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Resumo 

A pré-diabetes tal como a diabetes tipo 2 - uma doença metabólica heterogénea com 

uma elevada taxa de prevalência - está associada a um risco acrescido de desenvolver 

distúrbios do sistema nervoso central. A “encefalopatia diabética” é caracterizada por 

alterações electrofisiológicas, estruturais, neuroquímicas e degenerativas que poderão originar 

défices cognitivos, constituindo uma complicação da diabetes relativamente pouco conhecida. 

O hipocampo, sendo uma estrutura cerebral fundamental nos processos de aprendizagem e 

memória, apresenta uma elevada susceptibilidade ao ambiente adverso da pré-

diabetes/diabetes. O objetivo deste trabalho foi avaliar a memória e a aprendizagem bem 

como as alterações fenotípicas do hipocampo num modelo animal de resistência à 

insulina/pré-diabetes (induzido pela adição de sacarose à dieta). Ratos Wistar machos com 17 

semanas de idade foram submetidos a uma dieta normal ad libitum e divididos em dois 

grupos: controlo (Cont) (água) e ratos submetidos à ingestão de um elevado teor de sacarose 

(HSu) (solução de sacarose a 35%). O consumo da solução de sacarose durante um período de 

9 semanas resultou em normoglicemia em jejum acompanhada por uma hiperinsulinemia e 

hipertrigliceridemia num estado não-jejum e intolerância à glicose associada a resistência à 

insulina, relativamente ao grupo Cont. A sacarose produziu uma diminuição da memória 

espacial dependente do hipocampo (Y-Maze e Morris Water-Maze). Com o intuito de 

confirmar esta disfunção cognitiva, foi medida a expressão de várias proteínas por Western 

Blotting, incluindo marcadores da cascata de sinalização da insulina (IR-β, IRS-1, IRS-1 

pSer636/639, PI3K), marcadores de plasticidade sináptica (1-glutamatérgicos: GluR1, NR1, PSD-

95; 2-maquinaria exocitótica: sinaptofisina) e marcadores de neurotoxicidade (GS, GFAP, 

RAGE, HNE, TNF-α). Os resultados obtidos demonstraram uma redução na expressão do IR-β 

nos ratos HSu em relação ao Cont. No entanto, não houve alteração dos níveis basais das 

restantes proteínas de sinalização (IRS-1 e PI3K). Simultaneamente, o hipocampo dos ratos 

HSu exibiu um aumento da expressão das subunidades GluR1 e NR1 dos recetores AMPA e 

NMDA, respetivamente. Isto sugere alterações na plasticidade sináptica induzidas pela 

sacarose. Finalmente, as alterações de memória não foram acompanhadas por um fenótipo 

neurotóxico. Em conclusão, neste estudo demonstrou-se que um consumo excessivo de 

sacarose durante 9 semanas resultou numa condição metabólica sugestiva de um estadio de 

pré-diabetes, e num comprometimento significativo da memória. Estes défices cognitivos 

foram acompanhados por alterações na expressão do recetor da insulina e nas sinapses 

glutamatérgicas.  
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Abstract 

Both prediabetes and type 2 diabetes mellitus - a heterogeneous metabolic disorder 

with high prevalence rates - are associated with an increased risk for central nervous system 

disorders. “Diabetic encephalopathy” is a relatively unknown diabetes complication, 

characterized by electrophysiological, structural, neurochemical and degenerative neuronal 

changes which lead to cognitive functioning limitations. The hippocampus, a relevant brain 

region for learning and memory processes, presents a high degree of susceptibility to the 

adverse environment of diabetes. The purpose of this work was to characterize the cognitive 

function (learning and memory) along with hippocampal dysfunction in a sucrose-induced 

insulin resistance/prediabetes animal model. 17-weeks-old male Wistar rats were given free 

access to a standard chow and divided into two groups: control (Cont) (drinking water) and 

high-sucrose (HSu) (35 % sucrose solution). The consumption of a 35 % sucrose solution for an 

extended period of time (9 weeks) resulted in fasting normoglycemia accompanied by 

hyperinsulinemia and hypertriglyceridemia in a fed state, and insulin resistance associated 

with impaired glucose tolerance. The sucrose effect on rats learning and memory performance 

was assessed using the Morris Water-Maze and the Y-Maze tests, which convincingly showed 

that hippocampus-dependent spatial memory was dramatically impaired on the HSu rats. In 

order to corroborate the hippocampal dysfunction underlying this memory alterations, the 

expression of several proteins was determined by Western Blotting including insulin signaling 

pathway markers (IR-β, IRS-1, IRS-1 pSer636/639, PI3K), synaptic plasticity markers (1-

glutamatergic: GluR1, NR1, PSD-95; 2-exocytotic machinery markers: synaptophysin) and 

neurotoxicity markers (GS, GFAP, RAGE, HNE, TNF-α) .Herein it was found a reduction in IR-β 

expression for HSu rats compared to Cont. This was not accompanied by changes in basal 

levels of further insulin signaling molecules: IRS-1 and PI3K. The results also showed an 

upregulation of both AMPA and NMDA receptor subunits GluR1 and NR1, respectively, which 

were not accompanied by a neurotoxic phenotype. Overall, we found that 9 weeks of sucrose 

consumption resulted in a metabolic condition suggestive of a prediabetic state, which 

translated into a deficit of rats’ memory performance, accompanied by altered insulin receptor 

expression as well as altered glutamatergic synapses. 
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1. Diabetes Mellitus 

The World Health Organization (WHO) has defined, in 1985, diabetes mellitus (DM) as a 

complex and heterogeneous metabolic disorder, which is mainly characterized by an abnormal 

raise in blood glucose levels – hyperglycemia (WHO, 1985). This occurs when 1) pancreatic β-

cells fail to secrete sufficient amount of insulin to maintain normoglycemia and/or when 2) 

there is a resistance to insulin action (Rossetti et al., 1990; Saltiel, 2001). 

DM is a multifactorial disease in which multiple genetic and environmental factors 

contribute to its onset and progression. The concomitant increase in life expectancy, obesity, 

sedentary lifestyle, hypertension and hyperlipidemia might raise the chance of citizens from 

both developed and developing countries of having glucose intolerance. This suggests that 

diabetes is certainly one of the most challenging health problems in the 21st century (Tuomi, 

2005). 

According to the WHO and to the International Diabetes Federation (IDF) there are 

three main types of diabetes, as follows: type 1 diabetes (T1DM) - also called insulin-

dependent or juvenile diabetes it is caused by an auto-immune reaction where the body’s 

defense system attacks the pancreatic β-cells leading to an insulin deficiency state; type 2 

diabetes (T2DM) - also referred to as non-insulin dependent or adult-onset diabetes - it is 

characterized by insulin resistance and relative insulin deficiency; and, gestational diabetes, 

which consists of high blood glucose levels during pregnancy (WHO, 1998). T1DM represents 

only 5-10 % of total diabetic people, and appears to be caused by a genetic predisposition, 

while T2DM affects about 90-95 %, and emerges as a combination of metabolic changes, 

including a prediabetic state and a metabolic syndrome (Figure 3) (Saltiel, 2001; Tuomi, 2005). 

DM is tightly associated with a reduced life expectancy, diminished quality of life and 

significant morbidity, as a result of its specific complications (WHO, 1998). These complications 

are commonly divided into: macrovascular such as coronary artery disease, peripheral arterial 

disease and stroke; and microvascular such as diabetic nephropathy, neuropathy and 

retinopathy (Stratton et al., 2000). There is accumulating evidence identifying the brain as a 

site of T2DM damage (Gold et al., 2007; Bruehl et al., 2009). In fact central nervous system 

(CNS) lesions, partly independent of atherosclerotic disease, can be referred to as “diabetic 

encephalopathy” (Mijnhout et al., 2006; Sima, 2010). 
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1.1. Prevalence 

DM prevalence rates have risen markedly in recent years; therefore, it is reaching 

pandemic proportions on a global scale (Wild et al., 2004; Hossain et al., 2007). In fact, IDF has 

considered this pathology as one of the most common worldwide, affecting about 366 million 

people at present (Figure 1) and with an estimated increase to 552 million by 2030, thus 

representing 9.9 % of the adult population (IDF, 2011).  

 

Figure 1: Global prevalence (%) of diabetes mellitus in adult population (20-79 years) in 2011, shown by 

geographic region (Image taken from IDF Diabetes Atlas, 5th Edition (IDF, 2011)). 

Recent estimates for 2010 from the Portuguese Society of Diabetology indicate that 

12.4% of portuguese adult population is diabetic, from which 5.4 % were undiagnosed (OND, 

2012). Additionally, IDF foresees that, globally, half of those who have diabetes are unaware of 

their condition, mostly on low- and middle-income countries (IDF, 2011). 

 

Figure 2: Number of people with impaired glucose tolerance by age group (20-79 years) in 2011 and projections 

for 2030 (Image taken from IDF Diabetes Atlas, 5th Edition (IDF, 2011)). 
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The importance of age on the prevalence of diabetes is very clear. In 2011, the greatest 

number of people with diabetes was in the 40- to 59-year age group, and the projections for 

2030 suggest that this pattern will remain (Figure 2) (IDF, 2011). Most of these people live in 

developing countries, while in developed ones the majority of diabetic subjects are older than 

64 years of age (Wild et al., 2004).  

Diabetes is one of the leading causes of illness and premature death, with 4.6 million 

deaths in 2011 (IDF, 2011), and it continues to disproportionately affect the socially 

disadvantaged (Wild et al., 2004; Hossain et al., 2007). 

2. Prediabetes and Type 2 diabetes 

2.1. Pathophysiology 

Most type 2 diabetic people have shown a multiple set of risk factors that commonly 

appear together, depicting what is now known as the “Metabolic Syndrome” (Figure 3). Such 

syndrome includes insulin resistance and raised fasting plasma glucose, abdominal obesity, 

high cholesterol and high blood pressure. All this features characterize a pre-diabetic state, 

when people are prone to diabetes. Indeed, people with metabolic syndrome have a fivefold 

greater risk to develop T2DM (Cefalu, 2006; Eckel, 2007). 

 

Figure 3: Schematic representation of clinical and laboratory findings in the natural history of type 2 diabetes, 

reflecting the importance of metabolic syndrome in the genesis of the disease. The shaded area signifies the 

presence of the metabolic syndrome (Image taken from Cefalu, 2006). 

Pancreatic β-cell dysfunctions followed by the resistance of target tissues to insulin, 

usually associated with abnormal insulin secretion, are the major pathophysiological events 
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contributing to the development of T2DM. Interplay between genes, aging and metabolic 

changes produced by obesity could contribute to the onset of T2DM (Saltiel, 2001).  

Clinically, insulin resistance implies that higher than normal concentrations of insulin are 

required to maintain normoglycemia. This can arise from defects in insulin signal transduction, 

changes in the expression of proteins or genes that are targets of insulin action. A cross talk 

between other hormonal systems and metabolic abnormalities can also contribute to insulin 

resistance (Saltiel, 2001). Thus, it is defined as a patophysiological condition where insulin is 

unable or less effective to promote insulin signaling through insulin receptor (IR), thus 

compromising downstream multiple metabolic and mitogenic aspects of cellular function 

(Saini, 2010). This in turn leads to an increased insulin release and consequently inadequate 

secretion. Elevated fasting glucose levels, as an insulin resistance consequence, can then 

ultimately lead to T2DM diagnosis. This insulin-resistance phase is now envisioned as a 

prediabetic state, being mainly characterized by two conditions: impaired fasting glucose (IFG) 

and/or impaired glucose tolerance (IGT) (Tabák et al., 2012). In fact, diagnostic criteria for 

prediabetes include either IGT with 2 h plasma glucose ≥140 mg/dL (7.8 mmol/L) but <200 

mg/dL (11.1 mmol/L) and/or IFG with fasting plasma glucose (FPG) ≥100 mg/dL (5.6 mmol/L) 

but <126 mg/dL (7.0 mmol/L) (ADA, 2004). 

2.2. Central Nervous System 

CNS has the ability to gather information about the body’s nutritional state 

and implement appropriate metabolic and behavioral responses to alterations in fuel 

availability. This feedback signaling mechanism ensures the maintenance of energy 

homeostasis, body fat content and glucose metabolism (Jordan et al., 2010). 

DM has been related to CNS lesions that can be referred to as “diabetic 

encephalopathy” (Mijnhout et al., 2006; Sima, 2010). This relatively unknown DM complication 

is characterized by structural, electrophysiological, neurochemical and degenerative neuronal 

changes, and seems to be related with cerebral atrophy, Alzheimer disease (AD) as well as 

depressive behaviors. Diabetic encephalopathy along with chronic hyperglycemia and 

dyslipidemia compose the most relevant risk factors for cognitive dysfunction (Biessels et al., 

2002; Ristow, 2004; Mijnhout et al., 2006; Hernández-Fonseca et al., 2009). This may be the 

consequence of the combination between a disruption of insulin activity and a defective 

glucose metabolism (Ristow, 2004; van der Heide et al., 2006). 

Indeed, several studies have shown an increased incidence of dementia in T2DM 

subjects (Gispen and Biessels, 2000; McNay and Recknagel, 2011; Ott et al., 1999; Biessels et 
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al., 2006). Furthermore, brain morphological alterations could be related with abnormal 

synaptic plasticity and cognitive impairments observed in experimental diabetes (Hernández-

Fonseca et al., 2009). 

Neurons and pancreatic β-cells share several common features, such as high metabolic 

activity and low regeneration rates, being extremely susceptible to environment and genetic 

effects. Therefore, it is plausible that peripheral and central DM consequences also share 

patophysiological mechanisms, although temporarily lagged (Ristow, 2004). However it is not 

clear, from a wide range of DM comorbidities such as hyperglycemia, hyperinsulinemia, 

impaired insulin signaling and associated innate inflammation, which mechanisms may play 

the most significant role. 

3. Cognitive dysfunction 

The relationship between DM and cognitive dysfunction was already proposed in 1922 

by Miles and Root (Miles and Root, 1922). There is an increasing body of neuropsychological 

studies showing brain structural changes and behavior deficits (Strachan et al., 1997; Biessels 

et al., 2002; Winocur et al., 2005; Reijmer et al., 2010), such as cognitive decrements (Gispen 

and Biessels, 2000; Reijmer et al., 2010) as well as learning and memory impairments (Ristow, 

2004), therefore confirming this early proposal. 

Large population studies detected an association between DM, dementia, and AD 

(Leibson et al., 1997; Ott et al., 2002; Peila et al., 2002; Anderson et al., 2001). Furthermore, 

Ott et al. (1999) found that the risk of dementia is nearly doubled in diabetic subjects, an 

effect that cannot be accounted only by vascular factor, following a population of over 6000 

subjects for up to 6 years. Brain structural changes underlying cognitive deficits are observed 

especially in older diabetic adults (Stolk et al., 2007a; Hayashi et al., 2011) who apparently face 

a greater risk of vascular dementia (Reijmer et al., 2010). Along these lines, in vivo brain 

imaging studies (Araki et al., 1994; Manschot et al., 2006) have reported “accelerated brain 

ageing” in diabetic patients as well as in animal models (Biessels et al., 2002; Kamal et al., 

2003). However, others have recently shown that cognitive impairments are already present 

among obese adolescents with T2DM (Bruehl et al., 2009). Assuming that prospective studies 

assessing the neurological effects of diabetes in humans can be difficult to carry out in a 

controlled setting, the need for animal models is fundamental. However, investigation of the 

cognitive profile of diabetic animal models is extremely limited. Indeed, behavioral studies in 

diabetic rodents have produced conflicting results (Li et al., 2002; Bélanger et al., 2004), 
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possibly because of the differences in used animal models and in the duration of diabetes 

(Gispen and Biessels, 2000). Furthermore, the differences in cognitive profile observed for 

both type 1 and type 2 DM suggest that CNS insulin signaling (see section 5.1) has a significant 

role in these complications (Brands et al., 2004). T1DM animal models are useful for studying 

the effects of chronic hyperglycemia, but its endocrinological features do not adequately 

reflect either type 1 or type 2 diabetes (Gispen and Biessels, 2000), suggesting that T2DM and 

all its pathological features are useful for understanding the origins of cognitive deficits in 

humans with similar abnormalities (Winocur et al., 2005). Interestingly, very recently it was 

demonstrated that normal adults with newly diagnosed pre-diabetes or T2DM showed insulin 

resistance associated with reductions in regional cerebral glucose metabolism and subtle 

cognitive impairments (Baker et al., 2011). 

3.1. Hippocampus 

The hippocampus is located in the medial temporal lobe, underneath the cortical 

surface. This brain structure has received a great deal of attention due to its essential role for 

cognitive functions such as learning and memory processes (Zhao et al., 1999; Broadbent et al., 

2004; Neves et al., 2008; Sanderson et al., 2008). As shown in figure 4, the hippocampus is 

subdivided into four subregions called Cornu Ammonis (CA) areas, which are the CA4, CA3, 

CA2 and CA1. Adjacent to the CA lies the dentate gyrus (DG), which is divided into the fascia 

dentata and the hilus. The neurons in the CA4 region do not have pyramidal morphology like 

those in the other CA subregions. Thus, many neuroanatomists do not recognize the CA4 as a 

separate region, but instead consider it as part of the hilus. 

