top LOAD gene with 

extremely high confidence (with p values down to ≈ 1x10-160 (Bertram et al., 2010). 
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1.5.2 Other Genes 

Other genes have been discovered to possibly have an influence in AD emergence. These genes have also 

been discovered by GWAS, being ATXN1, BIN1, CD33, CLU, CR1, GAB2, PDCH11X, PICALM, among others 

(Bertram et al., 2010). 

 

1.5.3 Non-genetic risk factors 

The most important non-genetic risk factor for LOAD is aging. There are other potential environmental 

risk factors for LOAD, like head injury, low educational levels, hyperlipidemia, hypertension, 

homocysteinemia, diabetes mellitus, and obesity. But several of these associations remain controversial. 

On the other hand, combinations of apoE4 with one or more of these environmental risk factors may 

further increase the risks for late-onset AD and age-related cognitive decline (Huang and Mucke, 2012). 

 

1.6 Models of Alzheimer’s disease 

To study AD, animal models of the disease are needed. Although, at this point in time, no real AD model, 

explaining biochemical and behavioural changes associated with the disease is available, a number of 

transgenic mice have been reported to recapitulate biochemical hallmarks of AD. In this respect, many 

mutations in APP, PSEN1 and PSEN2 genes have been identified to cause AD. Therefore, these mutations 

associated with Aβ plaque formation have largely been used to mimic the disease in mice and study it 

(Wisniewski, 2010). No mutations in MAPT have been found in patients with AD (Götz and Ittner, 2008), 

however, mutations in this gene have been found in patients with Frontotemporal Dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17). Interestingly, these patients do not develop amyloid 

deposits (Hutton et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). Because of the similarities in 

Tau aggregation between AD and FTDP-17, these mutations are useful for Tau aggregation models (Götz 

and Ittner, 2008). There are 42 known mutations in MAPT (Cruts and Van Broeckhoven, 2008), and 

several of them have been used in transgenic mice models (Cruts and Van Broeckhoven, 2008; Götz and 

Ittner, 2008). 

The first Tau transgenic mouse model expressed the longest human wild-type (WT) Tau isoform in 

neurons (Götz et al., 1995). Pre-tangle formation and hyperphosphorylation of Tau was observed. 

However, it was another 5 years before the expression of human FTD mutant P301L Tau reproduced 

aggregation and NFT-formation in mice (Götz et al., 2001; Lewis et al., 2000). These mice have become a 
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widely used tool to study disease-related pathogenic mechanisms (Götz et al., 2004, 2007) and recent 

models have built on their success (Götz and Ittner, 2008). Another mouse model showing expression of a 

human FTD mutant Tau protein is P301S, which exhibits neurodegeneration and extensive Tau 

aggregation (Allen et al., 2002). There are also models that are based both in Aβ processing and Tau 

protein mutations, being the 3xTg-AD mice an example of this. These animals harbour three mutations, 

βAPPSwe, PS1M146V, and TauP301L (Oddo et al., 2003). Tau protein can also be aggregated in vitro for many 

uses, and for that, an inducer, like heparin is used (Ramachandran and Udgaonkar, 2011). 

 

1.7 Therapies of Alzheimer’s disease 

Up to date, only symptomatic treatments are available to treat AD. Since this kind of treatment does not 

change the progress of the disease, there is an urgent need to develop disease-modifying therapies 

(Blennow et al., 2006; Tayeb et al., 2012).  

 

1.7.1 Targeting neurotransmitter dysfunctions 

With neuronal degeneration associated with AD, degeneration of cholinergic neurons in basal forebrain 

nuclei will cause disturbances in presynaptic cholinergic terminal situated in the hippocampus and 

neocortex, resulting in memory disturbances and other cognitive symptoms (Terry and Buccafusco, 

2003). The principal strategy to enhance cholinergic neurotransmission is to increase the availability of 

acetylcholine (Ach) by inhibiting acetylcholinesterase (AchE) (enzyme responsible to degrade 

acetylcholine in the synaptic cleft) (Blennow et al., 2006). Taking into account the mechanism of action of 

AchE inhibitors, it is not expected that these change the natural course of AD, only mitigating some of the 

symptoms (Blennow et al., 2006). Some studies have shown, however, that these treatments can be 

effective for up to 2 years (Bullock et al., 2005; Courtney et al., 2004), having even some studies suggest 

benefits of this treatments for up to 5 years (Bullock and Dengiz, 2005). 

More recently, a new approach in neurotransmitter targeting emerged, i.e. Memantine acting on 

glutamatergic signalling (Tayeb et al., 2012). In normal conditions, glutamate and N-methyl-D-aspartate 

(NMDA) receptors have an important role in learning and memory processes (Blennow et al., 2006). It is 

suggested that during AD progression an increased glutamatergic activity, which can lead to sustained 

low-level activation of NMDA receptors, leads to neuronal toxicity and dysfunction (Areosa et al., 2009). 

In that respect, Memantine, a non-competitive NMDA-receptor antagonist, is believed to provide 
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neuronal protection against glutamate-mediated excitotoxicity, without changing the physiological 

activation of NMDA-receptor, needed for proper cognitive function (Wilcock, 2003). 

 

1.7.2 Aβ-directed therapies 

In order to treat AD, investigation in disease-modifying strategies is ongoing (Tayeb et al., 2012). In the 

last years this investigation has focused mainly on reduction of Aβ toxicity (Blennow et al., 2006). In a Aβ-

directed therapies, three classes of medications were developed: secretase modulators (decrease of Aβ 

production); anti-aggregants (which prevent aggregation); and immunotherapy (focusing Aβ clearance) 

(Tayeb et al., 2012). 

 

1.7.2.1 Secretase modulators 

β-secretase inhibitors have been demonstrated to reduce brain Aβ concentrations in AD transgenic mice 

(Chang et al., 2004), however these inhibitors had many problems in development, since β-secretase has 

other substrates other than APP (Tayeb et al., 2012). Another drawback of this approach is the reported 

behavioural profile of BACE1-knockout mice varying from, similar to wild-type phenotypes (Cai et al., 

2001; Luo et al., 2001), behavioural and memory dysfunction (Harrison et al., 2003; Ohno et al., 2004), to 

even deadly phenotype with early mortality (Dominguez et al., 2005). Also, β-Secretase inhibitors have 

been a challenge to develop, because the structure of BACE1 is a member of the class of aspartyl 

proteases, and so, inhibitors would have to be large and hydrophilic molecules because of BACE1 catalytic 

site is unusually large (Dislich and Lichtenthaler, 2012). These properties pose problems for the 

pharmacokinetics required for blood–brain-barrier penetration, and subsequent therapeutic efficacy 

(Tayeb et al., 2012). Many compounds have been in investigated in order to overcome these obstacles, 

however limited candidates are suitable to start a clinical trial. Even the ones that reached Phase II/III 

clinical trials, have not shown to hold significant disease-modifying effects (Karran et al., 2011). 

Inhibitors and modulators of γ-secretase activity has been an attractive and promising target for disease 

modification (Tayeb et al., 2012). It was first shown to decrease in-vivo Aβ production in 2001 (Dovey et 

al., 2001). This was a real promising development, however a valid concern about γ-secretase inhibitors 

existed and was related to the fact that γ-secretase is a protease for a number of essential substrates in 

addition to APP (Tayeb et al., 2012). One of them is the “Notch” receptor protein, a transmembrane 

protein that must be cleaved by γ-secretase in order to release its intracellular domain to perform its 

essential functions related to intracellular signalling and modulation of differentiation and proliferation of 
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various types of dividing cells (Pollack and Lewis, 2005). Non-selective inhibition of γ-secretase was 

shown to inhibit Notch signalling in animals, producing pathologies such as gastrointestinal fucoid 

enteropathy, and abnormal lymphocyte differentiation(Wong et al., 2004). Moreover, γ- secretase 

knockout mice were shown to have a fatal phenotype similar to the fatal phenotype of Notch knockouts 

(De Strooper et al., 1999). These side effects posed serious limitations to clinical trials. 

Recently, the interest in γ-secretase research focused in so-called selective inhibitors or modulators. 

These compounds do not completely block the function of γ-secretase, but rather selectively alter the 

enzyme’s function of APP cleavage without altering cleavage of essential substrates such as Notch. 

Several mechanisms were proposed to explain how this group of agents accomplishes this desirable 

outcome. These include: 1. non-competitive binding to the γ-secretase enzyme, at a site different from 

the catalytic one, inducing a disruptive conformational change; 2. binding to the APP itself and rendering 

it unavailable for cleavage; and 3. binding to the cell membrane inducing allosteric modifications in the 

enzyme-substrate complex. In any case, these medications have the potential to modulate production of 

amyloid species, shifting production away from amyloidogenic to non-amyloidogenic ones (Oehlrich et 

al., 2011). 

Another approach in APP associated secretases is α-Secretase pathway stimulation that will lead to a 

reduction of the sAPPα substrate available for the amyloidogenic pathway, leading to the formation of a 

soluble segment (sAPPα), which was shown to be neuroprotective (Furukawa et al., 1996), and a 

stimulant for synaptogenesis (Small et al., 1994). Stimulation of this pathway, therefore, was another 

attractive way for the potential development of disease-modifying drugs. So far, there have been no 

major compounds modulating these pathways that have emerged from animal studies to reach clinical 

trials (Tayeb et al., 2012). However, activators of PKC were shown to clear Aβ load in transgenic mice with 

a mutation in APP gene, with the activator in this case being bryostatin (Etcheberrigaray et al., 2004), and 

also shown to clear Aβ in cell lines with different activators, AA-CP4, EPA-CP5, and DHA-CP6 (Nelson et 

al., 2009). One of the thought mechanisms that lead to Aβ clearance, is PKC-mediated activation of α-

secretase (Etcheberrigaray et al., 2004; Nelson et al., 2009). Another proposed mechanism of PKC action 

is by inhibition of BACE1 activity (Wang et al., 2008). 