 

 

Figure 4: Anatomy of the hippocampus (adapted from Neves et al., 2008). 
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It was recently recognized that this region is insulin-sensitive, and thus presenting a high 

degree of susceptibility to the adverse environment of diabetes (Zhao et al., 2004; Winocur et 

al., 2005; Risk et al., 2006; Gold et al., 2007; Anarkooli et al., 2008; Brhuel et al., 2009; McNay 

and Recknagel, 2011). In fact, memory seems to be the most reliable altered cognitive function 

in T2DM (Strachan et al., 1997; Winocur et al., 2005; Gold et al., 2007). Furthermore, according 

to Gold et al. (2007), hippocampal damage associated with memory impairments are most 

probably the early brain complications of this pathology. However, there is little information 

on the hippocampal function underlying cognitive impairment seen in pre-diabetes in human 

subjects. Recent studies have found both specific verbal memory impairments and specifically 

hippocampal volume reductions among individuals with T2DM (den Heijer et al., 2003 Gold et 

al., 2007; Bruehl et al., 2009; Sima, 2010). Additionally, cognitive deficits related with 

hippocampal dependent tasks tend to be more prevalent in T2DM subjects and as the disease 

progresses and/or the patient ages, deficits are also seen in tasks mediated by other brain 

regions (McNay and Recknagel, 2011). A likely explanation for hippocampal 

dysfunction/neurodegeneration could be the interplay between defective insulin signaling (see 

section 5.) and aberrant glucose handling (see section 6.). 

4. T2DM and Synaptic plasticity  

In T2DM animal models, impairments of spatial learning occur in association with 

distinct changes in hippocampal synaptic plasticity (Gispen and Biessels, 2000). Neuronal 

plasticity is the critical capacity to compensate for challenges, involving cellular and molecular 

mechanisms of synapse formation and function, neurite growth and behavioral adaptation 

(Molteni et al., 2002). 

Several reports have demonstrated that DM might impair synaptic structure and 

function in hippocampus at both presynaptic (Grillo et al., 2005; Baptista et al., 2010; Gaspar 

et al., 2010) and postsynaptic levels (Biessels et al., 1996; Kamal et al., 1999), which can 

somehow underlie the development of cognitive deficits and the increased risk of depression 

and dementia (Biessels et al., 1996; Stranahan et al., 2008). Furthermore, changes in the 

hippocampal presynaptic content of exocytotic proteins (e.g. synaptophysin, SNAP25), and 

receptors (e.g. adenosine ones) involved in neuromodulation and depletion of glutamatergic 

synaptic vesicles from hippocampal nerve terminals have been detected in diabetic models 

(Magarinos and McEwen, 2000; Trudeau et al., 2004; Gaspar et al., 2010; Duarte et al., 2012). 
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Additionally it was proposed that the glutamate neurotransmission, which is a highly 

regulated process, is affected by DM. This would negatively impact synaptic transmission and 

contribute to the development of cognitive impairments (Trudeau et al., 2004). 

Regulation of glutamate receptor properties can contribute to long-term potentiation 

(LTP) and long-term depression (LTD) (see sections 4.2 and 4.3) and consequently to learning 

and memory processes. In fact, there is a growing body of evidence showing that abnormal 

regulation of glutamatergic receptors appears to play an important role in diabetes-induced 

impairment in synaptic plasticity and may therefore contribute to the development of 

cognitive defects in diabetic patients (Valastro et al., 2002; Trudeau et al., 2004; Santiago et 

al., 2009; Gaspar et al., 2010; Duarte et al., 2012). 

4.1. Glutamatergic synaptic transmission 

Glutamate is the major excitatory neurotransmitter in mammalian CNS. After release 

from the presynaptic button, glutamate crosses the synaptic cleft and can activate both 

ionotropic and metabotrobic receptors. Only recently it has become clear that glutamate is 

packed by vesicular glutamate transporter (VGLUT) into vesicles for subsequent release during 

fast synaptic transmission. To date, 3 different subtypes (VGLUT1, VGLUT2, and VGLUT3) have 

been molecularly identified and functionally characterized (Bellocchio et al. 2000; Fremeau et 

al. 2001, 2002; Takamori et al. 2001, 2002; Herzog et al. 2004). It has been proposed that 

VGLUT levels are critical for the balance between excitation and inhibition (Cline 2005; 

Erickson et al. 2006). Specifically, variations in VGLUT1 level critically affect the efficacy of 

glutamatergic synaptic transmission (Balschun et al. 2009). These authors demonstrated that 

VGLUT1-deficient mice had a reduced ability to express LTP and exhibited a specific deficit in 

spatial reversal learning in the water maze. However, some authors have shown that early 

transient changes in the content of vesicular transporters, if anything, translate into a slight 

increase in the basal release of glutamate after eight weeks of DM (Baptista et al., 2010; 

Gaspar et al., 2010). The accumulation of glutamate in the synaptic cleft can lead to excitotoxic 

neuronal damage due to excessive activation of glutamate receptors (Trudeau et al., 2004; 

Dong et al., 2009). Moreover, excessive activation of glutamate receptors is a characteristic 

feature of brain damage during stroke and ischemia, conditions exacerbated by hyperglycemic 

states (Li et al., 2000). This is of relevance to diabetic encephalopathy.  

Glutamate receptors arise as an object of particular attention since their regulation 

appears to be crucial for controlling synaptic operation during learning and memory (Trudeau 

et al., 2004). They are divided into two main groups: the fast-acting ligand-gated ionotropic 
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channels and the slower-acting metabotropic receptors. The ionotropic receptors are cation-

specific ion channels, which mediate the flux of Na+, K+ and Ca2+ ions when activated by 

glutamate and are subdivided into three groups: α-amino-3-hydroxy-5-methylisoxazole-

propionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors (Ozawa et al., 1998). 

AMPA receptors (AMPARs) are responsible for the primary depolarization in glutamate-

mediated neurotransmission and along with NMDA receptors (NMDARs) play key roles in 

synaptic plasticity, including LTP and LTD (Dingledine et al., 1999; Santos et al., 2008) and 

disease (Lau and Tymianski, 2010). 

AMPAR are activated by a glutamate-induced conformational change such that the ion 

channel opens allowing the flux of ionic current, and are responsible for the primary 

depolarization in glutamate-mediated neurotransmission Long-lasting and activity-dependent 

changes in synaptic strength (LTP or LTD) are associated with changes in the phosphorylation 

and cellular distribution of AMPAR, and are thought to underlie learning and memory 

formation (Whitlock et al., 2006; Santos et al., 2008). If the time of glutamate exposure is 

prolonged, the persistent reactivation of the receptor results in channel closure known as 

desensitization. 

 

Figure 5: Structure of AMPA receptor subunits. The transmembrane topology is shown along with the flip/flop 

alternatively spliced exon, and the two ligand-binding domains (S1 and S2). Glycosylation sites are shown as trees in 

the N-terminal region (Image taken from Dingledine et al., 1999). 

AMPAR are expressed as a combination of four subunits: GluR1-4. These subunits 

combine in tetramers in different stoichiometries and directly influence a variety of properties 

of the ion channel itself (i.e. desensitization/resensitization kinetics and conductance 

properties) as well as the receptors localization and trafficking to the synapses (Ozawa et al., 

1998; Dingledine et al., 1999; Santos et al., 2008). Several studies reviewed by Santos et al. 

(2008) showed a widespread distribution of AMPARs in the brain, as expected from their key 

role in excitatory neurotransmission. GluR1–GluR3 subunits are enriched in the outer layers of 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lau%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20229265
http://www.ncbi.nlm.nih.gov/pubmed?term=Tymianski%20M%5BAuthor%5D&cauthor=true&cauthor_uid=20229265
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the cerebral cortex, hippocampus, olfactory regions, basal ganglia, lateral septum and 

amygdale and although regarded as neuronal receptors, they have also been detected in glial 

cells (Santos et al., 2008). Specifically, synaptic insertion of GluR1 has two functions: the 

established role of increasing synaptic strength via its ligand-gated ion channel, and a novel 

role through the structurally stabilizing effect of its C-terminus that permits an increase in 

spine size (Kopec et al., 2007). Accordingly, hippocampal LTP involves phosphorylation of 

GluR1 subunit and its delivery to synapse, whereas LTD is the result of dephosphorylation and 

endocytosis of GluR1 containing AMPAR (Din et al., 2010). 

These receptors are highly mobile proteins that undergo constitutive and activity-

dependent translocation to, and removal from, synapses. There are multiple routes for 

AMPARs trafficking and their respective synaptic contribution depends on the precise subunit 

composition and specific signaling cues. Briefly, the pre-synaptic AMPAR localization involves 

AMPAR mRNA translation on the rough endoplasmic reticulum (ER), subsequent exportation 

from the ER and trafficking to the Golgi and further packaging in cytosolic vesicles to be 

translocated to the synaptic terminal region (Dingledine et al., 1999). This pre-synaptic 

localization points to a role of these receptors in the modulation of pre-synaptic function 

(Schenk and Matteoli, 2004). 

AMPAR are directly inserted into the postsynaptic density following its trafficking via the 

cytoskeleton (Gerges et al., 2006). Post-synaptic AMPAR, mediating the most fast excitatory 

synaptic transmission, are crucial for many aspects of brain function, including learning, 

memory and cognition. Furthermore, aberrant AMPAR trafficking is implicated in 

neurodegenerative diseases (Henley et al., 2012). The phosphorylation status of AMPARs is a 

fundamental determinant of their trafficking and function. In fact, the interplay between 

phosphorylation and dephosphorylation is determinant for controlling AMPAR surface 

expression and endocytosis. Although multiple kinases and phosphatases are involved, a 

working model is that activity-dependent phosphorylation of GluR1 delivers AMPARs to 

synapses in LTP, whereas GluR1 dephosphorylation is a signal for internalization and LTD 

(Henley et al., 2012). 

It was proposed stargazin - a transmembrane AMPAR regulatory protein (TARP) that 

regulates AMPAR trafficking, surface expression and channel kinetic are able to stabilize 

synaptic AMPARs through directly interaction with postsynaptic density-95 (PSD-95) protein 

via a C-terminal PDZ-binding domain (a common structural domain found in the signaling 

proteins) (Dingledine et al., 1999; Santos et al., 2008; Henley et al., 2012). Additionally, 

removal of GluR1, GluR2 and GluR3 from the surface eliminates all AMPAR currents, but does 

not alter NMDAR currents or dendritic morphology (Santos et al., 2008; Henley et al., 2012). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Schenk%20U%5BAuthor%5D&cauthor=true&cauthor_uid=15145529
http://www.ncbi.nlm.nih.gov/pubmed?term=Schenk%20U%5BAuthor%5D&cauthor=true&cauthor_uid=15145529
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NMDARs are heterodimers composed of NR1, NR2 and NR3 subunits. The NR2 subunit 

contains the glutamate-binding domain. All functional NMDARs are heteromultimeric 

complexes of the NR1 subunit in combination with at least one of the four NR2 subunits (A–D). 

The surface distribution of NMDA receptors can be classified into three categories: synaptic, 

perisynaptic and extrasynaptic. The synaptic NMDAR pool is defined by its association with the 

PSD and it is activated by synaptically released glutamate. Interestingly, a small portion of 

synaptic NMDAR signaling is dependent on synaptically released glutamate from adjacent 

synapses in hippocampal pyramidal neurons (Dingledine et al., 1999). Extrasynaptic NMDARs 

are probably not activated by synaptically released glutamate under physiological conditions 

but may be activated by glutamate derived from other sources. The results of several reports 

suggest that the localization of NMDA receptors in the synaptic pool is regulated by NMDAR 

interaction with PDZ-binding domain, especially PSD-95 (Li et al., 2002; Li et al., 2003; Lim et 

al., 2003). 

Trudeau et al. (2004) suggested that an up-regulation of hippocampal NMDARs is 

associated with early stages of the disease. Indeed, diabetes studies performed in the rat 

hippocampus have shown that T1DM could induce an up-regulation of glutamate NMDAR and 

AMPAR, and, therefore, evoke LTP defects (Valastro et al., 2002; Santiago et al., 2009). These 

mechanisms could underlie the neurological complications within the brain of DM patients. 

Overactivation of glutamatergic receptors can cause cell damage by increasing intracellular 

Ca2+ concentration in neurons, thereby leading to the generation of free radicals and activation 

of proteases, phospholipases and endonucleases as well as transcriptional activation of specific 

cell death programs. 

4.2. Long-term potentiation  

Several reports have demonstrated the occurrence of LTP, which is an 

electrophysiological model of synaptic plasticity, in vivo following behavioral learning and 

memory tasks (Martin et al., 2000; Whitlock et al., 2006). The process of LTP is composed of 

two phases: induction or early LTP and maintenance or late LTP. These phases correspond to 

behavioral memory, which also has two components: short-term memory and long-term 

memory (Lynch, 2004). 

 During LTP induction, glutamate is released from the presynaptic terminal and activates 

AMPARs and NMDARs on the postsynaptic terminal. Moreover, several signaling pathways are 

involved in LTP induction including, cAMP-dependent protein kinase A (PKA) (Esteban et al., 

2003), protein kinase C (PKC) (Boehm et al., 2006), extracellular signal-regulated kinase 1/2 
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(ERK 1/2) in the MAPK cascade (Atkins et al., 1998), PI3K (Opazo et al., 2003) and tyrosine 

kinase Src (Hayashi and Huganir, 2004). 

Increase in synaptic AMPAR function through changes in their number, composition 

and/or properties result in the LTP of synaptic efficacy. On LTP induction, AMPARs undergo 

PKA-dependent insertion at perisynaptic sites, are stabilized in the membrane by actin 

polymerization and are then translocated to the synapse for full expression of LTP (Henley et 

al., 2011). For example, the delivery of AMPAR subunit GluR1 to the synaptic membrane was 

demonstrated to play a role in LTP. While originally thought to be less dynamic than their 

AMPAR counterparts, increasing evidence demonstrates that NMDARs themselves can be 

regulated in an activity-dependent manner, and both LTP and LTD of NMDAR-mediated 

transmission have been reported in several brain areas, including hippocampus (Hunt and 

Castillo, 2012). 

Numerous studies strongly suggest that dysfunction in hippocampal LTP is related to the 

regulation of glutamate receptor properties, being associated with diabetic conditions (Di 

Mario et al., 1995; Biessels et al., 1996). In fact, and based on numerous electrophysiological 

experiments, DM-induced brain abnormalities and behaviour alterations could be derived from 

defects in expression of LTP in hippocampal slices (Biessels et al., 2002). 

4.3. Long-term depression 

The amount and kinetics of calcium influx largely determines the direction of plasticity, 

with large and rapid influxes contributing to LTP and conversely, smaller prolonged influxes 

leading to LTD (Sjostrom and Nelson, 2002). Accordingly, LTD is a lasting decrease in synaptic 

effectiveness that follows some types of electrical stimulation in the hippocampus. Two broad 

types of LTD may be distinguished: heterosynaptic LTD, occurring at inactive synapses, 

normally during high-frequency stimulation of a converging synaptic input; and homosynaptic 

LTD, which occurs at activated synapses, normally at low frequencies (Bear and Abraham, 

1996). 

Conversely to what happens with LTP, synaptically evoked LTD is accompanied by a loss 

of surface AMPARs (Henley et al., 2012). AMPAR endocytosis is thought to be important in the 

expression of LTD triggered by NMDAR activation. In fact, Beattie et al., (2000) have 

demonstrated that NMDAR activation can cause endocytosis of AMPARs through signaling 

mechanisms implicated in NMDAR-dependent LTD, specifically calcium influx and calcineurin 

activity. However, surprisingly, the actions of insulin on AMPAR trafficking seem to be 

mediated by an independent signaling mechanism, indicating that AMPAR endocytosis can be 
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triggered by multiple signaling pathways, only some of which are activated during LTD (Beattie 

et al., 2000). 

While most studies have focused on the role of LTP in behavior, far less is known about 

the role of LTD. Hippocampal LTD is thought to contribute to memory loss. However, recent 

studies have found that hippocampal LTD may instead contribute to spatial memory 

formation, by weakening previously encoded memory traces when new information is learned 

(Nicholls et al., 2008; Ge et al., 2010). 

It is interesting to note that the facilitation of LTD and the impairment of LTP are 

common diabetes consequences (Gispen and Biessels, 2000). For example, LTP expression was 

impaired in the CA1 and the CA3 field of the hippocampus of young adult T1DM rats, whereas 

LTD expression was enhanced in the CA1 field (Biessels et al., 1996; Kamal et al., 1999). 

5. Insulin: a peripheral hormone operative in the brain 

Insulin is one of the most important anabolic hormones identified to date. It is produced 

by the pancreatic β-cells and its primary biological effect is to maintain the glucose levels in the 

physiological range; however, it also stimulates lipogenesis, protein synthesis and has been 

found to promote cell division and growth through its mitogenic characteristics in several cell 

types. In vertebrates, insulin represents a super-family of structurally related proteins, 

including insulin-like growth factor-1 (IGF-1), IGF-2 and relaxin (Shabanpoor et al., 2009). 

The initial and most prevalent phase of T2DM is characterized by an important increase 

of insulin secretion in order to maintain homeostasis within the organism. Although the brain 

was described for a long time as an insulin-insensitive organ, early as 1978, Havrankova et al. 

(1978) localized the IR in the CNS by ligand autoradiography. Nowadays it is widely recognized 

that both insulin and IR are widely distributed in various regions of the developing and adult 

brain with highest concentrations in the olfactory bulb, hypothalamus, cerebral cortex, 

cerebellum and hippocampus. Additionally, IRs are expressed by both neurons and astrocytes 

(Havrankova et al., 1978; Plum et al., 2005). The co-localization of insulin, IR and glucose 

transporters 1 and 4 (GLUT1 and GLUT4) in selective cerebral regions, namely in hippocampus, 

suggested that cerebral glucose metabolism is regulated by insulin signaling pathways (Zhao et 

al., 1999; Shulingkamp et al., 2000; MacNay and Recknagel, 2011). Furthermore, insulin has 

been shown to cause translocation of GLUT4 to the cell surface of hippocampal neurons. 

Insulin and IGF-1 also play other important and multifaceted roles in the brain including 

neurotrophic, neuromodulatory and neuroendocrine (Shulingkamp et al., 2000; van der Heide 
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et al., 2006; Cardoso et al., 2009; Huang et al., 2010; Sima, 2010; Ketterer et al., 2011) as well 

as in pathological functioning related to neurodegenerative diseases and memory and learning 

impairments induced by DM (Cardoso et al., 2009; de la Monte, 2009; Sima, 2010; McNay and 

Recknagel, 2011). Specifically, insulin and IGF-1 are involved in neuronal survival and 

facilitation of synaptic plasticity through the regulation of energy metabolism, oxidative stress, 

gene regulation of other neurotrophic factors and their receptors, cholinergic gene expression, 

expression and phosphorylation of neuroskeletal proteins including tau and regulation of β 

amyloid. Furthermore these peptides have anti-inflammatory and anti-apoptotic effects (see 

section 9) (Xing et al., 2007; Chiu and Cline, 2010). 

Brain insulin derives primarily from pancreatic β-cells secretion and it is subsequently 

transported across the blood-brain barrier (BBB) by a saturable, insulin receptor-mediated 

transport process (Banks et al., 1997). This is confirmed by the fact that there is 

correspondence between a raise in peripheral insulin levels and cerebrospinal fluid insulin 

content (Wallum et al., 1987). However, it was reported that less than 1 % of the peripherally 

administered insulin reaches the CNS in dogs, due to the saturable character of its transport 

through BBB (Woods and Porte, 1977). Although brain insulin’s pancreatic origin, a small 

proportion of insulin might be produced in the brain, specifically in hippocampal pyramidal 

neurons (Schechter and Abboud, 2001; Kuwabara et al., 2011). In fact, previous studies 

showed the existence of pre-proinsulin I and II mRNA and insulin immunoreactivity in neurons 

confirming the idea that insulin can be synthesized de novo in the brain (Schechter et al., 1996; 

Zhao et al., 1999). The evidence for significant synthesis of insulin within the adult mammalian 

brain is now convincing to the point of being overwhelming (McNay and Recknagel, 2011). 

There is clear evidence that systemic insulin resistance is accompanied by central insulin 

resistance, and that such impaired insulin signaling is the causal mechanism underlying 

cognitive impairments. Some authors suggest that cognitive deficits observed as a 

consequence of T2DM are likely due in large part to impaired central insulin modulation of 

cognitive and metabolic processes in the hippocampus, and that insulin signaling is a critical 

component of, for example, memory processing (McNay and Recknagel, 2011). Furthermore, 

impairments in the insulin signaling pathway in the brain have been implicated in Alzheimer’s 

disease and aging besides T2DM induced cognitive deficits (Gispen and Biessels, 2000; van der 

Heide et al., 2006; Cardoso et al., 2009). Moreover, recent work has conclusively shown that 

endogenous intrahippocampal insulin is a key component of memory processes, and that 

acute blockade of hippocampal insulin signaling produces profound cognitive deficits, 

supporting the physiological role of insulin as a hippocampal modulator (McNay et al., 2010). 

Since hyperinsulinemia seen in T2DM may result in insulin resistance either by negative 
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regulation of the insulin receptor or its further desensitization beyond a reduction of the 

insulin transport into the brain. Both hyperinsulinemia as well as hypoinsulinemia have been 

related to the decrease in cognitive functions and AD in aging brain (Gispen and Biessels, 2000; 

Sheen, 2010). 

5.1. Insulin/IGF Signaling 

Important pathways in the regulation of synaptic plasticity and memory formation 

overlap with the insulin signaling pathway; therefore, it is not surprising that insulin has 

profound effects on information storage and synaptic physiology (van der Heide et al., 2006; 

McNay et al., 2010; Costello et al., 2012). Like other hormones, insulin binds to specific cell 

receptors in CNS, thereby exerting its effects through the activation of several signaling 

pathways: phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

are the most relevant ones involved in learning and memory processes (Figure 8) (Zhao et al., 

2004; van der Heide, 2006; Cardoso et al., 2009). These intracellular signaling cascades will 

ultimately lead to changes in glucose transport, glycogen and lipid synthesis and specific gene 

expression. In addition to insulin, IGFs also modulate neuronal growth, survival, differentiation, 

migration, metabolism, gene expression, protein synthesis, cytoskeletal assembly, synapse 

formation and plasticity (D’Ércole et al., 1996). Specifically, IGF-1 receptor (IGF-1R) signaling is 

important in regulating the proliferation of progenitor cells during prenatal development and 

the survival of mature neural cells postnatally (Liu et al., 2009) and it functions as a survival 

factor in the CNS to inhibit neuronal death during aging (Sun, 2006). Additionally, there is a 

regulatory function of IGF-1 on synaptic excitability in hippocampal neurons, through MAPK 

signaling mechanism (Xing et al., 2007). A recent paper suggests that IGF-2 may also play an 

important role in hippocampal memory processes (Chen et al., 2011). 
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5.1.1. Insulin and IGF-1 receptors 

The IR are widely expressed throughout the brain, with higher density in cerebral cortex, 

hypothalamus and hippocampus, where they perform several functions such as on glucose 

metabolism, food consumption regulation and on learning and memory formation 

(Shulingkamp et al., 2000; van der Heide et al., 2006; Huang et al., 2010). 

The insulin and IGF-1 receptors are structurally similar hormone receptors and belong to 

the tyrosine kinase superfamily (Shulingkamp et al., 2000). As shown in Figure 6, the IR is a 

tetrameric protein consisting of two α and β subunits linked by disulfide bonds: α subunits 

(135-kDa) constitute the extracellular domain, where insulin will bind, while β subunits (95-

kDa) are transmembrane proteins which have an intracellular tyrosine kinase domain (Chiu 

and Cline, 2010). While insulin presents higher affinity for IR than IGF-1, the latter presents 

higher affinity for IGF-1R than insulin (Conejo and Lorenzo, 2001). However, several studies 

suggest that the activation of this two insulin receptors is the basis of a complex but relevant 

role in the regulation of brain metabolism, neuronal growth and differentiation and 

neuromodulation (Gasparini and Xu, 2003; Wada et al., 2005). 

 

Figure 6: Insulin receptor structure. This receptor is composed of an α (yellow) and β subunit (pink) bridged by an 

intrinsic disulfide bond, which dimerizes with another insulin receptor monomer through extrinsic disulfide bonds 

to form a functional receptor (Image taken from Chiu and Cline, 2010). 

Upon extracellular insulin binding, the two α-subunits became closer enabling ATP 

binding to the β-subunits intracellular domain. This activates receptor auto-phosphorylation 

on specific tyrosine residues, triggering the phosphorylation of cellular substrates, including 

members of the insulin receptor substrate (IRS) family (IRS-1-4) and the adaptor proteins, Shc, 

Gab-1 and Cbl (Figure 7). Except for Cbl, these proteins are deeply associated with insulin 



Sucrose-induced memory deficits 

Introduction 

19 

signaling pathways related to T2DM-induced cognitive impairments (see section 3.), through 

phosphorylation on multiple tyrosine residues which creates recognition sites for additional 

effector molecules containing Src Homology 2 (SH2) domains (Kido et al., 2001; Saltiel, 2001; 

Fulop et al., 2003; van der heide et al., 2006; Saini, 2010). Accordingly, each scaffold protein 

can interact with different SH2-containing proteins that direct a pathway of signal 

transduction. 

 

Figure 7: Tyrosine kinase substrates of the insulin receptor. Insulin stimulates the tyrosine kinase activity of its 

receptor, leading to the phosphorylation of a number of cellular substrates, including Gab-1, Shc, IRS 1–4, and Cbl 

(via its recruitment by the adaptor protein CAP), which in turn will activate multiple signaling cascades (Image taken 

from Saltiel, 2001). 

Alterations in IR expression, trafficking, ligand binding, auto-phosphorylation, and/or 

kinase activity have been identified in cases of severe insulin resistance (Saltiel, 2001). 

Additionally, IRS proteins seem to present a further important regulatory step in the IR 

activation. The degree of serine/threonine (S/T) phosphorylation determines either a positive 

or negative regulation of the signal transmission via IRS proteins. Furthermore, the activation 

of PI3K needs the tyrosine phosphorylation of IRS. A deregulation in S/T phosphorylation could 

affect the insulin action, as both increased and decreased phosphorylation could lead to 

defective IR-mediated tyrosine phosphorylation (Fulop et al., 2003). Moreover, it has been 

shown that serine phosphorylation of IRS proteins can reduce the ability to attract PI3K, 

thereby minimizing its activation and probably leading to an accelerated degradation of the 

IRS-1 protein. The over phosphorylation of S/T could be induced by circulating free fatty acids, 

tumor necrosis factor-α (TNF-α) or a chronic increase in the insulin level as may occur during 

T2DM, neurodegenerative disorders and aging (Fulop et al., 2003; Saini, 2010). There are other 

mechanisms involved in IRS serine phosphorylation including mammalian target of rapamycin 

(mTOR), JNK and PKC pathways (Saini, 2010). 
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5.1.2. PI3K/Akt pathway 

PI3K is a heterodimer composed of a catalytic subunit (110 kDa) and a regulatory or 

adapter subunit (85 KDa), being highly expressed in the nervous system, including the 

hippocampus. Following insulin/IGF-1 stimulation, tyrosine (Saltiel, 2001) phosphorylation of 

the IRS family proteins mainly induces their binding to the SH2 domains of p85 triggering 

downstream activation of serine/threonine kinases including protein kinase B (PKB)/Akt and 

PKC (Figure 7 and 8) (Kido et al., 2001; Saltiel, 2001; van der Heide et al., 2006; Saini, 2010). 

Interestingly, over the past few years it has become evident that the effects of insulin in 

neuronal survival and synaptic plasticity are mediated by a common signal transduction 

cascade, which has been identified as ‘‘the PI3K route’’. Furthermore, this same route is 

required for the induction of LTP and LTD (Kamal et al., 2000; van der Heide et al., 2006; 

McNay and Recknagel, 2011). In fact, insulin signaling has recently been shown to regulate 

AMPARs trafficking and NMDAR conductance (van der Heide et al., 2006; Cardoso et al., 2009; 

Huang et al., 2010).Additionally, increases in insulin receptor protein levels have been found in 

hippocampal synaptic membrane fractions after short-term memory formation (Zhao et al., 

1999; Teter et al., 2004). Moreover, it has been shown that alterations in IR density correlate 

with changes in synaptic strength, learning and memory (van der Heide, 2006). Furthermore, 

insulin administration can rapidly reverse insulin resistance-induced memory deficits (McNay 

et al., 2010). Once activated, PKB/Akt [which is a member of the AGC (cAMP-dependent, 

cGMP-dependent and PKC) protein kinases family] mediates cell survival, protecting cells 

against apoptotic stimuli by inactivating proteins belonging to the apoptotic machinery, 

protein kinases such as glycogen synthase kinase 3β (GSK-3β) and several transcription factors, 

including Forkhead box O (FoxO) (Kido et al., 2001; van der Heide et al., 2006). In addition, 

GSK-3β is also implicated in memory impairment, since it is able to phosphorylate and inhibit 

the CREB protein, a universal modulator of memory (Cardoso et al., 2009) 

Insulin also stimulates protein synthesis and cell growth by phosphorylation of mTOR 

through the activation of the PI3K/Akt pathway. Finally, PI-3K/Akt signaling pathway also 

promotes the translocation of GLUT-4 from the endossomal pool to the membrane surface, 

enhancing glucose uptake into the cell (Fulop et al., 2003; Cardoso et al., 2009; Saini et al., 

2010). 



Sucrose-induced memory deficits 

Introduction 

21 

5.1.3. MAPK/ERK1/2 

Insulin also activates the Ras–MAPK pathway that triggers the recruitment of the 

serine/threonine kinase Raf, which functions as an upstream kinase for MAPK kinase (MEK). 

MEK phosphorylates MAPK/ERK1/2 on threonine and tyrosine residues, resulting in its 

activation and leading to the regulation of gene expression (Figure 8; van der Heide et al., 

2006; Cardoso et al., 2009). In the hippocampus, MAPK/ERK1/2 activation is also regulated by 

a wide variety of neurotransmitter receptors including metabotropic glutamate receptors and 

NMDAR (Haddad, 2005), pointing it as a downstream intracellular mediator of NMDA receptor-

mediated excitotoxic cell death (van der Heide et al., 2006). 
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Figure 8: Schematic illustration of the potential molecular mechanisms of insulin signaling in the brain. Insulin 

binds to the insulin receptor activating the intrinsic tyrosine kinase, which phosphorylates endogenous substrates, 

such as the insulin receptor substrates (IRS) and Src-homology-2-containing protein (Shc), leading to the activation 

of two major downstream signaling pathways: 1) the phosphatidylinositol 3-kinase (PI3K) and 2) mitogen-activated 

protein kinases (MAPK/ERK1/2) pathways. PI-3K mediates the activation of the protein kinase-B (PKB/Akt) favoring 

neuronal survival. Activated PKB/Akt can interfere with the apoptotic machinery, inactivating the proapoptotic 

proteins. Furthermore, PI3K/Akt activation inhibits GSK-3β, which is involved in the triggering of the apoptotic 

cascade, inhibition of the activation of several cell survival transcription factors, tau protein hyperphosphorylation, 

and amyloid-β protein precursor (AβPP) maturation and processing. PI3K/Akt signaling cascade also induces the 

translocation of insulin-sensitive glucose transporter 4 (GLUT4) to the membrane surface, enhancing glucose 

uptake. Insulin-mediated PI3K signaling pathway is implicated in learning and memory, as well as in synaptic 

plasticity through the regulation of glutamate and GABA (γ-aminobutyric acid) receptors trafficking and channel 

activity. While the GABAergic receptors mediate the inhibitory synaptic transmission and the glutamatergic 

receptors mediate the vast majority of the excitatory synaptic transmission, the balance of glutamatergic and 

GABAergic transmissions is required to maintain normal brain function. Moreover, activation of excitatory 

glutamatergic synapses induces Ca
2+

 influx at postsynaptic sites, where it acts as a second messenger. Insulin is also 

able to active the MAPK/ERK1/2 signaling pathway, which is responsible for the activation of several transcription 

factors that alter protein expression (Image taken from Cardoso et al., 2009). 
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6. Glucose Neurotoxicity 

In order to maintain normal function and energy metabolism, the brain uses glucose as 

the main fuel, primarily by oxidative metabolism (McCall, 2004). Both hypoglycaemia, and 

chronic hyperglycaemia, even in the absence of DM symptoms, can result in brain damage 

(Sheen, 2010). Neurons have a constantly high glucose demand and, thus, cannot 

accommodate episodic glucose uptake under the influence of insulin, but rather depending on 

glucose extracellular concentration (Tomlinson and Gardiner, 2008). 

The normal fate of intracellular glucose is phosphorylation of the number-six-position 

carbon and entry into glycolysis, but in the presence of abnormally high levels of glucose in the 

interstitial fluid, it is diverted to metabolic pathways that can result in neurotoxicity 

(Tomlinson and Gardiner, 2008): polyol, hexosamine and advanced glycation end-product 

pathways (Figure 9). Thus, DM evoked hyperglycaemia, which can cause up to fourfold 

increase in neuronal glucose levels (Tomlinson and Gardiner, 2008), is highlighted as one of the 

main causes of diabetic encephalopathy (McCall, 2004). 
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Figure 9: Metabolic pathways favored by raised glucose levels. The normal fate of intracellular glucose is 

phosphorylation of the number-six-position carbon by hexokinase and entry into glycolysis. However, if high glucose 

levels saturate hexokinase, glucose is diverted into the polyol pathway, leading to a compromised recycling of 

glutathione disulphide (GSSG) to glutathione (GSH), which in turn can compromise the conversion of hydrogen 

peroxide to water, favoring oxidative stress. Further down the glycolytic pathway, fructose-6-phosphate can drive 

the synthesis of uridine diphosphate-N-acetylhexosamine (UDP-GlcNAc), which can combine with serine and 

threonine residues on intracellular proteins and compromise the proteins’ function (hexosamine pathway). 