 

1.7.2.2 Anti-aggregants 

Another attractive point of intervention in AD is the creation of a way to prevent aggregation of amyloid 

species. Amyloid species are normally present in healthy brains, and their mere presence does not lead to 

neurodegeneration. This neurodegeneration is thought to require aggregation of Aβ species to form 
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oligomers, fibrils and protofibrils, and then deposition in the form of amyloid plaques (Geula et al., 1998; 

Pike et al., 1991, 1993, 1995). Recent literature, however, provides evidence that the earlier soluble 

oligomers are also neurotoxic (Walsh and Selkoe, 2007). Many anti-Aβ aggregation agents have been 

tested in clinical trials (Tayeb et al., 2012). 

 

1.7.2.3 Amyloid removal 

Another approach to modify the amyloid cascade is removal of amyloid from the brain. Theoretically, 

removal of amyloid can be achieved through activation of its degrading enzymes, enhancing of its 

transport mechanisms from the brain to the peripheral circulation, and direct removal of amyloid species 

through an immunological response (Citron, 2010). The most important known Aβ-degrading enzymes 

include neprilysin, insulin-degrading enzyme, and plasmin (Eckman and Eckman, 2005). Tissue 

plasminogen activator inhibitor inhibition was achieved in transgenic mice, leading to a reduction of 

plasma and brain Aβ levels (Tayeb et al., 2012). Regarding Aβ transport, the receptor for advanced 

glycation end product (RAGE) mediates transport of Aβ into the brain, whereas low-density lipoprotein 

receptor-related protein 1 (LRP-1), mediates its transport from the brain to the peripheral circulation. A 

RAGE inhibitor developed by Pfizer, PF-04494700, was tested in a 10-week placebo-controlled clinical trial 

in 55 mild to moderate AD patients, showing tolerability but an inconsistent effect on plasma Aβ levels 

and cognitive performance (Sabbagh et al., 2011). 

As an alternative to small molecule approaches, Aβ immunotherapy principle was first reported in a 

paper showing that active immunisation of AD transgenic mice with fibrillar Aβ attenuated Aβ deposition 

(Schenk et al., 1999). Similar results were obtained by use of passive immunisation with antibodies 

against Aβ (Bard et al., 2000). The effect might be mediated by anti-Aβ antibodies that bind to Aβ plaques 

and induce Aβ clearance by microglia (Bard et al., 2000; Schenk et al., 2004) or alternatively, bind soluble 

Aβ in the periphery, thereby driving an Aβ efflux from the brain. These results were the basis for initiating 

clinical trials with active immunisation with the vaccine AN1792, composed of preaggregated 

Aβ42(Schenk et al., 2004). However, the phase IIa AN1792 trial had to be interrupted because 6% of cases 

developed encephalitis (Orgogozo et al., 2003). This side-effect has been suggested to be due to a T-cell 

response against the mid-terminal and C-terminal part of the peptide (Schenk et al., 2004). The second 

generation of immunotherapy, Aβ immunoconjugates composed of the N-terminal part of Aβ conjugated 

to a carrier protein (Schenk et al., 2004), or virus-like particles, could allow for active immunisation with 

reduced risk of Th-1 mediated side-effects. Both active immunisation with N-terminal Aβ fragments 

(AN1792, Phase II clinical trial) and passive immunisation with humanised anti-Aβ monoclonal antibodies 

(Bapineuzumab and Solanezumab, both in Phase III clinical trials) have been tested and showed limited or 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

17 
 

no clinical efficacy (Delrieu et al., 2012). Despite the strong scientific base of the amyloid hypothesis, 

clinical trials targeting Aβ with small molecules or immunotherapy were unsuccessful or showed limited 

improvement of mild cognitive impairment (Communications Eli Lilly at the AD/PD conference 2013). As 

initial neuropathological changes occur 19 years before the clinical approaches become apparent, it is 

plausible to attribute these failures to the fact that disease modifying approaches targeting Aβ should be 

initiated much earlier. The ultimate proof of this assumption will be provided by different prevention 

trials on clinical cohorts having individuals that are genetic at-risk (DIAN, API) or biomarker positive (A4) 

(Sperling and Johnson, 2013). In this latter group, cerebrospinal fluid (CSF) Tau (total and phosphorylated) 

is one of the biomarkers. 

 

1.7.3 Anti-inflammatory and neuroprotective approaches 

Several treatment approaches have been based in epidemiological studies. Observational studies have 

suggested a protective effect of different types of drugs or supplements, but when tested in randomised 

controlled clinical trials designed to avoid the many potential biases and inherent methodological 

problems in epidemiological studies, beneficial effects have been difficult to establish. These drugs and 

supplements are anti-inflammatory drugs, cholesterol-lowering drugs, oestrogens, and antioxidants 

(Blennow et al., 2006; Tayeb et al., 2012). 

 

1.7.4 Tau-targeted treatment strategies 

Many therapeutic approaches to target Tau pathology have been pursued in recent years in animal 

models (Brunden et al., 2009). Transplantation of cells with the potential to differentiate in situ either 

into neuronal or glial cell types can be an interesting field of research (Ferrari et al., 2000). This approach 

was successfully applied to mice with a combined Tau and Aβ pathology in which neural stem cell (NSC) 

transplantation improved cognition via brain-derived neurotrophic factor (BDNF) (Blurton-Jones et al., 

2009). With this method, spatial learning and memory deficits were rescued without altering the Aβ or 

Tau pathology. Antioxidant strategies may also be possible as both Tau and Aβ cause mitochondrial 

dysfunction and increased levels of reactive oxidative species (Eckert et al., 2008). The more studied 

approaches are focusing Tau aggregation, MT stabilization, target of Tau phosphorylation, and also Tau-

based immunization approaches. Tau-targeted treatments are resumed in Figure 6. 
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1.7.4.1 Anti-Tau aggregation therapy 

It is possible to aim inhibition of Tau oligomer and eventually, fibril formation. Blocking Tau/Tau 

aggregation with small-molecule drugs is generally thought to be difficult because of the large surface 

areas that are involved in such interactions. There is however growing evidence that Tau multimerization 

can be disrupted with low-molecular-mass compounds (Brunden et al., 2009). Methylen blue dye, e.g., 

has been reported to inhibit Tau aggregation successfully. However, while phase II data presented at the 

International Conference on Alzheimer's Disease (ICAD) in 2008 suggested that this compound had a 

positive therapeutic effect (Wischik and Staff, 2009), more results of this compound in a phase III clinical 

trial are needed. Many research teams have identified several chemical entities that may inhibit 

fibrillization (Brunden et al., 2009). The most useful compounds to target Tau aggregation are those that 

prevent the initial stages of Tau/Tau interaction, so that they lead to an increase of Tau monomers and 

not an accumulation of intermediate multimeric structures, which could have detrimental biological 

effects (Brunden et al., 2008). 

1.7.4.2 Targeting of microtubule stabilization 

A damaged axonal transport and MT function are a central pathomechanism in Tauopathies (Götz et al., 

2006). In Tau transgenic mice with axonopathy, amyotrophy and consequently, a motor phenotype, a 

 

Figure 6 – Tau-related strategies and their site of action in the cell (Adapted from Jürgen Götz et al., 2012) 
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reduction in MT density and fast axonal transport was found (Ishihara et al., 1999, 2001). After treatment 

with MT-stabilizing drug paclitaxel, these mice showed a significant improvement of fast axonal transport 

and MT density compared with vehicle-treated mice. Furthermore, their motor function markedly 

improved (Zhang et al., 2005). Epothilone D, a brain-penetrant MT-stabilizing agent, showing reduced 

axonal dystrophy and increased axonal MT density to improve fast axonal transport and cognitive 

performance in an aged PS19 mouse model. These mice also had less forebrain Tau pathology and 

increased hippocampal neuronal integrity. These data reveal that MT-stabilizing drugs hold promise for 

the treatment of AD and related Tauopathies, and that this drug could be a candidate for clinical testing 

(Zhang et al., 2012). To develop successful treatments for humans for AD using this approach, it is 

important to keep peripheral levels of MT-stabilizing drugs as low as possible (Götz et al., 2012). 

 

1.7.4.3 Targeting Tau folding 

There are cellular mechanisms described to clear unfolded or misfolded proteins. These require refolding 

by molecular chaperones, such as the heat shock proteins (HSPs), or eliminated by the ubiquitin 

proteasomal system (UPS) (Petrucelli et al., 2004). In AD, protein aggregation can also trigger cellular 

stress that may initiate autophagy, a cellular degradation pathway, which involves the lysosomal 

machinery (Higgins et al., 2010). There is evidence that mutant Tau transgenic mice have alterations in 

UPS, to change turnover of Tau, and an enhanced stress response (David et al., 2006; Dickey et al., 2009). 

In AD, there is increasing evidence that both systems, autophagy and UPS, are affected (Keck et al., 2003; 

Nixon et al., 2005). Targeting of these systems can be a possible way to treat AD (Götz et al., 2012). 

 

1.7.4.4 Inhibition of Tau phosphorylation  

The correct identification of Tau phosphorylation sites that lead to Tau dissociation and aggregation is 

believed to help to identify a biological role for the kinases and phosphatases involved in its 

hyperphosphorylation and dephosphorylation, respectively (Ferrari et al., 2003; Hoerndli et al., 2004; 

Pennanen and Götz, 2005; Steinhilb et al., 2007). These enzymes are therefore excellent targets for a 

therapeutic intervention in AD and related dementias (Iqbal and Grundke-Iqbal, 2008). There are several 

kinases that have been shown to phosphorylate Tau in vitro. MAP/MT affinity-regulating kinase 1 

(MARK1), that phosphorylates two serine residues that are located within the (Ser262/Ser356) is one of 

those enzymes. Other enzymes that are known to be involved with Tau phosphorylation are cyclin-

dependent kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3), extracellular signal-regulated kinase 2 
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(ERK2) and p38, among others. All of these phosphorylate various epitopes outside of the MBD region 

(Dolan and Johnson, 2010). Within the AT8 antibody epitope Ser202 and thr205 phosphorylation is 

mediated by CDK5, GSK3β, MAPK, and PKA kinases, (Goedert et al., 1995). To test Tau phosphorylation, a 

number of antibodies were developed to recognize pathological forms of Tau protein. Some of these 

antibodies are: pT153, pS262, TG3, pT175/T181, 12E8, pS422, pS46, pS214, AT100, AT8 and PHF-1 

(Augustinack et al., 2002). Some of these antibodies, e.g. AT8, show strong staining of NFT.  