Glyceraldehyde-3-phosphate can be converted to highly reactive methylglyoxal, which forms advanced glycation 

products on proteins and other macromolecules (advanced glycation end-product (AGE) pathway). GFAT, 

glutamine–fructose-6-phosphate amidotransferase. (Image taken from Tomlinson and Gardiner, 2008). 

6.1. Polyol Pathway 

Following saturation of hexokinase, hyperglycemia can trigger an excessive flow of the 

poliol pathway, where glucose is reduced to sorbitol by the aldose reductase. Subsequently, 

sorbitol can be oxidized to fructose by sorbitol dehydrogenase. Overall, this pathway can lead 

to cell damage through an increase in osmotic pressure, fructose accumulation and a decrease 

in nicotinamide adenine dinucleotide phosphate in reduced form (NADPH) levels that favors 

oxidative stress (Evans et al., 2002Tomlinson and Gardiner, 2008;). 
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Furthermore, stress-sensitive signaling pathways including p38 MAPK and c-Jun N-

terminal kinase (JNK) are strongly activated by sorbitol (Evans et al., 2002). 

6.2. Hexosamine pathway 

An excessive flux of glucose can also lead to the hexosamine biosynthetic pathway 

activation, where fructose-6-phosphate (derived from glycolysis) gets diverted into a signaling 

pathway in which an enzyme called GFAT (glutamine: fructose-6 phosphate amidotransferase) 

converts the fructose-6 phosphate to glucosamine-6 phosphate and finally to UDP (uridine 

diphosphate) N-acetyl glucosamine. After that, the N-acetyl glucosamine fosters modification 

of serine and threonine residues of transcription factors, just like the more familiar process of 

phosphorylation, and over modification by this glucosamine often results in pathologic 

changes on the expression of several gene products, including leptin (Evans et al., 2002; 

BrownLee, 2004). 

The overproduction of glucosamine may initiate endoplasmatic reticulum stress, which 

can promote a JNK-dependent serine phosphorylation of IRS-1, which in turn results in 

suppression of insulin-receptor signaling pathway, leading to insulin resistance (Evans et al., 

2002; Tomlinson and Gardiner, 2008). 

6.3. Advanced Glycation End-Product Pathway 

Glycation (also called glucoxidation or Maillard reaction) is a multistep nonenzymatic 

reaction responsible for the irreversible synthesis of AGEs:  heterogeneous group of molecules 

that play an important role in disrupting biological activities of proteins as well as their 

degradation processes, leading to the loss of their normal function and, ultimately, cell 

dysfunction and death (Kikuchi et al, 2003; Peppa et al., 2003; Miranda and Outeiro et al, 

2010). The initial product of this reaction is called a Schiff base, which is formed by the direct 

addition of open-chain glucose to lysine groups on proteins. This Schiff base undergoes a slow 

and spontaneous rearrangement (the Amadori rearrangement) to form a stable AGE, as is the 

case of the well-known DM pathological hallmark: glycated hemoglobin (HbA1c) (Kikuchi et al, 

2003; Peppa et al., 2003; Tomlinson and Gardiner, 2008). A series of subsequent reactions, 

including successions of dehydrations, oxidation-reduction reactions, and other arrangements 

lead to the formation of AGEs. The formation of these highly reactive products is fostered by 

both T2DM-induced hyperglycemia and oxidative stress (Peppa et al., 2003). In fact, the 

inhibition of oxidant pathways prevents intracellular AGE formation (Giardino et al., 1996). 
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 Conversely, AGEs may be also linked to increased generation of reactive oxygen species 

(ROS) by multiple mechanisms, such as by decreasing activities of superoxide dismutase and 

catalase, diminishing glutathione stores, and activation of PKC (Ramasay et al., 2005). 

Moreover, glucoxidation products (e.g. Methylglyoxal, Figure 9) can also contribute to the 

formation of AGEs (Tomlinson and Gardiner, 2008). Finally, the cytotoxicity of glycation results 

from the following three mechanisms: 1) inhibition of specific functions of proteins; 2) cross-

linkage, aggregation, and impaired degradation of proteins; and 3) ROS production (Kikuchi et 

al., 2003). 

AGEs are also operative in SNC. It was further suggested that glycation, through proteins 

degradation processes alteration, will interfere with both axonal transport and intracellular 

protein traffic in neurons, compromising neuronal survival (Kikuchi et al., 2003; Ramasay et al., 

2005). Kikuchi and colleagues reviewed glycation as a ‘sweet tempter for neuronal death’ and 

speculated that the synergism between glycation and oxidative stress are involved in 

neurotoxicity and consequently neuronal cell death (Kikuchi et al., 2003).   

Furthermore, it has become clear that AGEs cytotoxicity also affects physiological brain 

aging (Kikuchi et al., 2003; Peppa et al., 2003 Ramasay et al., 2005; Miranda and Outeiro, 

2010). In fact, such mechanism could play a unifying role in both T2DM-related accelerated 

brain aging and neurodegenerative processes (Ramasay et al., 2005).  

In the CNS, AGEs, along with other ligands including S100 and amyloid β (Aβ) proteins, 

are able to interact with a variety of cell-surface AGE-binding receptors (RAGE), leading either 

to their endocytosis and degradation or to cellular activation and pro-oxidant/inflammatory 

events (Peppa et al., 2003; Ding and Keller, 2005; Ramasay et al., 2005; Sparvero et al., 2009). 

6.3.1. RAGE 

RAGE is a multiligand receptor of the immunoglobulin superfamily of cell surface 

molecules acting as counter-receptor for diverse molecules (Ding and Keller, 2005). 

These receptors are expressed at low levels in normal tissues, but become upregulated 

at sites where its ligands accumulate (Chavakis et al, 2004). RAGE effects on neuronal, 

astrocyte, and microglia populations are based upon RAGE levels and upon the specific 

isoforms present on the cell surface (Ding and Keller, 2005; Sparvero et al., 2009). 

There are multiple isoforms of the RAGE receptor. The three dominant isoforms are 

generated as the result of alternative splicing from a single RAGE gene and can loosely be 

defined as being the full-length RAGE, dominant negative RAGE (DNRAGE), that lacks the 

intracellular domain, therefore binding RAGE ligands without directly transducing a signal, and 
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soluble RAGE (sRAGE), which is released into the extracellular space and allowed to interact 

with RAGE ligands prior to their potential binding to full-length RAGE (Figure 10). Each of these 

forms of RAGE contains the V-type and C-type domains for ligand binding, but each isoform 

differs considerably in cellular function and presumably is able to bind RAGE ligands with 

similar affinity. Together, the presence of these 3 main isoforms of RAGE suggests that the 

ability of any RAGE ligand to induce RAGE signaling depends on the coordinated effects of the 

different RAGE receptors. Furthermore, a growing number of studies have highlighted the 

presence of additional RAGE splice variants in human brain tissue (Figure 10), including 

astrocytes, and neurons, which appear to be cell type specific, and may be linked with specific 

pathological conditions, such as inflammation, cancer, neurodegeneration and diabetes (Ding 

and Keller, 2005; Sparvero et al., 2009). Full-length RAGE has been identified as a direct 

mediator of physiological as well as pathological responses, including oxidative stress, 

chemotaxis, angiogenesis, inflammation, neurite outgrowth, apoptosis and proliferation. The 

intracellular domain of RAGE is necessary for many forms of RAGE signaling, including the 

activation of nuclear factor k-B (NF-κB), MAPK and JNK (Chavakis et al., 2004; Bierhaus et al., 

2005; Ding and Keller, 2005; Ramasamy et al., 2005; Evans, 2002; Sparvero et al., 2009). 

 

Figure 10: There are multiple isoforms of the RAGE receptor. The 3 dominant isoforms of the RAGE receptor are 

known as full-length RAGE, soluble RAGE (sRAGE), and dominant negative RAGE (dnRAGE). Each of these receptors 

contains a V-type domain and 2-C type. At least 3 additional forms of RAGE are found in the human brain (RAGEb, 

sRAGEb, dnRAGEb), arrows indicate the areas of each brain isoform that is unique (Image taken from Ding and 

Keller, 2005). 

Thus, the ligand-RAGE axis, currently with AGEs, may be a part of quite a tangled web in 

the aging brain-linked to the complications of aging, diabetes and neurodegenerative disorders 

(Ramasamy et al., 2005). 
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7. Oxidative stress  

Another contributing mechanism for glucose neurotoxicity is the oxidative stress that 

stems from enhanced free radical concentration and decreased antioxidant defense system.  

Glucose auto-oxidation, oxidative metabolism of glucose in the mitochondria, intercellular 

activation of the polyol pathway and non-enzymatic protein glycation can contribute to 

hyperglycemia-driven oxidative stress (Mattson, 2000; Evans et al., 2002; Tomlinson and 

Gardiner, 2008). 

Permanently, excessive levels of ROS lead to the damage of proteins, lipids, and DNA 

and also play a significant role in activating stress-sensitive signaling pathways that regulate 

gene expression resulting in cellular damage (Evans et al., 2002). Protein oxidation seems to be 

highly associated with cognitive decline and cellular dysfunction leading to neurodegenerative 

disorders (Smith et al., 1991; Sohal, 2002; Dalle-Donne et al., 2003). For example, animal 

studies have been performed to testify that increases in oxidative stress in the rat 

hippocampus are associated with decreases in behavioral performance in hippocampal-

dependent learning and memory tasks, such as the Morris water maze (Fukui et al., 2001; Kelly 

et al., 2009). 

Additionally, as previously mentioned, oxidative stress can promote insulin resistance. 

Specifically, it leads to the activation of multiple serine kinase cascades that target insulin 

receptor as well as IRS and Shc proteins (Kyriakis and Avruch). In fact it was demonstrated that 

increased phosphorylation on discrete serine or threonine sites in such  proteins  can evoke 

hampered insulin signaling, including impairment in PI3K and PKB activation, and in glucose 

transport (Cardoso et al., 2009; de la Monte, 2009). Interestingly, PKB is considered to be a 

central modulator in preventing apoptotic cell death. Indeed, increased PKB activity can 

promote cell survival during free radical exposure, oxidative stress, Aβ exposure, among others 

(Paz et al., 1997; Qiao et al., 1999; Chong et al., 2003; Kang et al., 2003).  

On the other hand, hyperinsulinemia (Facchini et al., 2000) and/or insulin/IGF resistance 

can also lead to increased oxidative stress and, ultimately, to cell death. For example, AD 

abnormalities are associated with inhibition of insulin/IGF-1 signaling, which negatively 

regulates GSK-3β via a PI3K/Akt-dependent mechanism (Cardoso et al., 2009). As an insulin 

resistance consequence, GSK-3β and aberrant intra-neuronal hyperphosphorylated tau 

accumulation can be activated by oxidative stress, contributing to neurodegeneration (Chen et 

al., 2004). 
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8. Inflammation 

Commonly, systemic inflammation exacerbates CNS inflammation and correlates with 

cognitive decline (Leonard and Myint, 2006). This is of concern to T2DM, since this disease is 

characterized by low-grade inflammation (Rocha and Libby, 2009). Inflammation and IR, 

convergent pathogenic processes in both T2DM and AD, occur both in the periphery and in the 

brain suggesting common mediators (e.g. cytokines) and/ or defective control by homeostatic 

regulators (e.g. insulin) (Bhat, 2010). Recently, GSK-3 (which is modulated by insulin; see 

section 5.1.2.) has been implicated as a key regulator of the inflammatory response (Ramirez 

et al., 2010). For example, anti-inflammatory and therefore neuroprotective effects of GSK-3 

inhibition have been shown in models of spinal cord injury (Cuzzocrea et al., 2006). 

Another significant mechanism involved in inflammatory cascade initiation is NF-κB 

expression. It is noteworthy that impaired insulin signaling and hyperglycemia contribute to 

the increased expression of this transcription factor. Elevated free fatty-acids, ROS, TNF-α, IL-

1β, and other proinflammatory cytokines can further increase NF-κB expression (Barnes and 

Karin, 1997). Although the mechanisms have not been fully elucidated, TNF-α may stimulate 

the serine phosphorylation of IRS proteins, leading to decreased tyrosine phosphorylation and 

PI3K association (Pickup and Crook, 1998; Saltiel, 2001). Furthermore, the AGE-RAGE axis 

besides playing a role on oxidative stress represents a key mediator of inflammation (Bhat, 

2010). 

9. The dual role of insulin 

It has been highly debated the dual role of insulin in CNS. For example: insulin treatment 

can be considered ‘’good’’ when insulin is absent or concentrations are low and insulin can be 

‘‘bad’’ when its levels are continuously high (Gispen and Biessels, 2000van der Heide et al., 

2006). This dose-dependent dual role suggest that at low doses, it has anti-inflammatory 

effects during short-term inflammatory provocation and during chronic hyperinsulinemia or 

inflammation it may exacerbate inflammatory responses and increase oxidative stress markers 

(Krogh-Madsen et al., 2004). 

On the other hand, insulin was suggested as a neuroprotective agent against 

neurodegenerative diseases, where oxidative damage plays a major role (Schmidt et al., 2003). 

However, there are conflicting results for the effect of insulin as a possible 

antioxidant/neuroprotector and further studies are needed to cast light on this issue (Bender 

et al., 2006). For example, Bélanger and colleagues suggested that the absence of cognitive 
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and electrophysiological dysfunctions in Zucker Diabetic Fatty (ZDF) rats, a T2DM model, might 

be due to protective action of hyperinsulinemia (Bélanger et al., 2004), others proposed that 

insulin per se or their signaling pathways can protect neurons against oxidative stress-induced 

apoptosis, through Akt activation or GSK-3β inhibition (Cardoso et al., 2009), thus favoring 

memory formation. On the contrary, there are studies showing that insulin appears to induce 

free radicals generation and lipid peroxidation (Ryu et al., 1999) and epidemiological studies 

indicate that long-term hyperinsulinemia is a risk factor for dementia (Ott et al., 1999; Biessels 

et al., 2006). These observations might result from direct effects of insulin on the 

hippocampus. Even though there is emerging evidence concerning to insulin as a cognitive and 

neuronal modulator (McNay and Recknagel, 2011), other studies have shown that 

hyperinsulinaemia is associated with accelerated cognitive decline in non-dement and non-

diabetic patients (Kalmijn et al., 1995; Vanhanen and Soininen, 1998). Under low insulin levels 

there may be inadequate trophic support leading to cell death as well as learning impairments 

due to a desensitization of NMDA-dependent processes (van der Heide, et al., 2006). Benedict 

et al. (2011) have largely reviewed intranasal administration of exogenous insulin as a 

therapeutic option in the treatment of cognitive impairment, and conclude that it may be a 

useful for central nervous system insulin deficiency and resistance, a pathophysiological core 

feature of cognitive impairments. Conversely, hyperinsulinemia may desensitize the PI3K 

pathway resulting in inadequate responses to other trophic factors or facilitate excitotoxicity 

by potentiating NMDA receptors (van der Heide, et al., 2006). 

Besides this controversial results, what seems to be clear is that T2DM-induced cognitive 

deficits are likely due in large part to impaired central insulin modulation of cognitive and 

metabolic processes in the hippocampus, in agreement with the fact that IRs are highly 

expressed in this brain structure (McNay and Recknagel, 2011). 

10. Glial cells 

Glial cells are dynamic signaling components with the potential to modulate neuronal 

action on a slow timescale. These cells, associated with synapses, integrate neuronal inputs 

and can release transmitters that modulate synaptic activity (Haydon, 2001). Indeed, evidence 

shows that glial cells can: 1) respond to neurotransmission, 2) modulate neurotransmission, 

and 3) instruct the development, maintenance, and recovery of synapses (Auld and Robitaille, 

2003). 

They are conventionally divided into two types: macroglia, which includes astrocytes 

and oligodendrocytes; and microglia. 
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Microglia arises from macrophages outside the nervous system and is unrelated to other 

cells of the nervous system. Microglia activation is characterized by proliferation, migration 

and expression of immune-related antigens. The rapid convergence of microglia processes at 

the site of injury suggests that microglia may provide a physical barrier to protect healthy 

tissue, as it is capable of rapid extension towards sites of acute CNS damage (Parkhust et al, 

2010). The main and evident function of oligodendrocytes is the formation of a myelin sheath 

around most of axons in the CNS (Baumann and Pham-Dinh, 2001). Astrocytes are supposed to 

be the “good” glia, regarding their functions in regulating cerebral blood flow and maintaining 

synaptic function.  Astrocytes responds particularly to pro-inflammatory cytokines and it is 

believed that these cytokines participate in astrocyte activation following CNS injury. 

The present study is focused on DM-induced cognitive dysfunction and, consequently, 

on the characterization of astrocytic profile on account of its involvement in synaptic plasticity. 

10.1. Astrocytes and DM 

Astrocytes are complex, highly differentiated cells that tile the entire CNS in a 

contiguous fashion and that make numerous essential contributions its normal functioning. 

Astrocytes are generally characterized by one or more end-feet contacting a basal lamina 

around blood vessels (Nimmerjahn, 2009). Accumulating evidence suggests that astrocytes 

provide structural, metabolic and trophic support to neurons, modulating synaptic 

transmission and plasticity, and being involved in a wide range of CNS pathologies, including 

trauma, ischemia and neurodegeneration (Vesce et al., 1999; Haydon, 2001; Pekny and 

Nilsson, 2005; Sofroniew, 2009). In particular, astrocytes express a repertoire of 

neurotransmitter receptors mirroring that of neighbouring synapses. Astrocytes are endowed 

with the capacity of both uptaking and releasing glutamate, thus exerting an active 

participation in synaptic transmission and in the processing of information in the brain (Vesce 

et al., 1999). Failure of astrocyte glutamate transporters is associated with elevations in 

extracellular glutamate and, therefore, excitotoxicity, which has been reported in the brains of 

DM individuals (see section 4.1). 

Astrocytes are involved in a wide range of CNS pathologies, including trauma, ischemia 

and neurodegeneration. A key component of the astrocytes cytoskeleton, that warrants cell 

integrity and resilience, is the intermediate filament (IF) network, further associated with 

transduction of biomechanical and molecular signals. Glial fibrillary acidic protein (GFAP) is the 

main IF protein in astrocytes, in addition to vimentin, nestin and synemin. Classically, GFAP is a 

marker for astrocytes, known to be induced upon brain damage or during CNS degeneration 
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(astrocytic activation), and to be more highly expressed in the aged brain (Teismann et al, 

2004; Middeldorp J. et al, 2011). In response to essentially any CNS pathology, astrocytes 

undergo a characteristic change in appearance, i.e., astrocytes exhibit hypertrophic cell bodies 

and increased processes with augmented density of GFAP, a phenomenon referred to as 

reactive gliosis (or astrogliosis) (Pekny and Nilsson, 2005; Middeldorp et al., 2011). It has been 

proposed that astrogliosis may be the earliest brain response to hyperglycemia (Lebed et al., 

2008). Furthermore, Duarte et al. (2012) have provided the first evidence that T2DM mice 

display a loss of nerve terminal glutamatergic markers and astrogliosis in hippocampus 

underlying memory impairment. However, others have found decreased astrocyte GFAP levels 

in the cerebral cortex, hippocampus, and cerebellum of T1DM animal model, without a 

significant decrease in relative astrocyte numbers or astrocyte glutamate transporters 

(Coleman et al., 2004). 

11. Diet-induced insulin resistance [(pre)diabetes] in rodents 

Both genetic and environmental factors contribute to the development of metabolic 

abnormalities. Diet represents one environmental factor that can influence a metabolic 

disorder. Several experimental studies have demonstrated that the macronutrient composition 

of a diet is determinant for normal insulin action. Accordingly, high fat (HFa) and/or high 

sucrose (HSu) diets were shown to contribute to syndromes such as hypertriglyceridemia, 

hyperinsulinemia, insulin resistance and glucose intolerance in rodents,(Hallfrish, 1979; 

Kanazawa et al., 2003; Ribeiro et al., 2005; Cao et al., 2007; Stranahan et al., 2008; Carvalho et 

al., 2012), even though the mechanisms involved are not fully understood. 

Besides saturated fats, simple sugars are believed to be major components of the 

Western diet that promote obesity and insulin resistance (Gross et al., 2004).  In particular, the 

administration of a sucrose-rich diet to normal rats was shown to be an effective experimental 

model of insulin resistance and dyslipidaemia that resembles some biochemical and hormonal 

aspects of the human metabolic syndrome (Ferreira et al., 2010). Therefore one can think of 

this model as an appropriate one to study prediabetic complications. 

11.1. What is with high-sucrose diets? 

‘Sugars’ is a common term to describe mono and disaccharides and represent an 

important part of the total caloric intake. Glucose, fructose and sucrose are the most 

consumed carbohydrates in diet and the effect on health of a high intake of sugars is still 
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subject to scientific and public debate (Laville and Nazare, 2008). Coherently, most of diets 

used in rodent studies are either high-fat hypercaloric, or have grossly elevated contents of 

fructose or sucrose (up to 70–80 % of total caloric intake) that lead to obesity (Storlien et al., 

2000). The potential dietary adverse effect of sucrose may appear for HSu intakes (>30 % of 

caloric intake) (Daly et al., 1997; Laville and Nazare, 2008), which is far higher than the average 

sucrose intake. Others argue that a 40 % sucrose diet is in accordance with the concentrations 

ingested by a subset of Americans, and can indeed accelerate metabolic syndrome, fatty liver, 

and T2DM, independent of excess energy intake (Roncal-Jimenez et al., 2011). 

During absorption, sucrose is hydrolyzed into equal quantities of fructose and glucose 

and although both share the same chemical formula (C6H12O6), their bioavailability and 

metabolism are markedly different: 1) fructose after capture is almost all metabolized by liver 

whereas the main part of an oral glucose load is metabolized in peripheral tissues; 2) fructose 

is metabolized in liver by a specific pathway whose first enzymatic step is catalysed by 

fructokinase, whose velocity is far superior than glucokinase or hexokinase; and 3) fructose 

metabolism is mainly insulin-independent where glucose metabolism is insulin dependent 

(Figure 11; Laville and Nazare, 2008; Tappy and Lê, 2010). Several studies were performed to 

determine which moiety of the sucrose disaccharide may be the primary mediator of insulin 

resistance. It seems that fructose is the sugar largely responsible for decreased insulin 

sensitivity, mainly due to its rapid hepatic conversion into glucose, glycogen, lactate, and fat 

(Thresher et al., 2000; Tappy and Lê, 2010). 

In short-term controlled feeding studies, dietary fructose significantly increases 

postprandial triglyceride levels and has little effect on serum glucose concentrations, whereas 

dietary glucose did not; on the other hand, dietary glucose did increase serum glucose and 

insulin concentrations in the postprandial state whereas dietary fructose did not (Schaefer et 

al., 2009). Furthermore, the effect of sucrose on glucose and insulin responses is close to the 

effect of glucose. But its oxidative fate seems to be closer to the fructose one (Laville and 

Nazare, 2008). Chronically high consumption of fructose in rodents leads to hepatic and 

extrahepatic insulin resistance, obesity, T2DM and high blood pressure. The evidence is less 

compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia 

and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative 

stress and hyperuricemia have all been proposed as mechanisms responsible for these adverse 

metabolic effects of fructose (Tappy and Lê, 2010). 
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Figure 11: Fructose and glucose metabolism in liver cells. Fructose metabolism (grey arrows) differs from glucose 

(black arrows) due to 1) a nearly complete hepatic extraction and 2) different enzyme and reactions for its initial 

metabolic steps. Fructose taken up by the liver can be oxidized to CO2 and then converted into lactate and glucose; 

glucose and lactate are subsequently either released into the circulation for extrahepatic metabolism or converted 

into hepatic glycogen or fat. The massive uptake and phosphorylation of fructose in the liver can lead to a large 

degradation of ATP to AMP and uric acid (Image taken from Tappy and Lê, 2010). 
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11.2. Cognitive impairment 

The literature is scarce regarding to rodent models of sucrose-induced insulin resistance 

leading to cognitive impairment (Cao et al., 2007; Chepulis et al., 2009). 

Data from clinical, epidemiological and animal studies have suggested that excessive 

energy intake adversely affects the brain, particularly during aging. Animal studies have shown 

that high caloric diets impair the structure and function of the hippocampus (Winocur and 

Greenwood, 1999; Molteni et al., 2002; Wu et al., 2003). 

Deficits in hippocampal function may arise from peripheral insulin resistance and 

hyperlipidaemia induced by a high-caloric diet. However, an alternative hypothesis suggested 

the deleterious effects of this diet on hippocampal plasticity, are independent of peripheral 

metabolic alterations (Molteni et al., 2002; Stranahan et al., 2008). 
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Our main goal was to evaluate the hippocampal function, including learning and 

memory performance, on an animal model of insulin resistance/pre-diabetes [chronic 

consumption (9 weeks) of a high-sucrose solution (35 %)]. Two specific tasks were used to 

assess these cognitive processes: 

 Morris Water-Maze 

One of the most widely used tests to measure hippocampal-dependent spatial-based 

learning and memory. Various protocols exist for these tests, which are used depending on a 

plethora of variables (see materials and methods).  

 Y-Maze 

This test is particularly useful to evaluate memory function and the willingness of 

rodents to explore new environments. The Y-maze function is sensitive to damage in areas 

such as the hippocampus.  

Simultaneously, the following parameters were also analyzed in order to achieve the 

biochemical characterization of both peripheral and hippocampus phenotype of the employed 

experimental model: 
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Table 1: Main goals of the present work. 

Goal Specific Markers Purpose 

Peripheral characterization 

of experimental animals  

Glucose Glycemia 

Insulin Insulinemia 

Cholesterol 
Lipidemia  

Triglycerides 

GTT 

Insulin sensitivity ITT 

HOMA-IR 

HbA1c Diabetes diagnosis 

Hippocampal 

Insulin Signaling 

IR-β Insulin receptor subunit 

IRS-1 Insulin receptor substrate-1 

activation IRS-1 pSer636/639 

PI3K Downstream insulin signaling 

molecules 
Hippocampal 

Synaptic Plasticity 

Synaptophysin Nerve terminal marker 

PSD-95 Postsynaptic glutamatergic marker 

NR1 NMDAR subunit 

GluR1 AMPAR subunit (LTP and LDP) 

Hippocampal neurotoxicty 

GFAP 
Astrogliosis  

GS 

TNF-α 
Inflammation/Oxidative stress 

RAGE 

HNE Lipid peroxidation 
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1. Animals and high-sucrose diet 

Experiments were performed in 4 months old male Wistar rats, weighting 332.9 g ± 9.0 g 

obtained from Charles River Laboratories Inc. (Barcelona, Spain). The animals were housed two 

per cage in the Institute of Pharmacology and Experimental Therapeutics (IBILI, Faculty of 

Medicine, University of Coimbra) under temperature and humidity control (22±1°C, 60 % 

humidity) and a 12 h light–12 h dark cycle. After an adaptation period of 1 week, the animals 

initiated the study protocol. All experiments were conducted in accordance with the 

Portuguese Law nº129/92 (6 July) and under the rules of the European Convention on Animal 

Care. All efforts were made to minimize animal suffering and to reduce the number of animals 

used. Throughout the experiments, the health status of all rats was closely monitored for 

weight loss or other signs of health-related issues. 

To assess the effect of a liquid high-sucrose diet, the rats were randomly divided into 

two groups (Figure 12): 1) Control (Cont) group (n=7) and 2) sucrose-treated (HSu) group (n=8). 

Both groups had free access (except in the fasting periods) to a standard chow (16.1 % protein; 

3.1 % lipids; 3.9 % fiber; 5.1 % minerals) (AO4 Panlab; Charles River, Barcelona, Spain) and to 

water (Cont) or 35 % sucrose (S0389; Sigma-Aldrich) solution (HSu). As we were interested in 

hyperglycaemia and insulin resistance-derived brain alterations, we chose to submit the HSu 

rats to 9 weeks of high-sucrose treatment, since Ribeiro and colleagues found that the rats 

have shown higher body weight and higher basal glycemia only after 9 weeks of sucrose 

supplementation. 

 

(GTT, glucose tolerance test; ITT, insulin tolerance test; w, weeks; †, sacrifice) 

Figure 12: Experimental design of the present study.  
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1.1. Body weight 

The animals were weighed weekly since their arrival on the institute and throughout the 

experimental period, on an analytical scale (CB KERN 6 K1, Germany). 

2. Cognitive performance tests 

The effect of a high sucrose diet for 9 weeks on rats learning and memory performance 

was assessed using the Morris Water Maze and the Y-Maze tests, during the last week of 

treatment. 

 Morris Water-Maze  

The water-maze consisted of a large circular pool [120 cm diameter, 50 cm height, filled 

to a depth of 30 cm with water (room temperature: 23°C ±1)] in which a submerged platform 

was hidden on a fixed location (Figure 13). The rat could climb onto the platform to emerge 

from the water and escape from the necessity of swimming. The pool was divided in four 

quadrants: northeast (NE), southeast (SE), southwest (SW) and northwest (NW). It was placed 

in a darkened room, illuminated only by sparse red light and with spatial cues for reference, 

maintained constant throughout the experiment.  

The acquisition of the spatial task consisted of placing the rats next to and facing the 

wall successively in north (N), east (E), south (S), and west (W) positions. The task is carried out 

across days to determine learning: 4 consecutive trials daily for 5 days. Each rat was given a 

maximum of 60 s to find the hidden platform (glassy, round, 10 cm diameter, 1 cm below 

surface, located in the center of the NE quadrant) and was allowed to stay on the platform for 

10 s before picked up and to rest outside the maze for 20 s inter trials. Rats that failed to 

locate the platform were guided to it by the experimenter. The position of the rat in the pool 

was automatically registered by ANY-maze TM video tracking system (Stoelting Co., Wood Dale 

IL, USA). The rat must use and remember visual cues to find the platform and latency times 

were measured for each trial. The capacity of the animal to retrieve and retain information 

learned can be determined using a probe trial, performed on the 5th day, 24 h after the last 

training; therefore, we used this test to measure long-term memory. In the probe trial the 

platform is taken out and the animals are allowed to swim in the pool. Time spent in the region 

that previously contained the platform (referred to as correct quadrant) and in the opposite 
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quadrant, crossings over the platform area and time to reach platform location were measured 

in a single 60 s trial. 

 

Figure 13: The Water-Maze pool used in the present work. 

 Y-Maze 

The Y-maze was used to assess short-term spatial memory and it is based on the innate 

preference of animals to explore areas that have not been previously explored. 

The Y-maze apparatus consisted of three arms (50 cm long) made of black plastic joined 

in the middle to form a “Y” shape. The walls of the arms were 8 cm high, allowing the mouse 

to see distal spatial landmarks on the walls of the room. The inside of the arms were identical, 

providing no intramaze cues. The maze was cleaned with ethanol between trials to mask any 

olfactory cues from previous animals. Y-maze testing consisted of two phases. During training 

trial the rats were placed into the end of one arm (facing the centre) and allowed access to 

that arm (Start) and to other arm (Other) for 5 min. A removable door made from the same 

plastic as the maze was used to block access to the third arm (Novel). The rats were removed 

from the maze and returned to its home cage in the housing room for an intertrial duration of 

2 h and then returned to the Y maze by placing them in the start arm, allowed to explore freely 

all three arms for 5 min (test trial).  

The number of entries into and the time spent in each arm were registered from video 

recordings using ANY-maze TM video tracking system (Stoelting Co., Wood Dale IL, USA). Entry 

into an arm was defined as placement of all 4 paws into the arm. Animals were excluded from 

the analyses if they did not leave the start arm for the duration of the test session, or if they 

spent 75 % of their time in the center area. 
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Figure 14: The Y-Maze pool used in the present work. 

3. Determination of biochemical peripheral parameters 

3.1. Insulin sensitivity 

The insulin tolerance test (ITT) and the glucose tolerance test (GTT) were used to assess 

insulin sensitivity. These tests were performed following the completion of 9 weeks of HSu 

treatment, after a 6h fasting period. 

 Insulin Tolerance Test 

The ITT is one of the earliest methods developed to assess insulin sensitivity in vivo and 

provides an estimate of overall insulin sensitivity, correlating well with the “gold standard” 

hyperinsulinaemic–euglycemic clamp. The test was conducted after food deprivation through 

the administration of an intravenous insulin bolus of 0,75 U/kg body weight, followed by the 

measure of the decline in plasma glucose concentration over 120 min at 0, 15, 30, 45, 60 and 

120 min intervals. Blood samples were collected from the tip of the tail and glucose levels 

were measured using a glucose analyzer (One Touch Ultra Easy, LifeScan, Johnson and 

Johnson, Portugal). 

 Glucose tolerance test 

The GTT can be used to estimate insulin secretion and insulin resistance as it determines 

the clearance of glucose in the blood over a period of time. After food deprivation, a 50 % -

glucose solution (2 g/kg body weight) was injected into the animals intraperitoneally. The 

blood was collected by a small puncture on the tail immediately before and 15, 30, 60 and 120 

min after the injection. At each time, glucose was measured by a glucose analyzer (One Touch 
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Ultra Easy, LifeScan, Johnson and Johnson, Portugal). The area under the serum glucose 

concentration versus time curve (AUC) has a number of important uses in toxicology, 

biopharmaceutics and pharmacokinetics. In this specific case, AUC data is a good summary of 

the body's glucose tolerance, as it represents blood glucose bioavailability.  AUC was 

calculated using the trapezoidal rule. 