As mentioned above, different kinases have been reported to phosphorylate Tau and accordingly it is 

hypothesized that inhibitors of these kinases would decrease Tau hyperphosphorylation. Indeed there are 

some examples that support this hypothesis. One of the most studied molecule is the GSK3 inhibitor 

lithium chloride (however targeting other molecules like inositol monophosphatase) that reduced levels 

of insoluble Tau, hyperphosphorylated Tau and behavioural impairment in various Tau transgenic mouse 

models (Caccamo et al., 2007; Engel et al., 2006; Noble et al., 2005; Pérez et al., 2003; Reynolds et al., 

2008). Another inhibitor valuable for the validation of therapies for AD is the non-specific kinase inhibitor 

K252a (for CDK5, GSK3 and ERK1), having also shown to reduce levels of hyperphosphorylated Tau. In this 

transgenic mouse model, soluble aggregated hyperphosphorylated Tau was markedly reduced, and 

motor deficits typical of the model were prevented, however NFTs were not reduced (Le Corre et al., 

2006). 

Recently it was shown that a small orally delivered compound, sodium selenate, induced 

dephosphorylation of Tau by a protein phosphatase 2A (PP2A)-dependent way in two Tau transgenic 

mouse lines, pR5 and K3 (Ittner et al., 2008; Pennanen et al., 2004). This resulted in a reduction in Tau 

phosphorylation and aggregation and also reduced behavioural impairment in memory and motor 

functions as well as preventing neuronal loss (Van Eersel et al., 2010). Until now, only three Tau-directed 

drugs have progressed into human clinical trials, but results on their efficacy are not yet available 

(Brunden et al., 2009; Hampel et al., 2009). Given this fact and the major role of Tau in disease, there is a 

great need for new therapeutic approaches targeting Tau pathology (Götz et al., 2012). 

 

1.7.4.5 Tau-based immunotherapy 

Immunotherapy focusing Tau protein is a recent field of research in AD (Götz et al., 2012). 

Immunotherapy can be either active (with the immunization with a immunogen in order to develop 

immunity), or passive (with the injection of antibodies recognizing specific epitopes) (Chai et al., 2011). 

The first Tau-based immunization approach used full-length recombinant human Tau to immunise 

C57BL/6 wild-type mice. With this approach, anti-Tau antibodies in the serum were detected in mice that 
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developed neurological symptoms including tail and hind limb paralysis. Tau-related abnormalities were 

visualized by Gallyas silver impregnation and were detected in both neurons and glial cells in brain stem 

and spinal cord. In order to confirm the presence of Tau aggregates, the phosphospecific Tau antibodies 

AT8 (Ser202/Thr205) and AT100 (Thr212/Ser214) were used. Testing with these antibodies confirmed the 

results observed with Gallyas silver staining. Axonal damage and inflammation, due to the immunization, 

was revealed without associated demyelination. Because the axonal damage in the Tau-immunized mice 

occurred in close contact with cellular infiltrates, it was presumed that a local disruption of the blood-

brain barrier would facilitate the passage of serum anti–Tau antibodies. It was concluded that with all 

these results taken in account, a link between Tau autoimmunity and Tauopathy-like abnormalities was 

established, indicating potential risks of using Tau for active immunotherapy (Götz et al., 2012; 

Rosenmann et al., 2006). 

While the first attempt caused encephalitis (Rosenmann et al., 2006) subsequent active immunization 

methodologies using a Tau phospho-peptide, showed efficacy by preventing a pathology in Tau 

transgenic models, with absence of obvious side-effects (Asuni et al., 2007; Boimel et al., 2010; 

Boutajangout et al., 2010). 

In 2007, Asuni and colleagues used a 30 amino acid peptide that included the PHF1 phospho-epitope of 

Tau (Ser396/Ser404) with aluminium adjuvant to immunize 2 months-old P301L Tau transgenic JNPL3 

mice. This approach strongly reduced Tau phosphorylation and led to an increase in Tau solubility. The 

Tau antibodies generated in the animals recognized pathological Tau on brain sections, and levels 

correlated inversely with the pathology. The fact that immunotherapy was performed from 2 to 8 months 

of age (with 2 months being prior to when JNPL3 mice develop NFTs) leaves the question if an 

immunization at a later age would also remove existing NFTs and the associated Tau pathology, in other 

words, if this approach leads to treatment instead of delaying pathology (Asuni et al., 2007). 

In another experiment, similar results were obtained by immunizing mice that express all six human Tau 

isoforms on an MAPT-/- background, the hTau model (Andorfer et al., 2005), together with M146L 

mutant PS1 (Boutajangout et al., 2010). When the mice were 3–4 months old, they received peptide that 

comprised the PHF1 phospho-epitope of Tau (Ser396/Ser404) intraperitoneally in aluminium adjuvant, 

like in the previous study, with the first three injections every 2 weeks, until 7-8 months of age. After that 

time, administration was performed at monthly intervals. This approach strongly reduced Tau pathology 

throughout the brain. The solubility of Tau was not altered at statistically significant values but there was 

a trend towards a reduction in the PHF1-immunized group. In mice (PHF1-immunized and control-

immunized) microgliosis and astrogliosis shown similar levels, suggesting that the gradual removal of Tau 

aggregates is not due to gliosis. Besides the biochemical reversal of pathology, it was revealed that the 
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cognitive impairment, characteristic for the model system could be prevented by vaccination. The 

improvement in the cognitive impairment was tested by learning and memory tests, including radial maze 

learning and retention, closed-field symmetrical maze, and object recognition. As in the study conducted 

by Asuni and colleagues, autoantibodies were found in the controls, being likely to be present in the 

immunized mice (Boutajangout et al., 2010). In AD patients, autoantibodies are reduced, but their role in 

pathogenesis remains unclear, although naturally occurring auto-antibodies have been suggested as a 

treatment approach in AD (Dodel et al., 2011; Götz et al., 2012). 

In a different study (Boimel et al., 2010), 3 month-old K257T/P301S double mutant Tau-expressing mice 

were immunized with a mix of three short peptides comprising the phosphorylation sites Ser202/Thr205 

(PHF1), Thr212/Ser214 (AT100) and Thr231 (AT180), respectively. Tau phosphorylation and NFT 

formation, seen by immunohistochemistry and Gallyas silver staining, was significantly reduced. Like in 

the previous studies, treatment was started before the onset of NFT formation and efficacy of the 

immunization approach after NFTs have formed is awaited with great expectation. Like in the study of 

Boutajangout and colleagues in 2010, immunization of these mice did not result in astrocyte activation, 

existing however a slight increase in the number of lectin-positive, but inactive, microglia observed 

(Boimel et al., 2010). Infiltration with peripheral monocytes was not shown in this study. Contribution of 

glial cells in this mechanism remains still to be completely understood. In a study with a similar approach, 

P301L mice at 4, 8 and 18 months were treated with small phosphorylated Tau fragments, and it was 

seen that there is reduction of Tau aggregation and phosphorylation even in aged mice, well after onset 

of NFT pathology, which starts at 6 months. This means that Tau-targeted immunization can have an 

effect in aggregation after pathology is settled (Bi et al., 2011). 

Like referred before, passive immunization is also possible to target Tau pathology (Götz et al., 2012), and 

a passive immunization approach has been tested by two groups. The first study used immunization of 

two to three-month old JNPL3 mice weekly with either PHF1 (250μg/125μl) or pooled mouse IgG for a 

total of thirteen injections (Boutajangout et al., 2011). Three behavioural tests were made, the traverse 

beam, rotarod and locomotor activity. The treated mice performed better in one of these tests, the 

traverse beam test. Insoluble Tau levels were reduced (particularly of CP13-Tau) while those of soluble 

Tau stayed unaffected. PHF1 immunoreactivity in the dentate gyrus was reduced twofold in the 

immunized group compared to the control. With this testing there was no evidence of an increased 

astrogliosis. The second study employed antibodies for the PHF1 epitope Ser396/Ser404 as above, and in 

addition for the early conformational epitope MC1, and a control mouse IgG (Chai et al., 2011). Two 

mouse models were tested, JNPL3 and P301S. In JNPL3 study, antibodies were administered at 15 mg/kg 

three times a week for 2 months and then at 10 mg/kg twice a week for the remaining two months, while 

in the P301S study, antibodies were administered at 15 mg/kg twice weekly. The vaccination with the two 
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Tau-specific antibodies caused reduced levels in hyperphosphorylated Tau (such as of the 64 kDa 

species), however, total transgenic Tau levels (HT7) were not affected. The treatment delayed the onset 

of motor function decline (as determined on the RotaRod) and also weight loss (in both strains). This was 

accompanied by a concomitant reduction in neurospheroids (undifferentiated neural stem cells) in the 

spinal cord. Interestingly, both therapeutic Tau antibodies, despite recognizing different pathological 

epitopes, produced very similar levels of phenotypic improvement (Chai et al., 2011). This experiment 

showed however different effects on different phospho-epitopes in the two treated groups. Moreover, 

therapeutic long-term effects on (motor) neuron degeneration still need to be established. 