3.2. Quantification of blood glucose, insulin, triglyceride and cholesterol levels 

The day before the final time, after a 6 h fasting period, rats were subjected to 

intraperitoneal anesthesia (50 mg/kg sodium pentobarbital, Sigma-Aldrich, Portugal) and a 

blood sample was immediately collected by a venipuncture from the jugular vein into syringes 

with Heparin-Lithium (Sarstedt, Monovette®) for plasma samples to measure fasting insulin 

levels or without anticoagulant for serum samples (BD Vacutainer ®; SST™II Advance), to assess 

fasting glycemia. 

At the final time, the rats (26 weeks old) were subjected again to intraperitoneal 

anesthesia (80 mg/kg sodium pentobarbital) and blood samples were immediately collected by 

venipuncture from the jugular vein into syringes without anticoagulant for serum samples 

(glucose, triglycerides and cholesterol measurement; BD Vacutainer ®; SST™II Advance) or with 

the appropriate anticoagulant (Heparin-Lithium (Sarstedt, Monovette®) for glycated 

hemoglobin (HbA1c). 

The rats were then sacrificed by decapitation and the brains were immediately removed, 

placed in ice-cold Krebs buffer and carefully dissected. Hippocampal regions were immediately 

frozen in liquid nitrogen and stored at -80ºC until Western-blot analyses. 

Serum glucose, triglycerides and cholesterol levels, plasma insulin concentration as well 

as blood HbA1c were determined using standard enzymatic and latex immunoagglutination 

inhibition procedures as indicated in Table 2. The homeostasis model assessment-insulin 

resistance (HOMA-IR) index was obtained to evaluate insulin resistance.  
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Table 2:Peripheral biochemical parameters. 

Parameters Samples Methods 

Glucose 

Serum 
Enzymatic [Hitachi 717 analyzer 

(Roche Diagnostics)] 
Triglycerides 

Cholesterol 

Insulin Plasma ELISA 

Glycated hemoglobin (HbA1c) Blood 
Latex immunoagglutination inhibition 

[DCA Vantage analyzer (Siemens)] 

(Siemens  

 Glucose 

Serum glucose levels were measured using a glucose oxidase commercial kit (Sigma, St. 

Louis, Mo, USA), based on a colorimetric enzymatic principle. In this assay, glucose oxidase 

reacts with glucose to form gluconolactone and H2O2. H2O2 in the presence of peroxidase, 

originates 4-aminophenazone, an oxygen acceptor, which takes up the oxygen and together 

with phenol forms a red colored chromogen [4-(benzoquinone-monoamino)-phenazone]. The 

color intensity is measured by performing a photometric analysis, and it is directly proportional 

to glucose concentration. 

 Cholesterol and Triglycerides 

Serum total cholesterol and triglycerides were analyzed on a Hitachi 717 analyzer (Roche 

Diagnostics) using Cholesterol RTU® reagent (bioMérieux®, Lyon, France) and the triglycerides 

TG PAP 1000 kit (bioMérieux®, Lyon, France), respectively.  

These are colorimetric methods in which the staining intensity of the final enzymatic 

chain compounds is directly proportional to the amount of triglycerides and cholesterol in the 

sample. 
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 Insulin  

Plasma insulin levels were quantified by using a rat insulin ELISA (Enzyme-linked 

Immunosorbent Assay) kit from Mercodia (solid phase two-site enzyme immunoassay; 

Uppsala, Sweden). 

This ELISA is based on the direct sandwich technique in which two monoclonal 

antibodies are directed against separate antigenic determinants on the insulin molecule. 

During incubation insulin in the sample reacts with peroxidase-conjugated anti-insulin 

antibodies and anti-insulin antibodies bound to microtiter well. A simple washing step removes 

unbound enzyme labeled antibody. The bound conjugate is detected by reaction with 3,3’,5,5’-

tetramethylbenzidine. The reaction is stopped by adding H2SO4 0.5Mto give a colorimetric 

endpoint that is read spectrophotometrically. 

 HbA1c 

HbA1c is formed in a non-enzymatic glycation pathway by hemoglobin's exposure to 

plasma glucose, and it is measured primarily to identify the average plasma glucose 

concentration over prolonged periods of time. This serves as a marker for average blood 

glucose levels over the previous months prior to the measurement. Thus, HbA1c levels were 

used as an index of glucose control, through the DCA Vantage latex immunoagglutination 

inhibition method (Siemens Healthcare Diagnostics, Barcelona, Spain). 

For the measurement of total hemoglobin, potassium ferricyanide is used to oxidize 

hemoglobin present in the sample to methemoglobin. The methemoglobin then complexes 

with thiocyanate to form thiocyanmethemoglobin, the colored species measured. The extent 

of color development at 531 nm is proportional to the concentration of total hemoglobin in 

the sample. 

For the measurement of specific HbA1c, an inhibition of latex agglutination assay is 

used. An agglutinator (synthetic polymer containing multiple copies of the immunoreactive 

portion of HbA1c) causes agglutination of latex coated with HbA1c specific mouse monoclonal 

antibody. This agglutination reaction causes increased scattering of light, which is measured as 

an increase in absorbance at 531 nm. HbA1c in whole blood specimens competes for the 

limited number of antibody-latex binding sites causing an inhibition of agglutination and a 

decreased scattering of light. The decreased scattering is measured as a decrease in 

absorbance at 531 nm. The HbA1c concentration is then quantified using a calibration curve of 

http://en.wikipedia.org/wiki/Glycation
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absorbance versus HbA1c concentration. The percent HbA1c in the sample is then calculated 

as follows: 

        
     

                
     

Both the concentration of HbA1c specifically and the concentration of total hemoglobin 

are measured, and the ratio reported as percent HbA1c. All measurements and calculations 

are performed automatically by the DCA Analyzer, and the screen displays percent HbA1c at 

the end of the assay.   

 HOMA-IR 

The homeostasis model assessment-insulin resistance (HOMA-IR) index was obtained to 

evaluate the insulin resistance of rats. The Matthews et al. (1985) formula was used, as follow: 

        
                               

    
 

Plasma insulin and serum glucose values used were obtained after 6 h of food 

deprivation, as described above. 

4. Biochemical characterization of hippocampal phenotype 

4.1. Western-Blot Analysis 

Total extracts were obtained from left hippocampus as previously described by Simões 

F. et al. (2007)) for measuring protein levels proposed to assess hippocampal insulin signaling, 

synaptic plasticity, astrogliosis and inflammation and oxidative stress, hippocampi were 

sonicated in 400 μL of RIPA lysis buffer (150 mM NaCl; 50 mM Tris-HCl pH=8.0; 5 mM EGTA; 1 

% Triton X-100; 0.5% DOC; 0.1 % SDS) supplemented with a protease inhibitor cocktail (1 mM 

phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, 1 μg/mL chymostatin, 1 μg/mL leupeptin, 

1 μg/mL antipain, 5 μg/mL pepstatin A, 50 mM sodium fluoride and 1 mM sodium 

orthovanadate (Sigma-Aldrich) and centrifuged (15000 g, 15 min., 4ºC), leading to a soluble 

supernatant fraction (corresponding to total extract) and a pellet. The total protein 

concentration was measured using bicinchonic acid protein assay kit (Thermoscientific®). 
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Samples were denatured at 95ºC for 5 min in sample buffer 6x (0.5 M Tris-HCl 0.5 M; pH 

6.8, 10 % SDS (w/v), 30 % glycerol (v/v), 0.6 M DTT, 0.01 % bromophenol blue (w/v)) and 

proteins were separated by SDS-polyacrylamide gel electrophoresis (190 V), according to 

Laemmli procedure (Laemmli U., 1970). 10 % acrylamide gels were used for all proteins 

analyzed except for TNF-α (≈30 kDa) and IRS-1 (160 kDa) and phosphoylated IRS-1 

(Ser636/639) (≈180 kDa) which were separated using a higher (12 %) or lower acrylamide 

percentage (7.5  %), respectively. 

Separated proteins were electroblotted (110 V, 90 min) onto polyvinylidene difluoride 

(PVDF) membranes (Immobilon PVDF transfer membranes 0.45 μm, Millipore) and blocked by 

incubation with 1 % BSA in PBS-T (phosphate buffer saline with 0.1 % Tween-20) for 1 h. Blots 

were then incubated with primary antibodies (Table 3) overnight at 4ºC. The membranes were 

washed extensively in 0.1 % PBS-T and then incubated for one hour at room temperature with 

adequate alkaline phosphatase conjugated secondary antibodies (Table 3). After secondary 

antibody incubation, membranes were washed for one hour in 0.1 % PBS-T. To confirm equal 

protein loading and sample transfer, blots were reprobed with either rabbit anti-β-actin or 

mouse anti-GAPDH. 
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Table 3: Primary and secondary antibodies used for Western-blot analysis. 

Antibodies Molecular Weight (kDa) Loading (μg) Dilution Reference Company 

Rabbit anti-IR-β (C-19) 95 50 1:1000 sc-711 
Santa Cruz 

Biotechnology 

Rabbit anti-IRS-1 165 50 1:1000 06-248 Millipore 

Rabbit anti-phospho-IRS-1 

(Ser636/639) 
≈180 50 1:1000 2388 

Cell Signaling 

Technology 

Rabbit anti-p85 Pi3K 85 75 1:5000 4292 
Cell Signaling 

Technology 

Rabbit anti-HNE - 60 1:1000 393207 Calbiochem 

Rabbit anti-TNF-α ≈28 50 1:600 Ab6671 Abcam 

Rabbit anti-RAGE ≈50 60 1:1000 Ab-3611 Abcam 

Mouse anti-GFAP 50 20 1:5000 Ab-1540 Millipore 

Mouse anti-GS 45 5 1:500 MAB302 Millipore 

Rabbit anti-GluR1 110 20 1:1000 AB1504 Millipore 

Mouse anti-NR1 139 40 1:1000 05-432 Millipore 

Rabbit anti-PSD-95 95 20 1:1000 2507 
Cell Signaling 

Technoloy 

Rabbit anti-Synaptophysin 40 5 1:1000 AB9272 Millipore 

Rabbit anti-β-actin 42 - 1:5000 A 5441 
Sigma life 

sciences 

Mouse anti-GAPDH 38 - 1:5000 Ab9484 Abcam 

Goat anti-mouse - - 1:5000 A 3562 
Sigma life 

sciences 

Goat anti-rabbit - - 1:5000 1317 GE Healthcare 

 

After reaction with enhanced chemifluorescence (ECF) (GE Healthcare Life sciences), 

immunoreactive bands were revealed by scanning blots using a Fluorescent image analyzer 

Typhoon FLA 900 (GE Healthcare Bio-sciences) imaging system. The relative density of each 

band was normalized against that of β-actin or GAPDH and quantified in arbitrary units by 
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software ImageQuant 5.0 (Molecular Dynamics). Data are expressed as percentages of the 

Cont and are presented as means ± SEM. 

5. Data processing and statistical analysis 

All values were expressed as the means ± SEM and statistical significance was evaluated 

by one-way analysis of variance (ANOVA) followed by post test Newman-Keuls multiple 

comparison test (GTT, ITT and behavioral tests) or by Student’s two-tailed t test (GraphPad 

Prism 5.00.288). * p < 0.05, ** p < 0.01, *** p < 0.001 compared with Cont group (ANOVA and 

Student’s t-test). 
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1. Body weight monitoring and biochemical characterization of 

peripheral parameters 

 Body weight evaluation 

Both HSu and Cont groups comprised rats with similar body weight as shown in 

Figure15. Moreover HSu rats body weight after 9 weeks following a chronic high sucrose 

consumption (35 %) was not significantly different from Cont (Table 4). It should be noted that 

the first week corresponds to the adaptation period before the beginning of the experiment 

and the last week coincides with the behavioral tests which required increased physical effort, 

explaining the slight decrease in body weight for both groups (Figure 15). 
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Figure 15: The effect of chronic exposure to sucrose on the weight gain of rats during 9 weeks, after 1 week 

adaptation period [HSu (n=8), Cont (n=7)].  Data are presented as mean weight ± SEM. 

 Glucose tolerance and insulin response 

Observing all the panels that reflect glucose tolerance and insulin response and that are 

shown in Figure 2, , one can conclude that the Cont group had higher total insulin sensitivity 

than the HSu group, which demonstrated impaired glucose tolerance. 

In the GTT (Figure 16A), the concentration of blood glucose of both HSu and Cont 

increased to a maximum at 15 min after glucose injection, and then declined to a steady-state 

value. However, glucose levels of HSu rats 60 and 120 min after the glucose injection were 

significantly higher (215.5 ± 48.1 mg/dL; p < 0.05 and 168.8 ± 26.1; p < 0.001) compared to 

Cont (159.0 ± 14.27 and 121.4 ± 9.03). Furthermore, the GTT AUC confirms such impaired 

blood glucose clearance in rats exposed to chronic sucrose consumption (Figure 16B and Table 

4), as it represents blood glucose bioavailability. This suggests that insulin secretion was lower 

in HSu compared to Cont. 



Sucrose-induced memory deficits 

Results 

58 

In the ITT, the blood glucose levels decreased following insulin injection in both groups 

(Figure 16C). The blood glucose levels after insulin injection did not differ among groups until 

60min after the injection; however, at 120 min HSu rats had significantly higher blood glucose 

levels (63.9 ±14,8 mg/dL; p < 0.001) than Cont (37.2 ± 7.0 mg/dL). This represents an 

impairment in HSu insulin sensitivity compared to Cont. 

Insulin resistance was also assessed by HOMA-IR index (Figure 2D) calculation through 

serum glucose and plasma insulin levels after food deprivation. Indeed, after 9 weeks of 

sucrose consumption, HSu HOMA-IR levels were significantly higher than the Cont, as shown in 

Table 4. 
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Figure 16:  Glucose tolerance and insulin response in high-sucrose (HSu) diet rats and in the control (Cont) group. 

(A) Glucose tolerance test (GTT) [HSu (n=6), Cont (n=6)]; (B) Glucose area under the curve (AUC) for GTT [HSu (n=6), 

Cont (n=6)]; (C) Insulin tolerance test (ITT) [HSu (n=7), Cont (n=6)]; (D) Homeostatic model assessment for insulin 

resistance (HOMA-IR) index [HSu (n=3), Cont (n=5)]. Data are presented as mean ± SEM. *, p < 0.05; **, p < 0.001 vs. 

Cont. 

 Peripheral Biochemical Parameters 

All peripheral biochemical parameters are summarized in Table 4 and are depicted in 

figure 17. Briefly, high sucrose consumption during 9 weeks caused elevated postprandial 

glycemia but no alterations on fasting glycemia compared to Cont group (Figure 17A). HSu rats 
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also showed elevated plasma triglycerides but no significant difference on plasma total 

cholesterol between groups (Figure 17D). As it is shown in Figure 17B, insulin levels were 

influenced by sucrose diet as well, demonstrated by a significant increase in HSu serum insulin. 

Finally, glycated hemoglobin from HSu rats was slightly higher compared to controls (Figure 

17C). 
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Figure 17: Several peripheral biochemical parameters from high-sucrose (HSu) diet rats and from the control 

(Cont) group. (A) Glucose levels (mg/dL) of both fasting and postprandial conditions [HSu (n=7), Cont (n=7)]; (B) 

Serum insulin levels (μg/L) [HSu (n=3), Cont (n=5)]; (C) Glycated hemoglobin levels (%) [HSu (n=6), Cont (n=5)]; (D) 

Plasma triglycerides and total cholesterol levels (mg/dL) [HSu (n=3), Cont (n=5)]. Data are presented as mean ± SEM. 

*, p < 0.05; ***, p < 0.0001 vs. Cont.  
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Table 4: Biochemical peripheral characterization of experimental animals. 

Parameters Cont n Hsu n 

Body weight (g) 421,0 ± 24,5 7 421,8 ± 20,3 8 

Postprandial glycaemia (mg/dL) 126,8 ± 13,6 7 162,9 ± 26,5* 7 

Fasting glycaemia (mg/dL) 96,7 ± 4,5 7 102,9 ± 7,0 7 

Fasting Insulin levels (μg/L) 3,7 ± 1,8 5 10,8 ± 1,0*** 3 

Triglyceride levels (mg/dL) 68,1 ± 26,3 7 143,1 ± 65,7* 7 

Cholesterol levels (mg/dL) 63,7 ± 2,5 7 58,2 ± 9,7 7 

HbA1c (%) 3,7 ± 0,1 5 4,0 ± 0,2* 6 

HOMA-IR 2,7 x10-5± 1,5 x10-5 5 8,0 x10-5 ± 9,0 x10-6** 3 

Glucose AUC (mg/dL/120min) 2,1 x104 ± 1,0 x103 6 2,6 x104 ± 3,8 x103* 6 

Data represent mean ± SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with Cont animals. 