The mechanisms, by which Tau-directed antibodies improve the Tau-associated pathology are far from 

being understood, and further investigations beyond these studies are essential (Sigurdsson, 2009). While 

one study has revealed the presence intraneuronal antibodies upon Tau-targeted immunization (Asuni et 

al., 2007), another study showed antibodies in brain vessels, but not neurons or brain parenchyma 

(Boimel et al., 2010). It was found that in an active immunization trial of P301L Tau mutant pR5 mice 

using the Aß peptide, anti-Aß antibodies bound to the intracerebrally injected Aß aggregates (Kulic et al., 

2006). There is not a consent as to whether and to which extent antibodies enter the brain and in 

particular, the cytoplasm of neuronal and glial cells (Winton et al., 2011). 

Concerning Tau-based immunotherapy, a new and important aspect has emerged very recently, the 

concept that Tau is secreted and is spreading. Tau pathology in AD starts in the medial temporal lobe, but 

with the progression of the disease, Tau pathology shows throughout the brain, in a particular known 

sequence of affected brain areas (Braak and Braak, 1995).  

The essential molecular mechanisms of this spreading are not fully understood, but there is data 

suggesting that non-NFT forming Tau has been converted to NFT-forming Tau (Allen et al., 2002; 

Clavaguera et al., 2009; Probst et al., 2000). A recent study conducted by Liu and colleagues has shown 

that there exists a trans-synaptic spread of pathological forms of Tau in the brain (Liu et al., 2012). Studies 

have shown that Tau can be released from and taken up by cultured cells and in vivo (Frost et al., 2009; 

Kim et al., 2010). This suggests that the sink hypothesis could also relate to Tau, with Tau being sucked 

away from the cytoplasm into the interstitial space (Götz et al., 2012). As has been suggested, it is 

probable that Tau antibodies can target pathological Tau both extra- and intracellularly (Sigurdsson, 

2009). Extracellular Tau clearance can be predicted to occur similar to what is thought to take place with 

antibodies targeting Aβ. Antibody binding may directly promote disassembly and as well as signaling 

microglia to clear the antibody-protein complexes. Intracellular clearance may possibly involve direct 

antibody uptake. The place where antibody-Tau interaction occurs within the cell is likely to be in the 

endosomal/autophagy-lysosomal system (Sigurdsson, 2009). It may however well be that there is not one 
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mechanism, but that different mechanisms are combined in action and that their relative role is different 

depending on the mouse strain and the immunogen used (Götz et al., 2012). Possible mechanism of Tau-

directed antibody action is represented in Figure 7. Recent research has shown that Tau can be 

extracellularly secreted, by mechanisms that can be involved with phosphorylation or truncation in 

aspartic acid 421 (Garringer et al., 2013; Plouffe et al., 2012), and with exosome-associated secretion 

which was detected in CSF of patients with mild AD (Saman et al., 2012). This secretion of Tau can be 

related to mechanisms of spreading and could be a potential target for immunotherapy, by blocking the 

entrance of these forms in other cells. Since there is evidence that this forms of Tau can be present in the 

CSF of patients, a reduction on the levels of specific fragments on the CSF can be a way to determine if a 

potential therapy being tested is having its expected effect, and for that is essential to have specific 

biomarkers for the disease. 

 

 

Figure 7 – Possible mechanisms of action of Tau targeted passive immunotherapy 

A – Degradation of tau aggregates mediated by antibodies (Antibodies bind tau and modifies the secondary structure to one 
which minimizes the formation of aggregates); 

B – Phosphorylation epitopes recognized by anti tau antibodies (in orange epitope for AT8, in yellow epitope for AT100); 

C – Sink hypothesis of tau clearance with anti tau antibodies; 

D – Macrophage mediated degradation of NFTs by anti tau antibodies. 

(Martin et al., 2011; Morgan, 2011) 
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1.8 Biomarkers 

A fluid biomarker is an entity (metabolite, protein, or modified protein) of which the quantity correlates 

with disease progression on clinical diagnosis with therapeutic efficacy. For neurological diseases, the 

most evident source is the CSF although for some markers, plasma can be used as well (Blennow et al., 

2012). 

The CSF is in direct contact with brain tissue, fact that makes it is a relevant source of biological material 

to identify biomarkers for neurodegenerative disorders. It is a transparent fluid mainly produced in the 

choroid plexus but 20% of the CSF consists of interstitial fluid (ISF) containing proteins secreted from 

neurons and glial cells. Therefore, changes in neuronal cell homeostasis have the potential to be reflected 

in CSF. 

For AD, several biomarkers including Aβ and Tau are currently used to define stages in AD. The main 

functions of CSF are to protect the brain and spinal cord, and transport waste products from the central 

nervous system into the blood. Although it is a painful and uncomfortable fluid to collect, CSF is probably 

the most informative obtainable fluid for neurodegenerative disease prognosis. The amount of material 

per collection is however limited. 

As indicated before, Aβ is a product from APP processing and is released into the extracellular 

environment after it has been produced. Accordingly, CSF levels of Aβ reflect the level of APP processing. 

In a dog model, modulation of γ-secretase complex by inhibitors/modulators has a profound effect on 

different amyloid species, Aβ(37), Aβ(38), Aβ(40), and Aβ(42) in CSF (Borghys et al., 2012). From these C-

terminal proteolytic fragments Aβ(40) is the most abundant product found in CSF but on its own, this 

form does not correlate with plaque load. On the other hand, a decreased Aβ(42)/Aβ(40) ratio is 

observed in AD and MCI (Mehta et al., 2007). In addition Aβ(38)/Aβ(42) ratio’s correlate with pre-

symptomatic plaque load (Fagan et al., 2009a) suggesting that looking at combination of biomarkers 

increases clinical accuracy. 

Collectively, these observations position CSF Aβ(42) as an early pre-clinical biomarker in the absence of 

cognitive symptoms. Nevertheless, as mentioned above, a combination of biomarkers will be required to 

reach the required sensitivity and accuracy (lower Aβ(42) has been seen in patients with Lewy body 

dementia and FTD). In addition, it does not correlate very well with disease progression (transition from 

MCI to AD). The combination of lower Aβ(42) with elevated CSF Tau (total and phospho Thr181) has as 

90% sensitivity for AD and is considered as the current standard for AD biomarker based diagnostic 

(Andreasen et al., 2001; Hansson et al., 2006). 
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Tau is the main component 

of NFT and the current 

assumption is that neuronal 

loss results in passive release 

of this protein in the 

extracellular space resulting 

in an increase in both total 

and phosphorylated Tau in 

different neurodegenerative 

diseases. In AD, CSF levels of 

total Tau are increased 2-3 

fold in comparison to non-

demented elderly (Blennow 

and Hampel, 2003). This 

increase can be clearly 

observed at early clinical stages (MCI) but also in pre-clinical AD (in conjunction with decreased Aβ(42) 

(Fagan et al., 2009a, 2009b). Interestingly, therapeutic intervention using anti-amyloid-based 

immunotherapy was able to attenuate this increased levels of CSF Tau (Blennow and Zetterberg, 2012). 

Similar to Aβ(42), using Tau as a single biomarker with the current available assays has its limitations. First 

of all, AD is not the only neurodegenerative disease showing elevated CSF Tau. FTD, CJ but also acute 

brain trauma has been shown to be accompanied by elevated CSF Tau levels (Andreasen et al., 2001; 

Hesse et al., 2001). In addition, increased levels of Tau are observed in a later timeframe than alterations 

in Aβ(42) suggesting that changes in Tau correlate with disease progression but lack the predictive value 

of identifying the earliest biochemical events underlying AD (Figure 8).  

These limitations are the result of the poor understanding of the presence of Tau and phospho Tau in 

CSF. In light of the recent Braak study positioning the first signals of Tau pathology (AT8 staining) two 

decades earlier than initial stages of amyloid β pathology, (Figure 4; Heiko Braak et al., 2011) the 

relatively late changes of Tau in the CSF (Figure 8) are somewhat counterintuitive. One could speculate 

that increases in extracellular Tau are a result of neuronal cell death, which is occurring after amyloid 

deposition and correlates quite well with increases in CSF Tau (at least in FAD; Figure 8). On the other 

hand other Tauopathies like FTLD have clear neuronal cell death in the absence of amyloid deposition. 

This, together with the fact that Tau levels in CSF are extremely low, could point to the need of higher 

sensitivity of the assays. In addition to these, quantitative aspects, some qualitative aspects are playing as 

well. Which of the six isoforms is/are present in the CSF, and why these actually exist in this type of 

 

Figure 8 – Comparison of clinical, cognitive, structural, metabolic, and biochemical 
changes as a function of estimated years from expected symptom onset. (CDR – 
Clinical Dementia Rating) (Bateman et al., 2012) 
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biofluid, is not known. Also PTMs of CSF Tau are poorly characterized and giving the observation that NFT 

Tau is hyperphosphorylated, comprehensive analysis of these PTMs is desired and could reveal novel 

epitopes for development of better assays with full understanding of what the readout stands for.  

The identification and characterization of Tau species in CSF, has been hampered by different 

challenges, being the fact that Tau protein exists as different splice variants and is also subjected to a 

plethora of PTMs including phosphorylation, glycosylation, proteolytic cleavage etc. one of them. In 

healthy individuals, levels of Tau are very low (300 ng/L). Despite these challenges, LC-MALDI MS 

analysis of a tryptic digest on immunopurified Tau revealed fragments encompassing the entire 

protein with exception of the last 50 amino acids from the C-terminus (Portelius et al., 2008). As these 

peptides are derived by a tryptic digest, it is not known whether fragments are derived from is an 

intact or proteolized protein. 

In order to properly test pharmacological agents, it is needed to have animal models to test efficacy 

and kinetics of these agents. One animal model used for this is the dog, that was used in the study of 

modulation of γ-secretase complex by inhibitors/modulators referred before (Borghys et al., 2012). In 

this study dogs were treated with these γ-secretase inhibitors or modulators and an effect on Aβ levels 

on the CSF was observed. The dog model is an ideal one to use due to the possibility of doing 

longitudinal studies where effects of treatment agents are assessed over time. The dog show also 

many alterations related with aging, from Aβ deposition, to cognitive impairments, in similar way of 

AD patients (Borghys et al., 2012; Head, 2013). It is observed also some extent of Tau 

hyperphosphorylation (Pugliese et al., 2006). This Tau hyperphosphorylation is not, however, 

associated with aggregation, like in AD patients and many transgenic mouse models. The explanation 

why there is presence of Aβ pathology but no neurofibrilary tangles on dog brain remains to be 

explained, and could be a way to understand what are the human specific mechanisms that lead to the 

development of AD. The exact sequence of Tau protein on dog, unlike that of Aβ, is not know, being 

currently only predicted from the genome sequencing (Lindblad-Toh et al., 2005; Supplemental Data 

1). When analyzing an alignment of the predicted dog Tau protein, and human Tau protein isoform 

2N4R (Supplemental Data 2), it is clear that the most conserved region is the C-terminal region, while 

the N-terminal region show less identity between species. 
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1.9 Conclusions and objectives 

Tau pathology has been widely accepted as an important hallmark of AD. Tau-focused immunotherapy 

appears as an emerging field of research in the urgent need of development of an AD disease modifying 

therapy, showing great results in fundamental studies in animal models. This project aims to provide data 

to answer some questions in Tau immunization and biomarker studies mechanism. What is the epitope of 

interest of an antibody against human pathological forms of Tau? Has Tau aggregation an impact on 

extracellular Tau levels and which antibodies are suitable for detection of these forms of Tau? Further 

investigation on this theme should be conducted in order to provide further knowledge and a possible 

treatment for AD. 

By characterizing antibodies developed against different forms of Tau, both pathological and normal, we 

hope to answer some of these questions, and apply the knowledge obtained with testing of these 

antibodies to develop specific assays detecting Tau, both in human, as in other species, such as dog. 

 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

29 
 

 

 

2. Bibliography 

  



  

 

30 
 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

31 
 

Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S., and Milligan, R. a (2002). MAP2 and tau bind longitudinally 
along the outer ridges of microtubule protofilaments. The Journal of Cell Biology 157, 1187–1196. 

Allen, B., Ingram, E., Takao, M., Smith, M.J., Jakes, R., Virdee, K., Yoshida, H., Holzer, M., Craxton, M., 
Emson, P.C., et al. (2002). Abundant tau filaments and nonapoptotic neurodegeneration in transgenic 
mice expressing human P301S tau protein. The Journal of Neuroscience: The Official Journal of the 
Society for Neuroscience 22, 9340–9351. 

Almos, P.Z., Horváth, S., Czibula, a, Raskó, I., Sipos, B., Bihari, P., Béres, J., Juhász, a, Janka, Z., and Kálmán, 
J. (2008). H1 tau haplotype-related genomic variation at 17q21.3 as an Asian heritage of the European 
Gypsy population. Heredity 101, 416–419. 

Alzheimer, A., and Jahre, I. (1911). Uber eigenartige Krankheitsfiille des spateren Alters. Zeitschrift Fuer 
Die Gesamte Neurologie Und Psychiatrie 4, 356–385. 

Andorfer, C., Acker, C.M., Kress, Y., Hof, P.R., Duff, K., and Davies, P. (2005). Cell-cycle reentry and cell 
death in transgenic mice expressing nonmutant human tau isoforms. The Journal of Neuroscience: The 
Official Journal of the Society for Neuroscience 25, 5446–5454. 

Andreasen, N., Minthon, L., Davidsson, P., Vanmechelen, E., Vanderstichele, H., Winblad, B., and 
Blennow, K. (2001). Evaluation of CSF-tau and CSF-Abeta 42 as Diagnostic Markers for Alzheimer Disease 
in Clinical Practice. Archives of Neurology 58, 373–379. 

Areosa, S.A., Sherriff, F., and McShane, R. (2009). Memantine for dementia. The Cochrane Library. 

Asuni, A. a, Boutajangout, A., Quartermain, D., and Sigurdsson, E.M. (2007). Immunotherapy targeting 
pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional 
improvements. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 27, 
9115–9129. 

Augustinack, J., Schneider, A., Mandelkow, E.-M., and Hyman, B. (2002). Specific tau phosphorylation 
sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathologica 
103, 26–35. 

Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011). Alzheimer’s disease. 
Lancet 377, 1019–1031. 

Bard, F., Cannon, C., Barbour, R., Burke, R.L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-
Wood, K., et al. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the 
central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine 6, 
916–919. 

Bateman, R.J., Xiong, C., Benzinger, T.L.S., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Cairns, N.J., Xie, 
X., Blazey, T.M., et al. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. 
The New England Journal of Medicine 367, 795–804. 

Berchtold, N. (1998). Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-
Roman period to the 1960s. Neurobiology of Aging 19, 173–189. 

Bertram, L., and Tanzi, R. (2005). The genetic epidemiology of neurodegenerative disease. J Clin Invest 
115, 1449–1457. 



Chapter 2 -Bibliography 

 

 

Bertram, L., Lill, C.M., and Tanzi, R.E. (2010). The genetics of Alzheimer disease: back to the future. 
Neuron 68, 270–281. 

Bi, M., Ittner, A., Ke, Y.D., Götz, J., and Ittner, L.M. (2011). Tau-targeted immunization impedes 
progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PloS One 6, e26860. 

Binder, L.I., Frankfurter, A., and Rebhun, L.I. (1985). The Distribution of Tau in the Mammalian Central 
Nervous System. The Journal of Cell Biology 101, 1371–1378. 

Blennow, K., and Hampel, H. (2003). CSF markers for incipient Alzheimer’s disease. Lancet Neurology 2, 
605–613. 

Blennow, K., and Zetterberg, H. (2012). Effect of immunotherapy with bapineuzumab on cerebrospinal 
fluid biomarker levels in patients with mild to moderate Alzheimer disease. Archives of …. 

Blennow, K., Leon, M.J. De, and Zetterberg, H. (2006). Alzheimer’s disease. Lancet 368, 387–403. 

Blennow, K., Zetterberg, H., and Fagan, A.M. (2012). Fluid biomarkers in Alzheimer disease. Cold Spring 
Harbor Perspectives in Medicine 2, a006221. 

Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N.A., Müller, F.-J., Loring, J.F., Yamasaki, 
T.R., Poon, W.W., Green, K.N., and LaFerla, F.M. (2009). Neural stem cells improve cognition via BDNF in a 
transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences of the United 
States of America 106, 13594–13599. 

Boimel, M., Grigoriadis, N., Lourbopoulos, A., Haber, E., Abramsky, O., and Rosenmann, H. (2010). Efficacy 
and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Experimental 
Neurology 224, 472–485. 

Borghys, H., Tuefferd, M., Van Broeck, B., Clessens, E., Dillen, L., Cools, W., Vinken, P., Straetemans, R., De 
Ridder, F., Gijsen, H., et al. (2012). A canine model to evaluate efficacy and safety of γ-secretase inhibitors 
and modulators. Journal of Alzheimer’s Disease 28, 809–822. 

Boutajangout, A., Quartermain, D., and Sigurdsson, E.M. (2010). Immunotherapy targeting pathological 
tau prevents cognitive decline in a new tangle mouse model. The Journal of Neuroscience: The Official 
Journal of the Society for Neuroscience 30, 16559–16566. 

Boutajangout, A., Ingadottir, J., Davies, P., and Sigurdsson, E.M. (2011). Passive immunization targeting 
pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates 
from the brain. Journal of Neurochemistry 118, 658–667. 

Braak, H. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82, 
239–259. 

Braak, H., and Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. 
Neurobiology of Aging 16, 271–278. 

Braak, H., Thal, D.R., Ghebremedhin, E., and Del Tredici, K. (2011). Stages of the pathologic process in 
Alzheimer disease: age categories from 1 to 100 years. Journal of Neuropathology and Experimental 
Neurology 70, 960–969. 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

33 
 

Brunden, K., Trojanowski, J., and Lee, V.M.-Y. (2009). Advances in tau-focused drug discovery for 
Alzheimer’s disease and related tauopathies. Reviews Drug Discovery 8, 783–793. 

Brunden, K.R., Trojanowski, J.Q., and Lee, V.M.-Y. (2008). Evidence that non-fibrillar tau causes pathology 
linked to neurodegeneration and behavioral impairments. Journal of Alzheimer’s Disease 14, 393–399. 

Bullock, R., and Dengiz, A. (2005). Cognitive performance in patients with Alzheimer’s disease receiving 
cholinesterase inhibitors for up to 5 years. International Journal of Clinical Practice 59, 817–822. 

Bullock, R., Touchon, J., Bergman, H., Gambina, G., He, Y., Rapatz, G., Nagel, J., and Lane, R. (2005). 
Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-
year period. Current Medical Research and Opinion 21, 1317–1327. 

Caccamo, A., Oddo, S., Tran, L.X., and LaFerla, F.M. (2007). Lithium reduces tau phosphorylation but not A 
beta or working memory deficits in a transgenic model with both plaques and tangles. The American 
Journal of Pathology 170, 1669–1675. 

Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D.R., Price, D.L., and Wong, P.C. (2001). BACE1 is the 
major beta-secretase for generation of Abeta peptides by neurons. Nature Neuroscience 4, 233–234. 

Chai, X., Wu, S., Murray, T.K., Kinley, R., Cella, C. V, Sims, H., Buckner, N., Hanmer, J., Davies, P., O’Neill, 
M.J., et al. (2011). Passive immunization with anti-Tau antibodies in two transgenic models: reduction of 
Tau pathology and delay of disease progression. The Journal of Biological Chemistry 286, 34457–34467. 

Chang, W.-P., Koelsch, G., Wong, S., Downs, D., Da, H., Weerasena, V., Gordon, B., Devasamudram, T., 
Bilcer, G., Ghosh, A.K., et al. (2004). In vivo inhibition of Abeta production by memapsin 2 (beta-
secretase) inhibitors. Journal of Neurochemistry 89, 1409–1416. 