2. Cognitive performance assessment 

 Morris Water Maze 

The Morris water maze test was performed to assess rats spatial learning and long-term 

memory. As shown in Fig. 18A, HSu rats showed no difference in acquisition compared to Cont 

animals. Indeed, like Cont rats, they were able to locate the hidden platform with progressively 

reduced search times over the 4 days of training. A one-way ANOVA analysis revealed 

significant time effects (F3,39 = 26,151; p < 0.001) but not significant group effects or 

interaction. These results suggest an apparently intact acquisition at 9 weeks after the 

beginning of the experiment. 

 To assess spatial memory retention, a spatial probe test was performed on the 5th day, 

by removing the platform from the pool. HSu rats showed significant impairment of spatial 

memory retention, as they spent less time in the previous correct quadrant (platform) (30.2 ± 

2.7 sec.; p < 0.01) compared to Cont rats (47.7 ± 3.7sec.) (Figure 18B). Accordingly, the time 

spent in the opposite quadrant was higher for HSu group (21.9 ± 2.8 sec.; p < 0.05) compared 

to the Cont (12.6 ± 2.2 sec.) (Figure 18C). The latency to reach the previous platform location 

was greater for HSu rats (15.8 ± 2.3 sec.; p < 0,01) compared to Cont (5.3 ± 0.6 sec.) (Figure 

18D) and the HSu rats made significant fewer target approaches (platform zone) (1.8 ± 0.3; p < 

0.001) than the Cont ones (4.4 ± 0.5) (Figure 4E). 
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Figure 18: Learning and long-term memory performance of high-sucrose (HSu) diet rats and of control (Cont) 

group. Morris water-maze test was used to assess learning and memory profiles, through the analysis of multiple 

parameters. (A) Escape latency (s) to the platform over four days of training; (B) Time spent (%) in the correct 

quadrant (probe test); (C) Time spent (%) in the opposite quadrant (probe test); (D) Latency (s) to platform zone 

(probe trial); (E) Number of crossings in the platform zone (probe test). Data are presented as mean ± SEM [HSu 

(n=8), Cont (n=7)]. *, p < 0.05; **, p < 0.001; ***, p < 0.0001 vs. Cont.  

 Y-Maze 

The Y maze was used to assess spatial short-term memory. To this end, analyses were 

conducted to determine if the frequency of entries into and duration of time in each arm 

(Start, Other and Novel) differed among the Cont and HSu groups. Exploration in the training 

trial was similar for both groups – overall there were no differences in the number of entries 

and the time spent in both arms of the maze between HSu and Cont groups (Figure 19A, B, C). 

However, in the Y maze test the sucrose-treated animals showed memory deficits. Total 
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number of entries did not differ between groups (Figure 19D), but the number of entries in the 

novel arm was significantly lower for HSu animals (33.8 ± 4.5; p < 0.05) compared to Cont ones 

(46.0 ± 1.6) (Figure 19E). Consistently, the HSu rats made significantly fewer novel arm entries 

(28.6 ± 4.3, p < 0.01) compared to the Cont rats (46.9 ± 1.2) (Figure 19F). 
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Figure 19: Short-term memory performance of high-sucrose (HSu) diet rats and of control (Cont) group. Y-maze 

was used to assess learning profiles, through the analysis of multiple parameters. A training trial was performed to 

test exploratory capacity: (A) Total number of entries; (B) Entries (%) in both Start and Other arms; (C) Time spent 

(%) in both Start and Other arms. During test trial the same parameters were analyzed: (D) Total number of entries; 

(E) Entries (%) in Start, Other and Novel arms; (F) Time spent (%) in Start, Other and Novel arms. Data are presented 

as mean ± SEM [HSu (n=7), Cont (n=7)]. *, p < 0.05; **, p < 0.001 vs. Cont. 

3. Hippocampal biochemical analysis 

3.1. Insulin signaling 

Following peripheral insulin resistance in our animal model it was mandatory to assess 

insulin signaling in hippocampus from Hsu rats. Moreover insulin has been implicated in 

memory processes. 
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 IR-β levels 

The chronic consumption of sucrose during 9 weeks induced a ≈20 % decrease in 

hippocampal IR-β levels compared to Cont (Figure 20). 

 

Figure 20: Hippocampal IR-β levels from high-sucrose (HSu) diet rats and control (Cont) group. IR-β levels were 

assessed by Western-blot analysis and data representing the band of 95 kDa was normalized to β-actin in the same 

membrane and calculated as percentage of the control and presented as means ± SEM. A decrease in HSu IR-β 

levels was observed for HSu treated group. [Cont (n=4), HSu (n=4)]. *, p < 0.05 vs. Cont. 

 IRS-1 and serine phosphorylation of IRS-1 Ser(636/639)levels  

In spite of changes in IR-β levels, both hippocampal IRS-1 andIRS-1 pSer636/639 

immunoreactivity (Figures 21A and 21B, respectively) remained unaltered following a sucrose 

chronic consumption during 9 weeks, compared to Cont. 

 

Figure 21: IRS-1 and serine phosphorylation of IRS-1 Ser (636/639) hippocampal levels from high-sucrose (HSu) 

diet rats and control (Cont) group. IRS-1 and IRS-1 pSer636/639 levels were assessed by Western-blot analysis and 

are presented as means ± SEM. (A) Data representing the band of 165 kDa was normalized to GAPDH in the same 

membrane and are expressed as percentage of the control, and (B) data representing the band of ≈180 kDa was 

normalized to IRS-1 in the same membrane and are expressed as percentage of the control. No statistical 

differences were detected in both bands between Cont and HSu treated group. [Cont (n=4), HSu (n=5)]. 
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 PI3K levels 

PI3K (the main downstream insulin signaling molecule involved in learning and memory) 

hippocampal levels remained unaltered following a sucrose chronic consumption during 9 

weeks, compared to Cont (Figure 22). 

 

Figure 22: Hippocampal PI3K from high-sucrose (HSu) diet rats and control (Cont) group. PI3K was assessed by 

Western-blot analysis and data representing the band of 85 kDa was normalized to β-actin in the same membrane. 

Data was calculated as percentage of the control and presented as means ± SEM. No statistical differences were 

detected between Cont and HSu treated group PI3K levels. [Cont (n=4), HSu (n=4)]. 

3.2. Synaptic Plasticity 

 Glutamatergic Synapses 

The memory deficits from Hsu rats seen in the present study warranted the study of 

GluR1 and NR1 levels on account of their critical role in synaptic plasticity. The chronic 

consumption of sucrose during 9 weeks induced a ≈31 % and ≈52 % increase, respectively, in 

GluR1 and NR1 hippocampal levels compared to Cont (Figure 23). In respect to hippocampal 

PSD-95 (a glutamatergic post-synaptic marker) levels, no statistically significant differences 

were observed. 
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Figure 23: Hippocampal glutamatergic synapses markers from high-sucrose (HSu) diet rats and control (Cont) 

group. (A) PSD-95 (95kDa), (B) GluR1 (110kDa) and (C) NR1 (130kDa) levels were assessed by Western-blot analysis 

and both protein bands were normalized to GAPDH in the same membrane. Data are expressed was calculated as 

percentage of the control and presented as means ± SEM. No significant changes were observed in PDS-95 

hippocampal content between groups but GluR1 expression was higher for HSu group compared to Cont [Cont 

(n=4), HSu (n=4)]. 

 Nerve terminal marker 

Synaptophysin, which is an abundant synaptic vesicle protein, immunoreactivity 

remained unaltered in hippocampus from HSu animals compared to Cont (Figure 24). 

 

Figure 24: Hippocampal synaptophysin levels from high-sucrose (HSu) diet rats and control (Cont) group. 

Synaptophysin levels were assessed by Western-blot analysis. Synaptophysin immunoreactivity was normalised to 

GAPDH in the same membrane and calculated as percentage of control. Data are presented as means ± SEM. No 

statistical differences were detected in both bands between Cont and HSu treated group. [Cont (n=4), HSu (n=5)]. 
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3.3. Neurotoxicity 

 Astrogliosis 

Herein we set out to evaluate astrogliosis by two reasons: 1) astrocytes are key players 

in regulating glutamatergic transmission and 2) astrogliosis is a hallmark of neurodegeneration 

processes. There were no significant alterations in hippocampal GFAP (Figure 25A) and GS 

(Figure 25B) immunoreactivity after 9 weeks of chronic sucrose exposure compared to Cont. 

 

Figure 25: The effect of chronic sucrose consumption during 9 weeks on hippocampal glutamatergic homeostasis. 

(A) GFAP (50kDa) and (B) GS (45kDa) expression was assessed by Western-blot analysis and normalized to GAPDH 

immunoreactivity in same membrane. Data expressed was calculated as percentage of the control and presented as 

means ± SEM. No statistical differences were detected between Cont and HSu treated group. [Cont (n=4), HSu 

(n=4)]. 

 Oxidative stress/ Inflammation  

Both oxidative stress and inflammation are two key players in diabetic encephalopathy. 

Therefore it was mandatory to assess hydroxynonenal (HNE, a precursor for advanced 

lipooxidation endproduct-ALE), RAGE and TNF-  hippocampal levels in the present study. The 

activation of RAGE (eg. by ALE) leads to the intracellular generation of ROS which, in turn, 

activate NF-κB. As a consequence of NF-κB activation, the expression of a variety of cytokines 

is increased, including TNF-α (Wright et al., 2006). 

Lipid peroxidation 

HNE adducts were detected in a range of different molecular weights. No significant 

differences were observed for each adduct (Figure 26A, B) between Cont and HSu treated rats. 



Sucrose-induced memory deficits 

Results 

67 

 

Figure 26: Hippocampal HNE levels from high-sucrose (HSu) diet rats and from control (Cont) group. HNE levels 

were assessed by Western-blot analysis and data representing bands within (A) 75 and (B) 60kDa range are 

expressed as percentage of the control and presented as means ± SEM No statistical differences were detected in 

both bands between Cont and HSu treated group. [Cont (n=4), HSu (n=5)]. 

RAGE and TNF-α expression 

RAGE (Figure 27A) and TNF-α (Figure 27B) hippocampal levels remained unaltered in 

HSu animals compared to Cont. 

 

Figure 27: Hippocampal RAGE and TNF-α levels from high-sucrose (HSu) diet rats and from control (Cont) group. 

RAGE and TNF-α levels were assessed by Western-blot analysis and data representing the band above 50 kDa are 

expressed as percentage of the control and presented as means ± SEM No statistical differences were detected in 

both bands between Cont and HSu treated group. [Cont (n=4), HSu (n=4)]. 
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1. High sucrose diet induced insulin-resistance, 

hyperinsulinemia and glucose intolerance: a prediabetic 

state? 

Several experimental studies demonstrated that diet is an important environmental 

determinant for life-style-related diseases such as T2DM, (Sumiyoshi et al., 2011). In particular, 

simple sugars are believed to be major components of the Western diet that promote obesity 

and insulin resistance (Gross et al., 2004). Furthermore, numerous rodent studies showed that 

a high-sucrose diet induces insulin resistance and hypertriglyceridemia (Kanazawa et al., 2003; 

Ribeiro et al., 2005; Cao et al., 2007;Gadja and Ricci, 2007; Raben et al., 2010; Conde et al., 

2011; Sumiyoshi et al., 2011; Carvalho et al., 2012). 

Along these lines we chose to submit Wistar rats to a high-sucrose diet to model the 

impact of insulin-resistance on hippocampal function. For that matter we supplemented a 

standard non purified diet with a sucrose solution replacing water in the diet.  The duration of 

exposure to high-sucrose diet was 9 weeks, since Ribeiro and colleagues (2005) found higher 

basal glycemia not sooner than 9 weeks of sucrose supplementation. Additionally Conde et al. 

(2011) also affirmed that a shorter duration of sucrose exposure (e.g. 21 days) was not 

sufficient to induce diminished insulin sensitivity, using a 35 % sucrose solution.  

In the present work we show that the addition of sucrose to the drinking water 

induced insulin resistance, hyperinsulinemia and impaired glucose tolerance, thus confirming 

that chronic consumption of sugar-sweetened beverages could lead to insulin resistance 

syndrome independent of dietary fat intake. These results are relevant since they give further 

support to the compelling evidence indicating that excess consumption of sweet foods, 

particularly sugar-sweetened beverages, plays an important role in the epidemic of metabolic 

syndrome and T2DM around the world (Malik et al., 2010). Regarding glucose 

pharmacokinetics, our data demonstrate that the blood glucose clearance in the HSu was 

impaired already 60 min in the GTT (Figure 16A). Moreover Cont rats had significantly lower 

blood glucose levels than Hsu, 120 min following insulin injection in ITT (Figure 16C). These 

data suggest that HSu have peripheral insulin resistance. This was further evidenced by HOMA-

IR evaluation and by a compensative hyperinsulinemia which was observed in HSU group 

compared to Cont, to maintain normoglycemia. These glucose intolerance and 

hyperinsulinemia could signal potential insulin secretory defects that occur before clinical 

diagnosis of T2DM (Cefalu, 2006). Furthermore, a considerable proportion of whole-body 



Sucrose-induced memory deficits 

Discussion 

72 

insulin-stimulated glucose uptake is dependent upon the hepatic insulin-sensitizing substance 

(HISS) in a pathway mediated by the hepatic parasympathetic nerves (HPNs) and, according to 

Ribeiro et al. (2005), a high-sucrose diet leads to insulin resistance by rapid impairment of such 

pathway.  

Finally one cannot exclude that a putative defective insulin clearance, which is liver-

mediated, could be contributing to the observed hyperinsulinemia (Jimenez-Chillaron et al., 

2005).  

On the other hand, there were no significant differences in total body weight, basal 

glycemia and total cholesterol levels between the Cont and HSu groups. Thus, these results 

suggest that feeding a high sucrose diet does not induce obesity in lean rats, which is in 

agreement with several studies (Kanazawa et al., 2003; Ribeiro et al., 2005; Cao et al., 2007; 

Sumiyoshi et al., 2011). Unless fed for a prolonged period of time, high sucrose diets do not 

appear to lead to excessive weight gain (Chicco et al., 2003). Furthermore, some authors affirm 

that diet-induced insulin resistance is characterized by fasting normoglycemia (Thresher et al., 

2000), correlated with our results among others (Ribeiro et al., 2005; Sumiyoshi et al., 2011).  

Significant elevations of HSu postprandial glucose and triglycerides (TG) were also 

observed herein, which is consistent with many other reports (Kanazawa et al., 2003; Cao et 

al., 2007; Sumiyoshi et al., 2011; Carvalho et al., 2012). The high-sucrose diet could elevate 

plasma TG by increasing the triglyceride secretion rate and/or decreasing the fractional 

catabolic rate (Kanazawa et al., 2003). 

Importantly, sucrose is a disaccharide that is cleaved to a 50:50 molar mixture of 

glucose and fructose in the intestine. After absorption, glucose and fructose enter the portal 

circulation and are transported to the liver or pass into the general circulation. As fructose is 

more lipogenic than glucose, because it bypasses a major rate-controlling step in glycolysis, it 

is converted to fatty acids in the liver at a greater rate (see section 11.1). This might contribute 

to the increased TG levels seen in Hsu rats. Some authors suggested that increased TG levels 

would foster its deposition in adipose tissue, liver and muscle, eventually resulting in impaired 

insulin signaling and dyslipidaemia, increasingly associated with proatherogenic conditions 

(have to indicate at least one reference here). Other factors related with the fructose moiety 

of sucrose can contribute to reduced insulin sensitivity such as decreased mitochondrial fatty 

acid oxidation and the accumulation of hepatic diacylglycerol (DAG), which in turn inhibited 

insulin signaling via activation of PKC-ζ (Dekker et al., 2010). Fructose-induce hyperuricemia is 

another mechanism implicated to play a role in the metabolic syndrome by inhibiting nitric 

oxide bioavailability which is required by insulin to stimulate glucose uptake (Nakagawa et al., 

2006). 
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Consequently, large amount of evidence suggests that fructose is the primary nutrient 

mediator of sucrose-induced hypertriglyceridemia, insulin resistance and glucose intolerance 

(Thresher et al., 2000; Gadja et al., 2007). Furthermore, fructose feeding has now been shown 

to alter gene expression patterns, mainly those involved in de novo lipogenesis (eg. 

carbohydrate regulatory element-binding protein (ChREBP) activity and nuclear SREBP-1), 

satiety factors in the brain, increase inflammation, reactive oxygen species and portal 

endotoxin concentrations via Toll-like receptors, and induce leptin resistance (Dekker et al., 

2010). Nevertheless, sucrose-rich diets instead of fructose alone stems from the fact that they 

closely mimic the human condition, because in most cases, the dietary exposure to fructose 

comes through the coingestion of glucose via sucrose (glucose and fructose) or industrial 

blends of fructose and glucose (high-fructose corn syrup, HFCS) in ratios very similar to sucrose 

(Dekker et al., 2010). 