Citron, M. (2010). Alzheimer’s disease: strategies for disease modification. Nature Reviews. Drug 
Discovery 9, 387–398. 

Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A.K., 
Beibel, M., Staufenbiel, M., et al. (2009). Transmission and spreading of tauopathy in transgenic mouse 
brain. Nature Cell Biology 11, 909–913. 

Le Corre, S., Klafki, H.W., Plesnila, N., Hübinger, G., Obermeier, A., Sahagún, H., Monse, B., Seneci, P., 
Lewis, J., Eriksen, J., et al. (2006). An inhibitor of tau hyperphosphorylation prevents severe motor 
impairments in tau transgenic mice. Proceedings of the National Academy of Sciences of the United 
States of America 103, 9673–9678. 

Courtney, C., Farrell, D., Gray, R., Hills, R., Lynch, L., Sellwood, E., Edwards, S., Hardyman, W., Raftery, J., 
Crome, P., et al. (2004). Long-term donepezil treatment in 565 patients with Alzheimer’s disease 
(AD2000): randomised double-blind trial. Lancet 363, 2105–2115. 

Cruts, M., and Van Broeckhoven, C. (2008). Loss of progranulin function in frontotemporal lobar 
degeneration. Trends in Genetics : TIG 24, 186–194. 

David, D.C., Ittner, L.M., Gehrig, P., Nergenau, D., Shepherd, C., Halliday, G., and Götz, J. (2006). Beta-
amyloid treatment of two complementary P301L tau-expressing Alzheimer’s disease models reveals 
similar deregulated cellular processes. Proteomics 6, 6566–6577. 



Chapter 2 -Bibliography 

 

 

Delrieu, J., Ousset, P.J., Caillaud, C., and Vellas, B. (2012). “Clinical trials in Alzheimer”s disease’: 
immunotherapy approaches. Journal of Neurochemistry 120 Suppl , 186–193. 

Dickey, C., Kraft, C., Jinwal, U., Koren, J., Johnson, A., Anderson, L., Lebson, L., Lee, D., Dickson, D., De 
Silva, R., et al. (2009). Aging analysis reveals slowed tau turnover and enhanced stress response in a 
mouse model of tauopathy. The American Journal of Pathology 174, 228–238. 

Dislich, B., and Lichtenthaler, S.F. (2012). The Membrane-Bound Aspartyl Protease BACE1: Molecular and 
Functional Properties in Alzheimer’s Disease and Beyond. Frontiers in Physiology 3, 8. 

Dodel, R., Balakrishnan, K., Keyvani, K., Deuster, O., Neff, F., Andrei-Selmer, L.-C., Röskam, S., Stüer, C., Al-
Abed, Y., Noelker, C., et al. (2011). Naturally occurring autoantibodies against beta-amyloid: investigating 
their role in transgenic animal and in vitro models of Alzheimer’s disease. The Journal of Neuroscience: 
The Official Journal of the Society for Neuroscience 31, 5847–5854. 

Dolan, P.J., and Johnson, G.V.W. (2010). The role of tau kinases in Alzheimer’s disease. Current Opinion in 
Drug Discovery & Development 13, 595–603. 

Dominguez, D., Tournoy, J., Hartmann, D., Huth, T., Cryns, K., Deforce, S., Serneels, L., Camacho, I.E., 
Marjaux, E., Craessaerts, K., et al. (2005). Phenotypic and biochemical analyses of BACE1- and BACE2-
deficient mice. The Journal of Biological Chemistry 280, 30797–30806. 

Dovey, H.F., John, V., Anderson, J.P., Chen, L.Z., De Saint Andrieu, P., Fang, L.Y., Freedman, S.B., Folmer, 
B., Goldbach, E., Holsztynska, E.J., et al. (2001). Functional gamma-secretase inhibitors reduce beta-
amyloid peptide levels in brain. Journal of Neurochemistry 76, 173–181. 

Eckert, A., Hauptmann, S., Scherping, I., Rhein, V., Müller-Spahn, F., Götz, J., and Müller, W.E. (2008). 
Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic 
mice. Neuro-degenerative Diseases 5, 157–159. 

Eckman, E.A., and Eckman, C.B. (2005). Abeta-degrading enzymes: modulators of Alzheimer’s disease 
pathogenesis and targets for therapeutic intervention. Biochemical Society Transactions 33, 1101–1105. 

Van Eersel, J., Ke, Y.D., Liu, X., Delerue, F., Kril, J.J., Götz, J., and Ittner, L.M. (2010). Sodium selenate 
mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. 
Proceedings of the National Academy of Sciences of the United States of America 107, 13888–13893. 

Engel, T., Goñi-Oliver, P., Lucas, J.J., Avila, J., and Hernández, F. (2006). Chronic lithium administration to 
FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary 
tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry 99, 
1445–1455. 

Etcheberrigaray, R., Tan, M., Dewachter, I., Kuipéri, C., Van der Auwera, I., Wera, S., Qiao, L., Bank, B., 
Nelson, T.J., Kozikowski, A.P., et al. (2004). Therapeutic effects of PKC activators in Alzheimer’s disease 
transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 101, 
11141–11146. 

Fagan, A., Mintun, M., Shah, A., Aldea, P., Roe, C., Mach, R., Marcus, D., Morris, J., and Holtzman, D. 
(2009a). Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively 
normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Molecular …. 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

35 
 

Fagan, A., Head, D., Shah, A., Marcus, D., Mintun, M., Morris, J., and Holtzman, D. (2009b). Decreased 
cerebrospinal fluid Aβ42 correlates with brain atrophy in cognitively normal elderly. Annals of …. 

Ferrari, A., Ehler, E., Nitsch, R.M., and Götz, J. (2000). Immature human NT2 cells grafted into mouse brain 
differentiate into neuronal and glial cell types. FEBS Letters 486, 121–125. 

Ferrari, A., Hoerndli, F., Baechi, T., Nitsch, R.M., and Götz, J. (2003). beta-Amyloid induces paired helical 
filament-like tau filaments in tissue culture. The Journal of Biological Chemistry 278, 40162–40168. 

Fischer, D., Mukrasch, M.D., Biernat, J., Bibow, S., Blackledge, M., Griesinger, C., Mandelkow, E., and 
Zweckstetter, M. (2009). Conformational changes specific for pseudophosphorylation at serine 262 
selectively impair binding of tau to microtubules. Biochemistry 48, 10047–10055. 

Frost, B., Jacks, R.L., and Diamond, M.I. (2009). Propagation of tau misfolding from the outside to the 
inside of a cell. The Journal of Biological Chemistry 284, 12845–12852. 

Furukawa, K., Sopher, B.L., Rydel, R.E., Begley, J.G., Pham, D.G., Martin, G.M., Fox, M., and Mattson, M.P. 
(1996). Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted 
amyloid precursor protein conferred by a C-terminal heparin-binding domain. Journal of Neurochemistry 
67, 1882–1896. 

Garringer, H.J., Murrell, J., Sammeta, N., Gnezda, A., Ghetti, B., and Vidal, R. (2013). Increased tau 
phosphorylation and tau truncation, and decreased synaptophysin levels in mutant BRI2/tau transgenic 
mice. PloS One 8, e56426. 

Geula, C., Wu, C.K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B.A. (1998). Aging renders the brain 
vulnerable to amyloid beta-protein neurotoxicity. Nature Medicine 4, 827–831. 

Goedert, M., Jakes, R., and Vanmechelen, E. (1995). Monoclonal antibody AT8 recognises tau protein 
phosphorylated at both serine 202 and threonine 205. Neuroscience Letters 189, 167–170. 

Gómez-Isla, T., Price, J.L., McKeel Jr., D.W., Morris, J.C., Growdon, J.H., and Hyman, B.T. (1996). Profound 
loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. The Journal of 
Neuroscience 16, 4491–4500. 

Götz, J., and Ittner, L.M. (2008). Animal models of Alzheimer’s disease and frontotemporal dementia. 
Nature Reviews. Neuroscience 9, 532–544. 

Götz, J., Probst, A., Spillantini, M.G., Schäfer, T., Jakes, R., Bürki, K., and Goedert, M. (1995). 
Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the 
longest human brain tau isoform. The EMBO Journal 14, 1304–1313. 

Götz, J., Chen, F., Van Dorpe, J., and Nitsch, R.M. (2001). Formation of neurofibrillary tangles in P301l tau 
transgenic mice induced by Abeta 42 fibrils. Science (New York, N.Y.) 293, 1491–1495. 

Götz, J., Streffer, J.R., David, D., Schild, A., Hoerndli, F., Pennanen, L., Kurosinski, P., and Chen, F. (2004). 
Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and 
therapy. Molecular Psychiatry 9, 664–683. 

Götz, J., Ittner, L.M., and Kins, S. (2006). Do axonal defects in tau and amyloid precursor protein 
transgenic animals model axonopathy in Alzheimer’s disease? Journal of Neurochemistry 98, 993–1006. 



Chapter 2 -Bibliography 

 

 

Götz, J., Deters, N., Doldissen, A., Bokhari, L., Ke, Y., Wiesner, A., Schonrock, N., and Ittner, L.M. (2007). A 
decade of tau transgenic animal models and beyond. Brain Pathology (Zurich, Switzerland) 17, 91–103. 

Götz, J., Eckert, A., Matamales, M., Ittner, L.M., and Liu, X. (2011). Modes of Aβ toxicity in Alzheimer’s 
disease. Cellular and Molecular Life Sciences : CMLS 68, 3359–3375. 

Götz, J., Ittner, A., and Ittner, L.M. (2012). Tau-targeted treatment strategies in Alzheimer’s disease. 
British Journal of Pharmacology 165, 1246–1259. 

Hampel, H., Ewers, M., Bürger, K., Annas, P., Mörtberg, A., Bogstedt, A., Frölich, L., Schröder, J., 
Schönknecht, P., Riepe, M.W., et al. (2009). Lithium trial in Alzheimer’s disease: a randomized, single-
blind, placebo-controlled, multicenter 10-week study. The Journal of Clinical Psychiatry 70, 922–931. 

Hampel, H., Blennow, K., Shaw, L.M., Hoessler, Y.C., Zetterberg, H., and Trojanowski, J.Q. (2010). Total 
and phosphorylated tau protein as biological markers of Alzheimer’s disease. Experimental Gerontology 
45, 30–40. 

Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., and Minthon, L. (2006). Association 
between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a 
follow-up study. Lancet Neurology 5, 228–234. 

Harrison, S.M., Harper, A.J., Hawkins, J., Duddy, G., Grau, E., Pugh, P.L., Winter, P.H., Shilliam, C.S., 
Hughes, Z.A., Dawson, L.A., et al. (2003). BACE1 (beta-secretase) transgenic and knockout mice: 
identification of neurochemical deficits and behavioral changes. Molecular and Cellular Neurosciences 24, 
646–655. 

Head, E. (2013). A canine model of human aging and Alzheimer’s disease. Biochimica Et Biophysica Acta 
1832, 1384–1389. 

Hesse, C., Rosengren, L., Andreasen, N., Davidsson, P., Vanderstichele, H., Vanmechelen, E., and Blennow, 
K. (2001). Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute 
stroke. Neuroscience …. 

Higgins, G.C., Beart, P.M., Shin, Y.S., Chen, M.J., Cheung, N.S., and Nagley, P. (2010). Oxidative stress: 
emerging mitochondrial and cellular themes and variations in neuronal injury. Journal of Alzheimer’s 
Disease 20 Suppl 2, S453–73. 

Higuchi, M., Trojanowski, J.Q., and Lee, V.M. (2002). Tau protein and Tauopathy. In 
Neuropsychopharmacology: The Fifth Generation of Progress, pp. 1339–1354. 

Hoerndli, F.J., Toigo, M., Schild, A., Götz, J., and Day, P.J. (2004). Reference genes identified in SH-SY5Y 
cells using custom-made gene arrays with validation by quantitative polymerase chain reaction. Analytical 
Biochemistry 335, 30–41. 

Huang, Y., and Mucke, L. (2012). Alzheimer Mechanisms and Therapeutic Strategies. Cell 148, 1204–1222. 

Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, 
S., Isaacs, A., Grover, A., et al. (1998). Association of missense and 5’-splice-site mutations in tau with the 
inherited dementia FTDP-17. Nature 393, 702–705. 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

37 
 

Ikegami, S., Harada, A., and Hirokawa, N. (2000). Muscle weakness, hyperactivity, and impairment in fear 
conditioning in tau-deficient mice. Neuroscience Letters 279, 129–132. 

Iqbal, K., and Grundke-Iqbal, I. (2008). Alzheimer neurofibrillary degeneration: significance, 
etiopathogenesis, therapeutics and prevention. Journal of Cellular and Molecular Medicine 12, 38–55. 

Ishihara, T., Hong, M., Zhang, B., Nakagawa, Y., Lee, M.K., Trojanowski, J.Q., and Lee, V.M. (1999). Age-
dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest 
human tau isoform. Neuron 24, 751–762. 

Ishihara, T., Zhang, B., Higuchi, M., Yoshiyama, Y., Trojanowski, J.Q., and Lee, V.M. (2001). Age-dependent 
induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. The American Journal of 
Pathology 158, 555–562. 

Ittner, L.M., Fath, T., Ke, Y.D., Bi, M., Van Eersel, J., Li, K.M., Gunning, P., and Götz, J. (2008). Parkinsonism 
and impaired axonal transport in a mouse model of frontotemporal dementia. Proceedings of the 
National Academy of Sciences of the United States of America 105, 15997–16002. 

Johnson, G.V.W., and Stoothoff, W.H. (2004). Tau phosphorylation in neuronal cell function and 
dysfunction. Journal of Cell Science 117, 5721–5729. 

Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., 
Gudbjartsson, D., Maloney, J., et al. (2012). A mutation in APP protects against Alzheimer’s disease and 
age-related cognitive decline. Nature 5–8. 

Kamboh, M.I., Demirci, F.Y., Wang, X., Minster, R.L., Carrasquillo, M.M., Pankratz, V.S., Younkin, S.G., 
Saykin, a J., Jun, G., Baldwin, C., et al. (2012). Genome-wide association study of Alzheimer’s disease. 
Translational Psychiatry 2, e117. 

Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s 
disease: an appraisal for the development of therapeutics. Nature Reviews. Drug Discovery 10, 698–712. 

Keck, S., Nitsch, R., Grune, T., and Ullrich, O. (2003). Proteasome inhibition by paired helical filament-tau 
in brains of patients with Alzheimer’s disease. Journal of Neurochemistry 85, 115–122. 

Kim, W., Lee, S., Jung, C., Ahmed, A., Lee, G., and Hall, G.F. (2010). Interneuronal transfer of human tau 
between Lamprey central neurons in situ. Journal of Alzheimer’s Disease 19, 647–664. 

Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., 
Yamagata, H., et al. (2007). The DYRK1A gene, encoded in chromosome 21 Down syndrome critical 
region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Human 
Molecular Genetics 16, 15–23. 

Kulic, L., Kurosinski, P., Chen, F., Tracy, J., Mohajeri, M.H., Li, H., Nitsch, R.M., and Götz, J. (2006). Active 
immunization trial in Abeta42-injected P301L tau transgenic mice. Neurobiology of Disease 22, 50–56. 

LaFerla, F.M., Green, K.N., and Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer’s disease. Nature 
Reviews. Neuroscience 8, 499–509. 

Lee, V., and Goedert, M. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience 24, 
1121–1159. 



Chapter 2 -Bibliography 

 

 

Lee, G., Newman, S., Gard, D., and Band, H. (1998). Tau interacts with src-family non-receptor tyrosine 
kinases. Journal of Cell Science 111, 3167–3177. 

Lei, P., Ayton, S., Finkelstein, D.I., Spoerri, L., Ciccotosto, G.D., Wright, D.K., Wong, B.X.W., Adlard, P. a, 
Cherny, R. a, Lam, L.Q., et al. (2012). Tau deficiency induces parkinsonism with dementia by impairing 
APP-mediated iron export. Nature Medicine 18, 291–295. 

Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., 
Paul Murphy, M., Baker, M., Yu, X., et al. (2000). Neurofibrillary tangles, amyotrophy and progressive 
motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics 25, 402–405. 

Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M., Chang, J.L., 
Kulbokas, E.J., Zody, M.C., et al. (2005). Genome sequence, comparative analysis and haplotype structure 
of the domestic dog. Nature 438, 803–819. 

Liu, L., Drouet, V., Wu, J.W., Witter, M.P., Small, S. a, Clelland, C., and Duff, K. (2012). Trans-synaptic 
spread of tau pathology in vivo. PloS One 7, e31302. 

Luo, Y., Bolon, B., Kahn, S., Bennett, B.D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., et 
al. (2001). Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and 
abolished beta-amyloid generation. Nature Neuroscience 4, 231–232. 

Mandelkow, E.-M., and Mandelkow, E. (2012). Biochemistry and cell biology of tau protein in 
neurofibrillary degeneration. Cold Spring Harbor Perspectives in Medicine 2, a006247. 

Martin, L., Latypova, X., and Terro, F. (2011). Post-translational modifications of tau protein: implications 
for Alzheimer’s disease. Neurochemistry International 58, 458–471. 

Mehta, P., Capone, G., Jewell, A., and Freedland, R. (2007). Increased amyloid β protein levels in children 
and adolescents with Down syndrome. Journal of the Neurological …. 

Möller, H.-J., and Graeber, M.B. (1998). The case described by Alois Alzheimer in 1911. European Archives 
of Psychiatry and Clinical Neuroscience 248, 111–122. 

Morgan, D. (2011). Immunotherapy for Alzheimer’s disease. Journal of Internal Medicine 269, 54–63. 

Morris, M., Maeda, S., Vossel, K., and Mucke, L. (2011). The many faces of tau. Neuron 70, 410–426. 

Nelson, T.J., Cui, C., Luo, Y., and Alkon, D.L. (2009). Reduction of beta-amyloid levels by novel protein 
kinase C(epsilon) activators. The Journal of Biological Chemistry 284, 34514–34521. 

Nixon, R.A., Wegiel, J., Kumar, A., Yu, W.H., Peterhoff, C., Cataldo, A., and Cuervo, A.M. (2005). Extensive 
involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Journal of 
Neuropathology and Experimental Neurology 64, 113–122. 

Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman, F., Gaynor, K., Wang, L., LaFrancois, J., 
Feinstein, B., et al. (2005). Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced 
tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences of the United 
States of America 102, 6990–6995. 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

39 
 

Oddo, S., Caccamo, A., Kitazawa, M., Tseng P., B., and LaFerla, F.M. (2003). Amyloid deposition precedes 
tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging 24, 1063–
1070. 

Oehlrich, D., Berthelot, D.J.-C., and Gijsen, H.J.M. (2011). γ-Secretase Modulators as Potential Disease 
Modifying Anti-Alzheimer’s Drugs. Journal of Medicinal Chemistry 54, 669–698. 

Ohno, M., Sametsky, E.A., Younkin, L.H., Oakley, H., Younkin, S.G., Citron, M., Vassar, R., and Disterhoft, 
J.F. (2004). BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of 
Alzheimer’s disease. Neuron 41, 27–33. 

Orgogozo, J.-M., Gilman, S., Dartigues, J.-F., Laurent, B., Puel, M., Kirby, L.C., Jouanny, P., Dubois, B., 
Eisner, L., Flitman, S., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after 
Abeta42 immunization. Neurology 61, 46–54. 

Pennanen, L., and Götz, J. (2005). Different tau epitopes define Abeta42-mediated tau insolubility. 
Biochemical and Biophysical Research Communications 337, 1097–1101. 