Overall, only fructose (and sucrose containing fructose) has a lipogenic effect in liver 

and could potentially modify fatty acids’ balance in very low density lipoproteins (VLDL) and 

induce harmful secondary effects like hypertriglyceridemia or insulin resistance (Laville and 

Nazare, 2008) and has little effect on serum glucose concentrations; whereas dietary glucose 

increases serum glucose and insulin concentrations in the postprandial state (Shaeffer et al., 

2009). Thus, the higher postprandial glucose response on the HSu group can be explained by 

the large amount of available glucose from both sucrose and starch on this diet.  

Finally, these data suggest that the consumption of a 35 % sucrose solution for an 

extended period of time (9 weeks) produces a less beneficial glycemic and insulinemic 

response and a risk of developing insulin resistance compared with standard-fed animals. This 

is suggestive of a pre-diabetic state, characterized by fasting normoglycemia accompanied by 

hyperinsulinemia and impaired insulin-stimulated glucose uptake. In fact, insulin resistance 

precedes and contributes to the development of T2DM and, even in the absence of 

hyperglycemia, it is part of the clustering of cardiovascular risk factors termed metabolic 

syndrome (see Figure 3). 

Furthermore, although the main aim was to assess the effect of adding sucrose to the 

diet, one cannot discard that the total energy intake which was increased by the sucrose 

consumption, can contribute to the differences seen between the sucrose group and control.  

In fact, it was also affirmed that other dietary factors, such as caloric excess, may be more 

important determinants of insulin action than carbohydrate type (Black et al., 2006). Finally, 

animals were given ad libitum access to food and drink, so they may have consumed different 

amounts of energy, which may also have influenced the response to the diet, being a 

confounding factor.   
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2. High Sucrose intake induced memory deficits that were 

accompanied by down-regulation of IR-β and up-regulation 

of GluR1 and NR1 glutamate receptors 

Several studies have linked insulin resistance and T2DM to deficits in hippocampal 

declarative memory (Strachan et al., 1997; Convit, 2005; Winocur et al., 2005; Gold et al., 

2007). Coherently, our results convincingly showed that the metabolic condition resulting from 

adding sucrose to the diet had a significant influence on the rats’ memory performance. HSu 

group showed normal acquisition of the standard, fixed-location of the platform in the hidden-

platform water-maze task as well as similar exploratory activity in the Y-maze test compared to 

Cont; however, HSu rats were dramatically impaired on hippocampus-dependent spatial 

memory tasks. In other words, both groups had learned to an equal extent about the location 

of the platform, but Cont rats showed a strong preference for the quadrant of the pool in 

which the platform had been located (long-term memory assessment); and, in the Y-maze test 

(short-term memory assessment), a significantly greater proportion of Cont rats recognized 

the novel arm as the unvisited arm of the maze compared to HSu. These results strongly 

suggest that the prediabetic state coincide with cognitive deficits. According to several 

authors, these memory deficits are probably due to a disruption amongst insulin activity and 

glucose metabolism (Ristow, 2004; van der Heide et al., 2006). Moreover, Gold et al. (2007) 

affirm that hippocampal damage associated memory impairments are most probably the early 

brain complications of T2DM. 

There are few studies addressing specifically the detrimental effects of sucrose in 

rodents’ memory performance (Cao et al., 2007; Chepulis et al., 2009), nevertheless consistent 

findings have also been reported for other types of diet-induced metabolic alterations. For 

instance, Stranahan et al. (2008) have shown that mice on hypercaloric resembling Western 

diets over 8 months had impaired memory, reduced dendritic spine density, and impaired LTP. 

These adverse effects on brain function were associated with reduced levels of BDNF in the 

hippocampus and suggest that “Western” diets impair synaptic function and cognition. 

Furthermore, Wu and colleagues (2003) found that the previous exposure of the rats to a high-

fat/refined sugar (HFS) diet, during only 4 weeks, exacerbated the spatial learning and memory 

impairment induced by traumatic brain injury. Additionally Molteni et al. (2002) also found 

such HFS-induced memory deficits over 8 weeks of consumption (similar exposure length with 

our study). Moreover, others have also reporter similar findings for high-fat diets over 12 and 
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20 weeks (Winocur and Greenwood, 1999; McNay et al., 2010) and for excessive fructose 

consumption (18 weeks) (Ross et al., 2009). 

As previously discussed for peripheral insulin-resistance, we have to distinguish which 

moiety of the sucrose disaccharide may be the most detrimental for sucrose-induced memory 

impairments observed in our experimental animals. For example, as fructose crosses the BBB 

(Cha and Lane, 2009), fructose-specific neuronal effects were evaluated., In facts, fructose-fed 

rodents showed hippocampal insulin resistance associated with impaired memory retention 

and decreased LTD formation in hippocampal neurons (Mielke et al., 2005; Ross et al., 2009). 

On the contrary, focal application of glucose seems to enhance cognition (Dash et al., 2007) by 

directly or indirectly increasing the release of acetylcholine (Ragozzino et al., 1996). 

Furthermore, fructose-induced hypertriglyceridemia as seen in the HSu group may also 

contribute to the memory dysfunction observed herein. In support of this idea, direct injection 

of triglycerides into the brain has detrimental consequences for learning and memory (Farr et 

al., 2008) and affect leptin, ghrelin, and insulin transport through the BBB (Banks et al., 2004; 

Banks et al., 2008; Urayama et al., 2008). It is noteworthy that along with insulin, leptin and 

ghrelin enhance hippocampal synaptic plasticity and improves performance of rodents in 

learning and memory tasks (Harvey, 2007; McNay, 2007). Besides obesity, insulin resistance is 

associated with fluctuations in such energy regulating signaling peptides (Stylianou et al., 2007; 

Selenscig et al., 2010). As DM is associated with leptin resistance (Myers et al., 2008), it is 

possible that impaired leptin signaling contributes to the diet-induced deficits in hippocampal 

plasticity in the present study, as well as impaired ghrelin transported through the BBB. The 

involvement of leptin and ghrelin on memory deficits in our model warrants further analysis. 

Regarding insulin, chronic peripheral hyperinsulinemia down-regulates BBB insulin 

receptors and reduces insulin transport into the brain (Wallum et al., 1987; Banks, 2004). 

Based on these facts, we cannot directly correlate HSU peripheral hyperinsulinemic condition 

to brain hippocampal levels. Therefore, the fact that we did not measure the levels of 

hippocampal insulin content represents the first limitation of the current study. 

However, we cannot exclude the hypothesis that insulin signaling is also affected in the 

hippocampus thus contributing to cognitive deficits exhibited buy HSu rats. Furthermore, in 

vivo studies have shown that spatial memory is directly related with the expression of 

hippocampal IRs (Zhao et al., 1999; Zhao et al., 2004). Furthermore there is recent evidence 

towards the involvement of the insulin signaling through PI3K in spatial memory (McNay et al., 

2010). Therefore we set out for the study of the IR-β→IRS-1→PI3K signaling pathway, by 

measuring their total basal hippocampal levels. Indeed, we found a reduction in IR-β 

expression for HSu rats compared to Cont. However we report herein an absence of 
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alterations in the further signaling molecules: IRS-1 and PI3K. Furthermore, as IRS-1 total basal 

levels were normal we decided to ascertain if there were any differences in insulin-dependent 

IRS-1 signaling transduction. For that, we measured the IRS-1 pS636/639 total levels, a candidate 

biomarker of brain insulin resistance (Talbot et al., 2012), and again, no differences were found 

between groups. So, besides the downregulation of the insulin receptor, the further signaling 

pathway seems to be unaffected on basal conditions. One possible explanation is that could be 

difficult to see the differences in the signaling pathway transduction at basal conditions; 

maybe should we have stimulated the rats with exogenous insulin prior to sacrifice [or 

stimulated the hippocampus by insulin intracerebroventricular (ICV) injection], the insulin-

induced phosphorylation would have been amplified and thus the differences detectable, as 

IRS-1 activation includes its recruitment and further phosphorylation by the insulin receptor 

upon insulin binding. 

In line with our results, Youngren et al. (2011) found that HFS feeding (8 weeks of 

exposure) induced insulin resistance in muscle concomitant with diminished IR levels. However 

they also saw IRS-1 diminished levels, which we did not. It is noteworthy that chronic 

hyperinsulinemia (e.g. during T2DM and obesity) downregulates IR expression in the BBB and 

this represents central insulin resistance, as it was reviewed by Craft and Watson (2004). 

Likewise, T1DM animal models show significantly reduced hippocampus IR protein levels, 

probably due to a persistent deficiency of insulin leading to a disuse receptor down-regulation 

(Dou et al., 2005).But Winocur and colleagues (2005) found no differences in the hippocampal 

IR-β expression on hyperinsulinemic ZDF rats, with 6 months of age. Alternatively, an increased 

IR turnover and/or more frequent receptor internalization may have contributed to a lower 

level of IR protein (Dou et al., 2005). On the other hand, we cannot exclude the fact that, as 

shown in Figure 6, upon extracellular insulin binding, the insulin receptor can recruit and 

activate other cellular substracts, including those of the MAPK signaling pathway, also involved 

in the regulation of learning and memory processes (Cardoso et al., 2009; Zhang et al., 2010). 

The status of this signaling pathway was not evaluated in the present study. 

 Hyperglycemia could also play a role in the impairment of insulin signaling, including 

underexpression of IR-β. Nevertheless, sucrose-sweetened water did not increase fasting 

glycemia and thus, glucose neurotoxicity should not be held responsible for the neuronal 

insulin dysfunction (Tomlinson and Gardiner, 2008). One of the major key players that 

translate hyperglycemia into glucotoxicity is RAGE signaling. RAGE upregulation fuels oxidative 

stress and inflammation pathways, leading to sustained cellular dysfunction (see section 6.3.1). 

Consistent with normoglycemia, HSu RAGE expression levels were comparable to Cont. 

Furthermore we did not found any signs of hippocampal oxidative stress in such early pre-
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diabetic stage as seen by normal HNE levels in HSU hippocampi when compared with Cont. 

rats. Additionally, no signs of inflammation were found in HSu hippocampi, as seen by normal 

TNF-α levels compared with Cont. animals. Commonly, systemic inflammation exacerbates 

CNS inflammation and correlates with cognitive decline (Leonard and Myint, 2006). 

Interestingly we failed to see signs of astrogliosis as shown by similar GFAP and GS levels 

between hippocampi from HSU and Cont, unlike other studies which found increased 

hippocampal astrogliosis for both T1DM and T2DM animal models (Coleman et al., 2004; 

Duarte et al., 2012), excluding this hypothesis as a possible influencing factor in HSu memory 

deficits as others have found LTP alterations in GFAP knockout mice, probably involved in such 

learning and memory processes (McCall et al., 1996). The possible involvement of 

synaptotoxicity and astrogliosis (see section glial cells) in the mechanism of diabetes-induced 

memory impairment is supported by the main finding of the Duarte et al., (2012) work, which 

demonstrate that long-term caffeine consumption prevented diabetes-associated memory 

impairments, astrogliosis and loss of nerve terminal markers in the hippocampus. Along with 

this we did not found either any alteration in band intensity for synaptophysin between 

groups, opposed to other studies which reported a reduction of this nerve terminal marker in a 

diet-induced insulin resistant animal model (Stranahan et al., 2008).  

Therefore, one can suggest that HSu memory impairments are independent of 

inflammation and oxidative stress mechanisms. Other mechanism should be sought, namely 

glutamatergic transmission that underlies neuronal synaptic plasticity.  Interestingly, Carvalho 

et al. (2012) have recently reported that wild-type mice fed 20 % sucrose-sweetened water for 

7 months resulted in metabolic alterations associated to diabetes, which contributed to the 

development of AD-like pathologic features, namely a significant increase in amyloid β protein 

levels. Moreover, high-fat or high-sucrose diet-induced insulin resistance promoted 

amyloidosis and was also associated with poor learning and memory performance in AD 

mouse models (Ho et al., 2004; Cao et al., 2007). This is consistent with large population 

studies that confirm such an association between T2DM molecular and biochemical features 

and AD (Leibson et al., 1997; Ott et al., 1999), a neurological disorder characterized by 

profound memory loss and progressively cognitive and behavioral decline. Data from clinical, 

epidemiological and animal studies have suggested that excessive energy intake adversely 

affects the brain, particularly during aging. Studies suggest that individuals with a high energy 

intake are at increased risk of Alzheimer’s disease (Luschsinger et al., 2002). Although we did 

not measure Aβ levels we believe that 9 weeks of sucrose-sweetened water consumption has 

not been sufficiently long-enough to induce amyloidosis as in Carvalho et al. (2012). 

Furthermore, in the CNS, Aβ is another known RAGE ligand, involved in RAGE upregulation and 
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pro-oxidant/inflammatory events (Peppa et al., 2003; Ding and Keller, 2005; Ramasay et al., 

2005; Sparvero et al., 2009), which we did not found to be increased in HSu rats. 

Animal studies have shown that high-calorie diets impair the structure and function of 

the hippocampus, a brain region critical for learning and memory (Winocur and Greenwood, 

1999; Molteni et al., 2002; Wu et al., 2004; Farr et al., 2008). The adverse effects of high 

calorie diets on learning and memory have been associated with impaired hippocampal 

synaptic plasticity and neurogenesis (Farr et al., 2008; Lindqvist et al., 2006).  

In the present work we found no alterations in PSD-95, one of the fundamental 

glutamatergic scaffolding proteins accompanied by an upregulation of GluR1 and NR1 subunits 

in hippocampal total extracts of HSu rats compared to Cont. Along these lines, we have to 

clarify that we measured total protein levels in total hippocampal extracts by Western-Blot 

analysis and thus, we could ascertain GluR1 and NR1 expression in the whole hippocampus, 

but not its localization or activity. Synaptosomal extracts as well as imunnohistochemistry 

protocols could provide a better understanding of the role of this AMPAR and NMDAR subunits 

upregulation, seen in HSu rats, on functioning and localization.  

Interestingly, Turringiano and colleagues showed that inhibition of synaptic 

transmission upregulates AMPAR transcription (Turrigiano et al., 1998), presumably as a 

means of compensation. The interaction between insulin synaptic plasticity effects and DM has 

been primarily demonstrated in the context of T1DM rodent model, where a significant deficit 

in LTP was observed (Biessels et al., 1996; Stranahan et al., 2008). Indeed, DM seems to induce 

cognitive impairment and defects of LTP in the hippocampus, an important mechanism of 

learning and memory in mammals, known to require regulation of the glutamate receptor 

properties (Kamal et al., 2000; Huang et al., 2010). Diabetic alterations on both excitatory and 

inhibitory neurotransmission (Kamal et al., 2000) are potentially under the direct regulation of 

insulin (McNay and Recknagel, 2011). Coherently, our results demonstrate that HSu rats had 

abnormal glutamate receptors subunits levels resulting from peripheral hyperinsulinemia 

among other metabolic alterations. These alterations may be responsible for LTP/LDP 

impairment and consequently memory deficits. Moreover, abundant IR are found in both cell 

bodies and synapses and besides very little is known about the functional significance of 

synaptic IR in the neurons, several studies have drawn links between IR signaling and plasma 

membrane expression of ion channels as well as neurotransmitter receptors at the CNS 

synapses (Chiu and Cline, 2010). Thus, we might speculate that HSu IR-β downregulation may 

be involved in an increase in GluR1 and NR1 subunits expression. Other possible responsible 

mechanism for glutamate receptors upregulation and memory deficits is glutamate 

neurotoxicity found by other authors (Atlante et al., 2001; Valastro et al., 2002). In fact, the 
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breakdown of glucose yields a number of compounds (such as acetyl CoA, glutamate and ATP) 

that are necessary for normal neuronal structure and function. Acetyl CoA is a constituent of 

acetylcholine synthesis, that together with glutamate constitute neurotransmitters  involved in 

the acquisition and maintenance of behavior parameters (e.g. learning and memory capacities) 

(Shulingkamp et al., 2000). This is consistent with postprandial hyperglycemia but not with 

hippocampal neurotoxicity as we did not found any signs of astrogliosis, oxidative stress or 

inflammation. 
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In the present study, we confirm the deleterious effect of adding sucrose to a normal 

rodent diet, resulting in a pre-diabetic state, mainly characterized by fasting normoglycemia, 

postprandial hyperinsulinemia, insulin resistance, hypertriglyceridemia and impaired glucose 

tolerance compared with the cont rats. These metabolic changes were associated with 

memory impairments which were underlied by reduced IR-β levels as well as GluR1 and NR1 

increased expression in hippocampi from Hsu animals. Interestingly, we failed to see evidences 

of hippocampal neurotoxicity.  Therefore, one might conclude that deficient central insulin 

signaling together with altered glutamatergic transmission might interact to trigger memory 

deficits in the HSu rats. 

These data underscore the potential role of dietary sugar in the early central diabetic 

complications and suggest that controlling the consumption of sugar-sweetened beverages 

may be an effective way to curtail the risk of developing T2DM. Furthermore, identifying the 

mechanisms by which insulin and glutamatergic signaling contribute to “diabetic 

encephalopathy” is of paramount clinical relevance. 
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