Pennanen, L., Welzl, H., D’Adamo, P., Nitsch, R.M., and Götz, J. (2004). Accelerated extinction of 
conditioned taste aversion in P301L tau transgenic mice. Neurobiology of Disease 15, 500–509. 

Pérez, M., Hernández, F., Lim, F., Díaz-Nido, J., and Avila, J. (2003). Chronic lithium treatment decreases 
mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimer’s Disease 5, 301–308. 

Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., 
Prihar, G., et al. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human 
Molecular Genetics 13, 703–714. 

Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W. (1991). In vitro aging of beta-amyloid protein 
causes peptide aggregation and neurotoxicity. Brain Research 563, 311–314. 

Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W. (1993). Neurodegeneration 
induced by beta-amyloid peptides in vitro: the role of peptide assembly state. The Journal of 
Neuroscience: The Official Journal of the Society for Neuroscience 13, 1676–1687. 

Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Glabe, C.G., and Cotman, C.W. (1995). 
Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to 
aggregation and neurotoxicity. Journal of Neurochemistry 64, 253–265. 

Plouffe, V., Mohamed, N.-V., Rivest-McGraw, J., Bertrand, J., Lauzon, M., and Leclerc, N. (2012). 
Hyperphosphorylation and cleavage at D421 enhance tau secretion. PloS One 7, e36873. 

Pollack, S.J., and Lewis, H. (2005). Secretase inhibitors for Alzheimer’s disease: challenges of a 
promiscuous protease. Current Opinion in Investigational Drugs (London, England : 2000) 6, 35–47. 

Poorkaj, P., Bird, T.D., Wijsman, E., Nemens, E., Garruto, R.M., Anderson, L., Andreadis, A., Wiederholt, 
W.C., Raskind, M., and Schellenberg, G.D. (1998). Tau is a candidate gene for chromosome 17 
frontotemporal dementia. Annals of Neurology 43, 815–825. 



Chapter 2 -Bibliography 

 

 

Portelius, E., Hansson, S.F., Tran, A.J., Zetterberg, H., Grognet, P., Vanmechelen, E., Höglund, K., 
Brinkmalm, G., Westman-Brinkmalm, A., Nordhoff, E., et al. (2008). Characterization of tau in 
cerebrospinal fluid using mass spectrometry. Journal of Proteome Research 7, 2114–2120. 

Prince, M., and Jackson, J. (2009). World Alzheimer Report 2009. 

Prince, M., Bryce, R., and Ferri, C. (2011). World Alzheimer Report 2011: The benefits of early diagnosis 
and intervention. 

Probst, A., Götz, J., Wiederhold, K.H., Tolnay, M., Mistl, C., Jaton, A.L., Hong, M., Ishihara, T., Lee, V.M., 
Trojanowski, J.Q., et al. (2000). Axonopathy and amyotrophy in mice transgenic for human four-repeat 
tau protein. Acta Neuropathologica 99, 469–481. 

Pugliese, M., Mascort, J., Mahy, N., and Ferrer, I. (2006). Diffuse beta-amyloid plaques and 
hyperphosphorylated tau are unrelated processes in aged dogs with behavioral deficits. Acta 
Neuropathologica 112, 175–183. 

Ramachandran, G., and Udgaonkar, J.B. (2011). Understanding the kinetic roles of the inducer heparin 
and of rod-like protofibrils during amyloid fibril formation by Tau protein. The Journal of Biological 
Chemistry 286, 38948–38959. 

Reynolds, C.H., Garwood, C.J., Wray, S., Price, C., Kellie, S., Perera, T., Zvelebil, M., Yang, A., Sheppard, 
P.W., Varndell, I.M., et al. (2008). Phosphorylation regulates tau interactions with Src homology 3 
domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. The 
Journal of Biological Chemistry 283, 18177–18186. 

Rosenmann, H., Grigoriadis, N., Karussis, D., Boimel, M., Touloumi, O., Ovadia, H., and Abramsky, O. 
(2006). Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau 
protein. Archives of Neurology 63, 1459–1467. 

Sabbagh, M.N., Agro, A., Bell, J., Aisen, P.S., Schweizer, E., and Galasko, D. (2011). PF-04494700, an oral 
inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer 
Disease and Associated Disorders 25, 206–212. 

Sakono, M., and Zako, T. (2010). Amyloid oligomers: formation and toxicity of Abeta oligomers. The FEBS 
Journal 277, 1348–1358. 

Saman, S., Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B., McKee, A.C., Alvarez, V.E., Lee, 
N.C.Y., et al. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively 
phosphorylated in cerebrospinal fluid in early Alzheimer disease. The Journal of Biological Chemistry 287, 
3842–3849. 

Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., 
Khan, K., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in 
the PDAPP mouse. Nature 400, 173–177. 

Schenk, D., Hagen, M., and Seubert, P. (2004). Current progress in beta-amyloid immunotherapy. Current 
Opinion in Immunology 16, 599–606. 

Selkoe, D. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiological Reviews 81, 741–767. 



Characterization of antibodies recognizing pathological forms of Tau in Alzheimer's disease. 

41 
 

Sigurdsson, E. (2009). Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. 
Current Alzheimer Research 6, 446–450. 

Small, D.H., Nurcombe, V., Reed, G., Clarris, H., Moir, R., Beyreuther, K., and Masters, C.L. (1994). A 
heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the 
regulation of neurite outgrowth. The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience 14, 2117–2127. 

Sosa-Ortiz, A.L., Acosta-Castillo, I., and Prince, M.J. (2012). Epidemiology of dementias and Alzheimer’s 
disease. Archives of Medical Research 43, 600–608. 

Sperling, R., and Johnson, K. (2013). Biomarkers of Alzheimer disease: current and future applications to 
diagnostic criteria. Continuum (Minneapolis, Minn.) 19, 325–338. 

Spillantini, M.G., Murrell, J.R., Goedert, M., Farlow, M.R., Klug, A., and Ghetti, B. (1998). Mutation in the 
tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National 
Academy of Sciences of the United States of America 95, 7737–7741. 

Steinhilb, M.L., Dias-Santagata, D., Fulga, T.A., Felch, D.L., and Feany, M.B. (2007). Tau phosphorylation 
sites work in concert to promote neurotoxicity in vivo. Molecular Biology of the Cell 18, 5060–5068. 

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, 
V., Wolfe, M.S., Ray, W.J., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease 
mediates release of Notch intracellular domain. Nature 398, 518–522. 

Tayeb, H.O., Yang, H.D., Price, B.H., and Tarazi, F.I. (2012). Pharmacotherapies for Alzheimer’s disease: 
beyond cholinesterase inhibitors. Pharmacology & Therapeutics 134, 8–25. 

Terry, A. V, and Buccafusco, J.J. (2003). The cholinergic hypothesis of age and Alzheimer’s disease-related 
cognitive deficits: recent challenges and their implications for novel drug development. The Journal of 
Pharmacology and Experimental Therapeutics 306, 821–827. 

Verhey, F.R.J. (2009). Alois Alzheimer (1864-1915). Journal of Neurology 256, 502–503. 

Walsh, D.M., and Selkoe, D.J. (2007). A beta oligomers - a decade of discovery. Journal of Neurochemistry 
101, 1172–1184. 

Wang, L., Shim, H., Xie, C., and Cai, H. (2008). Activation of protein kinase C modulates BACE1-mediated 
beta-secretase activity. Neurobiology of Aging 29, 357–367. 

Wilcock, G.K. (2003). Memantine for the treatment of dementia. Lancet Neurology 2, 503–505. 

Wimo, A., and Prince, M. (2010). World Alzheimer Report 2010: The Global Economic Impact of 
Dementia. 

Winton, M.J., Lee, E.B., Sun, E., Wong, M.M., Leight, S., Zhang, B., Trojanowski, J.Q., and Lee, V.M.-Y. 
(2011). Intraneuronal APP, not free Aβ peptides in 3xTg-AD mice: implications for tau versus Aβ-mediated 
Alzheimer neurodegeneration. The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience 31, 7691–7699. 



Chapter 2 -Bibliography 

 

 

Wischik, C., and Staff, R. (2009). Challenges in the conduct of disease-modifying trials in AD: practical 
experience from a phase 2 trial of Tau-aggregation inhibitor therapy. The Journal of Nutrition, Health & 
Aging 13, 367–369. 

Wisniewski, T. (2010). Murine models of Alzheimer’s disease and their use in developing 
immunotherapies. Acta (BBA)-Molecular Basis of Disease 1802, 847–859. 

Wolfe, M.S. (2009). Tau mutations in neurodegenerative diseases. The Journal of Biological Chemistry 
284, 6021–6025. 

Wong, G.T., Manfra, D., Poulet, F.M., Zhang, Q., Josien, H., Bara, T., Engstrom, L., Pinzon-Ortiz, M., Fine, 
J.S., Lee, H.-J.J., et al. (2004). Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits 
beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. The Journal 
of Biological Chemistry 279, 12876–12882. 

Yvon, a M., Wadsworth, P., and Jordan, M. a (1999). Taxol suppresses dynamics of individual 
microtubules in living human tumor cells. Molecular Biology of the Cell 10, 947–959. 

Zhang, B., Maiti, A., Shively, S., Lakhani, F., McDonald-Jones, G., Bruce, J., Lee, E.B., Xie, S.X., Joyce, S., Li, 
C., et al. (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and 
reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of 
Sciences of the United States of America 102, 227–231. 

Zhang, B., Carroll, J., Trojanowski, J.Q., Yao, Y., Iba, M., Potuzak, J.S., Hogan, A.-M.L., Xie, S.X., Ballatore, 
C., Smith, A.B., et al. (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, 
neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau 
transgenic mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 32, 
3601–3611. 

Zhang, Y., Thompson, R., Zhang, H., and Xu, H. (2011). APP processing in Alzheimer’s disease. Molecular 
Brain 4, 3.  

 



 

 



 

 

 


